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Abstract

The dynamic stall processes of a NACA 0012 airfoil oscillating sinusoidally in pitch
and heave in laminar incompressible flow were investigated. The effects of changing the
‘reduced frequency & from 0.6 to 1.2 and the pivot location zg/c from 1/4 to 3/4 were
calculated. The nominal angle of incidence on the airfoil oscillated between 6° and 18°
about a mean of 12°.

The incompressible and inviscid external flow around the body was calculated using
unsteady Bernoulli and a conformal transformation. The unsteady bourndary layers
were analyzed by C.C. Lin's asymptotic method applicable when the reduced frequency
is “large”. An unsteady separation condition, consistent with the Moore-Rott-Sears
separation criterion, developed by A. Gioulekas as an extension of Stratford’s separation
condition for steady flows, was used to calculate the separation points of the boundary
layers. The separated free shear layers were represented by discrete vortices. Each
vortex was convected force-free (in the inertial frame) throughout the calculation by
using the Biot-Savart law.

In all of the calculations we performed, the pressure surface separation point does
not move from the trailing edge. For k = 0.6 and z¢/c = 0.5, as the airfoil pitches up
from a = 6°, the suction surface separation point remains in the vicinity of the trailing
edge until the airfoil attains an angle (14°) well above its static stall angle (12°). It then
moves rather abruptly to within 19% of the chord from the leading edge. At this time
(e = 17°) the separated shear layer starts to roll-up to form a large “primary” vortex.
The lift on the airfoil increases monotonically to Cy, = 1.6 untll the airfoil reaches its
maximum nominal incidence. The vortex grows to a strength = 0.7 by the time
the airfoil pitches down to a = 17.4° when the pitching moment on the airfoil attains a
large nose-up value. At this time the vortex detaches from its feeding sheet and drifts
downstream at 42% of the freestream speed. As the vortex moves downstreami t carries



with it an intense low pressure region, which helps the airfoil maintain a large C', even
when it is pitching down. As the vortex approaches the trailing edge, the airfoil briefly
experiences a nose-up moment of significant magnitude.

As the reduced frequency was increased to 0.9 and 1.2, the upstream propagation of
the suction surface separation point is delayed (in angular sense) and the slope of the
Cr — a curve increased when the airfoil pitches nose-up. As the airfoil approaches its
maximum nominal incidence, the abruptness with which the separation moves towards
the leading edge increased. The separaticn point reached closer to the leading edge,
Cr.... increased and the inception of the primary vortex is delayed (in angular sense).
The strength of the vortex and its dwell time (in angular sense) increased while its
average streamwise drift speed decreased. During the nose-down pitch, the separation
point retreated at a slower rate. The pitching moment at the beginning of the cycle
(a = 6°) changed from a small nose-up value to a larger nose-down value, mostly due to
apparent mass effects. The apparent mass effect on C,, at the top of the cycle (a = 18°)
is not so significant because of the proximity to leading edge of the dominant primary
vortex and its movement.

The primary effect of moving the pivot towards the trailing edge is a delay in the
onset of dynamic stall. The upstream movement of the separation point and the time of
inception of the primary vortex are delayed. The slope of C; — a curve, the maximum
velocity attained near the leading edge and the Cp,_,  decreased. The maximum pene-
tration of the separation point towards the leading edge also decreased. The dwell time
of the primary vortex near the leading edge is not altered significantly. Its maximum
strength decreased while its average speed increased. Some of these effects of moving
the pivot point and increasing k can qualitatively be forecast by analyzing the results
from linear potential theory. Such an analysis leads to the definition of “effective angle
of incidence”.

Dynamic stall characteristics of a heaving airfoil emulated some of the features of
dynamic stall of a pitching airfoil with a rearward-pivot. Namely, upstream movement
of the separation point and the inception of the primary vortex are delayed. The process
of stall is less abrupt on a heaving airfoil than on a pitching airfoil with a forward pivot.
The Cp,... and the strength of the primary vortex are both smaller. Some of these
effects can also be deduced from an analysis of the simple linear potential theory. The
effects of increasing the reduced frequency on the dynamic staliing of a heaving airfoil
are similar to those on pitching airfoils.

Thesis Supervisor:  James E. McCune

Title: Professor of Aeronautics and Astronautics
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Nomenclature

semi-chord of airfoil

length of airfoil chord

lift coefficient

maximum C7, attained during an oscillation
pitching moment coefficient about quarterchord
pressure coefficient

complex flow potential

heaving displacement of the airfoil

heaving velocity of the airfoil

reduced frequency

sectional lift on a pitching airfoil

sectional lift on a heaving airfoil

freestream Mach number

outward normal to the body surface

pressure

freestream pressure

velocity vector

freestream velocity vector

radius of core of a discrete Rankine vorex

position vector w.r.t. inertial frame

displacement vector of body fixed frame from inertial frame
Reynolds number based on chord =%
Reynolds number based on boundary layer thickness =
time

velocities in inertial frame or within a boundary layer
Prandt]l component of boundary layer velocities
averaged Prandtl velocities

fluctuating Prandtl velocities

Stokes component of boundary layer velocities
averaged Stokes velocities

fluctuating Stokes velocities

freestream velocity

Prandtl components of external velocity

Stokes components of external velocity

velocity on the body surface in inertial frame

uUs

v



w conjugate of complex velocity in airfoil plane

Weo conjugate of complex freestream velocity in airfoil planc
z,y,2 coordinates in body fixed frame

z,9y,2 coordinates in alternate inertial frame

Ty, Ys location of separation point

X,Y,Z coordinates in inertial frame

Zo distance of pivot point from leading edge

(X03 Yba ZO) = RO
z==z+1iy coordinates in airfoil plane

a nominal instantaneous angle of incidence
a time rate of change of a
a angular acceleration with respect to time

a average angle of incidence

a amplitude of oscillation in angle of incidence

et s effective angle of incidence on a pitching airfoil
Qeq equivalent angle of incidence on a heaving airfoil
é a measure boundary layer thickness

op a measure of Prandtl layer thickness

Ss a measure of Stokes layer thickness

At time-step in numerical scheme

i coordinate in circle plane

n(z,y,t) body surface in body fixed coordinates

€ me is the trailing edge angle

T circulation of a vortex or in a boundary layer

I flux of circulation

T, instantaneous bound circulation

L, circulation of j-th vortex

To initial bound circulation

| circulation of the primary vortex

r, wake circulation

A shifted drift time of a wake element

¢ flow potential in body fixed frame

&, 9,0 angular position vector of body fixed frame w.r.t. inertial frame
é, 9,6 angular velocity of body fixed frame w.r.t. inertial frame
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flow potential in inertial frame

angular rate of change of « or vorticity or angle in circle plane
vorticity

= (d’a P, 0)

density of the medium of flight

nondimensional time :% or drift time of a wake element
angle in airfoil plane

= (¢, I.bo 0)

coordinate in circle plane

complex coordinate in circle plane

complex coordinate of j-th vortex in circle plane
complex conjugate of ¢ in circle plane
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Chapter 1

Introduction

1.1 What is Dynamic Stall ?

An airfoil oscillating rapidly in pitch or plunge experiences peculiar hysteresis in lift,
drag and moment. While executing such a motion, if the angle of incidence of the
airfoil exceeds the static stall angle, large gains in lift associated with similarly large
increases in drag and negative (nose up) moments are observed. The disparities in
the time scales associated with inviscid and viscous phenomena permit a delay of flow
separation and an aerodynamic lift temporarily higher than that in the static stall

situation. This complex unsteady flow process is referred to in general as dynamic

22



stall.

Dynamic stall is of importance in various aerodynamic applications including heli-

copter rotors, aircraft engines, wind turbines and rapidly maneuvering aircraft.

Experiments aﬁd some numerical investigations have provided a great deal of infor-
mation on the flow events which occur during dynamic stall, including their effects on
resulting transient aerodynamic forces. Despite this progress, the underlying physical
mechanisms which produce the observed unsteady flow behavior are not yet suffi-

ciently understood.

Further advances in understanding and prediction of dynamic stall are hindered not
only by the inherent complexity of the flow but also by the many interrelated flow ef-
fects. For example, experimental investigations conducted under different conditions
by varying Reynolds numkter, airfoil geometry, incidence angle, oscillation mode, os-
cillation rate, oscillation amplitude and Mach number have revealed that all of the

above flow parameters influence the dynamic stall characters.

Flow phenomena such as unsteady separation, shear layer instability, shock-boundary
layer interaction and the interaction of vortical structures with one another and with

the airfoil occur during dynamic stall.

23



Figure 1.1: Definition of Reduced Frequency.

1.2 Reduced Frequency

1.2.1 Definition

For the case of an airfoil of chord ¢, pitching as illustrated in Fig. 1.1, say about its
midchord, at a constant rate & in a uniform stream of speed U, the flow is character-
ized by a nondimensional pitch rate parameter k = &c/2U, in addition to Reynolds

number and Mach number.

The pitch rate parameter arises from the nendimensionalization of the velocities on

the boundary of the airfoil when viewed from an inertial frame. In a frame rotating

24



with the airfoil the reduced frequency would be proportional to the inverse of the
Rossby number which arises out of nondimensionalization of the fictitious body forces
appearini in the rotating frame. The interpretation of the pitch rate parameter most
useful for our purposes is what gives it the name “reduced frequency”. The reduced
frequency is the ratio between the convective time scale ¢/U and the time scale of the

forced oscillation 1/a.

Thus when k~1.0, the convective and unsteady (airfoil motion) time scales are of
the same order and the flow is unsteady as far as convective (i.e., such as inviscid or

potential) phenomena are concerned.

In some practical cases k~0.05. Such flows are quasi steady from the convective point
of view. Yet, even at these low values of the reduced frequency, significant differences
between dynamic and static stall characteristics exist. The source of these differences
lies in the large time scales associated with viscous phenomena. Even when an airfoil
in unsteady motion does not approach static stall parameters, significant differences
between static and dynamic characteristics should be expected, because in most of
the flows we call inviscid, the primary effect of viscosity is locked in through the

imposition of Kutta condition.

The ratio of the diffusion time to convection time is, as we know, Re., based on chord.

Then the ratio between the viscous diffusion time scale and the airfoil motion time

25



scale is kRe.. The rtatio between the corresponding length scales is kv/Re. or kRes
where § is a measure of the boundary layer thickness. Even when k~0.01, both of the

above ratios are >1.0 making the flow necessarily unsteady from viscous perspective.

The dynamic stall problems encountered more often in practice are those that involve
periodic oscillations of an airfoil (wing) in pitch and heave rather than constant
rate pitch. The airfoil oscillating sinusoidally in pitch will have an instantaneous

“nominal” angle of attack! given by
a(t) = a+ asinwt

where a is the mean angle of attack, a is the magnitude of oscillation and w is the

angular rate of oscillation. For such pitching motions the reduced frequency is usually

defined as k& = wc/2U.

