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Abstract

The emergency department (ED) is the first point of contact with clinicians for most
patients with acute illnesses. Early identification along with appropriate interventions
(including procedures, medications, and triaging to an appropriate level of care) in the
ED can be critical drivers of good outcomes, particularly in the care of patients with
sepsis. Although sepsis is a leading cause of in-hospital mortality, it can be difficult
to identify on presentation, and debate continues about the best practices in certain
aspects of managing sepsis patients. In this thesis, we applied machine learning-
based analyses to better understand the ED course of patients with sepsis and to
build systems that can operate at the bedside to aid clinicians in the care of sepsis,
including both detection of sepsis at the earliest possible stages and management of
deteriorating cardiovascular function and hemodynamic status.

We extracted data using automated methods as well as manual chart review in a
selection of two years’ worth of ED visits to Massachusetts General Hospital. Clus-
tering blood pressure trajectories showed that only 20% of 765 sepsis patients showed
sustained responses to fluid bolus therapy, while 25% of patients requiring escalated
hemodynamic support via vasopressor therapy had very low blood pressure for at least
two hours before escalation from fluid to vasopressor administration. Subsequently,
we showed that a simple logistic regression model with only six basic elements of
patient data can distinguish between patients who required vasopressors and those
whose hemodynamic function recovered with fluid therapy alone with area under the
receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.88-0.94) at a final
decision time. A predictive version of the model could detect advance need for vaso-
pressors within six hours with an AUC of 0.82 (95% CI: 0.80-0.83) and could retain
performance in acutely hypotensive patients at an AUC of 0.77 (95% CI: 0.74-0.90).

We also developed a model to detect the presence of sepsis at triage and throughout
the ED stay, combining vital signs, presenting symptoms, and baseline risk factors to
discriminate between 1,663 sepsis and non-sepsis acutely ill patients at triage with an
AUC of 0.88 (95% CI: 0.86-0.90) and over the course of the whole ED stay with an
AUC of 0.92 (95% CI: 0.91-0.94), improving significantly over existing sepsis screening
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tools such as qSOFA (triage AUC of 0.61). We designed these models to minimize user
input needs so as to integrate into clinical workflows without extensive demands on
clinicians interacting with the electronic medical record system or a bedside monitor.

These models provide a feasible way to build clinical decision support tools that
can operate in real-time in the ED to improve sepsis care from the very first point of
contact with a potential sepsis patient.

Thesis Supervisor: Thomas Heldt, PhD
Title: W.M. Keck Career Development Professor in Biomedical Engineering
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Chapter 1

Introduction

Hospitals are the center of care for acutely ill patients, and the first point of contact

with the hospital for most such patients – and often the healthcare system in general

– is the emergency department (ED). Clinicians in an ED will see a wide range of

severity of illness in the patients that present at any given time, but among the most

consequential decisions they can make for those patients are related to the identifica-

tion and management of imminently life-threatening conditions. Early identification

along with appropriate interventions (including not just procedures or medication ad-

ministrations, but also triage and care prioritization decisions) can be drivers of good

outcomes after episodes of acute illness, while delays to identification or appropriate

therapy can impart increased risk for organ failure, longer intensive care unit (ICU)

stays, or in-hospital mortality, among other serious adverse outcomes.

One such condition for which these relationships between timely, appropriate in-

tervention and patient outcomes have been studied and demonstrated is sepsis, which

is also one of the leading causes of in-hospital mortality [1, 2]. This thesis describes

our efforts to better understand the ED course of patients with sepsis and to use this

information to build data-driven, machine learning-based systems that can operate at

the bedside to aid clinicians in the effort of improving the care of sepsis (as well as its
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higher-severity subset, septic shock) in the ED, encompassing both early detection of

patients with sepsis and septic shock and management of deteriorating cardiovascular

and hemodynamic function.

1.1 Sepsis and septic shock

1.1.1 Definitions

Although sepsis is a condition that has been described and recognized in some form

for thousands of years [3, 4], our understanding and basic definition of it has changed

considerably over time, including in very recent times. In the most official sense, three

consensus conferences have published changing definitions with the first in 1991 [5],

the second in 2001 [6], and a third in 2016 [7].

The most recent consensus conference has settled on a definition of sepsis (“sepsis-

3”) as “life-threatening organ dysfunction caused by a dysregulated host response to

infection” and further defines septic shock as “a subset of sepsis in which underlying

circulatory and cellular/metabolic abnormalities are profound enough to substantially

increase the likelihood of mortality” [7]. These definitions are clinical and descriptive

in nature, and there is, at this time, no laboratory test or other definitive diagnostic

test for sepsis, leaving significant room for interpreetation.

Notably, the most recent definitions are a significant departure from the defini-

tions used by the previous two consensus conferences which built upon a clinical

construct called the systemic inflammatory response syndrome (SIRS) criteria. The

SIRS criteria-based definition considered sepsis to be a hyper-inflammatory response

to an infection, and identified a patient with sepsis by the occurrence of both the

SIRS criteria (abnormalities in certain vital signs and white blood cell counts) and an

infection [5, 6]. This definition also includes a middle-tier of sepsis acuity (between

“sepsis” and “septic shock”), termed “severe sepsis” and defined as SIRS and infection
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along with acute organ dysfunction. This is perhaps most congruent with the 2016

conference’s definition of “sepsis” itself. In general, both definitions are used clinically

in practice today, varying across institutions and by treating clinicians.

1.1.2 Significance

Regardless of debate surrounding how to precisely define sepsis, it is widely recognized

as a major public health burden, and numerous epidemiological studies in the recent

few years to couple decades have supported this. Note that most studies described

here have used the previous, SIRS-based definition of sepsis, given the time periods

under review.

In the US population at large, estimates of the incidence of severe sepsis in recent

years (no earlier than 2004), making use of administrative and claims data (such as

diagnostic and billing codes) have ranged from 300 to 1,000 per 100,000 per year with

rates generally increasing as much as 13% year-on-year [8, 9]. The variance is largely

attributable to the range of codes taken to indicate severe sepsis [8, 9]. Globally,

one meta-analysis showed that between 2003 and 2015, severe sepsis occurred at

a rate of 270 to 560 per 100,000 per year within the populations of high-income

countries [10] with estimates for low- and middle-income countries difficult to make

but hypothesized to be even greater given the comparatively increased burden of

infectious diseases and increased proportion of deaths resulting from infectious disease

[10, 11].

As for outcomes, sepsis has been estimated to contribute to 1 in every 2 to 3

hospital deaths in the United States [12, 13], making it the largest proximate cause

of US hospital death [1, 2]. The reported rate of mortality in patients with severe

sepsis in recent years ranges from 15% to 30% and has generally been decreasing over

time, within the period of study for each report [8, 9, 13]. Similar values and trends

have been reported elsewhere in the world [14], and a meta-analysis estimated the
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mortality rate for severe sepsis between 2003 and 2015 in high-income countries to be

26% [10].

With the in-hospital mortality from sepsis trending downward, other studies have

shed light on long-term outcomes after sepsis. Within a year after an episode of

sepsis, an estimated 63% of patients are hospitalized again at least once and 16%

suffer post-acute mortality, according to a recent review [15]. Both of these rates

were significantly greater in sepsis patients than in control hospitalized patients with

similar baseline risks. Sepsis survivors are also at elevated risk of suffering delirium,

cognitive decline, and even cardiovascular events post-hospitalization [15–17].

1.2 Emergency department sepsis care

The US Centers for Disease Control and Prevention estimate that about 80% of

cases of sepsis originate outside of the hospital [18], making the ED the first point of

care and the first opportunity for intervention for the vast majority of patients with

sepsis. This makes ED identification of and intervention in sepsis critical, as it is

widely known that delays to therapy in sepsis and septic shock are associated with

increased mortality [19–23] to the extent that delays to, for example, appropriate

antibiotic administration are interpreted as potentially preventable causes of death

from sepsis [2].

1.2.1 Evolving practice in sepsis care

Guidelines for the care of patients with sepsis are maintained by the Surviving Sepsis

Campaign (SSC), with the most recent publication of comprehensive guidelines pub-

lished in 2016 [24, 25] and a brief update to recommendations for the most important

components of early intervention in 2018 [26].

In the ED, two of the most important challenges of sepsis care involve identification
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of patients with sepsis as early as possible and appropriate management of patients’

hemodynamics. Both of these challenges have undergone substantial evolution in best

practice recommendations in recent years.

Identification

The most recent SSC guidelines recommend that hospitals implement a program for

screening for sepsis, though the guidelines remain agnostic about the details of such

a program. Instead, the most widely publicized screening methods have accompanied

the publications of revised sepsis definitions, and until the sepsis-3 definitions, use of

SIRS criteria could be sufficient for identifying a patient as having sepsis.

The sepsis-3 conference re-defined sepsis to require organ dysfunction. In this

definition, organ dysfunction could be identified by a change in the sequential (or

sepsis-related) organ failure assessment (SOFA) score [7, 27]. As computing this

score requires the presence of laboratory results and can generally be burdensome in

a busy clinical environment, the sepsis-3 task force also developed a simpler screening

tool, termed “quick” SOFA or qSOFA [7, 28], which requires only the presence of two

or more of the following items to “identify adult patients with suspected infection who

are likely to have poor outcomes”:

� Respiratory rate greater than or equal to 22 breaths per minute

� Altered mental status (as indicated by a Glasgow coma score less than 15)

� Systolic blood pressure (SBP) less than or equal to 100 mmHg

Hemodynamic management

Once a patient has been identified as having sepsis through some means or another,

prompt antibiotic administration has long been regarded as a key component of im-

proving chances of survival [26]. Guidelines also make recommendations for man-
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agement of hemodynamics to help prevent organ failure or further deterioration, but

these recommendations have evolved substantially in the past few years.

The first major trial to show a substantial mortality benefit for any particular

hemodynamic management strategy was the 2001 early-goal directed therapy (EGDT)

trial [29]. This trial showed that aggressive and early intravenous fluid (IVF) resus-

citation to reach targeted levels of mean arterial pressure (MAP), central venous

pressure, and central venous oxygen saturation in septic shock patients at the trial’s

ED site was beneficial for mortality. EGDT quickly became a gold standard for

hemodynamic management in sepsis [30].

Since that time, however, opinion has begun to shift to believe that lower volumes

of IVF resuscitation may be better, and that larger volumes may be harmful. Three

large, international multi-center trials and a subsequent meta-analysis of EGDT pro-

tocols concluded that a standard of care with less aggressive resuscitation efforts

results in similar mortality-related outcomes and lower ICU admission and lengths of

stay [31–34].

The most recent SSC guidelines subsequently removed reference to EGDT [24],

but do continue to recommend early IVF resuscitation of at least 30 mL/kg of body

weight to maintain MAP above 65 mmHg, and further recommend escalation to use of

vasopressor therapy if “adequate” fluid resuscitation is not sufficient to maintain such

a MAP, leaving the guidance on how to titrate fluid therapy or when to transition to

advanced hemodynamic management open to interpretation.

1.2.2 Opportunities to improve ED sepsis care

This evolving landscape in sepsis management highlights many opportunities to make

improvements in care, particularly in the ED.
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Identification

There now exist multiple methods a clinician may use in attempting to identify a

patient with sepsis (or at risk of poor outcomes due to sepsis). In addition to SIRS

and qSOFA, early warning scores, such as the National Early Warning Score (NEWS)

[35], though developed for use in detecting general deterioration on the wards and

not explicitly for sepsis-related purposes, have gained some usage for identification of

patients with sepsis and/or poor outcomes. However, none of these tools has earned

widespread plaudit or approached universal adoption.

The qSOFA tool, for instance, was created in part because of general dissatisfac-

tion with SIRS criteria, believed to be too non-specific and non-representative of the

underlying pathophysiology of sepsis, which is understood to be not just a hyper-

inflammatory response [4, 7, 36]. However, qSOFA has also generally failed to earn a

large backing. In particular, in settings outside the ICU (such as in the ED), it has

been show to have too low sensitivity for sepsis itself and for sepsis-related mortal-

ity, as compared to SIRS criteria or other methods [37–50]. Additionally, studies of

the temporal characteristics of screening tools have shown that qSOFA typically lags

other clinical tools in flagging patients with sepsis [38, 42, 47].

Other systems, such as early warning scores like NEWS or the SOFA score, have

other drawbacks for use in the ED. They may be cumbersome for a clinician to

compute by hand [50] or require laboratory values that may not be readily available

in the ED, particularly when the value of early identification is most important.

They also may neglect to take into account underlying chronic conditions (with the

exception of SOFA) or presenting symptoms of a patient, consideration of which can

be important in detecting the presence of an infection [47, 51, 52].

This gap in timely and high-performance sepsis identification methods, for the ED

in particular, represents a high-value opportunity to improve care and outcomes of

sepsis patients. One retrospective study of sepsis mortality cases found that 1 in 8 of
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such cases were potentially preventable, predominantly with earlier recognition of in-

fection [2]. Long-term outcomes would also likely be improved by earlier identification

and treatment [53].

Hemodynamic management

The evolution of thought surrounding hemodynamic management similarly represents

an opportunity to improve this aspect of sepsis care, as there remains uncertainty

and debate about best practices, especially surrounding fluid resuscitation [54–57]

and vasopressor initiation [58].

The EGDT trials established that treatment standards with less IVF administered

in hours immediately subseqeuent to septic shock diagnosis leads to mortality rates

equivalent to that of a more aggressive standard, while also reducing the utilization

of intensive care resources [34]. Similarly, a randomized trial of a conservative vs.

liberal fluid resuscitation strategy in acute lung injury (in which a majority of enrolled

patients had sepsis) showed that the conservative strategy reduced ventilator usage

and ICU days significantly and mortality non-significantly [59].

More generally, it has been shown in observational studies of sepsis patients that

greater cumulative fluid balance over the course of a hospital stay is associated with

greater incidence of mortality [60–62] and delirium (as is hypotension, independently)

[63], and greater IVF volumes administered on Day 1 of sepsis diagnosis are associated

with greater incidence of mortality (after adjusting for severity of illness) [64]. At the

same time, as many as 67% of patients treated for sepsis or septic shock have clinical

evidence of fluid overload after just one day [64, 65], no more than half of sepsis

patients respond to IVF boluses with an increase in MAP [66, 67], and generally

earlier administration of vasopressors is associated with greater rates of survival [68–

71]. Poor circulatory function during an acute episode of sepsis is also thought to be

associated with long-term outcomes such as cognitive decline and further progression
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of pre-existing comorbidities [53, 72].

Given the observed impact of these management strategies, improving and op-

timizing hemodynamic management is likely to produce better overall short- and

long-term outcomes in sepsis.

1.3 Decision support in sepsis

This thesis describes efforts to further understand the clinical course of ED sepsis

patients and additionally, to build tools that can operate in real-time to support

clinicians in sepsis identification and management. Some such methods have been

previously described, but adoption has faced difficulties.

1.3.1 Current methods

Beyond basic display of instantaneous vital signs and associated standard patient

monitoring alarming capabilities, there are two basic methods of supporting decision-

making in sepsis.

Automated traditional screening

The first method involves automated implementation of basic screening criteria, such

as SIRS, qSOFA, SOFA, NEWS, or other early warning scores. This type of imple-

mentation automatically reads patient data from an electronic health record (EHR)

system and generates an on-screen alert when a clinician views the patient’s electronic

chart or automatically pages or messages a designated clinician or response team on

a mobile device [73, 74].

