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Exterior Shape Factors
From Interior Shape Factors
Shape factors for steady heat conduction enable quick and highly simplified calculations
of heat transfer rates within bodies having a combination of isothermal and adiabatic
boundary conditions. Many shape factors have been tabulated, and most undergraduate
heat transfer books cover their derivation and use. However, the analytical determination
of shape factors for any but the simplest configurations can quickly come to involve com-
plicated mathematics, and, for that reason, it is desirable to extend the available results
as far as possible. In this paper, we show that known shape factors for the interior of
two-dimensional objects are identical to the corresponding shape factors for the exterior
of those objects. The canonical case of the interior and exterior of a disk is examined first.
Then, conformal mapping is used to relate known configurations for squares and rectan-
gles to the solutions for the disk. Both a geometrical and a mathematical argument are
introduced to show that shape factors are invariant under conformal mapping. Finally,
the general case is demonstrated using Green’s functions. In addition, the “Yin-Yang”
phenomenon for conduction shape factors is explained as a rotation of the unit disk prior
to conformal mapping. [DOI: 10.1115/1.4042912]

Introduction

Shape factors for steady heat conduction have been tabulated in
a number of publications [1,2], and most undergraduate heat trans-
fer textbooks derive and use shape factors [3]. We consider two-
dimensional (2D) objects (simple closed curves in the plane) that
have portions of their boundary at either of two temperatures,
with the sections between these adiabatic. The heat transfer rate _Q
(in W/m) across the interior of the body is

_Q ¼ kSðT1 � T2Þ (1)

where k is the thermal conductivity and S is the shape factor,
which is dimensionless. For simple configurations, such as a rec-
tangle or an annular sector with opposing isothermal edges, S is
easily found; but for more complicated shapes, finding S rapidly
becomes analytically difficult.

This difficulty is especially apparent when the aim is to find S
for material exterior to a closed curve. For example, the solution
for heat conduction from one side of the interior of a square of
height a to the other side is trivial to find analytically:
_Q ¼ kaDT=a, so S¼ 1. Yet, the solution for the exterior of the

same case is very difficult to find analytically. A MATLAB solution
based on high-resolution finite element calculations (Fig. 1) illus-
trates the nature of this complexity. However, we have made the
empirical observation that, for some specific cases including this
one, the exterior shape factor is the same as the interior shape
factor.

This observation is unexpected because the heat transfer rates
inside and outside need not be the same. The hot and cold bounda-
ries act as a source and sink, respectively. Some amount of heat
flows from the source to the interior and some amount flows, in
the opposite direction, to the exterior. The thermal conductivities
of the exterior and interior regions can be entirely different. Fur-
ther, in general, the exterior heat flow would differ if other sources
or sinks were present.

The primary aim of this work is to show that the interior and
exterior shape factors are always equal under appropriate condi-
tions. We have not seen this result in the literature on shape

factors. We will show this result in several ways: for the funda-
mental case of a unit disk; as a property of conformal maps
between arbitrary shapes and the unit disk (including a few exam-
ples of such maps); and for a more general region, by using
Green’s functions. We will assume that the only heat source and
sink are the isothermal edges of the region, and we assume that
the interior and exterior conductivities are uniform but not equal.

Formulation and Approach

For steady heat conduction in two dimensions, we are con-
cerned with the Laplace equation for temperature, h, scaled to
06 h6 1, with coordinates also nondimensionalized. For reasons
discussed in the section Conformal Mapping and Shape Factors, it

Fig. 1 Heat conduction outside a square. Vertical edges are
isothermal at temperatures h 5 0 and 1, and horizontal edges
are adiabatic. (Numerical details in Appendix A). Twenty equally
spaced isotherms are shown in red and twenty identically
spaced adiabats in black, giving ni 519 temperature increments
and na519 heat flow channels. Viewed as a flux plot [3], this
figure shows that S 5 na=ni 51.
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is sufficient to consider the Dirichlet problem on the interior, R, of
a simple closed curve, r

r2h ¼ 0 for z in R (2)

h ¼ hðzÞ for z on r (3)

where z¼ (x, y) is the (possibly complex) coordinate in the plane
and h(z) is the distribution of temperature on the curve. The region
R is simply connected. In some cases, we will consider the exte-
rior Dirichlet problem for conduction in the region exterior to r,
in which case we consider the exterior region, E, to be the
extended complex plane, including the point at infinity. For the
exterior problem in two dimensions, in order for a steady-state
solution to exist, there can be no heat transfer to the region far
from the object. That condition is met if the temperature far
from the object is the average temperature on any circle drawn
around the outside of the object, by the mean value theorem for
harmonic functions.1 For objects having one high temperature
side and one low temperature side, the far field will resemble that
of a dipole.

The tools of conformal mapping are powerful and well devel-
oped for solution of the Laplace equation [4–7]. In particular, the
Riemann mapping theorem guarantees that any simply connected
region in the plane can be mapped to the unit disk. Solutions on
the unit disk and the effect of mapping on shape factors are there-
fore of central importance to what follows. We will also be inter-
ested in rectangular regions that have simple conduction
solutions, as a starting point for mapping shape factors to other
geometries. We begin with heat conduction in the disk.