The nondimensional pitch-axis location z¢/c, where zq is the distance of the pitch-
axis from leading edge, is an important geometric parameter for a given airfoil. The
velocity of the leading edge relative to the external fluid would be much larger, for
the same pitch rate, as the distance between the location of the pitch-axis and the
leading edge increases. Thus the leading edge of an airfoil should be expected to
experience a “stronger” unsteadiness when the pitch-axis is at midchord than when

the pitch-axis is at, say quarterchord.

1Please see chs. 5&7 for a discussion on “effective” angle of attack in pitching oscillations.

26



h=heaving velocity

U=forward flight velocity

« =angle between the
o relative flow and the
airfoil

Velocity relative to
the airfoil

Figure 1.2: Angle Between Relative Flow and a Heaving Airfoil.
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The case when z/c—+0o corresponds to heaving motion. An uirfoil oscillating in
heave in an otherwise steady freestream would see, as shown in Fig. 1.2, a freestream
oscillating in direction (thus in “relative” angle of attack?) and magnitude, at the
same frequency. Thus, an airfoil oscillating in heave can undergo dynamic stall if the
heave is rapid “enough”. The reduced frequency for a heaving oscillation is defined
in the same way as in the case of a pitching oscillation. Thus, for an airfoil of chord
¢, heaving at an angular rate w in an otherwise steady freestream of magnitude U,

the reduced frequency i given by k = wc/2U.

1.2.2 Relevant Range of Reduced Frequency

In this section we will make estimates of reduced frequencies relevant to gas turbine

blades, helicopter blades and rapidly maneuvering aircraft.

Consider a typical low speed axial flow engine with an inlet speed of 100m/s, rota-
tional speed of 10,000 rpm, 60 blades in a rotor and 5cm rotor blade chord. The
highest frequency unsteadiness felt by a blade (discarding rand<m noise and struc-
tural vibrations) in a stator row is that due to the periodic passing of the rotor blades
(potential effects and also wake impingement effects). The reduced frequency (ratio

between the convective and unsteady time scales) for this case is roughly 6.

2Please see chs. 6&7 for a discussion on “effective” angle of attack in heave.
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Consider now a helicopter flying at 100 miles/hr. with a rotor rotating at 1,000 rpm.
Let the rotor blade have an average chord of 20cm and length of 3m. In this case,
the unsteadiness associated with wake chopping is roughly 0.2 and the unsteadiness

due to periodic forward and backward sweeping is 0.5.

Finally let us look at a plane with 2m wing-chord, flying at 100 m/s and executing
a 60° nose-up maneuver in ls. The reduced frequency for this maneuver is around

0.05.

It is thus clear that practical applications span a wide range of reduced frequency

between ten and zero.

1.3 Literature Survey

The phenomena associated with dynamic stall were first reported in the early fifties
by Halfman, Sisto, Rainey, et. al. [32, 78, 66]. These studies grew out of stall flutter
research on helicopter and aircraft engine blades. From these works the stall flutter
mechanism of negative damping, or moment variation so that energy is extracted from
the flow, was deduced. Liiva, et al. [49] conducted extensive tests on two-dimensional
airfoils pitching and heaving sinusoidally through stall. Both lift overshoot, or lift in

excess of maximum static value, and unstable moment variation were found to be
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strong functions of frequency, amplitude, mean incidence and Mach number.

In the late sixties and early seventies dynamic stall, by then well recognized, received
renewed attention from Ham, Garrelick, Crimi, Carta, Ericcson, Reding, McCroskey
and others {34, 16, 12, 18, 54]. Ericcson and Reding [18] employed a quasi-steady
approach which uses measured static airfoil characteristics. This approach and some
of the concepts proposed by Ericcson and Reding such as “Moving Wall Effect” raised
some controversy and are not currently pursued by many researchers. Carta [12] used
energy considerations and data from tests of his own and others on two-dimensional
oscillating airfoils to analyze stall flutter of rotor blade. Crimi [16] numerically deter-
mined the separation points in the boundary layers on two-dimensional airfoils and
then used a panel method to model the evolution of the wakes. Ham [34] analyzed
analytically a two-dimensional model consisting of discrete vortices shed from both
the leading and trailing edges. Ham also conducted experiments on oscillating air-
foils that led to stall flutter analysis. McCroskey and Carr [54, 10] concentrated on
experimental studies of various airfoil geometries and provided information on flow
properties leading to “leading edge stall” and “trailing edge stall”. Lorber [51, 52]
calculated the dynamic stall characteristics of slender wings and also the effects of

Reynolds amber on dynamic stall.

Several experimental investigations of dynamic stall at low Reynolds number for air-

foils pitching at constant and sinusoidally varying rates have been conducted during
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the last decade.

Smoke visualization studies were done on a NACA 0015 airfoil for a range of re-
duced frequency values and pivot axis locations by Helin and Walker [35] and Walker
[89]. Strickland [80] provided surface pressure distributions and force coefficients for
an airfoil pitching at rates up to & = 0.3. Flow visualizations were also presented
by Freymuth [23] who used an innovative vortex tagging technique. Koochefsahani
[42] and Acharya (2] also conducted flow visualization experiments and compiled in-
formation about the surface vorticity flux and the effects of pitch acceleration a&.
McCroskey, et al. [55] conducted oil-flow visualization experiments on NACA 0012
airfoils. By varying the leading edge profile, three different types of dynamic stall
were produced. Vortex shedding “phenomenon” was found to be the predominant
feature of each. Vaczy [86] studied the effects on a NACA 0012 airfoil due to a rotat-
ing elliptic cylinder placed behind the airfoil in turbulent flow. Stalling behavior of

the airfoil at reduced frequencies upto 6 was studied.

The above experimental investigations have provided, by means of flow visualization
and pressure measurements, a great deal of information about the sequence of events
which characteriz~ the dynamic stall process, as well as their timing and their effect
on the aerodynamic coefficients. However, the lack of experimental velocity mea-
surements impairs our ability to understand more completely the underlying physical

mechnanisms of unsteady stall, in particular the process by which the distributed
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vorticity in the shear layer evolves into coherent vortical structures.

It should be remembered, as pointed out by Ericcson [21], that results from exper-
iments on scaled models can be misleading when extrapolated to full scale vehicles

due to the different scaling effects of Reynolds number and reduced frequency?®.

In an effort to describe the complete flow field including the velocities and pressures
and the variation with time of these features as the unsteady stall proceeds, com-
putational investigations were undertaken by several researchers. Most of these were
costly and time consuming Navier-Stokes solvers [93, 87, 28, 69, 59]. Visbal and Shang
[88], Mehta [59], Wu, et al. [93] and Rumsey and Anderson [69] simulated the flow
over a NACA 0015 airfoil pitching at a constant rate by solving the full Navier-Stokes
equations. Mehta [59] solved the Navier-Stokes equations to simulate the leading edge
bubble. Though he could model the growth of the bubble successfully, his code did
not capture accurately the “bursting” of the bubble and the initial stages of the vortex
sheet evolution. Ono [64] and Geissler [26] included turbulence models in their cal-
culations. Many of the above authors reported qualitative agreement between results
from their calculations and experiments. McCroskey and Philippe [56] investigated
numerically and experimentally the differences between laminar and turbulent flows

over flat plates at several frequencies. They reported having observed important dif-

3Re = Uc/v, k = wc/2U; I the size of a model is chosen so that k would be the same for the

model and the full scale object, then the Reynolds number would be differenrt and vice versa.
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ferences (mentioned above) between the two flows and the failure of their numerical

scheme to capture these features.

Based on limited comparisons with experimental results, some of the numerical sim-
ulations have given satisfactory predictions for such global properties of the flow field
as lift, drag, etc. But the simulations have not performed as well when applied to a
diversity of problems or when tested for such local properties of the flow field as the

exact location of separation, secondary separation, etc.

Semi-analytical methods, though unable to simulate some of the flow features, are
more amenable to validation, less uncertain and most importantly, provide insights

into the physics of the flow.

Some authors attempted potential external flow calculations coupled with boundary
layer analysis or imposed leading edge separation [16, 65, 34] with varying degree
of success. In additior to Ham [34] and Crimi [16] as mentioned above, Patay [65]
and Woods [92] are among them. Patay analyzed the unsteady boundary layer on a
pitching airfoil and concluded that quasi-steady analysis was sufficient up to k = 0.05.
Woods derived the unsteady load on an oscillating stalled airfoil with a prescribed

sepa.ra.tioh point by extending the classical unsteady thin airfoil theory.
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1.4 The Dynamic Stall Process

Let us now attempt to describe in sequential order the key flow features that make up
the dynamic stall cycle, as it happens to be understood today. All the flow events are

generally accepted and experimentally evidenced in the literature described above.

In most of the practical situations, the Reynolds number is large enough (Re.>108) to
cause transition into turbulence at some location on the body surface. Nonetheless,
much can be learned about the physical mechanisms of unsteady stall from careful
studies in the low (laminar) Reynolds number (Re<10®) regime, since most of the
basic features of dynamic stall are retained over a wide range of Reynolds number, in
particular in laminar flow. Moreover, laminar flow studies are free of the uncertainties

and emiricism associated with the turbulence modeling,.

For experimental investigations, low speed flows are more amenable to flow visual-
ization methods than are flows at higher speeds. Also, lower values of U permit
studies at higher reduced frequencies. For computational investigations low speed
flows require less resolution and are free of uncertainties associated with turbulence

models.

In the following discussion we will concentrate mostly on studies of dynamic stall

at low Reynolds number and zero Mach number, though the eftects of transition
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and compressibility are also visited. The discussion is applicable to an airfoil with a
smooth leading edge pitching at 0.1<k<1.0, with the pitching axis located aft of the
leading edge and not too far behind the trailing edge. (When the pitch axis is located
upstream of the leading edge, clockwise rotation will be associated with a decreasing
angle of incidence and vice versa. If the pitch axis is located too far behind the trailing
edge, the nature of the flow will be more like that during a heaving oscillation.) It
is assumed that the maximum nominal angle of attack attained by the airfoil during
the motion is above the steady state stall angle and the minimum angle attained is

above zero.

1.4.1 Dynamic Stall at Laminar Reynolds Numbers

Consider now, an airfoil pitching about its midchord at a reduced frequency k~0.3. At
minimum incidence, the flow displays a small trailing edge separation. As the airfoil
pitches up (angle of attack increases), the boundary layer becomes fully attached
on the airfoil lower surface, while on the upper surface the separation point moves
upstream. A free shear layer wake forms at the trailing edge and a net positive
(counterclockwise) vorticity is shed into the wake consistent with the increasing bound
circulation on the airfoil. Please see Fig. 1.3 for a conceptual illustration of this
process. During this phase of the oscillation, the separation position on the suction

surface remains well downstream of the separation position on a quasi-steady airfoil
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Figure 1.3: Flow Structure on an Airfoil Undergoing Dynamic Stall.



at the same nominal angle of incidence.

