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Abstract

Optimization under uncertainty forms the foundation for many of the fundamental
problems the operations research community seeks to solve. In this thesis, we develop
and analyze algorithms that incorporate ideas from machine learning to optimize
uncertain objectives directly from data.

In the first chapter, we consider problems in which the decision affects the observed
outcome, such as in personalized medicine and pricing. We present a framework for
using observational data to learn to optimize an uncertain objective over a continuous
and multi-dimensional decision space. Our approach accounts for the uncertainty in
predictions, and we provide theoretical results that show this adds value. In addition,
we test our approach on a Warfarin dosing example, and it outperforms the leading
alternative methods.

In the second chapter, we develop an approach for solving dynamic optimization
problems with covariates that uses machine learning to approximate the unknown
stochastic process of the uncertainty. We provide theoretical guarantees on the effec-
tiveness of our method and validate the guarantees with computational experiments.

In the third chapter, we introduce a distributionally robust approach for incor-
porating covariates in large-scale, data-driven dynamic optimization. We prove that
it is asymptotically optimal and provide a tractable general-purpose approximation
scheme that scales to problems with many temporal stages. Across examples in ship-
ment planning, inventory management, and finance, our method achieves improve-
ments of up to 15% over alternatives.

In the final chapter, we apply the techniques developed in previous chapters to
the problem of optimizing the operating room schedule at a major US hospital. Our
partner institution faces significant census variability throughout the week, which
limits the amount of patients it can accept due to resource constraints at peak times.
We introduce a data-driven approach for this problem that combines machine learning
with mixed integer optimization and demonstrate that it can reliably reduce the
maximal weekly census.

Thesis Supervisor: Dimitris Bertsimas
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Chapter 1

Introduction

Optimization under uncertainty forms the foundation for many of the the fundamental

applications the operations research community seeks to solve. A retailer managing

inventory levels, an investor allocating money, a hospital scheduling resources, and a

physician prescribing treatments all face problems that share the same characteristics.

Each aims to make a decision to optimize an objective function that depends on an

uncertain quantity. The retailer faces uncertain future demand when deciding how

much inventory to order to maximize profit. The investor faces uncertain future

returns when trying to construct a portfolio with an optimal risk-reward tradeoff.

The hospital faces unknown future demand for services when creating its operating

room schedule. The physician faces uncertainty in how the patient will respond when

prescribing a treatment to minimize adverse effects.

Formally, we model the uncertainty in each of these problems as a random variable

with an unknown distribution. In practice, decision makers have access to data con-

sisting of past realizations of the uncertainty, so we aim to learn to make near-optimal

decisions from this data. In addition, decision makers often have access to auxiliary

covariates that can help predict future uncertainty. For example, the retailer has data

on market trends and social media interest that can help predict future demand, and

the physician knows demographic and genetic factors that can help predict how a pa-

tient will respond to specific treatments. The covariates provide valuable information

for the decision-maker, but it is not always clear how to efficiently use them. Many
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effective machine learning methods exist for using covariates to make point predic-

tions. However, learning to make good decisions presents a greater challenge because

it often requires an understanding of the distribution of the uncertainty rather than

just a point prediction. In this thesis, we develop and analyze data-driven algorithms

that incorporate ideas from machine learning in order to solve optimization problems

with auxiliary covariates.

1.1 Background

We now review some existing data-driven approaches to optimization problems with

covariates. These basic problems are characterized by four components:

∙ Decision: 𝑧 ∈ 𝒵 ⊂ R𝑑𝑧 ,

∙ Uncertainty: 𝑌 ∈ 𝒴 ⊂ R𝑑𝑦 ,

∙ Cost function: 𝑐 : 𝒵 × 𝒴 → R,

∙ Auxiliary covariates: 𝑋 ∈ 𝒳 ⊂ R𝑑𝑥 .

For a newly observed vector of auxiliary covariates, 𝑥 ∈ 𝒳 , we want to find a decision

that minimizes the conditional expected cost,

min
𝑧∈𝒵

E[𝑐(𝑧;𝑌 ) | 𝑋 = 𝑥]. (1.1)

While we do not know the conditional distribution of 𝑌 given 𝑋, we do have access

to data consisting of 𝑁 observations,

(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁).

One approach to solving (1.1) is sample average approximation (SAA). In this ap-

proach, we replace the unknown distribution of 𝑌 with the empirical distribution of

16



the training data, resulting in the following problem:

min
𝑧∈𝒵

1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑧; 𝑦𝑖).

