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Abstract
The overall goal of this work is to develop a series of biomechanically-

driven human performance metrics that aid operational decision-making. By
quantifying inter-limb coordination and balance, we enable decoupling motor
patterns without direct visual observation, providing objective feedback to
decision-makers on the quality of human motion. To effectively develop and
validate metrics for coordination and balance, we take a human-centered ap-
proach, contextualizing and evaluating in specific domains of interest. This
work will focus on two: clinical geriatrics and aerospace spacesuit assem-
bly (SSA) design. While these domains might seem distinct, both require a
detailed understanding of nominal human motion and are interested in mea-
suring deviation from desired motor patterns. To this end, we will test the
hypothesis that we can augment decision-making in two domains of interest
through the development and validation of biomechanically-driven human
performance metrics for coordination and balance.
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Chapter 1

Introduction: What Rehabilitation
and Spacesuits Have in Common

There is an overarching theme to this thesis: motion. More specifically, the

theme is human motion, and how we can use the information provided by

human motion to helps us make decisions. Often human motion is used to

make decisions through a task and how the motion is performed provides

the decision-maker with valuable insight to make a decision. There are many

domains where qualitative assessments of human motion and performance

are used to make decisions. Two such examples we will discuss in detail are

rehabilitation and spacesuit sizing selection. For example, a rehabilitation

physician might use a series of motion-based tasks to help them understand

the current state of a patient and then make a decision regarding their plan-

of-care. Meanwhile, a spacesuit engineer might use a different series of tasks

to help them make a decision as to what size boot an astronaut should wear.

Both these decisions are made from qualitative, often visual assessments of

human motion [1, 2].

The overall goal of this thesis is to develop a series of biomechanically-

driven human performance metrics that aid decision-making. We aim to test

the hypothesis that we can provide quantitative feedback to augment deci-

sions typically made subjectively and qualitatively regarding upper and lower
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extremity human function. In order to develop usable and effective decision-

making metrics, a thorough understanding of how the decision is made is

required. Therefore, a human-systems approach is taken to better compre-

hend the information that end users (i.e. physical therapist or astronaut)

gather and interpret human motion to make decisions [3, 4]. Operational rel-

evance will often be used in this thesis to refer to the usefulness of a measure

toward making a decision. In the context of rehabilitation, for example, the

operational relevance of a biomechanical metric refers to whether a certain

value might prompt a clinician to change the patient’s plan-of-care. This

thesis will also consider statistical significance. Achieving statistical signifi-

cance does not mean that the measurable difference is operationally relevant.

For example, in the context of rehabilitation, the effect size might be small

and not require any formal intervention because intervention may not harm

the patient, but also may not yield perceptible differences in performance

affecting activities of daily living (ADLs). The opposite is also true: some-

thing that is operationally relevant might not achieve statistical significance.

This could mean that our measure might not be sensitive enough to detect

a difference or is just not appropriate for measuring the difference. Under-

standing operational relevance and decision-making methods helps streamline

translatability of this work.

The inspiration for this thesis largely arose from working with physical

therapists in outpatient clinics. Section 1.1 and 1.1.1 will highlight that

experience and the need for more objective metrics of performance in re-

habilitation settings. Section 1.1.2 will then highlight the human-systems

approach taken to develop new metrics for not only rehabilitation, but other

settings as well. Finally, Section 1.4 will outline the research questions and

the specific aims of this thesis.
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1.1 How physical medicine physicians make decisions

Day-to-day life requires constant interaction with the surrounding environ-

ment. In clinical environments, these actions are referred to as ADLs. ADLs

include but are not limited to: using a fork, opening a cabinet, buttoning a

shirt, walking, and drinking from a glass. While these tasks may seem simple,

they require recruitment of thousands of neurons and muscle fibers in spe-

cific ordering. A reduction in someone’s ability to move their body can have

many causes. Henceforth, we will refer to the root cause of a patient’s mus-

culoskeletal injury or ailment as their “pathology,” which can include strains,

sprains, stroke, physical trauma, musculoskeletal disorder, aging, and more.

When a patient reports symptoms or is diagnosed with a musculoskeletal

pathology, they often turn to physical medicine and rehabilitation (PMR)

clinicians to intervene and help improve motor function. In general, there

are three practitioners who might help with a patient’s treatment: PMR

physicians, physical therapists (PT), and occupational therapists (OT). PMR

physicians, often called physiatrists, are in charge of a patient’s medical di-

agnosis, plan-of-care, and prescribe their therapy. Meanwhile, the PTs are

in charge of performing the prescribed treatment therapy [5]. While physi-

atrists and PTs help care for the root cause of a patient’s pathology, OTs

specialize in rehabilitating patients to independently perform their ADLs that

are impaired due to the pathology. Henceforth, we will focus our efforts on

OT because of how much it relies on visual feedback of human motion for

decision-making. OT covers a wide range of applications with studies showing

the efficacy of OT in the context of stroke [6, 7, 8], within the aging popula-

tion [9], after amputation [10], and after injury or surgery [11]. The American

Occupational Therapy Association describes the process of therapy as evalu-

ation, intervention, and targeting of outcomes in various domains of interest,
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including occupations (ADLs, work, leisure, etc.), performance skills (motor

control), performance patterns (routines, habits, etc.) and the interrelated

context and environment of the patient [12].

As part of this work, OTs were observed and questioned to better un-

derstand how they interact with patients and make clinical decisions. An

OT’s main goal is to help their patient gain more independence. OTs accom-

plish this through strength training, repetitive tasks meant to emulate ADLs,

splinting, and more. How OTs and other physical medicine clinicians make

decisions stems from a combination of qualitative measures and quantitative

tests. Qualitative measures can be subjective and include, but are not lim-

ited to, patient feedback, and visual motion assessments. These subjective

measures inherently contain variability between clinicians due to differences

in training and opinion. While most clinical decisions made by therapists

are based on visual observation of the patient, there are common functional

state and outcome measurements used to quantify patient progression (Table

1.1). Despite these various clinical outcome measures, there is no consensus

among researchers or clinicians as to which of them are best [13, 14, 15].

Beyond these measures, there are also general evaluations commonly used

by therapists in the clinic related to the capabilities and pathology of a pa-

tients disease, such as active joint range of motion, passive joint range of

motion, and compensatory motions. While these other measure are quanti-

tative, variability exists between clinicians based on the tools they use, the

training they have, and their experience [16, 17]. For example, Pomeroy et

al. [17] found that the variance senior PTs gave a series of patients ranged

from 18% for a task picking up a pencil to 38% for a sit to stand task. It

is important to note that while measures listed above and in Table 1.1 are

quantitative, subjective assessment of how patients complete the task is also
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Measure Description Category

9-hole Peg Test [19] Placing pegs in a peg board IO
Barthel Index [20] Grading of independence on 10 ADLs IS
Disabilities of the Questionnaire on level of difficulty D
Arm and Hand and pain to perform a set of tasks

(DASH) [18]
Fugl-Meyer Upper Grading of range of motion, motor IS

Limb Test [21] function, and sensory function
Manual Muscle Grading of movement against examiner IS

Test (MMT) [22] or gravity resistance
Wolf Motor Function Combination of timed activities, functional IO, IS

Test [23] activities, and strength measures
Box and Block Moving blocks across a barrier in a box IO

Test [24]

Table 1.1: Sample of Common Clinical Outcome Measures. IO=Interactive Objective,
IS=Interactive Subject, D=Descriptive

used to help make clinical decisions. For example, the Disabilities of the Arm

and Hand (DASH) questionnaire is used to quantitatively assess the severity

of upper extremity pathology [18]. The questionnaire asks patients to rate

how difficult or painful it is to perform a series of tasks on a scale from 1− 5,

5 being extremely difficult or unable to perform the task. The higher the

DASH score, the more severe the patient’s pathology. While the DASH score

helps the clinician understand the patient’s general state and well-being, it

does not help them formulate a plan-of-care. Watching how the patient per-

forms some of the tasks in the DASH questionnaire better helps the clinician

see what muscle groups might not be firing properly so they can formulate

how to intervene and treat the patient’s pathology.

OT plan-of-care is not homogeneous and is adapted for each patient based

on their motor constraints [12, 6]. The frequency of OT visits varies de-

pending on each patient’s functional needs, but is also heavily influenced by

insurance and ease of transport to a care facility. There is a need within

physical medicine and rehabilitation to develop technologies and measures
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that can assess human motion in an objective and quantitative way. Devel-

oping objective measures would reduce the variability that currently exists

between provider assessment and could enable quicker and earlier diagnosis

that current subjective measures cannot do.

1.1.1 Telemedicine as a Lens for Metric Development

Stirling and McLean [2] performed a series of observations of OTs to better

understand the decision-making process in rehabilitative medicine. Their

goal was to use these observations to provide a roadmap for developing

telemedicine platforms in rehabilitation. Telemedicine enables the remote

practice of certain aspects of medicine through advances in communication

and health technology. Telemedicine improves patient outcomes at costs

lower than those of traditional in-person visits to the clinic or hospital for

such conditions as congestive heart failure, diabetes, chronic obstructive pul-

monary disease, and chronic wound healing [25, 26]. Telemedicine also im-

proved outcomes in depression [27, 28] and improved dermatology care [29]

by providing support and screening services. The care provided by tele-

rehabilitation includes diagnostic patient assessment, therapeutic interven-

tion, monitoring of patient performance, education, and training. The driv-

ing factors for the development of tele-rehabilitation include, but are not

limited to, providing access to rehabilitative services for individuals who are

far from specialists or who are isolated due to physical impairment, and easing

the financial burden of transportation costs and frequent clinical visits on the

patient [30]. Figure 1.1 highlights the potential designs of a tele-rehabilitation

system based on the work of Stirling and McLean [2], including the various

methods of collecting patient motion data (optical cameras, wearable sen-

sors, depth cameras), presenting the data to clinicians (video vs. summary

17



Figure 1.1: Graphical Representation of Tele-rehabilitation approaches. Technologies that
could be used to collect patient data include: wearable sensors, optical cameras, depth
sensing cameras. Information could be sent directly to the clinician for evaluation or the
system could intelligently provide feedback to the patient in real-time via visual or auditory
aids using a screen or virtual reality.

metrics), and providing feedback to the patient (clinician updates, real-time

feedback, virtual reality).

According to Stirling and McLean [2], the biggest challenge in creating

tele-monitoring systems is robustly quantifying features monitored by clini-

cians (e.g. coordination, fluidity, etc.) in ways that support decision-making.

Outcome-based measures provide a summary of the task, for example how

long it took to complete the task, and do not provide information of how

the task was completed. Many current tele-monitoring systems and all the

clinical measures listed above (Table 1.1) focus on outcome-based metrics for

task completion. For example, the 9-hole peg test and Box and Block tests

listed in Table 1.1 only evaluate patients based on how long it takes them

to complete the task, but there is relevant information to clinicians in how

they complete the task regardless of the time it takes. For example, when

completing 9-hole peg test, some patients grasp the objects with their fin-

gertips, while others with decreased fine motor control use the sides of their
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fingers. The time it took the patient to complete the 9-hole peg test does

not tell the clinician how the patient grasped the objects. Some patients

compensate and can complete the task rather quickly using the sides of their

fingers when the therapist wants them to use the tips. This detail is missed if

a tele-rehabilitation system only sent a clinician how long it took the patient

to finish the task. Therefore, there is a need for performance-based metrics

that enable deeper insight by disambiguating desired and undesired motor

patterns used to complete the task [31]. These desired motor patterns may

change due to the heterogeneity of treatment protocols and pathologies be-

tween patients. Measures that quantify how a patient performs a motion or

technique used to complete a task shall be called performance-based metrics.

As highlighted by Stirling and McLean [2], any new performance-based met-

rics must be developed and presented intuitively in ways that decrease the

workload necessary for decision-making [32, 33, 34].

Tele-rehabilitation also aims to disambiguate differences in patient pro-

gression between clinical visits. Typically, similarities or differences between

clinical visits are due to the patient 1) not participating in prescribed home

exercises, 2) participating in home exercises incorrectly, or 3) participating in

home exercises correctly [2]. While the implementation of tele-rehabilitation

has not been well studied, the technology is extremely promising [35, 36, 30].

Most difficulties in effectively providing tele-rehabilitation lie in the impor-

tance of direct observation and interaction of the patient with the provider,

something we noted as very important in Section 1.1. In addition, many sub-

tleties and complexities exist in human three-dimensional motion and motor

control [30]. In other words, it is very difficult to effectively represent 3D

information on a 2D screen or paper. Russel [30] classifies tele-rehabilitation

into three categories: 1) video images, 2) virtual reality (VR), and 3) sensors.
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Fig. 1.1 also highlights these three technologies. Video only provides a two-

dimensional viewpoint of subtle three-dimensional motions that can become

occluded from view. The clinician must therefore rely solely on visual cues

while reviewing these videos in real-time or at a later time, still creating a

large time burden on the therapist. VR systems could provide quantitative

outcome measures based on games designed for the patient. These games

can encourage certain movement patterns to aid in improving motor skills,

which are hypothesized to carry over to ADLs. Nonetheless, pure VR sys-

tems only have the capability of quantifying outcomes and cannot quantify

the motor patterns used to achieve those outcomes. This could lead to pa-

tients using compensatory mechanisms to reach a desired outcome, while not

achieving the desired motor pattern. Rizzo et. al [37] highlighted some of

these technical, practical and human factors challenges associated with VR

and tele-rehabilitation. Rizzo [37] suggested that coupling video images with

environmental sensing or wearable sensors could improved observability and

quantification of motor patterns, but we still do not understand the variability

associated with bringing some of these technology into non-laboratory, natu-

ral environments. Laboratory settings are far more controlled environments

and at times can cause measurable differences in the way technology and

patients perform [38]. It is therefore important to investigate what kinds of

changes might occur when using these technologies in different environments.

Holden et al. [39] addressed the challenges of tele-rehabilitation using real-

time video conferencing with a therapist, VR, and motion tracking sensors.

While travel burden was relieved for the patient, the time burden for the

therapist remained as they interacted with the home system in real-time.

Additional studies reduced the time burden on therapists by decreasing the

number of video conferences and relying on patients to directly interact with
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the home system. While these studies found improvements in selected clinical

performance metrics, it is unclear which metrics are the most valuable to

the clinician in between clinical visits. In other words, the therapist was

unsure which metrics were most useful in assessing patient progress, and

the determining factors of patient progression remained ambiguous [40, 41].

Thus, the therapist could not use the system to inform treatment progression

between clinical visits. Similar outcomes were observed by Veltra et al. [15]

who was able to summarize outcome measures using sensors to categorize

patients with upper extremity disabilities, but these parameters were not

useful in clinical decision-making. Thus, while the literature shows a need

for tele-rehabilitation, especially with regards to OT [42], there are no systems

that effectively inform clinical decision-making.

1.1.2 Human-Centered Metric Development

Stirling and McLean [2] provide a framework for how to effectively develop

performance-based measure using a human-centered approach and cognitive

task analysis (CTA, Fig. 1.2). CTA aims to understand information re-

quired, thinking processes, and goals of an environment requiring some form

of decision-making [43, 44]. CTA is a broad field, and includes a variety of

methods and techniques used to analyze the underlying mental tasks for par-

ticular situations. A modified CTA was performed by Stirling and McLean [2]

to reveal important factors within therapy sessions. Figure 1.2 highlights the

methodology that can be applied for the development of relevant performance

metrics. The modified CTA is composed of three segments: characterizing

the subject matter, defining the relevant information, and formalizing system

requirements (Fig. 1.2).

Characterization of subject matter requires observation of the domain of
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Figure 1.2: Modified Cognitive Task Analysis methodology developed to generate perfor-
mance metrics for occupational therapy decision-making aids.

interest, in this case occupational therapy clinical rehabilitation sessions.

Each domain of interest observed is unique due to patient-specific needs.

Within each of these observable domains, we can determine the processes,

loops, and decisions aligned with decision making [45]. Processes require a

direct or indirect interaction between the clinician and patient. For example,

in order to help a patient achieve the desired motion, an OT might provide

vocal cues to remind them of what limbs or joints to use. Loops are defined

as processes that are repeated until predetermined events occur, such as a

certain amount of time passes or an observation is made that requires a deci-

sion. Finally, decisions are defined as the processes that require a clinician to

make a rule- or knowledge-based judgment. Observations of these processes,

loops, and decisions allow the development of event workflow diagrams for

therapy sessions that aid in visualizing how clinicians make decisions and

the information they need to do so. Figure 1.3 provides a sample workflow

diagram from Stirling and McLean [2]. Fig. 1.3 highlights how an OT might

regulate their time with a patient and how they might decide whether a cer-
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tain task needs to be repeated, needs to be increased in difficulty, or is no

longer necessary.

Figure 1.3: A sample workflow diagram for a physical therapy session containing various
activities and patient evaluations borrowed from Stirling and McLean [2]

With an understanding of the subject matter we mean to quantify, the rel-

evant information and their corresponding situation awareness (SA) require-

ments can be defined (Fig. 1.2). SA is the human’s ability to thoroughly

understand their surroundings. SA can be decomposed into three levels:

perception of the elements, comprehension of the current situation, and pro-

jection of future states [46]. In the context of OT, perception of the elements

involves the OT monitoring a patient perform a task (see the center of Fig.

1.3). During this stage, the OT is observing how the patient moves and how

the patient interacts with the environment. The next phase, comprehension,

involves taking information of how the patient is performing the task and

determining if they are doing the task appropriately. If they are not doing it

appropriately, the OT might decide to intervene with a verbal cue or perhaps

physical manipulation (see Fig. 1.3). The final level of SA, projection into

the future, involves the OT predicting what future plan-of-care the patient
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requires.

Finally, the third segment of this methodology formalizes the requirements

of the tele-rehabilitation system by integrating the measures required for

the selected activity to define a series of design requirements for the sys-

tem, and to generate a series of candidate metrics that will all eventually

be tested in user studies to validate their efficacy. As part of the CTA,

Stirling and McLean [2] provide a long and comprehensive list of features

physical medicine clinicians use to evaluate motion. These terms are good

candidates for performance-based metric development because clinicians al-

ready use them to describe the pathologies and motions they observe in their

patients. This work focused on two: coordination and balance. Their defini-

tions and SA requirements related to rehabilitation medicine are displayed in

Table 1.2 and serve as a template for metric development in future chapters

of this thesis. Coordination was selected as part of this thesis due to the lack

of appropriate measures from the literature that could be used by clinicians

[47, 48]. While various measures exist to quantify balance, there are very few

balance metrics that quantify balance strategy, something that is relevant for

certain patient populations (i.e. aging populations). In Chapter 2 and Chap-

ter 4, we will discuss the limitation of current measures of coordination and

balance, respectively, and address these limitations by defining new measures

for each.

1.2 Understanding the Problems with Spacesuit Fit

and Sizing

As mentioned earlier in this chapter, similar to rehabilitation physicians,

spacesuit engineers also use tasks and how the tasks are performed to provide
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Feature Description SA Level 1: SA Level 2: Current
Perception Comprehension Methods

How does the patient Observation of joint Assess orientation in Visual assessment

hold themselves? Are orientation and the context of task by clinician

Balance joints well positioned? center or mass and patient pathology

Will current position

affect balance?

Are the appropriate Observations of joint Assessment of joint Visual assessment

Coordination motor patterns present and hand motions and hand derivatives by clinician

within and across limbs?

Table 1.2: Motion features being quantified for this thesis and their respective situation
awareness requirements

valuable insight into spacesuit sizing and fit. Human spaceflight and explo-

ration beyond low-earth orbit requires providing astronauts with life support

systems in the form of not just space vehicles, but also extravehicular activity

(EVA) spacesuit assemblies (SSA). These SSAs allow astronauts to perform

tasks outside the space vehicle necessitating an appropriate amount of mobil-

ity to perform the task and protecting them from the extreme environment of

space. Critical to mission success is the ability for users to effectively accom-

plish such mission-related operational tasks while reducing risks to health and

injury [49, 50]. Human performance during mission-related tasks is limited

by the ability of the user and the restrictions due to the SSA being worn.

Newer SSA designs aim to increase astronaut mobility and reduce changes

in their motor patterns from when they are unsuited. This aims to reduce

injury risk and the metabolic cost of using the suit [51, 52]. However, these

designs still tend to limit mobility and increase the amount of torque joints

need to move compared to unsuited. These extra torques arise from bearing

resistances, torques added by soft goods and rolling convolute joints, and in-

ertial changes of heavy components [53]. SSAs can also be considered passive

exo-systems that have various open human factors research questions in the
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physical and cognitive domains [54].

Knowing that spacesuits add extra torques and increase the energy re-

quired to move, there is a need to understand how different SSA designs

can impact human kinematics and whether these changes could lead to as-

tronaut injury. This research goal becomes even more complex when con-

sidering the environments in which these systems are designed to operate.

SSAs are designed for specific kinds of environments (microgravity vs. plan-

etary) and specific kinds of tasks. Fig. 1.4 highlights three kinds of SSAs

that are either actively being used by NASA astronauts or that are regu-

larly used for research and development of future generations of suits. The

Extravehicular Mobility Unit (EMU, Fig. 1.4A) is currently being operated

by astronauts aboard the International Space Station (ISS). In microgravity,

astronauts move around using handrails attached to the ISS or they are po-

sitioned around the station by having their feet attached by a giant robotic

arm. Astronauts therefore rarely use their legs and predominantly perform

tasks using their arms and hands. Since the EMU is used in microgravity

environments and astronauts do not really use their legs in microgravity,

there is little need to design for extra leg mobility. For this reason, the lower

extremities of the EMU are fairly restricted in their mobility and it would

not make sense to use this suit for any sort of walking task. Meanwhile, the

Mark III (MKIII, Fig. 1.4B) is designed to operate in planetary environments

that would require walking and geological exploration. For this reason, it is

designed with greater mobility at the hips to enable more fluid gait move-

ments and to enable crouching motions. Finally, the Z-2 SSA (Fig. 1.4C)

was designed for use in both microgravity and planetary environments, with

inter-changeable legs that are either rigid for microgravity or more mobile

for planetary exploration. Therefore, not only do spacesuits alter the natural
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way the astronaut moves, but different suit designs alter astronaut kinemat-

ics in distinct manners and need to be evaluated using the specific tasks the

suit was designed to perform [55].

Figure 1.4: Existing Spacesuit Assembly Designs. A) The Extravehicular Mobility Unit
(EMU) is designed for use in microgravity environment, while B) the Mark III is designed
for planetary exploration. C) The Z-2 advanced suit concept is meant for use in both
environments.

A common theme between all suit design is that getting a suit to fit and

perform properly is challenging. Even dating back to the Apollo era when

suits were custom built for astronauts, problems existed with the way astro-

nauts interacted with different components of the suit leading to difficulty

performing their assigned tasks [56]. To further complicate the problem, hu-

man motion within the suit is extremely difficult to quantify and observe

because the human is completely occluded and there is little spacing avail-

able between the human and suit. To address the problems associated with

fit, suit engineers perform a series of fit checks to properly exchange differ-

ent sizing components and fit the astronaut as best they can to the suit.
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If we create an analogy between physical medicine and spacesuit designers,

the astronaut is like the patient and the suit engineer is like the OT. When

evaluating an astronauts ability to perform in a suit, suit engineers, like OTs,

rely on their experience to observe how the suit moves to diagnose any fit

issues. Similar to OTs, there is a need for more objective measures of suit fit

to help suit engineers decide the optimal way to design spacesuits that are

versatile and fit well. For example, if suit fit measures reveal that the torso

size does not affect an astronauts ability to walk, suit engineers could create

a universally-sized torso and not need to customize this piece for every astro-

naut. Decreasing the degree of customization is important because it implies

that future mission to the moon and Mars would require fewer suits, saving

on the weight of material they need to bring with them on their journey.

Similar to OTs in Section 1.1, in order to define objective measures of suit

fit, we must first understand what exactly suit fit is and how suit engineers

currently make decisions about suit fit. In Chapter 3 of this thesis, we use

a similar CTA used to understand how OTs make decisions (Section 1.1.2)

to understand how suit engineers make decisions. From here, we are able to

provide a comprehensive definition of suit fit and outline new techniques and

metrics for quantifying suit fit.

1.3 Wearable Sensors: Inertial Measurement Units

As highlighted in Section 1.1 and Fig. 1.1, it is important to consider what

technologies you might use to collect data on patients. For applications in

OT, it is important that the technologies we use to collect our data do not

alter the natural motion of our patients. Similarly, for our applications in

suit fit and sizing, we need a technology that is low profile and can used

inside the spacesuit. While we highlighted in Section 1.1 technologies such
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as VR and video, this thesis focuses primarily on using wearable sensors,

specifically inertial measurement units (IMUs), because of their portability

and new methods for computing human kinematics.

Low-power wireless communication and microelectromechanical systems

(MEMS) for sensing have rapidly matured into comfortable wearable motion

sensors that enable real-time measurement of human kinematics. The most

common is the IMU, which is composed of embedded accelerometers, gyro-

scopes, and magnetometers. The combination of these three sensors allows for

rigid-body kinematic characterization of objects using outputted three-axis

accelerations, three-axis angular velocities, and an estimation of the sensor’s

3D orientation in space (either in Euler or quaternion representation). IMUs

have been integrated into biomechanics research studies for the upper and

lower extremities to assess feasibility, algorithm development, and the abil-

ity to characterize and classify motion patterns [57, 58, 59]. It is important

to note that most methods rely on the assumption of rigid-body dynamics,

meaning we assume that the segment is inflexible and all points along the

segment have the same motion behavior. Rigid-body dynamics allows for

a full description of an object’s motion with just information regarding its

linear displacement, rotational properties, and orientation relative to a fixed

frame of reference. IMUs allow us to do this by outputting accelerations

(linear displacement), angular velocity (rotational properties), and an esti-

mation of orientation. The rigid-body assumption of each segment permits

one IMU to be placed on each segment to estimate the entire segment’s ori-

entation . However, since human tissue is not perfectly rigid, current models

are sensitive to sensor placement, initial calibration, and applied loads.

Many have tackled the issues associated with measuring human motion

using IMUs. Mayagoitia et al. [60], for example, precisely aligned accelerom-
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eters and gyroscopes with the femur and tibia body segments to measure

knee angle to an accuracy of at most 2.73deg RMSE (5.2% of gait task range

of motion). Precise placement of these sensors, however, can be cumbersome,

difficult, and inaccurate for non-expert users. Vanegas and Stirling [61] also

showed there is significant variability in IMU data when they are repeatedly

removed and put back on due to differences in sensor placement on the body.

To address some of the issues associated with sensor placement, functional

calibration motions are implemented to estimate the alignment of the IMU

reference frame with the body segment frame. For example, Cutti et al. [62],

Favre et al. [63, 64], and Vitali et al. [65] each used a functional calibration

procedure to calculate a rotation matrix that aligns the sensor frame to the

segment frame. These methods offer powerful estimation tools over human-

aligned techniques, especially in the presence of noisy sensors, but the need

to calibrate the sensors does take time. Stirling and McLean [2] argue that

it is important to minimize the time it takes to set up these kinds of sensors

because clinical time is very valuable and clinicians do not want to waste

time setting up technology when they could be using it to be with their pa-

tient. Recent work by Seel et al. [66, 67] and Muller et al. [68] implemented

optimization-based methods to auto-calibrate and align IMUs with segment

reference frames. McGrath et al. [69] used a PCA method to auto-calibrate

and estimate the human knee axis. These methods allow for less precise

placement of the IMU on the body segment and quicker set up time, mak-

ing them more ideal candidates for our application here. Beyond estimating

human kinematics, IMUs have already been implemented to measure other

aspects of human performance, such as agility [70, 71], balance [72], stair

climbing [73], and fall risk [74]. The recent advances in auto-calibrating joint

angle estimation and low profile nature of these devices make IMUs ideal
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candidates for the applications in this thesis.