As the angle of attack is further increased, the separated region on the upper surface
eventually spreads to the vicinity of the leading edge. The separated shear layer
on the upper surface rolls-up, resulting in the formation of the “dynamic stall” or
“primary” vortex. This process is also shown in Fig. 1.3. The dynamic stall vortex
grows in size as it moves away from the airfoil surface and eventually detaches from its
feeding sheet. During the same time, the free shear layer emanating from the trailing
edge becomes more intense and in some cases rolls up to form a counterclockwise
“trailing edge” vortex. The detachment of the primary vortex occurs shortly after
the airfoil attains its maximum angle of attack. Then the vortex continues to move

downstream.

As the airfoil pitches down (angle of attack decreases), the primary vortex moves
farther downstream and the separation point on the upper surface moves back towards
the trailing edge. Shortly after the airfoil commences downward pitching motion, the

trailing edge vortex, if previously formed, detaches and drifts downstream.

The separation point of the upper surface reaches the proximity of the trailing edge
well before the airfoil reaches the minimum incidence. By the time the airfoil reaches
this incidence, both the primary vortex and the trailing edge vortex, if present, have

drifted well into the downstream and shear layer of small negative vorticity is being
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shed from the trailing edge.

1.4.2 Effects of Turbulence

The presence of turbulence can lead to different types of separation processes on the
upper surface. But regardless of the specific separation process, the separated shear
layer rolls-up to form the dynamic stall vortex in all cases and the subsequent events

proceed in much the same way as in the case of laminar stall.

For very high Reynolds numbers the flow on airfoils with smooth leading edges sep-
arates at the trailing edge and propagates towards the leading edge. This situation
is very similar to the laminar case, except that the boundary layer is turbulent and
the propagation speed of the separation point is higher and becomes abrupt when
the separation reaches the midchord. For slightly lower Reynolds numbers, but still
larger than 10%, most airfoils display a typical small leading edge laminar separation
bubble, as shown in Fig. 1.4. The shear layer goes through transition and becomes
turbulent before it reattaches to complete the bubble. Further downstream the tur-
bulent boundary layer separates again. As the angle of attack is increased, the bubble
grows only by a small amount due to the downstream movement of the reattachment
point while at the same time the turbulent separation point moves upstream. In this

case, though the separation bubble modifies the flow around the leading edge, it does
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Figure 1.4: Formation of the Leading Edge Bubble on a Pitching Airfoil.

not alter the overall nature of the flow or the separation conditions significantly.

For Reynolds numbers around transition the flow is muchk more complex due to the
presence of a large leading edge bubble which can grow to encompass a large fraction
(~25%) of the chord. The bubble not only modifies the overall flow, but also controls
the separation onset and the formation of the dynamic stall vortex. The formation,
evolution and the subsequent “bursting” of the bubble have proven to be difficult
to model both numerically and analytically. For a more complete discussion on the
effects of turbulence on dynamic stall see McCroskey & Philippe [56] and Lorber &
Carta [51, 52].
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1.4.3 Effects of Compressibility

When the subsonic freestream Mach number and the angle of attack are increased
beyond certain values, a local region of supersonic flow develops over the airfoil [63].
This supersonic region is usually terminated by a nearly normal shock wave which
interacts with the boundary layer. For sufficiently strong shocks, boundary layer
separation occurs at the foot of the shock and unsteady flow phenomena such as
buffeting are initiated. These processes occur under similar conditions on oscillating
airfoils also and make the calculation of the separation point and the evolution of the

vortex sheet more complex.

A considerably less explored area of unsteady transonic flows pertains to airfoils in
severe maneuvers. Even for M, as low as 0.2, a temporary transonic/supersonic
region can appear over a pitching airfoil. The maximum attainable lift and the static
stall angle are reduced in transonic flows [1]. The magnitude of these effects depends
on the airfoil geometry and the frequency and the magnitude of the oscillations of

the airfoil motion [85].

A more comprehensive discussion on the effects of compressibility on dynamic stall

can be found in [49, 70].

Many other factors, as mentioned in the first section of this chapter, such as the
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geometry of the leading edge, rate, magnitude and mode of oscillation, location of
the axis of pitch, etc. all affect the dynamic stall characters. Some of these are

discussed in latter chapters.

1.5 Motivation for the Present Work

The literature survey presented above makes clear that despite the substantial progress
made towards the understanding and prediction of dynamic stall, a lot remains to be
done. Particularly the physical mechanisms producing dynamic stall are not clearly
understood. Most of the methods available for calculating dynamic stall are expen-
sive and time consuming Navier-Stokes solvers. These methods contain considerable
uncertainty, numerical inaccuracies and empiricism. In addition, because of the sev-
eral case-specific models contained in these solvers, many of them have proven to be

inapplicable for problems of any considerable diversity.

Qur aim has been to compute analytically (with the “assistance” of computer limited
to solving simplified equations) the dynamic stall characters of two dimensional air-
foils oscillating in both pitch and heave in a laminar flow at relatively high reduced
frequencies. We have chosen to adopt analytical methods to model the flow so that
considerable understanding of the flow physics may result from our work. As men-

tioned above laminar flows are more amenable to analytical methods than turbulent
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flows. As noted in the previous section, though most real world flows are turbulent,
laminar flows retain most of the important dynamic stall features and so the analysis

of laminar flows can provide valuable information relevant for practical applications.

1.6 Synopsis of the Thesis

As mentioned earlier, the objective of our research has been to predict the Dynamic
stall characteristics of two-dimensional airfoils executing large amplitude oscillations
in pitch and heave. This required the calculation of the potential flow around the
airfoil undergoing such a motion, locations of the unsteady separation points on the
upper and lower surfaces of the airfoil, the subsequent evolution of the separated
free vortex layer and the influence of the free vortex layers on airfoil circulation and
separation points. We have chosen to use NACA 0012 in our calculations because
of the availability of experimental data on NACA 0012 in literature for testing our

method and comparing the results.

1.6.1 Potential Flow

First the unsteady potential flow on the airfoil is calculated assuming incompressible

and inviscid (Re — oo) flow around the body. A modern variant of Theodorsen’s [84]
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transformation was used to transform the airfoil to a unit circle. Unsteady Bernoulli

equation and a suitable body frame of reference were used for calculation of velocities
and pressures on the body. In the first iteration the flow is assumed to be attached
to the body. In the subsequent iterations, after the separation points are determined
as explained below, the wake vortices and their images are included in the potential

calculation.

1.6.2 TUnsteady Boundary Layers and Separation

For the analysis of unsteady flow in the vicinity of the body, an asymptotic method
developed by C.C. Lin and advanced by Gibson and Gioulekas [50, 29, 30] was used.
This method is applicable in the asymptotic limit when a parameter proportional
to the square root of the reduced frequency becomes large. Using this asymptotic
expansion the boundary layer flow is separated into “Prandtl flow” and “Stokes flow”
coupled through the wall boundary conditions. The expansion, results in a set of

simple equations which were solved to obtain the velocities in the houndary layer.

An unsteady separation criterion developed by [30], an extension of Stratford’s [79]
separation criterion for steady flows, was used to calculate the separation points in
the boundary layers. This separation condition is consistent with the Moore-Rott-

Sears [74] separation criterion and involves the identification of a saddle point in
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the “Prandtl velocity” profile, viewed from a frame of reference moving with the
separation point. It was shown by [30] that a local and instantaneous reversal in
the direction of the Stokes component of the streamwise velocity does not indicate

separation.

1.6.3 Convection of Shear Layers and Interaction with Air-

foil

The separated boundary layers, i.e. free shear layers, are represented by discrete
vortices. Each vortex is convected by the velocity imposed at its location by the
airfoil and all other vortices and so all free vortices remain force iree throughout the
calculation. Thus the entire flow field is updated at each time step using the Biot-
Savart law. This procedure results in new locations for the separation points and

more amount of vorticity to be shed due to the changed bound circulation.

1.6.4 Results

First the method was validated by comparing our results to those from relevant

experiments and calculations.

Then results for a NACA 0012 airfoil oscillating in pitch and heave are presented for
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a range of reduced frequencies. The lift, drag and moment hysteresis characteristics
were calculated. The motion of the separation points on the upper and lower surfaces
were tracked. The evolution and movement of the primary vortex were shown. The
surface pressure distributions were also presented. All these results were compared

with available experimental results.

Using the results from our calculations, a sequence of processes leading to dynamic

stall were constructed.

Variations in flow characteristics due to changes in the reduced frequency were inves-
tigated. The effects of moving the axis of pitching were also presented. Finally the
similarities and differences between dynamic stall due to oscillations in pitch and in

heave were explored.

1.6.5 Calculation Procedure

Initially the airfoil is assumed to be at rest in a steady and uniform flow. The potential
perturbations to the freestream caused by the presence of the airfoil are calulated us-
ing conformal mapping. Then the growth of the boundary layers and their separation
locations are calculated by employing Stratford’s [79] method. Then the separated
vortex layers are convected force-free and the associated velocities are calculated ac-

cording to the Biot-Savart [61] law. The wake associated velocities are included in
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the next iteration while calculating the new external flow, separation points, bound
circulation and additions to wakes. This procedure is repeated over several cycles of
oscillations until convergence is reached (typically, six to ten oscillations). The sep-
aration points in the unsteady flow are calculated by using the extended Stratford’s

method developed by Gioulekas [30].

1.7 Overview of the Thesis

In chapter 1 we have presented the fundamentals of dynamic stall. We also included
a literature survey with focus on dynamic stall in laminar flows. Then we have given

a brief synopsis of the thesis and finally an overview.

In chapter 2 we have discussed in detail the procedure followed for calculating the
external potential flow. The unsteady Bernoulli equation in an appropriate body
frame of reference is derived. The conformal transformation used to map the airfoil

into circle plane is also presented.

Chapter 3 gives the details of how the unsteady boundary layers are analyzed for
calculating the separation points. The evolution of the separated vortex layers is also

discussed here.
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In chapter 4 we have validated our method by comparing our results with experiments

for several test cases.

Chapter 5 presents the results for a sinusoidally pitching airfoil for several reduced

frequencies. Effects of changing the axis of pitching are also presented.

In chapter 6 we have presented the results for an airfoil oscillating in heave. Effects of
changing the reduced frequency are also included. We have investigated the differences

and similarities between dynamic stall due to pitch and heave also.