Temperature and Shape Factors Inside and Outside a Unit
Disk. The Dirichlet problem for the interior of a unit disk R ¼
fz : jzj < 1g seeks the solution of Laplace’s equation with a speci-
fied temperature distribution on the boundary C ¼ fz : jzj ¼ 1g.
In polar coordinates, r ¼ jzj and / ¼ arg z, the boundary tempera-
ture can be written

hð1;/Þ ¼ hð/Þ (4)

The solution is provided by the Poisson integral formula [8]

hðr;/Þ ¼
ðp

�p
Pðr;/;/0Þhð/0Þ d/0 (5)

with the Poisson kernel (Fig. 2)

P r;/;/0ð Þ ¼ 1

2p
1� r2

1þ r2 � 2r cos /� /0ð Þ (6)

The Poisson kernel represents the temperature at (r, /) produced
by a boundary temperature distribution that is a delta function at
(1, /0); and Eq. (5) represents a superposition such temperature
distributions along the boundary.

The exterior Dirichlet problem

r2he ¼ 0; r > 1 (7)

heð1;/Þ ¼ hð/Þ (8)

is solved with a transformation that replaces r, for r< 1, in Eqs.
(5) and (6) by 1/r, for r> 1, with the result [5]

heðr;/Þ ¼ �
ðp

�p
Pðr;/;/0Þhð/0Þ d/0 (9)

Note that he has a finite limit at infinity

lim
r!1

he rð Þ ¼ 1

2p

ðp

�p
h /0ð Þ d/0 (10)

In other words, the temperature at infinity is the average tempera-
ture around the perimeter of the unit disk. Because he is bounded
at infinity, the heat flux goes to zero as 1/r2 so that no heat is trans-
ferred to infinity.2

Interior and Exterior Shape Factors for a Disk are Equal.
Consider a unit disk whose circular boundary C is a chain of four
sections on which h(/) takes different values

hð/Þ ¼

0 C1 : �p < / < /1

ha;1ð/Þ C2 : /1 � / � /2

1 C3 : /2 < / < /3

ha;2ð/Þ C4 : /3 � / � p

8>>>>><
>>>>>:

(11)

In other words, section C1 is isothermal at h¼ 0 and section C3 is
isothermal at h¼ 1. These two sections are joined by the tempera-
ture distributions ha,1(/) and ha,2(/), which vary smoothly from 0
to 1 and 1 to 0, respectively.

If the sections C2 and C4 were adiabatic, each would have some
smoothly varying temperature distribution. Let us assume that
these two distributions are none other than ha,1(/) and ha,2(/). We
do not know the equations for these distributions; but, for the pres-
ent purpose, it is sufficient that we know that they exist and corre-
spond to the condition in which C2 and C4 are adiabatic. (An
example of ha,1(/) is shown in Fig. 6.)

Considering first the interior Dirichlet problem, heat will flow
from C3 to C1. No heat flows to C2 or C4, which are assumed adia-
batic. Our normalization of temperature, T, to 06 h6 1 may be
written h¼ (T – T1)/(T3 – T1), and radius is already nondimension-
alized to 06 r6 1.

The interior shape factor can be found by evaluating the interior

heat flow _Q
i

on just C3. The heat flow is the integral over C3 of
the heat flux normal to the boundary. Heat flow going from C3 to
C1 is taken to be positive, with (T3 – T1) positive; under this con-
vention, heat flux is opposite to the outward normal direction.
Using the definition of the shape factor, Eq. (1), and the solution
for h, Eq. (5),

Fig. 2 Coordinates for the Poisson integral formula

1Compare to Eq. (10) and see discussion in the final section.

2The asymptotic expansion for jzj ! 1 is heðzÞ � he
1 þ a1=zþ a2=z2 þ � � �

where he
1 is given by Eq. (10).
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Si ¼
_Q

i

ki T3 � T1ð Þ ¼
ð

C3

@h
@n

dl ¼
ð/1

�p

@h
@r

����
r¼1

d/ (12)

¼
ð/1

�p

@

@r

ðp

�p
P r;/;/0ð Þ h /0ð Þ d/0

����
r¼1

d/ (13)

where ki is the thermal conductivity inside the disk.
Note that the nondimensional heat flux at any angle / on either

C2 or C4 (presumed to be 0) is

� @h
@r

����
r¼1

¼ � @

@r

ðp

�p
P r;/;/0ð Þ h /0ð Þ d/0

����
r¼1

¼ 0 (14)

From Eq. (9), we can immediately see that the heat flux for the
exterior solution must also be zero at every / on these two
boundaries

� @h
e

@r

����
r¼1

¼ þ @

@r

ðp

�p
P r;/;/0ð Þ h /0ð Þ d/0

����
r¼1

¼ 0 (15)

If applied to C1 or C3, these results show that the heat flux of the
interior solution at any / is equal and opposite to the heat flux of
the exterior solution at the same point.