1.4 Research Objectives and Specific Aims

The aim of this work is to provide ways to make the jobs of these clini-

cians easier by providing them with data that can help better disambiguate

pathologies, identify decrements in function, and quantify rehabilitation pro-

gression (Section 1.1). Similarly, this work aims to help suit engineers better

understand the complexities of spacesuit fit (Section 1.2). Both the domains

of rehabilitation and suit fit need performance-based measures of human mo-

tion that can help individuals in their respective fields make more informed

decisions.

In summary, the research objective of this work is to develop a series of

biomechanically-driven human performance metrics compiled to aid opera-

tional decision-making, testing the hypothesis that we can provide quantita-

tive feedback typically made subjectively and qualitatively regarding upper

and lower extremity human function. In order to achieve this objective the

following research questions must be answered:

1. Can we provide information on how motions are performed not just the

outcomes of the motions being performed?

2. Are these metrics sensitive enough to detect operationally relevant dif-

ferences that might influence decision making?

Furthermore, these research questions will more specifically be tackled
through the following Specific Aims:

1. Develop and determine whether a new metric for coordination
can detect operationally relevant differences in motor control.
Current measures for coordination are difficult to interpret and limited
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to cyclic tasks. We will define a new metric for coordination that is not
restricted to cyclic motion and test the hypothesis that we can detect
differences in coordination during a grasp and release task.

2. Adaptation and validation of this new measure for coordina-
tion to the field of bioastronautics, specifically detecting oper-
ationally relevant changes in suit fit. Motion coordination between
the human and suit will be used to quantify suit fit. We will evaluate
how changing the sizing components of the Mark III SSA (MIII) affects
a modified RCM and outcome measures of a simple walking task. We
will evaluate the hypotheses that changes in foam padding between the
human and hip brief assembly of the MIII would affect measures of (a)
gait performance and (b) dynamic fit.

3. Develop and determine how differences in balance technique
can detect operationally relevant differences in postural con-
trol. Various clinical measures and tasks are associated with poor clin-
ical outcomes in older clinical populations. We will test the hypotheses
that we can detect differences in balance technique between different
aging populations.

Chapter 2 of this thesis will go more into the background of coordination

and a candidate metric for rehabilitation. Chapter 3 will discuss using this

metric for decisions regarding spacesuit fit. Finally, Chapter 4 will discuss

balance and a new metric created to better quantify balance technique.
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Chapter 2

A Method for Quantifying

Coordination during Non-Cyclic

Motions

Chapter 1 of this thesis highlighted the motivation of this work stemming

from rehabilitative medicine. This chapter will explicitly explore coordina-

tion, providing a detailed background and literature review (Section 2.1),

presenting a new metric for coordination based on clinical needs and liter-

ature gaps (Section 2.3), and applies this new metric to a series of upper

extremity tasks (Sections 2.4 - 2.6).

2.1 Defining Coordination

Human movement involves manipulating many human joints. Each joint

also has multiple directions about which they rotate and move called their

respective degrees of freedom (DoF). In human motion models, each joint

is typically simplified to have between one to three DoF. For example, the

shoulder is simplified in the global to have three DoF (flexion/extension,

abduction/adduction, and internal/external rotation), meanwhile, the knee
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joint is simplified to be one DoF. In reality, both the shoulder and knee

within the joint reference frame have more directions about which they can

move and rotate, but simplifying them in the global frame makes motion

easier to describe and measure. The differences between motion in the global

frame and joint motion are important to consider in some clinical scenarios.

For example, some patient with partial paralysis of the arm might use their

scapula more to compensate for weakness in the glenmoral-humorous joint.

In this context, OTs might cue their patients to try and use their arm more

to begin to rehabilitate those muscle groups affected.

When humans manipulate their joints in the appropriate manner, an ele-

gant motion is produced that often allows us to perform a variety of tasks,

such as walking or other ADLs. In rehabilitation medicine, certain motions

and tasks are often described “coordinated” or “uncoordinated.” While a

motion being “uncoordinated” might have a negative connotation, the de-

gree to which a motion is “uncoordinated” or “coordinated” is dependent

on the context in which the motion is being performed. For example, hu-

man walking is a repeated pattern of trunk, hip, knee, and ankle motions

that produce forward movement. Meanwhile, a clam-shell motion is a glute

strengthening exercise that involves lying on one side with the knees bent and

repeatedly drawing them apart, sometimes with a resistance band between

the thighs. To the naked eye, this exercise might appear awkward or unco-

ordinated because it looks silly and there is no resulting forward motion or

manipulation of weights, but this exercise does have a specific purpose when

being performed in the context of physical therapy. Both motions (walking

and clam-shells) in the wrong contexts might be considered uncoordinated,

but in the appropriate context, these particular motor patterns are indeed

coordinated. In other words, if someone tried to walk in a swimming pool,
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the motions associated with walking would look rather uncoordinated, but

on land and over ground, the joint motion we often affiliate with walking

are quiet coordinated. Therefore, coordination must be defined in a context-

specific manner.

This chapter defines a new measure for coordination, but first it must be

defined. Since coordination is context dependant, we draw from multiple

sources of literature to explicitly define what what we mean by coordination.

Bernstein [75] was one of the first to define coordination; he defined it as the

following:

“[Coordination is] the organizational mastery of human joint degrees of free-
dom, with complexity arising from the multiple kinematic solutions available
in human dynamics” [75]

Turvey [76] built on Berstein’s definition by decomposing coordination into

two categories: (1) kinematic patterns and (2) neural control. Turvey also

explains that task and environment lead to small differences in how humans

move their joints despite the same end goal. For example, someone might

reach for a cup differently than when reaching for a pen, despite being in

the same starting position and having the same goal of grasping an object in

front of them. Turvey’s definition further strengthens the idea that coordina-

tion should be interpreted in a context-dependent manner. A more clinical

definition of coordination was made by Stirling and McLean [77], who de-

scribe coordinated movements as motions with appropriate, non-pathologic

motor patterns across multiple limbs, again implicating the importance of

context. Definitions by Turvey [76] and Stirling [77] align in that they dis-

cuss (1) kinematic and neurological contributions of coordination and (2) the

importance of context. From the definitions and descriptions of coordina-
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tion acquired from the literature it is clear that human coordination involves

context-dependent and planned out manipulation of human joints. To further

explore the definition of coordination, Section 2.2 explores existing quanti-

tative measures of coordination and what these measures imply about the

underlying motion.

2.2 Existing Coordination Measures

Current measures that represent coordination are 1) continuous relative phase

(CRP), 2) vector coding (VC), and 3) beta coordination matrix (BCM, βij).

CRP and VC differ from BCM in that they are readily applied to a variety

of cyclic tasks. BCM was created exclusively to evaluate the coordination of

a crawling task [78]. First, we will focus on CRP and VC. It is important

to note that both CRP and VC are represented using the greek symbol θ,

however, this symbol is also used to represent joint angles. For simplicity and

to avoid confusion in this thesis, the symbols γ and τ will to used to represent

CRP and VC, respectively. Additionally, in order to better understand these

metrics for coordination and their potential limitations, we will refer to Fig.

2.1 that provides reference hip and knee joint angles (Fig. 2.1a) and respective

joint angular velocities (Fig. 2.1b) for a single step during a walking task.

All 3 DoF of the hip (flexion, adduction, and rotation) and single DoF of the

knee are plotted. These reference data will be used to visualize and compute

coordination during walking using the metrics CRP and VC in the Sections

2.2.1 and 2.2.2.
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(a) Joint Angles (b) Joint Angular Velocities

Figure 2.1: Sample hip and knee joint angle and angular velocity data from a single step.
Joint coordinate systems are defined based on International Society of Biomechanics recom-
mendation [79]. Hip flexion/extension is positive when in the anterior plane and negative
when in the posterior plane. Hip adduction is positive when moving towards the midline
and negative when moving away. Hip rotation is positive when rotating towards the ro-
tating and negative when moving away. Knee flexion is defined as 0◦ when straight and
negative when bent.
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2.2.1 Continuous Relative Phase, γ12

Phase space is a series of coordinates meant to represent all possible states of

a system. CRP (γ12) relies on the position and velocity signals of joints 1 and

2. A total of 4 data points are used to compute γ12(t) between joints 1 and

2 at time t. In order to compute γ12, position (θ) and velocity (ω) are first

normalized based on the constraints and kinematics to the task (θ̃ and ω̃,

respectively). Position is normalized based on the maximum and minimum

angular position values of joint n:

θ̃n(t) = 2 ∗
[ θn(t)−min(θn)

max(θn)−min(θn)

]
− 1 (2.1)

where θ(i)n(t) is the angular position at time t and θ̃n(t) is the normalized

angular position at time t, computed for each joint n. The normalization

scheme in Eq. 2.1 results in the the normalized angular position of each joint

n ranging between and including −1 to 1. Angular velocity is normalized

based on the maximum absolute value of angular velocity for joint n:

ω̃n(t) =
ω(t)

max(|ω|)
(2.2)

where ω(t) is the angular velocity at time point t and ω̃n(t) is the normalized

angular velocity at time point t, computed for each joint n. The normalization

scheme in Eq. 2.2 results in the normalized angular velocity of each joint n

lying between −1 and 1, but might not fully cover the range of −1 and 1

based on whether joint n has more negative or positive angular velocity.

Once normalized, a position-velocity phase space is created for each joint

by plotting θ̃n versus ω̃n for all time, as shown in Fig. 2.2 with the reference

data in Fig. 2.1. It is important to note that Fig. 2.2a is a position-velocity

phase space representation of only the hip flexion/extension axis because
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(a) θ̃Hip vs. ω̃Hip (b) θ̃Knee vs. ω̃Knee

Figure 2.2: Position-Velocity phase space representations of hip flexion axis and knee using
data found in Fig. 2.1a and Fig. 2.1b, respectively. The start of the step (t = 0) is
represented by the red markers that slowly transition to blue markers, representing the end
of the step (t = 1).

CRP only allows us to compare two joint axes as a time. In this case, we

are comparing the hip flexion/extension axis with the knee axis. The joint

“phase” in position-velocity phase space, termed φ, is computed for time

point t as the angle from the positive x-axis, as displayed in Fig. 2.2a and

2.2b for φHip and φKnee, respectively. Mathematically, φn for joint n is defined

using the following equation:

φn(t) = tan−1
[ω̃n(t)
θ̃n(t)

]
(2.3)

where ω̃n(t) is the normalized angular velocity of joint n at time t and θ̃n(t)

is the normalized angle of joint n at time t. The respective values of φHip and

φKnee based on the reference joint data in Fig. 2.1 are found in Fig. 2.3a. As

seen in Fig. 2.3a, discontinuities can exist in φ based on the version of in the

inverse tangent used.
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The coordination between of the two joint system is then computed using

CRP. The CRP between joints 1 and 2, γ12 is mathematically computed as

the absolute difference in φ1 and φ2. γ
12(t) is defined as:

γ12(t) = |φ1(t)− φ2(t)| (2.4)

where φ1(t) and φ2(t) are the φn of joints 1 and 2, respectively, for time t.

Fig. 2.3b illustrates the γHK of the reference data in Fig. 2.1. γ12 is typically

applied to cyclic task, such as gait [80, 81], running [82], and swimming

[83], which is why we chose gait as the example task. It is important to

note that the normalization scheme implemented using Eqs. 2.1 and 2.2 are

performed for each repetition of the task. In other words, for our example,

a new normalization would be applied to raw forms of θ and ω for each

step performed, however, in our example we are only looking at one step to

simplify the example. Part of the reason that CRP is typically applied to

cyclic tasks is because in a cyclic task the values of θ and ω start and stop

around similar values. This leads to φ having a full 360◦ range. With this

in mind, the value of γ12 represents the difference in φ1 and φ2 at each time

point of the cyclic task. For our example, it is convenient that both position-

velocity plots of the hip extension axis and knee axis both start around the

coordinates (1, 0). If both these joint axes traveled through their respective

phase spaces in a similar manner, then γ12 = 0◦. However, as seen in Fig.

2.1a, the knee actually does not bend much at the beginning of the step

cycle. This region is during stance phase when the knee is fairly rigid as the

hip extends to shift the center of mass over the angle. Quantitatively, this

results in φKnee hovering around zero, while φHip get more negative and γHK

grows in value. During the latter half of the step (i.e. swing phase), the knee

bends and extends forward, while the hip flexes and the value of φKnee travels
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through phase space rather quickly to catch up to φHip, decreasing the value

of γHK .

(a) φHip and φKnee (b) γHK

Figure 2.3: Hip Flexion φHips and Knee φHips with corresponding γHK over a single repre-
sentative step

As seen in Fig. 2.3, discontinuities exist when computing both φ and γ due

to unwrapping issues present when using the inverse tangent. Fig. 2.3a uses a

version of the inverse tangent ranging from −180◦ to 180◦, leading to some of

the sharp changes and discontinuities observed when θ̃ and ω̃ hover around the

coordinates (−1, 0) (see Fig. 2.2). Unwrapping problems associated with the

inverse tangent can make interpreting the γHK more difficult because there

can be sudden jumps in the value of γHK that stem from actual changes in the

joint kinematics or from unwrapping problems when computing the metric,

as seen in Fig. 2.3b at t ≈ 0.55 and t ≈ 0.75. Disambiguating the origins of

these jumps is difficult when interpreting γ. Another difficulty in interpreting

γ is it can be difficult to relate the value of γ back to the underlying kinematics

[48]. The two transformations the joint kinematics undergo in Eqs. 2.3 and

2.4 create added layers of complexity that need to be disambiguated to try
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and understand the underlying joint motion from the pattern observed in γ

alone. In other words, if someone had one the representation of a motion

from γ, it would be difficult to back out what the original joint angles were

doing without prior knowledge of the underlying task and kinematics. In the

paragraph above, we were able to fully understand and interpret γHK only

because we had the raw joint angle data to help us. Interpretation are far

more difficult without the raw data. In addition, without extra knowledge of

the task being performed, there are many solutions that could be come up

with when trying to guess the kinematics that lead to a value of γ.

This section presented one methods for normalizing γ12 but for cyclic tasks

other methods of normalization do exist to account for changes in the mo-

tion period, such as Mean Period Normalized Continuous Phase and Half

Period Normalized Continuous Phase [84, 85]. While predominately applied

to cyclic tasks, there is justification to use CRP to analyze discrete tasks as

it can assess coordination variability between trials of tasks that necessitate

low variability (e.g. basketball shooting [86]), but discrete motions preclude

the estimation of time continuous measures [48]. Time continuous measures

refer to metrics that can be extracted from cyclic tasks that end where they

started, giving the impression that the time-series is continuous over time.

One example is the damping coefficient used to describe the time it takes to

return to normal after a perturbation is introduced.

2.2.2 Vector Coding, τ 12

While CRP relies on position and velocity signals, vector coding (τ 12) relies

only on position signals of joints 1 and 2 [87]. An angular position-angular

position phase space is created between joint axes 1 and 2. Fig. 2.4a displays

the position-position phase space representation of the hip flexion and knee
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flexion axes the in Fig. 2.1 reference data. The coordination “state” of the

two joint system is then computed for time point t as the angle of the slope

between time points t+ 1 and t from the horizontal, as displayed visually in

Fig. 2.4a. Mathematically, τ 12(i) is defined as follows:

τ 12(t) = tan−1
[θ2(t+ 1)− θ2(t)

θ1(t+ 1)− θ1(t)

]
, t = 1, 2, ..., T − 1 (2.5)

where θ1 and θ2 are the angular positions of joints 1 and 2 respectively, t is

the time index, and T is the total number of time points within the trail. τHK

is computed between the hip flexion axis and knee flexion axis in Fig. 2.4b.

Similar to γHK , τHK can only be computed between single axes of joints. In

addition, based on the form on inverse tangent used to compute τ 12, some

discontinuities exist. Fig. 2.4b using a version of the inverse tangent ranging

from −180◦ to 180◦, leading to some of the discontinuities observed. This

problem is very apparent when exploring our example here. Towards the

beginning of this walking task, the knee is fairly rigid, while the hip extends

backwards. In Fig. 2.4a, this leads to a fairly flat line as the hip becomes

more negative and the knee does not change. Slight oscillations here leads to

the value of τHK shifting from negative to positive fairly rapidly. In general,

values of τHK are a numeric representation of how quickly the task is moving

through position-position phase space.

2.2.3 Beta Coordination Matrix, βij

While γ12 and τ12 can be applied to a variety of cyclic tasks, Vitali et al. [78]

created a coordination metric specific to a crawling task: the Beta Coordi-

nation Matrix (BCM, βi,j). BCM is a 2 × 2 matrix where each component,

βi,j, corresponds to the coordination between a participants ith arm and jth

leg. Vitali et al. [78] evaluated the specific hypothesis faster forward crawl-
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(a) θHip vs. θKnee (b) τHK

Figure 2.4: Hip Flexion θHips and Knee θKnee with corresponding τHK over a single repre-
sentative step

ing speed was associated with greater limb coordination as computed using

the BCM. BCM relies on the angular velocity reading from an IMU (Section

1.3) and computes limb coordination between different elbow strikes. Fig.

2.5 provides sample acceleration magnitude data from a participant perform-

ing a crawling task used to parse out different elbow strikes [78]. BCM is

calculated using the following equation:

βij =

∫ t2
t1
ωarm,i(t)ωleg,j(t)dt√∫ t2

t1
ωarm,i(t)2dt

√∫ t2
t1
ωleg,j(t)2dt

(2.6)

where the time integral limits are the first elbow strike (t1) to the last elbow

strike (t2) of the ith upper arm. Each component βij is a measure of the

phase between the principal angular velocities of the ith upper arm and the

jth thigh, where again i, j = left (l) or right (r). Each component ranges

−1 ≤ βij ≤ 1, where βij = 1 denotes the arm and thigh moving completely

in phase (i.e. same speed and direction) and βij = −1 denotes the arm and
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thigh moving out of phase (i.e. equal speed, but opposite direction). Fig.

2.5b provides sample angular velocity data between elbow strikes occurring

between 4− 5sec and the computed βij.

Work by Vitali et al. [78] supported their hypothesis that faster forward

crawling speeds were associated with in-phase (βij = 1) motion between

opposite-sided arms and legs and with out-of-phase (βij) motion between

same-sided arms and legs. It is still unclear if BCM could also be applied to

other tasks such as gait. This work by Vitali et al. [78] demonstrates how

creating a metric to quantify performance of a specific task can be informative

and effective at quantifying human performance. The heterogeneous nature

of rehabilitative plan-of-care, prescribed tasks, and patient pathologies makes

creating unique metrics for every task challenging.

2.2.4 Gaps and Limitations of Current Measures

Sections 2.2.1-2.2.2 and previous work highlight the non-intuitive results gen-

erated by VC and CRP, making it difficult to infer the original motor pat-

terns [48, 88, 89]. Peters et al. [89] highlights that CRP should be used

to understand relationships in phase-space and should not be used to make

interpretations regarding the original time-series. Lamb and Stockl [48] also

mention this drawback in a review of CRP highlighting space for a new form

of dynamic coordination analysis that is more descriptive and easier to inter-

pret. Finally, Miller et al. [88] advised caution when using CRP or VC to

assess movement variability due to the inconsistent results based on how the

data is normalized and averaged across cycles. Variability assessment during

walking studies, for example, is important because it provides researchers

and physicians with an understanding of how participants are able to com-

pensate for small fluctuations in the way we walk [90]. Therefore, if CRP
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(a) Acceleration magnitudes (including superimposed gravity) of IMUs attached to left and right
upper arm. Circles are the beak acceleration values correlated with elbow strikes for each arm. A
single “stride” time is illustrated for the left arm. Data from a single stride is used to compute βij
below.

(b) Sample angular velocities of the upper arms and thighs over a single stride. If, for example,
the right upper arm is rotating counterclockwise, the principal angular velocity is positive. The
resulting components of the beta coordination matrix βij are highlight above each figure.

Figure 2.5: Example data and values of BCM borrowed from Vitali et al. [78]
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and VC provide differing and inconsistent trends in coordination variability,

participant data could be interpreted inappropriately.

For more clinical applications, interpretability back to the original motion

is important because the original motor pattern is the thing that clinicians

observe visually. As stated in Section 1.1.1, if these metrics are meant to

substitute or augment visual observation made by clinicians, the measures

should try to align as best they can with the way clinicians already think.

The difficulty involved in relating CRP or VC could relate to the multiple

transformations away from the underlying motion. CRP, for example, cre-

ates a phase angle in position-velocity space, φ, and then compares the two

joints by subtracting these phase angles. For one, the relationship between

velocity and position can often be counter-intuitive in the context of biome-

chanics as position planes are not defined the same between joints [91, 79, 92].

For example, knee angles are often not defined with negative values, while

hip flexion/extension angles can [91, 79, 92]). The knee angle is normalized

according to Eq. 2.1, forcing the normalized value of θKnee to be negative

(see Fig. 2.2b) when in reality it is never actually negative. Without a deep

understanding of the way we compute these metrics, it would appear odd to

see the knee angle containing negative values. Therefore, fewer transforma-

tions of the original data might be easier to interpret. The drawback of CRP

interpretabilty was also mentioned by Lamb et al. [48], highlighting space

for a new form of dynamic coordination analysis that is more descriptive and

easier to interpret, specifically even velocity-based.

Finally, CRP and VC do not have methodology for comparing entire joints

to one another, just single DoFs. Again in more clinical settings, it might be

valuable to compare coupled DoF joint motion since all DoFs contribute to

end-effector motion. It can also be difficult to decouple some of the DoFs in
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clinical settings when you are relying solely on observation and not on more

technological approaches. Therefore, there is a need to evaluate multi-joint

coordination.

2.3 The Relative Coordination Metrics ρ

2.3.1 Defining Coordination and the Goals of a new Metric ρ

Considering these limitations presented in Section 2.2.4, there is a need for a

new coordination metric that is: a) easier to interpret, b) velocity-based, and

c) translatable to non-cyclic motions. Therefore, we present a new, velocity-

based coordination metric and accompanying normalization scheme for non-

constrained, non-cyclic motion to quantify coordination between body seg-

ments, called the Relative Coordination Metric (ρ).

To start, we define coordination as the degree of relative motion between

two body segments, specifically the relative velocity. In Section 2.1, coordi-

nation as defined by Bernstein [75], “the organizational mastery of human

joint degrees of freedom.” We define coordination as the degree of relative

motion between two joints because relative motion provides an idea of how

joints are “organizing” or moving in conjunction with one another. Certain

tasks require two joint to move in unison, while others to not, and the relative

motion between them can quantify this phenomenon.

From here, we define the relative coordination metric, where ρ12 is the

relative velocity between body segment 1 and 2. The aim of the ρ is to quan-

tify the level of coordination and relative motion between two body segments

using velocity-based measures that inform on the underlying kinematics. ρ12

is defined with units of degrees over the range −90◦ ≤ ρ12 ≤ 90◦, such that

ρ12 = 0◦ represents a movement in which both segments are moving syn-
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chronously. ρ12 = 90◦ represents motion in which only segment 1 is moving,

while ρ12 = −90◦ represents motion of only segment 2. Values in between

represent motions with varying degrees of segment domination. When nei-

ther segment is moving, ρ12 is undefined and represents no motion. While

this metric quantifies relative coordination, a value of ±90◦ or 0◦ does not

imply bad or good coordination. To determine overall task coordination, ρ

and the underlying task are considered in the context of what motor patterns

are desired before any conclusion can be made regarding overall performance.

2.3.2 A Numeric Definition of ρ

To start, we consider the angular velocity of each body segment about its

proximal joint. Human kinematic models assume that each body segment

has its own number of rotation axes analogous to each DoF of the proximal

joint. In other words, these rotational axes also correspond to the different

directions each joint can rotate. For example, the thigh only has one DoF

and rotation axis because its proximal joint, the knee, is a hinge joint, while

the hip has three DoF because its proximal joint, the hip, is a ball joint. The

total angular velocity for each segment is calculated by taking the L2-norm of

the measured components about these axes. To appropriately compare joints

with varying DoF, we modify the L2-norm angular velocity of body segment

i at time t as follows:

Ωi(t) =

√
N∑
n=1

(ωn(t)
jn

)2

N ∗ JT
(2.7)

where N is the number of joint DoF, ωn(t) is the angular velocity component

of segment i about joint axis n at time t, jn is an axis-specific normalization

parameter, and JT is a normalization parameter encompassing all joint axes.
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In other words, the normalized angular norm (Ωi(t)), is a weighted average

of each of its n DoF.

Using Eq. 2.7, the relative coordination metrics (ρij) is defined as:

ρij(t) = 2tan−1

(
Ωi(t)

Ωj(t)

)
− 90◦ (2.8)

where ρij(t) represents the relative motion between body segments i and j

at time t, and Ωi(t) and Ωj(t) are the normalized L2 angular velocity norms

of body segments i and j, respectively. To achieve a range between 90◦ and

−90◦, the inverse tangent is scaled and a phase shift applied. This definition

of ρ12 therefore achieves the previously stated goals for this metric: ρ12 ap-

proaches 0◦ when Ω1 ≈ Ω2, approaches +90◦ for Ω1 � Ω2 and approaches

−90◦ for Ω1 � Ω2. At small Ωn, ρ12 can amplify measurement noise, which

results in inaccurately favoring one segment over another. Therefore, it is

necessary to set a minimum velocity threshold to avoid this effect. Using a

weighted angular magnitude (Ωi) in Eq. 2.7, grants ρ12 the ability to eval-

uate the coordination of single or multiple DoF across joints with different

underlying joint characteristics.

2.3.3 How to interpret ρ

Equations 2.7-2.8 defined a new velocity-based metric for coordination ρ. In

order to better understand how to interpret ρ, this section presents a series

of simulated angular velocity data and the corresponding values of ρ.

Let us consider body segments A moving with angular velocity ωA and

body segment B moving with ωB resulting in a motion that produces ρAB.

The goals of this new metric are that ρAB = 90◦ represents motion in which

only segment A is moving, while ρAB = −90◦ represents motion of only

segment B. In order to evaluate this requirement, Fig. 2.6 displays simulated
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angular position (Fig. 2.6a) and velocity (Fig. 2.6b) data in which segment

A (blue, |ωA| > 0) has one DoF and moves from θA = 0◦ to 75◦, pauses, and

then moves back, while segment B (red, ωB ≈ 0) also has one DoF and has

a constant position values of θB = 0◦. The x-axis of these plots is meant

to be representative of normalized time 0 − 1, where 0 is the beginning of

the simulated motion and 1 the end. Random noise was added with a max

amplitude of 0.1rad to both motions in order to simulate measurement from

real-world devices, such as IMUs.
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(a) Simulated Angular Position (θB = 0) (b) Simulated Angular Velocities (ωA >
0, ωB = 0)

(c) Computed ρAB (ωA > 0, ωB = 0)

Figure 2.6: Simulated Data and Corresponding ρAB for Independent Segment A motion.
Solid black line treats ρAB as undefined when Segment A and B are not moving, while the
dashed black line does not remove noise when both segments are stationary.
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Based on the goals of ρ and the simulated data in Fig. 2.6a and 2.6b, we

expect that ρAB ≈ 90◦. As seen in Fig. 2.6c, the resulting ρAB matches what

we would expect (ρAB ≈ 90◦), except around t ≈ 0.5 when both segment A

and B are not moving (ωA = ωB ≈ 0deg/s) and ρAB becomes undefined. The

dashed version of ρAB represents what happens to the signal when ρAB is not

undefined when both ΩA and ΩB are not moving beyond some measurement

noise. In other words, when we do not set limits for when Ω = 0, random

noise in the signal can fluctuate the signal uncontrollably, as stated in Section

2.3.2.