Despite its simplicity SAA produces asymptotically optimal decisions for (1.1) if 𝑌

is independent of the covariates 𝑋 (under mild technical conditions on 𝒵 and 𝑐). In

other words, if the covariates provide no information on the uncertainty, then the

optimal decisions for the SAA problem converge to optimal decisions of (1.1) as the

number of training samples goes to infinity. For more details, see Shapiro et al. [89].

A key limitation of SAA is that it ignores the covariates, so when 𝑋 provides

information about 𝑌 , it may produce decisions that are asymptotically suboptimal

for (1.1). Bertsimas and Kallus [15] propose a modified approach in which they

replace the unknown distribution of 𝑌 by a weighted empirical distribution,

min
𝑧∈𝒵

𝑁∑︁
𝑖=1

𝑤𝑁
𝑖 (𝑥)𝑐(𝑧; 𝑦𝑖), (1.2)

where 𝑤𝑁 : 𝒳 → R𝑁 is a weight function. Many choices of weight functions exist,

but, intuitively, for each 𝑖 ∈ {1, . . . , 𝑁}, 𝑤𝑁
𝑖 (𝑥) should measure the similarity between

the new covariate vector, 𝑥, and the covariate vector of the 𝑖th training example, 𝑥𝑖.

Bertsimas and Kallus [15] list several examples, including the 𝑘-nearest neighbor

weight function,

𝑤𝑁,kNN
𝑖 (𝑥) :=

⎧⎪⎨⎪⎩
1

𝑘
, 𝑥𝑖 is a 𝑘-nearest neighbor of 𝑥 out of {𝑥1, . . . , 𝑥𝑁},

0, otherwise,

where 𝑘 ∈ N, and the kernel regression weight function,

𝑤𝑁,𝐾𝑅
𝑖 (𝑥) := 𝐾

(︂
‖𝑥𝑖 − 𝑥‖

ℎ

)︂
,

where ℎ > 0 is a bandwidth parameter and 𝐾(·) is a kernel function (such as the

Gaussian kernel, 𝐾(𝑢) = 1√
2𝜋
𝑒−𝑢2/2). In addition, they introduce weight functions
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inspired by classification and regression trees (CART) and random forests. We will

discuss these further in later chapters.

All of the above-mentioned weight functions are inspired by nonparametric ma-

chine learning methods. These nonparametric methods have proven effective at pre-

diction because they can learn complex relationships between the covariates and the

response variable without requiring the practitioner to know an explicit parametric

form. Similarly, Bertsimas and Kallus [15] show that, under appropriate conditions,

optimal decisions for (1.2) with these weight functions are asymptotically optimal for

(1.1), without any parametric assumptions on the relationship between 𝑋 and 𝑌 . In

other words, incorporating covariates via a nonparametric weight function in (1.2) can

lead to asymptotically better decisions than SAA, even without specific knowledge of

how the covariates affect the uncertainty.

1.2 Contributions

This thesis extends the approach in (1.2) along several dimensions. In particular,

we consider observational optimization problems in which the decision, 𝑧, affects the

observation of the uncertainty, 𝑌 . This occurs in several important applications, such

as personalized medicine and pricing. We also consider dynamic optimization prob-

lems, which consist of a series of temporal stages. In each stage, 𝑡 ∈ {1, . . . , 𝑇}, the

decision maker chooses a decision 𝑧𝑡 and then observes uncertainty 𝑌𝑡. For example,

consider the retailer managing its inventory of a product. Each week, the retailer

observes the current inventory level and decides how much to order for the following

week. Crucially, the retailer bases its decision on the remaining inventory level at

that time, which depends on the realizations of demand in past weeks. Therefore,

in dynamic problems, the decision in each stage is not a fixed quantity, but rather a

function of the uncertainty revealed by that point in time. We develop and analyze

approaches to these problems in the following chapters.
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Optimization over Continuous and Multi-dimensional Decisions

with Observational Data

In Chapter 2, we consider observational optimization problems. The data in this case

consists of tuples of covariates, decision, and uncertainty, (𝑥1, 𝑧1, 𝑦1), . . . , (𝑥𝑁 , 𝑧𝑁 , 𝑦𝑁).