The exterior shape factor may now be found, noting that he has
the finite limit as r!1 that is required by Eq. (10). The exterior
normal direction ne is opposite to the interior normal direction n.
All heat transfer is from C3 to C1, with heat flowing away from C3

into the exterior region and (T3 – T1) positive. Using again the def-
inition of S, with ke the thermal conductivity outside the disk

Se ¼
_Q

e

ke T3 � T1ð Þ ¼
ð

C3

@he

@ne
dl ¼ �

ð/1

�p

@he

@r

����
r¼1

d/ (16)

¼
ð/1

�p

@

@r

ðp

�p
P r;/;/0ð Þ h /0ð Þ d/0

����
r¼1

d/ (17)

Comparing Eqs. (13) and (17), Si¼ Se. Note that the interior and
exterior thermal conductivities need not be the same.

Conformal Mapping and Shape Factors

The Riemann mapping theorem shows that for a plane simply
connected region R with boundary r containing an interior point
f, there exists a function w¼ f(z, f), analytic on R, that confor-
mally maps R one-to-one onto the unit disk in the w-plane, taking
r to the disk’s circumference and f to w¼ 0 [4,8]. When f¼ 0, we
will simply write w¼ f(z). The mapping is unique to within an
arbitrary rotation of the disk, and the significance of such rotations
is discussed in the section Reverse Map From the Disk to the
Square.

An important consequence of the Riemann mapping theorem is
that if E is the portion of the extended complex plane3 outside a
simple closed curve r, then E can be mapped conformally to the
inside of the unit disk. For example, the bilinear transformation
(w¼ (azþ b)/(czþ d)) can take an exterior, unbounded region
into a bounded region [7], and then the Riemann theorem guaran-
tees a mapping onto the unit disk.

An elementary property of conformal maps is that isothermal
boundaries map to isothermal boundaries and adiabatic bounda-
ries map to adiabatic boundaries. Further, isotherms and adiabats
remain orthogonal under conformal maps.

Shape Factors are Preserved Under Conformal Mapping.
We now show that the shape factor of a region after mapping is

the same as the shape factor for the region before mapping. The
conformal invariance of electrical resistance is well known [9]
and entirely analogous; but we have not seen the result in the heat
transfer literature. We therefore provide the following simple (and
perhaps original) explanation.

A conformal map preserves angles—which is why such map-
pings are useful in cartography—but the linear scale varies with
position under mapping. In fact, a conformal mapping may be
shown to consist of a rotation and a scalar multiplication of the
original coordinates, where the angle of rotation and the scalar are
different at different points. Call the scalar multiplier J. (Transla-
tion of the coordinates is also possible, but not important here.)

Consider an isothermal section of a boundary, which has a
length Dl before mapping. If the temperature on this section is T
and another isotherm a distance Dn away is at temperature
TþDT, then the heat flow through the section is

D _Q ¼ k
DT

Dn
Dl (18)

Now, suppose we map this region to another one. The mapped
boundary section has length J Dl. The interior isotherm is at the
same temperature as before mapping but now at a distance J Dn.
Thus, the heat flow is

D _Q ¼ k
DT

JDn
JDlð Þ ¼ k

DT

Dn
Dl (19)

just as before the mapping. If we sum over all sections on each of
the unmapped and mapped boundaries (i.e., integrate), we obtain
the same total heat flow, _Q, for each.4 In view of the definition,
Eq. (1), S is the same before and after conformal mapping. (This
result is demonstrated mathematically in Appendix B.)

Consider the conformal mapping of the interior of the unit disk
to either the region R inside r or the region E outside r. For given
boundary conditions, the interior shape factor of the disk is S.
From the preceding argument, the shape factor for both R and E
will have the same value of S under the mapped boundary condi-
tions. Since the mappings are one-to-one, we can alternatively
choose boundary conditions on R, map R to inside of the disk, and
then map the disk to E, with the same S in all three cases.

The effect of the mappings on the boundary conditions
requires additional consideration in each case. For example, the
reciprocal map (w¼ 1/z) takes the inside of the disk to the
outside of the disk, but reflects the boundary conditions about
the real axis. Additionally, the mappings to the disk are unique
only to within an arbitrary rotation of the disk, so a rotational
angle must be chosen to make the boundary conditions of a map-
ping to the inside correspond to those of the mapping to the out-
side. These issues are discussed in the examples that follow.

Proof of Principle: Examples on Squares and Disks

To demonstrate the ideas developed thus far, we will map refer-
ence cases for which the shape factor is known to cases for which
it is not easily calculated. Two reference cases of interest are the
interior of a square or a rectangle, for which the conduction prob-
lem is trivially solved. We map these onto the unit disk, which is
less directly solvable. In particular, these cases illustrate: (i) the
result of Eqs. (13) and (17), that shape factors interior and exterior
to a disk are equal, (ii) the preservation of S under conformal map-
ping, (iii) the importance of rotations of the disk, and, (iv) the
equality of the interior and exterior shape factors for the square.

