
Computational imaging through deep learning

by

Shuai Li

B.E., University of Electronic Science and Technology of China (2011)
M.E., Zhejiang University (2014)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Mechanical Engineering

May 3, 2019

Certified by. .
George Barbastathis

Professor
Thesis Supervisor

Accepted by .
Nicolas G. Hadjiconstantinou

Chairman, Department Committee on Graduate Theses

2

Computational imaging through deep learning

by

Shuai Li

Submitted to the Department of Mechanical Engineering
on May 3, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Computational imaging (CI) is a class of imaging systems that uses inverse algorithms
to recover an unknown object from the physical measurement. Traditional inverse
algorithms in CI obtain an estimate of the object by minimizing the Tikhonov func-
tional, which requires explicit formulations of the forward operator of the physical
system, as well as the prior knowledge about the class of objects being imaged.

In recent years, machine learning architectures, and deep learning (DL) in par-
ticular, have attracted increasing attentions from CI researchers. Unlike traditional
inverse algorithms in CI, DL approach learns both the forward operator and the
objects’ prior implicitly from training examples. Therefore, it is especially attrac-
tive when the forward imaging model is uncertain (e.g. imaging through random
scattering media), or the prior about the class of objects is difficult to be expressed
analytically (e.g. natural images).

In this thesis, the application of DL approaches in two different CI scenarios are
investigated: imaging through a glass diffuser and quantitative phase retrieval (QPR),
where an Imaging through Diffuser Network (IDiffNet) and a Phase Extraction Neural
Network (PhENN) are experimentally demonstrated, respectively.

This thesis also studies the influences of the two main factors that determine the
performance of a trained neural network: network architecture (connectivity, net-
work depth, etc) and training example quality (spatial frequency content in partic-
ular). Motivated by the analysis of the latter factor, two novel approaches, spectral
pre-modulation approach and Learning Synthesis by DNN (LS-DNN) method, are
successively proposed to improve the visual qualities of the network outputs.

Finally, the LS-DNN enhanced PhENN is applied to a phase microscope to recover
the phase of a red blood cell (RBC) sample. Furthermore, through simulation of the
learned weak object transfer function (WOTF) and experiment on a star-like phase
target, we demonstrate that our network has indeed learned the correct physical
model rather than doing something trivial as pattern matching.

Thesis Supervisor: George Barbastathis
Title: Professor

3

4

Acknowledgments

First of all, I would like to express my sincere gratitude to my PhD supervisor, Prof.

George Barbastathis. Joining his group is one of the most correct decisions that I

have ever made. To me, his is not only a research advisor, but also a life mentor. His

guidance, support and encouragement in all these five years are really important to

me. I learned from him how to become a good scientist. It is my fortune to have such

a great advisor.

I would like to thank my thesis committee members: Prof. Nicholas Fang, Prof.

Themistoklis Sapsis, Prof. Petros Koumoutsakos and Prof. Berthold Horn. Thank

you for all the valuable comments and sincere assistance, which helped a lot in im-

proving the quality of this thesis.

I would also like to thank all my colleagues at the 3D Optical Systems group: Ayan

Sinha, Justin Lee, Yi Liu, Nilu Zhao, Yunhui Zhu, Chih-Hung Max Hsieh, Jeong-Gil

Kim, Adam Pan, Kelli Xu, Zhengyun Zhang, Mo Deng, Alexandre Goy, Kwabena

Arthur and so on. I would not have made it without their help.

Also, I would like to thank all my friends at MIT, especially Yichen Shen, Yiming

Mo, Ziyu Wang, Zhong Yi Wan, Huifeng Du, Han Yin, Lingbo Zhang, Tianyi Chen,

Yue Guan, Qiong Zhang and Shuo Han. Thank you very much for accompanying me.

I will never forget the time that we spend together.

Lastly and specially, I would like to thank my parents, Hui Dong and Gang Li,

for their love and support.

5

6

Contents

1 Introduction 27

1.1 Computational imaging . 27

1.1.1 Physical measurements . 28

1.1.2 Inverse algorithms . 30

1.2 Deep learning . 32

1.2.1 Fully-connected neural networks 33

1.2.2 Convolutional neural networks 35

1.2.3 Training neural networks for computational imaging 37

1.3 Outline of the thesis . 39

2 Imaging through scattering media using IDiffNet 41

2.1 Introduction . 41

2.2 Computational imaging system architecture 44

2.3 Results and network analysis . 50

2.4 Resolution and shift invariance tests for IDiffNet 57

2.5 Comparison with denoising neural networks 64

2.6 Conclusions . 66

3 Quantitative phase retrieval using PhENN 69

3.1 Introduction . 69

3.2 Experiment . 71

3.3 Results and network analysis . 75

3.4 Conclusions and discussion . 81

7

3.5 My contributions . 82

4 Analysis of the dependence of PhENN’s performance on its archi-

tecture 83

4.1 Introduction . 83

4.2 Methods . 84

4.2.1 Default PhENN architecture 84

4.2.2 Data preparation . 85

4.3 Results . 85

4.3.1 Choice of training loss function 85

4.3.2 Presence of skip connections 87

4.3.3 Influence of depth . 88

4.3.4 Influence of waist size . 90

4.4 Conclusions . 90

5 Resolution enhancement of PhENN by spectral pre-modulation 93

5.1 Introduction . 93

5.2 Imaging system architecture . 94

5.2.1 Optical configuration . 94

5.2.2 Neural network architecture and training 95

5.3 Resolution analysis of ImageNet-trained PhENN 96

5.3.1 Reconstruction results . 97

5.3.2 Resolution test . 98

5.4 Resolution enhancement by spectral pre-modulation 99

5.4.1 Spectral pre-modulation . 99

5.4.2 Resolution enhancement . 101

5.5 Conclusions . 104

6 Learning to synthesize: splitting and recombining low and high spa-

tial frequencies for image recovery 105

6.1 Introduction . 105

8

6.2 Methods . 106

6.2.1 Learning Synthesis by Deep Neural Networks (LS-DNN) . . . 106

6.2.2 Architectures of Deep Neural Networks 107

6.3 Results . 108

6.3.1 Implementation details . 108

6.3.2 Reconstruction Results - Spatial Domain 108

6.3.3 Reconstruction Results - Frequency Domain 109

6.4 Conclusions . 112

6.5 My contributions . 112

7 Quantitative phase microscopy by LS-DNN enhanced PhENN 113

7.1 Introduction . 113

7.2 Imaging system . 115

7.3 Results . 116

7.3.1 Red blood cell imaging . 116

7.3.2 Demonstration that PhENN indeed learned the physics 117

7.4 Conclusions . 123

8 Conclusions and future works 125

A Calibration of the SLMs and the related analysis 129

A.1 Calibration of the reflective SLM in the intensity modulation mode . 129

A.1.1 Calibration . 129

A.1.2 Analysis of the influence of phase modulation 130

A.2 Calibration of the reflective SLM in the phase modulation mode . . . 133

A.3 Calibration of the transmissive SLM in the phase modulation mode . 136

B Details about the neural network architecture and training 139

B.1 IDiffNet . 139

B.2 PhENN . 140

9

10

List of Figures

1-1 General computational imaging (CI) system. 27

1-2 Fully-connected neural networks. [This figure is obtained from the

slides of the Advances in Computer Vision (6.869) course at MIT

taught by Bill Freeman and Antonio Torralba.] 33

1-3 Different non-linear activation functions. 34

1-4 Convolutional neural networks. 35

1-5 Batch normalization. [This figure is adopted from [64].] 37

1-6 Principle of applying deep learning (DL) to computation imaging (CI). 38

2-1 Optical configuration. (a) Experimental arrangement. SF: spatial fil-

ter; CL: collimating lens; M: mirror; POL: linear polarizer; BS: beam

splitter; SLM: spatial light modulator. (b) Detail of the telescopic

imaging system. 46

2-2 Point spread functions (PSFs) and degree of shift variance of the imag-

ing system. (a) PSF for the 600-grit diffuser: 𝜇 = 16𝜇m, 𝜎0 = 5𝜇m,

𝜎 = 4𝜇m. (b) PSF for the 220-grit diffuser: 𝜇 = 63𝜇m, 𝜎0 = 14𝜇m,

𝜎 = 15.75𝜇m. (c) Comparison of the profiles of the two PSFs alone the

lines indicated by the red arrows in (a) and (b). (d) Degree of shift

variance along the 𝑥 direction (∆𝑦 = 0). (e) Degree of shift variance

along the 𝑦 direction (∆𝑥 = 0). Other simulation parameters are set

to be the same as the actual experiment: 𝑧𝑑 = 15mm, 𝑅 = 12.7mm

and 𝜆 = 632.8nm. All the PSF plots are in logarithmic scale. 47

11

2-3 IDiffNet, our densely connected neural network that images through

diffuse media. 50

2-4 Qualitative analysis of IDiffNet trained using MAE as the loss function.

(i) Ground truth pixel value inputs to the SLM. (ii) Corresponding in-

tensity images calibrated by SLM response curve. (iii) Raw intensity

images captured by CMOS detector for 600-grit glass diffuser. (iv) ID-

iffNet reconstruction from raw images when trained using Faces-LFW

dataset [99]. (v) IDiffNet reconstruction when trained using ImageNet

dataset [100]. (vi) IDiffNet reconstruction when trained using MNIST

dataset [101]. Columns (vii-x) follow the same sequence as (iii-vi) but

in these sets the diffuser used is 220-grit. Rows (a-f) correspond to

the dataset from which the test image is drawn: (a) Faces-LFW, (b)

ImageNet, (c) Characters [102], (d) MNIST, (e) Faces-ATT [104, 105],

(f) CIFAR [103], respectively. 52

2-5 Quantitative analysis of IDiffNet trained using MAE as the loss func-

tion. Test errors for IDiffNet trained on Faces-LFW (blue), ImageNet

(red) and MNIST (green) on six datasets when the diffuser used is (a)

600-grit and (b) 220-grit. The training and testing error curves when

the diffuser used is (c) 600-grit and (d) 220-grit. 53

12

2-6 Qualitative analysis of IDiffNets trained using NPCC as the loss func-

tion. (i) Ground truth pixel value inputs to the SLM. (ii) Correspond-

ing intensity images calibrated by SLM response curve. (iii) Raw in-

tensity images captured by CMOS detector for 600-grit glass diffuser.

(iv) IDiffNet reconstruction from raw images when trained using Faces-

LFW dataset [99]. (v) IDiffNet reconstruction when trained using Im-

ageNet dataset [100]. (vi) IDiffNet reconstruction when trained using

MNIST dataset [101]. Columns (vii-x) follow the same sequence as (iii-

vi) but in these sets the diffuser used is 220-grit. Rows (a-f) correspond

to the dataset from which the test image is drawn: (a) Faces-LFW, (b)

ImageNet, (c) Characters [102], (d) MNIST, (e) Faces-ATT [104, 105],

(f) CIFAR [103], respectively. 54

2-7 Quantitative analysis of our trained deep neural networks for using

NPCC as the loss function. Test errors for the IDiffNets trained on

Faces-LFW (blue), ImageNet (red) and MNIST (green) on six datasets

when the diffuser used is (a) 600-grit and (b) 220-grit. The training

and testing error curves when the diffuser used is (c) 600-grit and (d)

220-grit. 56

2-8 Resolution test patterns. Left: Dot pattern; Right: Fringe pattern. . . 58

2-9 Experimental resolution test result for IDiffNet trained on MNIST us-

ing MAE as loss function. The diffuser used is 600-grit. (a) Recon-

structed dot pattern when 𝐷 = 3 super-pixels. (b) 1D cross-section

plot along the line indicated by red arrows in (a). (c) Reconstructed

fringe pattern when 𝐷 = 3 super-pixels. (d) Reconstructed dot pat-

tern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along the line

indicated by red arrows in (d). (f) Reconstructed fringe pattern when

𝐷 = 4 super-pixels. 59

13

2-10 Experimental resolution test result for IDiffNet trained on ImageNet

using MAE as loss function. The diffuser used is 600-grit. (a) Recon-

structed dot pattern when 𝐷 = 3 super-pixels. (b) 1D cross-section

plot along the line indicated by red arrows in (a). (c) Reconstructed

fringe pattern when 𝐷 = 3 super-pixels. (d) Reconstructed dot pat-

tern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along the line

indicated by red arrows in (d). (f) Reconstructed fringe pattern when

𝐷 = 4 super-pixels. 60

2-11 Experimental resolution test result for IDiffNet trained on MNIST us-

ing NPCC as loss function. The diffuser used is 600-grit. (a) Recon-

structed dot pattern when 𝐷 = 3 super-pixels. (b) 1D cross-section

plot along the line indicated by red arrows in (a). (c) Reconstructed

fringe pattern when 𝐷 = 3 super-pixels. (d) Reconstructed dot pat-

tern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along the line

indicated by red arrows in (d). (f) Reconstructed fringe pattern when

𝐷 = 4 super-pixels. 61

2-12 Experimental resolution test result for IDiffNet trained on ImageNet

using NPCC as loss function. The diffuser used is 600-grit. (a) Recon-

structed dot pattern when 𝐷 = 3 super-pixels. (b) 1D cross-section

plot along the line indicated by red arrows in (a). (c) Reconstructed

fringe pattern when 𝐷 = 3 super-pixels. (d) Reconstructed dot pat-

tern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along the line

indicated by red arrows in (d). (f) Reconstructed fringe pattern when

𝐷 = 4 super-pixels. 62

14

2-13 Experimental resolution test result for IDiffNet trained on MNIST us-

ing NPCC as loss function. The diffuser used is 220-grit. (a) Resolution

test pattern when 𝐷 = 16 super-pixels. (b) Reconstructed test pat-

tern when 𝐷 = 16 super-pixels. (c) 1D cross-section plot along the

line indicated by red arrows in (b). (d) Resolution test pattern when

𝐷 = 17 super-pixels. (e) Reconstructed test pattern when 𝐷 = 17

super-pixels. (f) 1D cross-section plot along the line indicated by red

arrows in (e). 63

2-14 Simulated shift invariance test. (a) Correlations in the speckle patterns

𝐶𝑠 calculated on MNIST database. (b) Correlations in the reconstruc-

tions 𝐶𝑟 calculated on MNIST database. In the 600-grit case, the ID-

iffNet is trained on ImageNet using MAE loss function; in the 220-grit

case, the IDiffNet is trained on MNIST using NPCC loss function. . . 64

2-15 Comparison between IDiffNets and a denoising neural network. (i)

Ground truth intensity images calibrated by SLM response curve. (ii)

Speckle images that we captured using the 600-grit diffuser (after sub-

tracting the reference pattern). (iii) Noisy images generated by adding

Poisson noise to the ground truth. (iv) Reconstructions of the denoising

neural network when inputing the noisy image in (iii). (v) Reconstruc-

tions of the denoising neural network when inputing the speckle image

in (ii). (vi) IDiffNet reconstructions when inputing the noisy image the

speckle image in (ii). [The images shown in column vi are the same

as those in the column v of Fig .2-4, duplicated here for the readers’

convenience]. Rows (a-c) correspond to the dataset from which the test

image is drawn: (a) Characters[102], (b) CIFAR [103], (c) Faces-LFW

[99], respectively. 66

15

2-16 Maximally-activated patterns (MAPs) for different DNNs. (a) 128 ×

128 inputs that maximally activate the filters in the convolutional layer

at depth 5. (b) 128 × 128 inputs that maximally activate the filters in

the convolutional layer at depth 13. [There are actually more than 16

filters at each convolutional layer, but we only show the 16 filters have

the highest activations here.] . 67

3-1 Experimental arrangement. SF: spatial filter; CL: collimating lens; M:

mirror; POL: linear polarizer; BS: beam splitter; SLM: spatial light

modulator. 72

3-2 Neural network training. Rows (a) and (b) denote the networks trained

on Faces-LFW and ImageNet dataset, respectively. (i) randomly se-

lected example drawn from the database; (ii) calibrated phase image of

the drawn sample; (iii) diffraction pattern generated on the CMOS by

the same sample; (iv) DNN output before training (i.e. with randomly

initialized weights); (v) DNN output after training. 74

3-3 Detailed schematic of PhENN architecture, indicating the number of

layers, nodes in each layer, etc. 74

3-4 Quantitative analysis of our trained PhENNs for three object-to-sensor

distances (a) 𝑧1, (b) 𝑧2, and (c) 𝑧3 for the PhENNs trained on Faces-

LFW (blue) and ImageNet (red) on 7 datasets. (d) The training and

testing error curves for network trained on ImageNet at distance 𝑧3

over 20 epochs. 76

16

3-5 Qualitative analysis of our trained PhENNs for combinations of object-

to-sensor distances 𝑧 and training datasets. (i) Ground truth pixel

value inputs to the SLM. (ii) Corresponding phase imaged calibrated

by SLM response curve. (iii) Raw intensity images captured by CMOS

detector at distance 𝑧1. (iv) PhENN reconstruction from raw images

when trained using Faces-LFW dataset. (v) PhENN reconstruction

when trained used ImageNet dataset. Columns (vi-viii) and (ix-xi)

follow the same sequence as (iii-v) but in these sets the CMOS is placed

at a distance of 𝑧2 and 𝑧3, respectively. Rows (a-f) correspond to

the dataset from which the test image is drawn: (a) Faces-LFW, (b)

ImageNet, (c) Characters, (d) MNIST Digits, (e) Faces-ATT, or (f)

CIFAR, respectively. 77

3-6 Quantitative analysis of the sensitivity of the trained PhENN to the

object-to-sensor distance. The network was trained on (a) Faces-LFW

database and (b) ImageNet and tested on disjoint Faces-LFW and

ImageNet sets, respectively. The nominal depths of field for the three

corresponding training distances 𝑧1, 𝑧2, 𝑧3, respectively, are: (DOF)1 =

1.18 ± 0.1mm, (DOF)2 = 3.82 ± 0.2mm, and (DOF)3 = 7.97 ± 0.3mm. 78

3-7 Quantitative analysis of the sensitivity of the trained PhENN to lat-

erally shifted images on the SLM. The network was trained on (a)

Faces-LFW database, (b) ImageNet and tested on disjoint Faces-LFW

and ImageNet sets, respectively. 78

3-8 Quantitative analysis of the sensitivity of the trained PhENN to rota-

tion of images on the SLM. The baseline distance on which the network

was trained is (a) 𝑧1, (b) 𝑧2 and (c) 𝑧3, respectively. 79

3-9 Qualitative analysis of the sensitivity of the trained PhENN to the

object-to-sensor distance. The baseline distance on which the network

was trained is 𝑧1. 79

17

3-10 Qualitative analysis of the sensitivity of the trained PhENN to lat-

eral shifts of images on the SLM. The baseline distance on which the

network was trained is 𝑧1. 80

3-11 Qualitative analysis of the sensitivity of the trained PhENN to rotation

of images in steps of 90. The baseline distance on which the network

was trained is 𝑧1. 80

3-12 Failure cases on PhENNs trained on Faces-LFW (row 𝑎) and Ima-

geNet (row 𝑏) datasets. (i) Ground truth input, (ii) calibrated phase

input to SLM, (iii) raw image on camera (iv) reconstruction by PhENN

trained on images at distance 𝑧1 between SLM and camera and tested

on images at distance 107.5 cm, (v) raw image on camera and (vi)

reconstruction by network trained on images at distance 𝑧3 between

SLM and camera and tested on images at distance 27.5 cm. 81

3-13 (1) 16 × 16 inputs that maximally activate the last set of 16 convolu-

tional filters in layer 1 of our PhENN trained on ImageNet at distance

of 𝑧1, a deblurring network, and an ImageNet classification network.

The deblurring network was trained on images undergoing motion blur

in a random angle within the range [0,180] degrees and a random blur

length in the range [10,100] pixels. The image is downsampled by a

factor of 2 in this layer. (2) 32×32 inputs that maximally activate the

last set of 16 randomly chosen convolutional filters in layer 3 of: our

PhENN, the same deblurring network, and the ImageNet classification

network. The raw image is downsampled by a factor of 8 in this layer. 82

4-1 Phase Extraction Neural Network (PhENN) architecture. 84

4-2 Calibration process. (a) Cumulative distribution function (CDF) of

the ground truth. (b) Cumulative distribution function (CDF) of the

PhENN output. (c) Linear curve fitting. 86

18

4-3 Qualitative comparison of reconstructions using different training loss

functions. (a) Ground truth phase objects. (b) Raw intensity measure-

ments. (c) Reconstructions when PhENN is trained with MAE. (d)

Reconstructions when PhENN is trained with SSIM. (e) Reconstruc-

tions when PhENN is trained with NPCC. Columns (i-vi) correspond

to the dataset from which the test image is drawn: (i) Faces-LFW, (ii)

ImageNet, (iii) Characters, (iv) Faces-ATT, (v) CIFAR, or (vi) MNIST

Digits, respectively. 88

4-4 Qualitative comparison of reconstructions with and without skip con-

nections. (a) Ground truth phase objects. (b) Raw intensity measure-

ments. (c) Reconstructions with no skip connections in PhENN. (d)

Reconstructions with skip connections present in PhENN. Columns (i-

iv) correspond to the dataset from which the test image is drawn: (i)

Faces-LFW, (ii) ImageNet, (iii) Faces-ATT, or (iv) CIFAR, respectively. 89

4-5 Quantitative comparison of reconstructions with and without skip con-

nections using 100 Faces-LFW test images. 89

4-6 Quantitative analysis of the influence of the depth using 100 Faces-

LFW test images. 90

4-7 Quantitative analysis of the influence of the waist size using 100 Faces-

LFW test images. 91

5-1 Optical configuration. SF: spatial filter; CL: collimating lens; P: linear

polarizer; A: analyzer; SLM: spatial light modulator; L1 and L2: plano-

convex lenses; F: focal plane of L2. 95

5-2 Phase extraction neural network (PhENN) architecture. 96

19

5-3 Reconstruction results of PhENN trained with ImageNet. (a) Ground

truth for the phase objects. (b) Diffraction patterns captured by the

CMOS (after background subtraction and normalization). (c) PhENN

output. (d) PhENN reconstruction after the calibration shown in Sec-

tion 4.3.1. Columns (i-vi) correspond to the dataset from which the test

image is drawn: (i) Faces-LFW [99], (ii) ImageNet [100], (iii) Charac-

ters, (iv) MNIST Digits [101], (v) Faces-ATT [104, 105], or (vi) CIFAR

[103], respectively. 97

5-4 Resolution test for PhENN trained with ImageNet. (a) Dot pattern

for resolution test. (b) PhENN reconstructions for dot pattern with

𝐷 = 3 pixels. (c) PhENN reconstructions for dot pattern with 𝐷 = 5

pixels. (d) PhENN reconstructions for dot pattern with 𝐷 = 6 pixels.

(e) 1D cross-sections along the lines indicated by red arrows in (b)-(d). 98

5-5 Spectral analysis of the ImageNet database. (a& b) 2D normalized

power spectral density (PSD) of the ImageNet database in linear and

logarithmic scale. (c& d) 1D cross-sections along the spatial frequency

𝑢 of (a& b), respectively. 100

5-6 Spectral pre-modulation. (a) Original image [100]. (b) Modulated im-

age. (c) Fourier spectrum of the original image. (d) Fourier spectrum

of the modulated image. 101

5-7 Resolution test for PhENN trained with examples from the ImageNet

database with spectral pre-modulation according to Eq. (5.3). (a) Dot

pattern for resolution test. (b) PhENN reconstructions for dot pattern

with 𝐷 = 2 pixels. (c) PhENN reconstructions for dot pattern with

𝐷 = 3 pixels. (d) PhENN reconstructions for dot pattern with 𝐷 = 6

pixels. (e) 1D cross-sections along the lines indicated by red arrows in

(b)-(d). 102

20

5-8 Resolution enhancement demonstration. (a) Ground truth for a phase

object [100]. (b) Diffraction pattern captured by the CMOS (after

background subtraction and normalization). (c) Phase reconstruction

by PhENN trained with ImageNet examples. (d) Phase reconstruction

by PhENN trained with ImageNet examples that were spectrally pre-

modulated according to Eq. (5.3). 103

5-9 Spectral post-modulation. (a) Output of PhENN trained with Ima-

geNet. The same as Fig. 5-8 (c). (b) Modulated output. 104

6-1 Proposed LS-DNN. 107

6-2 Reconstruction results for QPR. 109

6-3 Resolution test results. (a) Dot pattern with spacing 𝐷 = 4 pixels,

(b) DNN-L reconstruction, (c) DNN-S reconstruction, (d) 1D cross-

sections along the line indicated by red arrows in (b) and (c). 110

6-4 Comparison with DNN-L-3 for QPR. 110

6-5 Fourier spectra of the reconstructions in QPR (logarithmic scale). . . 111

6-6 1D cross-sections of the reconstructions’ power spectral density (PSD)

on 100 ImageNet test images. 111

7-1 Optical configuration. SF: spatial filter; CL: collimating lens; P: po-

larizer; A: analyzer; 𝐿1,𝐿2: plano-convex lenses; F: focal plane of 𝐿2. . 115

7-2 Validation results by LS-DNN enhanced PhENN. (a) Ground truth for

the phase objects. (b) Diffraction patterns captured by the CMOS

(after normalization). (c) Reconstructions. Columns (i-vi) correspond

to the dataset from which the validation image is drawn: (i) Faces-

LFW [99], (ii) ImageNet [100], (iii) Characters, (iv) MNIST Digits

[101], (v) Faces-ATT [104, 105], or (vi) CIFAR [103], respectively. . . 117

7-3 Red blood cell (RBC) imaging results. Scale bar: 10𝜇m. (a) Intensity

measurement of the diffraction pattern. (b)Phase reconstruction by

LS-DNN enhanced PhENN. 118

21

7-4 1D cross-section of the reconstructed RBC sample. This profile is along

the line indicated by the red line in Fig. 7-3(b). 118

7-5 Weak object transfer function (WOTF) for lensless QPR (i.e. Fresnel

propagation is the free space). An example of nulls is indicated by the

purple circle. For this plot, the propagation distance 𝑧 = 240mm, the

wavelength 𝜆 = 633nm. 119

7-6 Learned WOTF by LS-DNN enhanced PhENN. This is the 1D cross-

section along the diagonal direction. 120

7-7 Simulated phase shift effect on a star-like phase target. 120

7-8 Fringe continuity analysis. Scale bar: 50𝜇m. (a) Intensity measure-

ment of the diffraction pattern when 𝛿𝑧 = 0. (b) Phase reconstruction

by LS-DNN enhanced PhENN when 𝛿𝑧 = 0. (c) Intensity measurement

of the diffraction pattern when 𝛿𝑧 = 0.6mm. (d) Phase reconstruction

by LS-DNN enhanced PhENN when 𝛿𝑧 = 0.6mm. 121

7-9 1D cross-section of the reconstructed phase target. This profile is along

the line indicated by the orange line in Fig. 7-8(b). 122

A-1 The optical setup for calibrating the phase and intensity modulation of

SLM. SF: spatial filter; CL: collimating lens; M1, M2: mirror; L1,L2:

lens; POL: linear polarizer; BS: beam splitter; SLM: spatial light mod-

ulator. 130

A-2 Experimentally calibrated intensity modulation curve with error bounds

in the grayscale range of [0,255] for the SLM. 131

A-3 Experimentally calibrated phase modulation curve with error bounds

in the grayscale range of [0,255] for the SLM. 132

22

A-4 Analysis of the influence of phase modulation in the formation of

speckle patterns for 600-grit diffuser. (a) Input image; (b) Simu-

lated speckle pattern for the complex object; (c) Autocorrelation of

the speckle in (b); (d) Simulated speckle pattern for the pure-intensity

object; (e) Autocorrelation of the speckle in (d); (f) Element-wise ra-

tios between the autocorrelations in (c) and (e). 133

A-5 Analysis of the influence of phase modulation in the formation of

speckle patterns for 220-grit diffuser. (a) Input image [99]; (b) Simu-

lated speckle pattern for the complex object; (c) Autocorrelation of the

speckle in (b); (d) Simulated speckle pattern for the pure-intensity ob-

ject; (e) Autocorrelation of the speckle in (d); (f) Element-wise ratios

between the autocorrelations in (c) and (e). 134

A-6 Quantitative analysis of the influence of phase modulation in the for-

mation of speckle patterns. (a) 600-grit diffuser; (b) 220-grit diffuser. 134

A-7 Experimentally calibrated intensity modulation curve with error bounds

in the grayscale range of [0,255] for the SLM. 135

A-8 Experimentally calibrated phase modulation curve with error bounds

in the grayscale range of [0,255] for the SLM. 135

A-9 Phase modulation curve along with three linear segments fitted to the

curve. 136

A-10 Phase modulation curve along one linear segment fitted to the curve. 136

A-11 The optical setup for calibrating the (a) intensity and (b) phase mod-

ulation of SLM. SF: spatial filter; CL: collimating lens; P: linear po-

larizer; A: linear polarization analyzer; SLM: spatial light modulator;

DS: double slits; PD: photon diode sensor. 137

A-12 Experimentally calibrated (a) intensity modulation and (b) phase mod-

ulation curve with error bounds in the grayscale range of [0,255] for

the SLM. 137

A-13 Evolution of 1D profile of the fringes as 𝑉 increases from 0 to 255. . . 138

23

B-1 Detailed architectures of the different blocks in our IDiffNet 140

B-2 Detailed architectures of DRBs, URBs and RBs 142

24

List of Tables

1.1 Comparisons between traditional CI algorithms and DL techniques. . 39

2.1 Summary of reconstruction results in different cases. [
√

: Visually rec-

ognizable; ∙: Salient feature recognizable; ×: Visually unrecognizable.]