In chapter 7 we have summarized the conclusions of our work. Some suggestions for

future work are also included.
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Chapter 2

Calculation of the External
(Unsteady, Incompressible and

Potential) Flow

2.1 Formulation of the Problem and Choice of
Coordinates

When treating time-dependent motions of bodies, the selection of the coordinate

systems becomes very important. It is useful to describe the unsteady motion of the
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Figure 2.1: Inertial and body coordinates used to describe the motion of the body.

surface on which the “zero normal flow” boundary condition is applied in a body-fixed

coordinate system (z,y, z), as shown for the example of a maneuvering airfoil in Fig.

2.1.

The motion of the origin O of this coordinate system (z,y,z) is then described in
an inertial frame of reference (X,Y, Z) and is assumed to be known. For simplicity,
assume without loss of generality, that at ¢ = 0 the inertial frame (X, Y, Z) coincides
with the frame (z,y,2). Then at ¢ > 0, the relative motion of the origin (Xo, Yo, Z,) of
the body fixed frame (z,y, z) is prescribed by its location Ro(t) and the instantaneous

orientation of this frame, é(t), where (¢,0,1) are the rotation angles. Therefore

(Xo, Yo, Zo) = Ro(t) (2.1)
(4,6,%) = 6(2) (2:2)
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The fluid surrounding the body is assumed to be inviscid, irrotational and incompress-
ible over the entire flow field, excluding the body’s solid boundaries and its wakes.
Therefore, a velocity potential ®(X,Y, Z,t) can be defined in the inertial frame and

the continuity equation, in this frame of reference, becomes
Vi®(X,Y,Z,t) =0 (2.3)

A derivation of the above equation can be found in any basic aerodynamics book,

such as [45].

Let —9(X,Y, Z,t) be the surface’s velocity and 7(X,Y, Z,t) the vector normal to
this moving surface, as viewed from the inertial frame of reference. The boundary

condition requiring zero normal velocity across the body’s solid boundaries is
(V& +7)-1ilyy; =0 (2.4)

Note that ¥ is defined with a minus so that the surface velocity will be positive in the
body’s frame of reference. Since equation 2.3 does not depend directly on time, the
time dependency of ® is introduced through this boundary condition. It is interesting
to point out that & is the total velocity potential, but as a result of its definition in
a frame that is attached to the undisturbed fluid its magnitude can be, or often is

small (in fact it is similar to the perturbation potential).

The second boundary condition requires that the flow disturbance, due to the body’s
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motion through the fluid, should approach zero far from the body:

. li_pil V=0 (2.5)
—Rg|— o0

where R = (X,YI, Z).

Note that the two boundary conditions described above can uniquely determine an
unsteady potential flow only in conjunction with the Kelvin condition (3] on circula-
tion. In general, it states that the angular momentum in the flow be preserved. In
particular, for a flow with no net torque and zero perturbations at large distances,
the theorem states that for all times the circulation I’ around a fluid curve enclosing

the airfoil and its wake is conserved:

dr
— =0 2.6
The solution of this problem, which becomes time dependent because of the boundary
condition (equation 2.4), is easier in the body-fixed coordinate system. Consequently,

a transformation f between the coordinate systems has to be established, based on

the flight path information given by equations 2.2:

y = f(Xo,Yo, Zmﬁbaoﬂb) Y

z

Such a transform should include the translation and the rotation of the (z,y, z) sys-

tem. The transform can be found in any basic rigid body dynamics book, such as
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[77] and can be written out as:

z 1 0 0 cosf(t) 0 sinf(t) \
v | = | 0 cosgd(t) —sing(t) 0 1 0
z 0 sing(t) cosd(t) —sinf(t) 0 cosd(t) )

cosp(t) —sini(t) 0 X - X )
sinp(t) cosp(t) 0 Y-Y (2.7)

0 0 1 Z'—Zo)

Similarly, the kinematic velocity v of the surface due the motion of the airfoil in Fig.

2.1, as viewed in the body frame of reference, is given by
7=—(Vo+90x7) (2.8)

where Vj is the velocity of the (z,y, z) system’s origin, resolved into the instantaneous
(z,y, z) directions

I-/;J = (Xo, Yo; Zo)
Here 7 = (z,y, z) is the position vector and Q is the rate of rotation of the body’s

frame of reference, as shown in Fig. 2.1,
Q= 6(t) = (¢,6,9)

To an observer in the (z,y, z) frame, the velocity direction is opposite to the flight
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direction (as derived in the (X, Y, Z) frame) and therefore a minus appears in equation

2.8.

The proper transformation of equations 2.3-2.5 into the body’s frame of reference
requires the evaluation of the various derivatives in the (z,y, z) system. This can be

found using the standard chain rule of differentiation and for example 8/0X becomes

o8 _oxon oy 0w, 0: 08
0X 0X0zx 0X0y O0XO0z

The time derivative in the (z,y,2) can be obtained from the chain rule also:

0d

atimrtial (2.9)

=_(‘70+ﬁxf,)_(a ) a) 0%

3z’ By’ 0z Btbody
But it is possible to transform equations 2.3-2.5 into the body’s frame of reference
without explicitly knowing equation 2.7 and still arrive at the same conclusions. For
example, at any moment the continuity equation is independent of the coordinate
system and the mass should be conserved. Therefore, the quantity V2@ is indepen-
dent of the instantaneous coordinate system and the continuity equation in terms of

(z,y, z) remains unchanged:

V2®(z,y,z,t) =0 (2.10)
Also, the two boundary conditions, equations 2.4 and 2.5, should state the same
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Figure 2.2: Equation for Body Surface in Body Coordinates.

physical conditions. The gradient V& will have the same magnitude and direction
and the kinematic velocity v is given by equation 2.8 and therefore the “zero-velocity

normal to a solid surface” boundary condition, in the body frame becomes

(V& +3) 7., =0

Here 7 is in terms of the body coordinates.

By using equation 2.8, the above equation can be written as
(V& —Vo— 0 x7) -7a=0 (2.11)

Note that this boundary condition can be derived directly from the more common

terminology [3], in which the surface is defined in the body frame of reference by a
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function 7 as shown in the Fig. 2.2. Tke equation for the surface 7 can be written as

z = ﬂ(m,y,t)

Another function F, also in the body coordinates (z,y, z) can be formulated as

F(z,y,z,t) =z —n(z,y,t) =0 on the body surface.

Particles on the surface move such that F' remains zero. Therefore the derivative of

F foliowing the surface particles must be zero:

DF _ OF
Dtxyz Otxyz

+ V@VF|yy ;=0

Since the normal is proportional the the gradient of F

VF

-
n—-——

|VF|

DF
Dtx,y,z

oF
Otx v,z

Transforming the equation for into the body coordinates (z,y, z) requires the

use of equation 2.9 for the term. With the second term remaining unchanged

. . _DF
the equation for Dixys

in the body coordinates (z,y,z) becomes

oF

a TyYy 2

(Vo + 8 x#)-VF| +V&.VF|

T2 =0

yhZ
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If no relative motion occurs within the body frame, as is the case in the present

formulation

OF _ _on _

Y

After dividing through by |V F|, the above equation can be written in (z,y, z) as
(V®—Vp— 0 x7)-a=0

thus recovering equation 2.11.

2.2 Computation of Pressures

Solution of equation 2.10 will provide the velocity potential and the velocity com-
ponents. Once the flow field is determined the resulting pressures can be computed
by the Bernoulli equation, [40]. In the inertial frame of reference this equation is (in

X,Y,Z coordinates):

—Pe 1 0%
P pp = —5IVef - o (2.12)

The magnitude of the velocity V& is independent of the frame of reference and
therefore the form of the first term on the right hand side of this equation remains
unchanged. The time derivative of the velocity potential, however, is affected by

the frame of reference and must be evaluated by using equation 2.9. Therefore, the
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pressure p — peo will have the form (in z,y, z coordinates):

P “pr = _.;.|v«1>|2 + (Vo + @ x7)-ve - o2 (2.13)

ot

Viewed from the origin of the body; reference frame, fluid far upstream will appear to
be moving towards the frame at a velocity ~Vp. Or viewing from the inertial frame,
the origin of the body reference frame has a velocity V. Therefore the pressure

coeflicient C}, can be defined as (in z,y, z coordinates):

2 0%

_P—Pw _ |VE} 2 9®
|170|2 ot

= — = - + -
T

(Vo + 9 x 7) Ve - (2.14)

2.3 Conditions Far Away from the Body

Far away from the body the perturbations decay and so
Ve — 0

The term % may not necessarily approach zero as would be the case for a moving

vortex. Far away from the body the gradient of the pressure can be written as
Vp~ V[(Vo+ G x7)ve] - ﬂ(vq»)
ot
Since Vj is not a function of space and V& — 0, the above equation reduces to
Vp~ V[(§ x7) Ve
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Figure 2.3: Translation of Airfoil Fixed to the (z,y,z) Frame at —~Uy

The term on the right hand side of the above equation behaves, again far away from

body, as

Therefore, Vp — 0 as r — oo for all kinds of perturbations. In other words pressure

tends to a constant py, at large distances from the body.

2.4 Examples of Unsteady Boundary Conditions

2.4.1 Flat Plate at Constant Speed
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Consider a flat plate at an angle of attack a moving at a constant velocity Uy in the
negative X direction, as shown in Fig. 2.3. The translation and rotation of the origin

of the body fixed frame (z,y, z) are given by:

‘}:) = (XO, }',(),Z.O) = (_UOO’O‘JO)

=0
The vector 72 on the flat plate and in the body frame is
7 = (sin &, 0, cos a)

Substitution of these values into equations 2.11 and 2.14 yields

0% 0d

5 —(U + B_a:) tan o
P Us? Uy’ 0t

which are the well known classical results [45].

2.4.2 Flat Plate Accelerating at a Constant Rate

Consider now the case where the plate accelerates at a uniform rate a in the negative

X direction. In this case, at a time ¢ after the airfoil started its motion:

Vo = (—at,0,0)
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0 =(0,0,0)

7 = (sin , 0, cos a)

0 0%
e ~(at + g)tana
C__l_(at+<I>,,)2+'I',2_ 2 3_<I>
P (ato)2 (ato)2 at

where the speed at a reference time #y is used to nondimensionalize the pressure.