Mapping a Square to the Unit Disk. Kober [6] provides a
mapping of a square to the unit disk. Putting the square in the z-
plane and the disk in the w-plane, the conformal map is

3The extended complex plane includes the point at infinity so that E is simply
connected. 4The heat fluxes at any point are generally not the same.
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w ¼ f zð Þ ¼
ffiffiffiffi
m
p sn z=

ffiffiffiffi
m
p jm

� �
dn z=

ffiffiffiffi
m
p
jm

� � ; where m ¼ 1=2 (20)

Here, snðu jmÞ and dnðu jmÞ are complex-valued Jacobi elliptic
functions of modulus m [10].5 The corners of the square are nor-
malized to be at (w1, 0), (–w1, 0), (0, w1), and (0, –w1), where

w1 ¼
ffiffiffiffi
m
p

arcsn 1;
ffiffiffiffi
m
p� �

¼ 1:85408 � � �ffiffiffi
2
p ¼ 1:31103 � � � (21)

The mapping takes the corner at z¼ (w1, 0) to w¼ (1, 0), that at
z¼ (0, w1) to w¼ (0, 1), and so on. Variations on this mapping are
discussed by Fong [11]. The inverse map, from w to z, is discussed
below (see Eq. 30).

Eleven isotherms and eleven adiabats for the square are shown
in Fig. 3. The solution for temperature, h, is

h x; yð Þ ¼
1

2w1

xþ yð Þ þ
1

2
(22)

Parametric equations for the isotherms and adiabats as functions
of x are useful for graphing the mapping. The lines are parame-
trized with the value of h for each isotherm and a parameter n for
each adiabat, with 0� n� 1:

yiso ¼ ð2h� 1Þw1 � x for isotherms (23)

yadi ¼ x� ð2n� 1Þw1 for adiabats (24)

The temperature along both adiabatic edges varies linearly from 0
to 1, and is given by

h ¼ x=w1 for the lower-right edge (25)

h ¼ 1þ x=w1 for the upper-left edge (26)

The shape factor for the square is S¼ 1 as previously discussed
and as also evident because Fig. 3 has an equal number of heat
flow channels and temperature increments: na¼ ni¼ 10 so that
S¼ na/ni¼ 1.

The mapped disk is shown in Fig. 4.6,7 This mapping produces
a disk with opposing 90 deg isothermal edges and with the same
number of temperature increments and heat flow channels as the
original square: S¼ 1. The shape factor is obviously unchanged
by any rotation of the disk as well.

The interior solution on the disk can be mapped to the exterior
solution using the reciprocal map, which takes points (u, v) inside the
disk in the w-plane to the outside of the disk in the t-plane: t¼ 1/w,
with t ¼ ðu0; v0Þ. The result is shown in Fig. 5, where again there are
ten heat flow channels and ten temperature increments. Consistent
with the previous analysis, the shape factor for conduction on the
exterior of the 90 deg disk is also S¼ 1. The reciprocal map reflects
the boundary conditions about the x-axis, but this has no effect on S.

Fig. 5 Solution for heat conduction exterior to the 90 deg disk.
Isotherms are in red and adiabats in gray. Note that the recipro-
cal map reflects the disk about the horizontal axis, S 5 1.

Fig. 3 Square with two isothermal sides and two adiabatic
sides. Isotherms are in color and adiabats are in gray, S 5 1.

Fig. 4 Disk with two 90 deg isothermal edges and two oppos-
ing 90 deg adiabatic edges. Isotherms are in color and adiabats
are in gray, S 5 1.

5Kober writes this expression in terms of the elliptic function parameter, k:
m¼ k2.

6The numerical methods are described in Appendix A.
7According to Ref. [9], this plot was first obtained by Schwarz in 1869.
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Finally, using the mapping function, we may plot the tempera-
ture distribution along either adiabatic edge (Fig. 6). This distribu-
tion is precisely the function ha,1(/) proposed in Eq. (11).

The solution for conduction exterior to the square is discussed
later in this section.

Mapping a Rectangle to the Unit Disk. To show that Se¼ Si

for other boundary conditions on the disk, we may consider the
conformal map that takes the interior of a rectangle whose vertices
are (6a, 6b) onto the unit circle, jwj � 1 [12]:

w ¼ f zð Þ ¼ sn kz jmð Þ dn kz jmð Þ
cn kz jmð Þ (27)

Here, snðu jmÞ; cnðu jmÞ; and dnðu jmÞ are complex-valued
Jacobi elliptic functions of modulus m, and

k ¼ K

2a
¼ K0

2b
(28)

where K(m) and K0ðmÞ are the real and imaginary quarter periods
and m is calculated from this equation [12]. We may consider the
edges at 6a to be isothermal and those at 6b to be adiabatic.