. 57

6.1 Quantitative evaluations of DNN-L and DNN-S performance in QPR. 109

25

26

Chapter 1

Introduction

1.1 Computational imaging

Computational imaging (CI) is a class of imaging systems that delivers estimate of

an unknown object, based on the physical measurement and prior knowledge about

the class of objects being imaged [1, 2], as shown in Fig.1-1.

Figure 1-1: General computational imaging (CI) system.

Generally, It consists two parts: a physical measurement and the corresponding

inverse algorithm. In the physical measurement part, the light emitted from the

illumination source is shaped by the illumination optics according to the operator 𝐻𝑖

27

before reaching the object 𝑓 . The radiation from the object is then shaped by the

collection optics according to the operator 𝐻𝑐 and forms a raw intensity image 𝑔 on

the digital camera. Here, we refer 𝑔 as the measurement. After that, 𝑔 is feed into

the inverse algorithm, which takes into account the operators 𝐻𝑖, 𝐻𝑐 together with

the prior knowledge Φ about the class of objects being imaged, to obtain the object

estimate 𝑓 . More detailed descriptions about the physical measurements and the

inverse algorithms in CI can be found below in Section 1.1.1 and 1.1.2, respectively.

The motivation of performing CI rather than using the raw intensity measure-

ment directly is that information may be hidden in the latter case due to the limi-

tation of hardware, making the raw measurement uninterpretable. Therefore, post-

computation is required. Actually, in CI, we no longer have the requirement that the

raw image itself should be readily interpretable (e.g. satisfy some metrics of confor-

mity and fidelity with respect to the object). As shown in Chapter 2, in the case of

imaging through a strong glass diffuser, the raw measurement is a speckle pattern,

in which no salient feature of the object can be observed. This aspect of CI largely

reduces the complexity of the hardware, making the physical setup more compact

and cost-effective.

In practice, due to the ill-posedness of the forward operator, the reconstruction

from a raw image will become non-unique and very sensitive to noise. In these

conditions, CI would have to rely on the prior to do the inversion. The analytical

formulation of the prior is called the regularizer, which mathematically represents the

patterns that commonly exist in the class of objects. These priors will help to restrict

the space of possible solutions to the inverse problem by excluding the solutions that

do not match object attributes known beforehand, thus ameliorating non-uniqueness.

1.1.1 Physical measurements

Referring to Fig. 1-1, 𝑓 denotes the true representation of the object that the imaging

system’s user want to recover. For example, in the case of imaging through scattering

media (see Chapter 2), 𝑓 is the light reflectance of the object; while in the case

of quantitative phase retrieval (see Chapter 3), 𝑓 is the distribution of the phase

28

retardation caused by the object.

The optical field immediately after the object can be represented as 𝐻𝑖𝑓 , where

𝐻𝑖 is the illumination operator. A number of ingenious strategies have been devised

to design 𝐻𝑖 that improve the imaging problem’s condition, most famously by using

nonlinear optics [3, 4] or stimulated emission [5]. Restricting oneself to linear optics,

structured and coded illumination [6, 7, 8, 9, 10, 11, 12, 13] are effective strategies

which modulate object information onto better-behaved spatial frequencies. Another

interesting instance is ghost imaging [14, 15] , where the object is illuminated rapidly

by a sequence of speckle patterns.

The quantity 𝐻𝑖𝑓 passes through the collection optics and forms a raw intensity

image 𝑔 on the digital camera, which can be expressed as: 𝑔 = 𝐻𝑐𝐻𝑖𝑓 , with 𝐻𝑐

denotes the collection operator. Usually, 𝐻𝑐 is also specifically designed to achieve

the desirable performance. Notable examples includes confocal microscopy [16, 17],

transport of intensity equation (TIE) method [18, 19], lensless imaging [20, 21] and

etc.

For brevity, we denote 𝐻 = 𝐻𝑖𝐻𝑐 as the forward operator of the entire physical

measurement, then the raw intensity image can be expressed as:

𝑔 = 𝐻𝑓. (1.1)

Nevertheless, Eq.1.1 is noiseless, which is impractical. In realistic scenarios, differ-

ent sources of noise are, more or less, exist due to multiple causes: thermal agitation

of the electrons inside the sensor, environmental disturbances, the discrete nature of

electric charge, etc. Two typical types of noise are additive white Gaussian noise

(AWGN) and Poisson noise, whose statistical models are shown as follows:

AWGN: 𝑔 = 𝐻𝑓 + 𝑛; (1.2)

Poisson: 𝑔 = 𝒫 {𝐻𝑓} . (1.3)

Here, AWGN is denoted as 𝑛; and 𝒫 is a Poisson random variable generator with

29

the expected value equal to its argument.

1.1.2 Inverse algorithms

Given the explicit formulations of the forward operator 𝐻 and the regularizer Φ, the

reconstruction in CI may be obtained by minimizing the Tikhonov functional [22, 23]:

𝑓 =argmin
𝑓

{︁
||𝐻𝑓 − 𝑔||22 + 𝛼Φ(𝑓)

}︁
. (1.4)

The first term is known as the fitness term and it is minimized when the result

of applying the forward operator on the estimate matches the physical measurement.

Nevertheless, minimizing the fitness term only is not enough. Due to the ill-posedness

of the forward operator 𝐻, the noise in the measurement will be amplified, generating

artifacts in the reconstruction. The situation becomes even worse when 𝐻 is singular

(which is always the case in practice), since then the estimate that will match the

fitness term become non-unique, i.e. an infinite number of solutions 𝑓 would satisfy

𝐻𝑓 = 𝑔. Therefore, the regularization term Φ(𝑓) becomes really important here.

By minimizing the weighted sum of the fitness term and the regularizer, we are

actually introducing a competition between the two terms, which effectively forces

the estimate landing on the position that satisfies both the physical measurement and

the prior knowledge of the object. The regularizing coefficient 𝛼 controls the relative

contribution of the two terms in the competition and is always chosen empirically,

based on our relative belief in the measurement vs. prior knowledge.

The regularizer Φ has to be chosen in the way such that Φ(𝑓) has a small value

when 𝑓 matches the prior knowledge of the class of objects. The very first regularizer,

𝐿2 norm, was proposed by Tikhonov [22, 23]:

Φ(𝑓) = ||𝑓 ||22 . (1.5)

The motivation of using 𝐿2 norm as the regularizer is to reduce the energy of the

reconstructed signal so as to mitigate the noise amplification effect caused by the

30

ill-posedness of 𝐻.

When 𝐻 is a linear operator, the solution to Eq.1.4 with the 𝐿2 regularizer can

be readily obtained as:

𝑓 = (𝐻 𝑡𝐻 + 𝛼𝐼)−1𝐻 𝑡𝑔, (1.6)

where 𝐻 𝑡 is the transpose of 𝐻 and 𝐼 denotes the identity matrix.

Notably, Wiener filter [24, 25], which is derived from the matched filtering principle

under the assumptions of additive white Gaussian noise and white Gaussian and

uncorrelated to noise statistics for the signal, is actually a special case of Eq.1.6 with

𝛼 = 1/SNR, where SNR denotes the signal to noise ratio.

In the last two decades, compressive sensing [26, 27, 28, 29, 30], which utilizes reg-

ularizers that prompting sparsity, has becoming an increasingly promising technique

to solve the inverse problems in CI. The main idea of compressive sensing is that

most of the signals are compressible, i.e. there exists a non-singular transformation

𝑆 that can transform the signal to the domain where the representation of the signal

is sparse. Mathematically, we have,

𝑠 = 𝑆𝑓, (1.7)

and ||𝑠||0 is small.

Then, Eq.1.4 can be rewritten as,

𝑠 =argmin
𝑠

{︁ ⃒⃒⃒⃒
𝐻𝑆−1𝑠− 𝑔

⃒⃒⃒⃒ 2
2

+ 𝛼 ||𝑠||0
}︁
. (1.8)

Here, 𝑆−1 is the inverse of the sparse transformation 𝑆.

However, the above optimization problem (Eq.1.8) is not easy to be solved directly

since the 𝐿0 norm is not amenable to optimizers. Fortunately, it has been discovered

later that using 𝐿1 norm has the equivalent effect [31, 32]. In this case, the solution

to the inverse problem becomes,

𝑠 =argmin
𝑠

{︁ ⃒⃒⃒⃒
𝐻𝑆−1𝑠− 𝑔

⃒⃒⃒⃒ 2
2

+ 𝛼 ||𝑠||1
}︁
, (1.9)

31

which can be solved by several existing numeral algorithms such as Lasso [33], ISTA

[34, 35, 36], TwIST [37], FISTA [38] and Adam [39] and etc. Then, the object estimate

can be readily obtained as,

𝑓 = 𝑆−1𝑠. (1.10)

The choice of 𝑆 is obviously crucial to the performance of compressive sensing.

Popular candidates includes wavelet transforms [40, 28, 41], non-linear diffusion op-

erators [42, 43, 44, 45] and sparse dictionaries [46, 47, 48, 49].

1.2 Deep learning

Machine learning is a technique that enables computational systems to improve by

learning the mapping between the desired output and the features (representation)

of the input from experience and data. Generally, machine learning approaches can

be divided into three groups [50]: classic machine learning (CML), representation

learning (RL) and deep learning (DL), depending on the way how the features of

the input is obtained. In CML, the features are hand-designed [51]; in RL, features

are learned from data through a shallow autoencoder [52]; and in DL, features are

learned from data through a deep, multi-layered architecture [53]. Compared with

CML and RL, the features learned in DL are simpler and more high-level (abstract),

which makes the mapping from the features to the output easier to learn. Apart from

providing the right representation for the data, another strength of DL is that the

multi-layered architecture also offer greater power in learning the mapping since the

later layers can refer back to the outputs of earlier layers.

The specific architecture used in DL is the neural network, which is a multi-layered

computational geometry. Generally speaking, a neural network contains at least three

layers: one input layer, one output layer and at least one hidden layer. Except for the

input layer, the units (neurons) in every other layers are connected to the units in the

previous layers according to some weights. Then, the input value to a specific neuron

𝑖 is actually the weighted sum of the output values of all the neurons in the previous

layers that 𝑖 is connecting to. These architectures are called neural networks because

32

they are loosely inspired by neuroscience and they can be represented by composing

together several different functions, e.g. each layer may be a function.

Now, I want to introduce two typical DL architectures: fully-connected neural

network (FCNN) and convolutional neural network (CNN).

1.2.1 Fully-connected neural networks

Fully-connected neural network (FCNN), also known as multi-layer perceptron (MLP)

[54, 55], is the most common architecture used in DL. Fig. 1-2 shows the structure

of a three-layer FCNN (one hidden layer). Here, "fully-connected" means that every

neuron in the hidden layers is connected to all the neurons in the preceding layer and

the succeeding layer. In FCNN, the input is mapped to the output in a feed-forward

fashion. As shown in Fig. 1-2, for an individual neuron, its input (activation) 𝑎 is the

weighted sum of the output values of all the in the previous layer and can expressed

as:

𝑎 =
𝑛∑︁

𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏. (1.11)

Here, 𝑛 is the number of neurons in the previous layer, 𝑥𝑖 is the output of the 𝑖th

neuron, 𝑤𝑖 is the weight and 𝑏 denotes the bias term.

Figure 1-2: Fully-connected neural networks. [This figure is obtained from the slides
of the Advances in Computer Vision (6.869) course at MIT taught by Bill Freeman
and Antonio Torralba.]

33

After receiving the activation 𝑎, the output of the neuron 𝑦 is given by,

𝑦 = 𝑓(𝑎) = 𝑓

(︃
𝑛∑︁

𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏

)︃
, (1.12)

where 𝑓(·) is a point-wise non-linear activation function.

Possible choices of the non-linear activation function 𝑓(·) include sigmoid [56],

tanh [57], rectified linear unit (ReLU) [58] and leaky ReLU [59]. These functions are

plotted in Fig. 1-3 and their respective formulations are:

Sigmoid: 𝑓(𝑎) =
1

1 + 𝑒−𝑎
; (1.13)

Tanh: 𝑓(𝑎) =
𝑒𝑎 − 𝑒−𝑎

𝑒𝑎 + 𝑒−𝑎
; (1.14)

ReLU: 𝑓(𝑎) = max(0, 𝑎); (1.15)

Leaky ReLU: 𝑓(𝑎) =

⎧⎪⎨⎪⎩𝑎, 𝑎 > 0

𝛼𝑎, 𝑎 ≤ 0

. (1.16)

Figure 1-3: Different non-linear activation functions.

34

In Eq.1.16, the coefficient 𝛼 is usually very small (e.g. 0.02 in Fig. 1-3). In some

cases, its value can also be learned during the training [60]. Among these functions,

ReLU and leaky ReLU are the most widely used ones nowadays since they do not have

the problems of stagnating derivatives as sigmoid and they lead to faster convergence

as compared with tanh [53].

1.2.2 Convolutional neural networks

Convolutional neural networks [61], evolved from the idea of Neocognitron [62], are a

specialized kind of neural network that have been tremendously successful in practical

applications dealing with time-series data and image data. As shown in Fig. 1-4, in

CNN, each neuron is only connected to several nearby neurons in the previous layer

and each neuron shares the same set of connecting weights. Mathematically, the

input to an individual neuron 𝑖, which is connected to 2𝑁 + 1 nearby neurons in the

previous layer, can be expressed as,

𝑎𝑖 =
𝑁∑︁

𝑛=−𝑁

𝑤𝑛𝑥𝑖−𝑛 + 𝑏, (1.17)

where 𝑥𝑖 is the output of the 𝑖th neuron in the previous layer and 𝑤𝑖 is the set of

trainable weights. Here, for simplicity, we assume the input to be 1-D. If the input is

2-D, then the input will be the weighted sum of the outputs of (2𝑀 + 1) × (2𝑁 + 1)

nearby neurons in the previous layer.

Figure 1-4: Convolutional neural networks.

35

Eq. 1.17 is actually a convolution operation (with a bias), and that is why this

architecture is named as a "convolutional" neural network. Since performing convo-

lution in the spatial domain is equivalent to filtering in the spatial frequency domain,

the set of weights 𝑤𝑖 is also called a filter. In Fig. 1-4, we plot the simplest case

where only one filter is applied. In practice, however, multiple filters are used at

each convolutional layer and the final output of a convolutional layer is obtained by

stacking the output of each filter along the "channel" dimension. At the next layer,

each channel of the input is summed up by some learnable weights while doing the

convolution defined as Eq. 1.17.

The motivation of doing convolution in neural networks is three folds. First,

dependencies are usually local, i.e. only several nearby neurons will contribute; sec-

ond, convolution preserves translational equivariance (known as shift invariance in

the optics community), which always exists in practice; third, implementing sparse

connections and using the same set of weights reduce the complexity of the neural

network, which is an effective way to prevent overfitting.

Apart from the convolution operation and the non-linear activation functions (usu-

ally ReLU), there are two other specialized operations in CNN: pooling and batch

normalization. Pooling is the operation that reduces the lateral dimension of the in-

put. The idea is to increase the receptive fields and also introduce invariance to small

transformations [63]. Two common choices for pooling function are max pooling and

average pooling, which are defined as (assume the downsampling rate to be 2),

max pooling: 𝑦𝑘 = max (𝑥2𝑘−1, 𝑥2𝑘) ; (1.18)

average pooling: 𝑦𝑘 =
𝑥2𝑘−1 + 𝑥2𝑘

2
. (1.19)

where 𝑥𝑘 and 𝑦𝑘 denotes the value of the 𝑘th neuron in the input and output of the

pooling layer, respectively.

Batch normalization is a layer in the neural network that does normalization across

data, which can accelerate the training process by reducing internal covariate shift

[64]. The procedure of batch normalization is shown in Fig. 1-5.

36

Figure 1-5: Batch normalization. [This figure is adopted from [64].]

1.2.3 Training neural networks for computational imaging

The optimal values of the weights in the neural network is learned from data through

an optimization routine. This process is denoted as the "training" of a neural net-

work. Specifically, given a set of data, also known as training examples, the functional

need to be optimized is a measure of the distance between the desired output and

the actual output of the neural network. We refer this measure as the training loss

functions. Some popular training loss functions that are being used nowadays include

mean squared error (MSE), mean absolute error (MAE), cross entropy, etc. Hence,

during the training, the weights in the neural network are tuned so as to make the

network output match the desired output in the sense defined by the loss function.

Similar to the Tikhonov functional shown in Eq. 1.4, regularizers such as 𝐿2 norm of

the weights [65] are usually added to the optimization functional during the training

to prevent overfitting. The optimization is numerically solved by gradient descent

based algorithms [66], where the gradients are computed via a procedure called back-

propagation [67].

Since the neural network training process in DL shares a lot in common with

37

solving the optimization problem in CI, it becomes natural to apply DL techniques

to CI. The principle is shown in Fig. 1-6, where the raw intensity measurement 𝑔 is

fed into a trained neural network to generate the object estimate 𝑓 . Given a specific

CI scenario, the procedures of training such a neural network can be described in

the following three steps: (1) Training data collection. We obtain a database of

known objects and their corresponding raw intensity measurements through numerical

simulations or physical experiments. (2) Network architecture selection. We decide

the appropriate neural network architecture to be used (e.g. connectivity, pooling

strategy, depth, etc). These hyper-parameters can be determined empirically or with

the help of the validation data. While using the validation dataset, we divide the

entire training dataset into two subsets: one set is used for training the network and

the other set (named as the validation data) is used to evaluate the performance

of the trained network, thus determining the optimal architecture. (3) Training the

network using the collected training examples and the selected network architecture.

Figure 1-6: Principle of applying deep learning (DL) to computation imaging (CI).

Compared with those traditional CI inverse algorithms described in Section 1.1.2,

the advantage of using DL techniques is three folds: (1) No explicit formulation of the

forward operator is required. There are several scenarios where the image formation

process is not entirely known, e.g. imaging through a glass diffuser (See Chapter 2)

or some proprietary elements such as microscope objectives are used (See Chapter

7). In addition, the misalignment and random noise in practice will also make the

theoretical forward model inaccurate. (2) Prior knowledge about the class of the

objects is not required. It is not always possible to explicitly express the prior as

a regularizer. (3) Fast inference speed. Traditional inverse algorithms solve each

measurement iteratively. In other words, every new measurement has to go through

38

the entire iterative process, which is very time consuming in practice. In contrast,

once a neural network is trained, all the weights are fixed. Each new measurement

only have to go through the network once, which is much faster. This aspect can be

very beneficial in real-time applications. Nevertheless, DL techniques also have their

own drawback. They usually require a large training dataset, which can sometimes

be very difficult to obtain. The comparisons between traditional CI algorithms and

DL techniques are also shown in Table. 1.1.

Table 1.1: Comparisons between traditional CI algorithms and DL techniques.
Traditional CI algorithms DL techniques

Knowledge about the
forward operator 𝐻 Required Not required

Knowledge about
the prior Φ

Required Not required

Inference speed Slow Fast
Big data Not required Required

1.3 Outline of the thesis

The structure of the thesis is as follows: in Chapter 2, DL techniques are applied

to solve one specific CI problem: imaging through scattering media. An imaging

through diffuser network (IDiffNet) is proposed and demonstrated to be effective

in reconstructing the unknown object hidden behind a glass diffuser. The effects of

scattering strength, object complexity (i.e., the object priors that the neural networks

must learn), and choice of the loss function for training are analyzed. The spatial

resolution as well as the degree of shift invariance for the IDiffNets trained in different

conditions are also tested.

In Chapter 3, DL techniques are applied to solve another typical CI problem:

quantitative phase retrieval. A Phase Extraction Neural Network (PhENN) is pro-

posed. We experimentally build and test a lensless imaging system where a phase

extraction neural network (PhENN) is trained to recover unknown phase objects given

their propagated intensity diffraction patterns. The robustness of PhENN to axial,

39

lateral and rotational shifts are also analyzed.

The performance of a trained neural network is influenced by two factors: network

architecture and training example quality. In Chapter 4, we first investigate the

influence of the network architecture, including the network depth, waist size, presence

of skip connections and choice of the training loss function.

The influence of training example quality is studied in Chapter 5. Specifically,

we investigate how the spatial frequency content of the training examples influence

the spatial resolution of the neural network. Based on this study, we propose a

spectral pre-modulation approach which is demonstrated to be effective in improving

the spatial resolution of PhENN.

Motivated by the spectral pre-modulation approach, Chapter 6 propose the Learn-

ing Synthesis by DNN (LS-DNN) method, which effectively manage and synthesize

different spectral bands so as to improve the visual qualities of recovered images in

CI problems.

Different from all the previous chapters, where the objects are generated using a

spatial light modulator (SLM), Chapter 7 shows that PhENN is able to image those

actual phase objects. Specifically, a red blood cell (RBC) sample, is reconstructed

through a microscope system, by using the optimal neural network architecture found

in Chapter 4 and the LS-DNN method described in Chapter 6. In addition, we will

also show a demonstration that PhENN has indeed learned the correct physical model,

rather than doing something trivial such as pattern matching.

Finally, Chapter 8 states conclusions and future work.

40

Chapter 2

Imaging through scattering media

using IDiffNet

2.1 Introduction

Imaging through random media [68, 69] remains one of the most useful as well as

challenging topics in computational optics. This is because scattering impedes in-

formation extraction from the wavefront in two distinct, albeit related ways. First,

light scattered at angles outside the system’s Numerical Aperture is lost; second, the

relative phases among spatial frequencies that pass are scrambled—convolved with

the diffuser’s own response. In most cases, the random medium is not known or it is

unaffordable to characterize it completely. Even if the random medium and, hence,

the convolution kernel are known entirely, deconvolution is highly ill-posed and prone

to noise-induced artifacts.

Therefore, the strategy to recover the information, to the degree possible, must

be two-pronged: first, to characterize the medium as well as possible so that at least

errors in the deconvolution due to incomplete knowledge of the medium’s response

may be mitigated; and, second, to exploit additional a priori knowledge about the

class of objects being imaged so that the inverse problem’s solution space is reduced

and spurious solutions are excluded. These two strategies are summarized by the

Tikhonov optimization functional [Eq.1.4].

41

Several approaches characterize the random medium efficiently. One method is to

measure the transmission matrix of the medium by interferometry or wavefront sens-

ing [70, 71, 72]. Alternatively, one may utilize the angular memory effect in speckle

correlation [73, 74, 75, 76, 77]. The angular memory principle states that rotating

the incident beam over small angles does not change the resulting speckle pattern but

only translates it over a small distance [78, 79]. In this case, computing the autocor-

relation of the output intensity and deconvolving it by the autocorrelation function of

the speckles, which is a sharply peaked function [80], results in the autocorrelation of

the input field. Then, the object is recovered from its own autocorrelation using the

Gerchberg-Saxton-Fienup (GSF) algorithm [81, 82] with additional prior constraints.