2.4.3 Flat Plate in Sinusoidal Heave and Uniform Forward

Flight

Consider an airfoil moving with a constant speed Uy, at an angle of attack a in

the negative X direction and undergoing sinusoidal heaving displacement in the Z
direction given by:

h = hgsin wt

h = howcos wt

Therefore
Vo = (—Usco, 0, —Boweos wt)
¢ = (0,0,0)
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Then the zero normal flow boundary condition becomes

7 = (sin @, 0, cos a)

-‘-93% = —(Uw + g—i) tan a + howcos wt
The the C, is calculated to be:
(Uoo + @)% + P,? 2 o 2 0P
Co=1- U + Umzhowcos wtaz — wﬁ

2.4.4 Flat Plate in Sinusoidal Pitch and Uniform Forward

Flight

The pitching motion of the airfoil is described by:
a(t) = a+ asinwt
Therefore
Vo = (~Uw,0,0)
& = aw cos wt
0 = (0,6,0)
i = (sin e, 0, cos a)

7 = (z,y, z)
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The zero normal flow condition yields

0P a® .
F —(Uw + E)tana + a(ztana — z)

We can see that if the airfoil is pitching about its midchord and the chord is 2b, then
for a(t) := 0, the upwash at the leading edge is

3_‘1’
0z

= ab
at leading edge

which is the correct result. The C,, is calculated to be

(Uso + ®;)2 + 9.2 2 4 0% 0 2 0%

C,=1- o

2.5 An Alternate Frame of Reference

Consider now a different flow in which the flat plate is at rest in a spatially uniform

unsteady flow given by
61:0 = (Uoo, Vco, Woo)

If (£,9, £) is a coordinate system fixed in the stationary (inertial) body, then the free
stream potential ¢ for this flow is
¢ =(%,9,%) - Goo = tUx(t) + £Wo(t)

where two dimensional flow in # — Z space was assumed for simplicity. The unsteady

Bernoulli equation relates the pressures and velocities at two different points (£, Z;)
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and (&2, %;) according to the following equation:

3451_12
ot

s

1 2
? + —|V¢|1 + §|V¢|z + =

Observing that

[Véli = [Vélz = gl

the above Bernoulli can be rewritten as

b= = (g~ )

0
= Vp= —PE(V@
e

= VP=py

It can be seen from the above equation that this pressure gradient provides the force
which accelerates the fluid. The pressure gra.lient resembles a buoyancy force and

acts on the center of geometry of the airfoil in the direction of the freestream.

Therefore, an airfoil undergoing an arbitrary motion relative to an otherwise still
fluid can be replaced, for the purpose of potential calculations, by a stationary airfoil
placed in a fluid undergoing exactly the same motion but of opposite sign far away

from the body if the aforementioned “buoyancy forces” are accounted for.

Thus the airfoil (discussed in the previou~ section) moving in the negative X direction
with an acceleration e into an otherwise still fluid can be replaced, for the purposes

of potential flow calculations, by a stationary airfoil in a spatially uniform unsteady
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flow goo = (at,0,0), if the forces arising due to the pressure gradient

dp d
35 —Pa(at) = —pa

are accounted for.

Similarly the airfoil executing sinusoidal heave A(t) in the Z direction and a uniform
light at speed U, in the negative X direction can be replaced, for the purpose
of potential flow calculations, by a stationary airfoil in a spatially uniform unsteady
flow §oo = (Uo, 0, —h) by accounting for the buoyancy forces arising from the pressure

gradient as discussed above. The pressure gradient for this case is

Op dh

5 = Par =P

For the case of a pitching airfoil in uniform flight, (also discussed in the previous
section) such a construction would be unphysical as it makes pressure a multivalued

function except when the rate of pitch is a constant.

2.6 Theodorsen’s Transformation

2.6.1 General Mapping Function

Any arbitrarily shaped simply connected body can be mapped into a unit circle by

using a suitable conformal transformation [38]. This procedure is well developed and
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Figure 2.4: Conformal Mapping of an Arbitrarily Shaped Simply Connected Body

into a Unit Circle.
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documented [84, 1, 20, 38]. The particular method used here closely follows [2C]. An

illustration of the procedure is presented in Fig. 2.4.

Let { be the complex variable in the circle plane and z in the physical (airfoil) plane.
So z({) becomes the analytic function that relates the circle plane to the physical one.
Let the complex potential of the flow in the circle plane be denoted by F((,t) = ¢+i9,
where ¢ and 7 are the flow potential and the stream function, respectively. Then the

complex velocity w((,t) in the circle plane is given by

w((,t)=u—iv= %—? (2.15)

where u and v are the speeds along the real and imaginary axes, respectively.

Then the velocity in the physical plane is calculated from

W(z,t) = w((,t)— (2.16)

dz / d¢
Since the perturbations should vanish far away from the body, we require of the
transformation that the velocities in the two planes be equal at infinity. i.e.,

dz

— =1 : (> o

d¢

Then the transformation may be expressed as

C+%+%+%+--- (2.17)
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TE
=Trailing Edge Angle

Figure 2.5: Mapping of the Trailing Edge.

Thus the problem of mapping the flow past an arbitrarily shaped object is reduced
to finding the constants in the above series which can be recognized as the Laurent

expanson of z(() about the point at infinity in the { plane.

2.6.2 Mapping of the Trailing Edge

Though the above mentioned series, in theory, is adequate to find the transformation,

accurate numerical implementation will be difficult if the trailing edge is sharp.

Let z = z7 denote the trailing edge and let the point on the circle corresponding to

27 be denoted by (r. Consider the elements dz; and dz, of the airfoil curve passing
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through the point zr, as shown in Fig. 2.5. Let d(; and Let d(; be the corresponding
image elements at the image point (7. The angle between dz; and dz,, i.e., the
trailing edge angle, is required to be different from = if the airfoil has a sharp (or a
cusped) trailing edge, as is usually the case. The angle between the image elements
d(; and d(, is, however, equal to 7. This means that the mapping should not preserve
the angles at the trailing edge, that is, must be singular. This, in turn, means that

the point ¢ = {r should be a singular point of the transformation z = z(().

All the singular points of the transformation are given by the equation j—z = 0. Thus
the mapping should be such that one of its singular points should lie on the circle
while all the rest of them are included in the interior of the circle so as to leave the
regions exterior to the circle and the airfoil conformal to each other. The singular

point on the circle goes into the sharp trailing edge of the airfoil.

From the theorem of residues of complex functions [44] it can be shown that if the
first n derivatives of the transformation function z({) are zero at the point (7, then

the trailing edge angle we is given by
me=m(1l—n) (2.18)

Using this knowledge, the Laurent series in equation 2.17 can be written as

n=0

where C,, are the mapping coefficients determined by the shape of the airfoil being
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transformed. This choice of the mapping function ensures that the trailing edge angle
is accurately mapped and does not cause any loss of generality [20]. The constant
of integration that results when the above equation is integrated was chosen so that

z = 0 transforms into { == 0.

2.6.3 Mapping Coeflicient Calculation

The constant e° in the above equation 2.19 multiplys the entire righthand side. SCp
affects only the orientation of the airfoil and is set so that the airfoil chord lies on the
z-axis. RCy affects only the size of the airfoil and is chosen so that the airfoil chord

is of unit length.

An efficient and accurate method for determining the mapping coefficients is detailed
in [20] and is not reproduced here. Calculation of only 18 coeflicients (including c;s)

was sufficient for transforming NACA 0012.

2.6.4 Velocity Field Representation

Though at the first time step there are no wake vortices in the flow field, at subsequent
times the wakes drifting freely with the local velocity are represented by discrete

vortices. Consider now the flow field at a time ¢ when there are a total of NV free
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(wake related) vortices in the flow field. Let z; be the location of the j-th vortex in
the airfoil plane and (; be the corresponding location of the j-th vortex in the circle
plane. Using the knowledge of conjugate functions and images [61], we can write the

complex potential for the instantaneous velocity field in the circle plane as:
PG = wal®)C + 3+ pTolnd 4 Z (- 6) - - ) 220
where wo(t) is the instantaneous freestream complex velocity in the circle plane, i.e.,
Woo(t) = Uoo — W0 = Jim w((,1),

I'y is the initial bound circulation, I'; is the circulation of the j-th wake element
and (* is the complex conjugate of {. Thus 1/(} is the location of the image vortex
corresponding to a vortex at (;. The positioning of the j-th vortex and its image in

the circle plane is shown in Fig. 2.6.

The complex potential in the physical plane is given by F(z({),t). The complex

velocity in the physical plare is given, as before, by equation 2.16.

The term %f in equation 2.16 is calculated as:

. N
w((,t):% = Weo(1 — 1)+2P€+lzri{c_1(;._c_lL}
i=1 j i

The time derivative of the complex potential is:

oF dwoo i & 1
E= dt 21‘.2111{ C (J C_I(C*z)}

Jj=1
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Figure 2.6: Positioning of Wake Vortices and images in the Circle Plane.

Once the velocities on the airfoil are calculated as shown above, the pressures in the
inertial frame are derived by employing equation 2.14 from which forces and moments

are calculated by simple integration.



Chapter 3

Calculation of the Separated Flow

Field

3.1 Unsteady Boundary Layers

Once the external potential flow (with no separation assumed) is calculated as ex-
plained above, the conditions at the outer edge of the unseparated boundary layers
on the body are known. The unsteady boundary layer equations applicable for this

problem are [67]:

bu, B ou_ o _0U  oU
ot Oz Oy dy: Ot Oz
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%4_@—0
oz Oy
v=U(z,t) 1 y = o0 u=v=0:y=0 (3.1)

where u and v represent the velocities in the boundary layer along the body surface

and perpendicular to it and U is the velocity external to the boundary layer.

These equations are derived from the Navier-Stokes equations [90] by neglecting the
curvature of the airfoil, the variation of pressure across the boundary layer and the

streamwise diffusion.

The inertia terms in the general equation of motion make an analysis extremely hard,
because they give rise to periodic variations at higher harmonics of the frequency
of the fluctuating external stream. But when the reduced frequency of the external
oscillation is high enough, the local acceleration is much larger than the unsteady part
of the convection of momentum. Then to a first approximation the fluctuation part
of the motion can be treated as in Stokes second problem, [72]. Based on this idea C.
C. Lin [50] developed an asymptotic method for analyzing the boundary layer which
was later used by Gioulekas [30] to calculate the separation point of the boundary

layer in an unsteady external flow.

Let the free stream velocity U(z,t) have a mean component [/(z) and an oscillating
component U(z,t).
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Because of the no-slip condition at its surface, the airfoil resists the outer fluid motion
at an average speed U. Vorticity is thus generated at the body surface and forms a
vortical layer that expands into the outer flow as the vorticity simultaneously diffuses
away from the wall and is carried downstream by the external flow. The time required
for vorticity to diffuse through a distance &, is of the order of §2/v, the diffusion
time. The time required for the vorticity to be convected through a distance c in
the streamwise direction is ¢/U, the convection time. In the thin boundary layer
approximation these two time scales are of the same order. So we can write the

boundary layer thickness associated with the mean flow, “Prandtl thickness”, as

ve c
bp = bp.~ (7 =

U +/Re.

(3.2)

where Re, is the Reynolds number based on chord ¢ and the mean external velocity
. In the unsteady part of the flow, the velocity changes from —U to U in time 7/w,
where w is angular rate of oscillation of the external flow. If §, is the diffusion length

scale for this time, then we have, by equating the unsteady time scale to the diffusion

by~ (3.3)

where the factor 7 was ignored. The Prandtl and Stokes velocities are shown concep-

time scale:

tually in Fig. 3.1.