The result of this mapping is shown for three values of b/a in
Figs. 7(a), 8(a), and 9(a). Because the shape factor for this rectan-
gle is known to be

Srect ¼
b

a
(29)

we have the corresponding shape factors on the unit disk with no fur-
ther calculation. As before, the reciprocal map gives us the exterior
conduction solution for each case (Figs. 7(b), 8(b), and 9(b)). And
for each exterior case, the shape factor is again equal to that for the
interior. Note also that Fig. 7(a), with a¼ b, is a square rotated by
–45 deg relative to Fig. 4, a fact that will prove to be useful.

Reverse Map From Disk to Square and Yin-Yang Shape
Factors. The conformal mapping from the square to the disk, Eq.
(20), has the inverse function [6]

z ¼
ðw

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s4
p ¼

ffiffiffi
2
p

K mð Þ � F arccos w jmð Þ
� �

(30)

where K(m) is the complete Legendre elliptic integral of the first
kind with modulus m and Fðu jmÞ is the incomplete Legendre
elliptic integral of the first kind with complex amplitude u. The
solution for the disk shown in Fig. 4 may be remapped to the z-
plane using this inverse mapping, and the entirely unsurprising
result is shown in Fig. 10(a).

A much more interesting result is obtained by mapping the rotated
disk, Fig. 7(a), to the square because this mapping provides a solution
for the square with isothermal half-boundaries at opposing corners (Fig.
10(b)). The solution interior (or exterior) to such a square is very diffi-
cult to calculate analytically; however, the conformal invariance of the
shape factor dictates that S¼ 1 here as well. That S¼ 1 may be con-
firmed from Fig. 10(b), since the number of temperature increments
equals the number of heat flow channels.

For other rotations of the disk prior to mapping to the square,
the shape factor would be unchanged, but the boundary conditions
on the square would rotate around the perimeter. Lengths are not
preserved under conformal maps; however, the symmetries of
disk and of the square require that half of the total boundary
would remain adiabatic and half isothermal under rotation. Addi-
tionally, as a result of these symmetries: (i) if the boundary condi-
tions are rotated about the origin by p/2, the isothermal and
adiabatic boundaries of the square are interchanged; and (ii) if the
rotation angle is p, the square’s hot and cold boundaries are inter-
changed. None of these rotations affect S.

Fig. 7 Mappings of a rectangle of aspect ratio a : b 5 1:1 to the interior and exterior of a unit disk. The disk
has two 90 deg isothermal edges and two opposing 90 deg adiabatic edges (boundary conditions rotated
245 deg from Fig. 4). Isotherms are in color and adiabats are in gray, S 5 b=a 5 1: (a) map of a rectangle of 1:1
aspect ratio to interior of the unit disk and (b) map of a rectangle of 1:1 aspect ratio to exterior of the unit disk.

Fig. 6 Temperature distribution along one adiabatic edge of
the disk

Journal of Heat Transfer JUNE 2019, Vol. 141 / 061301-5

Downloaded From: https://heattransfer.asmedigitalcollection.asme.org on 05/08/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



In fact, these rotated cases are examples of a larger class of so-
called Yin-Yang bodies described by Lienhard [13] for which
S¼ 1. The Yin-Yang bodies are those having a geometrical axis
of symmetry on either side of which the adiabatic and isothermal
boundary conditions are interchanged. In Fig. 10(a), this axis of sym-
metry is either the x- or the y-axis; in Fig. 10(b), the axis of symme-
try is a line through the origin at either 45 deg or –45 deg; and in Fig.
4, the axis of symmetry is either the u- or the v-axis. (In fact, the sit-
uations in Fig. 10 are examples 2a and 2b from Ref. [13].) In con-
trast, Figs. 8(a) and 9(a) lack this symmetry. We may now state that
all Yin-Yang configurations should be reducible to conformal map-
pings from the unit disk, with the boundary conditions of Fig. 7(a),
under differing rotations of the disk about the origin.

The mapping from the interior of the disk to the exterior of the
square is

z ¼
ðw

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s4
p

s2
ds (31)

where jwj � 1 [4]. The integral does not converge as jw0j ! 0,
since that is the point at infinity in the z-plane. We have already
presented a finite element solution for the exterior in Fig. 1, show-
ing that S¼ 1, so we will not compute this mapping.

Green’s Functions for an Arbitrary Two-Dimensional

Region, R

We now generalize the analysis done for the unit disk to any
arbitrary two-dimensional region R with a simple closed boundary
r that may have any shape (Fig. 11(a)). The vector n is the unit
outward normal to r. The Green’s function gðzjfÞ is the solution
of the following equation:

�r2g ¼ dðf� zÞ (32a)

z and f in R (32b)

g ¼ 0 for f on r (32c)

Fig. 9 Mappings of a rectangle of aspect ratio a : b 5 2:1 to the interior and exterior of a unit disk. Isotherms
are in color and adiabats are in gray, S 5 b=a 51=2: (a) map of a rectangle of 2:1 aspect ratio to interior of the
unit disk and (b) map of a rectangle of 2:1 aspect ratio to exterior of the unit disk.