Fig. 2.7 represents inverted simulated data to Fig. 2.6 in which segment

B is moving (Fig. 2.7a, 0◦ ≤ θB ≤ 75◦, and Fig. 2.7b, |ωB| > 0) while

segment A is not (Fig. 2.7a, θA ≈ 0◦, and Fig. 2.7b, ωA ≈ 0). Fig. 2.7c

shows the opposite pattern of Fig. 2.6c, which aligns both with the definition

of ρ (Section 2.3.1) and the opposing simulated data in Fig. 2.6a compared

to Fig. 2.7a.

As per Section 2.3.1, instances in which both body segments A and B

are moving in a coordinated, synchronous fashion results in ρAB ≈ 0◦. Fig.

2.8a and 2.8b show simulated data in which ωA and ωB could be considered

coordinated due to their nearly identical, inverted angular position and ve-

locity patterns. Based on this simulated data and Eqs. 2.7 and 2.8, we would

expect that ρAB ≈ 0◦. Fig. 2.8c plots the resulting ρAB which matches our

prediction expect around t ≈ 0.5 where both segments are not moving and

the metric is undefined. This behavior is expected as discussed in Section

2.3.2. It is important to note that for Fig. 2.6-2.8, no normalization schemes

are implemented when computing ΩA and ΩB (Eq. 2.8).

53



(a) Simulated Angular Position (θA = 0) (b) Simulated Angular Velocity ωB > 0

(c) Computed ρAB (ωA = 0, ωB > 0)

Figure 2.7: Simulated Data and Corresponding ρAB for Independent Segment B motion
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(a) Simulated Angles θA > 0, θB > 0 (b) Simulated ω (ωA > 0, ωB > 0)

(c) Computed ρAB (ωA > 0, ωB > 0)

Figure 2.8: Simulated Data and Corresponding ρAB for Dual Joint motion
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2.3.4 The Need to Normalize Ω

As discussed in Section 2.2, different human joints have varying DoF, ranges

of motion (RoM), and coordinate systems [79, 91, 92]. In order to effectively

compare joints with different underlying characteristics (for example, the

shoulder can be modeled with 3DoF, elbow with 2DoF, and both these joints

have different RoM), there is a need to appropriately normalize these joints

because additional DoF or greater RoM could artificially increase Ωi making

it appear as if motion is “uncoordinated” when the joints are actually moving

in a synchronous, coordinated fashion. To demonstrate the need to normalize

and how normalization can affect ρAB, more simulated data is presented here.

To start, Fig. 2.9a presents simulated data for body segment A with two

DoF (ω1
A, ω2

A) and body segment B also with two DoF (ω1
B, ω2

B). This exam-

ple is meant to mimic the elbow joint in blue (2DoF, flexion/extension and

pronation/supination) and the wrist joint in red (2DoF, flexion/extension

and radial/ulnar deviation) during a reaching task over a table. Typically

during this task, the elbow has a much higher RoM than the wrist as the

participant extends their arm across the table to reach and uses the wrist

for more fine tuned motions to interact with objects. While both segments

have the same number of DoF and have the same phase, the max amplitudes

of ω1
A, ω2

A, ω1
B, and ω2

B are not the same value and neither are max angular

magnitudes ΩA and ΩB, similar to how the elbow has more RoM than the

wrist during a reaching task. When ρAB is computed in Fig. 2.9c, it would

appear that these motions are not coordinated (ρAB ≈ 58◦) due to the dispar-

ity in maximum values of ω1
A and ω2

A being much greater than the maximum

values of ω1
B and ω2

B, shifting the value of ρAB to be very positive. Reaching

tasks require finely tuned and coordinated manipulation between the elbow

and wrist joints. For this reason, ρAB is also computed in Fig. 2.9c by using
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a normalization scheme where each joint axis is normalized by its maximum

angular velocity (jn = max[ωn] in Eq. 2.7, light grey line). As a result of

this normalization scheme, ρAB ≈ 0, which would be more indicative of a

coordinated movement, which we would expect of the example reaching task.

(a) Simulated Angles ωA > 0, ωB > 0 (b) Simulated ωA > 0, ωB > 0

(c) Computed ρAB (ωA > 0, ωB > 0)

Figure 2.9: Simulated Data and Corresponding ρAB for Dual Joint motion

In order to illustrate the necessity for normalization when joints have dif-
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fering DoF, Fig. 2.10 simulates motion for body segment A with 3DoF (ω1
A,

ω2
A, ω3

A) and body segment B with 2DoF (ω1
B, ω2

B). This example is meant

to also mimic a reaching task over the table, but this time comparing the

shoulder joint in red (3DoF, flexion/extension, abduction/adduction, and in-

ternal/external rotation) and the elbow joint in blue (2DoF, flexion/extension

and pronation/supination). During these tasks, both joints might have simi-

lar RoM depending on how far up or across the table participants reach, but

the main factor is that the shoulder has more DoF that make the effective

angular magnitude higher than the elbow in most cases. In this simulated

data, all individual joint axes carry reach, pause around t ≈ 0.5, and then

return to their starting position; however, they each possess differing am-

plitudes (Fig. 2.10a). Similar to the example in Fig. 2.9, we expect these

sort of planar tasks to be coordinated tasks. However, due of the differing

DoF and angular velocities of each joint, it might appear that this motion

is coordinated, but without appropriate normalization when computing ρAB.

Fig. 2.10c displays ρAB with varying normalizations. ρAB in the dash black

line displays no normalization with ρ ≈ 58 due to differing maximum angu-

lar velocities, angular magnitudes (ΩA and ΩB), and differing DoF. When

normalizing just by joint axis max angular velocity (Eq. 2.7, jn = max[ωn]),

ρAB ≈ 10◦ as shown in Fig. 2.10c with the large, lighter grey line. This is due

to the differing DoF still artificially increasing ΩA. Therefore, there is also a

need to normalize by the number of DoF as shown with the darker grey line

in Fig. 2.10c. This metric, ρ, therefore provides methodology for computing

the coordination between entire joints with differing DoF.
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(a) Simulated Angles (ωA > 0, ωB > 0) (b) Simulated Velocity (ωA > 0, ωB > 0)

(c) Computed ρAB (ωA > 0, ωB > 0)

Figure 2.10: Simulated Data and Corresponding ρAB for Dual Joint motion

Certain applications might not warrant any normalization. For certain pa-

tient pathologies, OTs use splitting as a technique to restrict certain muscle

groups and encourage their patients to use other muscle groups. For exam-

ple, if a patient has upper extremity muscle weakness, OTs might restrain the

patients chest to avoid them from leaning forward and encouraging them to
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reach with their arms. In this scenario, if you were evaluating the coordina-

tion between the torso and upper arm, it might be desirable not to normalize

the motion data so you can explicitly see an undesired torso motion. Nor-

malizing could make any torso motion seem coordinated (like in Fig. 2.9c),

but in reality you want to see behavior like that demonstrated in Fig. 2.6c

where one segment is moving and the other is not, which might be more

easily observed without any normalization. In the case that a normalization

scheme is desired, sample, nominal data population could aid in determining

what normalization scheme is the most appropriate.

2.3.5 Composite Measures of ρ

Both CRP and VC are used to evaluate motions using descriptive statistics,

specifically variability, in addition to their time-series representations as a

way to summarize the time-series result [88, 82]. Additionally, since there

is desire to reduce the time burden on clinicians [2], it might be easier to

observe a series of summary measures for coordination instead of time-series

that might take more time to process.

As the ρ is a time-series metric, we define the percent time in a coordina-

tion zone (t̂±Zn
) to provide a composite overview on the ρ during the task (Fig.

2.11). Here we define seven zones. Zone 1 (Z1) ranges from −20◦ ≤ ρ12 ≤ 20◦,

corresponding to motions with the highest relative coordination (i.e. neither

segment is dominant in the motion). Zones +Z2, +Z3, +Z4 represent progres-

sively less coordinated movements in which segment 1 dominates, with ranges

20◦ < ρ12 ≤ 40◦, 40◦ < ρ12 ≤ 60◦, and 60◦ < ρ12 ≤ 90◦, respectively. Mean-

while, zones −Z2, −Z3, −Z4 represent motion dominated by segment 2, with

ranges −40◦ < ρ12 ≤ −20◦, −60◦ < ρ12 ≤ −40◦, and −90◦ < ρ12 ≤ −60◦,

respectively. These zones are represented graphically in Fig. 2.11.
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Figure 2.11: Graphical description Frequency in Coordination Zone (t̂±Zn)

2.4 Application and Experimental Validation of ρ

Section 2.3.2 defined a new metric for quantifying coordination (ρ, Eq. 2.7

and 2.8) that is velocity-based and easier to interpret than existing measures.

Section 2.3.3 uses simulated data to describe how to interpret ρ. Kurtz et

al. [85] provides evidence that normalization significantly alters the inter-

pretation of CRP. Section 2.3.4 illustrates both the need to normalize ρ and

how normalization can affect the way ρ is interpreted. Therefore, there is a

need to understand the effect of normalization in an experimental setting. In

addition, it is necessary to assess the sensitivity of ρ to detect operationally

relevant differences or differences that are significant enough for clinical in-

tervention.
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In this initial work, upper extremity coordination patterns during a grasp,

transport, and release task in a healthy population were used to assess the

effect of various normalization schemes, as well as specific variations of the

task on ρ interpretation. Previous work [93, 94, 95, 96] demonstrated varying

kinematic relationships between the shoulder, elbow, and wrist joints during

reach, transport, and grasping tasks because they each had their participants

reach different distances, interact with different objects, and transport to

different locations. Therefore, the trajectory and objects selected for these

reaching tasks is likely to have an effect on upper limb coordination. In order

to observe these changes in coordination and to examine task and environ-

mental effects on coordination as expressed by Turvey [76], two objects and

two reach, transport, and grasp trajectories were evaluated to assess if ρ was

sensitive to these variations. As ρ is a velocity-based metric, it is important

to consider how underlying differences in joint RoM and DoFs affect the es-

timation. Thus, we consider normalizing ρ using joint-specific parameters to

compare between body segments. As ρ is expected to naturally vary during

different stages within grasp, transport, and release task, we considered how

ρ changes during five predefined stages (50% reach, grasp, 50% transport,

release, and 50% return). In addition to considering the ρ time-profile, we

consider the time-independent composite measure of the percent time in a

coordination zone (t̂±Zn
) defined in Section 2.3.5.

We evaluated the hypotheses that there was a difference in ρ within the

grasping task when (1) different normalization schemes were implemented

and (2) during the five task stages; and that there was a difference in t̂±Zn

(3) when grasping a cup vs. a pen, and (4) when the task involved different

motion trajectories (moving towards or away from the torso).

62



Figure 2.12: Task Description: participants, seated behind a table, moved an object from
the distal location to the proximal location on the table and back. Each trial was divided
into two trajectories while interacting with each object. Each trajectory included 5 stages:
reach, grasp, transport, release, and return.

2.4.1 Experimental Design

A secondary analysis was performed on data acquired from 15 right-handed

healthy participants who performed reach/grasp tasks (Fig. 2.12, [93]). Par-

ticipants were 23-26 years old (M = 24.4, SD = 1.2), 5 females/10 males,

arm lengths 29.2-37.8cm (M = 33.9cm, SD = 2.4cm), and forearm lengths

19.9-29.6cm (M = 25.7cm, SD = 2.5cm). Participants gave written informed

consent and the protocol was approved by the MIT Committee on the Use

of Humans as Experimental Subjects.

While seated behind a table, participants moved an object from one loca-

tion to another using their right hand, Fig. 2.12. In each trial, participants

made two movements with distinct trajectories: moving the object from the

distal to the proximal location (trajectory 1) and moving the object from the
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Normalization Scheme N jn JT

A. None # Joint axes 1 1
B. Degrees of freedom # Joint axes 1 1
C. Angular Velocity # Joint axes max[|ωn|] 1
D. Range of Motion # Joint axes RoM[ωn] 1

E. Angular Magnitude # Joint axes 1 max[
N∑

m=1

ωn]

Table 2.1: Definitions of Normalization Parameters

proximal to distal location (trajectory 2). Each trajectory was sub-divided

into 5 stages: reach, grasp, transport, release, and return. Kinematics were

recorded using a 10-camera motion capture system (Bonita, VICON Inc.,

USA) at 100Hz. Eighteen reflective markers were placed unilaterally on the

right shoulder, arm, forearm, and hand.

Participants performed the task with two objects: a cup (diameter: 6 cm,

height: 9 cm, mass: 0.2 kg) and a rod (dimensions and mass like a ballpoint

pen). Participants were asked to place the objects on specific marks in one

smooth, continuous movement. The pen was placed perpendicularly to the

transport direction. Participants grasped one object per trial. A total of four

tasks (trajectory 1 and 2 for both the cup and pen) were performed, each

with 50 trails (200 total).

2.4.2 Data Analysis

Marker data were processed using Nexus (v. 1.8.5, VICON Inc., USA). The

marker position data were filtered using a 6th-order Butterworth low-pass

filter (corner frequency at 30Hz to remove high frequency noise). Joint rota-

tions and translations were determined using inverse kinematics with Open-

Sim 3.0 [97] and the Stanford upper extremity model [98]. Marker and joint

kinematic data were used to determine the start, grasp, release, and end of
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each trajectory using the movement segmentation methodology in Schot et al.

[99]. The start of each trajectory and minimum angular velocity was defined

based on Beckers et al. [93]; each trajectory started once the wrist velocity

exceeded 3cm/s (as calculated from a marker on the wrist) and was finished

when the hand was completely inside the start area and the wrist velocity

was less than 3cm/s. The grasp event was defined as the moment when the

thumb and index fingertip were within 2cm of the object, the wrist velocity

was minimum, and the grip aperture (i.e. closing the thumb and index finger)

rate was at a minimum. The moment of release was determined using the

same parameters as grasping, but when grip aperture was increasing.

We implemented a 7DoF model of the upper extremity with 3DoF at

the shoulder (flexion/extension, abduction/adduction, internal/external rota-

tion), 2DoF at the elbow (flexion/extension, forearm pronation/supination),

and 2DoF at the wrist (flexion/extension, radial/ulnar deviation). The RCM

was calculated between shoulder-elbow (ρse), shoulder-wrist (ρsw), and elbow-

wrist (ρew) (3 total). ρse, ρsw, and ρew for each trial were time-normalized

from 0 (movement initiation) to 1 (movement completion). Each normaliza-

tion parameter in Eq. 2.7 and Table 2.1 were calculated individually for each

participant and all 200 trials. The normalization parameters of maximum

angular velocity and RoM for each joint axis, as well as the maximum angu-

lar velocity magnitude were determined using the OpenSim results for each

individual and trial.

For this study, a minimum velocity of the wrist was used as an indication

that motion had begun (see Section 2.4). This work considers five normaliza-

tion schemes (Table 2.1) accounting for the DoFs, maximum angular veloci-

ties, RoM, and maximum angular magnitudes, while comparing to a baseline

of no normalization.
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To analyze the effect of normalization scheme and trajectory stage, the

ρ for all three joint pairings (ρse, ρsw, ρew) and five normalization schemes

(Table 2.1A-E) was extracted at discrete time points associated with the 5

trajectory stages: A) 50% reach, B) grasp, C) 50% transport, D) release,

E) 50% return all extracted by detecting of grasp and release events using

methodology in Beckers et al. [93].

2.4.3 Statistical Analysis

Statistical analysis was performed using SYSTAT 13.1 (Systat Software Inc.,

USA). Due to the non-normal distribution of the data set, non-parametric

Kruskal-Wallis (KW) tests were performed to assess main effects of our hy-

potheses. To evaluate the effect of normalization scheme (hypotheses 1) and

the effect of trajectory stage (hypothesis 2), 5 values of ρ corresponding to

stages A-E (listed above) were selected from the time-series data for each

of the 5 normalization schemes (Table 2.1). A new independent variable,

termed the “norm-stage,” was created for each combination of stage within

the task and normalization scheme for a total of 25 norm-stage groups. The

effect of norm-stage on ρ was evaluated by performing a separate KW test for

each combination of object (2 levels, cup/pen), trajectory (2 levels, trajectory

1/2), and joint comparisons (3 levels), for a total of 12 tests.

To evaluate the effect of the object grasped (hypothesis 3), t̂±Zn
for the

7 coordination zones was considered for both objects (cup and pen). A new

independent variable comprised of all combinations of objects and coordina-

tion zones was created and termed “object-zone.” A total of 14 object-zones

were created, pooling both trajectories together. The effect of object-zone

on t̂±Zn
was assessed using a KW test for 3 of the 5 normalization schemes

(Table 2.1A-C) for each of the 3 joint comparisons, resulting in 9 total tests.

66



The same tests were performed to assess the effect of trajectory (hypothesis

4), however, t̂±Zn
was considered for both trajectories 1 and 2. We created

the independent variable called “trajectory-zones” comprised of all 14 total

combinations of trajectory and coordination zone, pooling objects instead of

trajectories as done for the object-zones.

The False Detection Rate controlling procedure [100] was implemented to

address the multiple omnibus tests performed (pi <
mo

m ∗0.05), where m is the

total number of tests performed and m0 is the number of false null hypotheses

prior to the correction. When significant main effects were observed, the

Dwass-Steel-Critchlow-Fligner post-hoc test containing embedded correction

methods [101] was performed.

2.5 Results

A time-series representation of ρse, ρsw, and ρew during the four tasks per-

formed with each of the five normalization schemes is shown in Fig. 2.13-2.15.

Shifts in ρ between negative and positive values during the time-series are

indicative of switching between limb segments that have higher relative mo-

tion. Henceforth, we refer to the limb segment with greater relative motion

the dominant limb. For example, in Fig. 2.14 all four types of reach, trans-

port, and grasp task start with a large upward, positive shift in the value of

ρSW that is representative of the shoulder joint having a higher amount of

motion relative to the wrist or this is shoulder dominated motion. Around

the grasp portion of the task (the vertical blue region in Fig. 2.14), there is a

sharp, negative decline in ρSW , which is indicative of more wrist dominated

motion and the wrist having more relative motion than the shoulder.

Prior to discussing the results of the statistics performed, there are some

notable general trends within Figs. 2.13-2.15. Most notable is that during the
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Figure 2.13: Time-series Shoulder-Elbow Relative Coordination Metric (ρse): A time-series
representation of the ρse between the shoulder and elbow using all five normalization schemes
presented in Table 2.1. +ρse is representative of shoulder dominated motion, while −ρse is
representative of elbow dominated motion. Shaded regions represent the locations of grasp
(blue) and release (red) ±standard deviation. Shaded regions represent the locations of grasp
(blue) and release (red) ±standard deviation. Shaded regions around each normalization
scheme represent ±standard error.
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Figure 2.14: Time-series Shoulder-Wrist Relative Coordination Metric (ρsw): A time-series
representation of the ρsw between the shoulder and wrist using all five normalization schemes
presented in Table 2.1. +ρsw is representative of shoulder dominated motion, while −ρsw is
representative of wrist dominated motion. Shaded regions represent the locations of grasp
(blue) and release (red) ±standard deviation. Shaded regions around each normalization
scheme represent ±standard error.
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Figure 2.15: Time-series Elbow-Wrist Relative Coordination Metric (ρew): A time-series
representation of the ρew between the elbow and wrist using all five normalization schemes
presented in Table 2.1. +ρsw is representative of elbow dominated motion, while −ρsw is
representative of wrist dominated motion. Shaded regions represent the locations of grasp
(blue) and release (red) ±standard deviation. Shaded regions around each normalization
scheme represent ±standard error.
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reach, transport, and return phases of the task (Fig. 2.12), the more proximal

body segment has greater relative motion than the more distal segment. The

opposite is true during grasp and release phases of the task. The proximal

segment refers to the segment closer to the midline of the body, while the

distal segment is the segment further away from the body. For example, in

Fig. 2.15, there are sharp, positive spikes in ρew during the reach, transport,

and return phases of the task. This is indicative of elbow dominated motion,

the more proximal body segment. Meanwhile, ρew becomes negative around

the grasp and release parts of the task, meaning the wrist is dominating the

motion, the more distal segment. These trends are fairly consistent for all

time-series data (ρse, Fig. 2.13 and ρsw Fig. 2.14).

2.5.1 Effect of normalization and trajectory stage on the Relative

Coordination Metric (ρ)

Norm-stage had a significant effect on ρ in all twelve test cases. Fig. 2.16-

2.19 highlight shifts in ρse, ρsw, and ρew based on the selected stage and

normalization during trajectories 1 and 2 while grasping a cup and pen.

Post-hoc tests revealed several significant differences between norm-stage

groupings. For a given normalization scheme there were significant differ-

ences in ρ between stages for ρse, ρsw, and ρew. As mentioned earlier, values

of ρsw and ρew at 50% reach, 50% transport, and 50% return were signifi-

cantly greater than values at grasp and release. This trend was consistent for

all motion trajectories and objects. For a given stage there were significant

differences in ρ based on the normalization scheme implemented. When con-

sidering ρsw and ρse, normalizing by joint RoM and max angular magnitude,

resulted in the lowest values of ρ, while no normalization and DoF normal-

ization had the higher values of ρ for a given task stage. These trends were

71



fairly consistent for each motion trajectory. ρse had very inconsistent trends

when comparing normalization schemes at particular stages.

Figure 2.16: ρ by Normalization Scheme and Trajectory Stage during Trajectory 1 when
grasping a cup. The five stages tested were A) 50% of reach, B) grasp, C) 50% of transport,
D) release, E) 50% of return. *Indicates that the selected ρ norm-stage was significantly
different from all other normalization schemes at that stage. #Indicates that the selected
ρ norm-stage was significantly different across stages for that normalization scheme. More
significant differences were present, but not shown here for simplicity.
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Figure 2.17: ρ by Normalization Scheme and Trajectory Stage during Trajectory 2 when
grasping a cup. The five stages tested were A) 50% of reach, B) grasp, C) 50% of transport,
D) release, E) 50% of return. *Indicates that the selected ρ norm-stage was significantly
different from all other normalization schemes at that stage. #Indicates that the selected
ρ norm-stage was significantly different across stages for that normalization scheme. More
significant differences were present, but not shown here for simplicity.
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Figure 2.18: ρ by Normalization Scheme and Trajectory Stage during Trajectory 1 when
grasping a pen. The five stages tested were A) 50% of reach, B) grasp, C) 50% of transport,
D) release, E) 50% of return. *Indicates that the selected ρ norm-stage was significantly
different from all other normalization schemes at that stage. #Indicates that the selected
ρ norm-stage was significantly different across stages for that normalization scheme. More
significant differences were present, but not shown here for simplicity.
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Figure 2.19: ρ by Normalization Scheme and Trajectory Stage during Trajectory 2 when
grasping a pen. The five stages tested were A) 50% of reach, B) grasp, C) 50% of transport,
D) release, E) 50% of return. *Indicates that the selected ρ norm-stage was significantly
different from all other normalization schemes at that stage. #Indicates that the selected
ρ norm-stage was significantly different across stages for that normalization scheme. More
significant differences were present, but not shown here for simplicity.

2.5.2 Effect of normalization and object on t̂±Zn

Object-zone had a significant effect on t̂±Zn
in all nine test cases, Fig. 2.20

and Fig. 2.21. When normalizing by angular velocity, Fig. 2.20G-I and

Fig. 2.21G-I, post-hoc tests revealed less time spent in each successive zone

(t̂Z1
> t̂±Z2

> t̂±Z3
> t̂±Z4

) for both objects and all three joints evaluated. t̂Z1

was greater for the pen than the cup for both shoulder-wrist and elbow-wrist

RCMs, opposite for the shoulder-elbow. t̂−Z2
> t̂+Z2

when comparing the

shoulder-elbow while grasping both objects and shoulder-wrist while grasp-

ing the pen. Meanwhile, t̂+Z2
> t̂−Z2

for both elbow-wrist comparisons and

shoulder-wrist when grasping the cup. The other two normalizations revealed

inconsistent trends between joint comparisons.
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2.5.3 Effect of normalization and trajectory on t̂±Zn

Trajectory-zone had a significant effect on t̂±Zn
in all nine test cases, Fig.

2.22 and Fig. 2.23. When normalizing by angular velocity, Fig. 2.22G-I and

Fig. 2.23G-I, post-hoc tests also revealed less time spent in each successive

zone (t̂Z1
> t̂±Z2

> t̂±Z3
> t̂±Z4

) during both trajectories; these results were

consistent for all three joint comparisons. There was no difference in t̂Z1

between trajectories 1 and 2 when comparing the shoulder-wrist and elbow-

wrist. Shoulder-elbow t̂Z1
was significantly greater during trajectory 2 than 1.

The other two normalizations examined revealed inconsistent trends between

joint comparisons.
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Figure 2.20: Percent Time in Coordination Zone When Grasping Cup by Normalization
Scheme. ∗Indicates that the selected value was significantly different from all other t̂±Zn

computed for the cup. #Indicates that the selected value was significantly different from the
corresponding t̂±Zn of the pen. More significant differences were present, but not shown here
for simplicity.
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Figure 2.21: Percent Time in Coordination Zone When Grasping Cup by Normalization
Scheme. ∗Indicates that the selected value was significantly different from all other t̂±Zn

computed for the pen. #Indicates that the selected value was significantly different from the
corresponding t̂±Zn of the cup. More significant differences were present, but not shown here
for simplicity.
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Figure 2.22: Percent Time in Coordination Zone During Trajectory 1 by Normalization
Scheme. ∗Indicates that the selected value was significantly different from all other t̂±Zn

computed for Trajectory 1. #Indicates that the selected value was significantly different for
the t̂±Zn of the opposing Trajectory 2. More significant differences were present, but not
shown here for simplicity.
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Figure 2.23: Percent Time in Coordination Zone During Trajectory 2 by Normalization
Scheme. ∗Indicates that the selected value was significantly different from all other t̂±Zn

computed for Trajectory 2. #Indicates that the selected value was significantly different for
the t̂±Zn of the opposing Trajectory 1. More significant differences were present, but not
shown here for simplicity.
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2.6 Discussion

This study introduces and assesses a new metric, the relative coordination

metric (ρ), for quantifying non-cyclic, non-constrained coordination based on

body segment angular velocity. Qualitative, visual observation of gross mo-

tions might categorize certain motions as coordinated, but differences in joint

characteristics (DoF, RoM, etc.) might imply that motions are quantitatively

uncoordinated when not normalized appropriately. For example, let joint 1

have more DoF than joint 2. With more DoF, joint 1 can move across greater

RoM than joint 2; therefore, it can potentially accelerate to higher maximum

angular velocities than joint 2. However, joint 1s higher angular velocities

compared to joint 2 do not imply that the overall motion is uncoordinated.

Therefore, biomechanical differences require normalization when evaluating

this metric to prevent favoring certain joints. In addition, joint RoMs and

angular velocity profiles are also task-specific [75, 76]. For example, a planar

reaching task requires less shoulder flexion than an overhead reaching task.

Thus, comparisons of intra-participant coordination patterns should be nor-

malized in a joint- and task-specific manner. Similar to other motion metrics

(i.e. joint angles), ρ should be interpreted with a particular task in mind and

normative datasets will be required for clinical usage. While this work finds

statistical differences when varying a planar grasp/release task, it is necessary

to determine what differences are clinically or operationally relevant.

θV C and θCRP , other metrics for coordination assessment, can be difficult

to interpret, especially when trying to make conclusions concerning motor

patterns in the time-series domain. ρ is a velocity-based methodology that

provides a tool that indicates which body segment is dominant and con-

tributes more to the overall motion at any point in time. While the intu-

itive understanding of this metric needs to be assessed in user studies, we
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hypothesize that this velocity-based measure will be more straightforward to

interpret. Studies on human manual control show that humans typically have

an easier time interpreting and controlling velocity and rate-based methods

as the human is required to make fewer mental calculations to predict how

actions would affect the position time-series [32]. While ρ also transforms

the original signal, there are fewer mental calculations required to relate to

the original time-series. Therefore, this methodology has potential to more

intuitively represent the underlying gross motor patterns. However, addi-

tional work is necessary to understand ρ interpretability in clinical settings

and during different tasks. While no formal survey or data was obtained, pre-

liminary discussions with rehabilitation physicians found that ρ is fairly easy

to understand and interpret. They also found the time-series graph more

useful than the composite measures (t̂±Zn
). Currently ρ does not provide

direct knowledge of whether the underlying joint is in flexion or extension,

knowledge of the selected task can aid in this disambiguation. Future work

will also explore expanding the signal processing to directly provide informa-

tion on whether the joint is flexing or extending. Relying solely on angular

velocity also enables ρ evaluation using wearable sensors, such as IMUs, as

the method does not require integration, which can lead to errors over time

[102].