In general, reviews of these systems have found conflicting results, suggesting that

a broad mix of care quality improvement programs for sepsis (including targeted

lectures, prescriber order sets, retrospective clinician feedback, and implementation
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of basic EHR alert tools) may reduce mortality from sepsis [75]. However EHR alert

tools themselves largely fail to improve outcomes [73, 74, 76–78] and are not typically

received well by clinicians who complain of alert fatigue (largely due to poor positive

predictive accuracy) and poor workflow implementation (including alerts frequently

occurring after diagnosis has already been made) [73, 74, 78, 79]. Nurses tend to

have more positive responses than physicians [79]. In most cases, studies were of

hospital-wide implementation of alert tools; interestingly, one before-and-after study

of implementation of an ED triage SIRS-based alert did find that the time to antibiotic

administration decreased by 21%, equivalent to over an hour of delay potentially

eliminated, though changes in patient outcomes were not studied [80].

Novel automated algorithms

The main alternative to implementing alerts based on established screening criteria

is development of novel, typically machine learning-based computational algorithms

for identifying patients with or at risk of developing sepsis. In recent years, a hand-

ful of these have been described [81–85]. Learning-based algorithms have also been

developed for hemodynamic management of critically ill sepsis patients, mainly with

the goal of predicting initiation of vasopressor therapy in ICU patients [86–88].

Implementation of any of these systems, however, is not common, and effects

on patient care and outcomes have not been reported. Additionally, these systems

have almost exclusively been developed on data from patients in critical care and, to

some extent, general wards. In ED settings, different types and volumes of data are

typically available, and such algorithms may need to be modified or developed anew.
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1.4 Thesis Contributions

The current landscape of decision support systems in sepsis suggests that well-designed

implementations of these systems have great potential for improving care and that the

ED setting may be both underserved and yet a critical target for care optimization

as early recognition and intervention are imperative for good outcomes.

This thesis aims to address these opportunities, with contributions including:

� A general description of the characteristics of a cohort of patients presenting

with sepsis and evidence of hemodynamic dysfunction, stratified by whether or

not they required vasopressors in the ED of a major urban tertiary care center.

� A characterization of the temporal dynamics and variance of the response of

blood pressure in ED sepsis patients to IVF resuscitation using unsupervised

learning methods, demonstrating that only a minority of fluid boluses are fol-

lowed by a sustained improvement in blood pressure.

� A characterization of the temporal dynamics and variance of blood pressure in

ED sepsis patients in the lead-up to and aftermath of hypotension and in the

lead-up to vasopressor initiation using unsupervised learning methods, demon-

strating that clinicians respond with vasopressors quickly to those patients with

acute drops in blood pressure, but permit sustained episodes of hypotension in

other patients before beginning vasopressors.

� Development of a binary classification model to describe the general character-

istics of sepsis patients that distinguish between those who require ED vasopres-

sors and those whose hypotension resolves without the need for vasopressors at

the time the decision to start vasopressors is most imminent.

� Development of a machine learning-based predictive model for ED vasopressor

initiation in sepsis that demonstrates that need for vasopressors can be detected
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with over an hour of lead-time, during which one or more liters of fluid are

started on average, allowing for potential reduction of administration of excess

IVF with the implementation of such a system.

� Development of a computational, machine learning-based sepsis risk index (SRI)

that can function continuously in real-time in the ED, from triage onwards, to

identify the likelihood of the presence of sepsis.

� Demonstration that the SRI can improve on existing sepsis screening tools when

triaging patients to the highest, most urgent level of care in the ED and iden-

tifying patients who require antibiotics while requiring minimal user input.

1.5 Organization of this thesis

This thesis describes two interrelated projects. Chapters 2 and 3 describe efforts

to characterize the hemodynamic course of ED patients with sepsis and develop a

system to predict the need for initiation of vasopressor therapy. Chapter 4 describes

the development of the SRI, a real-time system to identify patients who may have

sepsis in the ED.

Chapter 2 first provides a general description of a cohort of patients selected for

study of hemodynamics in sepsis and continues by describing unsupervised learning

methods to help characterize the temporal dynamics of blood pressure in ED sepsis

patients. In Chapter 3, the same set of data is used is used to first characterize the

decision to initiate vasopressor therapy by comparing the clinical characteristics of

patients who did and did not require vasopressors at the time of the decision to start

the therapy or at the time of hypotension resolution. The chapter ends with the

description of a predictive system for vasopressor initiation and its potential benefits.

Chapter 4 contains a description of the development of the SRI. This chapter first

describes supplementing our initial dataset with data from non-sepsis ED patients
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and continues by describing the development of an initial SRI. We then describe how

we modified the SRI for better implementation by reducing the number of variables

that might require a clinical user’s manual input and eliminating subjective variables.

Lastly, the chapter describes the performance of the SRI and demonstrates how it

could improve the care of sepsis in the ED, with a particular emphasis on screening

patients at triage.

The thesis ends in Chapter 5 with conclusions from the previously described stud-

ies and highlights potential future work.
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Chapter 2

Data Collection and Characterization

of ED Sepsis Hemodynamics

Because of the complexity and heterogeneity of the pathophysiology of sepsis, the

work in this thesis makes significant use of data-driven approaches, using information

from past records of ED patients (in addition to what we do know about sepsis

as a clinical and pathophysiological condition) to develop the systems that aim to

improve care in the future. Collecting past data and arranging it into useful forms for

analysis are substantial endeavors. This chapter describes the process of identifying

appropriate patient records, extracting relevant data, and characterizing those data

in an exploratory way prior to performing the focused analyses described in Chapter

3. Note that the data described in this chapter comprise all the data used in the work

described in both this chapter and the following one, but additional data collection

is described in Chapter 4 for the development of the SRI.

2.1 Study cohort

The analyses described in this thesis are retrospective and observational in nature.

The first step to conducting all such analyses involves identifying a relevant cohort
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of patients to study.

2.1.1 Inclusion criteria

We chose to study data from a subset of patient encounters at the Massachusetts

General Hospital’s (MGH) ED occurring between April 1, 2014 and March 31, 2016.

We identified a relevant subset by using automated screening criteria to select records

from patients who had both an elevated chance of infection in the ED and evidence

of systemic hypoperfusion.

Elevated likelihood of infection was determined by presence of two or more of

the systemic inflammatory response syndrome (SIRS) criteria [5, 89] at any point

asynchronously during the ED visit. These criteria are:

� Body temperature greater than or equal to 101.0°F or less than 96.8°F.

� Heart rate greater than 90 bpm.

� Respiratory rate greater than 20 breaths per minute.

� White blood cell count greater than 12,000 per 𝜇L, white blood cell count less

than 4,000 per 𝜇L or a fraction of band forms greater than 10%.

A patient fulfilled the hypoperfusion criterion if there were at least two systolic

blood pressure (SBP) measurements less than 90 mmHg or a lactate measurement

greater than 4.0 mmol/L during the ED stay.

In addition, we required that included ED encounters had a diagnostic billing

code from the International Classification of Diseases 9th or 10th editions indicative

of sepsis, as determined by the Centers for Medicare and Medicaid Services [89].

In total, there were 185,949 MGH ED visits during the specified range in dates,

and records from 933 ED visits (about 1.3 per day of the study period) met these

criteria (Fig. 2-1) for critical illness and high risk for septic shock.
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Figure 2-1: Selection of encounters for study of hemodynamic management in sepsis
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2.1.2 Extracted data

From each patients included in the study, we extracted a large amount of data per-

taining to their care in the ED.

Structured data

In structured form, we extracted nurse-charted vital signs and intake, as well as the

results of all clinical laboratory results, including electrolytes, blood cell counts, and

blood cultures.

Vital signs data included readings of SBP and diastolic blood pressure (DBP),

mostly from non-invasive blood pressure cuffs except in a small fraction of cases

patients were instrumented with invasive arterial catheters in the ED, heart rate

(HR), peripheral blood oxygen saturation (SpO2), body temperature, respiratory rate,

patient-reported pain level (on a scale of 0-10), and supplemental oxygen usage and

fraction of oxygen in inspired air. Some variables were filtered for possible spurious

values: Any HR measurements less than 20 bpm, SBP measurements below 25, SBP

and DBP measurements where charted SBP was less than DBP, SpO2 measurements

below 45%, and temperature measurements above 107°F were removed from the data.

The times of all measurements were also included, as recorded by clinicians in the

course of patient care.

Intake data included all intravenously administered medications, including resus-

citation fluids (IVF), antibiotics, and other drugs. Structured data included the

fluid volume of each individual administration along with the start and end time as

recorded by clinicians. The type of solution and any drug contained therein were

all recorded in free-text fields entered manually by clinicians during patient care.

We identified possibly crystalloid fluid boluses using regular expression queries to

search specifically for crystalloid fluid solutions (e.g., normal saline or Ringer’s lac-

tate) or other resuscitative fluids such as albumin solutions and by requiring the
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volume started to have been at least 250 mL.

Manual chart review

A great deal of information from all encounters was also available in an unstructured

format, largely from free-text notes recorded by clinicians. Clinical notes were not

used directly in the analyses in this thesis, but specific elements from nursing and

physician ED notes and hospital admission and discharge notes were extracted by

manual chart review.

Most importantly, records were reviewed to confirm the presence of infection in

the ED and consequent organ dysfunction as a means of confirming the diagnosis of

sepsis in the ED as may have been indicated by a sepsis-related billing code. More

specifically, research assistants looked for explicit mention of infection, suspicion of

infection, sepsis, or septic shock in the hospital admission note’s assessment and

plan section. Mentions of infection may have generally reported “infection” or may

have reported specific infectious and infection-associated processes, such as (but not

limited to) pneumonia, meningitis, urinary tract infection (UTI) or pyelonephritis, C.

difficile-related diarrhea, or leukocytosis and fever.

Clinical ED and admission notes were further reviewed to identify the presence of

certain elements of each patient’s history of their present illness (including reported

presenting symptoms and recent history) and past medical history. Elements of the

ED course, such as whether a patient was intubated and whether (and when) a patient

was begun on vasopressor therapy, were also extracted. A list of all the variables

extracted is available in Appendix A. Research assistants reviewed and reconciled

disagreements in the adjudicated variables, except where noted in Appendix A.

Remaining analyses in this chapter and the following chapter focus specifically on

patients within the cohort who were ultimately adjudicated to have had an infection

(n = 792) and to have not received vasopressors before presentation at the MGH ED
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(n = 27), such as in some cases of transfers from an outside hospital. In total, this

resulted in 765 unique ED visits.

2.2 Exploratory data analysis

The goals of this thesis include building machine learning-based models to run at

the bedside to help improve multiple aspects of ED sepsis care. Before describing

the building of these models, however, it is helpful to describe some of the general

characteristics of this population of sepsis patients. Because much of this thesis also

focuses on hemodynamic support, this section will focus on patients with evidence of

hypotension and on comparative analyses involving patients who did versus patients

who did not require vasopressor therapy for hemodynamic support.

2.2.1 Basic comparative analyses

To start, Table 2.1 shows some basic characteristics of the general population and a

comparison of these characteristics between the population of patients who went on to

receive vasopressors in the ED and the population of patients who did not. Notably,

these two groups of patients had very similar baseline demographic characteristics,

but those who went on to receive vasopressors did present with lower SBP on average.

In general, however, we are further interested in patients who develop hypoten-

sion, and so we present comparative univariate analyses in Table 2.2 including only

those patients who had at least one hypotensive measurement, defined as at least one

measurement of SBP below 90 mmHg at some point during the ED stay. Within this

population, there were no differences in the first SBP measurement between those

who did and did not go on to receive vasopressor therapy in the ED. However, those

who went on to receive ED vasopressors reach hypotension more quickly and received

less fluid in total and in the interim before reaching hypotension. They also received
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less fluid between their first hypotensive measurement and the initiation of vasopres-

sors than non-vasopressor patients did in the interim between their first hypotensive

measurement and recovering to an SBP above 100 mmHg. Lastly, vasopressor pa-

tients present with a greater burden of certain comorbidities, such as CHF and CKD,

which also present general contra-indications for administration of greater volumes

of IVF, were moved out from the ED (to inpatient units) more quickly, and suffered

in-hospital mortality more frequently.

Because the serum lactate measurement is recommended by the SSC as a guide for

resuscitation efforts [24, 90], we also characterized these groups of patients’ lactate

measurements in the ED (Table 2.3). Nearly all patients (98%) had at least one

lactate measurement, but in some patients who received ED vasopressors (10%), that

measurement did not happen until after initiation of vasopressor therapy. The value

of the first lactate (excluding the first lactate measurements from patients in whom

it was started after vasopressor initiation) was very similar across the two groups

of patients, and perhaps even slightly lower in patients who received vasopressors.

However, the opposite was true for the second lactate. Most non-vasopressor patients

did have at least two lactate measurements (72%), but fewer vasopressor patients

did (58%), and far fewer vasopressor patients had the second lactate measurement

taken before vasopressor initiation (27%). In general, the second lactate was higher in

patients who received ED vasopressors, and indeed, the change between the first and

second lactate was not as negative, compared to the corresponding values in those

who did not receive ED vasopressors.

Overall, these basic characteristics show us that vasopressor and non-vasopressor

patients tended to present to the ED with similar acuity. However, vasopressor pa-

tients deteriorated more quickly, received less IVF, cleared less lactate, and had a

greater incidence of comorbidities presenting contra-indication for IVF resuscitation.
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Table 2.1: Basic characteristics of sepsis cohort, presented as median (interquartile
range) or percentage of population). P-values are from Wilcoxon rank-sum test for
continuous variables or 𝜒2-test for categorical values, comparing the non-vasopressor
and vasopressor populations.

Variable
All

encounters
(N=765)

Non-
vasopressor
population
(N=378)

Vasopressor
population
(N=387)

P-value

Age, years 66 (54, 77) 66 (52, 76) 66 (56, 77) 0.177

Male, % 57 57 58 0.836

Non-white race, % 20 22 18 0.248

First SBP, mmHg 111 (91, 134) 116 (99, 141) 105 (86, 127) < 0.001

Table 2.2: Selected characteristics of sepsis patients, including only those with at
least one measurement of SBP < 90 during the ED encounter, presented as median
(interquartile range) for continuous variables, mean ± standard deviation for discrete-
valued numeric variables, or percentage of population for categorical variables, with
P-values from a Wilcoxon rank-sum test, t-test, or 𝜒2-test for categorical values,
respectively, comparing the non-vasopressor and vasopressor populations.

Variable
All

encounters
(N=593)

Non-
vasopressor
population
(N=209)

Vasopressor
population
(N=384)

P-value

First SBP, mmHg 104 (86, 126) 104 (86, 124) 105 (86, 127) 0.862

Hours from triage to first
SBP < 90

1.2 (0, 3.9) 1.7 (0, 5.2) 1.0 (0, 3.2) < 0.001

Total IVF bolus volume
started, liters

3.2 ± 1.8 3.7 ± 1.9 2.9 ± 1.7 < 0.001

IVF bolus volume
started before any SBP
< 90, liters

0.83 ± 1.2 1.1 ± 1.3 0.69 ± 1.0 < 0.001

Hours between first SBP
< 90 and either SBP >
100 or vasopressor start

0.57 (0.22,
1.2)

0.72 (0.27,
1.4)

0.54 (0.18,
1.1)

< 0.001

History of CHF or CKD,
%

26 18 30 0.002

Length of stay in
emergency dept., hours

8.9 (6.3, 13) 12 (8.1, 20) 7.8 (5.5, 11) < 0.001

Hospital mortality, % 24 14 30 < 0.001

36



Table 2.3: Lactate-related characteristics of sepsis patients, including only those with
at least one measurement of SBP < 90 during the ED encounter, presented as me-
dian (interquartile range) for continuous variables, mean ± standard deviation for
discrete-valued numeric variables, or percentage of population for categorical vari-
ables, with P-values from a Wilcoxon rank-sum test, t-test, or 𝜒2-test for categorical
values, respectively, comparing the non-vasopressor and vasopressor populations after
excluding lactate measurements made after vasopressor initiation.