Fig. 8 Mappings of a rectangle of aspect ratio a : b 5 1.5:1 to the interior and exterior of a unit disk,
S 5 b=a 5 2=3. Sixteen isotherms are in color and eleven adiabats are in gray: (a) map of a rectangle of 1.5:1
aspect ratio to interior of the unit disk and (b) map of a rectangle of 1.5:1 aspect ratio to exterior of the unit disk.
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We may find the solution of the Dirichlet problem, Eqs. (2) and
(3), using Green’s second identity. We treat g and h as functions
of f [8] ð

R

gr2h� hr2g
� �

dRf ¼
ð

r
g
@h
@nf
� h

@g

@nf

� 	
dlf (33)

where the subscript f indicates that differentiation or integration is
with respect to the f coordinate. Substituting from Eqs. (3) and
(32) leads to an expression for h as an integral around the
boundary

h zð Þ ¼ �
ð

r

@g zjfð Þ
@nf

h fð Þ dlf �
ð

r
I zjfð Þ h fð Þ dlf (34)

The boundary influence function IðzjfÞ is defined as shown. This
result is like Eq. (5). The influence function is the temperature at z
that would be produced by a boundary temperature that is a delta
function at f (e.g., like a unit-strength point source). The integral
is a superposition of such sources of strength h(f) around the
boundary r.

For the region exterior to r, E, the formulation is the same,
with the exception that the outward normal direction, ne, is oppo-
site n (Fig. 11(b))

he zð Þ ¼ �
ð

r

@ge zjfð Þ
@ne

f

h fð Þ dlf ¼
ð

r

@ge zjfð Þ
@nf

h fð Þ dlf (35)

We also require ge(z, f) to produce a bounded solution for he as
jzj ! 1 [8].

Since there are no temperature sources other than the boundary
r, we may also write the exterior solution directly in terms of the
boundary influence function, respecting the change in normal
direction

heðzÞ ¼ �
ð

r
IðzjfÞ hðfÞ dlf (36)

The Green’s function for R may be written in terms of the con-
formal map f that takes z � R to the unit disk and the point f � R
to w¼ 0 [4,8]

g zjfð Þ ¼ � 1

2p
log j f z; fð Þj (37)

Green’s Functions for the Unit Disk. As a specific example,
when R is unit disk (Fig. 12), the bilinear mapping from the disk
to itself is

Fig. 10 Solutions for heat conduction interior to the square obtained using the reverse mapping by Eq. (30)
from the disk for two sets of boundary conditions. Both are Yin-Yang configurations [13]: (a) the reverse map-
ping from the disk to the square, S 51, and (b) rotated boundary conditions based on the rectangle with
a=b 51, S 5 1.

Fig. 11 Configuration and coordinates for Green’s functions: (a) interior region and (b)
exterior region
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w ¼ f z; fð Þ ¼ z� f

1� zf
(38)

where f is the complex conjugate of f, and so the interior Green’s
function is

2p g zjfð Þ ¼ �log

���� z� f

1� zf

����
¼ �log jz� fj þ log jz� f�j þ log jfj (39)

where f� ¼ ð1=jfjÞ ei/0 is the image of f with respect to the circle
(cf. Ref. [8]). In polar coordinates, z¼ (r, /) and f¼ (r0, /0).
Then, with reference to Fig. 12, the law of cosines gives

jz� fj2 ¼ r2
0 � 2rr0 cosð/� /0Þ þ r2 (40)

In particular, if f is on the unit circle, r0¼ 1 and

jz� fj2 ¼ 1� 2r cosð/� /0Þ þ r2 (41)

With this information, a lengthy but straightforward calculation
shows that the influence function, IðzjfÞ, for the disk is simply the
Poisson kernel, Eq. (6)

I zjfð Þ ¼ �@g zjfð Þ
@nf

����
r

¼ �@g zjfð Þ
@r0

����
r0¼1

¼ � � � ¼ P r;/;/0ð Þ (42)

The right-hand side of Eq. (39) consists of sources at f and at
its image point f*, plus a constant term that makes g¼ 0 for z on
r. If z and f lie outside the unit disk, the Green’s function is unaf-
fected; and so Eq. (39) is also geðzjfÞ.8 The normal direction, how-
ever, is reversed for the exterior problem. Thus, with Eq. (35), we
see that the exterior solution is just Eq. (36) and that the result is
consistent with Eq. (9). Note that geðzjfÞ ! 0 as jzj ! 1.