This setting introduces two challenges not present in the basic setting of (1.1). First,

the data is incomplete. We do not observe what the realization of the uncertainty

would have been under a different decision. Second, there may be confounding be-

tween 𝑧 and 𝑦 in the training data. We address these challenges with a method that

not only predicts the cost of each potential decision, but also estimates the variance

of those predictions. Accounting for the variance of the predicted cost adds signifi-

cant value when the decision space, 𝒵, is continuous or multidimensional and there

are many potential decisions. We establish this through both theoretical and com-

putational results. As an example, we consider the problem of personalized Warfarin

dosing, in which the decision, 𝑧, is the dose assigned to the patient, the uncertainty,

𝑌 , is the response of the patient, as measured by the international normalized ratio,

and the covariates for each patient, 𝑋, include demographic information, medical

history, and the genotype variant at certain sites. We compare our method against

alternatives on real data and find that our approach obtains the best out-of-sample

performance across all sizes of training sets.

From Predictions to Prescriptions in Multistage Optimization

Problems

In Chapter 3, we consider 𝑇 -stage dynamic optimization problems with covariates.

We assume that, in addition to the uncertainty, 𝑌 , evolving over time, the covariates,

𝑋, also evolve over time. The decision maker must take into account this additional

available information when making decisions. We introduce a data-driven approach

to these dynamic problems that uses machine learning to define a stochastic process

with finite support that approximates the true stochastic process of the uncertainty,

(𝑌1, . . . , 𝑌𝑇 ). We can solve the resulting problem with techniques from dynamic pro-
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gramming and approximate dynamic programming (see Bertsekas [11] for reference).

We prove that the decisions produced by our approach are asymptotically optimal un-

der mild, nonparametric conditions, and we establish finite sample guarantees on the

optimality gap. We validate this theory with computational results on two inventory

management examples.

Sample Robust Optimization with Covariates

In Chapter 4, we again consider 𝑇 -stage dynamic optimization problems with covari-

ates. However, instead of approximating the stochastic process of the uncertainty, we

introduce robustness to (1.2) and optimize over decision rules. A decision rule is a

collection of functions that specify what decision to make in each stage based on the

information revealed up until that point. For the example of the retailer, a decision

rule for week 𝑡 specifies an ordering quantity as a function of the observed demands

from weeks 1, . . . , 𝑡 − 1. We establish that our approach produces asymptotically

optimal decision rules. The proof of this relies on a novel result regarding the con-

vergence in Wasserstein distance of the weighted empirical distribution introduced in

(1.2) to the conditional distribution of the uncertainty given the covariates. We also

demonstrate the tractability of the approach by applying it to several computational

examples with up to twelve stages.

Data-Driven Optimization of Operating Room Blocks

In Chapter 5, we use the techniques developed in this thesis to optimize the operat-

ing room block schedule of a major US hospital. Our partner institution, like many

other hospitals, faces significant census variability throughout the week, which limits

the amount of patients it can accept due to resource constraints during peak times.

To optimize the block schedule to minimize census peaks, we develop a mixed inte-

ger optimization approach that employs predictive machine learning to estimate the

distributions of surgical patients’ lengths of stay. In addition, by using ideas from

Chapter 2, our approach accounts for the impact that moving the date of surgery has
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on patients’ lengths of stay. We demonstrate the effectiveness of the approach with

simulation results using real data and find that we can reliably reduce the maximal

weekly census with only a few changes to the schedule.
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Chapter 2

Optimization over Continuous and

Multi-Dimensional Decisions with

Observational Data

In this chapter, we consider the optimization of an uncertain objective over continu-

ous and multi-dimensional decision spaces in problems in which we are only provided

with observational data. We propose a novel algorithmic framework that is tractable,

asymptotically consistent, and superior to comparable methods on example problems.

Our approach leverages predictive machine learning methods and incorporates infor-

mation on the uncertainty of the predicted outcomes for the purpose of prescribing

decisions. We demonstrate the efficacy of our method on examples involving both

synthetic and real data sets.

2.1 Introduction

We study the general problem in which a decision maker seeks to optimize a known

objective function that depends on an uncertain quantity. The uncertain quantity has

an unknown distribution, which may be affected by the action chosen by the decision

maker. Many important problems across a variety of fields fit into this framework.

In healthcare, for example, a doctor aims to prescribe drugs in specific dosages to
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regulate a patient’s vital signs. In revenue management, a store owner must decide

how to price various products in order to maximize profit. In online retail, companies

decide which products to display for a user to maximize sales. The general problem

we study is characterized by the following components:

∙ Decision variable: 𝑧 ∈ 𝒵 ⊂ R𝑝,

∙ Outcome: 𝑌 (𝑧) ∈ 𝒴 (We adopt the potential outcomes framework [83], in which

𝑌 (𝑧) denotes the (random) quantity that would have been observed had decision

𝑧 been chosen.),

∙ Auxiliary covariates (also called side-information or context): 𝑥 ∈ 𝒳 ⊂ R𝑑,

∙ Cost function: 𝑐(𝑧; 𝑦) : 𝒵 × 𝒴 → R. (This function is known a priori.)