These data support Hypothesis 1, which assessed whether the normaliza-

tion scheme affected ρ, Fig. 2.16-2.19. These data also support Hypothesis

2, finding for a given normalization, the ρ changed across task stage, Fig.

2.16-2.19. The implications of these differences on clinical interpretation can

be considered by examining Fig. 2.13-2.15. When normalizing by DoF, it

would appear this motion is elbow dominated (ρse < 0◦) throughout the task.

When normalizing by angular velocity or RoM, the shoulder and elbow ap-
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pear to be moving synchronously (ρse ≈ 0◦), slightly oscillating between +ρse

and −ρse depending on the time within the task. These results are similar to

those discussed in Section 2.3.4 and those found by Kurz and Stergiou [85]

when assessing the effect of normalization on θCRP . It is important to un-

derstand how different normalizations might affect the interpretation of task

performance for conflicting interpretations could generate different clinical

assessments and could affect follow up decision-making on plan-of-care.

Conflicting interpretation of task coordination based on the normalization

used also arose when considering composite measures of ρ, t̂±Zn
, Fig. 2.20-

2.23. Consistent with the time-series interpretation of the data, t̂±Zn
differed

based on the choice of normalization scheme. When interpreting Fig. 2.20C

and Fig. 2.21C (no normalization), t̂Z1
< t̂±Z2

< t̂±Z3
< t̂±Z4

, indicating that

motion was dominated more by the elbow than the wrist. When normalizing

by angular velocity, t̂Z1
> t̂±Z2

> t̂±Z3
> t̂±Z4

, indicating even dominance of

both joints. In a healthy population, we would expect that this motion is not

dominated by any single joint for this could be evidence of a compensatory

mechanism [103, 104]. Therefore, we would expect t̂±Zn
is greatest in either

Z1 or Z2; an ideal metric should align with this interpretation. Here we

find the most appropriate normalization for this task and population is the

angular velocity normalization (Table 2.1C).

Hypotheses 3 and 4 were assessed to determine how sensitive ρ was to kine-

matic changes arising from the task and environment. Significant differences

in t̂±Zn
were found when interacting with different objects and movement tra-

jectories when using normalizations A-C (Table 2.1). Interpretation of this

task using the angular velocity normalization shows coordinated motions be-

tween the shoulder and elbow as ρse ≈ 0◦ within the time-series profiles,

Fig.2.13, and t̂Z1
> t̂±Z2

> t̂±Z3
> t̂±Z4

, Fig. 2.20G and Fig. 2.21G. These
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results are consistent with previous work that showed linear, coordinated re-

lationships between joint angular velocities during reach/grasp tasks [95, 96].

While there were statistical differences between both objects and movements,

the effect size was small. General trends remain consistent, and these small

differences might not be clinically relevant. Therefore, while results from hy-

potheses 3 and 4 show sensitivity to distinguish between tasks, more work is

necessary to understand the effects of different tasks and environmental con-

straints on ρ, and to define clinically relevant differences for decision-making.

While normalization by the angular velocity was appropriate for this task

and population, it remains to be determined if in other contexts there are

normalizations that are more suitable. If specific motion patterns are de-

sired, normalizing by the desired motor behavior instead of normalizing by

parameters recorded during the task might be more clinically relevant. A

strategy-based normalization could allow clinicians to visualize how patients

move relative to these preferred motions. While the current work presents

a method that could be used directly for a planar reaching task, more work

is necessary to understand which normalization schemes are applicable to a

wider range of scenarios, which would enable increased applicability across

clinical protocols. As stated previously, ρ value does not infer good or bad

coordination; this conclusion arises from synthesizing the ρ, patients abil-

ities, task performed, and clinician needs. Further, this metric is limited

in that it does not inform on the neural control mechanisms that drive the

musculoskeletal response, but quantifies the kinematic patterns.

Future work will apply ρ to evaluate upper extremity coordination in a

broader set of tasks and patient populations. The usability of this metric

will need to be validated with clinicians to understand practical implications

when integrated into both tele-rehabilitation systems and clinical settings for
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assessing patient performance and disease progression. ρ will also need to be

validated against ρCRP and vector coding to understand its applicability to

cyclic motions. ρ also shows potential applications in other fields, such as

coordination analysis in athletics and performance evaluation of prosthetic

devices.

2.7 Conclusion

We define a new metric to help quantify coordination for clinical applica-

tion in rehabilitation. ρ addresses some limitations of current coordination

measures as it is applicable to discrete motions and uses velocity-based mea-

sures. Using ρ to evaluate the coordination patterns of a grasping task in a

healthy population, we demonstrate that ρ can discern between different pla-

nar reaching tasks. We also show that the interpretation of ρ results can be

affected by the implemented normalization. Future work will expand analysis

of ρ to different tasks and patient populations to further validate ρ in clinical

applications. While there was a clear clinical need for new measures, such

as ρ, in clinical settings, we also found use for ρ in other settings requiring

biomechanical decision-making aids. Chapter 3 of this thesis will explore ap-

plying ρ in the field of aerospace medicine as a test bed for further application

in quantifying the human-machine interaction.
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Chapter 3

Objective Means of Quantifying

Spacesuit Fit: Applications in

Aerospace Medicine

The overall goal of this thesis is to develop performance-based metrics de-

rived from biomechanics to aid in decision-making. This chapter will specif-

ically expand the work in in Chapters 1 and 2 to aerospace medicine and

specifically the areas of spacesuit fit and sizing. This chapter first more thor-

oughly defines aspects of spacesuit fit from a modified CTA, similar to that

described in Section 1.1.2. Chapter 2 of this thesis discussed the develop-

ment (Section 2.3.1 and 2.3.2), interpretation (Section 2.3.3) and application

(Section 2.4-2.5) of a new performance metric intended to quantify coor-

dination (ρ). Results of the CTA performed in this chapter found that a

modified version of ρ could be applied to quantifying aspects of suit fit as

well. This chapter will evaluate how changing the sizing components of the

Mark III (MKIII) spacesuit affects a modified ρ and other outcome measures

of a walking task. We will explicitly evaluate the hypotheses that changes in

foam padding between the human and hip brief assembly of the MKIII affect

measures of (a) gait performance and (b) dynamic fit. These measure of gait
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performance and suit fit are more thoroughly defined in Section 3.1.3.

3.1 Defining Suit Fit

3.1.1 Previous Efforts at Quantifying Suit Mobility and Comfort

As discussed in Section 1.2, open research areas regarding spacesuit design

are potential injury risk while an astronaut operates the suit and how suits

impacts physical and cognitive performance [55]. Injury risk and operator

performance, however, are not just dependent on SSA design, but also how

the human operator interacts and fits within the system as a whole. Ross et

al. [51] describe how designing SSAs with joint-specific mobility and range of

motion does not necessarily guarantee the ability to perform specific mission-

related tasks. Inappropriate fit can lead to misalignment between the human

and suited joint, thereby decreasing overall mobility. Discomfort can also

arise due to human-suit interaction pressures and can result in reduced mo-

bility [51]. Therefore, mobility, fit, and comfort of the suited operator are all

related to overall task performance and mission success. Suit mobility has

been quantified by evaluating suit joint ranges in motion and gait parameters.

Cullinane et al. [53] compared unsuited to suited gait kinematics using the

Mark III (MKIII) planetary SSA and showed that the MKIII system-imposed

gait characteristics that significantly deviated from unsuited gait properties.

Meyen et al.[105] used a representative robotic system to test SSA mobil-

ity and demonstrated that pressurized SSAs add resistive joint torques that

would increase the effort necessary to actuate SSA joints. Di Capua and Akin

[106] first proposed using inertial measurement units (IMUs) to evaluate hu-

man positioning inside of SSAs. Bertrand et al.[107] expanded on this work

and used IMUs to measure upper extremity human and suit kinematics as
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a means of understanding suit mobility and how humans move inside SSAs.

IMUs were also implemented to measure other aspects of human biomechani-

cal performance, such as agility [72, 71], balance [70], and stair climbing [73].

Comfort is typically evaluated subjectively from user feedback. However,

Anderson et al. [108] built pressure sensors to measure the interaction forces

between the shoulder, arm, and forearm of suited subjects and the shoulder

bearings in the MKIII. The human-suit interaction has also been modeled

using computer-aided design (CAD). The Anthropometry and Biomechanics

Facility at NASA Johnson Space Center created a digital model of the suit

and human manikins to observe how different human anthropometries affect

the alignment with suit joints and components [55, 109].

While these efforts examined suit mobility and comfort, suit fit is an area

of the human-suit interaction that is not well understood and has not been

objectively measured in experimental settings. Apollo era SSAs were custom

built based on individual crewmember anthropometry. Despite these custom

fit suits, fit issues still existed in flight [56]. Some of the Apollo program

fit issues arose from using the suits for the first time in the altered gravity

environment on the moon (1/6th that of Earth) and other problems arose

from an incomplete understand of proper fit. For example, it was believed

that in order to achieve maximum mobility, the suit needed to be a tight as

possible. However, one astronaut in particular had issues with the shoulder

of the suit because of his large biceps [56].

Newer SSA designs, such as the EMU and MKIII, have components of

different sizes that can be interchanged to fit individual subjects. Next-

generation suit designs have also explored greater degrees of customization,

such as the PXS prototype with the ability to adjust shoulder bearing angles

[55]. However, it is unclear how changing the suit component sizes affects
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operational performance. NASA internal documentation suggests that suit

operators can notice changes in arm length greater than 6mm (0.25in) [55].

In addition, suit operators with large gaps between the human and suit re-

port difficulty in performing certain mission-related tasks [55, 51]. SSAs also

add mass and resistive torques to the human operator, which can fundamen-

tally change natural operator kinematics [53, 105]. However, it is unclear

how the operator will handle these changes in mass and resistive torques

based on the task they are performing and the environment in which they

are being performed (i.e. microgravity vs. planetary environments). A better

understanding of the relationship between suit component size, overall suit

fit, and mission-related performance will aid design requirements for the de-

gree of customization necessary for SSAs. Therefore, while there is evidence

that spacing within the suit (indexing) and sizing of soft goods (arm and leg

length) play a role in perceived suit fit, quantified methods for evaluating fit

are warranted to aid in the evaluation of different design solutions on opera-

tional performance. This question helps drive some of the main hypotheses

of this chapter trying to relate aspects of suit fit to task performance. Prior

to testing this hypothesis, however, we need a more thorough and updated

definition of suit fit so we know what metrics might be useful to answering

this research question. Section 3.1.2 will use a modified CTA to define suit

fit.

3.1.2 Cognitive Task Analysis of NASA JSC MKIII Fit Checks

A key challenge in creating measures of suit fit is that it is not obvious what

characteristics define acceptable fit in a task and environment-specific man-

ner. In other words, we need to understand how decisions regarding fit are

make currently so we can design metrics that will aid in suit fit decision-
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(a) Part I: Glove Fit and Crotch Height
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(b) Part II: Upper Extremity Fit
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(c) Part III: Lower Extremity Fit and Post-Fit Assessment

Figure 3.1: Cognitive Task Analysis Decision Workflow Diagram MKIII Fit Checks
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making. Just like with OTs in Section 1.1.2, we use a modified Cognitive

Task Analysis (CTA) (adapted from Stirling and McLean [2]) to define char-

acteristics relevant to suit fit. CTA aims to understand information required,

thinking processes, and goals used to make decisions within observable en-

vironments. Current decisions regarding fit are made qualitatively by astro-

nauts and engineer experts during fit-checks and familiarization runs. We

used this human-centered approach through observations of MKIII fit checks

and discussion with engineers at NASA Johnson Space Center to generate

suit fit decision workflow diagrams.

Fig. 3.1 highlights the general structure of a MKIII fit check. This work-

flow diagram for a MKIII fit check follows the same structure as the OT

workflow diagram in Fig. 1.3 with processes, decisions, and loops. Processes

(represented as rectangles) require direct or indirect interaction with the par-

ticipant getting fit into the suit and allows the engineer making fit decisions

gather information regarding the participant’s fit. All the information gath-

ered during a process is used to make a decision (represented with diamonds).

Typically, processes are repeated in loops until a favorable outcome of a de-

cision is achieved. Loops are represented using dark shaded rectangles with

curved edges. In this case, a favorable decision outcome means that an ac-

ceptable fit is achieved. To start, it is important to know that the MKIII

spacesuit contains the following components: hard upper torso, hard lower

torso, soft arm components, soft leg components, boots, gloves, and a hel-

met. Hard components are made of composite materials with smooth bearing

joints at specific angles to allow shoulder and hip motion for the upper torso

and lower torso respectively. The soft goods are made of spring-like flexible

material that serves as elbow and knee joints. Participants inside the suit

have shoulder straps that are attached to the hard lower torso of the MKIII
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that helps to keep the hard lower torso and human crotch at distances apart.

Fig. 1.4a has a picture of the MKIII suit with these different design aspects.

As seen in Fig. 3.1a, fit checks for the MKIII generally start with mea-

suring the participant’s anthropometry so suit engineers can make a first

approximation of what size suit components the participant will need. Next

come a series of loops: (1) glove fit check, (2) crotch height check, (3) strap

adjustment, (4) upper body dynamic fit check, (5) lower body dynamic fit

check, and (6) a post-fit check examination. The first three loops performed

(glove fit, crotch height, and strap adjustment) are typically done while the

participant is standing still and when the suit is not pressurized. Meanwhile,

the upper and lower body dynamic fit checks are performed while the partic-

ipant wearing the suit performs a series of tasks. Two of the loops performed

statically (shoulder strap tension and crotch height) are often repeated when

there are undesirable fit outcomes during the upper and lower body fit check

loops because small adjustments to the shoulder strap tension and the height

of the crotch can have undesirable fit outcomes that can only be observed

when the participant is moving. In other words, when the shoulder strap

tension and crotch height might feel as though they are appropriate when

standing quietly, but once the suited participant starts moving, they might

be uncomfortable or might have inappropriate fit in the lower or upper body

due to postural changes or new human-suit interactions.

To better understand how fit decisions are made, we consider the lower

body dynamic fit check (Fig. 3.1c). This loop of processes and decisions

typically involved with suited participant walking back and forth while the

engineers observe how the participants moves and interacts with the suit. The

engineers are monitoring things such as relative motion between the human

and suit, posture changes, and effort levels required to move. Engineers also
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will ask the participant directly if they feel any pressure on the spine, if

they felt any rubbing on their legs, and ask how hard it was to move. As

stated earlier, comfort is an aspect of fit; therefore, if the participant reports

pressure on their spine, engineers might reduce the tension in the shoulder

straps. Alternatively, if engineers see relative motion between the human

and suit, such as the heel lifting out of the boot, engineers might first try to

increase the shoulder tension. To get at the root cause of some of these fit

issues, however, might take multiple iterations of adjustments. Similar to the

OT CTA in Fig. 1.3, multiple features that are observed visually inform a

decision. For example, as described earlier, the heel lifting out of the boot can

have multiple causes, such as the height of the hip brief crotch, the tension in

the shoulder harness, the length of the legs, and how well the boots fit. All

or some of these particular aspects of fit could be changed when engineers

observe thus phenomenon and the lower body fit check loop is often repeated

multiple times until all fit issues are resolved.

Fit checks are currently done almost entirely qualitatively with suit fit

experts and we can therefore leverage this diagram to generate candidate

quantified suit fit metrics. Specifically, any process within Fig. 3.1 is a

candidate for a suit fit metric. Most decisions regarding suit fit are made

qualitatively; there exist no objective, quantitative metrics of suit fit that

aid in sizing subjects to these SSAs. Quantitative measures could augment

subjective feedback currently provided when SSAs are fitted to new subjects

and aid in understanding how tasks and environments affect performance as

a function of the selected fit parameters.

It is important to note that this general structure might not hold for all

suits because of different design characteristics. For example, the EMU (Fig.

1.4a) is designed so astronauts enter at the hips, while the MKIII and Z-2
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(Fig. 1.4b and c, respectively) are designed so astronauts can enter from the

rear. These different ways of putting the suit on affect how the suit fit pro-

cess is carried out. It is also important to note that because these spacesuits

are designed for exploration on other planets, like the moon and mars, or

in microgravity, it difficult to test them in realistic, lower gravity environ-

ments. Therefore, testing the impact of spacesuits on human kinematics on

Earth might not be 100% accurate due to changes in the weight and inertial

properties of the suit in space exploration environments [55, 56]. Despite

this drawback, the workflow diagrams in Fig. 3.1 depict a lot the informa-

tion currently used to make fit decisions and these diagrams can help inform

quantitative metrics for fit.

3.1.3 Static vs. Dynamic Fit

From the workflow diagrams, two categories of suit fit are observed: static

and dynamic (Fig. 3.2). Static fit (Fig. 3.2a) refers to how the suited

subject sits within the suit in a neutral posture. One of the most relevant

measures for static fit is indexing, which is the amount of space the sub-

ject has between certain anatomical landmarks and components of the suit

architecture. Indexing is affected by human antropometry, padding added

between the human and suit, and the size of the suit components. Other

relevant considerations of static fit include the length of soft goods and loca-

tions where the human rubs against the suit when not moving. The indexing

can be altered by adding layers of padding between the human and suit com-

ponent. Dynamic fit (Fig. 3.2b) refers to how the human and suit move and

interact with each other in dynamic settings. Relevant measures for dynamic

fit include differences in human and suit joint angles while moving and the

relative motion between the suit and human. The human-suit interaction,
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when and where the human and suit come into contact, is also an important

consideration when evaluating dynamic fit. Examples used in Section 3.1.2

regarding relative human-suit motion and the heel lifting out of the boot all

are contributing factors to dynamic fit. No literature currently provides a

quantitative relationship between static fit and dynamic fit. Furthermore,

it is unclear how static and dynamic fit might affect suited performance in

operationally relevant conditions and what injury risks (if any) might be asso-

ciated with changes in these two categories of fit. For this reason, in Section

3.2, we design and conduct an experiment to test how changing static fit,

specifically adding padding between the human and suit, affects measures of

dynamic fit. Dynamic fit is measured using new metrics derived from the

CTA in Fig. 3.1 and defined in Section 3.1.4.
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(a) Static Fit

(b) Dynamic Fit

Figure 3.2: Schematics highlighting aspects of: a) Static Fit, and b) Dynamic Fit extracted
from a CTA of MKIII fit checks (Fig. 3.1)

3.1.4 Defining New Measures for Dynamic Fit: ρnHSand ∆tRoM

This section provides the physics-based rationale behind the selection of new

metrics for suit fit. Fig. 3.2b highlights three aspects of dynamic fit, with

more aspects presented in Fig. 3.1, but here we focus on quantifying the two

aspects of fit that are the most motion and kinematic driven:

1. the difference in suit and human knee angle (∆tRoM) and
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2. relative motion between the suit and the knee (ρnHS(t))

Different tasks and joints will carry out different range of motions (RoM)

and joint trajectories. The difference in the suit and human angles is therefore

computed by comparing task-specific joint range of motion (tRoM). ∆tRoM

is defined by:

∆tRoM = tRoMS − tRoMH (3.1)

where tRoMS is the task RoM of the suit and tRoMH is the task RoM of

the human. Positive values of ∆tRoM are indicative of tasks during which

the suit had a greater tRoM , while negative values of ∆tRoM represent

tasks when the human had a greater tRoM . ∆tRoM should be computed

and interpreted in a task- and joint-specific context because certain tasks

and joints have different values of ∆tRoM that are operationally relevant. In

other words, some tasks have a low tolerance for ∆tRoM before injuries occur,

while other tasks have a much larger tolerance in ∆tRoM before injuries are

observed [110]. More work is necessary to understand what these tolerances

might be for specific suit designs. Relating back to the workflow diagrams

in Fig. 3.1c, ∆tRoM could help the suit engineers make decisions during

the lower body dynamic fit check. Specifically, positive or negative values of

∆tRoM could be related to the crotch height, leg length, or even shoulder

strap tension.

Relative motion between the suit and human can be quantified by adapting

the methodology from Equations 2.7 and 2.8. In Section 2.3.2, RCM was used

to compare the relative angular velocity of one body segment to another. In

this Chapter, we consider a comparison between the the human and spacesuit

for the same rigid body segment. We modify Eq. 2.7 and 2.8 as follows:
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ρnHS(t) = 2tan−1
(ΩH(t)

ΩS(t)

)
− 90◦ (3.2)

where ρnHS(t) represents the relative motion between the human and suit

body segment n at time t. Since it is extremely difficult to measure human

kinematics inside the suit, ΩH(t) and ΩS(t) are defined assuming the use of

wearable inertial measurement units (IMUs). The angular velocity magnitude

of the human and suit are defined as:

ΩH/S(t) =
√
ω2
x(t) + ω2

y(t) + ω2
z(t) (3.3)

where ωx/y/z are the angular velocity readings from IMU x, y, and z axes.

By definition, ρnHS(t) ranges between 90◦ and −90◦, where ρnHS(t) = 0◦ rep-

resents motion in which both the human and suit are moving completely

synchronously, ρnHS(t) = +90◦ represents a movement in which the human is

moving while the suit is not, ρnHS(t) = −90◦ represents a movement in which

the suit is moving while the human is not, and values in between represent

motions with varying degrees of coordination between the human and suit.

The time-series nature of ρnHS(t) allows for the observation of how relative

motion between the human and suit evolves over time and at various phases

of a task.

Relating back to Fig.3.1c, ρnHS(t) could aid suit engineers better quantify

relative human-suit motion during the lower body dynamic fit check and

could help them quantify phenomenon such as the heel lifting out of the

boot. Now that dynamic fit metrics are defined, we can test our hypothesis

that changes in static fit will alter our measures of dynamic fit, specifically

∆tRoM and ρnHS. Section 3.2 presents the experimental methods used to test

this hypothesis.
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Table 3.1: Subject Data and Testing Order

Crotch Knee Hip Thigh Suit Boot
Subject Age Height Height Height Breadth Breadth Leg Size Testing C1 C2

# (yrs) (in) (in) (in) (in) (in) Length (Type)* Order** (in) (in)
2 26 66 29 18.5 14.5 22 Large 8-10 (S) US-C0-C1-C2 0.375 0.75
3 25 69 31 19.5 14.5 22.5 Large 11-13 (B) C2-C1-C0-US 0.375 0.75
4 27 68 32 20 16 23 Large 8-10 (S) C2-C1-C0-US 0.25 0.50

*S=strap-based boot design; B=boa-based boot design.
**US=unsuited, C0=Configuration 0 (no padding), C1=Configuration 1(one layer of padding),
C2=Configuration 2 (two layers of padding).

3.2 Experimental Methods

A pilot study was performed to evaluate the sensitivity of these proposed

new metrics to changes in nominal fit. Specifically, we assess the sensitivity

of our metrics to detect how changes from nominal static fit cause potential

changes in dynamic fit in the lower extremities during a simple gait task.

The sensitivity analysis was accomplished by evaluating the hypotheses that

adding padding between the human and hip brief assembly of the MKIII

spacesuit would affect measures of (a) gait performance and (b) dynamic fit.

3.2.1 Subjects

A pilot study was performed with three male subjects. Due to time con-

straints and SSA availability, an incomplete dataset was collected on a fourth

male subject. Thus, here we present results from three subjects (Table I).

All three subjects were novice suit operators and performed a fit check with

the MKIII spacesuit on a separate day prior to this study. All subjects were

cleared with a Class I medical exam to participate as a suit operator. The

study protocol was approved by the NASA Johnson Space Center IRB and

the MIT Committee on the Use of Humans as Experimental Subjects. Sub-

jects provided written informed consent prior to performing the experiment.
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3.2.2 Equipment

This study was performed in the Anthropometry and Biomechanics Facil-

ity (ABF) at the NASA Johnson Space Center. Subjects wore a long-sleeve

compression shirt and pant below the liquid cooling garment (LCG). Five

strap-on IMUs (Opal IMU, APDM, Inc. Portland, OR, USA), with embed-

ded accelerometers, gyroscopes, and magnetometers (sampling rate of 128Hz)

were placed above the LCG on the left/right tibia, left/right femur, and

sacrum of each subject (Fig. 3.3). Five IMUs were also secured to the MKIII

spacesuit with tape and co-flex to the left/right upper leg, left/right lower

leg, and hip brief. Custom sleeves at the hips and thighs were stitched into

the LCG to add padding between the suited subject and MKIII spacesuit.

Foam padding (Viton) was inserted into these sleeves to alter the indexing

between the subjects and MKIII at these two locations (Fig. 3.3B and C).

Volumetric scans were obtained at the U.S. Army Natick Army Center and

ABF to obtain subject anthropometry. A combination of these anthropomet-

ric scans and a CAD model of the MKIII hip brief was used to determine

the level of padding added to the LCG between the subject hips/thighs and

MKIII hip briefs (Table 3.1).

Confi guration 0:

No Padding

Front Back

IMU

Single Layer 

of Padding

Double Layer 

of Padding

Key

Confi guration 1:

Low Padding

Front Back

Confi guration 2:

High Padding

Front BackA. B. C. 

Figure 3.3: Locations of padding and inertial measurement unit sensors on humans for
Configuration 0 (C0), Configuration 1 (C1), and Configuration 2 (C2).
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3.2.3 Procedure

Subjects performed a series of walking tasks on an elevated walkway (10m

long and 1m wide). For the unsuited condition, subjects donned the com-

pression shirt, pant, LCG and human IMUs and performed 12 walking trials.

For the suited condition, the MKIII was pressurized to nominal suit pres-

sure (4.3psi) in a tethered configuration (i.e. no closed-loop portable life

support system (PLSS) was used). Subjects donned the MKIII with all 10

IMUs three times, each with different padding configurations at the hips and

thighs: no (C0), single (C1), and double (C2) layer of padding (Fig. 3.3, Ta-

ble 3.1). The C0, no padding, configuration served as a control and was the

nominal component sizing fit configuration for each subject acquired from fit

checks performed prior to this experiment. The approximate weight of the

MKIII without a human inside or PLSS attached is 59kg [49]; the actual total

weight of the human and MKIII varied based on the subject and configura-

tion. For each suited condition, subjects performed 24 walking trials, resting

as needed in between all trials. All 10 IMU sensors were wirelessly synchro-

nized using manufacturers software at the beginning and end of each walking

trial. In addition to walking tasks, participants performed single and double

leg balance tasks while unsuited and suited, but these data were not analyzed

within the scope of this paper. Following each suited configuration, subjects

were asked to subjectively evaluate their perceived fit compared to the other

padding configurations. Subjective feedback was recorded by the test con-

ductors. The order in which unsuited and suited trials were performed was

counterbalanced between all subjects (Table 3.1).
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3.2.4 Data Analysis

Task performance for the gait task was examined through 1) cadence and 2)

human knee range of motion. These metrics can be computed and compared

between suited and unsuited trials to understand how the MKIII affects nom-

inal task performance. An ideal SSA design and fit should minimize deviation

from unsuited kinematics [53, 51]. Unsuited data can also be compared to

the literature so it is understood in a broader context.

Walking trials were parsed using recorded UNIX timecode stamps. For

each trial, a wavelet analysis was performed using the human tibia accelerom-

eter and gyroscope data to identify the following gait phases: stance (ST),

heel-off (HO), toe-off (TO), swing (SW), and heel strike (HS) [111, 112].