Interior and Exterior Shape Factors of R are Equal. As for
the unit disk, we can imagine the boundary of R, r, to be com-
posed of a chain four curves, r1 isothermal at h¼ 0, r2 and r4 adi-
abatic, and r3 isothermal at h¼ 1. The boundary need not be
circular. The shape factor for the interior problem is

Si ¼
ð

r3

@h
@nz

dlz ¼ �
ð

r3

@

@nz

ð
r

@g zjfð Þ
@nf

h fð Þ dlfdlz (43)

¼ þ
ð

r3

@

@nz

ð
r
I zjfð Þ h fð Þ dlfdlz (44)

For the exterior problem, the normal direction is reversed

Se ¼
ð

r3

@he

@ne
z

dlz ¼ �
ð

r3

@

@ne
z

ð
r

@ge zjfð Þ
@ne

f

h fð Þ dlfdlz (45)

¼ �
ð

r3

@

@nz

ð
r

@ge zjfð Þ
@nf

h fð Þ dlfdlz (46)

¼ þ
ð

r3

@

@nz

ð
r
I zjfð Þ h fð Þ dlfdlz (47)

where in the second step, we revert to the interior normal direc-
tion, with signs canceling; and in the third step, we substitute
from Eqs. (35) and (36). Comparing Eq. (44) to Eq. (47), we see
again that Se¼ Si.

Boundary Condition as jzjfi ‘. In order for solutions to these
two-dimensional problems to exist, the temperature at infinity
must be bounded9 and take on a specific value that ensures no net
heat transfer to locations distant from the boundary, r.

For the circular disk, Eq. (10) provides the necessary tempera-
ture at large radius. For boundary conditions that have appropriate
reflectional symmetry, this temperature is easily seen to be
h¼ 1/2, as for the situations in Figs. 5, 7(b), 8(b), and 9(b).
However, for asymmetric conditions, the far-field temperature
may take some other value between 0 and 1. For example, a
disk with 357 deg of its boundary at h¼ 1, two adiabatic seg-
ments of 1 deg arc, and a 1 deg segment at h¼ 0 would require a
far field temperature only slightly below 1, roughly h � 358/360.

For noncircular boundaries, symmetrical cases like Fig. 1 may
also have a far field temperature of h¼ 1/2. In other instances, the
mean value theorem for harmonic functions can be applied in the
form of Eq. (10). Specifically, for any circle in E that encompasses
r, the integral of temperature around the circle gives the limiting
value of temperature as jzj ! 1. By constructing such a circle
for a given object, the necessary condition at infinity may be esti-
mated or calculated.

Conclusions

We have considered conduction shape factors for two-
dimensional, simply connected objects that have two isothermal
boundaries, each at different temperature and separated by two
adiabatic boundaries. The primary result obtained is:

	 Shape factors for conduction inside an object are equal to
those for conduction through the material outside the object,
if the only heat sources and sinks are the isothermal segments
of the boundary and there is no net heat transfer to the exte-
rior region at great distance from the object. The interior and
exterior thermal conductivities must be uniform, but need
not be equal.

In addition,

	 Both geometrical and mathematical proofs are given to show
that conduction shape factors are invariant when an object is
conformally mapped onto another object. While this princi-
ple is known in other contexts (e.g., for electrical resistance),

Fig. 12 Coordinates for the Green’s function on the unit disk

8In fact, Eq. (38) also maps the region exterior to the unit disk into the unit disk,
so this result is expected from Eq. (37).

9The exterior Dirichlet problem can include terms that logarithmically diverge at
large distances, so the coefficients of such terms must be zero.
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the present original arguments may be useful for instruc-
tional purposes.

	 The Yin-Yang shape factors with S¼ 1, first described in
1981, have been explained as rotations of the unit disk,
Fig. 7(a), prior to conformal mapping.
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Nomenclature

a, b ¼ dimensionless length of sides of square or rectangle
C ¼ circular curve
E ¼ simply connected region exterior to curve

f ðz; fÞ; f ðzÞ ¼ conformal mapping function
gðzjfÞ ¼ Green’s function

h(z), h(/) ¼ temperature distribution on boundary
ha(/) ¼ temperature distribution on adiabatic edge, Eq. (11)
IðzjfÞ ¼ influence function, Eq. (34)

J ¼ scalar multiplier
J1, J2 ¼ Jacobian matrices

k ¼ thermal conductivity (W m–1 K–1)
l ¼ position along a curve

m ¼ modulus of elliptic function
na ¼ number of heat flow channels
ni ¼ number of temperature increments
n ¼ unit normal vector

P(r, /, /0) ¼ Poisson kernel, Eq. (6)
_Q ¼ heat transfer rate (W m–1)
r ¼ polar radius, jzj

r0 ¼ polar radius, jfj
R ¼ simply connected region interior to curve
S ¼ shape factor, Eq. (1)
T ¼ temperature (K)

(u, v) ¼ real, imaginary coordinates in the w-plane
ðu0; v0Þ ¼ real, imaginary coordinates in the t-plane

w;w ¼ position in the complex w-plane
w1 ¼ constant given by Eq. (21)

(x, y) ¼ real, imaginary coordinates in the z-plane
z; z ¼ position in the complex z-plane