Variable
Non-

vasopressor
Vasopressor population

(N=384)
P-value

population
(N=209)

All lactates
Excl. after
vaso. init.

Num. lactate orders 2.0 ± 1.0 1.8 ± 0.9 1.2 ± 0.7 < 0.001

≥ 1 lactate ordered, % 98 98 88 < 0.001

First lactate, mmol/L 2.9 (1.5, 4.7) 2.8 (1.8, 4.5) 2.7 (1.7, 4.3) 0.049

≥ 2 lactates ordered, % 72 58 27 < 0.001

Second lactate, mmol/L 2.0 (1.2, 3.2) 2.8 (1.8, 4.5) 2.9 (1.8, 4.7) < 0.001

Change from first to
second lactate, mmol/L

-0.8 (-1.8,
-0.1)

-0.4 (-1.4,
0.4)

-0.2 (-0.7,
0.8)

< 0.001

2.2.2 Clustering MAP trajectories to assess fluid responsive-

ness

Much of this evidence does suggest that IVF resuscitation plays an important part of

the course of patients’ status in the ED, so we found it important to further charac-

terize how patients tended to respond to fluid resuscitation. Prior research suggests

that only about half of critically ill sepsis patients demonstrate volume responsiveness

upon the administration of a bolus of IVF, as defined by an increase in stroke volume

by at least 10% [91] or by a measurable increase in mean arterial pressure (MAP)

[66]. Furthermore, in those who do respond to boluses, the effects on stroke volume

or MAP commonly vanish within one hour [92, 93].

These studies assessing fluid responsiveness have mostly focused on ICU patients

and have generally only made use of point measurements of hemodynamic parameters

at one or two fixed time points surrounding (in most cases, only following) bolus

administration. We sought to characterize fluid responsiveness in this ED sepsis

cohort by instead mining for clusters of trends in the time period surrounding a
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bolus administration. This methodology may, for instance, distinguish between a

bolus response in which a previously falling blood pressure stabilizes (a potentially

“good” response) from a bolus response in which a low blood pressure fails to improve

(perhaps a neutral or even “bad” response, as excessive volume is associated with poor

outcomes [60]).

Clustering methods

More specifically, we studied MAP trajectories in the time window extending from 15

minutes prior to 2 hours after the bolus administration in patients in the previously

described cohort (Section 2.1) adjudicated to have likely or possible infection and not

made comfort-measures-only (CMO). We considered a “bolus” to be any record of

IVF intake consisting of a crystalloid solution (e.g., normal saline or Ringer’s lactate)

of at least 250 mL.

Because only systolic and diastolic blood pressures (DBP) were recorded in patient

charts, MAP was computed as an average of SBP and DBP, with twice as much weight

given to DBP. Prior to extracting the relevant SBP and DBP values, we linearly

interpolated between recorded measurements at 1-minute resolution. We excluded

any bolus with an initiation of vasopressor therapy in the specified surrounding time

window, any bolus with fewer than 2 recorded blood pressure measurements in the

specified time window, and any bolus that was begun within the two hours after

a previous bolus. To emphasize trends, the mean of each MAP time series was

subtracted out as a normalization method. The resulting trajectories were clustered

using a k -means algorithm with Euclidean distance metric.

Clustering results

After excluding patients adjudicated as unlikely to have infection, patients who were

begun on vasopressors prior to ED arrival, and patients made CMO in the ED, there
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Figure 2-2: Clustering results for MAP trajectories in response to crystalloid fluid
boluses (8 clusters); 𝑛 in each figure heading is the number of time series in each
cluster, and the percentage is the ratio of 𝑛 to the total number of time series (1059).
Blue lines are the average of the raw time series for each cluster. Red lines are the
average of the normalized time series. Shaded areas indicate ±1 standard deviation.
Clusters are ordered by net change in MAP during the time window.

were 761 patients in the cohort for this analysis. Of these, 38 did not have any

documented fluid boluses, and 92 were begun on vasopressors within the time window

of their first bolus. From the remaining encounters, we extracted 1059 MAP time

series and performed k -means clustering with 𝑘 = 8.

The average time series for each cluster is shown in Fig. 2-2, with the clusters

arranged and numbered in order of descending net change in MAP during the window.

Clusters 4 and 5 show only a very minor change in MAP but include about 60% of

all time series. Clusters 1 to 3 show a positive change in MAP but include less than

25% of the time series. About 15% of patients are in Clusters 6 to 8, in which boluses

do not appear to affect a downtrending MAP.

According to recent surveys of intensive care specialists in the US and around the

world, about 50% believe that an increase in MAP of at least 10 mmHg is required
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to constitute a “response” to a fluid bolus [94, 95]. Using this criterion, only Clusters

1 to 3 in Fig 2-2 may be considered “responsive” clusters. Moreover, In Cluster 3,

this response vanishes after the first hour, explicitly demonstrating the previously

described transient effect of fluid boluses in some patients.

Clusters 4 and 5 show only mild changes with patients retaining a low MAP (about

60-70 mmHg), which suggests these may be “unresponsive” clusters. In Clusters 6

to 8, initial values of MAP are about 70-90 mmHg, which is higher than the 65

mmHg threshold referenced in sepsis care guidelines [24, 90]. This may indicate that

increasing MAP was not necessarily the goal of fluid bolus therapy for patients in

Clusters 6 to 8, and physicians may have been expecting or targeting a response in

terms of other hemodynamic parameters [94, 95].

Conclusions

Overall, these clusters show that about 40% of the fluid boluses failed to increase

MAP at all, while only 20% were followed by a sustained increase in the subsequent

two hours. These results generally suggest that there may be room for improvement

in hemodynamic management of sepsis patients, particularly to help reduce the total

burden of IVF that is administered without clear benefit.

2.2.3 Clustering SBP trajectories in the lead-up to vasopres-

sor initiation

We also sought to understand the variability in the natural temporal progression of

blood pressure in sepsis patients who present with or develop hypotension in the

ED, regardless of IVF administration, but particularly in the lead-up to hypotension,

the resolution thereof, and the initiation of vasopressor administration. To address

this goal, we used a hierarchical clustering approach with SBP measurements and

a dynamic time warping-based distance metric [96] to find common blood pressure
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trajectories of patients during episodes of hypotension and during the period of time

immediately before vasopressor initiation.

We performed three main clustering tasks, discussed in sequence below. In each

task, we extracted about two hours of SBP data from the records of relevant ED

encounters. Here we used SBP to reflect the clinical variable that an ED clinician

would be directly assessing, rather than MAP which is not directly available without

invasive blood pressure instrumentation, a relatively uncommon occurrence in the ED.

The data from all patients were aligned to a fiducial point in time and we again linearly

interpolated between samples to 1-minute resolution. Any encounters whose records

did not span the task’s time window and any encounters who received vasopressors

during the task’s time window were excluded from the relevant task.

For all tasks, we used hierarchical agglomerative clustering with Ward’s method

to minimize within-cluster variance [97]. Pairwise distances between time series were

computed using the Euclidean distance metric with dynamic time warping [96].

Dynamic time warping is likely to be helpful here because patients are undergoing

interventions (IVF resuscitation, in particular) to modify blood pressure. These in-

terventions, however, will occur at different times (relative to a task’s fiducial point)

for different patients. As IVF resuscitation, for example, is likely to be associated

with certain features, such as a brief rise in blood pressure, these features will not be

directly aligned in multiple patients, even though the overall time series are indeed

aligned to landmarks such as the beginning of a hypotensive episode or initiation of

vasopressor therapy. Dynamic time warping can help account for the misalignment

of these features by choosing a warped alignment path for any pair of time series that

will match data points from one series to the other to minimize the overall Euclidean

cost.

The three main clustering tasks are described here, with results and discussion as

follows:
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1. Longest hypotensive episode: In the first task, we aligned all SBP time

series at the start of the longest hypotensive episode, defined as the time of

the first SBP measurement below 90 mmHg in the longest stretch of time with

consecutive SBP measurements below 90 mmHg. For clustering, we used the

period of time extending from 60 minutes prior to this time to 60 minutes after

this time. We placed no restrictions on the duration of the episode for inclusion;

in some cases, the longest hypotensive episode may include only one actual SBP

measurement below 90 mmHg.

2. Longest episode of sustained hypotension: In a similar task, we again

aligned SBP time series at the start of the longest hypotensive episode. However,

we limited this task to include only records for which the longest hypotensive

episode included at least two successive SBP measurements below 90 mmHg.

The period of time used for clustering again extended from 60 minutes prior to

60 minutes after the start of the episode.

3. Initiation of vasopressor therapy: In this final task, we included only en-

counters in which patients were administered vasopressors in the ED. All time

series included in this task were aligned to the time of the SBP measurement

closest to the first vasopressor administration, but no more than five minutes

after it. We used the 120 minutes preceding this time for clustering. Encoun-

ters in which patients did not receive vasopressors were not included, nor were

encounters in which patients received vasopressors within two hours into the

ED visit.

Task 1: Longest hypotensive episode

A total of 251 records were available that met the criteria for inclusion in this task.

Patients in 98 of these encounters (39%) went on to receive vasopressors at any point
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later in the ED visit. The dendrogram resulting from agglomerative hierarchical

clustering for this task is shown in Figure 2-3a. To determine a cut-off for apportioning

clusters, we aimed to create no more than five clusters but with at least twenty time

series in each cluster. In the dendrogram, the vertical axis value is the distance

between the two clusters connected by the corresponding horizontal line. The number

of time series in each cluster is indicated, and each cluster has a unique color.

The average SBP time series in each cluster, created by taking the cohort arith-

metic mean at each sample (1-minute resolution), are shown in Figure 2-3b, along

with the percentage of patients in each cluster who went on to receive ED vasopres-

sors. The green and cyan clusters had low ED vasopressor incidence (14% and 30%,

respectively) compared to the overall cohort (39%). In the green cluster, the hypoten-

sive episodes were short, and SBP rebounded on average to above 100 mmHg by the

end of the time window. In the cyan cluster, SBP leveled off close to 90 mmHg on

average. In contrast, the red and magenta clusters had higher vasopressor incidence,

with respective fractions of 65% and 57% of patients receiving vasopressors, respec-

tively. In these clusters, SBP remained level but averaged well below 90 mmHg at

the end of the time window.

Task 2: Longest episode of sustained hypotension

In this task, time series from 212 records were available for clustering. These time

series comprise the subset of records in Task 1 that had multiple consecutive hypoten-

sive measurements in the longest hypotensive episode. Here, we found that 35% of

the patients represented in these records went on to receive vasopressors in the two

hours immediately succeeding the end of the time window.

The dendrogram and average time series in each cluster are shown in Figure 2-4,

along with annotations indicating the number of patients represented in each cluster

and the incidence in each cluster of vasopressor administration within 2 hours of the
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(a)

(b)

Figure 2-3: (a) Dendrogram created by hierarchical clustering in Task 1. The vertical
axis value of a horizontal line is the distance between the two clusters connected by
that line. The number of time series in each cluster is indicated, and each cluster
has a unique color. Of the patient encounters represented in the cohort, vasopressors
were begun in 39% later in the ED stay (b) Average time series in each cluster. Colors
match those of the clusters in the dendrogram. Annotations indicate the percentage
of patients in each cluster who went on to receive vasopressors. Shading indicates
±1/4 standard deviation from the mean.
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end of the time window. The resulting clusters included three (magenta, green, and

cyan) that were enriched with near-term vasopressor incidence (54%, 50%, and 43%,

respectively). In all of these clusters, SBP remained below 90 mmHg at the end of

the time window, and in the green cluster, continued to deteriorate, ending close to

70 mmHg on average.

Two clusters had lower near-term vasopressor incidence relative to the overall

cohort: yellow (with 14% incidence) and red (with 25% incidence). These clusters

were morphologically similar to the Task 1 clusters with reduced vasopressor incidence

(green and cyan, respectively).

Task 3: Initiation of vasopressor therapy

In the final task, which included only patients who did receive vasopressors in the

ED, SBP time series from 214 patients were available for clustering analysis. This

includes data from all patients who received vasopressors in the ED more than two

hours after the first ED SBP measurement.

Three distinct patterns emerged among the average time series of the four clusters

(Fig. 2-5) One cluster (green) showed a steep decline in SBP over the two-hour

window, from a mean of 131 mmHg to 81 mmHg. In contrast, time series in the

red cluster maintained values very close to 80 mmHg throughout the window. Lastly,

time series in the remaining clusters showed slow declines of similar magnitudes: from

105 to 89 mmHg (magenta) and 92 to 80 mmHg (cyan).

Discussion

The analyses in this chapter show the SBP trajectories that describe hypotensive

sepsis patients in the ED and the trends that tend to precede vasopressor initiation.

The results of Task 1 suggest that a significant fraction of patients experience only

very short hypotensive episodes. The green cluster accounts for 26% of the patients
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(a)

(b)

Figure 2-4: (a) Dendrogram created by hierarchical clustering in Task 2. Vasopressors
were begun within 2 hours in 35% of the patient encounters represented in the cohort.
(b) Average time series in each cluster. Colors match those of the clusters in the
dendrogram. Annotations indicate the percentage of patients in each cluster who
went on to receive vasopressors within 2 hours of the end of the period of time
represented. Shading indicates ±1/4 standard deviation from the mean.
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(a)

(b)

Figure 2-5: (a) Dendrogram created by hierarchical clustering in Task 3. (b) Average
time series in each cluster. Colors match those of the clusters in the dendrogram.
Shading indicates ±1/4 standard deviation from the mean.
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represented in Task 1 (Fig. 2-3). SBP in these patients rebounds very quickly,

reaching 100 mmHg within 40 minutes after the first hypotensive measurement. In

fact, many of the members of this cluster have only a single SBP measurement below

90 mmHg. Indeed, there were 39 encounters included in Task 1 but excluded from

Task 2, and the difference in cluster size between the green cluster of Task 1 and the

morphologically similar yellow cluster of Task 2 was 37 encounters.

In the majority (74%) of patients represented in Task 1, however, the hypotension

is longer-lasting, suggesting a clear dichotomy that patients either recover from hy-

potension very quickly or remain hypotensive for long periods. The red and magenta

clusters in Task 1 show varying paths to sustained hypotension. Patients in the red

cluster began with SBP at 118 mmHg, while patients in the magenta cluster began

with SBP at only 91 mmHg on average, yet the two clusters ended at similar SBPs

of 82 and 80 mmHg, respectively.

Notably, subsequent vasopressor administration is more common in the red clus-

ter of Task 1 than in the magenta cluster (65% vs. 57%), even though patients in

the magenta cluster began with much lower SBP, suggesting that the dynamics of

SBP, and not just the instantaneous value, are important predictors of vasopressor

administration.

A similar observation can be made in the results from Task 2 (Fig. 2-4) Here there

are three clusters (magenta, green, and cyan) enriched for vasopressor administration.

In the green cluster, SBP began at 91 mmHg on average, as compared to 113 mmHg

in the magenta cluster, and deteriorated to an extremely low 73 mmHg by the end

of the time window. However, it is the magenta cluster, which ended at an average

SBP of 82 mmHg, with the highest near-term vasopressor incidence (54% vs. 50%).