Steps were parsed from heel strike to heel strike and compiled for each sub-

ject. A total of 72 steps were recorded for each subject. The final 20 steps

in each of the conditions were used for the remainder of the analysis to aid

in minimizing learning effects from adapting to the MKIII suit. Strides per

minutes was computed by dividing the number of samples from heel-strike to

heel-strike by the IMU sampling rate. Since strides per minute only accounts

for one leg, participant cadence (steps per minute with both legs) was approx-

imated by doubling the computed strides per minute. For each subject, all

unsuited and suited (C0-C2) cadence values were normalized by their mean

unsuited cadence. Knee angles of the human and suit were estimated using

a Principal Component Analysis (PCA) method to estimate the knee hinge

axis and Davenport algorithm to estimate the angle with respect to the axis

[69, 113]. This method requires a static period with straight legs to define the

zero-degree flexion datum. Since this static offset was not incorporated into

the original study design, absolute values for the angles could not be shifted

to the standard datum. However, task-specific range of motion (tRoM) was
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possible to assess. Thus, human and suit knee tRoM were computed for each

unsuited/suited configuration and step. This measure does not reflect the

full range of motion of the human and suit knee, it represents the range of

the knee specific to the task performed. For every suited step, Eq. 3.1 was

used to compute ∆tRoM .

Raw angular velocities from IMU 3-axis gyroscopes were mean subtracted

based on individual sensor static noise offsets obtained every day prior to

testing and were then filtered using a 6th order Butterworth 30Hz low-pass

filter. ρnHS(t) was then computed between the human femur-suit upper leg

(ρFHS(t)) and human tibia-suit lower leg (ρTHS(t)) using Eq. 3.2 and 3.3. Small

values of Ω(t) can amplify measurement noise, which can represent inaccu-

rate favoring of one segment over another. Therefore, for differences between

ΩH(t) and Ω(t)S less than 0.05rad/s, ρnHS(t) was set to 0. This value was

determined based on the maximum static noise offset of the gyroscope mag-

nitude for all ten IMU sensors. Values of ρFHS(t) and ρTHS(t) were extracted at

all five gait phases (ST, HO, TO, SW, HS) and all twenty steps for statistical

analysis. For the present analysis, right-sided sensors and body segments are

presented due to an incomplete left-sided dataset.

In summary, for each step taken while the user was wearing the spacesuit,

the following metrics were obtained: 1) normalized step cadence, 2) human

knee tRoM (tRoMH), 3) ∆tRoM , 4) ρFHS(t), and 5) ρTHS(t).

3.2.5 Statistical Analysis

To assess sensitivity of the fit metrics, we evaluated the hypotheses that the

addition of padding between the human and hip brief assembly of the MKIII

SSA would affect:

1. gait performance, specifically:
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(a) normalized cadence (H1)

(b) tROM (H2)

2. measures of dynamic fit, specifically

(a) differences in human and suit knee tRoM (∆tRoM , H3)

(b) relative motion between the human and suit at various phases of the

gait cycle as measured using ρnHS(t) (H4)

Three mixed-effect analysis of variance (ANOVA) models were fit to as-

sess hypotheses 1-3. For the model with dependent variable of normalized

cadence (H1) and the model with the dependent variable of tRoMH (H2),

the indpendent variables were subject (3 levels, modeled as a random effect)

and unsuited/suited configuration (4 levels, modeled as a fixed effect). To

evaluate differences in ∆tROM between subject and degree of padding (H3),

a two-factor ANOVA was implemented with subject (3 levels) as a random-

effect and suited configuration (3 levels) modeled as a fixed effect. Post-hoc

comparisons were performed using Tukey’s honesty criterion when significant

main and/or interaction effects were found. Significance was set at p < 0.05

for all tests. Cohen’s d effect sizes were computed for all significant post-

hoc comparisons [114]. All ANOVA statistical tests were performed using

MATLAB 2017b (The Mathworks, Inc., Natick, MA).

The effect of gait phase and padding on femur ρ [ρFHS(t)] and tibia ρ

[ρTHS(t)] (H4) was evaluated using mixed-effect regression models due to their

temporal nature. The data were modeled by fitting a random-effect intercept

for each subject-by-configuration and, for the random-effect slope, fitting the

RCM trajectory across gait phase. The inclusion of this random-effect slope

improved model fit, p < .0001. The fixed effects included the higher-order

interactions Gait Phase x Step Number and Configuration x Segment x Gait

Phase, modeling Segment (femur and tibia), and modeling Gait Phase and
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Step Number in terms of 4th-order orthogonal polynomials. All lower-order

interactions and main effects were included. The 4th-order orthogonal poly-

nomials for Gait Phase was selected as Gait Phase was an ordinal variable

whose five values required all four polynomial terms to properly account for

nonlinearity. The 4th-order polynomials interaction with Gait Phase signif-

icantly improved model fit, p < .05. There were a total of 33 observations

per number of predictors, which is above the 10 observations per predictor

heuristic observed in the literature [115, 116, 117]. A post-hoc bootstrap

power analysis revealed that this model had adequate power (i.e. > 80%) for

all significant effects [118]. These models were created using the statistical

software package R (Release 3.4.3, The R Foundation).

3.3 Experimental Results

3.3.1 Effect of Suit Configuration on Normalized Cadence

An ANOVA for the dependent variable normalized cadence supports signif-

icant main effects of Configuration (F(3,228) = 266.839, p < 0.0001) (Table

IV). Post-hoc comparisons of the Configuration revealed that all subjects had

significantly greater normalized cadences when unsuited than when suited

(20.4% reduction when suited compared to all padding configurations pooled

with all subjects pooled, Cohen’s d = 3.87). C2 had significantly greater

normalized cadence than both C0 and C1 (Cohen’s d = 0.97 and 0.45, respec-

tively). There was no significant difference in normalized cadence between

C0 and C1.

107



Table 3.2: Knee RoM and Cadence by Subject and Configuration

Subject and Human Knee
Configuration (RoM◦) ∆RoM(◦) Cadence (spm) Normalized Cadence

2
US 65.8 (2.4) N/A 106.0 (6.3) 1.00 (0.06)
C0 46.8 (5.5)∗ 1.9 (1.8)† 79.6 (3.7) 0.75 (0.04)‡

C1 50.1 (5.8)∗ 9.9 (2.0)† 83.8 (4.2) 0.79 (0.04)‡

C2 49.7 (6.4)∗ 24.7 (5.5)† 88.0 (4.6) 0.83 (0.04)‡

3
US 61.4 (2.4) N/A 84.7 (3.8) 1.00 (0.04)
C0 54.9 (10.5)∗ 49.0 (6.2)† 68.7 (3.9) 0.79 (0.04)‡

C1 45.6 (6.3)∗ 2.0 (2.7)† 67.8 (4.6) 0.80 (0.05)‡

C2 50.5 (8.9)∗ 12.4 (5.7)† 71.4 (3.8) 0.84 (0.05)‡

4
US 53.2 (2.7) N/A 99.1 (5.7) 1.00 (0.06)
C0 54.0 (5.6) 4.4 (6.4) 77.2 (5.3) 0.78 (0.05)‡

C1 52.7 (7.0) 3.1 (8.2) 78.1 (4.0) 0.79 (0.04)‡

C2 47.2 (5.9) 4.2 (6.3) 79.4 (6.3) 0.80 (0.06)‡

All values are presented as MEAN (STD), US = unsuited, C0 = Configuration, C1 = Configuration
1 (one layer of padding), C2 = Configuration 2 (two layers of padding).
∗Indicates significant difference from unsuited condition for that subject.
†Indicates a significant difference from the other two suited configurations.
‡Indicates significant difference between subject pooled suited condition and unsuited condition.

3.3.2 Effect of Suit Configuration on Task Knee Range of Motion

An ANOVA for the dependent variable tRoMH supports that there was a

significant main effect of Configuration (F(3,228) = 40.24, p < 0.0001) and

a significant interaction effect of Subject-Configuration (F(8,228) = 9.662,

p < 0.0001) (Table 3.2). Post-hoc tests for the effect of Configuration re-

vealed that suited trials significantly reduced tRoMH compared to unsuited

(16.5% reduction when suited compared to all padding configurations pooled

with all subjects pooled, Cohen’s d = 1.39). Post-hoc pairwise comparisons

were performed to examine configuration within subject. Subject 2 unsuited

tRoMH was significantly greater than tROMH in all suited configurations
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C0-C2 (Cohen’s d = 3.14, pooled for all suited and padded configurations);

there were no significant differences in tRoMH between C0-C2. Subject 3

also had significantly higher tROMH when unsuited than C0-C2 (Cohen’s d

= 1.34, pooled for all suited and padded configurations); however, C0 was sig-

nificantly greater than C1 and C2 (Cohen’s d = 1.06 and 0.45, respectively).

Subject 4 had significantly greater tRoMH during C0 than C2 (Cohen’s d =

1.18); no other significant differences were observed.

3.3.3 Effect of Suit Configuration on ∆tRoM

An ANOVA for the dependent variable ∆tRoM supports significant main

effect of Configuration (F(2,171) = 27.7, p < 0.0001), and a significant inter-

action effect between Subject-Configuration (F(6,171) = 35.3, p < 0.0001).

Post-hoc pairwise comparisons of the Subject-Configuration interaction effect

revealed specific trends for each subject. Subject 2 had significantly greater

tRoM with more layers of padding (∆tRoMC2 > ∆tRoMC1, Cohen’s d =

3.58, ∆tRoMC1 > ∆tRoMC0, Cohen’s d = 4.59, and ∆tRoMC2 > ∆tRoMC0,

Cohen’s d = 5.75) indicating that tRoMS was progressively larger than

tRoMH with increased layers of padding. Subject 3 had significant differences

in ∆tRoM for all three suited configurations with the trend ∆tRoMC0 >

∆tRoMC2 (Cohen’s d = 0.71), ∆tRoMC2 > ∆tRoMC1 (Cohen’s d = 2.10),

and ∆tRoMC0 > ∆tRoMC1 (Cohen’s d = 2.26). Subject 4 had no significant

differences in ∆tRoM with changes in padding.

3.3.4 Effect of Subject and Configuration on ρFHS(t) and ρTHS(t)

A mixed-effects model (Table 3.3 and 3.4) was fit for ρnHS(t) (Fig. 3.4). Table

IV highlights all significant fixed-effect intercepts. In general, fixed-effect

intercepts indicate that ρTHS(t) was negative and significantly less than ρFHS(t)
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during all configurations. A slightly positive cubic component of ρnHS(t) across

gait phase indicates increases in ρnHS(t) over phases of gait. ρTHS(t) also showed

a negative linear and cubic change across gait phase that femur did not;

this negative linear relationship was also present in C2. Finally, there was

a significant positive interaction between the quartic change in ρnHS(t) over

gait phases and the quartic change in ρnHS(t) over step number.

In general, random-effect intercept predictions support that subject 4 had

the highest values of ρnHS(t) (Fig. 3.4c and f), while subject 3 had the lowest

(Fig. 3.4b and e). Linear terms reveal that subject 3 had the fastest positive

growth of ρnHS(t) over gait phase (ST to HS), while subject 2 (Fig. 3.4a and d)

had negative decline in ρnHS(t) over gait phase. Quadratic terms demonstrate

that subject 2 had the highest ρnHS(t) over the middle of gait phase (HO, TO,

SW), as seen in the large peaks in the middle of Fig. Fig. 3.4a, while subject

3 has the lowest ρnHS(t) over the middle of gait phase, as seen by the flatter

nature of Fig. 3.4b and e.
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Table 3.3: ρnHS(t) Significant Fixed Effect Model Predictions and Coefficients

Predictor Coefficient Standard Error t P-Value

Intercept 9.37 1.85 5.06 0.0004
Gait Phase (Cubic) 19.26 3.65 5.27 0.0003
Segment -15.69 1.01 15.54 < 0.0001
Gait Phase (Quartic)
X Step Number Quartic

60.83 27.66 2.20 0.0280

Segment
X Step Number Quartic

52.78 24.74 2.13 0.0331

Configuration (2) X Segment 6.40 1.43 4.48 < 0.0001
Gait Phase (Linear) X Segment -5.83 2.26 -2.58 0.0099
Gait Phase (Cubic) X Segment -16.49 2.26 -7.30 < 0.0001
Configuration (2)
X Gait Phase (Linear) X Segment

-6.29 3.19 -1.97 0.0490

Table 3.4: ρnHS(t) Random-Effect Model Predictions for Subject-Configurations

Subject and
Configuration

Intercept Linear Quadratic Cubic Quartic

2
C0 0.781 -9.947 -3.9514 5.414 -9.546
C1 -1.730 -10.338 -2.250 6.269 -12.067
C2 3.025 -3.438 -0.861 10.004 -10.529
3
C0 -4.248 5.465 4.035 -5.258 5.539
C1 -2.600 6.692 3.518 -5.420 7.164
C2 -1.268 3.152 1.152 -4.424 5.377
4
C0 3.467 4.483 -0.083 -0.156 4.007
C1 4.330 3.646 -1.268 -0.849 4.903
C2 -1.757 0.286 -0.291 -5.581 5.162
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Figure 3.4: Time-series representations of ρFHS[A-C] and ρTHS[D-F] for each configuration:
US (light green), C0 (blue), C1 (red), and C2 (black). Vertical lines represent the gait
phases stance (green), heel off (yellow), toe off (orange), and max swing (purple). Solid
lines represent means across all 20 steps and shaded regions represent 1 SD. For these plots,
time-series were normalized and resampled to be the same length based on the trial with the
most samples (250 samples, i.e., ∼ 1.95s).

3.4 Discussion

This study aimed to develop quantitative measures of suit fit based on ob-

served suit fit checks. In this study, static fit (how the human sits and is
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indexed within the suit in a neutral static position) was altered while we

quantified task performance (cadence, knee RoM) and dynamic fit (how the

human and suit move and interact relative to each other during dynamic

tasks). We hypothesized that changes in lower extremity static suit fit as

altered through padding around the hips and thighs would affect parameters

associated with dynamic fit during a walking task. The specific hypotheses

we evaluated were that changes in padding between the human thigh and

MKIII spacesuit hip brief assembly would affect measures of (a) gait per-

formance (H1 normalized user cadence and H2 - the tRoM of the human

knee) and (b) dynamic fit (H3 - the differences in human and suit knee tRoM

(∆tRoM) and H4 - the relative motion between the human and suit at var-

ious phases of the gait cycle as measured using ρnHS(t)). Statistical analysis

of these hypotheses showed that the MKIII SSA 1) reduced user cadence

despite changes in padding, 2) reduced human knee tRoM compared to un-

suited kinematics with subject-dependent changes due to the added levels of

padding, 3) ∆tRoM was typically positive and varied in a subject-specific

manner with padding, and 4) that ρnHS(t) varied throughout the gait phase

and could potentially be affected by suit components (i.e., boot fit and soft

goods length). Changes in ∆tRoM and ρnHS(t) between subjects and lev-

els of padding illustrate the sensitivity of these metrics to potential changes

in fit. While these metrics are sensitive to donning the suit and adjusting

a component of fit, it is still unclear if these changes in quantitative met-

rics are relevant in operational settings (i.e. a Cohen’s d effect size of 3.68

comparing unsuited tRoMH to suited versus Cohen’s d effect sizes of 0.4-1.0

between suited configurations). The results presented here, in combination

with subjective feedback from participants, highlight that boot fit and soft

goods lengths might influence fit more than padding at the hips for during a
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walking task.

User cadence and tRoMH were used as measures of task performance.

Brinkmann and Perry [119] found that the human knee has a 60 ± 7◦tRoM

during normative gait, while Kadaba et al.[120] found a self-paced cadence of

111.6± 8.3 steps/min. When not normalized, all three subjects in this study

fell within the one standard deviation of the reported tRoM during unsuited

trials (Table 3.2). While Subject 2 appeared to fall within the cadence ranges

also reported by Kadaba et al. [120], Subjects 3 and 4 appeared to have lower

than reported cadences. Slower cadence could be explained by the equipment

subjects were wearing during unsuited trials (LCG, TCG, etc.) and precau-

tions taken to stay within the elevated platform. In addition, subjects were

instructed to strike a force plate with a specific foot during each trial; the

addition of this cognitive element to the study may have created a decrease

in cadence. Subjects 3 and 4 also performed all unsuited trials after the

suited portion of this study (Table I). The lower cadences observed for these

subjects could be lingering effects of donning the MKIII SSA as all subjects

had a lower cadence suited than when unsuited. When assessing differences

in tRoMH between unsuited and suited configurations, subjects 2 and 3 had

significantly lower knee tRoMH during all three suited configurations (C0-

C2) than when unsuited. Meanwhile Subject 4 had no significant difference

in tRoMH between all conditions (US-C0-C1-C2). It is possible that these

changes in stride parameters and knee tRoM could be due to the extra weight

and inertial effects of the SSA; however, previous literature found increases in

cadence and knee range of motion due to increased load carrying [121]. The

results presented here are consistent with Cullinane et al. [53] that found

similar deviations in operator walking kinematics while donning the MKIII

spacesuit. They proposed that these changes may be due to degree of free-
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dom limitations within the MKIII hip brief assembly. While Cullinane et

al. [53] discussed these restrictions at the hip, torques are required to flex

the knee as well; therefore, restrictions of the MKIII could have decreased

the ability of Subjects 2 and 3 to fully flex and extend their knees during

gait. Subject 4 only had a significant decrease in operator knee tRoM during

C2 (highest level of padding), but also had the lowest knee tRoM during

unsuited trials and had the lowest values of ∆tRoM . Since Subject 4 had

lower unsuited tRoMH , this subject might have had fewer restrictions than

Subjects 2 and 3 leading to lower values of tRoM and similar tRoMH when

suited and unsuited.

In general, the level of padding at the hip brief had a subject-dependent

effects on task performance as measured using cadence and tRoMH , with large

effect sizes observed comparing unsuited to suited measures (Cohen’s d =

1.34−3.87) and smaller effect sizes between suited and padded configurations

(Cohen’s d = 0.45−1.34). In general, Subject 2 had no significant changes in

these metrics with different levels of padding, indicating no observable change

in performance due to adding padding. However, Subject 2 subjectively

reported the suit being more responsive with high levels of padding. Subject 3

had significantly greater tRoMH when walking with no added padding, which

could be indicative of better task performance, and potentially a better fit

without added padding, aligning with this subject subjectively reporting not

enjoying having greater levels of padding at the hip brief. Finally, Subject

4 had reduced tRoMH when fully padded, which could indicate poorer task

performance and poorer fit with greater levels of padding. Subject 4 did not

subjectively notice any differences due to levels of padding. These mixed

results using gait performance metrics and tRoMH alone could imply that

there are other factors affecting the fit of these subjects beyond just static
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fit, especially when compared to the subjective feedback provided. These

results highlight how fit is an integrated task and a few static and dynamic

fit measures alone might not be sufficient for explaining all the variability

within a population. Therefore, additional measures of dynamic fit could

help broaden a quantitative interpretation of fit in the context of this task

and better augment subjective measures, which naturally incorporate these

varied factors.

This work introduced a new measure, ρnHS(t), to quantify the relative mo-

tion between human body segments and suit components. Positive values of

ρnHS(t) are indicative of human-dominated motion, while negative values of

ρnHS(t) represent instances where the MKIII has a higher degree of relative

motion. With this in mind, ρFHS(t) > ρTHS and ρTHS < 0 is indicative that

above the knee, the human moved relatively more than the suit and domi-

nated the motion, while below the knee, the suit moved more relative to the

human. The quartic change in ρnHS(t) across gait phase and step number in-

dicated values of ρnHS(t) fluctuated, with more steps taken over the course of

the study. This increase could be a learning effect as all subjects were novice

suit operators, with only one prior experience within the MKIII SSA and

thus were still learning how to properly perform the required programmed

motions required by the suit. General changes in ρnHS(t) over the course of

the last twenty steps analyzed here could also be due fatigue effects. Future

work could further examine how fatigue and experience influence the ρnHS(t).

More experience and training with these SSAs could aid human operators in

changing ρnHS(t) in a way that is optimized for the desired task performance

outcomes and in ways that synergize with the pre-programmed motions the

SSA was designed to execute. In this instance, some relative motion might

be appropriate (ρnHS(t) > 0), but too much relative motion (ρnHS(t) >> 0)
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may indicate a need to change component sizing or add padding at a different

location. It is important to consider that relative space (or certain amount of

indexing) at one location may be required dynamically to enable appropriate

spacing at another joint for a particular task [56]. Training to execute certain

motion strategies could encourage human kinematics that would be more in

line with that of the suit for the specified dynamic task.

Subject-specific random intercepts revealed that Subject 2 had the highest

changes of ρnHS(t) over the middle of gait phase (i.e. around HO to SW), while

Subject 3 had the smallest changes at these locations within the gait cycle. As

shown in Fig. 3.4A and 3.4C, Subject 2 and 4 had very large spikes in ρFHS(t)

right before HO during all three configuration that are absent for Subject

2 (Fig. 3.4B). Due to availability of suit sizing components, Subject 3 was

wearing a different size and design of boot. During suit fit observations, suit

engineers discussed a common occurrence in which the operator heel pops

out of the boot during gait. If this were the case during HO, the femur would

move freely within the suit prior to coming into contact with the leg of the

suit and providing an interaction force that swings the suit leg forward. We

hypothesize that different fits of boot could be contributing to the different

behaviors ρnHS(t) exhibited during HO for Subjects 2 and 4 that were not

present for Subject 3. Subjectively, Subject 2 did report the occurrence of

this phenomenon during C0 and C1, while Subjects 3 and 4 never reported

issues with their boots. Follow-on studies controlling for boot design and

fit are necessary to assess this hypothesis. Data here suggest that improper

boot fit at the heel could lead to greater values of ρFHS(t) and affect task

performance.

While looking into these fit metrics individually provides insight into the

effect of padding on dynamic fit, synthesizing these results from ρnHS(t),
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tRoMH , and ∆tRoM provide a clearer picture of overall task performance

and subject fit. Subject 3 had lower values of ρnHS(t) and Subject 4 had

higher values, which could suggest that Subject 3 had a more acceptable fit

than Subject 4. However, tRoMH and ∆tRoM might suggest the opposite

since Subject 3 had the highest values of tRoM and had a greater deviation

of tRoMH from unsuited kinematics. These phenomena could be explained

by the different boots these two subjects were wearing. The soft components

of the suit act as a spring. When the foot is in contact with the ground,

a ground reaction force aids in keeping the soft components of the leg com-

pressed. When contact with the ground is removed, a force would be required

to keep the suit from extending. If the soft components are able to be sized

exactly, the extension force would be smaller than if the soft components are

larger than desired. (This sizing condition may be the case as there are a

fixed number of soft goods sizes.) The extension force may be a cause of the

heel lifting out of the boot during HO. The tighter fitting boot of Subject 3

in combination with the sizing of the soft components, may have reduced the

motion of the heel, thereby enabling increased fluency between the human

and suit. If the heel stays within the boot throughout the entire gait cycle,

the suit knee might reach higher degrees of flexion as the soft components of

the legs buckle and bend around the knee (as opposed to the expansion when

the heel slips). From this point of view, small, positive values of ∆tRoM

close to 0 might be indicative of good suit fit so long as ρnHS(t) remains close

to 0.

The trend for the tibia to have more negative ρHS values between HO

and TO is consistent with the heel lifting. In general, tRoMS > tRoMH

(∆tRoM > 0) and ρTHS(t) < ρFHS(t). If there is some degree of the heel

slipping out of the boot and motion is driven from the contact point of the

118



femur with the suit upper leg, expansion of the suit leg soft goods allows any

extra soft material in the legs to swing freely around the human foot, resulting

in lower values of ρTHS(t) (more suit dominated motion) and more tRoM in

the suit knee. Synthesizing observations made about ρFHS(t) and ρTHS(t), a

less constrained boot fit can result in the heel slipping out, creating high

values of ρFHS(t) during HO. Meanwhile, the length of soft goods affected the

degree of suit dominated motion between HO and TO (ρTHS(t) < 0). Subject

3 had a boa boot design enabling a tighter fit, consistent with the lower

values of ρFHS(t). Meanwhile, all subjects had the same length of leg soft

goods, although they had different anthropomorphic crotch heights (S4 >

S3 > S2). Subject 4 had the largest crotch height and therefore the smallest

difference between soft goods length and crotch height. Greater differences

between crotch height and soft goods length permits allows more room for

the soft goods to expand during SW. We hypothesize that this would then

lead to values of ρTHS(t) closer to 0, as observed for Subject 4. Despite tighter

boots, Subject 3 still had slightly negative values of ρTHS(t) at HO and TO,

which may be due to the extra length in the leg soft goods based on his

anthropometry and soft goods size. Finally, Subject 2 had both looser boots

and the shortest crotch height and it is consistent that there were high values

of ρFHS(t) during HO and negative values of ρTHS(t) between HO and TO.

3.5 Conclusions and Future Work

This work aimed to examine how changing the level of static fit around the

hip brief assembly using padding affected metrics of dynamic fit and task

performance. Emergent in the analysis were underlying differences in the

subject objective measures that may be explained by alternate components

of suit fit, including boot design and soft goods lengths. The data showed
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that the effect of padding on objective measures of gait performance (H1-

H2) and performance-based measures of dynamic fit (H3-H4) was mixed and

subject-specific. While Subject 3 had differences in tRoM with configuration,

there were small changes in ρnHS(t). Subject 4 showed minimal changes in

all metrics due to changes in padding level. It is possible that the level

of padding changed how Subject 3 was sitting within the suit (i.e. higher

or lower within the hip brief), creating a modified boot fit, altered static

alignment, and different slack within the soft goods. Subjects in this study

had different boots and underlying anthropometry measures, but were fitted

with a constant lower leg length of soft goods. The addition of padding had

a small effect size compared to donning the suit (Cohen’s d = 0.45− 1.18 for

padding vs. d = 1.69−3.87 for the suit, for normalized cadence, tROM , and

∆tROM metrics); however, it might be the case that boot design and length

of soft goods played a greater role in reducing ρnHS(t) than did padding and

that these smaller effect sizes might not be operationally relevant. It would

appear that the kind and fit of the boot might be more important during a

walking task due to the larger differences of ρnHS(t) observed between Subjects

2 and 4 compared to Subject 3, who had an upgraded boot design. While

there were inconsistencies in the effect of padding between subjects, this work

demonstrates that candidate quantitative metrics for suit fit presented here

are sensitive to small changes in fit and provide information that aligns with

decisions made by suit technicians. These measures of dynamic fit directly

related to specific decisions made during the lower body dynamic fit check

of the MKIII spacesuit in Fig. 3.1c. Integrating techniques used here into

all fit checks could help suit engineers detect fit anomalies, such as heel lift,

leading to a decision to possible alter the suit boot.

Suit fit is an integrative process and multiple metrics are necessary to
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appropriately interpret how well subjects fit within the suit, including the

subjective feedback provided from subjects wearing the SSA. This work does

not attempt to assess goodness of fit, simply the sensitivity of new candi-

date metrics to changes in performance due to components of fit. As fit is

a function of multiple factors, multiple metrics are required to quantify this

complex term. This work does not attempt to limit the importance of subjec-

tive feedback. The relationship between subjective feedback and quantitative

metrics will be important to consider during the development of these new

metrics. Quantitative metrics are an additional tool that can be used to ob-

jectively compare the different performances achieved when components of fit

are changed and may be useful to better understand subjective preferences.

Objective metrics, like those presented here, do not eliminate the need to

subjective feedback.