The regularizer Φ expresses prior knowledge by penalizing unacceptable objects

so the optimization is prohibited from landing onto them; alternatively, the priors

expressed by the regularizer can be thought of as helping to resolve non-uniqueness

due to the ill-posed nature of the forward operator. In the case of strong scattering,

it is common to say that information “is lost” because it is convolved into the high

spatial frequencies escaping the system aperture. (The opposite may also be possible:

a cleverly designed scattering medium may bring high-spatial frequency information

back into the aperture, by convolving it to low spatial frequencies [7, 83, 84]) However,

the prior may help to recover the missing information by enforcing properties such

as edge sharpness or, more generally, sparsity, positivity, etc. During the past two

decades, thanks to efforts by Grenander [85], Candés [27], and Brady [86], the use of

sparsity priors was popularized and proved to be effective in a number of contexts

including random media. For example, Liu et al successfully recovered the 3D posi-

tions of multiple LEDs embedded in turbid scattering media by taking phase-space

measurements and imposing the ℒ1 sparsity prior [87].

Instead of establishing 𝐻 and Φ independently and explicitly from measurements

and prior knowledge, an alternative approach is to learn both operators simultane-

ously through examples of objects imaged through the random medium. To our

knowledge, the first instance when this strategy was put forth was by Horisaki [88].

In that paper, a Support Vector Regression (SVR) learning architecture was used to

42

learn the scatterer and the prior of faces being imaged through. The approach was ef-

fective in that the SVR learned correctly to reconstruct face objects; it also elucidated

the generalization limitations of SVRs, which are shallow fully-connected two-layer

architectures: for example, when presented with non-face objects the SVR would still

respond with one of its learned faces as a reconstruction. A deeper fully-connected

architecture in the same learning scheme has been proposed recently [89].

In this chapter, we propose for the first time, to our knowledge, two innovations

in the use of machine learning for imaging through scatter: the first is the use of

the convolutional neural network (CNN) architecture [90] and the second the use of

Negative Pearson Correlation Coefficient (NPCC) as loss function. Different from

fully-connected network architectures, in the CNN each neuron is only connected to a

few nearby neurons in the previous layer, and the same set of weights is used for every

neuron. The fewer number of connections and weights reduces the complexity of the

CNN architecture and makes convolutional layers relatively cheap in terms of memory

needed. Moreover, overfitting is less of a problem, resulting in better generalization.

These two observations have further implications: first, due to the reduced mem-

ory requirement, we can tackle original objects of space-bandwidth product (SBP)

128 × 128, higher than previously reported [88, 89]. Second, the use of the convolu-

tional architecture is counter-intuitive because the scatterer may not be shift invari-

ant. Indeed, in Figure 2-2 we show that it is not. It may seem justified, therefore,

to worry whether the reduced memory and anti-overfitting benefits of CNN may be

outweighed. However, we found that the inverse estimate obtained by the CNN does

in fact learn to compensate for the scatterer’s shift variance, as shown in Figure 2-14.

To characterize IDiffNet response, we conducted training and testing with well-

calibrated diffusers of known grit size and well-calibrated intensity objects produced

by a spatial light modulator. We also examined a large set of databases, including

classes of objects with naturally embedded sparsity (e.g. handwritten characters or

digits). These experiments enabled us to precisely quantify when IDiffNet requires

strong sparsity constraints to become effective, as function of diffuser severity (the

smaller the grit size, the more ill-posed the inverse problem becomes.)

43

The adoption of NPCC instead of the more commonly used Mean Absolute Error

(MAE) as loss function for training IDiffNet was an additional enabling factor in

obtaining high-SBP image reconstructions through strong scatter. We compared the

performance of these two loss functions under different imaging conditions and with

different training databases determining the object priors that the networks learn and

showed that NPCC is preferable for cases of relatively sparse objects (e.g. characters)

and strong scatter. Lastly, we probed the interior of our trained IDiffNets through

the well-established test of Maximally-Activated Patterns (MAPs) [91] and compared

with standard denoising networks to eliminate the possibility that IDiffNet might be

acting trivially instead of having learnt anything about the diffuser and the objects’

priors.

2.2 Computational imaging system architecture

The optical configuration that we consider in this chapter is shown in Fig. 2-1. Light

from a He-Ne laser source (Thorlabs, HNL210L, 632.8nm) is transmitted through a

spatial filter, which consists of a microscope objective (Newport, M-60X, 0.85NA) and

a pinhole aperture (𝐷 = 5𝜇m). After being collimated by the lens (𝑓 = 150mm), the

light is reflected by a mirror and then passes through a linear polarizer, followed by

a beam splitter. A spatial light modulator (Holoeye, LC-R 720, reflective) is placed

normally incident to the transmitted light and acts as a pixel-wise intensity object.

The SLM pixel size is 20 × 20𝜇m2 and number of pixels is 1280 × 768, out of which

the central 512 × 512 portion only is used in the experiments. The SLM-modulated

light is then reflected by the beam splitter and passes through a linear polarization

analyzer before being scattered by a glass diffuser. A telescopic imaging system is

built after the glass diffuser to image the SLM onto a CMOS camera (Basler, A504k),

which has a pixel size of 12 × 12𝜇m2. In order to match the pixel size of the CMOS

with that of the SLM, we built the telescope using two lenses 𝐿1 and 𝐿2 of focal

lengths: 𝑓1 = 250𝑚𝑚 and 𝑓2 = 150𝑚𝑚. As a result, the telescope magnifies the

object by a factor of 0.6, which is consistent with the ratio between the pixel sizes of

44

the CMOS and SLM. The total number of pixels on the CMOS is 1280 × 1024, but

we only crop the central 512 × 512 square for processing; thus, the number of pixels

measured by the CMOS camera, as well as their size, match 1:1 the object pixels at

the SLM. Images recorded by the CMOS camera are then processed on an Intel i7

CPU. The neural network computations are performed on a GTX1080 graphics card

(NVIDIA).

The modulation performance of the SLM depends on the orientations of the polar-

izer and analyzer. Here, we implement the cross polarization arrangement to achieve

a high intensity modulation contrast. Specifically, we set the incident beam to be

linearly polarized along the horizontal direction and also set the linear polarization

analyzer to be oriented along the vertical direction. We experimentally calibrate the

correspondence between the 8-bit grayscale input images projected onto the SLM and

intensity modulation values of SLM (see Appendix Section A.1). We find that in this

arrangement, the intensity modulation of the SLM follows a monotonic relationship

with respect to assigned pixel value and a maximum intensity modulation ratio of

∼ 17 can be achieved. At the same time, the SLM also introduces phase modulation

which is correlated with the intensity modulation due to the optical anisotropy of the

liquid crystal molecules. The phase depth is ∼ 0.6𝜋. Fortunately, the influence of this

phase modulation is negligible in the formation of the speckle images that we cap-

tured in this system; detailed demonstration can be found in Appendix Section A.1.

Therefore, we are justified in treating this SLM as a pure-intensity object.

As shown in Fig. 2-1(b), the glass diffuser is inserted at a distance 𝑧𝑑 in front of

the lens L1. Here, we approximate the glass diffuser as a thin mask whose amplitude

transmittance is 𝑡(𝑥1, 𝑦1). In this case, a forward model can be derived to relate the

optical field at the detector plane 𝑔′(𝑥′, 𝑦′) to the optical field at the object plane

𝑓 ′(𝑥, 𝑦) (constant terms have been neglected) [92]:

𝑔′(𝑥′, 𝑦′) =

{︃
𝑒

−𝑖𝜋𝑓21
𝜆(𝑓1−𝑧𝑑)𝑓

2
2
(𝑥′2+𝑦′2)

·
∫︁ ∫︁

𝑑𝑥𝑑𝑦
[︁
𝑓 ′(𝑥, 𝑦)𝑒

𝑖𝜋
𝜆(𝑓1−𝑧𝑑)

(𝑥2+𝑦2)·

𝑇

(︂
𝑥+ 𝑓1𝑥

′/𝑓2
𝜆(𝑓1 − 𝑧𝑑)

,
𝑦 + 𝑓1𝑦

′/𝑓2
𝜆(𝑓1 − 𝑧𝑑)

)︂]︂}︂
*

[︃
𝐽1(

2𝜋𝑅
𝜆𝑓2

√︀
𝑥′2 + 𝑦′2)√︀

𝑥′2 + 𝑦′2

]︃ (2.1)

45

Figure 2-1: Optical configuration. (a) Experimental arrangement. SF: spatial filter;
CL: collimating lens; M: mirror; POL: linear polarizer; BS: beam splitter; SLM:
spatial light modulator. (b) Detail of the telescopic imaging system.

where 𝜆 is the light wavelength, 𝑅 the radius of the lens 𝐿2 and 𝐽1(·) denotes the

first-order Bessel function of the first kind. 𝑇 is the Fourier spectrum of the diffuser:

𝑇 (𝑢, 𝑣) =
∫︀ ∫︀

𝑑𝑥1𝑑𝑦1
[︀
𝑡(𝑥1, 𝑦1)𝑒

−𝑖2𝜋(𝑥1𝑢+𝑦1𝑣)
]︀
. Here, * denotes the convolution product

and the last term in the convolution accounts for the influence of the finite aperture

size of the lenses.

We model the diffuser transmittance 𝑡(𝑥1, 𝑦1) as a pure-phase random mask, i.e.

𝑡(𝑥1, 𝑦1) = exp
[︀
𝑖2𝜋Δ𝑛

𝜆
𝐷(𝑥1, 𝑦1)

]︀
, where 𝐷(𝑥1, 𝑦1) is the random height of the diffuser

surface and ∆𝑛 is the difference between the refractive indices of the diffuser and the

surrounding air (∆𝑛 ≈ 0.52 for glass diffusers). The random surface height 𝐷(𝑥1, 𝑦1)

can be modeled as [93]:

𝐷(𝑥, 𝑦) = 𝑊 (𝑥, 𝑦) *𝐾(𝜎). (2.2)

Here, 𝑊 (𝑥, 𝑦) is a set of random height values chosen according to the normal dis-

tribution at each discrete sample location (𝑥, 𝑦), i.e. 𝑊 ∼ 𝑁(𝜇, 𝜎0); and 𝐾(𝜎) is

a zero-mean Gaussian smoothing kernel having full-width half-maximum (FWHM)

value of 𝜎.

The values of 𝜇, 𝜎0 and 𝜎 are determined by the grit size of the chosen glass

diffuser [94]. In this chapter, we use two glass diffusers of different grit size: 600-grit

(Thorlabs, DG10-600-MD) and 220-grit (Edmund, 45-653). Using these values in Eqs.

(2.1) and (2.2), we simulate the point spread function (PSF) of our imaging system

46

as shown in Fig. 2-2, with a point source at the center of the object plane as input.

We can see that the PSF for the 600-grit diffuser has a sharp peak at the center,

while the PSF for the 220-grit diffuser spreads more widely. This indicates that the

220-grit diffuser scatters the light much more strongly than the 600-grit diffuser.

Figure 2-2: Point spread functions (PSFs) and degree of shift variance of the imaging
system. (a) PSF for the 600-grit diffuser: 𝜇 = 16𝜇m, 𝜎0 = 5𝜇m, 𝜎 = 4𝜇m. (b) PSF
for the 220-grit diffuser: 𝜇 = 63𝜇m, 𝜎0 = 14𝜇m, 𝜎 = 15.75𝜇m. (c) Comparison of
the profiles of the two PSFs alone the lines indicated by the red arrows in (a) and
(b). (d) Degree of shift variance along the 𝑥 direction (∆𝑦 = 0). (e) Degree of shift
variance along the 𝑦 direction (∆𝑥 = 0). Other simulation parameters are set to be
the same as the actual experiment: 𝑧𝑑 = 15mm, 𝑅 = 12.7mm and 𝜆 = 632.8nm. All
the PSF plots are in logarithmic scale.

47

It is important to emphasize that, due to the existence of the diffuser, the imaging

system is no longer shift-invariant. As can be seen in Eq. (2.1), the optical field at

the detector plane 𝑔out can not be expressed as a convolution of the object 𝑔 and a

shift-invariant PSF term. The degree of shift variance may be compared using the

PSF correlation function

𝐶(∆𝑥,∆𝑦)

=

∫︁∫︁∫︁∫︁ ⟨︀
ℎ(𝑥′, 𝑦′;𝑥, 𝑦)ℎ(𝑥′, 𝑦′;𝑥+ ∆𝑥, 𝑦 + ∆𝑦)

⟩︀
𝑑𝑥𝑑𝑦𝑑𝑥′𝑑𝑦′.

(2.3)

Here, ℎ(𝑥′, 𝑦′;𝑥, 𝑦) denotes the PSF on the detector plane (𝑥′, 𝑦′) due to a point

source in the object plane at location (𝑥, 𝑦). ∆𝑥 and ∆𝑦 are the shifts in the object

plane along 𝑥 and 𝑦 direction, respectively, and
⟨︀
·
⟩︀

denotes the ensemble average

over many simulated realizations of the diffuser. To make the comparison between

different values of ∆𝑥, ∆𝑦 possible, we normalized ℎ(., .) to have zero mean and

standard deviation equal to one.

Two slices of the PSF correlation function along the ∆𝑥 and ∆𝑦 directions, each

for 10 random realizations of the simulated diffuser, are shown in Fig. 2-2d and Fig.

2-2e, respectively, for the two grit sizes. As expected, in the 600-grit case, where

scattering is weak, the shifted PSFs are more correlated than those in the 220-grit

case. In both cases, the degree of correlation between the shifted PSFs decreases as

the shift becomes larger. In addition, the degree of shift variance along the 𝑥 direction

is almost identical to that along the 𝑦 direction.

We may also represent equation (2.1) in terms of a forward operator𝐻 ′: 𝑔′(𝑥′, 𝑦′) =

𝐻 ′𝑓 ′(𝑥, 𝑦). When the object is pure-intensity, i.e. 𝑓 ′(𝑥, 𝑦) =
√︀
𝑓(𝑥, 𝑦), the relation-

ship between the raw intensity captured at the detector plane 𝑔(𝑥′, 𝑦′) and the object

intensity 𝑓(𝑥, 𝑦) can also be represented in terms of another forward operator 𝐻:

𝑔(𝑥′, 𝑦′) = 𝐻𝑓(𝑥, 𝑦) = [𝑆𝐻𝑔𝑆𝑟]𝑓(𝑥, 𝑦). Here, 𝑆 denotes the modulus square operator

and 𝑆𝑟 denotes the square root operator. Then, in order to reconstruct the intensity

48

distribution of the object, we have to formulate an inverse operator 𝐻 inv such that

𝑓(𝑥, 𝑦) = 𝐻 inv𝑔(𝑥′, 𝑦′) (2.4)

where 𝑓(𝑥, 𝑦) is an acceptable estimate of the intensity object.

Due to the randomness of 𝐻, it is difficult to obtain its explicit form and do the

inversion accordingly; prior works referenced in Section 2.1 employed measurements

of the scattering matrix to obtain 𝐻 approximately. Here, we instead use IDiffNet, a

deep neural network (DNN) trained to the underlying inverse mapping given a set of

training data. IDiffNet uses the densely connected convolutional network (DenseNet)

architecture [95], where each layer connects to every other layer within the same

block in a feed-forward fashion. Compared with conventional convolutional networks,

DenseNets have more direct connections between the layers, which strengthens fea-

ture propagation, encourages feature reuse and substantially reduces the number of

parameters. Therefore, DenseNets have better generalization capability.

A diagram of IDiffNet is shown in Fig. 2-3. The input to IDiffNet is the speckle

pattern captured by the CMOS. It first passes through a dilated convolutional layer

with filter size 5 × 5 and dilation rate 2 and is then successively decimated by 6

dense and downsampling transition blocks. After transmitting through another dense

block, it successively passes through 6 dense and upsampling transition blocks and an

additional upsampling transition layer. Finally, the signals pass through a standard

convolutional layer with filter size 1 × 1 and the estimate of the object is produced.

This is the ”encoder-decoder network” architecture [96, 97], where the dense and

downsampling transition blocks serve as encoder to extract the feature maps from

the input patterns, and the dense and upsampling transition blocks are served as

decoder to perform pixel-wise regression. Due to the scattering by the glass diffusers,

the intensity at one pixel of the image plane is influenced by several nearby pixels

at the object plane. Therefore, we use dilated convolutions with dilation rate 2 and

a filter size of 5 × 5, in all our dense blocks so as to increase the receptive field

of the convolution filters. In addition, we also use skip connections [98] to pass high

49

frequency information learnt in the initial layers down the network towards the output

reconstruction. Additional details about the architecture and training of IDiffNet are

provided in Appendix Section B.1.

Figure 2-3: IDiffNet, our densely connected neural network that images through
diffuse media.

2.3 Results and network analysis

Our experiment consists two phases: training and testing. During the training pro-

cess, we randomly choose image samples from a training database. The space band-

width product of the original images are all 128 × 128 and we magnify each image

by a factor of 4 before uploading to the SLM. The corresponding speckle patterns

are captured by the CMOS. As mentioned in Section 2.2, we only crop the central

512×512 square of the CMOS. We further downsample the captured speckle patterns

by a factor of 4 and subtract from them a reference speckle pattern, which is obtained

by uploading to the SLM a uniform image with all pixels equal to zero. The purpose

of this subtraction operation is to eliminate the background noise on the CMOS and

also to better extract differences between speckle patterns resulting from different

objects.

50

After the subtraction operation, we feed the resulting speckle patterns into ID-

iffNet for training. In this way, the input and output signal dimensions are both

128 × 128. We collected data from six separate experiment runs: each time we used

training inputs from one of the three different databases: Faces-LFW [99], ImageNet

[100] or MNIST [101] and inserted one of the two glass diffusers that we have into the

imaging system. Each of our training dataset consists of 10,000 object-speckle pat-

tern pairs. These data were used to train six separate IDiffNets for evaluation. In the

testing process, we sample disjoint examples from the same database (Faces-LFW,

ImageNet or MNIST) and other databases such as Characters [102], CIFAR [103]

and Faces-ATT [104, 105]. Altogether, 450 examples are used in the test dataset,

including 50 Characters, 40 Faces-ATT, 60 CIFAR, 100 MNIST, 100 Faces-LFW and

100 ImageNet. We upload these test examples to the SLM and capture their corre-

sponding speckle patterns using the same glass diffuser as the training phase. We

then input these speckle patterns to our trained IDiffNet and compare the output to

the ground truth.

In training the IDiffNets, we use two different loss functions and compare their

performances. The first loss function that we consider is the mean absolute error

(MAE), is defined as:

MAE =
1

𝑏𝑤ℎ

𝑏∑︁
𝑘=1

𝑤∑︁
𝑖=1

ℎ∑︁
𝑗=1

|𝑓𝑘(𝑖, 𝑗) − 𝑓𝑘(𝑖, 𝑗)|, (2.5)

Here, 𝑓 and 𝑓 are the true object and the object estimated by the neural network,

respectively; (𝑖, 𝑗) denotes the pixels and 𝑘 is the training example label; 𝑤, ℎ are the

width and height of the object and 𝑏 is the batch size.

The qualitative and quantitative reconstruction results when using MAE as the

loss function are shown in Fig. 2-4 and 2-5, respectively. From Fig. 2-4, we find that,

generally speaking, IDiffNet’s reconstruction performance for the 600-grit diffuser is

better than that for the 220-grit diffuser. High quality reconstructions are achieved

for the 600-grit diffuser when IDiffNets are trained on Faces-LFW (column iv) and

ImageNet (column v). For the 220-grit diffuser, the best reconstruction is obtained

51

when IDiffNet is trained on the ImageNet database (column ix). The recovered images

are close to the low-pass filtered version of the original image, where we can visualize

the general shape (salient features) but the high frequency features are missing. This

result is expected since the scattering caused by the 220-grit diffuser is much stronger

than that of the 600-grit diffuser, as we had already deduced from Fig. 2-2. As a

result, we can still visualize some features of the object in the raw intensity image

captured in the 600-grit diffuser case. By contrast, what we capture in the 220-grit

diffuser case looks indistinguishable from pure speckle, without any object details

visible. This means we should expect it to be much more difficult for IDiffNet to do

the inversion.

Figure 2-4: Qualitative analysis of IDiffNet trained using MAE as the loss function.
(i) Ground truth pixel value inputs to the SLM. (ii) Corresponding intensity images
calibrated by SLM response curve. (iii) Raw intensity images captured by CMOS
detector for 600-grit glass diffuser. (iv) IDiffNet reconstruction from raw images
when trained using Faces-LFW dataset [99]. (v) IDiffNet reconstruction when trained
using ImageNet dataset [100]. (vi) IDiffNet reconstruction when trained using MNIST
dataset [101]. Columns (vii-x) follow the same sequence as (iii-vi) but in these sets
the diffuser used is 220-grit. Rows (a-f) correspond to the dataset from which the
test image is drawn: (a) Faces-LFW, (b) ImageNet, (c) Characters [102], (d) MNIST,
(e) Faces-ATT [104, 105], (f) CIFAR [103], respectively.

Noticeable from Fig. 2-4 is that when IDiffNet is trained on MNIST for the 220-

grit diffuser (column x), all the reconstructions seem to be uniform. This is due to

52

Figure 2-5: Quantitative analysis of IDiffNet trained using MAE as the loss function.
Test errors for IDiffNet trained on Faces-LFW (blue), ImageNet (red) and MNIST
(green) on six datasets when the diffuser used is (a) 600-grit and (b) 220-grit. The
training and testing error curves when the diffuser used is (c) 600-grit and (d) 220-grit.

the fact that the objects that this IDiffNet was trained on were sparse; and, hence,

it also tends to make sparse estimates. Unfortunately, in this case the sparse local

minima where IDiffNet is trapped are featureless. Tackling this problem motivated

us to examine the Negative Pearson Correlation Coefficient (NPCC) as alternative

loss function.

The NPCC is defined as [106]:

NPCC =
−1

𝑏𝑤ℎ
×

𝑏∑︁
𝑘=1

𝑤∑︁
𝑖=1

ℎ∑︁
𝑗=1

(︁
𝑓𝑘(𝑖, 𝑗) − 𝜇𝑓𝑘

)︁
(𝑓𝑘(𝑖, 𝑗) − 𝜇𝑓𝑘)

𝜎𝑓𝑘𝜎𝑓𝑘
. (2.6)

Here, 𝜇𝑓𝑘 and 𝜇𝑓𝑘
are the spatial averages of 𝑓𝑘 and 𝑓𝑘, respectively; 𝜎𝑓𝑘 and 𝜎𝑓𝑘 are

the standard deviations of 𝑓𝑘 and 𝑓𝑘, respectively.

The qualitative and quantitative reconstruction results using NPCC as the loss

function are shown in Fig. 2-6 and 2-7, respectively. The reconstructed images are

53

normalized since the NPCC value will be the same if we multiply the reconstruction by

any positive constants. Similar to the case where MAE is used as the loss function,

the reconstruction is better in the 600-grit diffuser case than the 220-grit diffuser

case. However, when IDiffNet is trained on MNIST for the 220-grit diffuser (column

x), high quality reconstruction is achieved for the test images coming from Characters

and MNIST database (row c and d). This is in contrast to the MAE-trained case,

thus indicating that NPCC is a more appropriate loss function to use in this case. It

helps IDiffNet to learn the sparsity in the ground truth and in turn use the sparsity as

a strong prior for estimating the inverse. In addition, when trained on ImageNet for

the 220-grit diffuser (column ix), IDiffNet is still able to reconstruct the general shape

(salient features) of the object. But the NPCC-trained reconstructions are visually

slightly worse compared with the MAE-trained cases.

Figure 2-6: Qualitative analysis of IDiffNets trained using NPCC as the loss function.
(i) Ground truth pixel value inputs to the SLM. (ii) Corresponding intensity images
calibrated by SLM response curve. (iii) Raw intensity images captured by CMOS
detector for 600-grit glass diffuser. (iv) IDiffNet reconstruction from raw images
when trained using Faces-LFW dataset [99]. (v) IDiffNet reconstruction when trained
using ImageNet dataset [100]. (vi) IDiffNet reconstruction when trained using MNIST
dataset [101]. Columns (vii-x) follow the same sequence as (iii-vi) but in these sets
the diffuser used is 220-grit. Rows (a-f) correspond to the dataset from which the
test image is drawn: (a) Faces-LFW, (b) ImageNet, (c) Characters [102], (d) MNIST,
(e) Faces-ATT [104, 105], (f) CIFAR [103], respectively.

54

In both MAE and NPCC training cases, IDiffNet performance also depends on

the dataset that it is trained on. From Fig. 2-4 and 2-6, we observe that IDiffNet

generalizes best when being trained on ImageNet and has the most severe overfitting

problem when being trained on MNIST. Specifically, when IDiffNet is trained on

MNIST, even for the 600-grit diffuser (column vi), it works well if the test image comes

from the same database or a database that shares the same sparse characteristics as

MNIST (e.g. characters). It gives much worse reconstruction when the test image

comes from a much different database. When IDiffNet is trained on Faces-LFW,

it generalizes well for the 600-grit diffuser, but for the 220-grit diffuser it exhibits

overfitting: it tends to reconstruct a face at the central region, as in Horisaki’s case.

When IDiffNet is trained on ImageNet, it generalizes well even for the 220-grit diffuser.

As we can see in column ix, for all the test images, IDiffNet is able to at least

reconstruct the general shapes (salient features) of the objects. This indicates that

IDiffNet has learned at the very least a generalizable mapping of low-level textures

between the captured speckle patterns and the input images. Similar observation

may also be made from Fig. 2-5 and 2-7. From subplots (a) and (b) in both figures,

we notice that the IDiffNets trained on MNIST have much higher MAEs/lower PCCs

when tested on other databases. As shown in subplot (d), the IDiffNets trained

on Faces-LFW have a large discrepancy between training and test error, while for

IDiffNets trained on ImageNet, the training and testing curves converge to almost

the same level. An explanation for this phenomenon is that all the images in MNIST

or Faces-LFW databases share the same characteristics (eg. sparse, circular shape),

imposing a strong prior on IDiffNet. On the other hand, the ImageNet database

consists of a mixture of generic images that not have too much in common. As a result,

IDiffNet trained on ImageNet generalizes better. It is worth noting that overfitting

in our case evidences itself as face-looking “ghosts” occurring when IDiffNet trained

on Faces-LFW tries to reconstruct other kinds of images, for example (see Fig. 2-6,

column viii). This is again similar to Horisaki’s observations [88].