Greek and Other Symbols

a, b ¼ see Eq. (B4)
d(z) ¼ Dirac delta function

D ¼ difference in a quantity
f ¼ source position in the complex plane

f* ¼ image of f with respect to circle
h ¼ dimensionless temperature
k ¼ constant defined by Eq. (28)
r ¼ simple closed curve
u ¼ complex amplitude of elliptic integral
/ ¼ polar angle, arg z

/0 ¼ polar angle, arg f and arg f�

r? ¼ skew gradient, Eq. (B2)

Superscripts and Subscripts

e ¼ exterior value
i ¼ interior value

T ¼ transpose of matrix or vector
w ¼ evaluated with respect to w
z ¼ evaluated with respect to z

f ¼ evaluated with respect to f
�¼ complex conjugate

Appendix A: Numerical Implementation

Figure 1 was generated using MATLAB’s finite element method
algorithms with 181,700 nodes to compute both harmonic conju-
gates, which were then interpolated to a 501
 501 grid and over-
laid. The computational domain had 100 times the area of the
inner square and had a square external boundary at the average
perimeter temperature of the interior square (h¼ 1/2). Only the
inner 30% of the computational domain is shown in the figure;
however, temperature variation in the excluded region is less than
10% of the overall temperature difference.

The other charts were computed using Lua code [14] under
LuaLaTeX [15] using TEXShop and TEX Live [16]. The resulting
Lua functions were supplied to PGFPLOTS [17] to generate the
charts. The elliptic integrals were executed using the GNU SCIEN-

TIFIC LIBRARY [18] with FFI bindings to Lua [19], following the
complex amplitude formulæ in Ref. [10]. The GSL C code was
compiled using XCode under Mac OS X. The elliptic functions
were computed in Lua using an algorithm from Press et al. [20],
again applying complex argument formulæ from Ref. [10].

Several of the figures use the perceptually uniform colormaps,
Viridis and Plasma, by van der Walt and Smith [21].

Appendix B: Line Integral of a Normal Derivative

We can more formally demonstrate that the integral defining the
shape factor is unchanged by a conformal map. Consider an integral in
the mapped w-plane, and for convenience write this in vector notationð

r

@T

@n
dl ¼

ð
r
n � rT dl ¼

ð
r
r?T � dw (B1)

in which the skew gradient is

r?T � @T=@v
�@T=@u


 �
(B2)

The transformation of dw to the z-plane is

dw ¼
du

dv

 !
¼

@u=@x @u=@y

@v=@x @v=@y

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ J1

dx

dy

 !
(B3)

Using the Cauchy–Riemann conditions, @u=@x ¼ @v=@y and
@u=@y ¼ �@v=@x, the determinant is jJ1j ¼ ð@u=@xÞ2þð@u=@yÞ2
and so

J1 ¼ jJ1j
a b
�b a


 �
(B4)

where a2þ b2¼ 1. The matrix in this equation is a rotation, and
jJ1j reports the change in u that results from a change in z���� @u

@z

����2 ¼ @u

@z

@u

@z
¼ @u

@x


 �2

þ @u

@y


 �2

(B5)

Similarly, the transformation of the skew gradient is

r?T ¼
@T=@v

�@T=@u

 !
¼

@y=@v �@x=@v

�@y=@u @x=@u

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ J2

@T=@y

�@T=@x

 !

(B6)

¼ jJ2j
a b
�b a


 �
@T=@y
�@T=@x


 �
(B7)
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where jJ2j ¼ ð@x=@uÞ2 þ ð@y=@uÞ2. jJ2j reports the change in z
that results from a change in u

���� @z

@u

����2 ¼ @z

@u

@ z

@u
¼ @x

@u


 �2

þ @y

@u


 �2

(B8)

Thus, jJ1j jJ2j ¼ j@u=@zj2j@z=@uj2 ¼ 1, and a and b have the
same values in Eqs. (B4) and (B7).

To evaluate the inner product ðr?TÞ � ðdwÞ, we may use the
transpose properties of matrix products. For vectors a and b and
matrices A and B

ðAaÞ � ðBbÞ ¼ ðAaÞTðBbÞ ¼ aTATðBbÞ ¼ aTðATBÞb (B9)

Then, using Eqs. (B3) and (B6)

r?T � dw ¼
@T=@y

�@T=@x

 !T

JT
2 J1

dx

dy

 !
(B10)

Multiplication of the Jacobian matrices produces a considerable
simplification

JT
2 J1 ¼ jJ2j jJ1j

a �b
b a


 �
a b
�b a


 �
(B11)

¼ jJ1j jJ2j a2 þ b2 0

0 a2 þ b2


 �
(B12)

¼ jJ1j jJ2j
1 0

0 1


 �
(B13)

¼ 1 0

0 1


 �
(B14)

Putting these pieces together, denoting the w and z planes by sub-
scripts, we find thatð

rw

n � rwT dlw ¼
ð

rw

r?w T � dw

¼
ð

rz

r?z T � dz ¼
ð

rz

n � rzT dlz (B15)

In words, line integrals of the normal derivative are unchanged by
conformal maps.
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