The ratio of the “Prandtl thickness” é, and the “Stokes thickness” §, is thus propor-
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Figure 3.1: Velocity Profiles in Prandtl and Stokes Layers.

tional to the square root of the reduced frequency k

o, cw

When the reduced frequency is high (%f > 1), the outer part of the boundary layer re-
acts to the exterral oscillation in an inviscid fashion, because viscosity has insufficient

time to counter the temporal changes in the freestream velocity.

When the reduced frequency is low (%’"— < 1), the vorticity which is generated as the
wall resists the imposed unsteadiness is convected away and does not accumulate to
form a secondary layer of vorticity. In this case, the “Stokes layer” does not exist and

the present method will not be applicable.
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Turning back to the case where %“1 > 1, we note that for much of its thickness above the
“Stokes layer”, the boundary layer responds to the external oscillations in an inviscid
fashion. The presence of the solid boundary changes the unsteady component of the
velocity from its potential value only within the secondary layer of vorticity. Thus
the situation is similar to the one present in Stokes’ second problem. If this velocity
field is subtracted from the boundary layer velocity, what remains is a velocity field
of predominantly steady character, which at large distances from the body surface

tends to the mean value of the freestream velocity.

A similar analysis lead [50] to divide the boundary layer velocity (u,v) into the “Stokes
velocity” (u,,v,) corresponding to the fluctuating component U(z,t) and the “Prandtl

velecity” (up,v,) corresponding to the mean component U(z). Thus;
y— 00 : u, = U(z), u, = U(z,t)

At the wall, the two components together satisfy the no-slip condition:
y=0:u+u =0v,=2v,=0

In the region that lies between the edges of the two layers, the “Stokes flow” has

attained its freestream value. Therefore for
y > 6, u=’u,,+(7, v=0v,+V,

where V, is the value of the normal velocity corresponding to U, consistent with the

equation of continuity for the “Stokes component” (u,,v,). For the flow within the
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“Stokes layer” we have, as mentioned before,
Yy <&t u=up+u, v=0v,+0,

Thus the equations 3.1 for boundary layer flow can be divided into those for “Prandtl

flow”, given by:
Ou, Oup Ou, oU U - Ou, Ouy
ot Ty T, T, g tUG Y '63/
62u,, ~8U0 8

Ou, 3vp
Bz M Jy =0
u,=U(z) : y = 00; up+u,=0,v,=0 :y=0 (3.5)

The corresponding equations for “Stokes flow” are:

Ou, Ou, Ou, -0 d
5 T, T 3y + (u.,—U)%+(v.—V.)5§ Up
0 0 -~ u, oU - oU
+(up£+vp'3—y)(u.—U)—Vay2 = a UB_:z:
Ou, | Ovs _ g
0z = Oy
u, = U(z,t) : y — 00; up+u,=0,v,=0:y=0 (3.6)

Since we are looking to solve the above sets of equations for high reduced frequency

cases i.e., for (22 > 1), the “Prandtl velocities” within the “Stokes layer” can be
5, ) A4
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replaced by their Taylor expansions about the point (z,%, = 0):

o ,,n 9n

Yp 0"up
u, = y =+ (z,0
P rZ%n!ay;; »0)
[o ) nan
v, = 5 220 U

(z,0)

P '
n=0 n. 33/;

Then the velocities (up,vp) 2and (,,v,) are expanded in inverse powers of the reduced

frequency k:

21
Up = Z 'F'U.P.n

n=0
= 1
U, = Z k—ﬂ-u,,n

n=0

Up = Z Z‘;vp'n

n=0

> 1
Vs = Z ";;va,n

n=0
At each level of approximation, the velocity distributions are expressed in terms of

their mean and fluctuating parts, { r example
Up,n = Upn + Upn

The equations for the mean flow are found by taking the time average of the equation
systems 3.5, 3.6. Then, the equations for the mean parts are subtracted from the
original equations to get the equations for the ﬂuctuating’parts of the flow. The
equations for the oscillating part had to be solved before the equations for the mean

parts of the flow.
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A complete description of the mathematical details of the solution procedure is sup-
plied by Gioulekas [30] and is not reproduced here. The systems of equations 3.5, 3.6

are solved up to and including the third approximation (terms corresponding to k~2).

The zeroth order “Prandtl components” and the “Stokes components” and their re-

spective boundary conditions are completely decoupled.

The unsteady part of the zeroth order “Prandtl velocity” i, o comes out be identically
zero. The steady part of the zeroth order “Prandtl velocity” 4,0 becomes equal to
the steady profile corresponding to the mean component of the external velocity U

and the associated pressure gradient.

Similarly, the steady part of the zeroth order “Stokes velocity” o is identically
zero aud the unsteady zeroth order “Stokes velocity” is the solution to Stokes second

problem when the external oscillating flow is of the magnitude UU. This was derived

also by Lighthill [48].

The higher order solutions are not so readily distinguishable and are coupled through

boundary conditions at the wall.

79



3.2 Boundary Layer Separation

3.2.1 Conditions at Unsteady Separation

Flow separation is generally understood [47, 5, 72, 82] as a sharp increase in the
normal component of the velocity in the boundary layer or as a sharp increase in the
displacement thickness 6*. It is easy to verify, from the basic definition of 6*, that

the two definitions are equivalent to each other.

In steady flows, flow separation is always associated with reversal of the flow direction
immediately downstream of the separation point, as explained in [67]. On the other
hand, in the Stokes second problem the flow direction oscillates in time continuously.
But there is no sign of flow separation in a purely oscillatory flow, like the Stokes
second problem. The implication is that while flow reversal in a steady boundary layer
necessarily indicates separation, instantaneous flow reversal in an unsteady boundary

layer does not indicate separation.

It is also known [31, 9, 19] that the boundary layer equations exhibit a singular
behavior as the separation point = ®, is approached. Within the thin boundary
layer approximation, the scaled skin friction, i.e.,

lim (Rel/zr)

Re— o0
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is generally bounded upstream of the separation point, but becomes nonanalytic as

the separation point is approached, i.e.

Rel/? ? x (z, — z)*/?
Yl

where Re is the Reynolds number and 7 is the skin friction. The skin friction in the

Stokes second problem does not exhibit any such singular behavior.

Experiments conducted by [43, 60, 53] extend support to the argument that temporal
flow direction reversals present in unsteady boundary layers do not indicate and are

not associated with separation.

The behavior of the “Stokes velocities” and the associated skin friction are similar
to that of the corresponding flow variables in the Stokes second problem. All the
“Stokes velocities” in the asymptotic expansion of the boundary layer velocities of
the previous section are governed by diffusion-like equations and are thus nonsingular.

The associated displacement thickness is bounded and remains analytic throughout

the flow field.

Led by an analysis similar to the one presented here, Gioulekas [30] concluded that
attention should be focused on “Prandtl flow” to determine the location of the sepa-

ration point.

With reference to the “Prandtl flow” (equations 3.5) and the analysis presented by
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Goldstein [31], far upstream of the point of separation

vp 1 0
Y .o :
Up (,/Re)’ Oz*

As the separation point ¢ = z, is approached

~0(1) (3.7)

% L O(1); oo~ O(vRe) (338)

Up

where z* = z/c is the nondimensionalized streamwise coordinate.

Therefore, changes in the z-direction become pronounced near separation, as shown
by [31]. This means that the boundary layer approximation fails, streamwise diffusion
becomes important and the governing momentum equation becomes elliptic (in z —y
space, though it remains parabolic in the ¢ — z/y space). Then there is upstream
influence and in order to continue the solution beyond the separation point, the
influence of the ejected boundary layer flow on the imposed pressure gradient has to

be accounted for.

For steady flows the triple deck theory developed by Sychev [81] and subsequently
advanced by Stewertson [9] explains tlis local interaction. No such comprehensive

theory exists for unsteady separation.

Analogous to steady separation, Gioulekas [30] defined the separation point in un-
steady flow as the point where the boundary layer equations become singular. This

singularity, as explained above, appears in the “Prandtl component” of the boundary
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layer flow. As proved by [30, 82] this singularity appears at a point (z,,y,) in the

flow at which tk:- following conditions are satisfied:

Ou,
P _9
dy
- dz,
u, + U — % =0 (3.9)

where u, stands, as before, for the “Prandtl component” of the streamwise velocity.

According to these conditions an observer moving with a speed equal to the difference
between the speed of the separation point and the oscillating part of the freestream
velocity, sees a stagnation point within the “Prandtl component” of the velocity
field. Such an observer sees the fluid particles being decelerated as they approach
the separation point. In order to satisfy continuity, they exchange the streamwise
velocity for normal velocity and this causes the dramatic increase in the transverse

velocity component at separation.

Moore, Rott and Sears [74] proposed as conditions for unsteady separation the simul-
taneous vanishing of the shear and the velocity at a point within the boundary layer
and in a frame of reference moving with separation. The conditions, to be satisfied

at the separation point are:




Separation Poi

Movingwith

Vel.= us
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Figure 3.2: The Prandtl Velocity Field at Separation, Viewed by an Observer Moving

with the Separation Point.

It is easy to verify that the two conditions are consistent with each other and for
“large” reduced frequency, they are in fact identical. The streamlines at an unsteady

separation point are shown in Fig. 3.2.

If we replace the boundary layer velocity v = u, + u, in the MRS conditions with
u = u, + U, we can in fact see the equivalency between the two conditions. The

above replacement is possible, because, as explained in the previous section, for high
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reduced frequency k

b,
6_p<<1

which means that for most of the “Prandtl layer”, u, ~ U. This approximation

becomes more and more accurate as k increases.

3.2.2 Criterion for Predicting Separation

For steady flows there are a variety [17] of well established approximate conditions
for predicting the separation point. Of particular interest to us is the method put

forward by Stratford [79].

It is based on a division of the boundary layer into two parts, one towards the outer
edge of the layer and the other adjacent to the wall. In the outer part of the bound-
ary layer the loss of total head due to viscosity is small and and is assumed to be
independent of the pressure gradient. Then the total head loss along any particular
streamline can be approximated by the total head loss along a corresponding stream-
line in a Blasius flow at the same external speed. Since the loss of total head can be
calculated for a Balsius profile, the above approximation determines the shape of the

outer profile.