From comparing the four possible combinations of weak vs strong scattering and

constrained dataset (e.g. MNIST) vs generic dataset (e.g. ImageNet), we conclude

55

Figure 2-7: Quantitative analysis of our trained deep neural networks for using NPCC
as the loss function. Test errors for the IDiffNets trained on Faces-LFW (blue),
ImageNet (red) and MNIST (green) on six datasets when the diffuser used is (a) 600-
grit and (b) 220-grit. The training and testing error curves when the diffuser used is
(c) 600-grit and (d) 220-grit.

the following: when scattering is weak, it is to our benefit to train the IDiffNets on a

generic dataset because the resulting neural networks generalize better and can cope

with the scattering also for general test images. On the other hand, when scattering

is strong, it is beneficial to use a relatively constrained dataset with strong sparsity

present in the typical objects: the resulting neural networks are then more prone to

overfitting, but now this works to our benefit for overcoming strong scattering (at

the cost, of course, of working only for test objects coming from the more restricted

database.) The choice of optimization functional makes this tradeoff even starker:

MAE apparently does not succeed in learning the strong sparsity even for MNIST

datasets, whereas the NPCC does much better, even being capable of reconstructing

test objects under the most severe scattering conditions (220-grit diffuser, column x in

Fig. 2-6) as long as the objects are drawn from the sparse dataset. These observations

56

are summarized in Table. 2.1.

Table 2.1: Summary of reconstruction results in different cases. [
√

: Visually recog-
nizable; ∙: Salient feature recognizable; ×: Visually unrecognizable.]

600-grit 220-grit
Training dataset Loss: MAE Loss: NPCC Loss: MAE Loss: NPCC

Test: Faces-LFW
Faces-LFW

√ √
∙ ×

ImageNet
√ √

∙ ∙
MNIST × × × ×

Test: ImageNet
Faces-LFW

√ √
× ×

ImageNet
√ √

∙ ∙
MNIST × × × ×

Test: Characters
Faces-LFW

√ √
× ×

ImageNet
√ √

∙ ∙
MNIST

√ √
×

√

Test: MNIST
Faces-LFW

√ √
× ×

ImageNet
√ √

∙ ∙
MNIST

√ √
×

√

Test: Faces-ATT
Faces-LFW

√ √
× ×

ImageNet
√ √

∙ ∙
MNIST × × × ×

Test: CIFAR
Faces-LFW

√ √
× ×

ImageNet
√ √

∙ ∙
MNIST × × × ×

2.4 Resolution and shift invariance tests for IDiffNet

In this section, we investigate the spatial resolution of our trained IDiffNet. Without

the diffuser, our system is a telescope of numerical aperture NA = 12.7/250 = 0.0508.

The diffraction-limited Abbé resolution is 𝑑0 = 𝜆/(2NA) = 6.23𝜇m. With the 600-

grit diffuser in the system, we analyze experimentally four IDiffNets that we trained

on either the ImageNet or MNIST database and using either MAE or NPCC as the

loss function. In order to evaluate the spatial resolution, we designed two different

sets of test patterns, dots and fringes, as shown in Fig. 2-8. The dots are constructed

as super-pixels from 4×4 pixels (80×80𝜇m), and the fringes are constructed as bands

of width equal to 4 pixels (80𝜇m). These choices make the dot and fringe spacings

consistent with the sampling scheme chosen in the experiments of Section 6.3. It

57

should also be mentioned that the super-pixel size places a limit on IDiffNet reso-

lution, since IDiffNet is trained with examples whose sampling distance is equal to

one super-pixel. In the dot pattern set, each pattern contains 8 dot pairs and the

spacings 𝐷 between the two dots within the same pair are set to be the same. The

entire set consists of 10 such dot patterns with 𝐷 gradually varies from 1 super-pixel

to 10 super-pixels. In the fringe pattern set, each pattern contains equally spaced

fringes. Similarly, the entire set consists of 10 such fringe patterns with the spacing

𝐷 gradually varying from 1 super-pixel to 10 super-pixels.

Figure 2-8: Resolution test patterns. Left: Dot pattern; Right: Fringe pattern.

Those resolution test patterns are displayed on the SLM and the corresponding

speckle patterns are captured and fed into our trained IDiffNet for reconstruction.

Here, we first show the resolution test results of the IDiffNets trained using MAE as

loss function.

As shown in Fig. 2-9, the IDiffNet trained on MNIST database is able to resolve

two dots with spacing 𝐷 = 4 super-pixels, but fails to distinguish two dots with

spacing 𝐷 = 3 super-pixels. Same spatial resolution is demonstrated using fringe

patterns as well, where nearby fringes with spacing 𝐷 = 4 super-pixels are resolved

while fringes with spacing 𝐷 = 3 super-pixels are unable to be distinguished. In

addition, we find that the reconstruction qualities of dot patterns are better than

those of the fringe patterns. This result is as expected since the MNIST training

58

Figure 2-9: Experimental resolution test result for IDiffNet trained on MNIST using
MAE as loss function. The diffuser used is 600-grit. (a) Reconstructed dot pattern
when 𝐷 = 3 super-pixels. (b) 1D cross-section plot along the line indicated by
red arrows in (a). (c) Reconstructed fringe pattern when 𝐷 = 3 super-pixels. (d)
Reconstructed dot pattern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along
the line indicated by red arrows in (d). (f) Reconstructed fringe pattern when 𝐷 = 4
super-pixels.

database imposes a strong sparsity prior in a set of basis functions that themselves

look relatively spatially sparse [107]. This property makes IDiffNet perform better

on spatially sparse test samples (dot patterns) than other less sparse test samples

(fringe patterns). Therefore, dot patterns are more appropriate to be used to test the

resolution of IDiffNet trained on MNIST.

For the IDiffNet trained on ImageNet, its spatial resolution is the same as the

MNIST training case, as demonstrated in Fig. 2-10. However, the reconstruction

qualities of fringe patterns are better than those of the dot patterns since the ImageNet

training database contains more general images which are sparse in a set of basis

functions that is spatially richer than the MNIST dictionary [108]. Because of this

observation, fringe patterns are more appropriate be used to test the resolution of

IDiffNet trained on ImageNet.

Now, for the 600-grit diffuser, we show the resolution test results of the IDiffNets

59

Figure 2-10: Experimental resolution test result for IDiffNet trained on ImageNet
using MAE as loss function. The diffuser used is 600-grit. (a) Reconstructed dot
pattern when 𝐷 = 3 super-pixels. (b) 1D cross-section plot along the line indicated
by red arrows in (a). (c) Reconstructed fringe pattern when 𝐷 = 3 super-pixels. (d)
Reconstructed dot pattern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along
the line indicated by red arrows in (d). (f) Reconstructed fringe pattern when 𝐷 = 4
super-pixels.

trained using NPCC as loss function.

As shown in Fig. 2-11, the IDiffNet trained on MNIST database is able to resolve

two dots with spacing 𝐷 = 4 super-pixels, but fails to distinguish two dots with

spacing 𝐷 = 3 super-pixels. Same spatial resolution is demonstrated using fringe

patterns as well, where nearby fringes with spacing 𝐷 = 4 super-pixels are resolved

while fringes with spacing 𝐷 = 3 super-pixels are unable to be distinguished. In ad-

dition, we find that the reconstruction qualities of dot patterns are better than those

of the fringe patterns. This result is as expected since the MNIST training database

imposes a strong sparsity prior, making the IDiffNet perform better on sparse test

samples (dot patterns) than other less sparse test samples (fringe patterns). There-

fore, dot patterns are more appropriate to be used to test the resolution of IDiffNet

trained on MNIST. For the IDiffNet trained on ImageNet, its spatial resolution is the

same as the MNIST training case, which is demonstrated in Fig. 2-12. However, the

60

Figure 2-11: Experimental resolution test result for IDiffNet trained on MNIST using
NPCC as loss function. The diffuser used is 600-grit. (a) Reconstructed dot pattern
when 𝐷 = 3 super-pixels. (b) 1D cross-section plot along the line indicated by
red arrows in (a). (c) Reconstructed fringe pattern when 𝐷 = 3 super-pixels. (d)
Reconstructed dot pattern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along
the line indicated by red arrows in (d). (f) Reconstructed fringe pattern when 𝐷 = 4
super-pixels.

reconstruction qualities of fringe patterns are better than those of the dot patterns

since the ImageNet training database contains more general images and no longer im-

pose the sparsity prior. Hence, fringe patterns should be used to test the resolution

of IDiffNet trained on ImageNet. All the above observations are the same as those

in the MAE training case. Therefore, the choice of loss function does not affect the

spatial resolution of the trained IDiffNet in the 600-grit diffuser case.

Now, let us test the spatial resolution of IDiffNet trained using the 220-grit diffuser.

In this strong scattering case, as described in Section 6.3, we have to use MNIST as

the training database and use NPCC as the loss function. In order to match the

strong prior imposed by MNIST database, we design the resolution test pattern as

shown in Fig. 2-13a, where those dots are placed in a layout resembles the digit ’7’

and the spacing between nearby dots is 𝐷. The entire set consists of 10 such patterns

with the spacing 𝐷 gradually varies from 10 super-pixel to 19 super-pixels. As shown

61

Figure 2-12: Experimental resolution test result for IDiffNet trained on ImageNet
using NPCC as loss function. The diffuser used is 600-grit. (a) Reconstructed dot
pattern when 𝐷 = 3 super-pixels. (b) 1D cross-section plot along the line indicated
by red arrows in (a). (c) Reconstructed fringe pattern when 𝐷 = 3 super-pixels. (d)
Reconstructed dot pattern when 𝐷 = 4 super-pixels. (e) 1D cross-section plot along
the line indicated by red arrows in (d). (f) Reconstructed fringe pattern when 𝐷 = 4
super-pixels.

in Fig. 2-13, we can find that the trained IDiffNet is able to resolve nearby dots with

spacing 𝐷 = 17 super-pixels, but fails to distinguish two dots with spacing 𝐷 = 16

super-pixels. As expected, the spatial resolution in this case is worse than that in the

600-grit diffuser case.

In light of our earlier observation about limited shift invariance in the forward

operator (see discussion after Fig. 2-2), we also analyzed IDiffNet’s shift invariance.

In simulation, as in Section 5.2, we chose 100 test images in the MNIST database. For

each image 𝐼(𝑥, 𝑦), we first obtain its corresponding speckle pattern 𝐼out(𝑥
′, 𝑦′;𝑥, 𝑦).

Then, we shift 𝐼(𝑥, 𝑦) along the 𝑥 direction for some distance ∆𝑥 and obtain the

corresponding speckle pattern 𝐼out(𝑥
′, 𝑦′;𝑥 + ∆𝑥, 𝑦). After that, we shift the speckle

pattern 𝐼out(𝑥
′, 𝑦′;𝑥 + ∆𝑥, 𝑦) back by a distance ∆𝑥′ = 𝑚∆𝑥 to obtain 𝐼out(𝑥

′ −

∆𝑥′, 𝑦′;𝑥 + ∆𝑥, 𝑦), where 𝑚 = 0.6 is the ratio between the camera and SLM pixel

62

Figure 2-13: Experimental resolution test result for IDiffNet trained on MNIST using
NPCC as loss function. The diffuser used is 220-grit. (a) Resolution test pattern when
𝐷 = 16 super-pixels. (b) Reconstructed test pattern when 𝐷 = 16 super-pixels. (c)
1D cross-section plot along the line indicated by red arrows in (b). (d) Resolution
test pattern when 𝐷 = 17 super-pixels. (e) Reconstructed test pattern when 𝐷 = 17
super-pixels. (f) 1D cross-section plot along the line indicated by red arrows in (e).

sizes. Finally, we compute the correlations in the speckle patterns as

𝐶𝑠(∆𝑥) = PCC [𝐼out(𝑥
′, 𝑦′;𝑥, 𝑦), 𝐼out(𝑥

′ − ∆𝑥′, 𝑦′;𝑥+ ∆𝑥, 𝑦)] . (2.7)

Here, PCC is defined as in equation (2.6) and without the negative sign.

Similarly, we can compute the correlations in the reconstructions 𝐼(𝑥, 𝑦;𝑥, 𝑦) as

𝐶𝑟(∆𝑥) = PCC
[︁
𝐼(𝑥, 𝑦;𝑥, 𝑦), 𝐼(𝑥− ∆𝑥, 𝑦;𝑥+ ∆𝑥, 𝑦)

]︁
. (2.8)

As shown in Fig. 2-14, shift invariance after IDiffNet increases (𝐶𝑟 > 𝐶𝑠), demon-

strating that IDiffNet has learnt to compensate for shift variance in the forward

operator. In fact, the domain of shift invariance obtained with IDiffNet is bigger

than generally obtained by approaches based on the memory effect [74, 77]. In the

latter, the Field of View (FOV) is limited by shift invariance in the forward operator,

i.e. the domain of high correlation between shifted PSFs, and is typically small, e.g.

63

Figure 2-14: Simulated shift invariance test. (a) Correlations in the speckle patterns
𝐶𝑠 calculated on MNIST database. (b) Correlations in the reconstructions 𝐶𝑟 calcu-
lated on MNIST database. In the 600-grit case, the IDiffNet is trained on ImageNet
using MAE loss function; in the 220-grit case, the IDiffNet is trained on MNIST using
NPCC loss function.

FOV∼ 2.5 × 10−2 in [74]. On the other hand, our experimental results with IDiffNet

demonstrate FOV& 4 × 10−2 for the same diffuser of 220-grit size.

2.5 Comparison with denoising neural networks

To get a sense of what IDiffNets learn, we first compare their reconstruction results

with that of a denoising neural network. Specifically, we use ImageNet as our training

database. To each image in the training dataset, we simulate a noisy image using

Poisson noise and make the peak signal-to-noise ratio (PSNR) of the resulting noisy

image visually comparable to that of the corresponding speckle image captured using

the 600-grit diffuser. We use Poisson noise other than different kinds of noise such as

Gaussian because Poisson noise is signal-dependent, similar to the diffuser case. We

64

then train a denoising neural network using those noisy images. For the denoising

neural network, we implement the residual network architecture [109]. Finally, we

feed the test speckle images captured using the 600-grit diffuser into this denoising

neural network and compare the outputs with those reconstructed by IDiffNet (using

MAE as the loss function).

The comparison results are shown in Fig. 2-15. From column iv, we find that the

denoising neural network works well when the test images are indeed noisy accord-

ing to the Poisson model. However, as shown in column v, if we input the diffuse

image into the denoising network, then it can only output a highly blurred image,

much worse than IDiffNet given the same diffuse input, as can be seen in column vi.

This result demonstrates that IDiffNet is not doing denoising, although the speckle

image obtained using the 600-grit diffuser visually looks similar to a noisy image. We

posit the reason for this as follows: Poisson noise operates pixel-wise. Consequently,

denoising for Poisson noise is effectively another pixel-wise operation that does not

depend much on spatial neighborhood, except to the degree that applying priors orig-

inating from the structure of the object helps to denoise severely affected signals. A

denoising neural network, then, learns spatial structure only as a prior on the class

of objects it is trained on. However, this is not the case when imaging through a

diffuser: then every pixel value in the speckle image is influenced by a set of nearby

pixels in the original image. This may also be seen from the PSF plots shown in

Fig. 2-2. The denoising neural network fails because it has not learnt the spatial

correlations between the nearby pixels and the correct kernel of our imaging system,

as our IDiffNet has.

We also examined the maximally-activated patterns (MAPs) of the IDiffNets and

the denoising neural network; i.e. what types of inputs would maximize network filter

response (gradient descent on the input with average filter response as loss function)

[91]. Fig. 2-16 shows the MAP analysis of two convolutional layers at different depths

for all the three neural networks. For both the shallow and deep layers, we find the

MAPs of our IDiffNets are qualitatively different from those of the denoising network.

This further corroborates that IDiffNet is not merely doing denoising. In addition,

65

Figure 2-15: Comparison between IDiffNets and a denoising neural network. (i)
Ground truth intensity images calibrated by SLM response curve. (ii) Speckle images
that we captured using the 600-grit diffuser (after subtracting the reference pattern).
(iii) Noisy images generated by adding Poisson noise to the ground truth. (iv) Re-
constructions of the denoising neural network when inputing the noisy image in (iii).
(v) Reconstructions of the denoising neural network when inputing the speckle image
in (ii). (vi) IDiffNet reconstructions when inputing the noisy image the speckle image
in (ii). [The images shown in column vi are the same as those in the column v of
Fig .2-4, duplicated here for the readers’ convenience]. Rows (a-c) correspond to the
dataset from which the test image is drawn: (a) Characters[102], (b) CIFAR [103],
(c) Faces-LFW [99], respectively.

the MAPs of the 600-grit IDiffNet show finer textures compared with that of the

220-grit IDiffNet, indicating that the IDiffNet learns better in the 600-grit diffuser

case.

2.6 Conclusions

We have demonstrated that IDiffNets, built according to the densely connected con-

volutional neural network architecture, can be used as an end to end approach for

imaging through scattering media. The reconstruction performance depends on the

scattering strength of the diffusers, the type of the training dataset (in particular,

its sparsity), as well as the loss function used for optimization. The IDiffNets seem

to learn automatically the properties of the scattering media, including the degree

66

Figure 2-16: Maximally-activated patterns (MAPs) for different DNNs. (a) 128×128
inputs that maximally activate the filters in the convolutional layer at depth 5. (b)
128×128 inputs that maximally activate the filters in the convolutional layer at depth
13. [There are actually more than 16 filters at each convolutional layer, but we only
show the 16 filters have the highest activations here.]

of shift invariance and how to at least partially compensate it; as well as the priors

restricting the objects where the network is supposed to perform well, depending on

the database the network was trained with.

67

68

Chapter 3

Quantitative phase retrieval using

PhENN

3.1 Introduction

Quantitative phase retrieval (QPR) is a classical problem in optical imaging and has

important applications in the fields of biomedical diagnosis and nanostructure in-

spection. Conventional cameras are only sensitive to the intensity of the light field.

However, the phase carries crucial information about the object [110]: e.g. refractive

index, 3D shape, etc. The task of QPR is to quantitatively retrieve the phase of

the light field from intensity measurements. Traditional approaches include digital

holography (DH) [111, 112, 113, 86, 114] and the related phase shifting interferometry

method [115], propagation based methods such as the Transport of Intensity Equa-

tion (TIE) [18, 116, 117, 118, 119, 120, 121, 122, 12], iterative projection methods

such as the Gerchberg-Saxton-Fienup (GSF) algorithm [81, 82, 123, 124, 125] and

optimization based methods [126, 127, 128, 129].

The hypothesis that we set out to test in this chapter is whether a deep neural

network (DNN) can be trained to realize QPR. In addition to the well-established

adaptability of DNNs as effective approximators to general-purpose nonlinear oper-

ators, our approach is attractive for several reasons: the DNN, once trained, should

recover every possible object within a hopefully large enough class, unlike GSF where

69

the estimate is obtained separately and iteratively for each new object presented.

Alternatively, since during DNN training iteration takes place over several objects

simultaneously, the learning approach is expected to be a more robust generalization

of GSF. Moreover, the DNN approach is not subject to any of the sparsity require-

ments of either DH (sparsity in space) or TIE (sparsity in spatial gradients). Indeed,

our experiment, described in detail in Section 3.2, was explicitly designed to violate

the DH and TIE assumptions. Lastly, compared to optimization-based approaches,

the user using DNN is not required to specify the forward operator 𝐻 and the priors

Φ or decide about the magnitude of the regularization parameter 𝛼; instead, to the

degree that our results show successful inversion, they suggest that the DNN learns

𝐻, Φ, and 𝛼 implicitly through training. The downside of the DNN approach is that

a sufficiently large database of known pairs of phase objects and their corresponding

raw intensity images must be available for training and testing.

Neural network approaches often come under criticism because the quality of

training depends on the quality of the examples given to the network during the

training phase. For instance, if the inputs used to train a network are not diverse

enough, then the DNN will learn priors of the input images instead of generalized

rules for phase retrieval from intensity. This was the case in [88], where an SVM

trained using images of faces could adequately reconstruct faces, but when given the

task of reconstructing images of natural objects such as a pair of scissors, the trained

SVM still returned an output that resembled a human face.

For our specific problem, an ideal training set would encompass all possible phase

objects. Unfortunately, phase objects, generally speaking, constitute a rather large

class and it would be unrealistic to attempt to train a network sampling from across

all possible objects from this large class. Instead, we synthesize phase objects in

the form of natural images derived from the ImageNet [100] database because it is

readily available and widely used in the study of various machine learning problems.

For comparison, we also trained a separate network using a narrower class of (facial)

images from the Faces-LFW [99] database.

As expected, our network, Phase Extraction Neural Network (PhENN), did well

70

when presented with unknown phase objects in the form of faces or natural images

that it had been trained to. Notably, the network also performed well when presented

with objects outside of its training class – the DNN trained using images of faces was

able to reconstruct images of natural objects, and the DNN trained using images of

natural objects was able to reconstruct images of faces. Additionally, both DNNs

were able to reconstruct completely distinct images including: handwritten digits,

characters from different languages (Arabic, Mandarin, English), and images from a

disjoint natural image dataset. Both trained networks yielded accurate results even

when the object-to-sensor distance(s) in the training set slightly differed from that

of the testing set, suggesting that the network is not merely pattern-matching but

instead has actually learned a generalizable model approximating the inverse operator.

3.2 Experiment

We consider a lensless phase imaging system this chapter. The phase object is il-

luminated by the collimated monochromatic light. The light transmitted/reflected

through the phase object propagates in free space and forms an intensity image on

the detector placed at a distance 𝑧 away. Assuming that the illumination plane wave

has unit amplitude, the image formation model in this system can be described as:

𝑔(𝑥, 𝑦) =
⃒⃒⃒
exp

{︁
𝑖𝑓(𝑥, 𝑦)

}︁
* exp

{︁
𝑖
𝜋

𝜆𝑧

(︀
𝑥2 + 𝑦2

)︀}︁⃒⃒⃒2
. (3.1)

Here, 𝑓(𝑥, 𝑦) is the phase distribution of the object, 𝑔(𝑥, 𝑦) is the intensity image cap-

tured by the detector, 𝜆 is the wavelength of the illumination light, 𝑖 is the imaginary

unit and * denotes the convolution operation.

Our experimental arrangement is as shown in Fig. 3-1. Light from a He-Ne laser

source (Thorlabs, HNL210L, 632.8nm) first transmits through a spatial filter, which

consists of a microscope objective (Newport, M-60X, 0.85NA) and a pinhole aperture

(𝐷 = 5𝜇m), to remove spatial noise. After being collimated by the lens (𝑓 = 150mm),

the light is reflected by a mirror and then passes through a linear polarizer, followed

71

by a beam splitter. A spatial light modulator (Holoeye, LC-R 720, reflective) is placed

normally incident to the transmitted light and acts as a pixel-wise phase object. The

SLM pixel size is 20 × 20𝜇m2 and number of pixels is 1280 × 768, out of which the

central 512×512 portion is only used in the experiments. The SLM-modulated light is

then reflected by the beam splitter and passes through a linear polarization analyzer,

before being collected by a CMOS camera (Basler, A504k) placed at a distance 𝑧.

The CMOS camera pixel size is 12 × 12𝜇m2 and number of pixels is 1280 × 1024,

which is cropped to a 1024 × 1024 square used for processing. The total used linear

camera size of ≈ 12.3mm is slightly larger than the active SLM size of ≈ 10.2mm to

accommodate expansion of the propagating beam due to diffraction. Images recorded

by the CMOS camera are then processed on an Intel i7 CPU, with neural network

computations performed on a GTX1080 graphics card (NVIDIA).

Figure 3-1: Experimental arrangement. SF: spatial filter; CL: collimating lens; M:
mirror; POL: linear polarizer; BS: beam splitter; SLM: spatial light modulator.

According to its user manual, the LC-R 720 SLM can realize (approximate) pure-

phase modulation if we modulate the light polarization properly. Specifically, for

He-Ne laser light, if we set the incident beam to be linearly polarized at 45∘ with

respect to the vertical direction and also set the linear polarization analyzer to be

oriented at 340∘ with respect to the vertical direction, then the amplitude modulation

of the SLM will become almost independent of the assigned (8-bit gray-level) input.

In this arrangement, the phase modulation of the SLM follows a monotonic, almost-

linear relationship with the assigned pixel value (with maximum phase depth: ∼

72

1𝜋). We experimentally evaluated the correspondence between 8-bit grayscale input

images projected onto the SLM and phase values in the range [0,−𝜋] (see Appendix

Section A.2). In this chapter, we approximate our SLM as a pure-phase object and

computationally recover the phase using a neural network.

The CMOS detector was placed after a free-space propagation distance 𝑧. Dis-

tinct DNNs were trained from recorded diffraction patterns at three distances 𝑧1 =

37.5cm±2mm (NA=0.0164±9×10−4, Fresnel number ℱ=159±1), 𝑧2 = 67.5cm±2mm

(NA=0.0091 ± 1 × 10−4, Fresnel number ℱ=88.3 ± 0.3) and 𝑧3 = 97.5cm ± 2mm

(NA=0.0063 ± 1 × 10−4, Fresnel number ℱ=61.2 ± 0.1). Our experiment consisted

of two phases: training and testing. During the training phase, we modulated the

phase SLM according to samples randomly selected from the Faces-LFW or ImageNet

database. We resized and padded selected images before displaying them on our SLM.

Two examples of inputs, as they are sent to the SLM, and their corresponding raw in-

tensity images (diffraction patterns) as captured on the CMOS are shown in Fig. 3-2.

Our training set consisted of 10,000 such faces/images - diffraction pattern pairs. The

raw intensity images from all these training examples were used to train the weights

in our neural network. We used a Zaber A-LST1000D stage with repeatability 2.5𝜇𝑚

to translate the camera in order to analyze the robustness of the learnt network to

axial perturbations. The positional accuracy of ±2mm reported earlier on the train-

ing distances 𝑧1, 𝑧2, 𝑧3 is derived from our error in manually establishing the absolute

distance between SLM and camera; whereas the stage repeatability determines the

error in camera displacement relative to these initial training positions, respectively,

for each axial robustness test in Section 3.3.

Our Phase Extraction Neural Network (PhENN) uses a convolutional residual

neural network (ResNet) architecture. In a convolutional neural network (CNN),

inputs are passed from nodes of each layer to the next, with adjacent layers connected

by convolution. Convolutional ResNets extend CNNs by adding short term memory

to each layer of the network. The intuition behind ResNets is that one should only

add a new layer if one stands to gain by adding that layer. ResNets ensure that

the (𝑁 + 1)th layer learns something new about the network by also providing the

73

Figure 3-2: Neural network training. Rows (a) and (b) denote the networks trained on
Faces-LFW and ImageNet dataset, respectively. (i) randomly selected example drawn
from the database; (ii) calibrated phase image of the drawn sample; (iii) diffraction
pattern generated on the CMOS by the same sample; (iv) DNN output before training
(i.e. with randomly initialized weights); (v) DNN output after training.

original input to the output of the (𝑁 + 1)th layer and performing calculations on

the residual of the two. This forces the new layer to learn something different from

what the input has already encoded/learned [130].