This work was limited in the metrics that could be defined describing the

knee angle as the study did not include a formal calibration period. The

implementation of more robust joint angle estimation methods, including

methods that can decompose joints with higher degrees of freedom, could

also allow for deeper insight into how suit fit affects the kinematics of human

gait at other joints, such as the hip or ankle. This work was limited in the

generalizations that were possible due to the low number of subjects and the

varying sizes of suit worn. This limitation is common in studies with space

suits due to the limited number and availability of the suits. However, fu-

ture work should have higher numbers of subjects and control for different

anthropometric values across subjects cleared to wear the suit. Future work

will also explore the hypotheses of how boot fit and soft goods length affect

both ρnHS(t) and human kinematics by controlling for the boot design sub-

jects wear and the length of the suit leg soft goods. These studies should be
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performed with a greater variety of tasks where operationally relevant dif-

ferences in performance can be assessed. While we examined a walking task

here, the changes in static fit (through padding at the hips) may have more

implications on performance in other operational tasks, such as kneeling, dig-

ging, or climbing through a hatch. The operationally relevant effects sizes

for these tasks will be important to define, and could be determined based

on mission success criteria or injury risk mechanisms. Further, padding was

only used around the HBA in this study. Padding in alternate locations with

alternate tasks may have a greater effect on performance. Finally, subjective

feedback is still an integral part of evaluating fit and users may have different

preferences; therefore, future studies should incorporate subjective ratings of

fit in a more comprehensive manner.

Chapters 2 and 3 of this thesis adapted a metric for coordination to clinical

and aerospace applications. It is possible that these measures could be gen-

eralized to other areas as well, such as robotics and mechatronics. In order

to do so, we must first understand open research questions in these fields and

see if there is need to quantify relative motion. For example, these measures

could also be applied to exo-skeleton performance evaluation by measuring

the relative motion between the human and exo. These chapters also only

evaluated two tasks. In order to generalize these metrics in their respective

fields, it is important to test other relevant tasks. Future work will apply ρ

to evaluate inter-joint coordination in a clinical settings and will also apply

ρ to quantify upper extremity suit fit.
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Chapter 4

Technique-based Measures for the

Standing Balance Test

Chapter’s 2 and 3 of this thesis highlighted the development and application

of a new metric for coordination to both clinical and aerospace medicine fields.

As discussed in Chapter 1, this work also aims to develop technique-based

measures for balance. This chapter reviews existing measures of balance and

demonstrates the need for methods that quantify balance technique. Bal-

ance is a complex task that fuses sensory information from the vestibular,

visual, and musculoskeletal systems. Quantifying balance technique permits

comparing interventions across various clinical populations and could inform

the selected plan-of-care. For example, as further described in Section 4.1,

slower gait speed is attributed to higher rates of falls and other mortalities

in older adults. Quantifying and understanding balance deficits associated

with mediolateral stability could lead to a selected plan-of-care that includes

strengthening and recruitment of hip abductor/adductor muscle groups com-

monly associated with mediolateral stability [122].

This chapter will define a new metric for balance that we call Frequency

in Balance Region (FBR, Section 4.3.1) that helps to answer the question

how people balance. Static balance is typically described using an inverted
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pendulum model (see Section 4.2) that assumes joints are rigid when humans

balance on two feet. Our approach to quantifying balance technique (FBR)

involves measuring deviations from this model at different body segments,

thereby quantifying balance strategy. After defining this new metric, this

chapter moves on to quantify technique-based differences in balance associ-

ated with different gait speeds.

4.1 Gait Speed and Clinical Outcomes

4.1.1 Defining Dismobility

By 2040, an estimated 81 million adults in the United States are expected to

be older than 65 [123]. Of these, an estimated 15.4 million will be unable to

walk 2-3 blocks without assistance, adding an estimated $42 billion to annual

health costs [124, 125]. Slower gait speeds are common in older adults and

a part of the aging process [126, 127]. It is hypothesized that gait speed

slows with aging as a means of increasing gait stability; however, studies

also show that gait speeds below certain thresholds reverse this effect and

decrease stability [128, 129, 130, 131]. Self-selected gait speed is shown to be

a predictive factor of overall physical function, fall risk, and cognitive ability

([127, 132]). Figs. 4.1a and 4.1b show predicted life expectancy for both

males and females. At age 65, individuals who walk less than 0.6m/s have a

median survival of only 10 and 17 years for males and females, respectively.

Meanwhile, individuals who walk > 1.2m/s are expected to live on average 20

and 30 years longer for males and females, respectively. While slowing gait

speed is common during aging, variability still exists within older patient

populations and gait is still highly predictive of overall mortality [125, 131].

In addition, Fig. 4.1c shows how slower gait speeds is associated with a higher
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rates of disability.

Dismobility is an arising clinical diagnosis defined as a gait speed < 0.8m/s

that is attributed to higher levels of disability and lower 5- and 10-year sur-

vival rates, Fig. 4.1 [124]. A diagnosis of dismobility can prompt clinical

action in the form of physical therapy, provision of assistive device, or ad-

justment of perscription medications to improve physical performance and

reduce the risk of negative outcomes, such as falling or other forms of dis-

ability. However, gait and gait speed are complex movements requiring the

manipulation of multiple degrees of freedom and various decrements could

contribute to a decreased gait speed (i.e. static balance, dynamic balance,

proprioception, cognition, cardiac output, etc.). Physical ability and mental

cognition are large contributors to older quality of life and decrements to

either are associated with higher mortality [133, 134, 135, 136]. It is possi-

ble that these higher physical disability rates seen among slow older walkers

could be contributing factors to higher rates of mortality, but a simple gait

speed test can make it difficult to distinguish what underlying mechanism

might stratify which patients need clinical intervention. Despite the complex

mechanics underlying gait and gait speed, improvements in gait speed are

shown to predict 8-year survival in older adults [123]. Targeted physiother-

apy for specific impairments that contribute to decreased gait speed could

then potentially better improve survival and quality of life in older adults.
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(a) Predicted Life Expectancy By Age and Gait Speed: Men

(b) Predicted Life Expectancy by Age and Gait Speed: Women
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(c) Mobility and Activity of Daily Living Prevalences by Gait Speed

Figure 4.1: Life Expectancy and Disability Rate in Older Adults by Gait Speed (Source:
Castranova et al. [124] and Studenski et al. [125])

4.1.2 Disambiguating Between Slow and Moderate Walkers

The kinematic changes and decrements that occur for higher-risk dismobile

adults is not well understood. Other clinical measures do exist that are

correlated with fall risk, disability, and mortality in older adults. Examples

of these tests include 400m walk test [123, 137], short physical performance

battery (SPPB) [137, 138, 139, 140], timed-up-and-go task (TUGT) [141,

142], and 10meter walk test (10MWT) [126, 143]. The 10m and 400m walk

test measure the time to complete their respective distances. The TUGT

task asks participants to start seated, stand, walk 3m out-and-back, and

then sit back down; the main outcome measure of this task is also time to

completion. Finally, the SPPB involves a gait speed measure, a series of
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sit-to-stand tasks, and static balance test. A composite score is assigned

to each patient following the SPPB based on their ability to complete each

task. These measures evaluate task outcomes (i.e. time to completion) as

opposed to task performance. Evidence still exists that improving the scores

of these tests can reduce mortality and improve quality of life [123, 139],

other more longitudinal studies show mixed results due to an inability to

distinguish between task outcomes (i.e. can participants perform a task)

versus physical function (i.e. methods and frequency of performing the tasks)

[140, 77]. In other words, short-term improvements that focused on task

outcomes might are due to the introduction of compensatory mechanisms

that in the long-term did not improve overall quality of life. Therefore, there

is a need to understand and quantify the potentially subtle biomechanical

differences between healthy and dismobile adult populations as a means of

creating diagnostic tools and informing potential rehabilitation and treatment

regimens.

4.2 Existing Balance Models and Metrics

4.2.1 Existing Static Balance Metrics

Static balance tests are commonly used to assess postural stability and fall

risk in older adults [144, 145, 146, 147, 148]. Decrements in muscle strength,

mobility, and endurance are thought to negatively impact postural control

and balance, which could then lead to a higher risk of falling and dismobility

[131, 144, 149]. Various efforts have been made to improve balance perfor-

mance in the older adult population, ranging from strength training [150]

to tactile feedback [151, 152], but there is limited evidence these interven-

tions improve mobility or decrease mortality. In the case of Seinko et al.
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[153], continuous vibrotactile feedback around torso did decrease short-term

medio-laterial trunk tilt and increased dynamic stability during a walking

task. Static balance is currently evaluated using standing balance tests (i.e.

double leg support [145], single leg support [148], eyes open vs. eyes closed

[154]) that result in subject balance scores. Biomechanical metrics, such as

media-lateral sway, center of pressure (COP) path, and COP velocity, are

extracted from stabilograms generated using motion capture or force plates

[144, 151, 154].

Previous work assessing static balance in older and young population show

mixed results. Priplata et al. [151] showed a small differences between

younger and older adult when computing sway area, but there was no dif-

ference in other static balance metrics, such as Antero-posterior (AP) and

mediolateral (ML) Range. Melzer et al. [144] looked into differences in static

balance for older faller and non-fallers, but only found small differences be-

tween groups in ML Range, and no other metrics such as AP Range, or COP

path. While the authors of these works both address potential sample size

issues, it is possible that standard outcome static balance measures alone are

not sensitive enough to differentiate these group. It is possible to achieve

similar sway patterns and COP when using different a balance technique.

Therefore, there is a need for measure of static balance technique on top of

existing outcome measures.

4.2.2 Limitations of the Inverted Pendulum Model

Many current metrics are outcome-based and do not quantify the underlying

motor patterns used to achieve postural stability. Therefore, there is a need to

expand the capability of current measures to include a more thorough under-

standing of balance technique. Current balance measures inherently make an
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assumption of the person behaving as an inverted pendulum [155, 156, 157],

meaning that all body segments above the ankles are rigid and keep their

alignment between the upper and lower body, Fig. 4.2a. Gage et al. [155]

validated the inverted pendulum model in younger participants by demon-

strating that COP measures correlated with body segment center of mass

(COM) paths indicating that you can collect static balance measure values

(i.e. ML/AP sway) at various parts of the body with similar results. Addi-

tionally, Gage et al. [155] showed that displacement of each body segment

COM increased linearly with height above the ankle joint despite there be-

ing some movement of joints above the ankle, such as knee and hip. While

this behavior was shown in younger adults, aging reduces muscle strength

and joint flexibility thereby shifting the COM posterior to the heels, which

is not the case for younger adults [145, 158]. Manchester et al. [159] also

described that older adults flexed and extended the hips (hip strategy) com-

pared to younger adults who used more of an ankle strategy. With these

considerations, a single inverted pendulum may no longer hold for different

populations. Measuring deviations from an inverted pendulum may provide

a way to assess static balance technique.

4.2.3 Previous Efforts Using Multi-segmented Inverted Pendulum

Models

There have been a few attempts to quantify balance as a double pendulum,

adding an additional hinge about the hips similar to Fig. 4.2b. Aramaki

et al. [160] explored a double pendulum model by approximating the ankle

and hip displacement in the sagittal plane using a laser displacement system.

Participants had their spine and knee restrained to focus analysis on the

hip and ankle joints. A simple inverse kinematics method was used to to
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(a) (b)

Figure 4.2: Possible Models and Mechanisms to Maintain Static Balance: a) is representative
of a single inverted pendulum model where all segments above the ankles are rigid and do
not move relative to one another while b) is representative of a double pendulum model
in which static balance can be achieved through additional joint motion, such as the hip
(shown), knee (not shown, or torso (not shown).

measure ankle and hip angular displacement during a series of 30s standing

balance trials. Aramaki et al. [160] observed how hip and ankle motion had

reciprocal joint angular velocities to maintain balance and concluded that

angular displacement of the hip and ankle joints were not meant to keep the

COM in a constant position, but to minimize its acceleration. This behavior

was seen artificially, however, by restraining the spine and knee joints.

Crenna et al [161] used a double pendulum when studying balance strategy

for controlled forward and backward movements of the torso. In this study,

sagittal plane trajectories of the head, torso, hips, knee, and ankle were

tracked using passive markers and a single camera. Muscle EMG was also

collected. Young participants voluntarily moved their head and torso forward

or backward either at fast or slow speeds. Crenna et al. [161] reported the

hips and knee tended to move in the opposite direction of the head and torso.

However, during fast displacements of the torso, all segments moved together
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in the same direction at first, followed by a quick switch of lower segments

moving in the opposite direction of upper segments. Despite similar results

to Aramaki et al. [160], these were voluntary motions and not static balance

tasks.

Accorcero et al. [162] also used a double pendulum model with a joint

at the hips, but this time compared the rigidity between younger and older

adults. Accorcero et al. [162] described measuring this double pendulum us-

ing an electromagnetic tracking device with single markers on the head and

hips without decoupling motion from the torso, hip, knee. Velocity vectors

from these two trackers were used to quantify how “rigid” or “flexible” the

double pendulum was during a quiet standing task. Accorcero et al. [162]

referred to the double pendulum as “rigid” when the head and torso velocity

vectors traveled in the same direction and “flexible” when they traveled in

opposite directions. Similar to the previous two works, Accorcero et al. [162]

showed that both older and young participants had double pendulum behav-

ior with hip motion relative to head motion, but this work did not examine

the influence of the knee and did not decouple torso and hip motion; it is

possible that torso, hip, and knee motion still existed that the two sensors

alone could not decouple. Accorcero et al. [162] also found that young and

older adults had different double pendulum behavior, concluding that older

adults appeared more rigid that younger adults, in particular with eyes open.

In other words, the head and hip markers in older adults appeared to travel

in the same direction more often than younger adults.

Finally, Kim et al. [163] quantified knee stability during a single leg bal-

ance task by measuring relative motion of the shank and thigh (Fig. 4.3).

As shown in Fig. 4.3a and 4.3b, IMU estimated maximum displacement of

the shank and thigh in the AP and ML directions were used to compute
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the region of limb stability (ROLS). ROLS is computed as the rectangular

area created when plotting maximum AP and ML displacement for the thigh

and shank (Fig. 4.3c). Kim et al. [163] did find differences in the thigh

and shank trajectories that could be indicative of knee movement, with good

correlation between IMU and marker-based datasets. Kim et al. [163] also

computed ROLS between healthy and injured participants and found that

ROLS is sensitive to knee impairment. ROLS is limited, however, in that it

is a summary outcome metric that does not intuitively describe how these

two segments move relative to each other.

These previous efforts using double pendulum assumptions highlight that

there are motions in joints above the ankle. Many of these efforts assess

a single plane of motion and do not provide a thorough understanding of

balance technique. For example, it is possible that some participants use

their torso, hips, and knees to make slight adjustments to their center of

mass that might not be captured using the above methods. It is also not

clear how the postural strategies change due to aging across the multiple

relevant joints. Current measures are therefore limited in that they do not

address all joints that could contribute to balance and do not decompose

balance into all axes of rotation. Section 4.3 will attempt to address these

shortcomings by creating a multi-joint, multi-axis model for static balance

that will allow us to deduce the underlying balance strategy.

4.3 Frequency in Balance Region

We assume a multi-segmented, three-dimensional, inverted pendulum and

define a new series of angular velocity-based metrics that quantify the direc-

tionality with which body segments move relative to one another, thereby

categorizing and quantifying balance technique. We call this new balance
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(a) IMU Trajectory and maximum AP and
ML excursion of thigh

(b) IMU Trajectory and maximum AP and
ML excursion of shank

(c) IMU Trajectory and maximum AP and
ML excursion of thigh

Figure 4.3: IMU movement trajectories in the horizontal plane (blue solid line, perimeter
(red dashed line, and maximum excursions in the ML and AP directions of the (a) thigh
and (b) shank during single leg stance (a green dotted line and a black dash-dot line). (c)
ROLS excursion diagram. Adapted from Kim et al. [163]
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metric the Frequency in Balance Regions (FBRP,LU
n , Section 4.3.1). Here we

choose an angular velocity-based metric due to it being more easily and accu-

rately extracted from IMUs and gyroscopes and can still provide information

on the relative motion between rigid body segments [164, 47].

4.3.1 A numerical definition of FBRP,LU
n

The rigid body assumption of the inverted pendulum model was assessed

by implementing a three-dimensional, multi-segmented inverted pendulum

model for static balance, Fig.4.4. We consider a rigid body model with the

body sub-divided into six body segments: torso (T), pelvis (P), R/L femur

(RF, LF), and R/L shank (RS, LS). This model contains multiple relevant

reference frame, such as the global inertial reference frame, in which the

participant is moving, and the reference frames associated with each of the

individual body segments listed above, Fig. 4.4. Quaternions are used to

describe a rotation that aligns a vector in one reference frame to a vector in

another reference frame. The orientation of each body segment relative to the

global frame was computed via a rotation quaternion from the global frame

to the segment frame (qGT , qGP , qGRF , qGLF , qGRS, qGLS). The angular velocity of

these segment reference frames is then computed from changes in the rotation

quaternion from the global frame to segment frame (~ωT , ~ωP , ~ωRF , ~ωLF , ~ωRS),

~ωLS). If two segments behaved like a pure inverted pendulum with no joint

in between them, there would be no relative motion. In the context of the

inverted pendulum model, there would be no relative motion between the

femur and shank, pelvis and femur, or torso and pelvis.
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Figure 4.4: A multi-segmented inverted pendulum Model for static balance in which the
body is divided into seven segments: torso (T), pelvis (p), right femur (RF), left femur
(LF), right shank (RS), and left shank (LS). Each segment contains its own reference frame
and coordinate system where each axis corresponds with its underlying anatomical axes:
anteroposterior (AP), mediolateral (ML), and longitudinal (LG).

When comparing two segments, we refer to the segment more distal from

the ankle as the upper segment and the segment proximal to the ankle as

lower segment. If segments behave like single pendulums, upper segments will

not have any relative motion to the lower segment. These relative motions

can be examined by expressing the angular velocity of the upper segment

in the reference frame of the lower segment and subtracting out the lower

segment angular velocity. The relative angular velocity of upper segments in

the reference frame of the lower body segment (~ωPT , ~ωRFP , ~ωLFP , ~ωRSF , ~ωLSF ) was

then is therefore computed as follows:
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qUL = qGL × (qGU )−1 (4.1)

~ωLU = qUL ~ωU(qUL )−1 − ~ωL (4.2)

where qGL , qGU are the rotation quaternions from the lower segment to the

global frame and from the upper segment to the global frame, respectively,

qUL is the rotation quaternion from the lower body segment frame to the up-

per body segment frame, ~ωL, ~ωU are the angular velocities of the lower and

upper body segment, respectively, and ~ωLU is the relative angular velocity of

the upper body segment in the lower body segment frame. Each component

of these vectors corresponded to the angular velocity in different anatomical

directions (AP, ML, and Longitudinal (LG)) because we define the biome-

chanical angular velocities directly. Should this method be computed using

IMUs, an additional reference frame rotation is necessary to align the IMU

frame and the rigid body biomechanical reference frame as in done by Mc-

Grath et al. [69] and Seel et al. [67].

In the inverted pendulum model, the six segments listed above (T, P,

RF, LF, RS, LS) would not have an angular velocity relative to one another

(~ωPT = 0, ~ωRFP = 0, ~ωLFP = 0, ~ωRSF = 0, ~ωLSF = 0). Therefore, deviation from

the single inverted pendulum model can be assessed by plotting ~ωP versus ~ωPT ,

~ωF versus ~ωFP , and ~ωS versus ~ωSF for each of the anatomical directions (AP,

ML, LG). Fig. 4.5 plots ~ωP versus ~ωPT for a single individual who performed

six 30s SBT. The Cartesian coordinate system is divided into five regions each

representing a different balance technique. Small values in relative angular

velocity (~ωPT , Fig. 4.5) could be representative of measurement error and

actually be representative of participants behaving as a single pendulum.

For this reason, five balance regions were defined. The frequency in balance
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region 5 (FBRP,LU
5 ) was computed as the percent time during the SBT spent

behaving as a single pendulum. In other words, ~ωLU ≈ 0. The frequency in

balance region 1-4 (FBRP,LU
1−4 ) was then defined as the percent time spent in

each of the Cartesian quadrants and outside the FBRP,LU
5 (Fig. 4.5). The

sum of FBRP,LU
1−5 is therefore equal to 1. The five balance regions can be

written as follows:

tPFBR1
=

T∑
n=1

tn where ω
P
L > 0, ωL,PU > R (4.3)

tPFBR2
=

T∑
n=1

tn where ω
P
L < 0, ωL,PU > R (4.4)

tPFBR3
=

T∑
n=1

tn where ω
P
L < 0, ωL,PU < −R (4.5)

tPFBR4
=

T∑
n=1

tn where ω
P
L < 0, ωL,PU < −R (4.6)

tPFBR5
=

T∑
n=1

tn where |ωL,PU | < R (4.7)

FBRP,LU
n =

tFBRn

tT
(4.8)

where ~ωLU and ~ωL are the angular velocities of the lower body segment and

relative angular velocity of the upper body segment being compared, P is

the anatomical direction, n is the balance region, tFBRn
time spent in the nth

region, tT is the total time of the balance trial, and R is the threshold relative

angular velocity for behaving as a single pendulum. In Fig. 4.5, this value

R was set at 0.03rad/s for it is representative of the measurement error of
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various IMUs and gyroscopes, technologies that could be used to extract this

metric.

Time spent in regions FBR2 and FBR4 is representative of an adaptive

balance technique in which body segments rotate in opposite directions of one

another. This strategy could be used to maintain the COM within a desired

region and in some instances could be considered an adaptive strategy. Time

spent in FBRP,LU
1,3 is representative of a balance strategy where the upper

segment is rotating at a faster rate than the lower segment. This strategy

could occur to bring the COM quickly back to a desired region or potentially

a maladaptive balance perturbation that moves the COM rapidly away from

a desired region. For the proposed model described in Fig. 4.4 and Fig.

4.5, values for FBRP,LU
n can be computed from three anatomical directions

and five body segment comparisons (left shank-left femur, right shank-right

femur, left femur-pelvis, right femur-pelvis and pelvis-torso); therefore, for

each SBT, a total of 75 values of FBRP,LU
n can be extracted. Each segment

comparison is also indicative of different joint motions where pelvis-torso

correlates with spinal motion, femur-pelvis to hip motion, and shank-femur

to knee motion. A graphical representation of FBRP,LU
n can be found in Fig.

4.5 with color legends corresponding to the five regions and schematics of the

balance techniques FBRP,LU
1−4 represent. While this participant shows motion

in all five regions, it is important to understand the percentage of time in

each of these regions.
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Figure 4.5: Definition and derivation of Frequency in Balance Region and corresponding
balance strategies. Time spent in FBRP,LU

2,4 is representative of a balance strategy in which
the upper segment is rotating faster and in the opposite direction of the lower segment .
Time spent in FBRP,LU

1,3 is representative of a balance strategy where the upper segment is

rotating at faster rate and same direction as the lower segment. Time spent in FBRP,LU
5 is

representative of balance strategies in which the upper segment has no relative motion to
the lower segment. The above example represents six 30s static balance trails of a single
participant comparing the angular velocity of the pelvis with the angular velocity of the
torso relative to the pelvis in the AP axis. The corresponding values of FBR for this case
are: FBRAP,PT

1 = 0.08, FBRAP,PT
2 = 0.13, FBRAP,PT

3 = 0.07, FBRAP,PT
1 = 0.14, and

FBRAP,PT
5 = 0.58.
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4.4 Assessing Participant Specific Balance Technique

using FBRP,LU
n

Prior to assessing balance technique in larger populations, it is important to

assess the variability that might exist both within and between subjects. Ad-

ditionally, we must assess whether or not FBRP,LU
n is capable of quantifying

balance technique in a way that makes it easier to interpret the underlying

kinematics and postural control, similar to ρ in Section 2.3.1. This section

initially assesses FBRP,LU
n and figures similar to Fig. 4.5 in a qualitative

manner. Example data from older and younger participants are used for this

discussion.

4.4.1 Changes in Static Balance Technique Between Trials

Fig. 4.6 highlights two different 30s two-legged standing balance tests. Figs.

4.6a-4.6b highlight FBRAP,RSF
n (FBR for the AP plane comparing the right

shank to the right femur, which is indicative of right knee motion), FBRAP,RFP
n

(FBR for the AP plane comparing the right femur to the pelvis, which is in-

dicative of right hip motion), FBRAP,RPT
n (FBR for the AP plane comparing

the pelvis to the torso, which is indicative of spine motion) for one trial and

4.6c-4.6d highlight FBRAP,RSF
n , FBRAP,RFP

n , FBRAP,RPT
n for a second trial.

First and foremost, it is clear that there are instances in both trials where the

participant deviates from an inverted pendulum model (any area that is not

green). Trial 5 for this particular participant (Fig. 4.6a-4.6b) appears more

stable with fewer perturbations that cause segments to deviate from single

pendulum behavior. There is one instance here in which the participant de-

viates heavily from a single pendulum (Fig. 4.6a, orange points in upper

left quadrant). Fig. 4.6a comparing the right shank-femur imply that the
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shank rotates in the anterior direction while the femur reacted by shifting in

the opposite direction; this is indicative of knee joint flexion. A similar large

region deviating from FBR5 is also present in the pelvis-torso (Fig. 4.6b)

during which the pelvis rotates in the posterior direction, while the torso

flexes in the anterior direction to counteract this motion. In both cases, it

would appear that the relative motion of the upper segment is greater than

the angular velocity of the lower segment. Greater and opposite angular ve-

locity of the upper region could be evidence of the upper region attempting

to quickly correct motion of lower segments deviating the COM away from a

desired region.

Meanwhile, Fig. 4.6c-4.6d demonstrate a different trial in which we can see

various different balance strategies and behavior. At first glance, it is clear

that both comparisons (right shank-femur and pelvis-torso) quantitatively

deviate more from a single pendulum than they did in Trial 5 (Fig. 4.6a-

4.6b). From observing these two different sets of trials, differences in balance

strategy exist from trial to trial. This variability within a single subject

demonstrates the need to collect more than one trial for a greater, more

comprehensive review of balance strategies used and the natural variability

that exists within subjects.

142



(a) Y8 Trial 5 FBRAP,RSF
n (b) Y8 Trial 5 FBRAP,PT

n

(c) Y8 Trial 1 FBRAP,RSF
n (d) Y8 Trial 1 FBRAP,PT

n

Figure 4.6: Individual Balance Strategy for Two Trials of Single Young Participants in AP
Plane. Green regions represents time points where the segments behave as rigid, single
pendulums. Any other areas represents double-pendulum behaviors with different balance
strategies.

4.4.2 Changes in Static Balance Technique Between Participants

Fig. 4.7 highlights one 30s two-legged standing balance tests for two different

participants. Figs. 4.7a-4.7e highlight FBRAP,RSF
n , FBRAP,RFP

n , FBRAP,RPT
n

for one participant (O25) and 4.7b-4.7f highlight FBRAP,RSF
n , FBRAP,RFP

n ,

143



FBRAP,RPT
n for a second participant (O16), all in the AP anatomical axis.

While we know there is variability in balance strategy within a single partic-

ipant, these qualitative examples demonstrate differences in balance strategy

between participants. Participant O25’s knee (Fig. 4.7a and 4.7c) appear

to rotate a relatively small amount compared to their hips and torso (Fig.

4.7e). In addition, the tall and narrow nature of the balance strategy seen for

the pelvis-torso in Fig. 4.7e would imply that the torso is rotating a much

greater amount than the hips, possible due to a weakened core strength or

lower range of motion for the ankles and hips.