We allow the auxiliary covariates, decision variable, and outcome to take values on

multi-dimensional, continuous sets. A decision-maker seeks to determine the action

that minimizes the conditional expected cost:

min
𝑧∈𝒵

E[𝑐(𝑧;𝑌 (𝑧))|𝑋 = 𝑥]. (2.1)

Of course, the distribution of 𝑌 (𝑧) is unknown, so it is not possible to solve this

problem exactly. However, we assume that we have access to observational data,

consisting of 𝑛 independent and identically distributed observations, (𝑋𝑖, 𝑍𝑖, 𝑌𝑖) for

𝑖 = 1, . . . , 𝑛. Each of these observations consists of an auxiliary covariate vector, a

decision, and an observed outcome. This type of data presents two challenges that

differentiate our problem from a predictive machine learning problem. First, it is

incomplete. We only observe 𝑌𝑖 := 𝑌𝑖(𝑍𝑖), the outcome associated with the applied

decision. We do not observe what the outcome would have been under a different

decision. Second, the decisions were not necessarily chosen independently of the

outcomes, as they would have been in a randomized experiment, and we do not know

how the decisions were assigned. Following common practice in the causal inference

literature, we make the ignorability assumption of Hirano and Imbens [60].

24



Assumption 2.1 (Ignorability).

𝑌 (𝑧) ⊥⊥ 𝑍 | 𝑋 ∀𝑧 ∈ 𝒵

In other words, we assume that historically the decision 𝑍 has been chosen as

a function of the auxiliary covariates 𝑋. There were no unmeasured confounding

variables that affected both the choice of decision and the outcome.

Under this assumption, we are able to rewrite the objective of (2.1) as

E[𝑐(𝑧;𝑌 ) | 𝑋 = 𝑥, 𝑍 = 𝑧].

This form of the objective is easier to learn because it depends only on the observed

outcome, not on the counterfactual outcomes. A direct approach to solve this prob-

lem is to use a regression method to predict the cost as a function of 𝑥 and 𝑧 and

then choose 𝑧 to minimize this predicted cost. If the selected regression method is

uniformly consistent in 𝑧, then the action chosen by this method will be asymptot-

ically optimal under certain conditions. (We will formalize this later.) However,

this requires choosing a regression method that ensures the optimization problem is

tractable. For this work, we restrict our attention to linear and tree-based methods,

such as CART [30] and random forests [29], as they are both effective and tractable

for many practical problems.

A key issue with the direct approach is that it tries to learn too much. It tries to

learn the expected outcome under every possible decision, and the level of uncertainty

associated with the predicted expected cost can vary between different decisions. This

method can lead us to select a decision which has a small point estimate of the cost,

but a large uncertainty interval.

2.1.1 Notation

Throughout this chapter, we use capital letters to refer to random quantities and

lower case letters to refer to deterministic quantities. Thus, we use 𝑍 to refer to the
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decision randomly assigned by the (unknown) historical policy and 𝑧 to refer to a

specific action. For a given, auxiliary covariate vector, 𝑥, and a proposed decision,

𝑧, the conditional expectation E[𝑐(𝑧;𝑌 )|𝑋 = 𝑧, 𝑍 = 𝑧] means the expectation of the

cost function 𝑐(𝑧;𝑌 ) under the conditional measure in which 𝑋 is fixed as 𝑥 and 𝑍 is

fixed as 𝑧. We ignore details of measurability throughout and assume this conditional

expectation is well defined. Throughout, all norms are ℓ2 norms unless otherwise

specified. We use (𝑋,𝑍) to denote vector concatenation.

2.1.2 A Motivating Example for Uncertainty Penalization

We start with a simple example in which there are 𝑚 possible decisions. We have

data on 𝑛 i.i.d. observations of past decisions and outcomes, (𝑍𝑖, 𝑌𝑖) for 𝑖 = 1, . . . , 𝑛.

For simplicity, there are no auxiliary covariates for this problem, and the decision,

𝑍𝑖, has been chosen independently of the potential outcomes, (𝑌𝑖(1), . . . , 𝑌𝑖(𝑚)) (so

Assumption 2.1 holds).