Figure 3-3: Detailed schematic of PhENN architecture, indicating the number of
layers, nodes in each layer, etc.

A diagram of our PhENN architecture is shown in Fig. 3-3. The input layer

is the image captured by the CMOS camera. It is then successively decimated by

7 residual blocks of convolution + downsampling followed by 6 residual blocks of

deconvolution + upsampling, and finally 2 standard residual blocks. Some of the

residual blocks are comprised of dilated convolutions so as to increase the receptive

field of the convolution filters, and hence, aggregate diffraction effects over multiple

scales [131]. We use skip connections to pass high frequency information learnt in

the initial layers down the network towards the output reconstruction, and have two

74

standard residual blocks at the end of the network to finetune the reconstruction. At

the very last layer of our neural network, the values represent an estimate of our input

signal. The connection weights are trained using backpropagation (not to be confused

with optical backpropagation) on the MAE loss function [Eq.2.5]. Additional details

about the architecture of each blocks and the training of PhENN are provided in the

Appendix Section B.2.

We collected data from six separate experiment runs using training inputs from

Faces-LFW or ImageNet and object-to-sensor distances of 𝑧1, 𝑧2 , or 𝑧3. These data

were used to train six separate PhENNs for evaluation.

Fig. 3-2(iv) shows a sample PhENN’s output at the beginning of its training phase

(i.e. with randomly initialized weights), and Fig. 3-2(v) shows the network output

after training, for the same example object-raw image pairs. Training each network

took ≈ 20 hours using Tensorflow on our GPU. We provide analysis of the trained

PhENN in Section 3.3.

Our testing phase consisted of: (1) sampling disjoint examples from the same

database (either Faces-LFW or ImageNet) and other databases such as MNIST, CI-

FAR, Faces-ATT etc., (2) using these test examples to modulate the SLM and produce

raw intensity images on the camera, (3) passing these intensity images as inputs to

out trained PhENN, and (4) comparing the output to ground truth.

3.3 Results and network analysis

The standard method of characterizing neural network training is by plotting the

progression of training and test error across training epochs (iterations in the back-

propagation algorithm over all examples). These curves are shown in Fig. 3-4 for

our network trained using the ImageNet database and tested using images from: (a)

Faces-LFW (b) a disjoint ImageNet set, (c) images from an English/Chinese/Arabic

characters database, (d) the MNIST handwritten digit database, (e) Faces-ATT, (f)

CIFAR, (g) a constant-value "Null" image. Our ImageNet learning curves in Fig.

3-4(d) show convergence to low value after ∼10 epochs, indicating that our network

75

has not overfit to our training dataset. We plot bar graphs for the mean absolute

error (MAE) over test examples in the 7 different datasets for each of the 3 object-

to-sensor distances in Fig. 3-4. Lower MAE was reported for test images with large

patches of constant value (characters, digits, Null) as their sparse diffraction patterns

were easier for our PhENN to invert. Notably, both our bar graphs and learning

curves show low test error for the non-trained images, suggesting that our network

generalizes well across different domains.

Figure 3-4: Quantitative analysis of our trained PhENNs for three object-to-sensor
distances (a) 𝑧1, (b) 𝑧2, and (c) 𝑧3 for the PhENNs trained on Faces-LFW (blue) and
ImageNet (red) on 7 datasets. (d) The training and testing error curves for network
trained on ImageNet at distance 𝑧3 over 20 epochs.

This is an important point and worth emphasizing: despite the fact that our net-

work was trained exclusively on images from the ImageNet database – i.e., images

of planes, trains, cars, frogs, artichokes, etc., it is still able to accurately reconstruct

images of a completely different class (e.g., faces, handwritten digits, and characters

76

Figure 3-5: Qualitative analysis of our trained PhENNs for combinations of object-
to-sensor distances 𝑧 and training datasets. (i) Ground truth pixel value inputs
to the SLM. (ii) Corresponding phase imaged calibrated by SLM response curve.
(iii) Raw intensity images captured by CMOS detector at distance 𝑧1. (iv) PhENN
reconstruction from raw images when trained using Faces-LFW dataset. (v) PhENN
reconstruction when trained used ImageNet dataset. Columns (vi-viii) and (ix-xi)
follow the same sequence as (iii-v) but in these sets the CMOS is placed at a distance
of 𝑧2 and 𝑧3, respectively. Rows (a-f) correspond to the dataset from which the test
image is drawn: (a) Faces-LFW, (b) ImageNet, (c) Characters, (d) MNIST Digits,
(e) Faces-ATT, or (f) CIFAR, respectively.

from different languages). This strongly suggests that our network has learned a

model of the underlying physics of the imaging system or at the very least a gener-

alizable mapping of low-level textures between our output diffraction patterns and

input images.

A more pronounced qualitative example demonstrating this is shown in the columns

(iv) (vii) and (x) of Fig. 3-5. Here, we trained our network using images exclusively

from the Faces-LFW database. Despite this limited training set, the learned network

was able to accurately reconstruct images from the ImageNet, handwritten digits,

and characters datasets. This is in contrast to results shown in [88], where an SVM

trained on images of faces was able to accurately reconstruct images of faces but not

other classes of objects.

We tested the robustness of our network to rotation and lateral displacement in the

presented test phase objects, as well as axial displacement of the CMOS camera for

77

Figure 3-6: Quantitative analysis of the sensitivity of the trained PhENN to the
object-to-sensor distance. The network was trained on (a) Faces-LFW database and
(b) ImageNet and tested on disjoint Faces-LFW and ImageNet sets, respectively.
The nominal depths of field for the three corresponding training distances 𝑧1, 𝑧2, 𝑧3,
respectively, are: (DOF)1 = 1.18 ± 0.1mm, (DOF)2 = 3.82 ± 0.2mm, and (DOF)3 =
7.97 ± 0.3mm.

Figure 3-7: Quantitative analysis of the sensitivity of the trained PhENN to laterally
shifted images on the SLM. The network was trained on (a) Faces-LFW database,
(b) ImageNet and tested on disjoint Faces-LFW and ImageNet sets, respectively.

each PhENN relative to the PhENN’s trained axial locations 𝑧1, 𝑧2, 𝑧3, respectively.

Quantitative results of these perturbations are shown in Figs. 3-6, 3-7, 3-8, and

qualitative results for the networks trained at distance 𝑧1 are shown in Figs. 3-9,

3-10 and 3-11. The results show that our trained network is robust to moderate

78

Figure 3-8: Quantitative analysis of the sensitivity of the trained PhENN to rotation
of images on the SLM. The baseline distance on which the network was trained is (a)
𝑧1, (b) 𝑧2 and (c) 𝑧3, respectively.

Figure 3-9: Qualitative analysis of the sensitivity of the trained PhENN to the object-
to-sensor distance. The baseline distance on which the network was trained is 𝑧1.

perturbations in sensor displacement and is somewhat shift and rotation invariant.

As expected, the system fails when the displacement is significantly greater (Fig.

3-12).

To get a sense of what the network has learned, we examined its maximally-

activated patterns (MAPs), i.e., what types of inputs would maximize network filter

response (gradient descent on the input with average filter response as loss function

79

Figure 3-10: Qualitative analysis of the sensitivity of the trained PhENN to lateral
shifts of images on the SLM. The baseline distance on which the network was trained
is 𝑧1.

Figure 3-11: Qualitative analysis of the sensitivity of the trained PhENN to rotation
of images in steps of 90. The baseline distance on which the network was trained is
𝑧1.

[91]). Our results are shown in Fig. 3-13 together with the results of analogous

analysis of a deblurring network of similar architecture as well as an ImageNet clas-

sification PhENN. Compared with MAPs of ImageNet and a deblurring network, the

MAPs of our phase-retrieval network show two primary differences: First, compared

to ImageNet, we observe much finer textures; this is because ImageNet is meant to

do classification, a task that requires high-level features to emerge out of learning;

whereas our phase network is performing a form of regression. Secondly, compared

with the deblurring network, we observe somewhat finer textures, especially at the

shallower layers (although in both cases low-level textures are present). Our inter-

pretation is that both phase retrieval and deblurring require local operations but

80

of different nature: deblurring converts intensity gradients into sharp edges, whereas

phase retrieval converts diffraction rings into phase gradients. The difference between

the two cases is not easily discernible by simple visual inspection of the MAPs. The

point is that phase retrieval and deblurring share this common locality feature while

acting differently for the sake of their respective functions; and both are radically

different than classification networks, such as ImageNet.

Figure 3-12: Failure cases on PhENNs trained on Faces-LFW (row 𝑎) and ImageNet
(row 𝑏) datasets. (i) Ground truth input, (ii) calibrated phase input to SLM, (iii)
raw image on camera (iv) reconstruction by PhENN trained on images at distance
𝑧1 between SLM and camera and tested on images at distance 107.5 cm, (v) raw
image on camera and (vi) reconstruction by network trained on images at distance
𝑧3 between SLM and camera and tested on images at distance 27.5 cm.

3.4 Conclusions and discussion

The architecture presented here was deliberately well controlled, with an SLM creat-

ing the phase object inputs to the neural network for both training and testing. This

allowed us to quantitatively and precisely analyze the behavior of the learning process.

Application-specific training, e.g. replacing the SLM with physical phase objects for

more practical applications, we judged beyond the scope of the present work. Other

obvious and useful extensions would be to include optics, e.g. a microscope objective

for microscopic imaging in the same mode; and to attempt to reconstruct complex

objects, i.e. imparting both attenuation and phase delay to the incident light. The

significant anticipated benefit in the latter case is that it would be unnecessary to

characterize the optics for the formulation of the forward operator—the neural net-

work should “learn” this automatically as well. We intend to undertake such studies

81

Figure 3-13: (1) 16×16 inputs that maximally activate the last set of 16 convolutional
filters in layer 1 of our PhENN trained on ImageNet at distance of 𝑧1, a deblurring
network, and an ImageNet classification network. The deblurring network was trained
on images undergoing motion blur in a random angle within the range [0,180] degrees
and a random blur length in the range [10,100] pixels. The image is downsampled by
a factor of 2 in this layer. (2) 32×32 inputs that maximally activate the last set of 16
randomly chosen convolutional filters in layer 3 of: our PhENN, the same deblurring
network, and the ImageNet classification network. The raw image is downsampled
by a factor of 8 in this layer.

in future work.

3.5 My contributions

The work in this chapter was led by Ayan Sinha. My contribution was in building up

the experimental setup, performing the SLM calibration and analyzing the data.

82

Chapter 4

Analysis of the dependence of

PhENN’s performance on its

architecture

4.1 Introduction

In the previous two chapters, we introduced two deep neural networks (DNNs): ID-

iffNet and PhENN, and demonstrated their performances in two different computa-

tional imaging scenarios: imaging through scattering media and quantitative phase

retrieval, respectively. When the neural networks are trained, instead of minimizing

the Tikhonov functional (Eq.1.4), the object estimate is then readily obtained as

𝑓 = DNN(𝑔), (4.1)

where DNN(.) denotes the output of the trained deep neural network.

Just as the performance of minimization principle Eq. (1.4) depends upon knowl-

edge of the operators 𝐻 and Φ, performance of the DNN principle Eq. (4.1) depends

on the specific DNN architecture chosen (number of layers, connectivity, etc.) and

the quality of the training examples. Therefore, start from this chapter, we set out

to investigate these two dependences. We chose to study this question in the specific

83

context of quantitative phase retrieval, but our findings might have merit for several

other challenging imaging problems.

In this chapter, we first analyze the dependence of PhENN’s phase recovery per-

formance on its architecture. Specifically, we analyze the influences of the training

loss functions, the skip connections, the depth of the neural network, and the waist

size. Through this study, we wish to provide some insights about how to design an

optimal neural network architecture for quantitative phase retrieval. The influence

of the training example quality to the performance of PhENN will be studied in the

next chapter.

4.2 Methods

4.2.1 Default PhENN architecture

The architecture of PhENN that we use here is shown in Fig. 4-1. Similar to Chap-

ter 3, it follows the U-net architecture [98] and uses residual units [130] to facilitate

learning. PhENN is composed of three different kinds of blocks: down-residual blocks

(DRBs), up-residual blocks (URBs) and residual blocks (RBs). The default down-

sampling rate (DSR) of each DRB and the default upsampling rate (USR) of each

URB are 2. In our PhENN, the numbers of DRBs and URBs are made to be equal

(denoted as 𝑁) and different values of 𝑁 are used for comparison. The number of

RBs is fixed to 2. Skip connections can be used in PhENN to pass the information

extracted at shallow layers to deep layers.

Figure 4-1: Phase Extraction Neural Network (PhENN) architecture.

84

4.2.2 Data preparation

In this paper, all the neural networks are trained and tested using synthetic data.

In generating the training dataset, we select 10, 000 images from the Faces-LFW

database [99]. For each image, we make it to be 𝑓(𝑥, 𝑦) and insert it into Eq. (3.1)

to compute the corresponding intensity measurement 𝑔(𝑥, 𝑦). In this simulation, we

set 𝜆 = 0.633𝜇m. Both the pixel sizes of the object and the detector are set as

∆𝑥 = 20𝜇m. Different values of 𝑧 are used for comparison. The testing dataset is

generated in the same way (at the same distance 𝑧 as the training data) and consists

of 450 images chosen from 6 different databases: 100 Faces-LFW, 100 ImageNet [100],

50 Characters [102], 40 Faces-ATT [104, 105], 60 CIFAR [103] and 100 MNIST [101].

4.3 Results

4.3.1 Choice of training loss function

In this section, we compare the performances of PhENN under different training

loss functions. The architecture of PhENN is kept to be the same: 𝑁 = 4 and

skip connections are used. In generating the training and testing dataset, we set

𝑧 = 200mm and the space-bandwidth product (SBP) of the object to be 256 × 256.

Altogether three different training loss functions are considered here: the mean

absolute error (MAE), the structural similarity (SSIM) and the negative Pearson

correlation coefficient (NPCC). MAE is defined as Eq.2.5, NPCC is defined as Eq.2.6

and SSIM is defined as following [132]:

SSIM =
−1

𝑏
×

𝑏∑︁
𝑘=1

(︁
2𝜇𝑓𝑘𝜇𝑓𝑘

+ 𝑐1

)︁(︁
2𝜎𝑓𝑘𝑓𝑘 + 𝑐2

)︁
(︁
𝜇2
𝑓𝑘

+ 𝜇2
𝑓𝑘

+ 𝑐1

)︁(︁
𝜎2
𝑓𝑘

+ 𝜎2
𝑓𝑘

+ 𝑐2

)︁ , (4.2)

Here, 𝑓𝑘 and 𝑓𝑘 are the 𝑘th true object and the object estimate, respectively; 𝑏 is

the batch size; 𝜇𝑓𝑘 and 𝜇𝑓𝑘
are the spatial averages of 𝑓𝑘 and 𝑓𝑘, respectively; 𝜎𝑓𝑘 and

𝜎𝑓𝑘 are the standard deviations of 𝑓𝑘 and 𝑓𝑘, respectively; 𝜎𝑓𝑘𝑓𝑘 denotes the covariance

of 𝑓𝑘 and 𝑓𝑘; 𝑐1 = 0.012 and 𝑐2 = 0.032.

85

Figure 4-2: Calibration process. (a) Cumulative distribution function (CDF) of the
ground truth. (b) Cumulative distribution function (CDF) of the PhENN output.
(c) Linear curve fitting.

From the definition of NPCC [Eq. (2.6)], it follows that for any function 𝜓 and

arbitrary real constants 𝑎 and 𝑏 representing linear amplification and bias, respec-

tively,

ℰNPCC(𝜓, 𝑎𝜓 + 𝑏) = −1. (4.3)

In other words, a DNN trained with NPCC as loss function can only produce affine

transformed estimates; there is no way to enforce the requirement 𝑎 = 1, 𝑏 = 0 which

would guarantee linear amplification- and bias-free reconstruction and is especially

important for quantitative phase retrieval. Neither does there exist a way that we

know of to predetermine the values of 𝑎 and 𝑏 through specific choices in DNN training.

Therefore, after DNN training a calibration step is required to determine the

values of 𝑎 and 𝑏 that have resulted so that they can be compensated. This is realized

by histogram matching according to the process shown in Fig. 4-2. Given a set of

calibration data, we compute the cumulative distribution functions (CDFs) for the

ground truth values as well as the PhENN output values, as shown in Figs. 4-2(a)

and 4-2(b). For an arbitrary value 𝑓 in the ground truth, we find its corresponding

86

PhENN output value 𝑓 that is at the same CDF level; and repeat the process for

several (𝑓, 𝑓) samples. Subsequently, the values of 𝑎 and 𝑏 are determined by linear

fitting of the form 𝑓 = 𝑎𝑓 + 𝑏, as shown in Fig. 4-2(c).

The phase retrieval results of PhENNs trained with different loss functions are

shown in Fig. 4-3. There are two important observations:

∙ The trained PhENN peforms well on test samples drawn from the same dataset

as the training data (Faces-LFW), as well as test samples drawn from other

categories. This held true for all training loss functions used. This result in-

dicates that PhENN has indeed learned a model of the underlying physics of

the imaging system or at the very least a generalizable mapping of low-level

textures between the phase objects and their respective intensity images.

∙ Among the three training loss functions that were compared, NPCC worked

better in retrieving finer features, as highlighted by the color boxes in Fig. 4-3.

In the subsequent sections, the training loss function used is NPCC.

4.3.2 Presence of skip connections

In this section, we investigate the function of the skip connections in the PhENN

architecture and demonstrate the necessity of their presence. Here, we set 𝑁 = 6, 𝑧 =

200mm, SBP = 256 × 256.

Intuitively, the function of a skip connection is to pass the high frequency infor-

mation (local features) extracted at a shallow layer to a deeper layer. Without those

skip connections, the reconstruction will entirely depend on the feature map being

extracted at the waist, which mostly contains low frequency information due to the

downsampling. This is verified by the test results as shown in Fig. 4-4. With skip con-

nections, the phase reconstructions show much more details than their counterparts

in the no skip connection case. Using the Pearson correlation coefficient (PCC) as

the evaluation metric, Fig. 4-5 quantitatively compares the performances of PhENNs

with and without skip connections. As expected, all the test results obtained with

skip connections have a higher PCC.

87

Figure 4-3: Qualitative comparison of reconstructions using different training loss
functions. (a) Ground truth phase objects. (b) Raw intensity measurements. (c) Re-
constructions when PhENN is trained with MAE. (d) Reconstructions when PhENN
is trained with SSIM. (e) Reconstructions when PhENN is trained with NPCC.
Columns (i-vi) correspond to the dataset from which the test image is drawn: (i)
Faces-LFW, (ii) ImageNet, (iii) Characters, (iv) Faces-ATT, (v) CIFAR, or (vi)
MNIST Digits, respectively.

Skip connections are maintained in the PhENN architecture in subsequent anal-

yses.

4.3.3 Influence of depth

Now, we study the influence of the depth 𝑁 on the performance of PhENN. We set

𝑧 = 200mm and consider two different SBPs for the objects: 256×256 and 128×128.

From the results depicted in Fig. 4-6, we can make the following three observa-

tions:

∙ The phase recovery performance for objects of SBP= 128 × 128 is better than

88

Figure 4-4: Qualitative comparison of reconstructions with and without skip con-
nections. (a) Ground truth phase objects. (b) Raw intensity measurements. (c)
Reconstructions with no skip connections in PhENN. (d) Reconstructions with skip
connections present in PhENN. Columns (i-iv) correspond to the dataset from which
the test image is drawn: (i) Faces-LFW, (ii) ImageNet, (iii) Faces-ATT, or (iv) CI-
FAR, respectively.

Figure 4-5: Quantitative comparison of reconstructions with and without skip con-
nections using 100 Faces-LFW test images.

that for objects of SBP= 256 × 256, in terms of PCC. This result is expected

since the objects with smaller SBP have fewer entries to be estimated.

∙ As the depth increases, the phase recovery performance will saturate at some

depth. We denote this depth as ‘saturating depth.’

89

∙ The saturating depth depends on the SBP of the input. Specifically, the saturat-

ing depth for SBP= 256×256 is one block deeper than that for SBP= 128×128.

Figure 4-6: Quantitative analysis of the influence of the depth using 100 Faces-LFW
test images.

4.3.4 Influence of waist size

As shown in Fig. 4-1, we refer the feature map extracted by the last DRB as the

waist layer. The size of the waist layer (waist size) can be controlled by tuning the

DSR of the last DRB. Accordingly, the USR of the first URB needs to be tuned to

the same value. For example, when 𝑁 = 4 and SBP = 256 × 256, to achieve a waist

size of 4× 4, both the DSR of the last DRB and the USR of the first URB should be

set to 8. Here, we consider four different values for the waist size to investigate its

influence: 1 × 1, 2 × 2, 4 × 4 and 8 × 8. Other hyper-parameters are set as: 𝑁 = 4,

𝑧 = 200mm and SBP = 256 × 256.

From the results shown in Fig. 4-7, we find that the waist size has a minor impact

on the phase recovery performance. One possible explanation for this phenomenon

is that most of the information extracted by the second to last DRB transmits to

deeper layers through skip connections rather than through the last DRB.

4.4 Conclusions

In this paper, we investigate the dependence of PhENN’s performance on its archi-

tecture as well as the layout of the lensless imaging system. Our observations can be

90

Figure 4-7: Quantitative analysis of the influence of the waist size using 100 Faces-
LFW test images.

summarized as follows:

∙ The NPCC loss function is better at retrieving the fine features of the phase

object compared with the MAE and SSIM loss functions.

∙ Skip connections are important as they pass high frequency information to

deeper layers.

∙ As the depth of PhENN increases, the phase recovery performance saturates at

some saturating depth and this saturating depth depends on the SBP of the

object.

∙ In an architecture with skip connections, the waist size does not influence

PhENN’s performance significantly.

91

92

Chapter 5

Resolution enhancement of PhENN

by spectral pre-modulation

5.1 Introduction

In this chapter, we begin to study the dependence of PhENN’s phase recovery per-

formance on the quality of the training examples. More specifically, we are concerned

with the spatial resolution that PhENN can achieve, depending on the spatial fre-

quency content of the examples PhENN is trained with.

From the point of view of the original inverse problem formulation Eq. (1.4),

PhENN in effect has to learn both the forward operator𝐻 and the prior Φ at the entire

range of spatial frequencies of interest. The examples presented to PhENN during

training establish the spatial frequency content that is stored in the network weights

contributing to the retrieval operation Eq. (4.1). In principle, this should be sufficient

because, if the training examples are representative enough of the object class, then

retrieval of each spatial frequency should be learnt proportionally to that spatial

frequency’s presence in the database. In practice, however, we found that spatial

frequencies with relatively low representation in the database tend to be overshadowed

by the more popular spatial frequencies, perhaps due to the nonlinearities in the

network training process and operation.

Invariably, high spatial frequencies tend to be less popular in most available

93

databases. ImageNet, in particular, exhibits the well-known inverse-square power

spectral density of natural images [133], as we verify in Fig. 5-5. This means that

high spatial frequencies are inherently under-represented in PhENN training. Com-

pounded by the nonlinear suppression of the less popular spatial frequencies due to

PhENN nonlinearities, as mentioned above, this results in low-pass filtering of the

estimates and loss of fine detail. Detailed analysis of this effect is presented in Sec-

tion 5.3.

To better recover high spatial frequencies in natural objects then, one should

emphasize high spatial frequencies more during training; this may be achieved, for

example, by flattening the power spectral density of the training examples before they

are presented to the neural network. It would appear that this spectral intervention

violates the object class priors: PhENN does not learn the priors of ImageNet itself, it

rather learns an edge-enhanced version of the priors. Yet, in practice, again probably

because of nonlinear PhENN behavior, we found this spectral pre-modulation strategy

to work quite well. The detailed approach and results are found in Section 5.4.

5.2 Imaging system architecture

5.2.1 Optical configuration

Our optical configuration is shown in Fig. 5-1. Unlike Chapter 3, a transmissive spa-

tial light modulator (SLM) (Holoeye, LC2012, pixel size 36𝜇m) is used in this system

as a programmable phase object 𝑓 representing the ground truth. The transmissive

SLM is coherently illuminated by a He-Ne laser light source (Research Electro-Optics,

Model 30995, 633nm). The light is transmitted through a spatial filter consisting of a

microscope objective (Newport, M-60X, 0.85NA) and a pinhole aperture (𝐷 = 5𝜇m)

and then collimated by a lens (focal length 200mm) before illuminating the SLM.

A telescope consisting of two plano-convex lenses 𝐿1 and 𝐿2 is placed between the

SLM and a CMOS camera (Basler, A504k, pixel size 12𝜇m). The CMOS camera

captures the intensity 𝑔 of the diffraction pattern produced by the SLM at a defocus

94

distance ∆𝑧 = 50mm. The focal lengths of 𝐿1 and 𝐿2 are set to 𝑓1 = 150mm and

𝑓2 = 50mm, respectively. As a result, this telescope demagnifies the object by a

factor of 3, consistent with the ratio between SLM and CMOS camera pixel sizes. An

iris with diameter 5mm is placed at the pupil plane of the telescope to keep the 0th

diffracted order of the SLM and filter out all the other orders.

The modulation performance of the SLM depends on the input and output po-

larizations, which are controlled by the polarizer 𝑃 and the analyzer 𝐴, respectively.

In order to realize phase-mostly modulation, we set the incident beam to be linearly

polarized at 310∘ with respect to the vertical direction and also set the analyzer to be

oriented at 5∘ with respect to the vertical direction. The specific calibration curves

for the SLM’s modulation performance are shown in Appendix Section A.3.

In this chapter, all the training and testing objects are of size 256 × 256. They

are zero-padded to the size 1024 × 768, before being uploaded to the SLM. For the

diffraction patterns captured by the CMOS camera, we crop the central 256 × 256

region for processing.

Figure 5-1: Optical configuration. SF: spatial filter; CL: collimating lens; P: linear
polarizer; A: analyzer; SLM: spatial light modulator; L1 and L2: plano-convex lenses;
F: focal plane of L2.