Similarly, patients in the cyan cluster, who ended at an SBP similar to those in the

magenta cluster, had only a slightly elevated vasopressor incidence (43%) despite

starting at an average SBP of 90 mmHg and remaining close to this value throughout
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the time window.

Overall, the results from Tasks 1 and 2 suggest that clinicians tend to be quicker to

initiate vasopressors in patients with acute drops in SBP, whereas they may be more

comfortable with patients who are hypotensive but in whom SBP is stable and not

further deteriorating. This possibly represents a form of “clinical inertia” in continuing

to provide IVF resuscitation instead of beginning vasopressor administration, though

an analysis of IVF usage would be required to further understand the nature of the

cases with longer episodes of hypotension.

The results from Task 3, which showed clusters of SBP in the immediate lead-

up to vasopressor initiation also showed revealing patterns, with four distinct groups

(Fig. 2-5). About 57% of the patients represented in this sample were in the magenta

and cyan clusters, characterized by gradual declines over the two-hour time window.

In contrast, 17% of patients showed a steep decline in SBP, starting at an average

of 131 mmHg but ending at an average of 81 mmHg. These clusters suggest that in

patients with actively deteriorating blood pressure, clinicians respond quickly with

vasopressors once SBP drops below about 90 mmHg.

However, the third cluster (red) is different. Patients in this cluster (25% of the

task cohort) began at an SBP already very low – about 82 mmHg – and remained

with a low SBP for two hours before receiving vasopressors at an average of 79 mmHg.

The most recent update to the SSC Guidelines for sepsis care advises that “[i]f blood

pressure is not restored after initial fluid resuscitation, then vasopressors should be

commenced within the first hour” [90]. While we have not directly incorporated IVF

administration in this particular analysis, our results suggest that in these patients,

it may have been advisable to begin vasopressors earlier.
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Chapter 3

Continuous Monitoring for

Hemodynamic Management in ED

Sepsis

To improve hemodynamic management of hypotensive sepsis patients in the ED, we

carried out two major studies. First, we aimed to understand the decision to begin

vasopressors by quantitatively characterizing the clinical differences between patients

with hypotension who did and did not receive vasopressors. Secondly, we aimed to

build a data-driven computational algorithm that could operate in real-time at the

bedside to guide decision-making about vasopressor initiation in ED sepsis patients.

3.1 Characterizing the decision to begin vasopres-

sors

To formally characterize the decision to start vasopressors in the ED, we developed

a statistical model to distinguish between patients with sepsis whose hypotension

required treatment with vasopressors in the ED and those whose hypotension resolved
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933 encounters 

manually 

adjudicated

589 encounters in 

study cohort

Excluded:

Non-infec�ous e�ology, pre -

ED vasopressors, no SBP < 90

mmHg, or made CMO in ED

Non-VP

(n=152)

VP<8

(n=65)

VP8-24

(n=86)

VP>24

(n=233)

VPICU

(n=53)

Non-ED Vasopressors ED Vasopressors

Figure 3-1: Study cohort for characterization of decision to begin vasopressors, be-
ginning from overall cohort in Fig. 2-1.

without the need for vasopressors. The goal was to determine how well and by which

common clinical characteristics these two groups of patients could be differentiated

at the time of hypotension resolution.

3.1.1 Methods

Study cohort

Beginning from the cohort of ED patient encounters described in Section 2.1, we ex-

cluded encounters in which the patient did not have have an infection (as determined

by adjudication), received vasopressors within 12 hours prior to ED presentation,

was made comfort-measures-only in the ED, or did not have a recorded ED SBP

measurement less than 90 mmHg (Fig. 3-1).
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Outcome groups

From this study cohort, we grouped all encounters into one of five mutually exclusive

outcomes, denoted as follows:

� Non-VP: did not receive vasopressors within 48 hours of ED presentation.

� VP>24, VP8-24, and VP<8: started on vasopressors in the ED for respective total

course durations of greater than 24 hours, between 8 and 24 hours, or less than

8 hours.

� VPICU: did not receive ED vasopressors despite ED hypotension, but did receive

vasopressors within 48 hours of ED presentation (in all such cases, vasopressor

initiation occurred in an ICU or rarely, in an operating room setting).

These delineations represent groups of patients in whom the decision to start or to

not start vasopressors can retrospectively be given different qualitative levels of con-

fidence. We believe we can confidently say that in Non-VP encounters, the decision

to forgo vasopressors was justified, as no clinician who saw the patient either in the

ED or immediately afterward felt vasopressors were necessary. Similarly, for VP>24

patients, after at least one clinician made the decision to initiate vasopressor ther-

apy, multiple clinicians subsequently agreed to continue the patient on vasopressors,

providing substantial justification.

In contrast, the justifications to begin vasopressors are weaker for the other groups

of patients. Because VP<8 and VP8-24 encounters were weaned from vasopressors in

short order, the decision to initiate vasopressor therapy in the first place may be

called into question. And because VPICU patients were started on vasopressors soon

after leaving the ED, the need for advanced hemodynamic support may have been

foreseeable to clinicians in the ED.
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Selection of a “final decision point”

Because patients’ physiology is constantly changing and many variables used by clin-

icians in making decisions about management also change dynamically, we identified

for each patient a canonical point in time that would be the “final decision point,”

denoted 𝑡𝑓 , for initiating or forgoing ED vasopressor therapy. For encounters in which

patients did receive ED vasopressors (i.e., VP>24, VP8-24, and VP<8 encounters), we

defined 𝑡𝑓 as the last observation of a patient variable occurring strictly before va-

sopressor initiation and with SBP < 90 mmHg. For encounters in which patients

did not receive ED vasopressors (Non-VP and VPICU encounters), we defined 𝑡𝑓 as

the last observation of a patient variable with SBP < 90 mmHg. Because this is the

last moment of nominal ED hypotension, we presume that either clinicians would

not actively consider vasopressors after this point in time or that the patient was

transferred out of the ED.

Study parameters

From the medical record system, we extracted nurse-charted vital signs, IVF ad-

ministrations, and laboratory measurements. Research assistants reviewed charts to

determine presenting symptoms, comorbidities, time of first vasopressor administra-

tion, and duration of vasopressor administration. Outcome variables were double-

adjudicated in 50 encounters to evaluate inter-rater reliability (using Cohen’s 𝜅).

Raw variables obtained from chart review were sourced from Filbin et al. [51], in

which they were all double-adjudicated and had inter-rater differences reconciled.

In total, we analyzed 43 covariates as candidate outcome predictors, including

variables related to vital signs, clinical laboratory measurements, comorbidities, pre-

senting symptoms, fluid administrations, and evidence of volume responsiveness (Ta-

ble 3.1). These candidate predictors were constructed to attempt to capture the

wide array of possible characteristics a clinician may explicitly and implicitly observe
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and consider. For parameters with multiple measurements, e.g., SBP and other vital

signs, we used only the value as computed at 𝑡𝑓 ; thus only one set of variables was

extracted for any one patient in model development. We parameterized vital signs by

two methods, including both the value documented at time 𝑡𝑓 and a weighted average

using weights that decreased by half at each preceding observation [98]. Such expo-

nential weighting incorporates information from prior measurements, while giving

greater weight to more recent measurements.

Model development: Discrimination of VP>24 and Non-VP patients at tf

To identify which clinical factors best discriminated between hypotensive sepsis pa-

tients who needed vasopressors vs. those who did not, we compared the VP>24 and

Non-VP groups, assuming that the vasopressor requirement was most definitive for

these two groups.

To determine which candidate covariates had significant (P < 0.05) discriminative

ability, we developed a multivariate logistic regression (LR) model in two stages. We

first included all covariates, as computed at 𝑡𝑓 , in an L1-regularized LR model This

type or regularization generates covariate sparsity – i.e., few covariates retain a non-

zero coefficient [99]. We used five-fold cross-validation to select the regularization

hyperparameter, maximizing the area under the receiver-operator characteristic curve

(AUC). Next, covariates with non-zero regression coefficients were entered into a

stepwise forward selection process to select those with significance (P<0.05) in a final

multivariate LR model. Using this final model, we computed the AUC over all data

used for development, as well as under leave-one-out cross-validation.

Missing values for any parameter at 𝑡𝑓 were carried forward from previous times;

when missing completely from the interval between ED arrival through 𝑡𝑓 , we used the

population median of the parameter at 𝑡𝑓 . All covariates were z-score standardized
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Table 3.1: Variables included in characterization of vasopressor initiation, as com-
puted at 𝑡𝑓 .

Category Variable name/description Median (IQR)
or Incidence

Comorbidities

Any significant comorbidity, %
(These include active cancer, diabetes, end-stage
renal disease requiring dialysis, physical disability,
immune compromise, and chronic liver disease)

78

Comorbidities History of CHF or CKD, % 34

Demographic or
metadata

Age, years 66 (54 - 77)

Demographic or
metadata

Elapsed time from triage, hours 4.6 (2.0 - 8.9)

Demographic or
metadata

Male sex, % 56

Demographic or
metadata

Non-white race, % 16

Interventions IVF volume started while SBP < 90 mmHg, mL 450 (0 - 1350)

Interventions Total IVF volume started, mL
2550 (1250 -

4000)

Interventions Two liters of IVF started, % 75

Labs First serum lactate, mg/dL 2.6 (1.6 - 3.9)

Labs Maximum serum lactate, mg/dL 3.0 (1.8 - 4.3)

Labs Serum creatinine, mg/dL 1.4 (1.0 - 2.2)

Labs White blood cell count, 1000/uL 12.8 (7.6 - 17.4)

Presenting
symptoms

Abnormal skin finding, % 11

Presenting
symptoms

Complaint of mental status change, % 36

Presenting
symptoms

Complaint of pain, % 20

Presenting
symptoms

Constitutional complaint (e.g., fatigue, malaise),
%

53

Presenting
symptoms

Gastrointestinal complaint, % 53

Presenting
symptoms

Neurological complaint, % 4.1

Presenting
symptoms

Referral to ED for infectious complaint or
diagnostic data, %

65

Presenting
symptoms

Respiratory complaint, % 41

Continued on next page
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Table 3.1 – continued from previous page

Category Variable name/description Median (IQR)
or Incidence

Presenting
symptoms

Urinary complaint, % 9.3

Response to
intervention

Hours with SBP < 90 mmHg after 2 liters IVF
started

0.12 (0.0 - 1.1)

Response to
intervention

Liter-hours of SBP < 90 mmHg, L × hours 1.7 (0.0 - 6.4)

Response to
intervention

Mean change in SBP after all previous IVF
boluses, mmHg

0 (−0.024 - 0.035)

Vital signs Exponentially weighted DBP, mmHg 51.4 (47.7 - 54.3)

Vital signs Exponentially weighted HR, bpm 97.8 (85.1 - 113.2)

Vital signs Exponentially weighted respiratory rate, min-1 19.4 (18.0 - 21.2)

Vital signs Exponentially weighted SBP, mmHg 86.2 (80.5 - 89.5)

Vital signs Exponentially weighted shock index, bpm/mmHg 1.2 (1.0 - 1.4)

Vital signs Exponentially weighted temperature, °F 98.2 (97.4 - 99.5)

Vital signs Heart rate, bpm 96 (84 - 112)

Vital signs
Time-integrated exposure to SBP < 90 mmHg,
mmHg × min

465 (44.0 - 1680)

Vital signs Maximum heart rate, bpm 118 (102 - 136)

Vital signs Maximum pain level reported 5 (5 - 8)

Vital signs Maximum temperature, °F 99.6 (98.2 - 101.6)

Vital signs Mean SBP in past 4 hours, mmHg 90.0 (85.4 - 96.3)

Vital signs Minimum GCS score 14 (13 - 15)

Vital signs Minimum SBP, mmHg 77 (70 - 81)

Vital signs Minimum SpO2, % 93 (90 - 95)

Vital signs SBP < 90 mmHg at triage, % 30

Vital signs Shock index (HR/SBP), bpm/mmHg 1.2 (1.0 - 1.5)

Vital signs Systolic blood pressure, mmHg 82 (75 - 86)

at 𝑡𝑓 .

Model application for earlier identification of VP>24 patients

We then analyzed the discrimination of VP>24 and Non-VP patients prior to time 𝑡𝑓

in two ways.

First, we applied the 𝑡𝑓 model to earlier time points, excluding any such time
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points with SBP ≥ 90 mmHg. We applied the 𝑡𝑓 model to preceding sets of docu-

mented vital signs, which we denote as 𝑡𝑓−1, 𝑡𝑓−2, 𝑡𝑓−3, and so on, with 𝑡𝑓−1 being

the set of model variables documented immediately prior to the observation at 𝑡𝑓 .

We assessed the trend of the model AUC over the individual observation times and

computed the delay in hours and theoretical excess IVF volume administered to those

VP>24 patients who met a high positive predictive value (PPV) threshold prior to 𝑡𝑓 .

Second, we developed alternative models trained using data from each of these

earlier time points, and compared these models with the 𝑡𝑓 model. We used the same

candidate parameters and methodology as above, but for data at 𝑡𝑓−1, 𝑡𝑓−2, 𝑡𝑓−3, and

𝑡𝑓−4. The goal was to determine whether alternative clinical parameters might provide

better discrimination at time points before 𝑡𝑓 . We compared the AUCs (computed by

leave-one-out cross-validation) and selected predictor variables for these models with

those of the 𝑡𝑓 model evaluated at the earlier time points.

Characterization of VP8-24, VP<8, and VPICU groups

To assess for evidence that some patients who were weaned from vasopressors in <24

hours may not have needed vasopressors, we computed 𝑡𝑓 model scores for VP8-24

and VP<8 encounters at 𝑡𝑓 . We compared the distributions of scores for these groups

with the distribution for the VP>24 group. If the VP8-24 and VP<8 groups had lower

scores, we interpreted this to be evidence of vasopressors started unnecessarily.

We also compared distributions for the VPICU group with the Non-VP group at 𝑡𝑓

(the time of the last ED SBP < 90 mmHg for both of these groups). If the VPICU had

significantly higher model scores, we assumed this to be evidence that vasopressors

started in the ICU might have been clinically indicated earlier, in the ED.
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Table 3.2: Cohen’s 𝜅 for membership in vasopressor outcome groups.

Outcome group Cohen’s 𝜅

Non-VP 0.87
VP<8 0.89
VP8-24 0.89
VP>24 0.89
VPICU 0.85

Statistical testing

Univariate comparisons used the chi-squared test for categorical variables and the

Mann-Whitney-U test for continuous variables, and values of variables at different

times were compared by the Kruskal-Wallis test with a post-hoc Mann-Whitney-U

test. Model AUCs were compared by DeLong’s method [100]. Empirical distribution

functions of model scores were compared with the Kolmogorov-Smirnov test. All tests

were two-tailed with significance at 0.05. For visualization, empirical distributions

were smoothed by Gaussian kernel density estimation, using cross-validation to choose

kernel parameters [99].

3.1.2 Results

Cohort

A total of 589 encounters met criteria for the study cohort, of which 384 received

ED vasopressors for any duration (Fig. 3-1). Cohen’s 𝜅 ranged from 0.85 to 0.89 for

determining membership in the five outcome groups (Table 3.2).

Compared with patients who did not receive vasopressors, ED vasopressor patients

were slightly older (median 66 vs. 64 years, P=0.014) and had greater incidences of

coronary artery disease (25% vs. 16%, P=0.010), congestive heart failure (27% vs.

16%, P<0.01), and chronic kidney disease (28% vs. 20%, P=0.039), while receiving

less ED IVF (3600 vs. 4100 mL, P<0.001). ED vasopressor patients also had greater

SOFA scores (9 vs. 4, P<0.001) with more frequent direct admission to an ICU (91%
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vs. 39%, P<0.001) and hospital mortality (29% vs. 13%, P<0.001) (Table 3.3)

Table 3.3: General characteristics of vasopressor and non-ED vasopressor cohorts.
Values are presented as median (IQR) or fraction of cohort. *P<0.05.