The goal is to choose 𝑧 to minimize the expected outcome. If 𝜇𝑧 = E[𝑌 (𝑧)] is

known for all 𝑧, the optimal decision is given by: 𝑧* ∈ arg min
𝑧
𝜇𝑧. However, this

mean is unknown, so it must be estimated. We define �̂�𝑧 =
1∑︀

𝑖 1{𝑍𝑖 = 𝑧}
∑︀

𝑖 1{𝑍𝑖 =

𝑧}𝑌𝑖, the empirical expectation of the outcome under 𝑧. Predicted cost minimization

(PCM) minimizes �̂�𝑧.

To motivate uncertainty penalization, we note that if we assume the rewards are

almost surely bounded, |𝑌 | ≤ 1, an application of Bernstein’s inequality shows that

with probability at least 1− 𝛿,

𝜇𝑧 ≤ �̂�𝑧 +

√︃
2𝜎2

𝑧 ln(𝑚/𝛿)∑︀
𝑖 1{𝑍𝑖 = 𝑧}

+
4 ln(𝑚/𝛿)

3
∑︀

𝑖 1{𝑍𝑖 = 𝑧}
, ∀𝑧,

where 𝜎2
𝑧 = Var(𝑌𝑖(𝑧)). This bound motivates the addition of a term to the objective

that penalizes the uncertainty of the estimate �̂�𝑧. In this simple example, �̂�𝑧 is

an unbiased estimator for 𝜇𝑧, with Var(�̂�𝑧) = E [𝜎2
𝑧/
∑︀

𝑖 1{𝑍𝑖 = 𝑧}]. The penalty

term above has exactly the form of the square root of this variance. We define the
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Figure 2-1: Regret of two methods as a function of the number of training samples, 𝑛.
PCM=Predicted cost minimization, UP-PCM=Uncertainty penalized predicted cost
minimization.

uncertainty penalized objective:

�̂�𝜆
𝑧 = �̂�𝑧 + 𝜆

√︃
1∑︀

𝑖 1{𝑍𝑖 = 𝑧}
,

where 𝜆 is a tuning parameter. We note that we could also include the action-

dependent variance 𝜎2
𝑧 in the penalty term. However, this is typically unknown,

and we have observed that estimating it without a homoscedasticity assumption can

introduce too much noise for the objective to be effective.

For this experiment, we fix 𝑚 = 100 possible actions, each with a fixed mean

response, which was drawn from a standard Gaussian distribution. To construct

the training data, at each time step, a decision was chosen uniformly at random

from the set of possible decisions and the outcome is the mean response plus noise

sampled from a standard Gaussian distribution. The regret of each method was

computed and averaged over ten thousand trials for a range of values of 𝑛. We held

𝜆 fixed at 1. Our results are shown in Figure 2-1. Uncertainty penalized empirical

risk minimization clearly outperforms predicted cost minimization for small training
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sample sizes. However, the level of outperformance decreases as 𝑛 increases.

This example serves to motivate the need for uncertainty penalization, especially

when training data is limited. The direct approach of choosing the action with the

smallest predicted cost is inefficient because the predicted costs can have different

levels of uncertainty associated with them. Figure 2-1 demonstrates that we are

better off choosing a decision whose cost we can predict with high confidence, rather

than decisions whose costs we know little about.

2.1.3 Related Work

Recent years have seen tremendous interest in the area of data-driven optimization.

Much of this work combines ideas from the statistics and machine learning litera-

ture with techniques from mathematical optimization. Bertsimas and Kallus [15]

developed a framework that uses nonparametric machine learning methods to solve

data-driven optimization problems in the presence of auxiliary covariates. They take

advantage of the fact that for many machine learning algorithms, the predictions are

given by a linear combination of the training samples’ target variables. Kao et al. [67]

and Elmachtoub and Grigas [47] developed algorithms that make predictions tailored

for use in specific optimization problems. However, they all deal with the setting in

which the decision does not affect the outcome. This is insufficient for many appli-

cations, such as pricing, in which the demand for a product is clearly affected by the

price. Bertsimas and Kallus [16] later studied the limitations of predictive approaches

to pricing problems. In particular, they demonstrated that confounding in the data

between the decision and outcome can lead to large optimality gaps if ignored. They

proposed a kernel-based method for data-driven optimization in this setting, but it

does not scale well with the dimension of the decision space. Misic [75] developed

an efficient mixed integer optimization formulation for problems in which the pre-

dicted cost is given by a tree ensemble model. This approach scales fairly well with

the dimension of the decision space but does not consider the need for uncertainty

penalization.