5.2.2 Neural network architecture and training

According to the analysis in the last chapter, the PhENN architecture that we im-

plement in this chapter is shown in Fig. 5-2, which consists 4 down-residual blocks

(DRBs), 4 up-residual blocks (URBs) and 2 residual blocks (RBs). Skip connections

are used in the architecture to pass downstream local spatial information learnt in

the initial layers. The training loss function used is NPCC.

95

Figure 5-2: Phase extraction neural network (PhENN) architecture.

5.3 Resolution analysis of ImageNet-trained PhENN

In Chapter 3, we trained separate PhENNs using the databases Faces-LFW [99] and

ImageNet [100] and found that both PhENNs generalize to test objects within and

outside these two databases. In this chapter, we restrict our analysis to the ImageNet

database only.

In the PhENN training phase, a total of 10, 000 images selected from the ImageNet

database are uploaded to the SLM and the respective diffraction patterns are captured

by the CMOS. For testing, we use a total of 471 images selected from several different

databases: 50 Characters, 40 Faces-ATT [104, 105], 60 CIFAR [103], 100 MNIST [101],

100 Faces-LFW, 100 ImageNet, 20 resolution test patterns [dot patterns as described

in Section 6.3], and 1 all-zero (dark) image. The diffraction pattern corresponding to

the all-zero image is used as the background. For every test diffraction pattern that

we capture, we first subtract the background and then normalize, before feeding into

the neural network.

96

5.3.1 Reconstruction results

The phase reconstruction results are shown in Fig. 5-3. Here, we use 100 ImageNet

test images as calibration data to compensate for the unknown affine transform ef-

fected by the NPCC-trained PhENN (Section 4.3.1). As expected, PhENN is not

only able to quantitatively reconstruct the phase objects within the same category as

its training database (ImageNet), but also to retrieve the phase for those test objects

from other databases. This indicates that PhENN has indeed learned a model of the

underlying physics of the imaging system or at the very least a generalizable map-

ping of low-level textures between the phase objects and their respective diffraction

patterns.

Figure 5-3: Reconstruction results of PhENN trained with ImageNet. (a) Ground
truth for the phase objects. (b) Diffraction patterns captured by the CMOS (after
background subtraction and normalization). (c) PhENN output. (d) PhENN recon-
struction after the calibration shown in Section 4.3.1. Columns (i-vi) correspond to
the dataset from which the test image is drawn: (i) Faces-LFW [99], (ii) ImageNet
[100], (iii) Characters, (iv) MNIST Digits [101], (v) Faces-ATT [104, 105], or (vi)
CIFAR [103], respectively.

97

5.3.2 Resolution test

In order to test the spatial resolution our trained PhENN, we use dot patterns as test

objects, shown in Fig. 5-4(a). Altogether 20 dot patterns are tested, with spacing 𝐷

between dots gradually increasing from 2 pixels to 21 pixels. From the resolution test

results shown in Fig. 5-4 it can be observed that the PhENN trained with ImageNet

is able to resolve two dots down to 𝐷 = 6 pixels but fails to distinguish two dots

with spacing 𝐷 ≤ 5 pixels. Thus, 𝐷 ≈ 6 pixels can be considered as the Rayleigh

resolution limit of this PhENN for point-like phase objects.

Figure 5-4: Resolution test for PhENN trained with ImageNet. (a) Dot pattern for
resolution test. (b) PhENN reconstructions for dot pattern with 𝐷 = 3 pixels. (c)
PhENN reconstructions for dot pattern with 𝐷 = 5 pixels. (d) PhENN reconstruc-
tions for dot pattern with 𝐷 = 6 pixels. (e) 1D cross-sections along the lines indicated
by red arrows in (b)-(d).

98

5.4 Resolution enhancement by spectral pre-modulation

In our imaging system, the SLM pixel size limits the spatial resolution of the trained

PhENN since the minimum sampling distance in all the training and testing objects

displayed on the SLM equals one pixel 𝑑𝑝 = 36𝜇m, or maximum spatial frequency[134]

13.9mm−1. However, as we saw in Section 5.3.2, the resolution achieved by our

PhENN trained with ImageNet database is merely 6 pixels (216𝜇m), much worse

than the theoretical value.

The additional factor limiting the spatial resolution of the trained PhENN is the

spatial frequency content of the training database. Generally, databases of natural

objects, such as natural images, faces, hand-written characters, etc. do not cover

the entire spectrum up to 1/(2𝑑𝑝). For example, below we analyze the ImageNet

database and show that it is dominated by low spatial frequency components, with

the prevalence of higher spatial frequencies decreasing quadratically.

During training, the neural network learns the particular prevalence of spatial

frequencies in the training examples as prior Φ, in addition to learning the physical

forward operator 𝐻. What this implies is that the less prevalent spatial frequencies

are actually learnt against, meaning that by presenting them less frequently we may

be teaching PhENN to suppress or ignore them. In the rest of this section, we present

evidence to corroborate this fact, and suggest as solution a pre-processing step that

edge enhances the training examples as a way to impress their importance better

upon PhENN.

5.4.1 Spectral pre-modulation

The 2D power spectral density (PSD) 𝑆(𝑢, 𝑣) as function of spatial frequencies 𝑢 and

𝑣 for the 10, 000 images in the ImageNet is shown in Figs. 5-5(a) and 5-5(b) in linear

and logarithmic scales, respectively; and in cross-section along the spatial frequency

𝑢 in Figs. 5-5(c) and 5-5(d). Not surprisingly [133], the cross-sectional power spectral

99

density follows a power law of the form |𝑢|𝑝 with 𝑝 ≈ −2.

Figure 5-5: Spectral analysis of the ImageNet database. (a& b) 2D normalized power
spectral density (PSD) of the ImageNet database in linear and logarithmic scale. (c&
d) 1D cross-sections along the spatial frequency 𝑢 of (a& b), respectively.

Therefore, we may approximately represent the 2D PSD of ImageNet database as

𝑆(𝑢, 𝑣) ∝
(︁√

𝑢2 + 𝑣2
)︁−2

=
1

𝑢2 + 𝑣2
. (5.1)

This is flattened by the inverse filter

𝐺(𝑢, 𝑣) =
√
𝑢2 + 𝑣2. (5.2)

As expected, the high spatial frequency components in the image are amplified after

the modulation, as can be seen, for example, in Fig. 5-6.

100

Figure 5-6: Spectral pre-modulation. (a) Original image [100]. (b) Modulated image.
(c) Fourier spectrum of the original image. (d) Fourier spectrum of the modulated
image.

5.4.2 Resolution enhancement

We trained a new PhENN using training examples that were spectrally pre-modulated

according to Eq. (5.2). That is, we replaced every training example 𝑓(𝑖, 𝑗) with

𝑓e(𝑖, 𝑗), where

𝐹e(𝑢, 𝑣) = 𝐺(𝑢, 𝑣)𝐹 (𝑢, 𝑣) (5.3)

and 𝐹 , 𝐹e are the Fourier transforms of 𝑓 , 𝑓e, respectively. We also collected the

corresponding diffraction patterns 𝑔𝑒(𝑖, 𝑗). The test examples were left without mod-

ulation, i.e. the same as in the original use of PhENN described in Section 5.3. All

the training parameters were also kept the same. Both dot pattern and ImageNet

test images were used to demonstrate the resolution enhancement, shown in Figs. 5-7

and 5-8, respectively.

101

Figure 5-7: Resolution test for PhENN trained with examples from the ImageNet
database with spectral pre-modulation according to Eq. (5.3). (a) Dot pattern for
resolution test. (b) PhENN reconstructions for dot pattern with 𝐷 = 2 pixels. (c)
PhENN reconstructions for dot pattern with 𝐷 = 3 pixels. (d) PhENN reconstruc-
tions for dot pattern with 𝐷 = 6 pixels. (e) 1D cross-sections along the lines indicated
by red arrows in (b)-(d).

From Fig. 5-7, we find that with spectral pre-modulation of the training examples

according to Eq. (5.3), PhENN is able to resolve two dots with spacing 𝐷 = 3 pixels.

Compared with the resolution test results shown in Fig. 5-4, it can be said that the

spatial resolution of PhENN has been enhanced by a factor of 2 with the spectral pre-

modulation technique. In Fig. 5-8, for the same test image selected from ImageNet

database, more details are recovered by the PhENN that was trained with spectrally

pre-modulated ImageNet, albeit at the cost of amplifying some noisy features of the

object, near edges most notably.

We also investigated the effect of spectral post-modulation in the original PhENN;

that is, if we use a PhENN trained without spectral pre-modulation, and modulate

102

Figure 5-8: Resolution enhancement demonstration. (a) Ground truth for a phase ob-
ject [100]. (b) Diffraction pattern captured by the CMOS (after background subtrac-
tion and normalization). (c) Phase reconstruction by PhENN trained with ImageNet
examples. (d) Phase reconstruction by PhENN trained with ImageNet examples that
were spectrally pre-modulated according to Eq. (5.3).

the PhENN output 𝑓(𝑖, 𝑗) according to

𝐹e(𝑢, 𝑣) = 𝐺(𝑢, 𝑣)𝐹 (𝑢, 𝑣) (5.4)

and 𝐹 , 𝐹e are the Fourier transforms of 𝑓 , 𝑓e, respectively, do we obtain a similar

resolution enhancement? The answer is no, as can be clearly verified from the results

of Fig. 5-9.

This negative result illustrates that in the original training scheme (without spec-

tral pre-modulation) the fine details are indeed lost and not recoverable by simple

means, e.g. linear post-processing. It also highlights the effect of the nonlinear-

ity in PhENN’s operation and bolsters our claim that spectral pre-modulation does

something non-trivial: it teaches PhENN a prior, namely how to recover high spatial

frequency content.

103

Figure 5-9: Spectral post-modulation. (a) Output of PhENN trained with ImageNet.
The same as Fig. 5-8 (c). (b) Modulated output.

5.5 Conclusions

The spectral flattening approach Eq. (5.3) as pre-modulation is a simple approach

that we found to be effective in enhancing PhENN’s resolution by a factor of 2 when

trained and tested on ImageNet examples. We have not investigated the performance

of other (non-flattening) filters; indeed, it would be an interesting theoretical question

to ask: given a particular form of the PSD in the training examples, what is the

optimal spectral pre-modulation for improving spatial resolution?

It is also worth repeating the concern about the priors that PhENN is learning

from the spatially pre-modulated examples that we pointed out in Section 5.1. The

amplification of certain noise artifacts, clearly seen in the result of Fig. 5-8(d), shows

that, in addition to learning how to resolve fine details in the artifact, PhENN has

learnt, somewhat undesirably, to edge enhance (since all the examples it was trained

with were also edge enhanced.) These observations should present fertile ground for

further improvements upon the work presented here.

104

Chapter 6

Learning to synthesize: splitting and

recombining low and high spatial

frequencies for image recovery

6.1 Introduction

In the last chapter, one feature of the examples that we have found to strongly influ-

ence training is the examples’ spatial frequency content. In the case of quantitative

phase retrieval (QPR), the forward operator is ill-posed due to the frequency scram-

bling, together with the loss of high spatial frequencies caused by the finite numerical

aperture. Therefore, the neural network would have to rely on the prior in the train-

ing examples to do the inversion. However, if we train the neural network using a

database such as ImageNet, which is well-known to have an inverse-square law (spa-

tial) power spectral density (PSD) [133], the DNN fails to learn the inverse square

law. Because high frequencies are sparser in the database, and the training process is

highly nonlinear, low frequencies may end up dominating the prior by more than their

fair share; low-pass filtering of the inverse 𝑓 and loss of fine detail ensues. We have

proposed a spectral pre-modulation approach to compensate for the scarcity of high

spatial frequencies in the database and showed that indeed fine details are recovered;

105

however, at the same time, high-frequency artifacts appeared in the reconstructions,

evidently because the spectral pre-modulation also taught the DNN to edge enhance.

In this chapter, we propose a novel Learning Synthesis by DNN (LS-DNN)

method to effectively manage and synthesize different spectral bands according to

their relative behavior in the forward operator and prevalence in the training database.

Our approach, similar to [135], processes the signal separately into two DNNs, as-

signed to low- and high-frequency bands, respectively. However, unlike [135] we learn

how to synthesize the two bands adaptively; we have also modified the training pro-

cedure. More specifically, we train the two DNNs as follows: the low-band DNN

(DNN-L) is trained so that its output 𝑓LF match the unfiltered examples; whereas

the high-band DNN (DNN-H) is trained such that its output 𝑓HF match a filtered ver-

sion of the examples where high spatial frequencies have been amplified. This choice

for the DNN-L is for databases such as ImageNet, where high frequencies are natu-

rally under-represented, as pointed out earlier. We then use a third DNN (DNN-S) to

synthesize the reconstructions 𝑓LF and 𝑓HF from DNN-L and DNN-H, respectively,

into a final estimate 𝑓 . This ensures that the low and high spatial frequencies are

rebalanced correctly in the final reconstruction, according to the relative behavior of

the two bands in the forward operator and the prior expressed by the examples. In

this chapter, we demonstrate the effectiveness of the LS-DNN method in the sce-

nario of QPR, but this concept may be generalized to a wider range of image recovery

problems.

6.2 Methods

6.2.1 Learning Synthesis by Deep Neural Networks (LS-DNN)

We propose a two-step approach (Fig.6-1) to tackle the difficulty in restoring high

frequency components. First, we use two separate deep neural networks (DNNs)

parallel,DNN-L and DNN-H. DNN-L is what typically exists in previous works – it

learns to map from the measurements 𝑔 to the un-filtered ground truth images 𝑓 ;

106

while DNN-H takes in measurements 𝑔 and maps them to a frequency-modulated

ground truth 𝑓 . The modulation in the frequency domain (see Section 5.4), amplifies

the relative weights of the high spatial frequencies, thereby facilitating the extraction

of high frequencies from the priors.

We expect the reconstruction by DNN-L to be reliable in the low frequency range

but not in the high frequency range; whereas the one by DNN-H should be better in

the high-frequency range but distorting the low frequency range and may be creating

hallucination artifacts. The training of DNN-L and DNN-H can be done in parallel.

We denote the reconstructions by DNN-L and DNN-H, during training, as 𝑓𝐿𝐹 and

𝑓𝐻𝐹 , respectively.

Moreover, we train a third DNN, denoted as DNN-S, which learns to synthesize

the low frequency and high frequency reconstructions from the previous networks 𝑓𝐿𝐹

and 𝑓𝐻𝐹 , to generate the final reconstruction 𝑓 matching the un-modulated ground

truth.

Figure 6-1: Proposed LS-DNN.

6.2.2 Architectures of Deep Neural Networks

DNN-L and DNN-H follow the PhENN architecture that we implement in Chapter 5.

DNN-S takes in 𝑓𝐿𝐹 and 𝑓𝐻𝐹 as inputs. To best preserve the high frequency informa-

tion contained in 𝑓𝐻𝐹 , we do not have it pass through most layers of DNN-S. Instead,

it only adds to the final outcome of 𝑓𝐿𝐹 passing through the Residual U-Net (has

107

the same architecture as PhENN) to form the final reconstruction 𝑓 . In other words,

the DNN-S trains to map 𝑓𝐿𝐹 to a variant of itself that removes artifacts brought up

by 𝑓𝐻𝐹 and (conceptually) synthesizes the low-frequency components contained in

𝑓𝐿𝐹 and the high-frequency components contained in 𝑓𝐻𝐹 . A potential variation of

DNN-S is to make it structurally the same as DNN-L (and DNN-H), except for the

input to be instead the concatenation of 𝑓𝐿𝐹 and 𝑓𝐻𝐹 (256x256x2) so that they both

pass through all successive layers in the DNN. However, due to the low-frequency

dominant nature of the DNN-S ground truth examples, exposure of 𝑓HF to trainable

convolutional filters may cause loss of high frequency information contained in 𝑓HF,

as in DNN-L. This is why we opted for the first variant.

6.3 Results

6.3.1 Implementation details

The training and testing data used in this chapter is the same as those being used in

Chapter 5. All the neural networks are trained with NPCC loss function. The training

is conducted on a Nvidia GTX1080 GPU using TensorFlow. Adam optimizer is used

in the optimization of each deep neural network. Each neural network is trained for

20 epochs and the batch size is 10.

6.3.2 Reconstruction Results - Spatial Domain

Fig.6-2 shows test results of our LS-DNN approach. DNN-L, DNN-H and DNN-S

label the outputs of the corresponding DNNs. We can observe that, DNN-H succeeds

in preserving high frequency components better than DNN-L, as expected, and the

DNN-S removes the artifacts introduced by DNN-H through combining with the the

low-frequency components captured well by DNN-L. Quantitative comparisons for

the DNN-L and DNN-S outputs on the entire 100 test images are shown in Table.6.1.

DNN-S also achieves better quantitative performance in the problem of QPR.

Dot patterns are also used to test the resolution achieved by LS-DNN, which is

108

Figure 6-2: Reconstruction results for QPR.

Table 6.1: Quantitative evaluations of DNN-L and DNN-S performance in QPR.
DNN-L

PSNR/SSIM
DNN-S

PSNR/SSIM

QPR 18.7531/0.3684 18.8525/0.3884

shown in Fig.6-3. For the test dot pattern with a spacing of 𝐷 = 4 pixels, while the

DNN-L reconstruction failed to distinguish the nearby dots, the DNN-S output suc-

cessfully resolve the two dots (according to the Rayleigh criterion). This demonstrates

the DNN-S’s superiority over DNN-L in reconstructing fine details.

To demonstrate that performance improvement of DNN-S over DNN-L is a not

a sole consequence of computational capacity increase, we design another ResNet,

DNN-L-3, which has the same architecture but twice as many feature maps (except

in the last residual block) on each convolutional layer as its counterpart in DNN-

L. The resulting DNN-L-3 has more than three times as many trainable parameters

as DNN-L(or DNN-H, DNN-S). Fig.6-4 shows the reconstructions by DNN-L-3 as

compared to those by DNN-S. The superiority of DNN-S results proves our claim.

6.3.3 Reconstruction Results - Frequency Domain

Next we analyze LS-DNN performance in the frequency domain. Fig.6-5 show the

2D Fourier spectra of the images in Fig.6-2 [in logarithmic scale]. We find that, as

expected, while DNN-L works well in the low frequency range but fails to recover

the high frequency components, DNN-H is better at retrieving the high frequency

components but loses some low frequency information. DNN-S serves as a learned

109

Figure 6-3: Resolution test results. (a) Dot pattern with spacing 𝐷 = 4 pixels, (b)
DNN-L reconstruction, (c) DNN-S reconstruction, (d) 1D cross-sections along the line
indicated by red arrows in (b) and (c).

Figure 6-4: Comparison with DNN-L-3 for QPR.

synthesizer of the DNN-L and DNN-H outputs at all frequency bands, low and high.

To investigate the performance of our approach on the entire test dataset, we

compute the 2D power spectral density (PSD) for the reconstructions of the entire

ensemble of the 100 test images and show the 1D cross-sections (along the diagonal

direction) in Fig.6-6. As expected, the PSD for the DNN-L output matches well

with the ground truth in the low frequency range but is much lower than the ground

truth in the high frequency range. Notably, in the case of DLI, the point that the

performance of DNN-L starts to drop almost coincides with the cutoff frequency in

the measurement. The PSD for DNN-H output is getting closer to the ground truth

110

Figure 6-5: Fourier spectra of the reconstructions in QPR (logarithmic scale).

in the high frequency range than the DNN-L output, benefiting from training data

pre-modulation. However, it is much worse in the low frequency range. The DNN-S

output, which takes the advantage of both DNN-L and DNN-H, has a PSD that is

close to the ground truth within the entire frequency range.

Figure 6-6: 1D cross-sections of the reconstructions’ power spectral density (PSD) on
100 ImageNet test images.

111

6.4 Conclusions

We have proposed a novel LS-DNN architecture that leverages the learning capability

of a neural network to optimally synthesize parallel reconstructions that are reliable

on low and high frequencies, respectively.

The LS-DNN methodology is applicable to many other ill-posed image recovery

problems, when there is imbalance between the spatial frequency region where the

forward operator suppresses or loses content and the availability of content in the

same frequency range in the training database to compensate. Generalizations may

also be possible, for example to more than two frequency bands, similarly trained

separately with pre-filtering and recombined in learned fashion; however, splitting

the frequency bands too finely may be counterproductive if it results in too many

parameters to learn. This is an interesting topic for future work.

6.5 My contributions

The work in this chapter was led by Mo Deng. I contributed in developing the concept,

performing the experiment, analyzing the data and writing the manuscript.

112

Chapter 7

Quantitative phase microscopy by

LS-DNN enhanced PhENN

7.1 Introduction

Up to now, we have demonstrated the capability of deep learning techniques in solving

computational imaging problems and also showed how to enhance reconstructed image

quality by selecting the appropriate network structure as well as modulating the

training examples. Nevertheless, in all the experiments, the training data and the

testing data were emulated using the same SLM. Then, it becomes natural to ask:

how are the performances of those SLM-trained neural networks when tested by actual

objects such as biological cells.

In this chapter, we set out to test the performances of a SLM-trained PhENN

in recovering actual phase objects. To perform these tests, the first decision that we

have to make is the selection of an appropriate training database. Existing works that

applying deep learning to reconstruct actual phase objects all use a specific training

database that contains the same type of images as the phase objects that they want to

recover [137, 138, 139], e.g. ref.[137] trained and tested their neural network on Pap

smear samples; in ref. [138], the training and tested images were all taken from Hela

cell samples. This training strategy generally leads to high reconstruction qualities,

but also has two main drawbacks at the same time. Firstly, this kind of training

113

dataset is not easy to obtain in practice. For an arbitrarily given phase sample, we

usually do not have access to a large number of training images of the the same type.

Secondly, this kind of training dataset usually contains a strong prior, which limits

the generalizability of the trained neural network. In other words, the neural network

trained using this strategy only performs well on a specific kind of samples. If a

new type of sample is present, the neural network need to be re-trained. Therefore,

training the neural network on a more general database such as ImageNet may be

a better option. ImageNet is a large open database, which can be readily obtained.

More importantly, as we have shown in Chapter 3 and 5, the PhENN trained on

ImageNet has superior generalizability: it performs well on objects created from

other databases (e.g. Faces-LFW, MNIST, etc). Because of that, we should expect an

ImageNet-trained PhENN to perform well on different types of actual phase objects.

Hence, we choose ImageNet as the training database in this chapter.

Actual phase objects usually contains fine features, e.g. the diameter of a typical

red blood cell (RBC) is ∼ 8𝜇m. Nevertheless, when a neural network is trained

with examples emulated by a SLM, its spatial resolving ability is limited by the

pixel size of the SLM. Although the spatial resolution can be enhanced by using the

spectral pre-modulation technique (Chapter 5) and the subsequent LS-DNN approach

(Chapter 6), the optimal resolution that a trained neural network can achieve still

can not be smaller than 1 pixel (36𝜇m for the SLM that we use here), which is not

sufficient to resolve the fine features of many samples. In order to solve this problem,

we insert a wide-field microscope module into the imaging system. In this way, as we

will show in detail in Section 7.2, the equivalent pixel size at the sample plane can be

down to sub-micros, making those fine features resolvable.

The structure of this chapter is as follows: the details about the imaging system

will be described in Section 7.2; the reconstruction result of a RBC sample (Carolina,

unstained), as well as the demonstrations that PhENN has indeed learned the physical

model, will be shown in Section 7.3; and concluding thoughts will be provided in

Section 7.4.

114

7.2 Imaging system

The optical configuration of the imaging system is shown in Fig. 7-1. The setup is

quite similar to the one that we use in Chapter 5 [Fig.5-1]. The difference is that

we insert a wide-field microscope module (including a sample stage, an objective lens

and a tube lens) between the collimating lens (CL) and the polarizer (P). The system

is aligned in a way such that the SLM is placed at the focal plane of the tube lens.

Then, we may approximate the optical field immediately before the SLM to be a

magnified version of the field at the sample plane. In this system, another objective

lens with long working distance and small exit pupil (Mitutoyo, Plan Apo NUV,

50X/0.42) is used as CL, so as to increase the illumination intensity. The same as

Chapter 5, the polarizer and the analyzer are set to the orientations under which the

SLM is operated in the phase-mostly modulation mode. The focal lengths for the

two plano-convex lenses in the telescope are 𝑓1 = 300mm and 𝑓2 = 100mm, which

result in a de-magnification ratio of 3, matching the ratio between the pixel sizes of

the SLM and the CMOS.

Figure 7-1: Optical configuration. SF: spatial filter; CL: collimating lens; P: polarizer;
A: analyzer; 𝐿1,𝐿2: plano-convex lenses; F: focal plane of 𝐿2.

The system is operated in three modes: training, validation and testing. In the

training mode, nothing is placed on the sample stage. 10000 images from the Ima-

geNet database are sequentially displayed on the SLM and their respective diffraction

patterns are captured by the CMOS. When the neural network is trained using this

set of training data, it learns the mapping between the 2-D phase distribution at

the SLM plane and the 2-D intensity pattern at the CMOS plane. In the validation

mode, nothing is placed on the sample stage. 450 images from the ImageNet (disjoint

115

with the training data), Faces-LFW, Characters, MNIST, faces-ATT and CIFAR

databases are sequentially displayed on the SLM and their respective diffraction pat-

terns are captured by the CMOS. This dataset is used to validate the performance of

the trained neural network. In the testing mode, we place the phase object that we

want to image on the sample stage. In the meantime, an uniform image where each

pixel has the same value is displayed on the SLM. In this case, the SLM itself does not

introduce any additional phase contrast. Then, the field immediately after the SLM

is just a magnified version of the the phase object and it can be readily obtained by

feeding the intensity pattern captured by the CMOS into the trained neural network.

7.3 Results

In this chapter, we implement the LS-DNN enhanced PhENN (see Chapter 6) so as

to obtain a good reconstruction quality. The neural network architecture is described

in Section 6.2.2. The same as Chapter 5, while collecting the training and validation

data, each image is resized to 256 × 256 and then zero-padded to 1024 × 768 before

being displayed on the SLM. Also, we only crop the central 256 × 256 region of the

diffraction patterns captured by the CMOS for processing. The output of the neural

network is calibrated following the procedure described in Section 4.3.1 to compensate

for the unknown affine transform effected by the NPCC training loss function.