Variable, units

Non-ED
vasopressor
encounters,
N=205

ED vasopressor
encounters,
N=384

P-value

Age, years 63 (49 - 75) 66 (55 - 77) 0.014*

Male, % 50 58 0.056

Non-white, % 20 28 0.57

Triage SBP, mmHg 104 (86 - 124) 105 (86 - 127) 0.87

Triage heart rate, bpm 110 (92 - 125) (88 - 120) 0.17

Triage GCS Score 15 (15 - 15) 15 (13-15) < 0.001*

Triage respiratory rate, min-1 20 (18 - 22) 20 18 - 24) 0.016*

Triage SpO2, % 97 (94 - 98) 96 (93 - 98) 0.064

Triage temperature, °F 98.2 (97.2 - 99.9) 98.1 (97.1 - 99.4) 0.22

First serum lactate, mmol/L 2.8 (1.5 - 4.5) 2.8 (1.5 - 4.5) 0.55

Serum BUN, mg/dL 23 (15 - 40) 30 (18 - 49) < 0.001*

Serum creatinine, mg/dL 1.3 (0.88 - 2.1) 1.6 (1.1 - 2.7) < 0.001*

Platelet count, 1000/uL 191 (137 - 282) 192 (111 - 264) 0.15

White blood cell count, 1000/uL 12.5 (7.31 - 18.2) 13.3 (7.02 - 19.3) 0.69

Cancer, % 24 25 0.79

Coronary artery disease, % 16 25 0.010*

Congestive heart failure, % 16 27 < 0.01*

Chronic obs. pulm. disease, % 17 20 0.36

Cerebrovascular accident, % 7.8 12 0.18

Diabetes, % 23 32 0.036*

Liver disease, % 8.8 6.8 0.47

Source, % 0.73
� Pulmonary 22 26
� Urinary 22 19
� Intra-abdominal 25 23
� Skin / soft tissue 6.3 6.3
� Unknown 25 25
� Other 3.9 5.7

Total IVF started, mL 4100 (3050 - 5500) 3600 (2300 - 4800) < 0.001*

SOFA score 4 (3 - 6) 9 (7 - 11) < 0.001*

Hospital mortality, % 13 29 < 0.001*

Direct ICU admission, % 39 91 < 0.001*
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Factors associated with vasopressor initiation: the 𝑡𝑓 model

The cohort used for 𝑡𝑓 model development included 365 patient encounters, of which

213 were in the VP>24 group and 152 in the Non-VP group. The final model consisted

of six covariates (Table 3.4). The AUC was 0.92 (95% CI: 0.90 - 0.95) as evaluated on

the training set and 0.91 (0.88 - 0.94) as evaluated by leave-one-out cross-validation.

Table 3.4: Final logistic regression model, with variable means and standard deviation
(used for standardization in model development) provided as a reference. “Exponen-
tially weighted” indicates a weighted averaging that gives older values of the variable
a weight that decays by half at each preceding observation.

Variable
Mean (Standard

Deviation)
Odds Ratio
(95% CI)

P-value

Exponentially weighted
respiratory rate

24 (4.7) min-1
1.59 (1.05 - 2.42)

per 5 min-1
0.029

Fluids during SBP<90 mmHg 900 (1200) mL
1.34 (1.03 - 1.75)
per 1000 mL

0.028

Elapsed time from triage 6.3 (5.9) hours
0.86 (0.80 - 0.92)

per 1 hour
< 0.001

Minimum GCS 13 (3.8)
0.78 (0.70 - 0.88)

per 1 unit
< 0.001

Minimum SpO2 92% (5.6%)
0.66 (0.46 - 0.95)

per 5%
0.025

Systolic blood pressure 80 (8.4) mmHg
0.26 (0.18 - 0.37)
per 5 mmHg

< 0.001

Earlier identification of VP>24 patients

At earlier time points, we found that both overall composition and performance were

similar (Tables 3.5 and 3.6) to those at 𝑡𝑓 . All models selected a core set of vital signs-

features (including one derived from each of GCS, SBP, and either respiratory rate

or temperature) plus elapsed time from triage and a feature related to IVF adminis-

tration. Only at 𝑡𝑓−4 did an alternative model (AUC=0.85) significantly outperform

the 𝑡𝑓 model (AUC=0.73, P<0.01); at all other times, the 𝑡𝑓 model was not statis-

tically significantly worse. We thus applied the 𝑡𝑓 model at earlier observations to
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Table 3.5: Final compositions of models trained at earlier observation times, with
number of available encounters noted.

tf-4 (n=131) tf-3 (n=155) tf-2 (n=180) tf-1 (n=259) tf (n=365)

Exp. wght.
temp.

Exp. wght.
temp.

CHF or CKD
Exp. wght.

temp.
Exp. wght.
resp. rate

Time from
triage

Time from
triage

Exp. wght.
temp

Fluids SBP < 90 Fluids SBP < 90

Max pain level Min GCS HR
Time from
triage

Time from
triage

Min GCS Non-white race
Time from
triage

Min GCS Min GCS

Min SBP SBP Max HR Min SpO2 Min SpO2

Non-white race
Total fluid
volume

Min GCS SBP SBP

Total fluid
volume

Urinary
complaint

SBP
Total fluid
volume

Table 3.6: AUCs for each alternative model evaluated at the time of training via
leave-one-out cross-validation and statistical comparison with the 𝑡𝑓 model (LOOCV:
leave-one-out cross-validation).

Observation
AUC of 𝑡𝑓 model

evaluated at observation
(95% CI)

AUC of an alternative
model trained at

observation, via LOOCV
(95% CI)

P-value

𝑡𝑓−4 0.73 (0.64, 0.81) 0.85 (0.78, 0.91) 0.003
𝑡𝑓−3 0.79 (0.71, 0.86) 0.81 (0.74, 0.88) 0.47
𝑡𝑓−2 0.82 (0.75, 0.89) 0.86 (0.80, 0.92) 0.17
𝑡𝑓−1 0.84 (0.79, 0.89) 0.86 (0.81, 0.91) 0.20
𝑡𝑓 0.91 (0.88, 0.94) 0.91 (0.88, 0.94) -
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n=131, AUC=0.73

Figure 3-2: Smoothed observed density functions for scores from an LR model trained
to discriminate between the VP>24 group (hypotensive, septic encounters requiring
vasopressor infusions for >24 hours, dark grey) and the Non-VP group (hypotensive,
septic encounters not receiving vasopressors for at least 48 hours, light grey).

characterize the temporal dynamics of encounters in the lead-up to ED vasopressor

initiation. Distributions of 𝑡𝑓 model scores at 𝑡𝑓−4 through 𝑡𝑓−1 show that discrimina-

tion improved as the time approached 𝑡𝑓 (Fig. 3-2). At 𝑡𝑓−4 (median 2.0 hours before

𝑡𝑓 ), the AUC was 0.73 and by 𝑡𝑓−1 (0.35 hours before 𝑡𝑓 ) 0.84. A test of within-group

temporal changes in the model predictor variables showed that only SBP changed

significantly over time and only in the VP>24 group at 𝑡𝑓 (P<0.001 for pairwise com-

parisons with all other observation times in the VP>24 group). When applying the 𝑡𝑓

model to all observations from triage through 𝑡𝑓 together, the final model achieved an

equal error rate of sensitivity and specificity of 69% for discriminating between obser-

vations from VP>24 and Non-VP encounters. At a high positive predictive value of

90%, the model achieved 41% sensitivity and 90% specificity with a threshold of 0.80.

Applying the 𝑡𝑓 model with this threshold to the entire study population (including

VP<8, and VP8-24), 283 encounters were accurately detected as having received ED

vasopressors. Among these, we found that the median time between reaching this

conservative threshold and initiating vasopressors was 0.52 hours. In general, when

this time was below 1 hour, very little IVF was administered in that interim period

(median 0, IQR 0-250 mL). However, when this time exceeded 1 hour (39% of en-

counters), substantial IVF volumes were administered, with a median of 2250 (IQR
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Figure 3-3: Box-plot showing distributions of IVF volumes given to VP>24 patients
during delays of varying lengths between reaching a conservative 𝑡𝑓 model threshold
of 0.8 and initiation of vasopressor therapy.

1200-3300) mL (Fig. 3-3).

Characterization of VP8-24, VP<8, and VPICU groups

We used the 𝑡𝑓 model to evaluate the remaining outcome groups (Fig. 3-4). There was

no significant difference between the distributions of model scores at 𝑡𝑓 of the VP<8

and VP>24 groups (P=0.161), while the VP8-24 group had a significantly different

distribution from VP>24 (P=0.019). The VPICU group had a distribution of model

scores significantly different than that of the Non-VP group (P<0.001).

3.1.3 Discussion

Our analysis establishes that, for hypotensive sepsis patients, a small number of clini-

cal factors can describe the decision to begin or abstain from vasopressors. Of the six

significant factors in the 𝑡𝑓 model (Table 3.4), four were basic vital signs, which are in-

tuitive predictors of illness severity. IVF volume was a fifth factor and is also intuitive:

the more IVF a patient had already received, the more likely that vasopressors would

be required to resolve persistent hypotension. The remaining factor, elapsed time
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Figure 3-4: Smoothed distribution of scores from an LR model trained to discrim-
inate between ED encounters with sepsis requiring vasopressors and encounters not
requiring vasopressors. NS: not significant; **P < 0.001; *P < 0.05.

since triage and its inverse relationship with likelihood of ED vasopressor initiation

were less intuitive. In VP>24 encounters, the first hypotensive measurement occurred

a median of 0.9 hours after triage, whereas in Non-VP encounters, the median onset

of hypotension was at 2.0 hours. For VP>24 encounters, the final hypotensive mea-

surement before vasopressor initiation (i.e., time 𝑡𝑓 ) occurred a median of 3.3 hours

after triage, and for Non-VP encounters, the final hypotensive measurement was also

at a median 3.3 hours. These findings suggest that later-developing or later-occurring

hypotension was more likely to resolve without vasopressors in contrast with hypoten-

sion earlier in the ED course. We speculate that earlier hypotension could indicate a

more aggressive and/or progressed septic state.

Perhaps more surprisingly, laboratory measurements like lactate, creatinine, and

white blood cell count did not enter into the model. Neither the most recent nor

maximum lactate value was selected, nor did univariate analysis show a difference in

the first lactate between non-ED and ED vasopressor cases (Table 3.3). Measures of

fluid responsiveness were also not selected.

Our analysis of discrimination at times before 𝑡𝑓 showed, first, that the 𝑡𝑓 model

was itself generally valid at earlier times, achieving similar performance to models

trained at those times, despite the disadvantage of being trained at a different time,
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while selecting very similar feature sets.

Second, application of the 𝑡𝑓 model to earlier times showed evidence that a sizable

subset of patients experienced delays in receiving ED vasopressors: for instance, some

VP>24 patients received high scores as early as 𝑡𝑓−4, which was a median of 2 hours

prior to 𝑡𝑓 (Fig. 3-2). More quantitatively, we chose a 𝑡𝑓 model score threshold of

0.80, which had an overall PPV of 90% for discriminating between VP>24 vs. Non-

VP observations across all time points. Of all ED vasopressor patients who met

this threshold, 39% had at least one hour between threshold-crossing and vasopressor

initiation (Fig. 3-3). That delay was associated with additional IVF; those with

1-2 hours of delay received a median of 1450 (IQR 500-2475) mL of fluid during

that time, and those with 2 or more hours received a median of 2500 (1750-2400)

mL. Such delays may indicate “clinical inertia” (a phenomenon described in chronic

disease management [101]) in continuing fluid resuscitation rather than altering course

for vasoactive therapy.

Although there were likely delays in a subset of patients, there is no evidence of

systematic delay for the majority. The 𝑡𝑓 model showed generally lower discrimina-

tive ability at 𝑡𝑓−4 through 𝑡𝑓−1 (Fig. 3-2), suggesting that earlier identification of

vasopressor requirement is difficult in most cases, and parameter trends suggested

that SBP drives much of the temporal evolution.

Lastly, there was little evidence for patients receiving vasopressors unnecessarily.

The distribution of 𝑡𝑓 model scores of the VP<8 group was not significantly different

from that of the VP>24 group. VP<8 encounters did not have significantly lower scores

from VP>24 encounters (P=0.161), and although VP8-24 encounters did (P=0.019),

the overall effect appeared small (Fig. 3-4) and cannot be interpreted as strong

evidence for unnecessary vasopressor intervention given conflicting results from the

VP<8 group. In other words, according to the model developed here to emulate

clinical decision-making, VP<8 and VP8-24 patients were similar to VP>24 patients at
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the time of vasopressor initiation. There is little evidence to suggest that vasopressors

could have been deemed avoidable in the former groups.

Limitations

The first limitation of this work is that the predictive model and results arose from

a single center. However, the model did contain the three parameters of the qSOFA

score [7], suggesting that the model is discriminating between Non-VP and vasopressor

patients partly on the basis of established metrics of overall sepsis severity, which is

likely to be externally valid. Additionally, the model’s inclusion of IVF administration

is also consistent with prior expectation and likely to be at least partly valid for

other datasets. In contrast, the exact model coefficients and the patient fraction

experiencing delays in vasopressor initiation are unlikely to be the same at other

medical centers.

The second limitation of this work is its retrospective nature: the model was tuned

to clinician behavior – not directly a true “need” for vasopressors. It is conceivable

that some non-vasopressor patients would, in fact, have better outcomes if treated

with vasopressors and/or subjected to IVF restrictions under permissive hypotension.

Similarly, patients who received vasopressors may not have truly needed them.

3.2 Advance prediction of vasopressor need

The 𝑡𝑓 model from the preceding work shows what patients tend to look like at the

time of vasopressor initiation when contrasted with those whose hypotension is likely

to resolve without vasopressors. We further saw that many patients are, according to

the model, in a similar state multiple observations prior to 𝑡𝑓 .

To build on this work, we aimed to construct a new system designed directly for

the purpose of predicting the need for vasopressor initiation in the ED in advance.
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As noted previously, the physiology of sepsis patients in the ED is actively changing.

Indeed, patients who received ED vasopressors had many characteristics similar at

triage with those who did not receive ED vasopressors (see Section 2.2), yet we were

able to identify those who required ED vasopressors at 𝑡𝑓 from those who did not with

good discriminatory ability. Thus, we aimed to develop a computational method for

predicting vasopressor initiation for sepsis patients in real-time in the ED.

3.2.1 Methods

Study cohort

Here we again begin from the cohort of ED patient encounters described in Section

2.1, from which we excluded encounters in which the patient did not have have an

infection (as determined by adjudication), received vasopressors within 12 hours prior

to ED presentation, or was made comfort-measures-only in the ED. We also excluded

encounters in which vasopressor support was weaned and restarted within 48 hours

of initial presentation and in which vasopressor initiation occurred in an operating

room setting. In model development, we did not differentiate among patients who

were started on vasopressors for differing durations.

Temporal prediction framework

To make repeated temporal predictions we use the uncertainty window (UW) frame-

work illustrated in Fig. 3-5. A prediction is made every time, 𝑡, that a new observation

of the patient’s vital signs is recorded about whether or not the patient will be ini-

tiated on vasopressor therapy in a period of time immediately succeeding the time

of the observation. This period of time is the UW. All data from the patient that

has been recorded through the time of the observation can be used in making the

prediction, but no data from after the time of observation can be used.