Another relevant area of research is causal inference (see Rosenbaum [83] for an
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overview), which concerns the study of causal effects from observational data. Much

of the work in this area has focused on determining whether a treatment has a sig-

nificant effect on the population as a whole. However, a growing body of work has

focused on learning optimal, personalized treatments from observational data. Athey

and Wager [2] proposed an algorithm that achieves optimal (up to a constant factor)

regret bounds in learning a treatment policy when there are two potential treatments.

Kallus [63] proposed an algorithm to efficiently learn a treatment policy when there

is a finite set of potential treatments. Bertsimas et al. [21] developed a tree-based

algorithm that learns to personalize treatment assignments from observational data.

It is based on the optimal trees machine learning method [13] and has performed well

in experiments. Considerably less attention has been paid to problems with a con-

tinuous decision space. Hirano and Imbens [60] introduced the problem of inference

with a continuous treatment, and Flores [50] studied the problem of learning an opti-

mal policy in this setting. Recently, Kallus and Zhou [65] developed an approach to

policy learning with a continuous decision variable that generalizes the idea of inverse

propensity score weighting. Our approach differs in that we focus on regression-based

methods, which we believe scale better with the dimension of the decision space and

avoid the need for density estimation.

The idea of uncertainty penalization has been explored as an alternative to em-

pirical risk minimization in statistical learning, starting with Maurer and Pontil [73].

Swaminathan and Joachims [91] applied uncertainty penalization to the offline bandit

setting. Their setting is similar to the one we study. An agent seeks to minimize the

prediction error of his/her decision, but only observes the loss associated with the

selected decision. They assumed that the policy used in the training data is known,

which allowed them to use inverse propensity weighting methods. In contrast, we

assume ignorability, but not knowledge of the historical policy, and we allow for more

complex decision spaces.

We note that our approach bears a superficial resemblance to the upper confidence

bound (UCB) algorithms for multi-armed bandits (cf. Bubeck et al. [31]). These

algorithms choose the action with the highest upper confidence bound on its predicted
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expected reward. Our approach, in contrast, chooses the action with the highest lower

confidence bound on its predicted expected reward (or lowest upper confidence bound

on predicted expected cost). The difference is that UCB algorithms choose actions

with high upside to balance exploration and exploitation in the online bandit setting,

whereas we work in the offline setting with a focus on solely exploitation.

2.1.4 Contributions

Our primary contribution is an algorithmic framework for observational data driven

optimization that allows the decision variable to take values on continuous and mul-

tidimensional sets. We consider applications in personalized medicine, in which the

decision is the dose of Warfarin to prescribe to a patient, and in pricing, in which the

action is the list of prices for several products in a store.

2.2 Approach

In this section, we introduce the uncertainty penalization approach for optimization

with observational data. Recall that the observational data consists of 𝑛 i.i.d. obser-

vations, (𝑋1, 𝑍1, 𝑌1), . . . , (𝑋𝑛, 𝑍𝑛, 𝑌𝑛). For observation 𝑖, 𝑋𝑖 represents the pertinent

auxiliary covariates, 𝑍𝑖 is the decision that was applied, and 𝑌𝑖 is the observed re-

sponse. The first step of the approach is to train a predictive machine learning model

to estimate E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥, 𝑍 = 𝑧]. When training the predictive model, the feature

space is the cartesian product of the auxiliary covariate space and the decision space,

𝒳 ×𝒵. We have several options for how to train the predictive model. We can train

the model to predict 𝑌 , the cost 𝑐(𝑍, 𝑌 ), or a combination of these two responses. In

general, we denote the prediction of the ML algorithm as a linear combination of the

cost function evaluated at the training examples,

�̂�(𝑥, 𝑧) :=
𝑛∑︁

𝑖=1

𝑤𝑖(𝑥, 𝑧)𝑐(𝑧;𝑌𝑖).
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We require the predictive model to satisfy a generalization of the honesty property of

Wager and Athey [97].

Assumption 2.2 (Honesty). The model trained on (𝑋1, 𝑍1, 𝑌1), . . . , (𝑋𝑛, 𝑍𝑛, 𝑌𝑛) is

honest, i.e., the weights, 𝑤𝑖(𝑥, 𝑧), are determined independently of the outcomes,

𝑌1, . . . , 𝑌𝑛.

This honesty assumption reduces the bias of the predictions of the cost. We also

enforce several restrictions on the weight functions.