In the inner part of the boundary layer the convection terms are small and can
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be neglected in the momentum balance. The inner profile is approximated by a
polynomial of third order in the normal coordinate. Then the two velocity profiles
are patched together so that the velocity and its first and second derivatives are
continuous at a point automatically determined by the conditions imposed. This

model yields, for the pressure coefficient ¢,

de, \’ w w
e (m%) = 0.0104(1 — %)"(1 + 2:—7,- (3.10)

where, 7, is the wall shear at z and 7, is the shear in Blasius flow at the corresponding

point. At separation z = z,, 7, = 0, therefore

d, 2
G (m,ﬁlu,,) —~ 0.0104 (3.11)

Stratford’s original proposal for the number on the right hand side was 0.0108, but it
was noted in [17] that 0.0104 resulted in more accurate predictions for a wider variety
of flows. The method is designed for flows in which the pressure remains constant
from the leading edge for some distance, after which the pressure rises steeply. The
presence of a favorable pressure gradient from the stagnation point to the suction
peak is taken into account by using the “equivalent constant pressure region” concept

explained in [67]. The method is applicable if the pressure coefficient at the separation
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point Cp, < 1/8 and becomes increasingly accurate as the adverse pressure gradient

increases or equivalently, C, , decreases.

Gioulekas [30] derived a condition for flow separation in unsteady boundary layers.
This method depends on the ideas used in the Stratford’s method for modeling the
variation of the “Prandtl component” of the streamwise velocity along the airfoil

contour.

We have shown above that the occurence of unsteady separation can be identified by
focusing attention on the behavior of the “Prandt]l” part of the flow. It was shown
by Gioulekas [30] that the basic or the zeroeth order “Prandtl” component and the
unsteady part of the external flow alone are sufficient to construct the “Prandtl”
velocity distribution along the blade surface. Therefore, if variation along the blade
surface of the basic velocity is known, then we will be able to construct the whole
“Prandt! Velocity” using the former as the building block and the separation point can
then be located by solving the conditions given in equations 3.9. In order to find how
the mean “Prandtl” velocity changes with streamwise location under the influence of
the adirérse pressure gradient, a variation of Stratford’s [79] ideas were used to derive
a relation which describes how the wall stress 7,, changes with z. The wall stress
determines the basic velocity profile uy(x,y) uniquely. Then, as mentioned above,
up(z,y) is used, in conjunction with parameters of the external flow, to construct the

whole “Prandt]” flow and then the latter is used in the separation conditions 3.9 to
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calculate unsteady separation point.

In the unsteady case, by modeling the development of the mean “Prandtl” velocity
as outlined aboe, an equation is obtained, which in functional nondimensional form
can be written out as:

@, % Z7)=0 (3.12)
where, the velocities aie nondimensionalized by the velocity at the suction peak and
¢, = 1 — (U)?. The above equation describes essentially how the wall shear 7,,

which uniquely determines the basic and thus the “Prandt]l” velocities, varies with

the streamwise location z.

The instantaneous location of separation is found by combining this algebraic equation

with the separation conditions, 3.9.

3.3 Evolution of the Free Vortex Layers and In-

teraction with the Airfoil

In the immediate neighborhood of the separation point, the shear layer “lifts off”
or moves away from the wall. The shear layer leaves the surface of the airfoil tan-

gentially, as pointed out by Batchelor [4]. After leaving the surface the vortex layer
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gets convected into the external flow in a force free manner, i.e., such that there is
no pressure jump across the shear layer. This separated, freely drifting vortex layer
affects, in turn, the circulation and the location of the separation points on the air-
foil. The velocity field associated with the wakes is calculated by using the familiar

Biot-Savart law [61].

3.3.1 Bound and Wake Circulations

As pointed out in equation 2.6, Kelvin’s theorem requires that the angular momen-
tum in the flow be preserved. In particular, for a flow with no net torque and zero

perturbations at large distances, the theorem states chat for all times:

dar
hataly
di
where I'(t) is the total circulation along a material curve in the flow. At any instant,
a material curve enclosing the body and its wake has zero net circulation because, the
same material was far upstream at an earlier time, where the velocity field is uniform

with zero vorticity. If I',(¢) and I',(t) represent the bound and wake circulations

respectively, then

I' = Fb(t) + I‘w(t)
I's(t) + 'y (t) = 0 | (3.13)
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Borrowing the notation used by Sears in [76], let u4(y) and up(y) be the boundary
layer velocities at the separa.,tion points ¢ = x4 and z = zp on the upper and lower
surfaces respectively. And let U,y and Up be the corresponding velocities at the
boundary layer edges. Also, let u,ep.4 and u,.,.p be the velocities of the separation

points at £ = z4 and ¢ = zp. Then at any time the amount of circulation shed into

the wake, or equivalently the negative of the change in the bound circulation, is:

dly _ % Ou % Ou
= gy vy = [ 5 )iy

dt
1, 1,
= EUA - UAu‘CP-A - EUB + UBuae;p.B (314)
where y = 64 and y = —&6p are the boundary layer edges on the upper and lower

surfaces respectively. In the above equation the vorticity in the boundary layer w,
given by
ov Ou

Y= bz Jy

was approximated by —8u/0y by ignoring dv/0z.

Though it is true that % / g—; is small upstream of the separation location, it is not
so in the neighborhood of separation, as explained in equations 3.7, 3.8. But this
approximation a.l.one has Leen used throughout the literature 76, 82, 53, 30, 87,
16] because of the difficulty in modeling analytically the dv/0z term. Results from

experiments [53] indicate that the above approximation is accurate to within 5%,

however unlikely it may seem.
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The asymptotic theory developed by Dean and Goldstein [19, 31], as indicated before,
shows that the terms % and g—: are of the same order in the vicinity of the separation
point. However, the exact ratio of the two terms depends on the nature of the external
flow. Estimates of the ratio %/ %5 made for one flow would not be applicable for
others. In effect, due to the lack of a better model, we also have used the same
approximation by neglecting the contribution of -g—: to the vorticity in the boundary

layer. The validity of this approximation is verified aposterioriin chapter 4 as a part

of validation of the method.

Clearly, in steady flow, the velocities of the separation points U,ep 4, %sep.p and dI'/dt

are zero and the above equation becomes identical to Howarth’s criterion [36).

In the above equation Us — u,ep. 4 is the speed at which vorticity is released from the
airfoil surface into the external flow. If u,.,.4 = 0, all the vorticity in the boundary
layer af the separation loca‘tion z4 becomes f;'ee vorticity. On the other hand, if
Uy = Ugep.As then the vorticity contained in the boundary layer at the separation
location z 4 travels at the same speed as the separation point and remains part of the

bound vorticity.

A discrete form of the above equation was used to calculate the bound circulation at
a new time step using the values from the previous time step of the variables on the

right hand side of that equation.
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3.3.2 Evolution of the Wakes

In this section the kinemacics and dynamics of free convection of the vortical wakes is
described, making use of the characteristic variable technique given in [57, 83]. The
characteristic variable concept is applicable to fully three dimensional flows and is
discussed in more general terms in the references cited above. For our purposes it
suffices to confine the discussion to the unsteady covection of two dimensional wake

traces.

Kinematics -

Helmholtz law [61] (Kelvin’s circulation condition can be obtained by integrating
Helmholtz equation.) requires that free vorticity 0 in two dimensional incompressible *
flow obey the equa.tidh

o |
=47V =0 | (3.15)

where V is the total local velocity.

If A' = X=z,y,t) and A? = g(z,y,t) are two independent characteristic solutions to

the cquation

dA»

dt 0
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with appropriate boundary and initial conditions, then, from {11},

Qz,y,t) = Qn, A)

Boundary conditions are specified so that one of these variables, 7 say, is constant

on streaklines (and thus on the airfoil wakes) drawn at fixed time ¢. The remaining

variable ) is then chosen to Be the shifted time

so that

A=t—r1

dr

primt

and 7 is the Eulerian drift time of a wake element

When a concentrated vortex sheet is embedded in an otherwise potential flow (ex-

cept for the boundary layers) the variables 7 and A defined above will generally be

discontinuous at the sheet. In such a case it is useful to replace by a continuous

function, 7, saty, which instead of dn/dt = 0 satisfies,

and

where

dne © O o o
E"_ Bt +<V>.Vy. =0 (3.16)
AV -V, =0 (3.17)
<V>= %(17+ +V7); AV = (Vt-V0)



with V+ and V- representing the velocity vectors on the upper and lower sides of a

wake.

The state.ment that n.(z,y,t) = constant, then describes a sheet (or streakline) whose
deformation is controlled by convection at the mean velocity < V > at the sheet. Also,
the last equation states that the velocity jump AV has no component perpendicular
to the sheet at any time, which is one of the boundary conditions appropriate to the

evolution of a free vortex sheet.

In the same framework, the second characteristic variable needed at and along the

sheet can be chosen to be the mean shifted time

such that

dr 07 ~ _ o
E =z —a—t+ <V>.Vi=1 (3.18)'

where 7 represents the mean drift time of fluid elements within the vortex sheet.

The variable )\ provides the coordinate along the wake; in fact, it identifies each fluid
element in the wake according to when it left a specified upstream location such as a

separation ;;oint on the airfoil surface.

i
'!
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Dynamics

If the flow potential above and below a vortex sheet is denoted by ¢* and ¢, then

the potential jump
Ap= gt — ¢

occuring at the sheet, a function of both z and ¢, must be determined. In the present
case, application of the unsteady Bernoulli equation 2.14 on either side of the sheet,
together with the boundary condition that there be no jump in static pressure across

the sheet, yields:

d 0, 5
5 (8) = 2 (A¢)+ <V > -V(Ag) =0 (3.19)

This relation determining A¢ emphasizes the fact that in the presence of a deform-
ing unsteady wake, the boundary-value problem we must solve for ¢ is inherently
nonlinear even for the irrotational case. In effect, we must satisfy the condition of
Zero pressure jurﬁp, Ap =0, on a surface (a wake) whose shape and location is to be
determined as part of the solutioﬁ. Neverthel=ss, at each time step, we are able to
regard the wake surface as known at that instant, just after its relocation during the

previous time step.

Also, note thai the variable ) is automatically produced during the computer time-

stepping calculations and requires no extra computation.

95



Velocity Field of the Wake

Since, as noted before, ) is a coordinate along the wake, using A and complex variable
notation, the plane two-dimensional velocity field associated with a wake can be

written from the Biot-Savart law [57):

o : 1 ptdl(X) dX
uw(z:,y,t) - "’w(way,t) = ww(mv yat) = '2;; A _t-i%—)_z_——z— (320)

Here z = ¢ +iy and 2, = z, +1y, is the complex location at time ¢ of the fluid element
in the wake having circulation dI'. In most of our calculations we encountered two
.wakes, one emanating from the separation point on the upper surface and the other
from the separation point on the lower surface. S;>, the wake associated velocity at a

point z = z + ¢y is obtained by summing the effects of both wakes.

3.3.3 Numerical Modeling of the Wake
Discretization

A discrete vortex wake model was chosen for its simplicity and ease of computational
implementation. This approximation to a vortex sheet has a long history of use by
many investigators and has been applied to a variety of problems including the roll-

up of trailing edge vortex wakes in the Trefftz plane, the evolution of wakes behind
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airfoils in unsteady motion and the formation of vortex wakes over slender wings and

bodies [71, 57, 62, 20].