A feature, 𝑥𝑡, is constructed at each observation using the data available at 𝑡. Each
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Figure 3-5: Illustration of framework for temporal prediction of vasopressor initiation.

𝑥𝑡 is considered independently, even though the individual 𝑥𝑡 vectors from the same

patient may be making use of much of the same information. Each 𝑥𝑡 is also associated

with a label, as described in Fig. 3-5. Observations after which vasopressor initiation

did not occur in the UW have a negative label (Fig. 3-5, top), while observations

after which vasopressor initiation did occur in the UW have a positive label (Fig.

3-5, middle). Any observations made after the initiation of vasopressors are excluded

from this analysis altogether (Fig. 3-5, bottom).

Model training

We computed 58 features at each prediction time. Examples of extracted features

include static demographic information, metadata (e.g., elapsed time from triage),

and adjudicated presenting symptoms and comorbidities, as well as dynamic vari-

ables such as vital signs, values derived from the patient’s vital signs history (e.g.,
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extreme values since triage and interactions such as shock index and estimated stroke

volume and peripheral vascular resistance, computed from blood pressure and heart

rate, normalized to value at triage), total fluid volume administered, and selected

laboratory measurements.

Records were randomly split such that data from 70% were used for training L2-

regularized logistic regression classifiers, and data from 30% were held out for testing

performance. Data from any one patient appeared in only one of the splits. Five-

fold cross-validation within the training sample was used for greedy recursive feature

elimination, a process in which features were progressively dropped one-by-one to

choose the set with the maximum performance, as evaluated by the AUC.

We trained models with two UWs: 2 hours and 6 hours, to create a short-term

prediction task and a long-term prediction task, respectively (relative to the length of

an ED visit). For each UW, we further trained two models. In one, only observations

with SBP < 90 mmHg were included, and in the other, all observations were included.

3.2.2 Results

Cohort

A final cohort of 724 met criteria for inclusion in our predictive analysis tasks with

9,179 total possible prediction times among them. The average age of patients was

64.3 (SD: 16.4) years, 64% went directly to an ICU, and 58% received vasopressors

within 48 hours of initial ED presentation, with an average time from presentation

to vasopressor initiation of 6.1 (SD: 5.5) hours.

Models

Table 3.7 and Fig. 3-6 summarize results from each of the classifiers trained. Perfor-

mance was lower when using only observations with SBP < 90 mmHg. Performance

was similar at the two UWs in cross-validation, though in the hold-out test set, per-
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Table 3.7: Summary of classifier performances at UW=2 and UW=6.

UW
(hrs)

Vitals
obs. used

Total num.
obs. (%

positive) in
train / test sets

Num.
features
selected

Cross-
validated
training

AUC (SD)

Hold-out
test AUC
(95% CI)

2
All

6408 (20) /
2771 (21)

12 0.80 (0.06)
0.83

(0.82-0.86)
SBP < 90
only

1948 (42) /
846 (40)

28 0.75 (0.05)
0.70

(0.90-0.83)

6
All

6408 (39) /
2771 (35)

9 0.78 (0.04)
0.82

(0.80-0.83)
SBP < 90
only

1948 (61) /
846 (59)

14 0.76 (0.04)
0.77

(0.74-0.90)

formance was higher at UW=2 hours for models with all observations but lower with

UW=2 hours when using only observations with SBP < 90 mmHg. Calibration was

good in all models (Fig. 3-6b).

Features that tended to show predictive utility across all classifiers included SBP,

Glasgow coma scale score, elapsed time from triage, and estimates of stroke volume

and peripheral resistance.

(a) (b)

Figure 3-6: (a) ROC and (b) calibration curves for UW=2 and UW=6 models eval-
uated on held-out test data.
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Time between detection and vasopressor initiation

We also investigated encounter-level performance by choosing possible classifier thresh-

olds and computing the amount of time that passes between the first crossing of the

threshold and the time of actual vasopressor initiation. This gives an indication of

how early the model is able to detect need for vasopressor initiation relative to ob-

served practice. In addition, we computed the volume of IVF that was started by

clinicians during this period of time. This is potentially “excess” volume, as it may

not have been given for the purpose of hemodynamic support if the decision to begin

vasopressor therapy had instead been made at the time of threshold-crossing.

For example, Fig 3-7 summarizes encounter-level performance for a model trained

with UW=6 hours and all observations. Using the high-specificity threshold (3) from

Fig. 3-7a, the proportion of ED vasopressor detected at this threshold (i.e., encounter-

level sensitivity) is 91% and the positive predictive value at the encounter level is 74%

(Table 3-7b). On average, these patients were detected 2.3 hours in advance of the

actual vasopressor initiation time, and 0.86 liters of IVF was started in that time. To

reduce the advance warning time below 1 hour and the excess fluid volume to below

500 mL would require raising the threshold very high (Fig. 3-7c, 3-7d).

When using only hypotensive observations, the performances are somewhat re-

duced (Fig. 3-8). Although the advance warning time and excess fluid volumes are

somewhat reduced at comparable thresholds (3-8b), an average of about 1 hour of

advancing warning and 400 mL of excess IVF is achievable at similarly low sensitivity

and high PPV thresholds (Fig. 3-8c, 3-8d).

Discussion

Our work here shows the feasibility and challenge of attempting to predict vasopressor

administration in the ED environment. The peak testing AUC we achieved (0.83 for

UW=2 hours) is comparable to that seen in previous work using temporally non-
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(a)

(b)

Avg. hrs
to vaso

Excess vol.
(liters)

Sens. PPV

1 2.9 1.1 0.95 0.65
2 3.9 1.3 1.0 0.59
3 2.3 0.86 0.91 0.74

(c) (d)

Figure 3-7: (a) ROC curve for model with UW=6 hours and including all observations
with thresholds highlighted at 1) equal error rate, 2) 90% sensitivity and 3) 90%
specificity. (b) Encounter-level performance at the thresholds from (a). (c) Average
time from first threshold-crossing to vasopressor initiation in true positive cases. (d)
IVF started in time between first threshold-crossing and vasopressor initiation.
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(a)

(b)

Avg. hrs
to vaso

Excess vol.
(liters)

Sens. PPV

1 1.7 0.75 0.92 0.75
2 2.1 0.87 0.97 0.68
3 1.0 0.47 0.71 0.78

(c) (d)

Figure 3-8: (a) ROC curve for model with UW=6 hours and including only obser-
vations with SBP < 90 mmHg with thresholds highlighted at 1) equal error rate, 2)
90% sensitivity and 3) 90% specificity (b) Encounter-level performance at the thresh-
olds from (a). (c) Average time from first threshold-crossing to vasopressor initiation
in true positive cases. (d) IVF started in time between first threshold-crossing and
vasopressor initiation.
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causal information (with a peak AUC of 0.82) [102] and to previous work in ICU

environments. Fialho et al. achieved an AUC of 0.79 on a data set of nearly 3,000

ICU patients using a non-linear fuzzy model [86]. Similarly, Suresh et al. achieved

an AUC of 0.77 using a deep neural network and a large database of over 34,000 ICU

stays [88]. While our work uses a smaller patient population, it appears to be the

first to attempt the same task on ED patients. Notably, we are able to achieve similar

discriminatory performance and good overall calibration with simpler, linear models

using a small number of selected features derived only from sparse and irregularly

sampled data.

We also note here the performance reduction that occurs on the subset of obser-

vations where SBP is already below 90 mmHg, a common threshold for hypotension

in the ED. We achieved a maximum AUC of 0.77 on this group of observations. This

is an important result, as vasopressor therapy is not likely to be considered unless a

patient has already been hypotensive for some amount of time. The drop in binary

classification performance may suggest that SBP alone can account for a significant

amount of the predictive ability of the model for all observations, though it is worth

noting that calibration did not qualitatively suffer. Tuning a predictive model to

improve performance in hypotensive cases would likely make it more clinically use-

ful. Previous work also neglects to describe performance on similarly defined patient

subsets, leaving the descriptions of their performance somewhat incomplete.

Lastly, we believe the advance warning that the model is able to provide is good

evidence of its clinical utility. Even when using only hypotensive observations, a

conservative threshold with high PPV is able to provide multiple hours of advance

warning, and we have shown that in that time, patients may be given about 1 liter

of fluid. Relative to the typical length of an ED stay and the average amount of IVF

given to this cohort of ED patients (about 3 liters) (see section 2.2), these values are

substantial.
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Chapter 4

Development and Evaluation of a

Sepsis Risk Index

The next major goal of this thesis was to build a real-time tool for improving identifi-

cation of patients with sepsis and septic shock in the ED. This chapter describes how

we augmented our previously existing data with the addition of data from non-sepsis

patients and went about building and describing the performance of a computational

approach – the sepsis risk index (SRI) – for detecting sepsis in patients presenting to

the ED at triage and throughout the ED visit.

4.1 Cohort description

As in the work described in Chapters 2 and 3, the first important step is identifying

appropriate patient records and extracting relevant data.

For developing our SRI, we began with the cohort of 933 ED encounters described

previously in Section 2.1 (Fig. 2-1). To this cohort, we added a randomly selected

group of 750 ED encounters from the same time period (April 1, 2014 through March

31, 2016) that met only a criterion of abnormal vital signs at some point during the

ED visit. This inclusion criterion of abnormal vital signs could be met if, during
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2 years of MGH ED 

encounters 

4/2014 – 3/2016
(N = 185,949)

Possible sep�c 

shock cohort

n = 933

Randomly selected 

cohort 

n = 730

“Sepsis”

n = 792

“Not sepsis”

n = 141

“Sepsis”

n = 139

“Not sepsis”

n = 591

Sepsis ICD-9 codes, 

SIRS criteria, and

Persistent hypotension

Adjudica�on for infec�on 

and organ dysfunc�on

Sepsis screening 

criteria: SPoT vitals 

or qSOFA

Figure 4-1: Selection of encounters used for development of the sepsis risk index.

the visit, the patient met either two or more of the qSOFA criteria [28] or the shock

precautions on triage (SPoT) sepsis rule that has been used in the MGH ED since

2013 for helping to identify patients with sepsis [47]. The SPoT criteria for abnormal

vital signs include simply SBP less than 100 mmHg or shock index greater than 1.0

bpm/mmHg (i.e., a heart rate value in bpm greater than the systolic blood pressure

value in mmHg).

Of the 750 randomly selected encounters, 20 had been a part of the previous

cohort, and consequently, a total of 730 new encounters were added to the cohort,

creating a total of 1663 encounters, of which 931 (56%) were subsequently adjudicated

to have had sepsis in the ED, including 792 sepsis cases from the previous cohort and

139 in the randomly selected cohort (Fig. 4-1).
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4.2 SRI Development

4.2.1 Classification model

We developed the SRI as an L2-regularized logistic regression model trained on data

from the cohort described above, using a greedy forward feature selection approach,

adding features one-by-one to optimize the AUC. As with the system for advanced

prediction of vasopressor need (Section 3.2), the SRI is designed to provide an updated

result at every time that a patient’s vital signs are measured and recorded. Here,

however, the label for an individual patient does not change in time. Instead, for

each patient, the label is always the same over the course of their entire ED stay, and

the concept of the uncertainty window is not needed.

4.2.2 Training and testing cohort

We randomly split the cohort of 1,663 ED encounters into a cohort used for developing

and training the SRI, containing about 70% of the overall cohort (1,169 encounters)

and a separate cohort containing about 30% of the cohort (494 encounters) used only

for testing performance of the SRI.

4.2.3 Temporal implementation

As mentioned previously, one goal of the SRI is to have it function continuously

throughout a patient’s ED stay. However, decision-making during an ED stay for

identification for sepsis may vary quite a bit. At triage, for instance, only a limited

set of data is available, including only a single measurement of a patient’s vital signs,

the history of their present illness, and their past medical history. By a couple of

hours into the ED stay, in contrast, certain laboratory results may become available

as well as an extended trajectory of the patient’s vital signs over time and in response

to potential interventions.
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When developing models for predicting vasopressor need (Chapter 3), we found

that vasopressor administration did not happen, on average, until multiple hours after

triage and until after other interventions, such as IVF administration, took place first.

Sepsis identification, however, is critical to do as soon as possible. Consequently, we

aimed to design the SRI such that it would not require data yet to become available

(i.e., we aimed to avoid a need for data imputation early in the ED stay), but that

when useful data do become available, the SRI would be able to take advantage of it.

To implement such a design, we attempted to add only minimal complexity. In

our approach, we trained four models (Fig. 4-2), each for a different phase of the ED

visit. One model is only applied at triage and incorporates only data that is available

at triage. A second model (“pre-labs”) is applied at all observations between triage

and before any laboratory results are available. Finally, the remaining two models

are applied only after laboratory results are returned. Two models are required here

because some laboratory tests are ordered almost exclusively together in panels, while

others are often ordered individually and not always commonly alongside panel labs.

The former type of tests include blood cell counts and metabolic tests, which in our

data tended to be the first ones to be ordered, while the latter type of tests includes

lactate. We believed that both of these types of tests would be important to include.

As a result, we created one model that included blood counts and metabolic labs

but excluded lactate (“post-labs”) and one model that included all laboratory results,

including lactate (“post-lactate”).

This temporal model naturally eliminates the presence of missing data by using

the appropriate model for the set of data that are available. If a patient never has

lactate measured (Fig 4-2, middle), the post-lactate model is not used; no imputation

of the lactate value is needed. If a patient never has a blood count or metabolic panel

measured (Fig 4-2, bottom), then only the triage and pre-labs phases existed in that

patient’s ED visit, and only those models are applied.
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Figure 4-2: Graphical depiction of ED phases separated out for SRI development. In
patient encounters where blood counts, metabolic panel, and lactate are all measured,
four different phases are used (top). In many encounters, blood counts and metabolic
panels are drawn, but not lactate, in which case a post-lactate phase is not used
(middle), and in some patients, no labs are drawn, and so all observations except for
the first are considered part of the pre-labs phase (bottom).
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4.2.4 Features included

To begin developing the SRI, we extracted numerous features from each patient

record. As in the work described in previous chapters, features were related to vital

signs, fluid intake, laboratory results, and elements of the patients’ past medical his-

tories and their clinical presentations, the latter of which were determined by chart

review.

In addition to these generally objective variables, we also included a subjective

assessment of a clinician’s concern for infection at triage – termed tCFI – made

retrospectively by a physician based solely on documentation made at the time of

triage in the ED. In judging tCFI, the reviewer was blinded to any information about

the patient that would not be available until later in the ED or hospital stay. The tCFI

assessment could take one of three values: likely, possible, or unlikely, where “likely”

indicates that a bacterial infection is the leading diagnostic possibility, “possible”

indicates that a bacterial infection is a part of the differential diagnosis, and “unlikely”

indicates otherwise.

Considerations for categorical variables

Variables included in our analysis could be both continuously valued (e.g., vital signs

and laboratory values) or categorical (e.g., tCFI) or binary (e.g., presence of individual

symptoms and comorbidities). All categorical variables were one-hot encoded, i.e., a

binary indicator feature was created for each possible category. For example, three

mutually exclusive binary features were created to encode the assessment of tCFI, one

to indicate if the patient was judged as “tCFI likely,” one to indicate “tCFI possible,”

and one to indicate “tCFI unlikely.”

We subsequently eliminated from further analysis any binary feature with less

than 1.5% incidence in the training cohort.
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Considerations for continuously valued variables

To ensure that all continuously valued variables were on approximately the same

scale as each other and categorical variables, all continuously valued variables were

z-standardized (i.e., the mean of each variable across all patients was subtracted out,

and all values were normalized by the standard deviation).