Assumption 2.3 (Weights). For all (𝑥, 𝑧) ∈ 𝒳 ×𝒵,
∑︀𝑛

𝑖=1𝑤𝑖(𝑥, 𝑧) = 1 and for all 𝑖,

𝑤𝑖(𝑥, 𝑧) ∈ [0, 1/𝛾𝑛]. In addition, 𝒳 × 𝒵 can be partitioned into Γ𝑛 regions such that

if (𝑥, 𝑧) and (𝑥, 𝑧′) are in the same region, ||𝑤(𝑥, 𝑧)− 𝑤(𝑥, 𝑧′)||1 ≤ 𝛼||𝑧 − 𝑧′||2.

The direct approach to solving (2.1) amounts to choosing 𝑧 ∈ 𝒵 that minimizes

�̂�(𝑥, 𝑧), for each new instance of auxiliary covariates, 𝑥. However, the variance of the

predicted cost, �̂�(𝑥, 𝑧), can vary with the decision variable, 𝑧. Especially with a small

training sample size, the direct approach, minimizing �̂�(𝑥, 𝑧), can give a decision with

a small, but highly uncertain, predicted cost. We can reduce the expected regret of

our action by adding a penalty term for the variance of the selected decision. If

Assumption 2.2 holds, the conditional variance of �̂�(𝑥, 𝑧) given (𝑋1, 𝑍1), . . . , (𝑋𝑛, 𝑍𝑛)

is given by

𝑉 (𝑥, 𝑧) :=
∑︁
𝑖

𝑤2
𝑖 (𝑥, 𝑧)Var(𝑐(𝑧;𝑌𝑖)|𝑋𝑖, 𝑍𝑖).

In addition, �̂�(𝑥, 𝑧) may not be an unbiased predictor, so we also introduce a term

that penalizes the conditional bias of the predicted cost given (𝑋1, 𝑍1), . . . , (𝑋𝑛, 𝑍𝑛).

Since the true cost is unknown, it is not possible to exactly compute this bias. Instead,

we compute an upper bound under a Lipschitz assumption (details in Section 2.3).

𝐵(𝑥, 𝑧) :=
∑︁
𝑖

𝑤𝑖(𝑥, 𝑧)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧)||2.

Overall, given a new vector of auxiliary covariates, 𝑥 ∈ 𝒳 , our approach makes a
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decision by solving

min
𝑧∈𝒵

�̂�(𝑥, 𝑧) + 𝜆1
√︀
𝑉 (𝑥, 𝑧) + 𝜆2𝐵(𝑥, 𝑧), (2.2)

where 𝜆1 and 𝜆2 are tuning parameters.

As a concrete example, we can use the CART algorithm of Breiman et al. [30] or

the optimal regression tree algorithm of Bertsimas and Dunn [13] as the predictive

method. These algorithms work by partitioning the training examples into clusters,

i.e., the leaves of the tree. For a new observation, a prediction of the response variable

is made by averaging the responses of the training examples that are contained in the

same leaf.

𝑤𝑖(𝑥, 𝑧) =

⎧⎪⎨⎪⎩
1

𝑁(𝑥,𝑧)
, (𝑥, 𝑧) ∈ 𝑙(𝑥, 𝑧),

0, otherwise,

where 𝑙(𝑥, 𝑧) denotes the set of training examples that are contained in the same leaf

of the tree as (𝑥, 𝑧), and 𝑁(𝑥, 𝑧) = |𝑙(𝑥, 𝑧)|. The variance term will be small when the

leaf has a large number of training examples, and the bias term will be small when

the diameter of the leaf is small. Assumption 2.2 can be satisfied by ignoring the

outcomes when selecting the splits or by dividing the training data into two sets, one

for making splits and one for making predictions. Assumption 2.3 is satisfied with

𝛼 = 0 if the minimum number of training samples in each leaf is 𝛾𝑛 and the maximum

number of leaves in the tree is Γ𝑛.

2.2.1 Parameter Tuning

Before proceeding, we note that the variance terms, Var(𝑐(𝑧;𝑌𝑖) | 𝑋𝑖, 𝑍𝑖), are often

unknown in practice. In the absence of further knowledge, we assume homoscedas-

ticity, i.e., Var(𝑌𝑖|𝑋𝑖, 𝑍𝑖) is constant. It is possible to estimate this value by training

a machine learning model to predict 𝑌𝑖 as a function of (𝑋𝑖, 𝑍𝑖) and computing the

mean squared error on the training set. However, it may be advantageous to include

this value with the tuning parameter 𝜆1.