Meanwhile, participant O16 appears to use their hips and femur far more

than participant O25. The tall and narrow nature of the angular velocities

in Fig. 4.7b suggest the femur is rotating at much higher rates than the

shank, indicative of knee joint motion. Similarly, the pelvis appears to be

moving more than the femur (Fig. 4.7d), suggesting more hip and knee bal-

ance strategies being employed than ankle-based ones. Fig. 4.7f shows that

similar to participant O25, there is torso rotation, but this time it counter-

acts the rotation of the pelvis. Therefore, participant O25 appears to use

more of a torso-based strategy to balance while O16 uses both the hips and

torso. While Section 4.4.1 highlighted variability between trials, this section

demonstrated an ability for the newly proposed FBR metric to infer different

balance strategies.
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(a) O16 FBRAP,RSF
n (b) O25 FBRAP,RSF

n

(c) O16 FBRAP,RFP
n (d) O25 FBRAP,RFP

n

(e) O16 FBRAP,PT
n (f) O25 FBRAP,PT

n

Figure 4.7: Individual Balance Strategy for Two Older Participants in AP Plane. Green
regions represents time points where the segments behave as rigid, single pendulums. Any
other areas represents double-pendulum behaviors with different balance strategies.
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4.4.3 Changes in Static Balance Technique Between Anatomical

Planes

Fig. 4.8 highlights one 30s two-legged standing balance tests for one partici-

pant (O16) but in the ML and LG axes. Figs. 4.8b-4.8f highlight FBRLG,RSF
n ,

FBRLG,RFP
n , FBRLG,RPT

n for the LG axis and 4.8a-4.8e highlight FBRML,RSF
n ,

FBRML,RFP
n , FBRML,RPT

n for the ML axes. The AP axis for this same par-

ticipant was highlighted in Fig. 4.7b-4.7f. Qualitatively, it is clear that this

participant achieves greater rotational velocities in the AP axis than both the

ML and LG axis. The lower angular velocities in the ML direction may arise

from the greater base of support supplied by the feet, increasing the stability

of the ML direction with respect to the AP direction.

Less motion exists in the ML direction for the right shank-femur (Fig.

4.8a) compared to the AP and LG directions due most likely to the little

rotation and ML range of motion achievable by the knee. Rotation in the ML

direction for the right shank-femur comparison could be evidence, however,

of varus-valgus knee motion or internal/external rotation of the femur as a

compensatory mechanism to achieve good balance. Examining all three axes

can help quantify three dimensional nature of balance technique.
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(a) O16 FBRML,RSF
n (b) O16 FBRLG,RSF

n

(c) O16 FBRML,RFP
n (d) O16 FBRLG,RFP

n

(e) O16 FBRML,PT
n (f) O16 FBRLG,PT

n

Figure 4.8: Individual Balance Strategy for One Older Participants in the ML and LG Planes
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The qualitative observations made in Sections 4.4.1-4.4.3 illustrate the

complex nature of three dimensional postural control. For a more thorough

quantification of balance technique, it is therefore necessary to employ this

more complex model. Using this metric, we can examine differences between

clinical populations, such as dismobile and mobile older adults.

4.5 Experimental Methods

Section 4.2 revealed the limitation in the inverted pendulum model and Sec-

tion 4.3.1 defined methodology for quantifying balance technique and de-

viations from the inverted pendulum model. Section 4.4 demonstrated the

differing balance techniques used by young and older adults. As a means to

evaluate our hypotheses regarding FBRP,UL
n (Section 4.5.1) and demonstrate

its ability to quantify clinically relevant differences in static balance, we de-

signed an experiment to evaluate differences in balance technique between

three populations: young (Y) and older slow speed walkers (OS) and older

moderate speed walkers (OM) based on diagnostic criteria for dismobility

(< 0.8m/s, Section 4.1). This section will discuss the experimental design,

data processing, and statistical methods used for this effort.

4.5.1 Statement of Hypotheses

This dataset was used to evaluate the hypotheses that during the SBT there

are differences when:

1. comparing ML sway, AP sway and swept area static balance metrics

between younger, older slow, and older moderate adults (H1),

2. comparing FBRP,LU
n between younger, older slow, and older moderate

adults (H2),
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3. comparing FBRP,LU
n in each balance region (H3), and

4. comparing FBRP,LU
n in each anatomical direction (H4).

Since FBRP,LU
n can be used to compare various body segments, hypotheses

H2-H5 were explicitly evaluated for five body segment comparisons: pelvis-

torso, right femur-pelvis, left femur-pelvis, right shank-femur, and left shank

femur. While there are mixed results regarding balance changes due to ag-

ing [151, 162, 144], these hypotheses (H1-H2) will allow us to assess whether

metrics quantifying static balance technique are sensitive to static balance

deficits due to aging. Since there also is evidence of multi-segmented pen-

dulum behavior during static balance tasks [155, 160, 162, 161], H3 and H4

allow us to better understand the extent to which static balance technique

deviates from an inverted pendulum model by expanding upon existing mod-

els in the literature to include multiple joints (torso, hip, and knee) and to

include additional axes of rotation (AP, ML, and LG).

4.5.2 Participants Demographics

Forty-five participants were recruited for this study (15 participants 18-30

years old and 30 above the age 60). Older participants were subdivided

into two groups based on gait speed with 16 participants > 0.8m/s and 14

participants < 0.8m/s. Full demographics of all three study groups can be

found in Table 4.1. The protocol was approved by the Committee on the Use

of Humans as Experimental Subjects at MIT. Exclusion criteria included:

1. Atypical neurological conditions or diagnosis including, but not limited

to, stroke, Parkinsons Disease, and Multiple Sclerosis that could cause

decrements in musculoskeletal function
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2. Lower extremity fractures or surgeries performed within the previous six

months

3. Any lower extremity joint replacements

4. Physical limitations which would require walking with an assistive device

5. Lower extremity neuropathy from diabetes or other ailments

6. Inability to speak English as a primary language

The full Health Screening Questionaire for this experiment can be found

in Appendix A.

Table 4.1: Experimental Group and Participant Demographics

Exp. Total Age Gender Height Shoulder Leg Gait
Group Subjects (yrs)* (cm)* Height Length Speed

(cm)* (cm)* (m/s)*
Young 15 20.7 7 Male 166.1 137.1 88.4 0.92

(Y) (2.8) 8 Female (7.9) (7.2) (6.4) (0.14)
Eld. Slow 16 74.3 8 Male 163.7 136.9 87.3 0.67

(OS) (7.1) 8 Female (12.0) (11.3) (6.1) (0.07)
Eld. Mod. 14 73.4 8 Male 166.0 139.7 87.5 0.86

(OM) (7.7) 6 Female (8.1) (7.8) (5.0) (0.05)

∗All values are presented as MEAN (STD)

4.5.3 Experimental Design

Each participant was outfitted with 48 reflective markers and 8 strap-on

IMUs (Opal IMU, APDM, Inc. Portland OR, USA, Fig. 4.9a). Reflective

markers were placed on bony landmarks according to a modified Cleveland

Clinic lower body marker set with secondary markers placed on IMUs. IMUs

were placed on the sternum, sacrum, femur, shank, and feet. Marker data

was collected using 14 Bonita Vicon motion capture cameras (Vicon Motion

150



Systems, Inc., Los Angeles, CA, USA). Each participant completed three

evaluation tasks: the 10m walk test (10MWT), Standing Balance Test, and

Timed-Up-And-Go task (TUGT). Tasks were completed in the following con-

figuration for each participant: 1 x 10MWT, 3 x SBT, 15 x TUGT, 3 x SBT,

and 1 x 10MWT. Participants were provided with as much rest as needed in

between trials and tasks. For this analysis, only marker data was considered

from the 10MWT and SBT.

During the SBT, participants were instructed to stand on two feet with

eyes open and balance to the best of their ability for 40sec. Participants were

instructed not to talk during this time. The first and last 5s of each trial

were excluded from analysis to eliminate any effects of the experimenters call

outs. Three of 270 SBT trials were excluded from this analysis due to missing

pelvis markers that did not make it possible to proceed with data analysis.

4.5.4 Data Processing

Marker data were processed using the Nexus v2.6 software package (Vicon

Motion Systems, Inc., Los Angeles, CA, USA). Balance metrics were further

processed using Matlab 2018a (The Mathworks, Inc., Natick, MA). Marker

position data were filtered using a 6th-order Butterworth 10Hz low-pass fil-

ter. Two virtual markers were added for the right/left hip joint center using

methods presented by Seidel et al. [165]. Marker data was then used to

create three-dimensional coordinate systems for the upper torso (3 markers

at C7, left acromion, right acromion), pelvis (4 markers at the R/L ASIS

and PSIS), R/L femur (3 markers at the hip joint center, medial and lat-

eral knee), and R/L shank (4 markers at the medial and lateral knee, medial

and lateral ankle) (Fig. 4.9b). Angular velocities ( ~ωU and ~ωL) and relative

angular velocities ( ~ωLU) were extracted in the antero-posterior (AP), medio-
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(a)
(b) FBRP,LU

n Body Segments
and Coordinate Systems

Figure 4.9: Motion Capture Marker and IMU Locations: a) Approximate reflective marker
and IMU locations on corresponding anatomical landmarks. b) Reflective Markers used to
define segments of balance model: Shank (S), Femur (F), pelvis (P), and Torso (T). Markers
not used for this balance model present with greater opacity. Solid, filled, black markers
represent physical markers while markers with white center were virtually created during
data processing.

lateral (ML), and longitudinal (LG) directions. This analysis focuses solely

on Vicon marker positions and not IMU data. In order to enable their use,

additional rotations of the IMU data from the IMU frame to the anatomical

body frames is necessary. Since IMU output includes a measure of angular

velocity, relative angular velocities would then need to be computed.

In order to compute FBRP,LU
n , R is used to define the region in which

segments are behaving like an inverted pendulum (Fig. 4.2b, FBR5) instead

of a double pendulum (Fig. 4.2c, FBR1−4), as further described in Section

4.3.1. The nominal region R is defined based on the measurement noise
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of the IMUs used for this study (R = 0.03rad/s, Opal IMU, APDM, Inc.

Portland OR, USA) as this value sets a higher threshold of noise and allows

for appropriate comaprison of marker-based data to IMU-based data in the

future. FBRP,LU
n was computed comparing the left shank-femur, right shank-

femur, left femur-pelvis, right femur-pelvis, and pelvis-torso (Fig. 4.9b).

Similar to Priplata et al. [151], standard balance metrics were also ex-

tracted from right acromion marker at the shoulder: max AP Range, max

ML Range, and swept area (product of AP and ML Range). AP Range and

ML range were normalized for each participant by dividing the variable by

the shoulder marker height (×10−3). Meanwhile, swept area was normalized

by the division of the shoulder marker height squared (×10−6) [151].

4.5.5 Statistical Analysis

Statistical analysis was performed using SYSTAT 13.1 (Systat Software Inc.,

USA). To compare with previous literature, standard balance metrics were

compared between younger participants (Y) and older adults, subdivided

into slow- and moderate- gait speed (OS and OM). Three one-factor ANOVA

tests were performed assessing the main effect of group (Y, OS and OM)

on each of the three standard balance metrics extracted (AP Range, ML

Range, Swept Area). To conform with model residual normality assumptions,

logarithmic transformations were applied to the standard balance metrics.

Post-hoc pairwise comparisons using the Tukey procedure were performed

when significant main effects were observed.

Dependent measures of FBR could not be fit to a model that met normality

residual assumptions. Therefore, non-parametric Kruskal-Wallis (KW) tests

were performed to assess main effects of the hypotheses. To evaluate the

effect of group on FBR (hypotheses 1-4), using a KW model, a grouping

153



variable was defined that included the five balance regions, three anatomical

axes (AP, ML and LG), and three age groups, resulting in a total of 45

region-plane-group levels. The effect of region-plane-group on FBR value

was evaluated by performing a separate KW test for each body segment

comparison (5 tests, left shank-femur, right shank-femur, left femur-pelvis,

right femur-pelvis, and pelvis-torso). When significant main effects were

observed, the Conover-Inman post-hoc test was performed. The 45 total

region-plane-groups resulted in a total of 990 post-hoc comparisons. The

False Detection Rate controlling procedure [100] was implemented to address

the multiple omnibus tests performed (pi <
m0

m∗0.05), where m is the total

number of tests performed and m0 is the number of false null hypotheses

prior to the correction. Results from the separate right shank-femur, left

shank-femur, right femur-pelvis, left femur-pelvis, and pelvis-torso KW tests

resulted in an adjusted αRSF = 0.0407 (m0 = 805), αLSF = 0.0411 (m0 =

811), αRFP = 0.0443 (m0 = 877), αLFP = 0.0440 (m0 = 871), and αPT =

0.0436 (m0 = 864), respectively.

4.6 Results

Mean value and statistics for the standard balance metrics computed can

be found in Table 4.2. A significant main effect of experimental group (Y,

OS, and OM) was found on all three standard balance metrics (p < 0.05).

Post-hoc analysis revealed a significant difference in ML Range and Swept

Area between OS and OM (Cohen‘s D = 0.54 and 0.41, respectively) and a

significant difference in AP Range between Y and OS (Cohen‘s D = 0.37).

Region-plane-age group had a significant main effect on FBR value for all

segment comparisons, for example, pelvis-torso (PT, Fig. 4.10-4.12), right

femur-pelvis (RFP, Fig. 4.13-4.15), right shank-femur (RSF, Fig. 4.16-4.18).
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A significant main effect of region-plane-age group on FBR was also found

on left femur-pelvis and left shank-femur. Since left sided segments had

similar results to right sided segment, discussion will primarily focus on right

sided segments and left sided segments are included in the Appendix B. The

following sub-sections present additional details on the effects of age (H2),

region (H3), and plane (H4) on FBR. In Fig. 4.10-4.18,

Table 4.2: Effect of Experimental Group on Conventional Balance Metrics

Young* older Slow* older Mod.* p-Value**
AP Range 19.5 (0.8)† 23.1 (1.0) 21.8 (1.0) 0.048
ML Range 10.1 (1.0) 10.4 (0.7) 7.8 (0.6)† 0.003
Swept Area 234.7 (37.8) 286.9 (34.3) 198.7 (21.7)† 0.017

∗All values are presented as MEAN (SE)
∗∗Results for individual one-factor ANOVA tests assessing main effect of experiment group on metric
†Indicates significant different from older Slow Group
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Figure 4.10: FBRAP,PT
n for the AP pelvis-torso comparison. ∗∗Indicates for a particular

anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant difference
in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular experimen-
tal group and quadrant was significantly different from the other two anatomical planes.
#Signifies that for the particular experimental group and anatomical plane the labeled
FBR1/3 was significantly different from FBR2,4,5 in that same experimental group and
anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.11: FBRML,PT
n for the ML pelvis-torso comparison. ∗∗Indicates for a particu-

lar anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant differ-
ence in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.12: FBRLG,PT
n for the LG pelvis-torso comparison. ∗∗Indicates for a particular

anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant difference
in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular experimen-
tal group and quadrant was significantly different from the other two anatomical planes.
#Signifies that for the particular experimental group and anatomical plane the labeled
FBR1/3 was significantly different from FBR2,4,5 in that same experimental group and
anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.13: FBRAP,RFP
n for the AP right femur-pelvis comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.14: FBRML,RFP
n for the ML right femur-pelvis comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.15: FBRLG,RFP
n for the LG right femur-pelvis comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.16: FBRAP,RSF
n for the AP right shank-femur comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.17: FBRML,RSF
n for the ML right shank-femur comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure 4.18: FBRLG,RSF
n for the LG right shank-femur comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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4.6.1 The Effect of Age and Gait Speed on Balance

While the text below highlights significant differences in FBR due to age

and gait speed, Table 4.19 also contains all these comparisons graphically.

For the pelvis-torso comparison (Fig. 4.10-4.12), all anatomical planes (AP,

ML, LG) showed the trend FBR
OS ,Ef

2,4 > FBRY
2,4 (Effect size, r = 0.17-0.54).

There were no differences between the two older age groups in regions 2

and 4 in the AP and LG axes (Fig. 4.10 and 4.11). For the ML axis,

FBROM
2,4 > FBROS

2,4 (Fig. 4.11, r = 0.20 and 0.21, respectively). The ML axis

also showed a significant difference between Y and OM in regions 1 and 3

(FBROM
1,3 > FBRY

1,3, r = 0.18 and 0.21, respectively). The LG axis displayed

one similar trend (FBROM
1 > FBRY

1 , r = 0.16), but only for balance region

1. For all three axes in the pelvis-torso comparison, there was no significant

differences between experimental groups in FBR5.

For the right femur-pelvis comparison (Fig. ??), all anatomical planes

showed the trend FBROS
1,2,4 > FBRY

1,2,4 (r = 0.17-0.73). Anatomical axes AP

(Fig. 4.13) and ML (Fig. 4.14) also showed significant differences between Y

and OM in balance regions 2 and 4 (FBROM
2,4 > FBRY

2,4, r = 0.31-0.73). The

AP axis also showed differences between Y and OM in balance regions 1 and 3

(FBROM
1,3 > FBRY

1,3. Significant differences between older groups only existed

in the ML axis and in balance regions 2 and 4 (Fig. 4.14, FBROM
2,4 > FBROS

2,4 ,

r = 0.17 and 0.16, respectively). For all three axes in the right femur-pelvis

comparison, there was no differences between experimental groups in FBR5

with the exception of the ML axis and groups Y and OM (FBRY
5 > FBROM

5 ,

r = 0.15).

For the right shank-femur comparison (Fig. 4.16-4.18), all anatomical

planes showed the trend FBROS ,OM

1,3 > FBRY
1,3, r = 0.18-0.51). The ML (Fig.

4.17) and LG (Fig. 4.18) also showed the trend FBROS ,OM

2,4 > FBRY
2,4, r =
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0.17-0.57). There were no significant differences between the two older groups

for the right shank-femur comparison. In addition, there was no differences

between all experimental groups in FBR5 in all three axes.

Figure 4.19: Summary of all comparisons and effect sizes pertaining to the effect of age and
gait speed on value of FBR. The < and > symbols represent if the first value is greater than
or less than the second value, for example, Y < OS. The number of symbols is representative
of the effect size for the corresponding post hoc comparison: a) > or < Small effect size,
r < 0.30, b) >> or << Moderate effect size, 0.30 < r < 0.50, and c) >>> or <<< Large
effect size, r > 0.50.

4.6.2 The Effect of Balance Region on FBRP,UL

Post-hoc analysis revealed the general trend that for all three comparisons

(pelvis-torso, right femur-pelvis, and right shank-femur), all experimental

groups (Y, OS, and OM) and anatomical axes (AP, ML, LG) FBR5 >

FBR1−4 (r = 0.52 - 2.6). In general as well for all comparisons, experi-

mental groups and anatomical axes, FBR2,4 > FBR1,3 (r = 0.16-0.63) with

no significant differences between FBR1 and FBR3 and no significant dif-
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ferences between FBR2 and FBR4. The exception to this trend was in

the right shank-femur comparison in the LG anatomical axis and for exper-

imental groups Y and OS where there were inconsistent differences between

FBR1−4; however, FBR5 was still greater than and significantly different

from FBR1−4.

4.6.3 The Effect of Anatomical Plane on FBRUL
n

When comparing the pelvis-torso, (Fig. 4.10-4.12), for each of the three

experimental groups (Y, OS, and OM) and balance regions 1-4 (FBR1−4), the

three anatomical axes were significantly different following the general trend

FBRAP > FBRLG > FBRML (r = 0.17-1.01). Since the summed value of

FBR1−5 = 1 within each anatomical axis, for each of the three experimental

groups in FBR5 the opposite trend existed, FBRAP < FBRML,LG, but there

was no significant differences between FBRML and FBRLG.

When comparing the right femur-pelvis (Fig. 4.13-4.15), for each of the

three experimental groups, FBRAP,LG
1,3 > FBRML

1,3 (r = 0.31-0.51) with no dif-

ference between anatomical axes AP and LG. For young and older slow par-

ticipants, FBRLG
2,4 > FBRAP

2,4 > FBRML
2,4 (r = 0.36-1.0). For older moderate

participants FBRLG
4 > FBRAP

4 > FBRML
4 , however, FBRLG

4 > FBRAP,ML
4

with no significance differences between AP and ML anatomical axes. For

all experimental groups, FBRML
5 > FBRLG

5 , meanwhile FBRAP
5 was not

significantly different from either FBRML
5 or FBRLG

5 .

When comparing the right shank-femur (Fig. 4.13-4.15), for Y and OS ex-

perimental groups, FBRAP
2,4 > FBRML

2,4 > FBRLG
2,4 (r = 0.16-0.89); however,

for regions 1 and 3 there were no significant differences between anatom-

ical axes. For experimental group OM , FBRLG
2,4 < FBRAP,ML

2,4 (r = 0.63-

0.75) with no significant difference between axes AP and ML. When con-
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sidering FBR5, experimental group Y had an effect of anatomical axis with

FBRAP < FBRML,LG (r = 0.15-0.23). FBRAP
5 < FBRLG

5 (r = 0.15) for

experimental group OS. There were no differences between anatomical axes

for FBR5 within experimental group OM .

Figure 4.20: Summary of all comparisons and effect sizes pertaining to the effect of anatomi-
cal axis on value of FBR. The < and > symbols represent if the first value is greater than or
less than the second value, for example, Y < OS. The number of symbols is representative
of the effect size for the corresponding post hoc comparison: a) > or < Small effect size,
r < 0.30, b) >> or << Moderate effect size, 0.30 < r < 0.50, and c) >>> or <<< Large
effect size, r > 0.50.

4.7 Discussion

This chapter aimed to develop new methods for evaluating static balance

technique. The approach was to develop a new metric, termed the frequency

in balance region (FBRP,LU
n ), that quantified the frequency of time dur-

ing which body segments deviate from an inverted pendulum model. This
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measure was numerically defined in Section 4.3 and then used to evaluated

differences in static balance technique in three population: young adults (Y),

older slow gait speed adults (OS), and older moderately gait speed adults

(OM). We explicitly tested the hypotheses that differences existed when:

1. comparing ML sway, AP sway and swept area static balance metrics

between younger, older slow and older moderate adults (H1),

2. comparing FBRP,LU
n between younger, older slow and older moderate

adults (H2),

3. comparing FBRP,LU
n in each balance region (H3), and

4. comparing FBRP,LU
n in each anatomical direction (H4).

The first hypothesis of this work (H1) aimed to compare the population

of participants in this experiment to standard, outcome-based results from

the literature. As previously discussed, Priplata et al. [151] only found small

differences between younger and older adults when computing swept area.

While this experiment observed a small difference, it was only significantly

different between OM and Y, not between OS and Y. The difference, however,

was opposite that observed by Priplata et al. [151] with Y > OM as oppose

to older being greater than young. Since swept area is a product of AP and

ML range, the results presented here could be opposite that of Priplata et al.

[151] due to OM participants having a trending lower ML range than younger

participants. Melzer et al. [144] compared older faller to non-fallers and only

found differences in the ML range with fallers having a significantly greater

ML range than non-fallers. While not a direct comparison, OS has a signif-

icantly higher ML range than OM . Since slower gait speeds are associated

with higher rates of falls [124, 125], the present study is consistent with these

trends. Swept area using a single marker also makes the inverted pendulum
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assumption. Therefore, the limited differences in swept area do not mean the

same balance strategy was used. A similar swept area could be obtained with

different balance strategies.

Hypothesis 2 of this work aimed to see if our new metric quantifying bal-

ance technique (FBRP,LU
n ) was sensitive to balance changes that occur as a

result of aging and possible balance changes that might be associated with

changes in older gait speed. The results presented here support this hypoth-

esis, however, small effect sizes between OM and OS groups question the

clinical relevance of differences due to gait speed. In general, older partic-

ipants had a greater task percentage in FBR1−4 compared to the younger

individuals. In other words, older participants spent a greater task percent-

age deviating from an inverted pendulum than younger participants. These

age differences primarily existed for the AP axis (femur-pelvis and pelvis-

torso) and ML axis (shank-femur and femur-pelvis) as seen in Table 4.19.

The gluteus medius, a hip abductor, plays an important role in ML stability,

especially with increasing walking speeds [122]. Tirosh et al. [166] found de-

creased recruitment in the gluteus medius in older adults, which could lead to

decreased stability during walking compared to younger adults. Decreased

gluteus medius recruitment was also observed when Lim et al. [167] con-

trolled for gait speed thereby contributed less to ML stability. Decreased

gluteus medius recruitment or strength could be contributing to the results

seen here where older adults pelvis tended to rotated more in the ML axis

relative to the femur as seen in Fig. 4.14 and Table 4.20. This study did

not directly measure muscle strength and it is therefore difficult to conclude

if the differences observed due to aging are in fact due to weakened muscle

groups. Despite small effect sizes, FBRML,RFP differences between OS and

OM groups could also be early evidence of greater weakening in hip mus-
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cles, such as the gluteus medius, in slower walkers, but it is uncertain if this

difference is clinically relevant. Finally, greater time spent in FBR2,4 when

comparing the pelvis-torso and femur-pelvis could be representative of de-

creased trunk stability leading to more torso motion relative to the pelvis

and more pelvis motion relative to the femur. Decreased trunk stability is

also correlated with balance control [168].

Continuing to assess H2, large effects sizes and difference between young

and older participants were observed when comparing the shank-femur in

the ML axis. Ankle ROM and power tend to decrease as a result of aging

[169, 159, 170]. Therefore, it is possible that trends observed when compar-

ing shank-femur are due to upper segments and joints (i.e. knee, hip, and

core) compensating for lack of ankle motion and power. Additionally, knee

proprioception decreases with aging [171], which could contribute to more

knee motion during static balance. The knee joint is primarily a hinge joint

moving along its AP axis. Most of the shank-femur trends, which are indica-

tive of knee motion, are observed off-axis (ML and LG) which could be due

in part to decreased overall knee stability, increasing varus-valgus motion.

The data here also supported Hypothesis 3 that different percentages of

time were spent in each balance region, with FBR5 > FBR1−4 in nearly all

axes (AP, ML, and LG), segment comparisons (PT, RFP, and RSF), and

experimental group (Y, OS, and OM). This data also supported FBR2,4 >

FBR1,3 for a majority of axes, segments, and experimental groups. As shown

in Fig. 4.5, FBR2/4 correspond to a balance strategy in which the upper seg-

ment rotates with a larger magnitude in the opposite direction of the lower

segment, consistent with observations made by Aramaki et al. [160]. Unlike

Aramaki et al. [160], this work is able to decouple the relative angular veloc-

ity of upper segments into the AP, ML, and LG axes. Additionally, Aramaki
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et al. [160] only quantified relative motion between the head and hips. Here,

we are able to decompose pelvis from torso motion, femur from pelvis mo-

tion, and shank from femur motion. The additional decomposition of balance

strategy into multiple axes allows for a more comprehensive understanding

of balance strategy. As shown in Sections 4.4.1-4.4.3, different participants

used strategies relying more on the torso, while others used strategies in-

volving all joint. Additionally, we find differences between older gait speed

groups, specifically in the ML direction that were not present in the AP direc-

tion, which could be attributed to weakness in certain ML stabilizing muscle

groups. The ability to decompose balance technique into the three rotation

axes could lead to more informed strengthening exercises.

Finally, the data supports H4 that FBRP,LU
n does change across anatom-

ical axis, as highlighted in Table 4.20. The axis with the highest percentage

of time in FBR1−4 was not consistent between segment comparisons. For

example, the AP axis had a greater percentage of the task in FBR1−4 than

ML and LG when comparing pelvis-torso, while the LG axis had a greater

percentage of the task in FBR1−4 than AP and ML when comparing femur-

pelvis. For each segment comparison, the axis with the highest percentage of

time spent in FBR1−4 could be the most vulnerable to muscle weakening or

injury. In the case of the AP axis for the pelvis torso, for example, if partic-

ipants have more weakening of the core or back muscles, it is possible that

the time spent in FBRAP
1−4 could increase and make them more vulnerable to

loss of balance control. Results indicating more time spent in FBRAP
1−4 could

inform PTs and OTs what muscle groups to generally prescribe patients to

strengthen who might be at risk of loosing balance. From the examples pre-

sented in this paragraph, that would mean increasing core and back strength

to maintain stability in the spine and gluteus strengtheners for the hips, as
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also discussed previously. It is also important to note that when compar-

ing the shank-femur, younger adults spent more time with reciprocal double

pendulum behavior (FBR2,4) in the AP axis than ML. Meanwhile, OM there

was no difference between the AP and ML plane, while OS spent less time in

AP than ML although the effect size was small. Trends of the shank-femur

FBRAP
2,4 < FBRML

2,4 could be further evidence of less ML stability in the OS

as we start to see these participants spend more percentages of the task with

relative motion between segments in the ML direction.