4.2.5 Complete model

We created a complete SRI under the above design considerations by training the

four models at their respective applicable observations using five-fold cross-validation

within the training set to select the L2 regularization hyper-parameter.

4.3 Models for practical implementation

In addition to the complete SRI described above, we sought to create a version of

the SRI that might be better suited for implementation for use at the bedside by a

clinician. For this version, we took into account two main considerations.

First, although we had a physician make judgments regarding tCFI for each pa-

tient, we recognize that these judgments could vary from physician to physician or

clinician to clinician. (Indeed, at triage, the judgment may very well be made by a

triage nurse instead of a physician.)

Second, the complete SRI requires several variables that were ascertained by chart

review. These variables are not available in the EHR or via a bedside monitor in

structured form, as are variables like vital signs and laboratory results. As a result,

they would have to be manually entered into a computer or device-based interface in

order to obtain a result from the SRI at the beginning of the ED visit.
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4.3.1 Design choices and trade-offs

We sought to build a version of the SRI that would alleviate the burden on a clinician

to enter values manually and would be more objective with less inter-clinician variance

than the complete SRI was likely to be. This design requirement may naturally

reduce the overall performance of the SRI compared to the complete version, but

the value of a system with slightly worse performance but with greater practical

usability and reliability may very well be much greater than that of a system with

the best performance but low actual utilization. We aimed to at least characterize

the difference in performance of an SRI with fewer inputs requiring manual entry and

that of the complete SRI.

To generate such an “implementation version” of the SRI, we addressed the two

considerations identified above. First, we removed tCFI from the list of possible

features to use in the SRI. Second, we identified groups of manual-entry features that

could be grouped together in some way. We assumed that all vital signs, demographic,

and intervention-related features would be available in structured form and focused

only on features that required manual extraction from clinician notes. We grouped

these features into three categories: presenting symptoms, baseline risk factors (i.e.,

past medical history items), and pre-ED reports related to infection.

The third category contained two variables: report of recent fever and referral to

the ED for infectious complaint or diagnostic data. We combined these into a single

variable for any pre-ED infection information via a logical “or.” Our methods for

reducing the number of variables used from the other two categories are described

below.

4.3.2 Symptoms and symptom complexes

To reduce the number of symptom-related variables included in the SRI, we recognized

that symptoms can occur together in meaningful combinations. The occurrence of
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a certain group of symptoms together, along with the lack of other symptoms, can

meaningfully indicate a high likelihood of a very specific infectious diagnosis. For

example, the co-occurrence of flank pain and dysuria without hematuria and without a

very sudden onset can be nearly pathognomonic for a bacterial urinary tract infection

(as opposed to be a renal stone).

In the previous example, flank pain localizes the etiology of the patient’s presen-

tation to the renal system, and fever is suggestive of an infection, while hematuria

and temporal onset pattern of pain are pertinent negatives. We extended this three-

element construct (localization symptom, infection-related symptom, and pertinent

exclusions) to a variety of other possibly sepsis-related diagnoses, creating a total

of eight possible “symptom complexes” that a patient may present with. Research

assistants adjudicated the presence of seven different symptom complexes (bacterial

pneumonia, urinary tract infection, abdominal infection, musculoskeletal infection,

bacterial pharyngitis, viral upper respiratory infection, viral gastroenteritis, and iso-

lated fever) in each patient during chart review alongside all other variables. A patient

may have been adjudicated as having any one symptom complex or none of them,

but not multiple symptom complexes.

Having defined these symptom complexes, we grouped them one level further:

five of the complexes we believed to be highly suggestive of bacterial infections, while

the other three we believed to be more suggestive of viral infections. This grouping

allowed us to reduce nearly all of the symptom-related variables to just two: presence

of a bacterial infection-related symptom complex (including the bacterial pneumonia,

urinary tract infection, abdominal infection, musculoskeletal infection, and pharyn-

gitis complexes) and presence of a viral infection-related symptom complex (upper

respiratory infection, gastroenteritis, and isolated fever complexes).

Lastly, recognizing that vague presenting symptoms can also be highly related

to sepsis and to delays in recognizing sepsis [51], we also created one more variable
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combining two other symptom variables with a logical “or” that were not represented

well in the symptom complexes: complaints of altered mental status and complaints

of fatigue or generalized malaise. In total, we created three variables related to

presenting symptoms.

4.3.3 Groupings of risk factors

The last category of manual entry variables to reduce in number is related to patients’

past medical history and chronic comorbidities, which we refer to as risk factors.

Although it is generally known that certain risk factors exist for sepsis, it is not clear

how they may be related to each other. Here, we took an empirical approach (as

compared to with symptom grouping), looking to possibly group risk factors both by

conceptual relationships that would be easy for a user to intuitively work with (e.g.,

any cancer-related medical history, any immunocompromise-related medical history,

or any physical disability) and by general effect sizes.

Effect size groups

To characterize the overall effect size of the association of each risk factor with the

incidence of sepsis, we fit an SRI model using triage vital signs (after transforming

them for non-linearities, as described earlier), demographics, and the symptom com-

plex variables described above along with each risk factor individually, and examined

the model coefficient for the risk factor. We also performed this analysis for the

conceptual groupings of risk factors (Fig. 4-3).

We found that having a history of end-stage renal disease requiring dialysis and

having any risk factor related to physical disability had particularly large effect sizes

compared to the other risk factors. In addition, we found that residence in a facility,

and histories of diabetes, cerebrovascular accident, chronic kidney disease (without

dialysis), any cancer, and any immune compromise all had significant associations

86



with incidence in this multivariable model, while the remaining risk factors did not.

Final selection of risk factors

Based on this analysis, we designated presence of either a dialysis requirement or a

physical disability as presence of a “major” risk factor, and the presence of any of

the other six risk factors mentioned above as presence of a “minor” risk factor. We

then incorporated these variables into the SRI as three variables derived from these

designations:

� Presence of only major risk factors

� Presence of only minor risk factors

� Presence of both of the two major risk factors or both a major risk factor and

a minor risk factor (ensuring that presence of two major risk factors imparts

at least as much risk for sepsis as presence of a single major risk factor and a

single minor risk factor)

A user would then be required to note whether any minor risk factor is present

and whether one or both major risk factors are present.

For comparison, we also created a model that handled risk factors in the simplest

way possible: a single binary variable indicating the presence of any risk factor (major,

minor, or otherwise).

4.3.4 Implementation models

In summary, we have two versions of “implementation” models to compare with the

complete SRI. In both of these versions, the model contains only objective variables

(no tCFI). These variables include one related to pre-ED data, three related to pre-

senting symptoms and either one or three related to risk factors. The remaining
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Figure 4-3: Effect sizes of risk factors (with 95% confidence intervals) when isolated
in a logistic regression model with triage vital signs, demographics, and presence
of bacterial and viral symptom complexes and no other risk factors to discriminate
between sepsis and non-sepsis patients. Disability-related variables are in orange,
cancer-related variables in green, and immune compromise (IC) variables in purple.
The right side of the plot shows the proposed aggregation methods. Numbers along
the bottom show the incidence of each variable in the training cohort.
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Table 4.1: Basic characteristics of ED phases (training data).

Phase
Total num.
observations

% of obs.
from sepsis
patients

Mean (SD)
num. obs. in
phase per
patient

Num. patients
with at least 1
obs in phase

Triage 1164 56 1 (0) 1164
Pre-labs 2975 53 1.6 (2.2) 903
Post-labs 1951 32 1.7 (3.9) 321
Post-lactate 10465 79 9.0 (8.8) 838

variables in the model are demographics, vital signs, or fluid administrations. As

with the complete SRI, for each version, we generated four models for the temporal

considerations and used the same feature selection processes.

4.4 Results

4.4.1 ED Phases

Of the different phases for which models were trained for, only the triage and pre-labs

phases occurred in all patients (Table 4.1).

4.4.2 Model compositions

Table 4.2 shows a summary of all the different models trained and used, including the

AUC (computed by five-fold cross-validation on the trianing set) and the number of

features selected, as well as the number of features that would require manual entry.

Complete model

The “complete” model required 15-27 features, depending on the phase (Tables ?? -

??). At triage, most of these features (11 of 16) were of a nature that would require

manual entry – i.e., individual risk factor or presenting symptom variables. However,
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Table 4.2: Summary of SRI Models.

SRI Model Phase AUC
Num. features
(num. req.

manual entry)

Complete Triage 0.91 15 (11)
Complete Pre-labs 0.92 27 (19)
Complete Post-labs 0.89 17 (7)
Complete Post-lactate 0.91 28 (17)

Major/Minor RFs Triage 0.89 12 (7)
Major/Minor RFs Pre-labs 0.91 18 (7)
Major/Minor RFs Post-labs 0.87 20 (5)
Major/Minor RFs Post-lactate 0.88 25 (8)

Any RF (single variable) Triage 0.88 10 (5)
Any RF (single variable) Pre-labs 0.89 16 (6)
Any RF (single variable) Post-labs 0.88 15 (6)
Any RF (single variable) Post-lactate 0.87 22 (6)

in the models for later parts of the ED stay, more dynamic features entered the model,

including laboratory results (creatinine and neutrophil count, but not lactate) as well

as several vital signs and fluid volumes.

Models for implementation

The “implementation” models required selection for many fewer features in each phase

as compared with the complete SRI models. The triage models used only 12 or 10

features, for the model with major and minor risk factors and for the model with

only a single indicator variable for any risk factor, respectively. These models also

required only very few features that would need to be entered manual: either seven if

using major and minor risk factor or five otherwise. As with the complete SRI model,

the post-labs and post-lactate models made greater use of vital signs-based features

and also made use of laboratory test values. In contrast, with the complete SRI

model, the post-lactate implementation models did make use of lactate, but only for

lactate values above 5 mmol/L, where increasing lactate is associated with decreasing

likelihood of sepsis.
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Table 4.3: Summary of performances of different SRI models at triage.

SRI Model AUC (95% CI)
Sensitivity
at 90%

Specificity

Specificity at
90%

Sensitivity

Complete 0.91 (0.89-0.92) 73% 73%
Major/Minor RFs 0.89 (0.88-0.90) 68% 67%
Any RF (single variable) 0.88 (0.86-0.90) 66% 62%

4.4.3 Performance of models

Overall triage discrimination

A more complete picture of the overall performance of the various models at triage

is described in Table 4.3. For comparison, note that the AUC for qSOFA at triage is

0.61 (95% CI, 0.58-0.64); applying a threshold of qSOFA ≥ 2 yields a sensitivity of

24% and specificity of 88%.

All three SRI models outperformed qSOFA by a very large margin, with AUCs

ranging from 0.88 to 0.91. At a threshold with a specificity of 90%, which is similar to

but slightly greater than that of qSOFA’s 88%, all three models vastly improved on

qSOFA’s sensitivity, highlighting both the benefits of our approach and the drawbacks

of qSOFA (namely, the low early sensitivity) discussed in Section 1.2.2.

In addition, the three models themselves showed very little discrepancy among

them. The difference from the simplest model to the most complete model in AUC

was only 0.03. The sensitivities and specificities at the chosen thresholds showed

greater differences, but overall performance difference is actually fairly low.

Based on these results, we elected to perform further characterization of SRI

performance and utility using only the simplest model.
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Simulation of triage screening

To further characterize performance at triage, we evaluated this SRI model in a pro-

posed screening function. In this protocol, a high-specificity threshold would be used

to identify patients who should receive an urgent work-up for sepsis to be completed

within one hour. Patients not meeting this threshold would then be evaluated at high-

sensitivity threshold to identify those who should still receive a work-up for sepsis,

but with less need for urgency; we use 3 hours here.

To estimate screening performance, we used only the cohort of randomly selected

encounters (described in Section 4.1), which would be more representative of the

wider population of patients presenting to the ED at triage than the overall cohort,

which is highly enriched for sepsis and septic shock.

The performance of both the SRI and qSOFA is slightly lower in this sub-cohort

(Table 4.4), but the AUC of the SRI remains much greater than that of qSOFA,

as does the sensitivity of the SRI at a comparable specificity. The performance of

qSOFA is notably poor, with a sensitivity of only 12% and an AUC (0.55, 95% CI

0.49-0.60) indicating discriminative ability bordering chance.

The flowchart in Fig. 4-4 shows a simulation of application of our protocol in a

cohort of 1000 hypothetical patients with a sepsis incidence of 20%, approximately

matching the incidence of sepsis in the portion of the randomly selected 730 patients in

the training cohort (102 / 520, 19%), with results generated by using the performance

characteristics of the SRI in the same cohort. For the one-hour work-up, we applied

a threshold with 90% specificity (and 57% sensitivity) in this cohort, and for the

3-hour workup, we applied a threshold with 90% sensitivity (43% specificity) in the

randomly selected cohort.

Notably, of the true positive detections made for the 1-hour work-up, 79% did not

receive antibiotics within 1 hour of triage in actual practice (and 47% did not receive

antibiotics within 3 hours of triage). Similarly, only 47% of the true positive detections
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Table 4.4: Simulation of triage screening in the cohort of randomly selected patients
with abnormal vital signs.

Metric
SRI at 90%
specificity

SRI at 90%
sensitivity

qSOFA

AUC (95% CI) 0.82 (0.78-0.87) 0.55 (0.49-0.60)
Sensitivity / Specificity 57% / 90% 90% / 43% 12% / 93%
PPV / NPV 58% / 90% 28% / 95% 28% / 81%

made at the lower specificity threshold ultimately received antibiotics within 3 hours

of triage.

Of false positives, 71% of false positive detections at the high threshold went on to

have a work-up for infection anyway (defined as having had at least one of a lactate

test, microbiology laboratory test, or ED antibiotic administration). Indeed, even

57% of the false positives resulting after subsequently applying the 3-hour workup

threshold went on to have a work-up for sepsis completed.

Overall performance over time

Beyond triage, a breakdown of performance at the vital signs observations in each

phase is shown in Table 4.5. The overall AUC at all vital signs observations, com-

puted by choosing for each observation the value from the model appropriate for that

observation’s phase, was 0.90 (95% CI 0.90-0.91). At the patient encounter level,

by reducing each encounter to its maximum SRI value over the entire ED stay, the

AUC was 0.92 (95% CI 0.91-0.94) (Fig. 4-5, left). The calibration of the SRI over

all models is quite good, though it suffers when taking the maximum value (Fig. 4-5,

right)

Table 4.6 enumerates the marginal encounter-level sensitivity in each phase com-

puted by repeatedly applying either the 90% specificity or 90% sensitivity threshold

(where these thresholds are determined separately for each phase over all the obser-

vations in the phase). The first time the SRI value was above the relevant threshold
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Figure 4-4: Results from simulating a triage screening process in a cohort of 1000
patients with sepsis incidence of 200 and high-specificity and high-sensitivity perfor-
mance described in Table 4.4
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Table 4.5: SRI results (single risk factor implementation model) by phase.

Phase AUC (95% CI)

Triage 0.88 (0.86-0.90)
Pre-labs 0.88 (0.87-0.90)
Post-labs 0.88 (0.86-0.90)
Post-lactate 0.87 (0.86-0.87)

Figure 4-5: Left: ROC curve for model obtained by merging the individual SRI
models (single risk factor implementation model) from the appropriate phases (blue,
“Merged”) and ROC curve formed by using, for each patient, the maximum SRI value
from all observations available (orange, “MergedMax”), compared with ROC curves
for qSOFA and NEWS computed over all observations. Right: calibration curves for
Merged and MergedMax models.

crossing was considered the first detection. Naturally, most detections occur at triage,

but when using the 90% specificity triage, the overall sensitivity still increases from

66% of sepsis encounters to 83% over the course of the ED stay, while the specificity

decreases only to 81%.