7.3.1 Red blood cell imaging

The actual phase object that we image is a red blood cell (RBC) sample (Carolina,

unstained). Here, we use a high magnification objective lens (Olympus, UPlanFL N,

100X/1.30) so as to increase the spatial resolving ability of the imaging system. In

addition, a preprocessing step [140] based on the Gerchberg-Saxton (GS) algorithm

is applied to the raw measurement before feeding it into the neural network.

The validation results of our LS-DNN enhanced PhENN in this case are shown in

Fig.7-2. As expected, our neural network generalizes well: it is able to reconstruct

the phase profiles of images from different classes, despite the fact that it was trained

116

exclusively on images from the ImageNet database.

Figure 7-2: Validation results by LS-DNN enhanced PhENN. (a) Ground truth for
the phase objects. (b) Diffraction patterns captured by the CMOS (after normaliza-
tion). (c) Reconstructions. Columns (i-vi) correspond to the dataset from which the
validation image is drawn: (i) Faces-LFW [99], (ii) ImageNet [100], (iii) Characters,
(iv) MNIST Digits [101], (v) Faces-ATT [104, 105], or (vi) CIFAR [103], respectively.

The reconstruction result of the RBC sample is shown in Fig.7-3. The LS-DNN

enhanced PhENN is able to qualitatively reconstruct the phase profiles of the RBC

sample. To evaluate the reconstruction results quantitatively, we convert the phase

value to the thickness of the sample, given the refractive index of the RBC (∼ 1.39)

[141] and the PBS buffer (∼ 1.335). We find that for some of the RBCs, our recovered

thickness matches well with the thickness measurement reported in [142] (1.7−2.2𝜇m),

as shown in the 1D cross-section plot (Fig. 7-4). However, at some other regions,

quantitative error still exists. Possible sources for quantitative error will be discussed

in Section 7.3.1.

7.3.2 Demonstration that PhENN indeed learned the physics

Although the reconstruction by the neural network contains quantitative error, our

LS-DNN enhanced PhENN actually is not doing something trivial such as pattern

matching, as some readers may argue by looking at the raw measurements by the

CMOS (e.g. Row b in Fig.7-2), where some salient features of the objects are already

visible.

117

Figure 7-3: Red blood cell (RBC) imaging results. Scale bar: 10𝜇m. (a) Inten-
sity measurement of the diffraction pattern. (b)Phase reconstruction by LS-DNN
enhanced PhENN.

Figure 7-4: 1D cross-section of the reconstructed RBC sample. This profile is along
the line indicated by the red line in Fig. 7-3(b).

The forward imaging model of lensless QPR, as shown in Eq. 3.1, is non-linear.

However, when the weak object approximation holds (exp{𝑖𝑓(𝑥, 𝑦)} ≈ 1 + 𝑖𝑓(𝑥, 𝑦))

[143], the forward imaging model may be linearized as,

𝐺(𝑢, 𝑣) ≈ 𝛿(𝑢, 𝑣) + 2 sin
(︀
𝜋𝜆𝑧(𝑢2 + 𝑣2)

)︀
𝐹 (𝑢, 𝑣). (7.1)

Here, 𝐺(𝑢, 𝑣) and 𝐹 (𝑢, 𝑣) are the Fourier transform of the intensity measurement

𝑔(𝑥, 𝑦) and the phase distribution of the object 𝑓(𝑥, 𝑦), respectively. sin (𝜋𝜆𝑧(𝑢2 + 𝑣2))

is the weak object transfer function (WOTF) for lensless QPR, which is plotted in

Fig.7-5.

Has our LS-DNN enhanced PhENN really learned the correct WOTF?, we first in-

118

Figure 7-5: Weak object transfer function (WOTF) for lensless QPR (i.e. Fresnel
propagation is the free space). An example of nulls is indicated by the purple circle.
For this plot, the propagation distance 𝑧 = 240mm, the wavelength 𝜆 = 633nm.

vestigate this point by simulation. The training and testing database contains 10000

and 100 images from ImageNet, respectively. To satisfy the weak object approxima-

tion, the maximum phase depth is set to be 0.1𝜋. In generating the corresponding

intensity measurements, we set the propagation distance to be 𝑧 = 20mm and the

pixel size of the object to be ∆𝑥 = 12𝜇m. Once the network is trained, the learned

WOTF is computed as,

ˆWOTF =
1

100

100∑︁
𝑘=1

𝐺𝑘(𝑢, 𝑣) − 𝛿(𝑢, 𝑣)

𝐹𝑘(𝑢, 𝑣)
. (7.2)

Here, 𝐺𝑘(𝑢, 𝑣) and 𝐹𝑘(𝑢, 𝑣) are the Fourier transform of the intensity measurement

𝑔𝑘(𝑥, 𝑦) and the network’s estimated phase 𝑓𝑘(𝑥, 𝑦) for the 𝑘th testing object, respec-

tively.

The 1D cross-section along the diagonal direction of the learned WOTF is shown

in Fig. 7-6. We find that the learned WOTF matches well with the actual WOTF

in low and middle frequency range (
√
𝑢2 + 𝑣2 < 0.4pixel−1). The mismatch becomes

larger at higher spatial frequencies, which is due to the inverse-square power law in the

power spectral density (PSD) of ImageNet images, as we have discussed in Chapter 5.

This result indicates that our network has indeed learned the physics.

As you may have already observed, there exists several nulls (the locations where

119

Figure 7-6: Learned WOTF by LS-DNN enhanced PhENN. This is the 1D cross-
section along the diagonal direction.

the values are equal to zero) in the transfer function shown in Fig.7-5. At those

nulls, the sign of the transfer function switches, thus introducing a phase delay of 𝜋

in the spatial frequency domain. As a result, the measured pattern at the detector

plane will shift by half the period in the spatial domain at those frequencies. We

refer this phenomenon as the ’phase shift effect’. Because of that, when we image a

star-like phase object, the fringes in the measurement will become discontinuous. As

we highlight by the circles in Fig. 7-7, the fringes shift by about half the period at

some particular radii.

Figure 7-7: Simulated phase shift effect on a star-like phase target.

120

Is our LS-DNN enhanced PhENN able to undo this phase shift effect? We per-

form experiments on a star-like phase target (Benchmark Technologies)[136] using

the system shown in Fig. 7-1. In this test, an objective lens with 20X magnification

(Nikon, Plan, 20X/0.4) is used so as to achieve a field of view that is large enough

to capture the entire sample. As expected, the fringes in the measurement become

discontinuous, as we highlight by the yellow and red circles in Fig.7-8(a). We note

that although the phase depth of the star target (0.55𝜋) does not quite satisfy the

weak object approximation, the ’phase shift effect’ still exist. In the meantime, for the

reconstruction result shown in Fig.7-8(b), all the fringes in the phase target become

continuous again. This result indicates that our PhENN is not merely doing pattern

matching; it has indeed learned the Fresnel propagation operator and is attempting

to undo the ’phase shift effect’ in the correct way.

Figure 7-8: Fringe continuity analysis. Scale bar: 50𝜇m. (a) Intensity measurement of
the diffraction pattern when 𝛿𝑧 = 0. (b) Phase reconstruction by LS-DNN enhanced
PhENN when 𝛿𝑧 = 0. (c) Intensity measurement of the diffraction pattern when 𝛿𝑧 =
0.6mm. (d) Phase reconstruction by LS-DNN enhanced PhENN when 𝛿𝑧 = 0.6mm.

To further demonstrate this point, we place the star-like phase target at an out-of-

focused sample plane, where the distance between the sample plane and the focal plane

of the objective lens is 𝛿𝑧 = 0.6mm. In this case, the optical field at the SLM plane,

121

which is aligned at the focal plane of the tube lens, will become a de-focused version

of the star pattern, i.e. shifts in the fringes should occur due to Fresnel propagation in

the free space. As expected, our neural network, which is trained to recover the phase

field at the SLM plane from the CMOS measurement, outputs a reconstruction where

the fringes indeed become discontinuous at some spatial frequencies (as indicated by

the green and blue circles in Fig. 7-8(d)), although the raw measurement shown in 7-

8(c) does not contain these fringe discontinuities. Furthermore, the spatial frequencies

(radii) where the fringe shifts happen in the network output match with the theoretical

predictions. Therefore, our PHENN has indeed learned the actual light propagation

model, rather than doing something trivial like pattern matching.

The reconstruction results of the star-like phase target is also evaluated quantita-

tively. This phase target is made of an acrylate polymer (𝑛 = 1.52) on Corning Eagle

XG Glass. The nominal height of the target is 335.4nm, which results in a phase

delay of 𝜑 = 0.55𝜋 for the light with wavelength 𝜆 = 633nm. The reconstructed

phase values are close to 0.55𝜋 in some regions, as shown in the 1D cross-section plot

(Fig. 7-9), but are very different from the ground truth in some other regions.

Figure 7-9: 1D cross-section of the reconstructed phase target. This profile is along
the line indicated by the orange line in Fig. 7-8(b).

The quantitative error of our PhENN can be explained in the following aspects.

First, due to the wide-field microscopy module, the signal to noise ratio (SNR) of the

captured diffraction pattern is small, making it difficult for the neural network to do

the reconstruction. Second, what the neural network tends to reconstruct is actually

122

the phase image at the SLM plane. However, due to the limited numerical aperture

of the microscopy module, the phase image at FP is not simply a magnified version of

the phase target, but a low-pass filtered version. As a result, a binary phase target at

the sample plane will no longer generate a binary image at SLM plane. In addition,

the aberrations caused by the microscopy module and the inevitable misalignment of

the system will also make the SLM plane phase image distorted. Third, the training

data are generated by the transmissive SLM, which is not a perfect phase object. It

has a coupled intensity modulation with maximum ratio ∼ 2.7(see Section A.3) and

a small fill factor of 58%. These will also influence the performance of the neural

network.

7.4 Conclusions

In this chapter, we build up a phase microscopy system to test the performance of our

LS-DNN enhanced PhENN in imaging actual phase objects. We demonstrate that

when the neural network is trained on a general database such as the ImageNet, it

generalizes well and is able to qualitatively reconstruct two different actual phase ob-

jects: one star-like phase target and a RBC sample. In addition, through the learned

WOTF simulation and the star-like phase target experiment, we also demonstrate

that our trained neural network has indeed learned the physics rather than doing

something trivial like pattern matching.

Nevertheless, relatively large quantitative errors still exist in the reconstructions

by PhENN due to several factors including the low SNR, the aberrations and mis-

alignment in the microscopy module, as well as the residual intensity modulation of

the SLM. Further improvement is required to reduce all these influences to achieve a

better phase retrieval quality.

123

124

Chapter 8

Conclusions and future works

This thesis has studied the application of deep learning (DL) techniques in solving the

inverse problems in computational imaging (CI). Compared with traditional inverse

algorithms in CI, DL approaches do not need explicit knowledge about the forward

model and the prior of the class of the objects being imaged. As a result, accurate

characterization of the imaging system is no longer required and those objects whose

priors are difficult to be analytically formulated (e.g. flowers, cars, etc) can be imaged.

In addition, the use of DL also increases the inference speed of CI, which is very

beneficial in real-time applications.

The main contributions of this thesis are summarized as follows:

∙ Proposed and experimentally demonstrated the first convolutional neural net-

work (CNN) architecture, IDiffNet, for imaging through scattering media.

∙ Proposed and experimentally demonstrated the first end-to-end DL architec-

ture, PhENN, for quantitative phase retrieval. (Together with leading author

Ayan Sinha)

∙ Proposed a novel training loss function, NPCC, as well as the related calibration

procedure. We demonstrated that NPCC is better at recovering spatially sparse

objects and fine features.

∙ Investigated the influences of the network architecture (e.g. connectivity, net-

125

work depth, waist size) and the training example quality (spatial frequency

content in particular) to the performance of trained network.

∙ Proposed and experimentally demonstrated a spectral pre-modulation approach

to enhance the spatial resolving ability of PhENN.

∙ Proposed and experimentally demonstrated a Learning Synthesis by DNN (LS-

DNN) method, which is a general DL approach that effectively manage and

synthesize different spectral bands so as to improve the visual qualities of re-

covered images in CI problems. (Together with leading author Mo Deng)

∙ Applied the LS-DNN enhanced PhENN to a phase imaging microscope and

experimentally demonstrated that the network was able to recover actual phase

objects when trained on ImageNet images emulated by a SLM.

∙ Based on the simulation of the learned WOTF and the experiment of the phase

shift effect in the star-like target measurement, we demonstrated that our net-

work has indeed learned the physical model.

Beyond this work, there are many more problems in the application of DL tech-

niques to CI that are worth investigating in the future:

∙ In this thesis, each neural network is treated as a "black box" and is trained

in the end-to-end fashion, i.e. the raw measurement from the detector is feed

directly into the neural network. In other words, no physics is included in the

training process. The neural network has to learn everything from scratch.

However, in some imaging scenarios, the knowledge about the forward model

is available (e.g. quantitative phase retrieval). In these cases, if we are able to

explicitly include the known physical model into the network training process,

it will serve as a good initialization. As a result, we shall expect a boost in the

neural network performance.

∙ In this thesis, DL technique is only used as an alternative method to solve

the inverse problem in CI. However, DL can also contribute in the physical

126

measurement part. It will be interesting to study if we can use DL to co-design

the hardware and software for a CI system, i.e. optimize the optical setup (e.g.

illumination pattern, coded aperture pattern, etc.) and the inverse algorithm

(regression network) together in the end-to-end fashion.

∙ One major drawback of DL techniques is the requirement of big data. For some

tasks, however, large training dataset is not readily available. Therefore, it will

be beneficial to conduct research on data augmentation approaches. Moreover,

to the best of our knowledge, all the neural networks in CI nowadays are trained

in the supervised fashion, which requires paired data. If semi-supervised or

unsupervised learning can be applied to CI, the data collection process will

become much easier.

127

128

Appendix A

Calibration of the SLMs and the

related analysis

A.1 Calibration of the reflective SLM in the inten-

sity modulation mode

A.1.1 Calibration

In order to calibrate the modulation performance of the SLM, we built a Michelson

interferometer shown in Fig. A-1. Compared with our experimental setup shown in

Fig. 2-1, we remove the glass diffuser in this calibration setup and place a reflecting

mirror M2 to the left of the beam splitter, creating the reference beam.

While calibrating the intensity modulation, we use a photon diode sensor (New-

port, 818-SL) as the detector. The mirror M2 is blocked so that the light being

detected comes from the SLM only. All the pixels of the SLM is driven by the same

value V (uniform) and the corresponding intensity values measured by the photon

diode is recorded. By changing V from 0 to 255 and repeating the measurement, we

obtain the intensity modulation curve as shown in Fig. A-2, which is normalized to

the intensity values at 𝑉 = 0. The intensity modulation of the SLM follows a mono-

tonic relationship with respect to the assigned pixel value and a maximum intensity

129

Figure A-1: The optical setup for calibrating the phase and intensity modulation of
SLM. SF: spatial filter; CL: collimating lens; M1, M2: mirror; L1,L2: lens; POL:
linear polarizer; BS: beam splitter; SLM: spatial light modulator.

modulation ratio of ∼ 17 can be achieved.

While calibrating the phase modulation, we use the CMOS camera as the detector

and the interferometer setup is used. All the pixels of the SLM is driven by the same

value V (uniform) and the corresponding interference patterns are captured by the

CMOS camera. Let 𝜑(𝑉) denote the relative phase between the light reflected by

the uniform SLM when its pixels are all driven with gray scale value V, relative to

M2; and 𝐼0 denote the intensity reflected by M2. In the uniform illumination case,

given 𝑀(𝑉), which is the calibrated intensity modulation, the intensity recorded by

the CMOS should be of the form

𝐼(𝑉)

𝐼0
= 1 +𝑀(𝑉) + 2

√︀
𝑀(𝑉) cos𝜑(𝑉) (A.1)

We arbitrarily assigned 𝜑(0) = 0 radians. The phase modulation curve is shown in

Fig. A-3. The phase depth is ∼ 0.6𝜋.

A.1.2 Analysis of the influence of phase modulation

In Chapter 2, we want the SLM to performance as a pure intensity object. However,

as we showed in the last section, due to the optical anisotropy of the liquid crystal

molecules, the SLM will always perform a correlated phase modulation and the phase

depth is ∼ 0.6𝜋 for our experimental arrangement. In order to analyze the influence

130

Figure A-2: Experimentally calibrated intensity modulation curve with error bounds
in the grayscale range of [0,255] for the SLM.

of this phase modulation in the formation of the speckle patterns, we carry out the

following simulations.

For a randomly given image uploaded to the SLM, we simulate the corresponding

speckle patterns on the CMOS camera using Eqs.2.1 and 2.2 in the main manuscript

for two cases:

(a): Assuming the SLM to perform both intensity and phase modulation, which

is the actual modulation in practice, i.e. 𝑔(𝑥, 𝑦) =
√︀
𝑀 [𝑉 (𝑥, 𝑦)] exp{𝑖𝑃 [𝑉 (𝑥, 𝑦)]}.

Here, 𝑉 (𝑥, 𝑦) is the pixel size of the uploaded image, 𝑀(𝑉) and 𝑃 (𝑉) are the inten-

sity modulation and phase modulation curves as shown in Fig. A-2 and Fig. A-3,

respectively.

(b): Assuming the SLM to perform intensity modulation only, i.e. 𝑔(𝑥, 𝑦) =√︀
𝑀 [𝑉 (𝑥, 𝑦)].

In our simulation, we set those parameters as: 𝜇 = 16𝜇m, 𝜎0 = 5𝜇m, 𝜎 = 4𝜇m

for the 600-grit diffuser and 𝜇 = 63𝜇m, 𝜎0 = 14𝜇m, 𝜎 = 15.75𝜇m for the 220-grit

diffuser. Other simulation parameters are set to be the same as the actual experiment:

𝑧𝑑 = 15mm, 𝑅 = 12.7mm and 𝜆 = 632.8nm.

For the speckle patterns obtained in case (a) and (b), we also compute their

respective autocorrelation functions and take the element-wise ratios between them.

131

Figure A-3: Experimentally calibrated phase modulation curve with error bounds in
the grayscale range of [0,255] for the SLM.

This process is repeated for both diffusers and the corresponding results are shown

in Fig. A-4 and A-5.

We find that for both diffusers, the speckle patterns obtained in case (a) and (b) are

qualitatively similar. Most importantly, the autocorrelation ratio values are all ∼ 1

with a small standard deviation, which indicates that the correlated phase modulation

will not change the statistics of the resulted speckle patterns. To further demonstrate

this point, we repeat this simulation process for 10 times for both diffusers and plot

the probability histograms for the resulting autocorrelation ratios. The results are

shown in Fig. A-6. As expected, the autocorrelation ratio values are all ∼ 1. We

also compute the mean values 𝜇𝑟 and standard deviations 𝜎𝑟 for the two histograms:

𝜇𝑟 = 1.0009, 𝜎𝑟 = 0.0020 for the 600-grit diffuser and 𝜇𝑟 = 1.0005, 𝜎𝑟 = 0.0013 for the

220-grit diffuser. Therefore, we conclude that the influence of the correlated phase

modulation can be neglected and we can reasonably approximate the SLM as a pure

intensity object.

132

Figure A-4: Analysis of the influence of phase modulation in the formation of speckle
patterns for 600-grit diffuser. (a) Input image; (b) Simulated speckle pattern for
the complex object; (c) Autocorrelation of the speckle in (b); (d) Simulated speckle
pattern for the pure-intensity object; (e) Autocorrelation of the speckle in (d); (f)
Element-wise ratios between the autocorrelations in (c) and (e).

A.2 Calibration of the reflective SLM in the phase

modulation mode

We use the same system as shown in Fig. A-1 to calibrate the reflective SLM in

the phase modulation mode. While calibrating the intensity modulation curve, we

block the mirror M2 so that the beam on the CMOS is coming from the SLM only

and set the left-hand half pixels of the SLM driven by a constant value zero and the

right-hand half driven by a different value (half-half), to determine 𝑀(𝑉). After that,

we obtain the phase modulation curve following the same procedure as described in

section A.1 [Drive the SLM pixels uniformly from 0 to 255 and use Eq. ??].

The two curves are shown, respectively, in Figs A-7 and A-8. The maximum

intensity modulation ratio measured was ∼ 1.3 for our configuration of polarizer

and analyzer. In contrast, per manual specification, the SLM’s maximum intensity

modulation ratio is ∼ 12000 for other polarizer/analyzer configurations. Since our

intensity modulation is small, we neglected it while designing our neural network

architecture.

Figure A-9 shows the variation of phase modulation with 8-bit gray scale values

133

Figure A-5: Analysis of the influence of phase modulation in the formation of speckle
patterns for 220-grit diffuser. (a) Input image [99]; (b) Simulated speckle pattern for
the complex object; (c) Autocorrelation of the speckle in (b); (d) Simulated speckle
pattern for the pure-intensity object; (e) Autocorrelation of the speckle in (d); (f)
Element-wise ratios between the autocorrelations in (c) and (e).

Figure A-6: Quantitative analysis of the influence of phase modulation in the forma-
tion of speckle patterns. (a) 600-grit diffuser; (b) 220-grit diffuser.

and three piecewise linear segments fitted to the phase modulation curve to obtain

phase values varying linearly with gray scale values. The mean square error (MSE) of

134

Figure A-7: Experimentally calibrated intensity modulation curve with error bounds
in the grayscale range of [0,255] for the SLM.

Figure A-8: Experimentally calibrated phase modulation curve with error bounds in
the grayscale range of [0,255] for the SLM.

the fit is 0.18. In Figure A-10 we fit a single linear segment to the phase modulation

curve with MSE of 0.19. All experiments in the main manuscript were done by

training neural network with phase values obtained by fitting 3 segments to the curve.

135

Figure A-9: Phase modulation curve along with three linear segments fitted to the
curve.

Figure A-10: Phase modulation curve along one linear segment fitted to the curve.

A.3 Calibration of the transmissive SLM in the phase

modulation mode

In this section, we describe the approaches that we use to calibrate the intensity

modulation and phase modulation curves of the SLM used in the system.

The optical setup for calibrating the intensity modulation of the SLM is shown

in Figure A-11(a). We use a photon diode sensor (Newport, 818-SL) as the detector.

All the pixels of the SLM is driven by the same value 𝑉 (uniform) and the corre-

136

sponding intensity values measured by the photon diode is recorded. By changing

𝑉 from 0 to 255 and repeating the measurement, we obtain the intensity modula-

tion curve as shown in Figure A-12(a), which is normalized to the intensity values

at 𝑉 = 0. The maximum intensity modulation ratio measured was ∼ 2.7 for our

configuration of polarizer and analyzer. In contrast, per manual specification, the

SLM’s maximum intensity modulation ratio is ∼ 1300 for other polarizer/analyzer

configurations. Therefore, we consider this intensity modulation is negligible and the

SLM can be approximated as a pure phase object.

Figure A-11: The optical setup for calibrating the (a) intensity and (b) phase mod-
ulation of SLM. SF: spatial filter; CL: collimating lens; P: linear polarizer; A: linear
polarization analyzer; SLM: spatial light modulator; DS: double slits; PD: photon
diode sensor.

Figure A-12: Experimentally calibrated (a) intensity modulation and (b) phase mod-
ulation curve with error bounds in the grayscale range of [0,255] for the SLM.

To calibrate the phase modulation of the SLM, we build the optical setup as shown

in Figure A-11(b). A double-slits mask is placed immediately after the SLM, making

137

the system a Young’s interferometer. As a result, a set of interference fringes can be

observed at the CMOS plane. The SLM is driven in the half-half mode: the left-hand

half pixels is driven by a constant value zero and the right-hand half is driven by a

different value 𝑉 . Under paraxial approximation, the location of the central peak of

the interference pattern (constructive interference) can be determined as:

𝑥 =
𝜑(𝑉)𝜆𝐿

2𝜋𝑑
(A.2)

where 𝜆 is the light wavelength, 𝑑 is the spacing between the two slits, 𝐿 is the distance

between the mask and the CMOS, 𝜑(𝑉) is the phase modulation of SLM when it is

driven by value 𝑉 [Assuming 𝜑(0) = 0rad]. Therefore, by gradually increasing 𝑉

from 0 to 255 and finding the central peak locations of the corresponding interference

patterns, we can determine 𝜑(𝑉).

In our experiment, we use a commercial double-slits mask (3B Scientific) with

spacing 𝑑 = 250𝜇𝑚 and slit width 𝑑 = 150𝜇𝑚. The distance between the mask and

the CMOS is set to be 𝐿 = 1000mm. The evolution of 1D profile of the fringes as 𝑉

increases from 0 to 255 is shown in Figure A-13, and the calibrated phase modulation

curve is shown in Figure A-12(b).

Figure A-13: Evolution of 1D profile of the fringes as 𝑉 increases from 0 to 255.

138

Appendix B

Details about the neural network

architecture and training

B.1 IDiffNet

As described in Chapter 2, we use densely connected convolutional networks (DenseNets)

to construct our IDiffNet. Fig. B-1 shows the detailed architectures of the different

blocks used in our IDiffNet. Each dense blocks consist of three composite convolu-

tional layers and each layer connects to every other layer within the same block in

a feed-forward fashion. The growth rate 𝑘 is set to be 12 and the initial number

of filters is set to be 16. Each composite convolutional layer is comprised of three

consecutive operations: batch normalization (BN), rectified linear unit (ReLU) and

dilated convolution (DiConv) with filter size 5×5 and dilation rate 2. We use dilated

convolutions so as to increase the receptive field of the convolution filters. The down-

sampling transition block consists an average pooling operation with stride (2,2). As

a result, the dimension of the input to this block is reduced by a factor of 2 at the

output. The upsampling transition block increases the dimension of the input by a

factor of 2. This is achieved by the subpixel upscaling operation [144]. The dense and

downsampling transition block is built by placing a downsampling transition block af-

ter a dense block, while the dense and upsampling transition block is built by placing

a dense block after a upsampling transition block.

139

Figure B-1: Detailed architectures of the different blocks in our IDiffNet

We used ℒ2 regularization with weight decay of 1𝐸 − 4 in all convolutional filters

initialized with random numbers from a Gaussian distribution. The same regulariza-

tion was used in batch normalization as well. A small dropout rate of 0.05 was set to

prevent overfitting. Because of GPU memory constraints, our IDiffNet was trained

with a mini-batch size 8 using ADAM optimizer in Tensorflow. We started the train-

ing with a learning rate of 0.001 and dropped it by a factor of 2 after every 5 epochs.