For purposes of carrying out the wake integrals, calculating the Impulse and moment
of Impulse and determining the non-explicit contribution of the wakes to the velocity
field, a “point-vortex” approxiamtion has been used. That is, the wake elements are
treated as if their entire incremental circulation were concentrated at a point. How-
ever, for calculating the explicit wake a.ssoc.iat.:ed velocity, the wake elements are given
a smali constant vorticity core in order to prevent the occurrence of unrealistically

large velocities in the neighborhood of any one vortex.

Hence the incremental complex velocity Aw at a point z associated with a single
vortex element of strength AI‘_having a core radius r. and located with its center at

2z, 1s biven by
_ AT 1

2wt z — 2,

Aw
for points outside the core, that is when |z — z,| > 7. and by

AT (z — z,)*
Aw = ——,—(z z )
2m1 72
when |z — z,| < r.. Here ()* denotes the complex conjugate value of the quantity

inside the parantheses. In this manner the incremental velocity of any particular

vortex element is always bounded, i.e.,



1
4+
U
—+
:
E 13+
- \
| | 1 | |
0 ! ] | ! | p
xr, ——

Figure 3.3: Velocity Field of a Rankine Vortex.

This combination of a constant vorticity core with a potential outer flow is of course
the well known Rankine vortex. The velocity profile due to such a Rankine vortex is

shown in Fig. 3.3.

In the calculations presented, 7. is a user prescribed parameter. It is chosen to be
the same for all vortex elements comprising the two wakes and it remains constant in
time. (A core size that grows proportional to the square root of time can probably

be used tc model the diffusion of a vortex sheet.) For the results to be presented in
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the following chapters r. was chosen such that

Te

|w; At

~0.5

where |w| is the magnitude of the local velocity at which the vortex is placed and At

is the interval between two consecutive time steps.

The above choice is to some extent arbitrary, but ensures that two consecutive vortices
released from the same separation point do not immediately overlap. This particular
choice also keeps the vortex sheet being represented by discrete vortices relatively free

from instabilities due to machine induced errors.

A row of equidistant point vortices of constant strength is unstable [46] to disturbances
of all wavelengths. Whereas, a row of equidistant constant sirength vortices with a
nonzero core size is neutrally stable to disturbances of wave numbers smaller than a
cutoff wave number defined by the strength, radius and spacing of the vortices and

unstable to disturbances with wave numbers above the cutoff value [62].

Determining the Position and Strength of New Wake Elements

Positioning the New Elements
The characteristic variable description of the wake traces as described earlier can be

used to good advantage in the task of determining where the new wake elements are
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to be placed in the flow field. In the present point/finite-core representation of the
wake, the j-th vortex of a wake composed of m vortices carries the increments of
circulation shed from a separation point in the interval (j — 1)A¢t<A<jAt. As such
the spatial location of the vortex 2, ; is taken to correspona to that of the average

value of A; in this time interval, namely

Aj=(7—5)At

1
2
Alternately, in terms of the previously defined mean drift time ¥ = ¢t — A, this point

represents

_ o1
Tj=t~'(.7—§)At

It then follows that at time £ = mA¢, before a new vortex has been located to rep-
resent the latest addition to the wake, the shifted time field has been mapped in
discrete points for values ranging from X = 1At to X = (m — 2)At. This is of course
equivalent to mapping the mean drift time field over the interval $At <7 < (¢t — 1At).
In addition, the separation point is where ¥ = 0. Hence all the required information
is at hand to locate the mth vortex in the flow field via a consistent scheme of inter-
polation. The above scheme is equivalent to stating that the new vortex is located

on the instantaneous streakline emanating from the separation point.

Strength of New Elements
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Referring to the notation used in equations 3.14, the incremental strength of the
vortex layer with separtion point at £ = x4 on the upper surface is reperesented by

a new vortex of strength

1

AFA = At(EUi - UAuacp.A)

and the corresponding vortex strength at the separation point £ = zp on the lower

surface is

APB = —At(%Ulz; - UBusep.B)
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Chapter 4

Validation of the Method

In this chapter we will establish the validity of the method described in the previous
chapters by comparing our results for several test cases with those from experiments

and calculations by other authors.

4.1 Establishing the Lower Limit on Reduced Fre-

quency

The first issue we want to address here is the range of the reduced frequency within

which our method will be applicable. As mentioned in the previous chapter, the
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method is an asymptotic approximation, valid in the limit as a number proportional
to the square root of the reduced frequency goes to infinity. The physics behind the
asymptotic approximation dictates that the approximation is valid when the “Prandtl
layer” is much thicker than the “Stokes layer”. The boundary layer scaling arguments
lead us to the conclusion, continuing with the notation we used in the last chapter,

that
by [we
-6_, [0 8 ﬁ = \/E

When §,/8,~1 or lower, the boundary layer can not be divided into distinct “Prandtl

layer” and “Stokes layer” and thus the method fails.

This knowledge, however, does not establish the lower limit on k& below which the
method will not be applicable. It is expected, on the other hand, that the method
should be applicable for all higher values of k. This ambiguity associated with the
limit on the applicable range of the asymptotic parameter is often encountered in
asymptotics [7]. Ultimately, our ability to treat the boundary layer as two distinct
layers is based on how distinct the physics of the two layers are. Since, as explained
in the previous chapter, the two layers are controlled by distinct physical phenomena,

we expect the lower limit on k to be quite low, in fact, a value corresponding to g—:'zl.
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4.1.1 Using the Convergence Characteristics

One way to establish this limit, a widely used one [7], is to see the convergence

characteristics of the solution as k is varied.

In order to investigate this limit on k, we have chosen the case of a thin ellipse of
slenderness 1/20 placed at an angle of 5° in an otherwise spatially uniform unsteady
stream oscillating by 4% in magnitude but not in direction The solution to this
problem was calculated for £ = 4.5 by Gioulekas [30] using a different representation

for the wakes and the potential flow. The Reynolds number is 10°.

We have calculated the solution for this problem for a range of values of k. The
calculation procedure, followed for all problems described in this work, is presented
in the previous chapter. The results of our calculation are presented in Fig. 4.1 where
we have plotted the number of iterations taken for convergence for several values of k.
Here the ratio of the value of O, calculated at the end of an iteration to the converged
value is interpreted as the level of convergence. Note that as k increases, the length of
the wake after the same number of cycles of oscillations becomes shorter and shorter,

as the drift time allowed for the wake decreases.

Also shown in the same figure is the convergence behavior of a dynamic stall problem

to be discussed in the next few chapters. This case involves a modified NACA 0012

1The blunt trailing edge was made sharp by tangentially extending the surface contours and
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Establishing Lower Limit on &
s For the Validity of the Method

g mEllipse
o o NACAQ012

# of Iterations

Figure 4.1: Lower Limit on Red. Freq. k~0.56. No convergence was achieved for

k<0.52. Number of iterations necessary for convergence increase sharply for £<0.55.
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airfoil oscillating sinusoidally in heave such that its equivalent angle of attack? varies

between 6° and 18° in a flow at Re = 10°.

It turned out that in most of the problems we have encountered, eight iterations
were sufficient to reach “convergence”, except where noted. Whether the method
is converging to the correct value or not is a different question, to be settled by
comparing our results with experiments and other calculations. An effort towards
that end follows. But first we will estimate the value of §,/6, for k = 0.52, the lower

limit on k for which convergence was achieved.

4.1.2 Estimation of 6,/6, as a Function of k

Consider the simple case of a flat plate oscillating sinusoidally parallel to its length at
an angular rate w with a magnitude U, in an otherwise steady freestream of velocity

U, aligned with the length of the plate. The flow is depicted in Fig. 4.2.

The “Prandtl thickness” of the boundary layer that deveclops on the plate at a distance

z downstream of the leading edge can be shown, from simple boundary layer analysis

rescaling the chord to one unit.

2Please see the chapters 6 & 7 for an explanation.
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Figure 4.2: llustration of Stokes and Prandtl profiles on an oscillating flat plate in a

freestream.
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[72] as well as the method described in the previous chapter, to be

& 5

~v

T v Re

where “Prandtl] layer” edge is taken to be the point of 99% freestream velocity.

The “Stokes velocity” u,(y,t), except in region close to the leading edge® of the plate

is given by [72]

S L )
U‘ € v~ cos (UP 2yy)

Defining the edge of the “Stokes layer” as the point where the magnitude of the

velocity envelope is 1% of U, and using k = 2= = 0.52, we get

g—; =0.31 (4.1)
It is now clear that this simple estimation procedure justifies the claim we made
above. It is useful to note that when U, is larger, for example around the leading
edge suction peak, the Prandtl layer will be thinner, s. the above ratio will be larger
and the approximation will be less accurate. On the other hand, in the vicinity of a
stagnation point U, — 0, so g—;— — 0. Therefore the current approximation can be quite

accurate locally, in that region.

We will now turn to some comparisons of the results of our calculations to those from

experiments and calculations by other authors.

3Here “close” can be interpreted as a distance of the order of the Stokes layer thickness 6,.
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Figure 4.3: Pressure Distribution on NACA 0012 at 0° Incidence, Re = 1.5x10°.

4.2 Steady Viscous Cases

We will first show our results for some steady calculations and compare them to

existing experimental and calculations’ results depending on availability.

4.2.1 Viscous Flow on a NACA 0012 Airfoil

First case is the pressure distribution on a NACA 0012 at zero degrees angle of
attack. The calculation was done at Re = 1.5x10°. The results are shown in Fig.
4.3. Superimposed on our results are some experimental and numerical results as

annotated. All these tests were carried out at different Reynolds numbers as indicated
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Cp on NACAO0012

4.00 at 11°
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Figure 4.4: Pressure Distribution on NACA 0012 at 11° Incidence, Re = 1.3x10°.

in the figure. The sudden increase in the pressure at 97% of the chord is due to flow

separation.

The next test case, shown in Fig. 4.4, is the flow over a NACA 0012 at 11° angle
of attack. Again results from experiments Davenport [12] and calculations by Mehta
[59] are superimposed. Our calculation shows flow separation at 47% of the chord,
whereas the finite difference calculation and the experiment show separation at 52%
of the chord. The Reynolds number corresponding to each source of result is indicated
in the figure. Qur calculation was performed at Re = 1.3x10° to permit a reasonable

comparison.
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Suction Surface Separation Location
on NACAO0012 as a function of a
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Figure 4.5: Location of Steady Separation Point on the Upper Surface of NACA 0012

as a Function of Incidence Angle, Re = 10°.
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Figure 4.6: Steady lift coefficient of NACA 0012 as a function of incidence angle at

Re = 10°

Next, the locations of the steady separation point for a range of incidence angles were
calculated and shown in Fig. 4.5. All the existing results available in the literature are
also presented in the figure for com