Performance in cases with observed delays in care

Lastly, we note here the relative performance of the SRI in cases where delays to

care actually occurred in practice. We identified such cases by using a subset of the
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Table 4.6: SRI marginal sensitivity over time: Fraction of sepsis patients whose first
detection was made in each phase.

Phase
90% specificity

threshold
90% sensitivity

threshold

Triage 66% 90%
Pre-labs 6.2% 1.8%
Post-labs 4.6% 2.5%
Post-lactate 6.2% 2.6%

Total (overall
sensitivity / specificity)

83% / 81% 97% / 45%

CMS SEP-1 criteria for organ dysfunction in severe sepsis and septic shock related to

hemodynamic/cardiovascular dysfunction. Specifically, we identified cases in which

more than 3 hours passed between either a lactate test result greater than 2 mmol/L

or a systolic blood pressure value less than 90 mmHg and the first antibiotic admin-

istration. We found a total of 88 cases, of which 74 (84%) could be detected at some

point by application of the SRI with 90% specificity, and 86 (98%) could be detected

by application of the SRI with 90% sensitivity. The median time between SRI de-

tection (90% specificity) and antibiotic administration was 5 hours and 18 minutes

(IQR 3.9-7.7 hours), and the median time from SRI detection to meeting the modified

CMS criteria was 34 minutes (IQR 0-1.4 hours), indicating that application of the

SRI could help in avoiding significant delays in care for patients whose care needs to

be prioritized.

4.5 Discussion

We showed here that our SRI can detect patients with sepsis and septic shock with

much greater discriminative ability and much earlier in the ED stay than can existing

screening tools such as qSOFA and NEWS. Indeed, we found for example, that the

performance of qSOFA at triage is in fact quite poor, with only 12% sensitivity and
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an AUC of 0.55 in a cohort of patients representative of the broader population that

may present to the ED at triage. In contrast, the simplest version of our SRI can

discriminate between sepsis and non-sepsis patients with an AUC of 0.82 at triage.

Simulating how this could be implemented to screen patients at the point of triage,

we note that the SRI, at a high specificity threshold, can identify high-acuity patients

in need of urgent workup for sepsis very efficiently. Such a process would get an-

tibiotics to these patients very quickly, and notably, in our retrospective cohort, only

12% of all patients identified at this threshold did not complete a workup for sepsis,

yielding a practical positive predictive value of 88% (though this does conflate the

fact that false positive patients actually received a sepsis workup with whether they

in fact needed a sepsis workup).

The SRI also showed utility in detecting sepsis later in the ED stay. Although

the majority of patients could be detected at triage, repeat application of the SRI

could still detect a large number of sepsis patients after triage and after labs are

drawn. When using only the high specificity threshold, application of the SRI after

lab results were received accounted for a marginal increase in the sensitivity rate of

10.8%, helping to bring the overall encounter-level sensitivity from 66% to 83%. In

addition, during this time, we were able to show that the SRI can support sepsis

identification by identifying cases that experienced large delays in practice: 84% of

those with greater than a 3 hour delay to antibiotics after already having met organ

dysfunction criteria were identified by the SRI, and with over 5 hours of lead-time in

the median case.

Notably, these results also drew from only the simplest version of our SRI. Com-

paring the different models we generated showed that the use of fewer, coarser features

resulted in only a marginal decrease in the AUC (0.91 vs. 0.88), though with larger

decreases in sensitivity and specificity at thresholds of interest (Table 4.3). The com-

positions of all the models suggested that risk factors and presenting symptoms, along

97



with basic vital signs traditionally associated with infection (temperature) and sep-

sis (respiratory rate), were most useful early in the ED stay. Later in the ED stay,

dynamic vital sign variables and laboratory results made up larger subsets of the vari-

ables in the models, including systolic blood pressure, heart rate, oxygen saturation,

and estimates of cardiac output, stroke volume, and vascular resistance. Perhaps the

biggest notable exclusion is serum lactate, which only appeared in the model in a

form referencing lactate values above 5 mmol/L and with inverse association with the

occurrence of sepsis. In those who had lactate measured and had a value above 5

mmol/L, the higher the lactate value, the lower the likelihood that the patient was

adjudicated to have had sepsis.

Though this last result may not be straightforward to explain, the non-linearities

overall helped preserve sensible relationships between feature values and sepsis occur-

rence. In all models, decreasing values of serum creatinine at very low values (below

0.7 mg/dL), of neutrophil counts below 4000/uL, and of temperature below 97°F

were all, as expected, associated with increasing likelihood of sepsis, while increas-

ing values of these same variables above those thresholds were also associated with

increasing likelihood of sepsis. Without introducing the saturation non-linearities,

these relationships would not have been modeled as well.

4.5.1 Limitations

We do note some limitations of this study. We recognize first of all our analyses were

performed on a single center’s data in a retrospective fashion. We did not analyze

trends over time, and we would require data from multiple centers to establish more

generalized validity. We do believe that the overall compositions of our model should

be fairly robust across practice sites, especially the simplest model, which would not

be as sensitive to the overall mix of comorbidities of patients presenting to different

centers. In addition, our model could easily have its coefficients re-fit to those of a

98



new center for re-calibration.

Secondly, we also note that the cohort used for SRI development was not perfectly

representative of the broad ED population. Our cohort was enriched for occurrence

of septic shock and vasopressor need. We did note our performance on the subset of

patients who were randomly selected from a much broader mix of patients. Training

a model on this specific set of patients, and with a larger cohort of them, may be

more ideal, particularly for the purpose of a triage screening tool. Even this set of

patients, however, was not entirely representative of the overall population of ED

presentations, as inclusion still required abnormal vital signs at some point in the ED

stay. This may have introduced some bias in the positive predictive values shown in

the triage screening simulation (Table 4.4); however, we expect that very few patients

who did not ultimately meet criteria for abnormal vital signs would also have been

said to have sepsis by SRI evaluation, given the presence of related variables in the

SRI models.
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Chapter 5

Conclusions and Future Work

This work has assembled a range of analyses related to the care of patients of sepsis

in ED populations at a large, urban academic medical center, using high-quality data

abstracted with a combination of automated methods and manual chart review. We

have developed multiple systems to help guide care of patients with sepsis, in the

process showing how such decision support methods would be able to impact ED

sepsis care.

5.1 Implementation considerations

Critically, we have developed these systems with a general eye toward real-word im-

plementation with consideration of the workflow of ED clinicians, especially when

caring for patients with severe acute illnesses. In developing the SRI for identifica-

tion of sepsis patients, we characterized the trade-off in requiring greater input from

clinicians and achieving greater discriminative ability versus reducing the demand on

patients for interaction with our system and allowing for reduced performance and

found that reducing the number of variables requiring human input by half could

result in only a marginal decrease in performance. In addition, because the system

detects the vast majority of patients at triage, there would not be a great need for
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continued interaction between clinicians and the SRI; once sepsis workup has been

initiated, the SRI has perhaps completed its job.

In developing systems for supporting decision-making in hemodynamic manage-

ment, although we did not explicitly optimize for workflow considerations, we found

that most of the useful variables were related to or derived from vital signs, which

would generally be available in the electronic health record or on a bedside monitor.

As a result, little manual input would naturally be required.

5.2 Hemodynamic support in ED sepsis

Overall, we found that a small number of clinical factors can describe the decision to

begin or avoid vasopressors in ED sepsis patients, while a larger model did well to

make advance predictions of need for vasopressor initiation. Using these models, we

were able to identify patients in whom the decision to begin vasopressors was delayed.

This work showed a possibility to improve current practice simply by initiating ED

vasopressors earlier in those patients who are likely to receive them later anyway.

This would have the likely consequence of reduced overall IVF administration. For

non-ED vasopressor patients, the generally good agreement between modeled and

observed practice in our analysis suggests that reducing the large IVF volumes would

require either permissive hypotension or a basic lowering of clinicians’ thresholds to

initiate vasopressors such that patients who today do not tend to receive vasopressors

within 48 hours of ED presentation would nonetheless in the future be treated with

vasopressors and less IVF.

5.3 Early identification of ED sepsis

In developing the SRI, we found that a fairly simple model with only 10 variables

could detect patients with sepsis at ED triage with excellent discriminative ability.

102



Furthermore, we showed that increasing the model complexity with more variables

only marginally improved results, but that implementing non-linear relationships (un-

covered by additional, though fairly simple, analyses) helped preserve known relation-

ships, including the biphasic associations of body temperature and white blood cell

count with sepsis incidence. Overall, we showed that, compared with observed prac-

tice in our cohort, the SRI could be used to initiate empiric sepsis therapy or urgent

sepsis diagnostic workup with little practical false positive burden. Follow-up with

a lower threshold or with repeat assessment could help identify more patients with

sepsis later in the ED stay.

5.4 Future work

The analyses in this thesis open up many questions and priorities for further work,

especially for the purpose of real-world implementation.

5.4.1 Further validation with more data

The most useful first step would be collection of more data, which would help with

several outstanding questions for both hemodynamic management and sepsis identi-

fication. In particular, it would be helpful to work with larger volumes of data from

a broader case mix of patients more representative of the overall cohort of patients in

the ED. This would allow better characterization of the positive predictive value of

these models. Collecting data from multiple centers to represent a greater diversity of

patients would also improve the robustness of this model, allow testing of external va-

lidity, and perhaps justify use of more complex modeling methods (such as ensemble

learning methods or deep learning) with less of an interpretable nature but greater

potential performance in the large-data regime.

Larger volumes of data would also help answer more scientific questions related
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to ED patients with sepsis. For example, we identified several risk factors for presen-

tation with sepsis (such as presence of a physical disability or need for dialysis), but

could not intuitively explain their relative effect sizes. Collection of more data could

help test related hypotheses, such as whether patients with certain comorbidities have

differing activation energies for presenting to the ED with potentially infection-related

complaints and symptoms.

5.4.2 Real-world testing

In progressing toward implementation, certain testing studies would help solidify

our arguments for the benefits of the systems. Prospective silent-mode testing, in

which the system is run in the background without being used or available to the

clinical staff, could further establish the possible benefits. Ultimately, a randomized

trial would be needed to concretely show that patient outcomes (or administrative

outcomes, such as reimbursement or resource usage) improve with implementation.

5.4.3 Patient-centered outcomes

Some retrospective data-driven methods could also be used to help show potential

benefits in patient-centered outcomes. For example, we have not been able to assess

whether mitigating delays to vasopressor initiation and reducing IVF administration

volumes with our hemodynamic management system could improve outcomes such

as hospital mortality or ICU length-of-stay. Causal inference methods may be able

to at least test the hypothesis that targeting the use of these specific interventions in

the ED is important for improving outcomes in sepsis.
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Appendix A

Additional Adjudication Details

A.1 Variables extracted by chart review

105



Table A.1: List of variables extracted by chart review in vasopressor initiation and SRI
development studies. All variables were adjudicated by multiple research assistants
who reconciled differences, with the exception of vasopressor variables, in which a
subset of 50 records were used to compute inter-rater agreement using Cohen’s 𝜅 (see
table 3.2). tCFI and symptom complex variables were used only in SRI development
and were not reconciled or double-adjudicated.

Category Variable name/description

Pre-ED Arrived intubated

Pre-ED
New intravenous antibiotics or vasopressors
started within 12 hours prior to arrival

Pre-ED
Referred in for low blood pressure prior to
ED arrival

Pre-ED
Referred in for infectious diagnosis or
diagnostic data suggestive of infection

tCFI

Triage concern for infection (likely, possible,
or unlikely) as adjudicated retrospectively
by a physician

Pre-ED
Report of fever, chills, or rigors prior to ED
arrival

Infection / sepsis
Was infection listed in assessment and plan
of admission note?

Infection / sepsis Anatomic source/location of infection

Presenting symptoms (Complexes)
Mutually exclusive presence of various
symptom complexes (see Table ??)

Presenting symptoms (Constitutional) Body aches or myalgias

Presenting symptoms (Constitutional) Fatigue, malaise, weakness, or lethargy

Presenting symptoms (Gastrointestinal) Abdominal pain

Presenting symptoms (Gastrointestinal) Diarrhea

Presenting symptoms (Gastrointestinal) Nausea or vomiting

Presenting symptoms (Neurological) Focal neurological symptoms

Presenting symptoms (Neurological) Mental status change

Presenting symptoms (Respiratory) Chest pain

Presenting symptoms (Respiratory) Dry or unspecified cough

Presenting symptoms (Respiratory) Productive cough

Presenting symptoms (Respiratory) Shortness of breath

Presenting symptoms (Respiratory)
Upper respiratory viral symptoms (e.g., sore
throat, nasal congestion, ear pain)

Presenting symptoms (Skin) Skin abnormality

Presenting symptoms (Urinary) Dysuria

Presenting symptoms (Urinary) Flank pain

Continued on next page
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Table A.1 – continued from previous page

Category Variable name/description

Presenting symptoms (Urinary)
Report of abnormal urine (e.g., cloudy or
bloody)

Presenting symptoms (Other complaints) Back pain

Presenting symptoms (Other complaints) Ear/nose/throat pain

Presenting symptoms (Other complaints) Extremity pain

Presenting symptoms (Other complaints) Genitourinary pain

Presenting symptoms (Other complaints) Headache

Past medical history (Cancer) Metastatic solid tumor

Past medical history (Cancer) Non-metastatic solid tumor

Past medical history (Cancer) Leukemia or lymphoma

Past medical history (Cancer) Active chemotherapy

Past medical history (Disability) Chronic wound

Past medical history (Disability) Chronic tracheotomy or ventilator

Past medical history (Disability) Dementia

Past medical history (Disability) Inability to walk or care for self

Past medical history (Disability) Quadri-, hemi-, or paraplegia

Past medical history (Disability)
Self-catheterization or implanted
tubes/drains

Past medical history (Immunocompromise)
Acquired immunodeficiency syndrome
(AIDS)

Past medical history (Immunocompromise) Transplant history

Past medical history (Immunocompromise)

Pharmaceutical immune suppression, e.g.,
chronic prednisone, tacrolimus,
mycophenolic acid (CellCept), adalimumab
(Humira)

Past medical history (Immunocompromise) No spleen

Past medical history Chronic kidney disease

Past medical history
Chronic kidney disease requiring dialysis
(i.e., end-stage renal disease)

Past medical history
Chronic obstructive pulmonary disease or
other chronic respiratory illness

Past medical history Congestive heart failure

Past medical history Coronary artery disease

Past medical history Cerebrovascular accident / stroke

Past medical history Diabetes

Past medical history Homelessness

Past medical history Intravenous drug use

Continued on next page
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Table A.1 – continued from previous page

Category Variable name/description

Past medical history Major surgery (requiring skin incision)
within one month

Past medical history Residence in a long-term care facility

Past medical history
Severe liver disease (i.e., cirrhosis or
end-stage liver disease)

In ED Central line placed

In ED Difficult IV access

In ED Intubated in ED

Vasopressors

Vasopressor started within 48 hours of
presentation (amerzinium, dopamine,
ephedrine, epinephrine, midodrine,
noradrenaline, norepinephrine,
phenylephrine, vasopressin)

Vasopressors Name of first vasopressor

Vasopressors
Time of first record of vasopressor
administration

Vasopressors
Vasopressor start location: ED, ICU, or
operating room

Vasopressors Vasopressor stopped and restarted

Vasopressors
Duration of vasopressor therapy (< 8 hours,
8-24 hours, or > 24 hours)
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