Additionally, we clipped the gradients at value 1 to stabilize the training. The neural

network was trained for 20 epochs with the training samples being shuffled at every

epoch.

B.2 PhENN

Fig. B-2 shows three different kinds of residual blocks (bottom row) composed of

residual units (top row). All residual units are composed of 2 sets of batch normal-

ization (BN), nonlinearity (ReLU) and a convolutional layer stacked one above the

140

other. The strides for each convolution or convolution transpose filters are shown in

the figure. Short connections are either (a) direct connections that sum the input and

output for residual units that do not change the size of the input, (b) 1×1 convolution

filters for residual units that change the size of the input, (c) 1× 1 convolution filters

with stride (2, 2) for residual downsampling units, or (d) 2× 2 convolution transpose

filters with stride (2, 2) for residual upsampling units. A dilated residual block con-

sists two dilated residual units, which replace the convolution filters in the residual

units with dilated convolutional filters of dilation rate 2. All other convolution filters

in the network are of size 3 × 3 and convolution transpose filters are of size 2 × 2.

We used weight decay of 1E-4 in all convolutional filters initialized with random

numbers from a Gaussian distribution. All residual blocks are composed of two resid-

ual units. In our experiments, we observed that residual blocks composed of 3 residual

units (instead of 2) resulted in slightly lower mean absolute error (MAE) but much

longer training times. We set a small dropout rate of 0.02 between all layers to pre-

vent overfitting. We used the ADAM optimizer in Tensorflow to minimize the MAE

over the 10000 training samples with batch size 3. The batch size was constrained

by the memory available on the GPU. We start the training with a learning rate of

0.001 and drop it by a factor of 2 after every 5 epochs. Additionally, we clip the

gradients at value 1 to stabilize the training. We trained the neural network for 20

epochs shuffling the training samples at every epoch.

141

Figure B-2: Detailed architectures of DRBs, URBs and RBs

142

Bibliography

[1] Mario Bertero and Patrizia Boccacci. Introduction to inverse problems in imag-
ing. CRC press, 1998.

[2] David J Brady. Optical imaging and spectroscopy. John Wiley & Sons, 2009.

[3] Winfried Denk, James H Strickler, Watt W Webb, et al. Two-photon laser
scanning fluorescence microscopy. Science, 248(4951):73–76, 1990.

[4] L Moreaux, O Sandre, and J Mertz. Membrane imaging by second-harmonic
generation microscopy. JOSA B, 17(10):1685–1694, 2000.

[5] Stefan W Hell and Jan Wichmann. Breaking the diffraction resolution limit
by stimulated emission: stimulated-emission-depletion fluorescence microscopy.
Optics letters, 19(11):780–782, 1994.

[6] Rainer Heintzmann and Christoph G Cremer. Laterally modulated excitation
microscopy: improvement of resolution by using a diffraction grating. In Optical
Biopsies and Microscopic Techniques III, volume 3568, pages 185–197. Interna-
tional Society for Optics and Photonics, 1999.

[7] Mats GL Gustafsson. Surpassing the lateral resolution limit by a factor of two
using structured illumination microscopy. Journal of microscopy, 198(2):82–87,
2000.

[8] T Wilson. Optical sectioning in fluorescence microscopy. Journal of microscopy,
242(2):111–116, 2011.

[9] Daryl Lim, Kengyeh K Chu, and Jerome Mertz. Wide-field fluorescence sec-
tioning with hybrid speckle and uniform-illumination microscopy. Optics letters,
33(16):1819–1821, 2008.

[10] Guoan Zheng, Roarke Horstmeyer, and Changhuei Yang. Wide-field, high-
resolution fourier ptychographic microscopy. Nature photonics, 7(9):739, 2013.

[11] Lei Tian, Xiao Li, Kannan Ramchandran, and Laura Waller. Multiplexed coded
illumination for fourier ptychography with an led array microscope. Biomedical
optics express, 5(7):2376–2389, 2014.

143

[12] Yunhui Zhu, Aamod Shanker, Lei Tian, Laura Waller, and George Barbas-
tathis. Low-noise phase imaging by hybrid uniform and structured illumination
transport of intensity equation. Optics Express, 22(22):26696–26711, 2014.

[13] Rainer Heintzmann and Thomas Huser. Super-resolution structured illumina-
tion microscopy. Chemical reviews, 117(23):13890–13908, 2017.

[14] Jeffrey H Shapiro. Computational ghost imaging. Physical Review A,
78(6):061802, 2008.

[15] Ori Katz, Yaron Bromberg, and Yaron Silberberg. Compressive ghost imaging.
Applied Physics Letters, 95(13):131110, 2009.

[16] Minsky Marvin. Microscopy apparatus, December 19 1961. US Patent
3,013,467.

[17] CJR Sheppard and CJ Cogswell. Three-dimensional image formation in confocal
microscopy. Journal of microscopy, 159(2):179–194, 1990.

[18] Michael Reed Teague. Deterministic phase retrieval: a green’s function solution.
Journal of the Optical Society of America, 73(11):1434–1441, 1983.

[19] Zhong Jingshan, Rene A Claus, Justin Dauwels, Lei Tian, and Laura Waller.
Transport of intensity phase imaging by intensity spectrum fitting of exponen-
tially spaced defocus planes. Optics express, 22(9):10661–10674, 2014.

[20] Waheb Bishara, Ting-Wei Su, Ahmet F Coskun, and Aydogan Ozcan. Lensfree
on-chip microscopy over a wide field-of-view using pixel super-resolution. Optics
express, 18(11):11181–11191, 2010.

[21] Derek Tseng, Onur Mudanyali, Cetin Oztoprak, Serhan O Isikman, Ikbal Sen-
can, Oguzhan Yaglidere, and Aydogan Ozcan. Lensfree microscopy on a cell-
phone. Lab on a Chip, 10(14):1787–1792, 2010.

[22] Andrei Nikolaevich Tikhonov. On the solution of ill-posed problems and the
method of regularization. In Doklady Akademii Nauk, volume 151, pages 501–
504. Russian Academy of Sciences, 1963.

[23] Andrei Nikolaevich Tikhonov. On the regularization of ill-posed problems. In
Doklady Akademii Nauk, volume 153, pages 49–52. Russian Academy of Sci-
ences, 1963.

[24] N Wiener and E Hopf. Über eine klasse singulärer integralgleichungen sitzungs-
ber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl, pages 696–706, 1931.

[25] Norbert Wiener. Extrapolation, interpolation and smoothing of stationary time
series-with engineering applications’ mit press. 1949.

[26] EJ Candes and T Tao. Decoding by linear programming. IEEE Transactions
on Information Theory, 51(12):4203–4215, 2005.

144

[27] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete frequency infor-
mation. IEEE Transactions on information theory, 52(2):489–509, 2006.

[28] David L Donoho et al. Compressed sensing. IEEE Transactions on information
theory, 52(4):1289–1306, 2006.

[29] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recov-
ery from incomplete and inaccurate measurements. Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute of Math-
ematical Sciences, 59(8):1207–1223, 2006.

[30] Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applica-
tions. Cambridge University Press, 2012.

[31] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A
simple proof of the restricted isometry property for random matrices. Construc-
tive Approximation, 28(3):253–263, 2008.

[32] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing spar-
sity by reweighted ? 1 minimization. Journal of Fourier analysis and applica-
tions, 14(5-6):877–905, 2008.

[33] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[34] Antonin Chambolle, Ronald A De Vore, Nam-Yong Lee, and Bradley J Lucier.
Nonlinear wavelet image processing: variational problems, compression, and
noise removal through wavelet shrinkage. IEEE Transactions on Image Pro-
cessing, 7(3):319–335, 1998.

[35] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresh-
olding algorithm for linear inverse problems with a sparsity constraint. Commu-
nications on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences, 57(11):1413–1457, 2004.

[36] Elaine T Hale, Wotao Yin, and Yin Zhang. A fixed-point continuation method
for l1-regularized minimization with applications to compressed sensing. CAAM
TR07-07, Rice University, 43:44, 2007.

[37] José M Bioucas-Dias and Mário AT Figueiredo. A new twist: Two-step iterative
shrinkage/thresholding algorithms for image restoration. IEEE Transactions on
Image processing, 16(12):2992–3004, 2007.

[38] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202,
2009.

145

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[40] Emmanuel J Candes, Yonina C Eldar, Deanna Needell, and Paige Randall.
Compressed sensing with coherent and redundant dictionaries. Applied and
Computational Harmonic Analysis, 31(1):59–73, 2011.

[41] Mohit Kalra and D Ghosh. Image compression using wavelet based compressed
sensing and vector quantization. In Signal Processing (ICSP), 2012 IEEE 11th
International Conference on, volume 1, pages 640–645. IEEE, 2012.

[42] Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on pattern analysis and machine in-
telligence, 12(7):629–639, 1990.

[43] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–
268, 1992.

[44] Joachim Weickert. A review of nonlinear diffusion filtering. In International
Conference on Scale-Space Theories in Computer Vision, pages 1–28. Springer,
1997.

[45] Lei Tian, Jonathan C Petruccelli, and George Barbastathis. Nonlinear dif-
fusion regularization for transport of intensity phase imaging. Optics letters,
37(19):4131–4133, 2012.

[46] Michael Elad and Michal Aharon. Image denoising via learned dictionaries and
sparse representation. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1, pages 895–900. IEEE, 2006.

[47] Michal Aharon, Michael Elad, Alfred Bruckstein, et al. K-svd: An algorithm
for designing overcomplete dictionaries for sparse representation. IEEE Trans-
actions on signal processing, 54(11):4311, 2006.

[48] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583):607,
1996.

[49] Ron Rubinstein, Alfred M Bruckstein, and Michael Elad. Dictionaries for sparse
representation modeling. Proceedings of the IEEE, 98(6):1045–1057, 2010.

[50] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[51] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied
logistic regression, volume 398. John Wiley & Sons, 2013.

146

[52] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[54] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[55] Robert Schalkoff. Pattern recognition: Statistical, structural and neural ap-
proaches, john wiley & sons. Inc, New York, 1992.

[56] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[57] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation
functions in generalized mlp architectures of neural networks. International
Journal of Artificial Intelligence and Expert Systems, 1(4):111–122, 2011.

[58] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[59] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3,
2013.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[61] Yann LeCun et al. Generalization and network design strategies. In Connec-
tionism in perspective, volume 19. Citeseer, 1989.

[62] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[63] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature
pooling in visual recognition. In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 111–118, 2010.

[64] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Confer-
ence on Machine Learning, pages 448–456, 2015.

147

[65] Anders Krogh and John A Hertz. A simple weight decay can improve general-
ization. In Advances in neural information processing systems, pages 950–957,
1992.

[66] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[67] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Nature, 1986.

[68] Valerian Ilich Tatarski. Wave propagation in a turbulent medium. Courier Dover
Publications, 2016.

[69] Akira Ishimaru. Wave propagation and scattering in random media, volume 2.
Academic press New York, 1978.

[70] SM Popoff, G Lerosey, R Carminati, M Fink, AC Boccara, and S Gigan. Mea-
suring the transmission matrix in optics: an approach to the study and control of
light propagation in disordered media. Physical review letters, 104(10):100601,
2010.

[71] SM Popoff, G Lerosey, M Fink, AC Boccara, and S Gigan. Image transmission
through an opaque material. Nature Communications, 1:81, 2010.

[72] Angélique Drémeau, Antoine Liutkus, David Martina, Ori Katz, Christophe
Schülke, Florent Krzakala, Sylvain Gigan, and Laurent Daudet. Reference-less
measurement of the transmission matrix of a highly scattering material using a
dmd and phase retrieval techniques. Optics express, 23(9):11898–11911, 2015.

[73] Jacopo Bertolotti, Elbert G van Putten, Christian Blum, Ad Lagendijk,
Willem L Vos, and Allard P Mosk. Non-invasive imaging through opaque scat-
tering layers. Nature, 491(7423):232–234, 2012.

[74] Ori Katz, Pierre Heidmann, Mathias Fink, and Sylvain Gigan. Non-invasive
single-shot imaging through scattering layers and around corners via speckle
correlations. Nature photonics, 8(10):784–790, 2014.

[75] Nicolino Stasio, Christophe Moser, and Demetri Psaltis. Calibration-free imag-
ing through a multicore fiber using speckle scanning microscopy. Optics letters,
41(13):3078–3081, 2016.

[76] Amir Porat, Esben Ravn Andresen, Hervé Rigneault, Dan Oron, Sylvain Gigan,
and Ori Katz. Widefield lensless imaging through a fiber bundle via speckle
correlations. Optics express, 24(15):16835–16855, 2016.

[77] Gerwin Osnabrugge, Roarke Horstmeyer, Ioannis N Papadopoulos, Benjamin
Judkewitz, and Ivo M Vellekoop. Generalized optical memory effect. Optica,
4(8):886–892, 2017.

148

[78] Shechao Feng, Charles Kane, Patrick A Lee, and A Douglas Stone. Correla-
tions and fluctuations of coherent wave transmission through disordered media.
Physical review letters, 61(7):834, 1988.

[79] Isaac Freund, Michael Rosenbluh, and Shechao Feng. Memory effects in prop-
agation of optical waves through disordered media. Physical review letters,
61(20):2328, 1988.

[80] Eric Akkermans and Gilles Montambaux. Mesoscopic physics of electrons and
photons. Cambridge university press, 2007.

[81] Ralph W Gerchberg. A practical algorithm for the determination of phase from
image and diffraction plane pictures. Optik, 35:237–246, 1972.

[82] James R Fienup. Reconstruction of an object from the modulus of its fourier
transform. Optics Letters, 3(1):27–29, 1978.

[83] YongKeun Park, Wonshik Choi, Zahid Yaqoob, Ramachandra Dasari, Kamran
Badizadegan, and Michael S Feld. Speckle-field digital holographic microscopy.
Optics express, 17(15):12285–12292, 2009.

[84] Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan,
Ren Ng, and Laura Waller. Diffusercam: lensless single-exposure 3d imaging.
Optica, 5(1):1–9, 2018.

[85] Ulf Grenander. General pattern theory-A mathematical study of regular struc-
tures. Clarendon Press, 1993.

[86] David J Brady, Kerkil Choi, Daniel L Marks, Ryoichi Horisaki, and Sehoon
Lim. Compressive holography. Optics Express, 17(15):13040–13049, 2009.

[87] Hsiou-Yuan Liu, Eric Jonas, Lei Tian, Jingshan Zhong, Benjamin Recht, and
Laura Waller. 3d imaging in volumetric scattering media using phase-space
measurements. Optics express, 23(11):14461–14471, 2015.

[88] Ryoichi Horisaki, Ryosuke Takagi, and Jun Tanida. Learning-based imaging
through scattering media. Optics express, 24(13):13738–13743, 2016.

[89] Meng Lyu, Hao Wang, Guowei Li, and Guohai Situ. Exploit imaging through
opaque wall via deep learning. arXiv preprint arXiv:1708.07881, 2017.

[90] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[91] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

149

[92] Joseph W Goodman. Introduction to Fourier optics. Roberts and Company
Publishers, 2005.

[93] Nicholas Antipa, Sylvia Necula, Ren Ng, and Laura Waller. Single-shot diffuser-
encoded light field imaging. In Computational Photography (ICCP), 2016 IEEE
International Conference on, pages 1–11. IEEE, 2016.

[94] https://www.unc.edu/~rowlett/units/scales/grit.html.

[95] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten.
Densely connected convolutional networks. arXiv preprint arXiv:1608.06993,
2016.

[96] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very
deep convolutional encoder-decoder networks with symmetric skip connections.
In Advances in neural information processing systems, pages 2802–2810, 2016.

[97] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. IEEE trans-
actions on pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[98] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[99] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. La-
beled faces in the wild: A database for studying face recognition in uncon-
strained environments. Technical report, Technical Report 07-49, University of
Massachusetts, Amherst, 2007.

[100] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander Berg, and Li Fei-Fei. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[101] Yann LeCun, Corinna Cortes, and Christopher JC Burges. Mnist hand-
written digit database. AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2, 2010.

[102] Cheng-Lin Liu, Fei Yin, Da-Han Wang, and Qiu-Feng Wang. Casia online and
offline chinese handwriting databases. In Document Analysis and Recognition
(ICDAR), 2011 International Conference on, pages 37–41. IEEE, 2011.

[103] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.

150

https://www.unc.edu/~rowlett/units/scales/grit.html

[104] Ferdinando S Samaria and Andy C Harter. Parameterisation of a stochastic
model for human face identification. In Proceedings of the Second IEEE Work-
shop on Applications of Computer Vision, pages 138–142. IEEE, 1994.

[105] AT&T Laboratories Cambridge. AT&T Database of Faces, 1994.
data retrieved from https://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html.

[106] A Miranda Neto, A Correa Victorino, Isabelle Fantoni, Douglas Eduardo
Zampieri, Janito Vaqueiro Ferreira, and Danilo Alves Lima. Image processing
using pearson’s correlation coefficient: Applications on autonomous robotics.
In Autonomous Robot Systems (Robotica), 2013 13th International Conference
on, pages 1–6. IEEE, 2013.

[107] Clement Gehring and Simon Lemay. Sparse coding. sibi, 1:1, 2012.

[108] Byung-soo Kim, Jae Young Park, Anna C Gilbert, and Silvio Savarese. Hi-
erarchical classification of images by sparse approximation. Image and Vision
Computing, 31(12):982–991, 2013.

[109] Tal Remez, Or Litany, Raja Giryes, and Alex M Bronstein. Deep convolutional
denoising of low-light images. arXiv preprint arXiv:1701.01687, 2017.

[110] Frits Zernike. Phase contrast, a new method for the microscopic observation of
transparent objects part ii. Physica, 9(10):974–986, 1942.

[111] Joseph W Goodman and RW Lawrence. Digital image formation from electron-
ically detected holograms. Applied Physics Letters, 11(3):77–79, 1967.

[112] Yair Rivenson, Adrian Stern, and Bahram Javidi. Compressive fresnel hologra-
phy. Journal of Display Technology, 6(10):506–509, 2010.

[113] Jerome H Milgram and Weichang Li. Computational reconstruction of images
from holograms. Applied Optics, 41(5):853–864, 2002.

[114] Logan Williams, Georges Nehmetallah, and Partha P Banerjee. Digital tomo-
graphic compressive holographic reconstruction of three-dimensional objects in
transmissive and reflective geometries. Applied Optics, 52(8):1702–1710, 2013.

[115] Katherine Creath. Phase-shifting speckle interferometry. Applied Optics,
24(18):3053–3058, 1985.

[116] Shan Shan Kou, Laura Waller, George Barbastathis, and Colin JR Sheppard.
Transport-of-intensity approach to differential interference contrast (ti-dic) mi-
croscopy for quantitative phase imaging. Optics Letters, 35(3):447–449, 2010.

[117] David Paganin and Keith A Nugent. Noninterferometric phase imaging with
partially coherent light. Physical Review Letters, 80(12):2586, 1998.

151

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

[118] Jelena A Schmalz, Timur E Gureyev, David M Paganin, and Konstantin M
Pavlov. Phase retrieval using radiation and matter-wave fields: Validity of
teague’s method for solution of the transport-of-intensity equation. Physical
Review A, 84(2):023808, 2011.

[119] Laura Waller, Shan Shan Kou, Colin JR Sheppard, and George Barbastathis.
Phase from chromatic aberrations. Optics Express, 18(22):22817–22825, 2010.

[120] Laura Waller, Mankei Tsang, Sameera Ponda, Se Young Yang, and George Bar-
bastathis. Phase and amplitude imaging from noisy images by kalman filtering.
Optics Express, 19(3):2805–2815, 2011.

[121] Lei Tian, Jonathan C Petruccelli, Qin Miao, Haris Kudrolli, Vivek Nagarkar,
and George Barbastathis. Compressive x-ray phase tomography based on the
transport of intensity equation. Optics Letters, 38(17):3418–3421, 2013.

[122] Adam Pan, Ling Xu, Jon C Petruccelli, Rajiv Gupta, Bipin Singh, and George
Barbastathis. Contrast enhancement in x-ray phase contrast tomography. Op-
tics Express, 22(15):18020–18026, 2014.

[123] RA Gonsalves. Phase retrieval from modulus data. Journal of the Optical
Society of America, 66(9):961–964, 1976.

[124] JR Fienup and CC Wackerman. Phase-retrieval stagnation problems and solu-
tions. Journal of the Optical Society of America A, 3(11):1897–1907, 1986.

[125] Heinz H Bauschke, Patrick L Combettes, and D Russell Luke. Phase retrieval,
error reduction algorithm, and fienup variants: a view from convex optimization.
Journal of the Optical Society of America A, 19(7):1334–1345, 2002.

[126] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. Phaselift:
Exact and stable signal recovery from magnitude measurements via convex
programming. Communications on Pure and Applied Mathematics, 66(8):1241–
1274, 2013.

[127] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval
via wirtinger flow: Theory and algorithms. IEEE Transactions on Information
Theory, 61(4):1985–2007, 2015.

[128] Philip Schniter and Sundeep Rangan. Compressive phase retrieval via gener-
alized approximate message passing. IEEE Transactions on Signal Processing,
63(4):1043–1055, 2015.

[129] Michael R Kellman, Emrah Bostan, Nicole Repina, Michael Lustig, and Laura
Waller. Physics-based learned design: Optimized coded-illumination for quan-
titative phase imaging. arXiv preprint arXiv:1808.03571, 2018.

152

[130] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778. IEEE, 2016.

[131] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated con-
volutions. ArXiv:1511.07122, 2015.

[132] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600–612, 2004.

[133] van A Van der Schaaf and JH van van Hateren. Modelling the power spectra of
natural images: statistics and information. Vision Research, 36(17):2759–2770,
1996.

[134] L1 determines the aperture stop with diameter 25.4mm, i.e. a numerical aper-
ture NA= 12.7/150 = 0.0847. The nominal diffraction-limited resolution should
be 𝑑0 = 𝜆/(2NA) = 3.74𝜇m. That calculation is irrelevant to PhENN, since ob-
jets of that spatial frequency are never presented to it during training.

[135] Jinshan Pan, Sifei Liu, Deqing Sun, Jiawei Zhang, Yang Liu, Jimmy Ren,
Zechao Li, Jinhui Tang, Huchuan Lu, Yu-Wing Tai, and Ming-Hsuan Yang.
Learning dual convolutional neural networks for low-level vision. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[136] Zachary F Phillips and Michael Chen. Technical report: Benchmark technolo-
gies quantitative phase target.

[137] Yair Rivenson, Yibo Zhang, Harun Günaydın, Da Teng, and Aydogan Ozcan.
Phase recovery and holographic image reconstruction using deep learning in
neural networks. Light: Science & Applications, 7(2):17141, 2018.

[138] Thanh Nguyen, Yujia Xue, Yunzhe Li, Lei Tian, and George Nehmetallah.
Deep learning approach for fourier ptychography microscopy. Optics express,
26(20):26470–26484, 2018.

[139] Yichen Wu, Yair Rivenson, Yibo Zhang, Zhensong Wei, Harun Günaydin, Xing
Lin, and Aydogan Ozcan. Extended depth-of-field in holographic imaging us-
ing deep-learning-based autofocusing and phase recovery. optica, 5(6):704–710,
2018.

[140] Alexandre Goy, Kwabena Arthur, Shuai Li, and George Barbastathis. Low
photon count phase retrieval using deep learning. Physical review letters,
121(24):243902, 2018.

[141] YongKeun Park, Monica Diez-Silva, Gabriel Popescu, George Lykotrafitis,
Wonshik Choi, Michael S Feld, and Subra Suresh. Refractive index maps and

153

membrane dynamics of human red blood cells parasitized by plasmodium falci-
parum. Proceedings of the National Academy of Sciences, 105(37):13730–13735,
2008.

[142] Monica Diez-Silva, Ming Dao, Jongyoon Han, Chwee-Teck Lim, and Subra
Suresh. Shape and biomechanical characteristics of human red blood cells in
health and disease. MRS bulletin, 35(5):382–388, 2010.

[143] Lei Tian and Laura Waller. Quantitative differential phase contrast imaging in
an led array microscope. Optics express, 23(9):11394–11403, 2015.

[144] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1874–1883, 2016.

154

	Introduction
	Computational imaging
	Physical measurements
	Inverse algorithms

	Deep learning
	Fully-connected neural networks
	Convolutional neural networks
	Training neural networks for computational imaging

	Outline of the thesis

	Imaging through scattering media using IDiffNet
	Introduction
	Computational imaging system architecture
	Results and network analysis
	Resolution and shift invariance tests for IDiffNet
	Comparison with denoising neural networks
	Conclusions

	Quantitative phase retrieval using PhENN
	Introduction
	Experiment
	Results and network analysis
	Conclusions and discussion
	My contributions

	Analysis of the dependence of PhENN's performance on its architecture
	Introduction
	Methods
	Default PhENN architecture
	Data preparation

	Results
	Choice of training loss function
	Presence of skip connections
	Influence of depth
	Influence of waist size

	Conclusions

	Resolution enhancement of PhENN by spectral pre-modulation
	Introduction
	Imaging system architecture
	Optical configuration
	Neural network architecture and training

	Resolution analysis of ImageNet-trained PhENN
	Reconstruction results
	Resolution test

	Resolution enhancement by spectral pre-modulation
	Spectral pre-modulation
	Resolution enhancement

	Conclusions

	Learning to synthesize: splitting and recombining low and high spatial frequencies for image recovery
	Introduction
	Methods
	Learning Synthesis by Deep Neural Networks (LS-DNN)
	Architectures of Deep Neural Networks

	Results
	Implementation details
	Reconstruction Results - Spatial Domain
	Reconstruction Results - Frequency Domain

	Conclusions
	My contributions

	Quantitative phase microscopy by LS-DNN enhanced PhENN
	Introduction
	Imaging system
	Results
	Red blood cell imaging
	Demonstration that PhENN indeed learned the physics

	Conclusions

	Conclusions and future works
	Calibration of the SLMs and the related analysis
	Calibration of the reflective SLM in the intensity modulation mode
	Calibration
	Analysis of the influence of phase modulation

	Calibration of the reflective SLM in the phase modulation mode
	Calibration of the transmissive SLM in the phase modulation mode

	Details about the neural network architecture and training
	IDiffNet
	PhENN