This work operated under the assumption that a simple inverted pendu-

lum model (Section 4.2) was not sufficient to appropriately quantify static

balance technique. Previous literature using younger populations shows that

body segments above the ankle joints are fairly rigid, with a linear relation-

ship in marker displacement as a function of height from the ankle joint [155].

Previous work also uses double pendulum models by adding a joint about the

hips [160, 162]. Only Kim et al. [163] explored other joints beyond the hips by

looking at double pendulum behavior about the knee joint. Little other work

explores other joints despite evidence showing some knee, hip, and torso flex-

ion exists in the very work aimed at validating the inverted pendulum model

[155]. On average young and older participants spent 27% and 35%, respec-

tively, of task time deviating from an inverted pendulum in the AP axis. Our

work demonstrates that there are instances of time where assuming inverted

pendulum behavior is not appropriate. Assessing the behavior of multiple

joints and axes provides a comprehensive picture of a participant’s balance

strategy that could inform on certain muscle weakness and compensatory

strategies that would be missed using a single pendulum model. Aramaki et

al. [160] also agreed the usefulness of a double pendulum, showing that the

upper torso tended to move in the opposite direction as the lower leg segment,
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but there were times where these segments also moved in the same direction.

The data presented here shows a general FBR2,4 > FBR1,3, where time in

FBR2,4 is time where the upper segment is moving in the opposite direction

as the lower segment. Our results, however, extend upon that of Aramaki

et al. [160] because of our decomposition into multiple axes and joints. Ad-

ditionally, Accornero et al. [162] found that there existed rotational motion

about the hips. Here we find that more time spent FBR1−4 in the LG axis

than ML axis when comparing the pelvis and torso, indicative of longitudinal

twisting of the upper body relative to the hips. When comparing the femur

to pelvis, we fine more time spent in FBR2,4 in the LG axis compared to both

the AP and ML axes. Both findings in the pelvis-torso and femur-pelvis agree

with findings by Accornero et al. [162] illustrating rotation at the hips during

static balance tasks, but a balance description uses FBR is able to see how

other segments, specifically the torso and femur, are able to compensate for

this hip motion.

Manchester et al. [159] first described differences between young and older

balance strategies, finding that older adults tended to use more of a hip-based

strategy as compared to ankle-based for younger adults in the AP plane.

These results are supported here as we see greater percentage of task being

spent outside of FBR5 when comparing the femur-pelvis in both the AP and

ML axes, and in the ML axis when comparing the pelvis-torso and shank-

femur as well. A greater percentage of the task in FBR1−4 when comparing

the femur-pelvis indicates that the pelvis is moving relative to the knee and

ankle, supporting a hip-based strategy compared to an ankle-based strategy.

Additionally, as previously stated, increased time in FBR1−4 when compar-

ing the shank-femur could equally be due to decreased tibial angular velocity

(that could be caused by ankle flexion/extension or inversion/eversion) as it
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is indicative of more femur relative angular velocity (that could come from

knee flexion/extension). Accornero et al. [162] also assessed changes in bal-

ance between younger and older adults, describing older participants as more

rigid and less flexible than younger adults. Accornero et al. [162] used sim-

plified double pendulum model and a series of metrics that make it difficult

to infer actual balance strategy because of some joints that are left out, such

as the torso. It is possible that a double pendulum model that does not ap-

propriately decouple certain joints could appear similar to patterns expected

during a single pendulum model, similar to the findings of Gage et al. [155].

As we do here, decoupling more joints provides a comprehensive assessment

of balance technique that is valuable for individuals and clinical populations

by revealing some potential muscle weakness.

Hypothesis 2 of this work aimed to better disambiguate older adults with

slow versus moderate gait speeds using the SBT task and static balance

technique. While this work showed some differences between these two older

groups, the effect sizes were small and it is difficult to conclude whether these

differences are clinically relevant or warrant clinical intervention. The clinical

relevance of the observed small effects sizing is likely due to static balance

not sufficiently encompassing all mechanisms that are involved in human

gait. Gait and locomotion are integrated tasks of which static balance plays

a role. However, dynamic balance and higher order aspects of proprioception,

vision, cognition, strength, and cardiopulmonary function, also play a large

role in locomotion, part of the reason it is still very difficult to disambiguate

slow from fast older walkers. While FBR provides insight into static balance

strategy and potential muscle weaknesses, it is not currently sensitive to other

measures, such as gait speed. Other features likely play a more significant role

in gait speed decrements in older adults. Analysis of a series of tasks and their
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corresponding technique, similar to the SPPB, might be more appropriate

than one simple static balance test. Additionally, one single deficit might not

be the culprit for all slow older walkers; the variability within the population

is multi-factorial. However, FBR was sensitive to general age-related changes

in balance technique. As stated in Section 1.1, OTs typically uses multiple

motion features to assess a patient’s performance when completing a task.

If an older adult entered a clinic, they would likely assess features beyond

balance, such as motor coordination. Future work will include analysis that

uses multiple technique-based metrics, such as the coordination measures

used in Chapters 2 and 3.

This work focused entirely on a marker-based analysis with insight into

future analysis using wearable sensors. Future work will explore the ability

to collect FBR using a network of IMUs as this would make it easier to

collect these data in clinical environments. Accurate alignment of the IMU

reference frame with the corresponding body segment reference frames is still

a challenge [67, 69]. Inappropriate alignment could lead to angular velocity

cross talk between axes, especially those with small value, such as ML and

LG of the knee axis. Alignment errors are not limited to the IMUs as small

misalignment or movement of the reflective motion capture marker location

relative to appropriate anatomical land marks could lead to similar errors in

this analysis.

4.8 Conclusions

Static balance is assessed and quantified using outcome-based measures that

do not inform on underlying kinematic and motor control techniques. This

work developed a metrics for static balance, FBRP,UL
n , and used it to evaluate

changes in balance strategy due to aging and changes in gait speed. Anal-
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ysis showed that this new measure was able to quantify aspects of balance

strategy and highlight differences in technique between younger and older

adults. While this metric was not sensitive to older participant gait speed,

locomotion is an integrative task that might not be thoroughly explained by

one measure of static balance measure. This novel measure does allow for

potential analysis of other clinical population and could provide the sensitiv-

ity to better assess disorders more directly related to balance and postural

control.
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Chapter 5

Conclusions and Future Work

The goal of this work was to develop quantified, motion-based measures for

decisions that are often made qualitatively focusing specifically on challenges

faced by the domains of rehabilitation and aerospace medicine. Based on

observations of OTs (Section 1.1) and observations of MKIII suit fit checks

(Section 3.1.2), we set out to address the following research questions in both

our domains of interest:

1. Can we provide information on how motions are performed not just the

outcomes of the motions being performed?

2. Are these metrics sensitive enough to detect operationally relevant dif-

ferences that might influence decision making?

In this thesis, these research questions were addressed in the following

three Specific Aims:

1. Develop and determine whether a new metric for coordination

can detect operationally relevant differences in motor control

2. Adaptation and validation of this new measure for coordina-

tion to the field of bioastronautics, specifically detecting oper-

ationally relevant changes in suit fit
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3. Develop and determine how differences in balance technique

can detect operationally relevant differences in postural control

The first aim was addressed in Chapter 2 with the description and de-

velopment of a new, more intuitive measure for joint coordination called the

relative coordination metrics (ρ) and assessed how it could detect coordi-

nation differences during a grasping task. This coordination measure was

then adapted to tackle the problems associated with dynamic spacesuit fit

in Chapter 3. Finally, Chapter 4 introduced a new metric for quantifying

balance technique (FBR) and used it to evaluate static balance strategy

differences between older and younger adults.

5.1 Summary of Results

This section summarizes the main results from each of the chapters of this

thesis. Section 5.2 presents major contributions to the literature.

5.1.1 A Method for Quantifying Coordination during Non-Cyclic

Motions

Chapter 2 introduced existing methods used to quantify joint coordination.

These existing measures, however, made it difficult to infer the underlying

joint motion profiles. The Relative Coordination Metric (ρ, Eq. 2.7 and Eq.

2.8) is velocity-based and has fewer mathematical transformations, making

it easier to relate to the underlying joint motions. ρ is a time-series metric

and a composite metric (t̂±Zn
) was defined to provide summary coordination

measures. Using ρ to evaluate the coordination patterns of a grasping task

in a healthy population, we demonstrate that ρ is sensitive to differences in

strategy between planar reaching tasks with slight differences, such as path
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length or grasping different objects (pen and cup). We also show and discuss

how the interpretation of ρ can be affected by the implemented normalization

scheme. Similar to measures of gait, normative data will be required to

interpret other task strategies.

5.1.2 Objective Means of Quantifying Spacesuit Fit

Chapter 3 considered spacesuit fit. The suit fit process was evaluated through

a similar cognitive task analysis discussed in Section 1.1.1 to inform the types

of quantitative metrics that could support operational decision-making. We

defined two areas of fit: static and dynamic fit (Fig. 3.2). We then performed

an experiment to determine how changes in static fit, specifically padding

between the hips and suit hip brief, would affect dynamic fit. To quantify

dynamic fit, ρ from Chapter 2 was repurposed to quantify the relative motion

between the human and the suit (ρHS, Eq. 3.2). A pilot study showed

(n = 3), the data showed that the effect of padding on gait parameters and

dynamic was mixed and subject-specific. Since each participant was wearing

a different configuration of the MKIII spacesuit, there was some evidence

that the length of the leg compared to the human leg length and boot fit

contributed more to changes in ρHS and dynamic fit than the padding we

placed between the human and suit hip. This experiment did not attempt

to assess “goodness” of fit, simply the sensitivity of new candidate metrics

to changes in performance due to components of fit. As fit is a function

of multiple factors, it is necessary to have multiple metrics to quantify this

complex term. Regardless, this work was some of the first to decouple human

motion and suit motion to understand how the human moved within the suit.

It was also the first to define terms such as static and dynamic fit.
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5.1.3 Technique-based Measures for the Standing Balance Test

Chapter 4 of this thesis considered quantifying balance technique. Static

balance is assessed and quantified using outcome-based measures that do not

inform on underlying kinematic and motor control techniques, such as the

inverted pendulum model that considers all joints to be rigid except the ankle

joint. This work developed a metric for static balance, Frequency in Balance

Region or FBRP,UL
n that provides an understanding of the relative motion

between body segments. While walking is known to slow due to the aging

process, evidence shows that slower gait speeds are correlated with higher

mortality. This work therefore used FBRP,UL
n to evaluate changes in static

balance strategy due to aging and changes in gait speed. This new measure

was able to quantify aspects of balance strategy and highlight differences

in technique between younger and older adults. While this metric was not

sensitive to older participant gait speed, locomotion is an integrative task

that might not be thoroughly explained by one measure of static balance.

5.2 Contributions to Literature

This thesis makes several contributions to the existing literature on human

biomechanics, rehabilitation, and, aerospace medicine:

1. We define a new metric for coordination that is velocity-based, has the

ability to compare 2 or more joint DoF, can be applied to cyclic and non-

repetitive tasks, and is easier to relate to the underlying kinematics.

2. We provide recommendations for the appropriate normalization of ρ and

t̂±Zn
for upper extremity planar tasks.

3. We provide a comprehensive definition and categorization of spacesuit

fit: static and dynamic fit. These definitions can be used to better
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quantify and understand the problems associated with fit as well as

other human-machine systems such as exoskeletons.

4. We defined a new measure for dynamic spacesuit fit (ρHS) that can be

used to measure the relative motion between humans and spacesuits

using small and easy-to-use IMUs.

5. We demonstrated that in the Mark III spacesuit aspects of static fit,

such as boot sizing and leg length, have a higher impact on dynamic fit

than indexing that can be used to modify static fit.

6. We defined a new metric for balance that quantifies multi-axis static

balance technique by measuring deviations from an inverted pendulum

model of multiple body segments.

7. We demonstrated differences in multi-axis balance technique between

older and younger adults, specifically that older adults in the medio-

lateral direction, spent more time behaving like multi-segment inverted

pendulums compared to younger adults.

5.3 Applications and Future Work

This thesis sits at the intersection of several fields with many open research

questions. The three chapters and specific aims of this thesis only scratch

the surface of the many open ended problems associated with the needs of

rehabilitation, tele-rehabilitation, and spacesuit fit. For example, this thesis

only focused on quantifying two human motion features: coordination and

balance. However, work by Stirling and McLean [2] described a much larger

list of motion parameters need to be addressed for clinicians to have all the

information required for defining a plan-of-care. We now present some of

the closely-related areas that we did not address in this thesis, and some
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research and development directions worth additional investigation based on

the results of this work.

5.3.1 Computing Coordination Patterns for a Diverse Set of Tasks

In Chapter 2 of this thesis, we derived and presented a new metric for coordi-

nation termed the Relative Coordination Metric (ρ12, Eq. 2.7). Additionally,

we used this metric to quantify and assess upper extremity coordination of

four variations to a reaching and grasping task confined to a table. As dis-

cussed in Chapter 1, rehabilitation is a heterogeneous clinical practice that

is personalized to the patient and their respective pathology. If the goal is

to use metrics like these to help influence decision-making, there is also a

need to understand the motor control patterns of healthy individuals for a

variety of ADLs, such as over head reaching, two handed carrying, and more.

One way such way of quickly understanding healthy motor patterns would

be to take advantage of large databases, such as the Carnegie Mellon Motion

Database [172]. This database provides a comprehensive and diverse set of

healthy patient motion profiles that could be used to create a series of ref-

erences for clinicians. While ρ12 is more intuitive than existing coordination

metrics, a standard set of nominal ρ12 would facilitate the use of the metric

in clinical settings by providing examples to clinicians and facilitating learn-

ing. Since many physical medicine physicians are taught to visually assess

their patients, a database of nominal measures could be used as a resource to

aid translatability and usability in clinical environments. This suggestion is

similar to current clinical practice in gait labs. Currently available databases

might not successfully capture all the motion variability that exists within

the population. Available databases need to be extended to have additional

participants to examine the natural variance. More work is needed to un-
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derstand that natural variance that exists within the population to establish

guidelines for operationally relevant changes in motor control that might re-

quire clinical intervention.

5.3.2 Longitudinal Progression of Patient Progression

One of the goals of tele-rehabilitation (Section 1.1.1) is to disambiguate pa-

tient progression in between visits. In between clinical visits it is unclear

if a patient performs their therapy tasks appropriately, if at all, while at

home. Future, longitudinal studies could explore integrating sensors into pa-

tient homes. These sensors could collect data to help OTs better understand

progression at home and help influence patient plan-of-care decisions. Col-

lecting data in both the clinic and home environment could also help quantify

the variability found in data collected in the home environment and associ-

ated with patients putting on sensors themselves compared to a researcher

or clinician.

Additionally, early detection of musculoskeletal disease can prompt early

intervention that improves outcomes and quality of life. These improved

outcomes have specifically been studied, for example, in Parkinson’s [173],

psoriatic arthritis [174], and dismobility [123]. Early diagnosis of some of

these diseases, however, can be difficult. In the case of Parkinson’s, as much

as 60% of neurons are often degenerated before neurologists can make a di-

agnosis based on the established clinical criteria [173]. Advanced motion

motoring could be used to track patients more longitudinally and establish

new diagnostic criteria. It is possible that the rise of more advanced and

portable wearable sensors could allow for more sensitive measures that de-

tect operationally relevant changes in motor control prior to it being visible

to the naked eye. Future work could explore longitudinal motion motoring of
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patients with various musculoskeletal diseases to help develop techniques and

metrics that detect these diseases even earlier. Using genetic testing, high-risk

patients could also be monitored over long periods of time to quantify some

of the earliest signs of these debilitating diseases. Home motoring of high-

risk patients has the potential to detect instances of poor motor performance

that might not be seen in the clinic. For example, higher rates of tripping

categorize a patient as high-risk for falling, but sometimes the patient might

not remember this and report it to their clinician [175]. Therefore, a system

that is able to detect these relevant changes in motion performance while

the patient is away from the clinic could also help with early diagnosis and

intervention.

5.3.3 Development Goal-based Performance Metrics

As stated in Section 5.3.1, understanding the motors patterns of healthy in-

dividuals also provides a template that could be used for potential patient

goals setting. Figure 1.1 highlights potential tele-rehabilitation system im-

plementations. Vocal and visual cuing is a vital piece of feedback for patients

as they go through any form of rehabilitation [2]. If these metrics were used

in a tele-rehabilitation setting, a database of goal motion profiles could be

used to train patients at home. In telemedicine, providing patients with

visual feedback and goals while they are home is known to improve motiva-

tion and compliance with the home plan-of-care, something critical to any

rehabilitative program [176]. One way we could create goal-based metrics is

quantifying the coordination between a desired and undesired motor pattern.

In other words, similar to how in Chapter 3 we quantified the coordination

between the human and suit (Eq. 3.2), we compute the relative coordination

between the desired coordination pattern of a joint compared to what the
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patient is doing at home. Comparing patient coordination to desired coordi-

nation patterns provides patients with a goal. This type of real-time feedback

and goal setting could replace the vocal, tactile, and visual cues provided by

the clinician. Future work could assess the feasibility of such a metric and

its usefulness in a clinical and tele-rehabilitation settings.

5.3.4 Comprehensive Suit Fit Assessments

Figure 3.1 highlights the many decisions made when fitting a human to a

spacesuit. Chapter 3 of this thesis quantified two aspects of dynamic fit,

leaving many more to be explored. For example, in Fig. 3.1b, shoulder strap

tension is frequently reevaluated during the fit check process. Future work

could explore nominal shoulder strap tensions based on different astronaut

anthropometry.

In order to more comprehensively understand what sizing components

of the spacesuit have the largest effect on performance, a comprehensive

large scale study in which participants wear and perform tasks with different

suit sizing configurations is necessary. Our study varied aspects of static fit

through the addition of padding and measured changes in dynamic fit. We

concluded that certain boot designs and leg lengths might have a greater

effect on dynamic fit than the padding added. Therefore, future work should

explore varying other aspects of the suit configuration and evaluating their

effects on task performance and fit metrics. Our work here demonstrates

that the spacing between the human and suit does not have a large effect

on performance and fit, at least in the hip region we assessed and within

the range we saw in this experiment (≤ 0.75in, Table 3.1). This knowledge

gives suit design engineers flexibility when constructing future generations of

the spacesuit. A larger comprehensive study allows engineers to decide what
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sizing changes would result in operationally relevant changes in performance.

In other words, we could better understand how many different sizes of the

spacesuit we would need for our astronauts. A larger study with more par-

ticipants would also begin to capture more of the variability that exists in

the population as it relates to spacesuit sizing. Finally, it is important that

any future suit fit experiments collect more comprehensive and thorough sub-

jective feedback from participants so we can begin to understand how these

more objective fit measures relate to qualitative preferences.

5.3.5 Suit Fit in Operationally Relevant Environments

Recently, the first all female EVA was canceled due to operational constraints

and suit size availability [177]. Astronaut Anne McClain was replaced due to

the unavailability of a medium sized EMU torso. In microgravity, astronauts

can grow 1 − 3in due to the lack of gravity allowing for spinal elongation.

McClain trained in both a medium and large sized upper torso on Earth to

prepare for this possibility, but after performing one spacewalk in the large

upper torso while aboard to the ISS, realized she still preferred the medium

sized suit. Due to time constraints, it was easier for NASA to switch astro-

nauts for the place all-female spacewalk than reconfigure the EMU spacesuit.

This resulted in a PR nightmare for NASA but also sheds light on how impor-

tant it is to understand suit fit more than ever, especially understanding how

fit might change in non-1G environments. Future work should explore suit

fit in more operationally relevant environments where possible. For example,

as NASA prepares for return missions to the moon, they could test the sizes

and performance of their next-gen planetary suits on parabolic flights that are

able to mimic lower gravitational environments. The drawback of parabolic

flight is that the periods of time in lower gravity on not long enough to
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evaluate tasks over relevant time periods. For longer time scales, the Active

Response Gravity Offload System (ARGOS) could be used to mimic lower

gravity fields, but the human still experiences Earth gravity inside the suit,

leading to similar pressures experiences by the astronaut in the direction

of gravity. While not perfect analogs, parabolic flight and ARGOS would

provide a more comprehensive understanding of suit fit in a gravitational

environment more relevant to the one where astronauts will actually operate.

5.3.6 Assessing Balance Technique of Other Patient Populations

Similar to the recommendations and future work presented in Section 5.3.2,

our new measure for balance could be used to assess postural differences as-

sociated with other clinical balance disordered. FBR could be applied to

better understand the underlying balance technique associated with patholo-

gies with more direct effects on static balance, such as muscular dystrophy,

cerebral palsy, vestibular disorders, and multiple sclerosis. Future work could

also explore the progression of these balance disorder over time to help clin-

icians compile new standards for early detection and diagnosis of underlying

disease.

5.4 Concluding Remarks

This thesis took a first step in making complex motion data easier to digest

for people who need it to make decisions relevant to their field. We did not

explicitly set out to build a tele-rehabilitation system or redesign the space-

suit. The design of a spacesuit or the development of tele-rehabilitation tools

require the fusing multiple streams of data. Within this thesis, we designed

and evaluated metrics that are essential for accomplishing these larger goals
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of developing tele-rehabilitation systems or building better spacesuits. Hu-

man biomechanics necessitates a complex recruitment of our neurological and

musculoskeletal system. Subject matter experts, such as OTs and suit en-

gineers, fuse many streams of data together. Looking at every data stream

available to them can be an overwhelming tasks, which is why biomechanical

human performance metrics for decision-making, like the ones created in this

thesis, could reduce the workload and enable improved decision making of

subject matter experts.
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Appendix A

Testing Material and Questionnaires

This appendix contains all testing material and screening questionnaires used
in Chapter 4 during the experiment in Section 4.5 of this thesis.
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Date: ____________ Subject Number: _____
 Background Questionnaire

Experimenter: I am going to ask you a series of background questions to aid us in our experiment:

3. Are you in pain today? YES NO
If YES, how would you rate it on a scale of 0 (no pain) to 10 (agonizing pain)? _____________

Start Time: ____________

5. Have you consumed any caffine today? YES NO
If YES, how many equivalent cups of coffee have you had today? _____________

 For Experimenter’s Use Only

6. Do you exercise? YES NO

 
 Cardio
 Strength

 NO YES
If YES, please specify the exercise and frequency:

If YES, please specify when was the last time you exercised? ______________

4. On a scale from 1 (no fatigue) to 10 (extreme fatigue), how would  you rate your current level of fatigue? _____

1. Age? ___________ 

2. Gender? Male Female

7. What is your dominant hand? Left Right

8. What is your dominant foot? Left Right



Date: ____________ Subject Number: _____
Screening Health Questionnaire

Start Time: ____________

Experimenter: I am going to ask you a series of questions to screen for any exclusion criteria in this experiment:

1. In the last week, have you experienced:
 
 Numbness
 Weakness in Lower Extremities 
 Shortness of Breath
 Chest Pain/Heart Palpitations
 Dizziness or Loss of Conciousness

 NO  For Experimenter’s Use Only YES

Answering YES to the bolded questions above will exclude the subject from this study.

3. Please list any lower extremity surgeries for which you have been hospitalized:
Surgery
________________________
________________________

Year
____________
____________

Surgery
________________________
________________________

Year
____________
____________

Any lower extremity surgey within the last 6 months will exclude the subject from this study.

4. Do you take any medication?
Please list any prescription or non-prescription drugs (i.e. herbal supplements, vitamins) you are presently taking:
 Medicine and Reason for taking  Medicine and Reason for taking 

YES NO

Any medications with known musculoskeletal side effects will exclude the subject from this study.

2. Have you ever been diagnosed with the following conditions:
 
 High Blood pressure / Heart Problems (Circle One)
 Circulatory / Vascular / Blood Problems
 Stroke
 Lung Problems / Tuberculosis
 Diabetes
 Head Injury / Seizure disorders / Epilepsy
 Neurology Problem (Parkinson’s, MS, Neuropathy, etc.)
 Athritis (Rheumatoid, Osteo, Osteoporosis, Osteopenia)
 Orthopedic Problems (fracture, dislocations, etc.)

 NO  For Experimenter’s Use Only YES

 Visual / Hearing / Sensory Problems

Answering YES to the bolded conditions listed above will exclude the subject from this study. 

5. Do you have a pacemaker/Defibrillator? YES NO

Answering YES to the above question will exclude the subject from this study.



Date: ____________ Subject Number: _____

End Time: ____________

Is this subject eligible for this study? YES NO

7. Do walk with any assistive devices? (cane, walker, etc.) 
If YES, please list what you use: ________________________________________________________ 

Answering YES to the above question will exclude the subject from this study.

YES NO

6. Do you have any allergies? (i.e. materials, latex, etc.) 
If YES, please list any allergies you have: ________________________________________________________ 

Allergies to any materials found within our device will exclude the subject from this study. 

8. Are you between the ages of 18-30 or above the age of 65? YES NO

Answering NO to the above question will exclude the subject from this study.

YES NO9. Are you fluent in English? 

Answering NO to the above question will exclude the subject from this study.



Appendix B

Supplemental Figures:
Technique-based Measures for the
Standing Balance Test

This appendix contains supplemental figures for results and statistical anal-

ysis of left-side Frequency in Balance Region (FBR) performed in Chapter 4

during the experiment in Section 4.5.
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Figure B.1: FBRAP,LFP
n for the AP left femur-pelvis comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure B.2: FBRML,LFP
n for the ML left femur-pelvis comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.

217



Figure B.3: FBRLG,LFP
n for the LG left femur-pelvis comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure B.4: FBRAP,LSF
n for the AP left shank-femur comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure B.5: FBRML,LSF
n for the ML left shank-femur comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure B.6: FBRLG,LSF
n for the LG left shank-femur comparison. ∗∗Indicates for a par-

ticular anatomical axis (AP, ML, or LG) and balance region (FBR1−5), a significant dif-
ference in experimental group (Y, OS, or OM) was detected. ∗Indicates the particular ex-
perimental group and quadrant was significantly different from the other two anatomical
planes. #Signifies that for the particular experimental group and anatomical plane the la-
beled FBR1/3 was significantly different from FBR2,4,5 in that same experimental group
and anatomical plane. †Signifies that for the particular experimental group and anatomical
plane the labeled FBR2/4 was significantly different from FBR1,3,5 in that same experimen-
tal group and anatomical plane. ‡Signifies that for the particular experimental group and
anatomical plane, FBR5 was significantly different from FBR1−4 in that same experimental
group and anatomical plane. More differences were detected but are not listed for simplicity.
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Figure B.7: Summary of all comparisons and effect sizes pertaining to the effect of age and
gait speed on value of FBR. The < and > symbols represent if the first value is greater than
or less than the second value, for example, Y < OS. The number of symbols is representative
of the effect size for the corresponding post hoc comparison: a) > or < Small effect size,
r < 0.30, b) >> or << Moderate effect size, 0.30 < r < 0.50, and c) >>> or <<< Large
effect size, r > 0.50.

Figure B.8: Summary of all comparisons and effect sizes pertaining to the effect of anatomical
axis on value of FBR. The < and > symbols represent if the first value is greater than or
less than the second value, for example, Y < OS. The number of symbols is representative
of the effect size for the corresponding post hoc comparison: a) > or < Small effect size,
r < 0.30, b) >> or << Moderate effect size, 0.30 < r < 0.50, and c) >>> or <<< Large
effect size, r > 0.50.
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