We have several options for tuning parameters 𝜆1 and 𝜆2 (and whatever other
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parameters are associated with the predictive model). Because the counterfactual

outcomes are unknown, it is not possible to use the standard approach of holding

out a validation set during training and evaluating the error of the model on that

validation set for each combination of possible parameters. One option is to tune the

predictive model’s parameters using cross validation to maximize predictive accuracy

and then select 𝜆1 and 𝜆2 using the theory we present in Section 2.3. Another option

is to split the data into a training and validation set and train a predictive model on

the validation data to impute the counterfactual outcomes. We then select the model

that minimizes the predicted cost on the validation set. For the examples in Section

2.4, we use a combination of these two ideas. We train a random forest model on the

validation set (in order to impute counterfactual outcomes), and we then select the

model that minimizes the sum of the mean squared error and the predicted cost on

the validation data. In Appendix A.4, we include computations that demonstrate, for

the Warfarin example of Section 2.4.2, the method is not too sensitive to the choice

of 𝜆1 and 𝜆2.

2.3 Theory

In this section, we describe the theoretical motivation for our approach and provide

finite-sample generalization and regret bounds. For notational convenience, we define

𝜇(𝑥, 𝑧) := E[𝑐(𝑧;𝑌 (𝑧))|𝑋 = 𝑥] = E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥, 𝑍 = 𝑧],

where the second equality follows from the ignorability assumption. Before presenting

the results, we first present a few additional assumptions.

Assumption 2.4 (Regularity). The set 𝒳 × 𝒵 is nonempty, closed, and bounded

with diameter 𝐷.

Assumption 2.5 (Objective Conditions). The objective function satisfies the follow-

ing properties:

1. |𝑐(𝑧; 𝑦)| ≤ 1 ∀𝑧, 𝑦.
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2. For all 𝑦 ∈ 𝒴, 𝑐(·; 𝑦) is 𝐿-Lipschitz.

3. For any 𝑥, 𝑥′ ∈ 𝒳 and any 𝑧, 𝑧′ ∈ 𝒵, |𝜇(𝑥, 𝑧)− 𝜇(𝑥′, 𝑧′)| ≤ 𝐿||(𝑥, 𝑧)− (𝑥′, 𝑧′)||.

These assumptions provide some conditions under which the generalization and

regret bounds hold, but similar results hold under alternative sets of assumptions

(e.g. if 𝑐(𝑧;𝑌 )|𝑍 is subexponential instead of bounded). With these additional as-

sumptions, we have the following generalization bound. All proofs are contained in

Appendix A.1.

Theorem 2.1. Suppose assumptions 2.1-2.5 hold. Then, with probability at least

1− 𝛿,

𝜇(𝑥, 𝑧)− �̂�(𝑥, 𝑧) ≤ 4

3𝛾𝑛
ln(𝐾𝑛/𝛿) + 2

√︀
𝑉 (𝑥, 𝑧) ln(𝐾𝑛/𝛿) + 𝐿 ·𝐵(𝑥, 𝑧) ∀𝑧 ∈ 𝒵,

where 𝐾𝑛 = Γ𝑛

(︀
9𝐷𝛾𝑛

(︀
𝛼(𝐿𝐷 + 1 +

√
2) + 𝐿(

√
2 + 3)

)︀)︀𝑝
.

This result uniformly bounds, with high probability, the true cost of action 𝑧 by

the predicted cost, �̂�(𝑥, 𝑧), a term depending on the uncertainty of that predicted

cost, 𝑉 (𝑥, 𝑧), and a term proportional to the bias associated with that predicted cost,

𝐵(𝑥, 𝑧). It is easy to see how this result motivates the approach described in (2.2).

One can also verify that the generalization bound still holds if (𝑋1, 𝑍1), . . . , (𝑋𝑛, 𝑍𝑛)

are chosen deterministically, as long as 𝑌1, . . . , 𝑌𝑛 are still independent. Using Theo-

rem 2.1, we are able to derive a finite-sample regret bound.

Theorem 2.2. Suppose assumptions 2.1-2.5 hold. Define

𝑧* ∈ arg min
𝑧
𝜇(𝑥, 𝑧),

𝑧 ∈ arg min
𝑧
�̂�(𝑥, 𝑧) + 𝜆1

√︀
𝑉 (𝑥, 𝑧) + 𝜆2𝐵(𝑥, 𝑧).

If 𝜆1 = 2
√︀

ln(2𝐾𝑛/𝛿) and 𝜆2 = 𝐿, then with probability at least 1− 𝛿,

𝜇(𝑥, 𝑧)− 𝜇(𝑥, 𝑧*) ≤ 2

𝛾𝑛
ln(2𝐾𝑛/𝛿) + 4

√︀
𝑉 (𝑥, 𝑧*) ln(2𝐾𝑛/𝛿) + 2𝐿 ·𝐵(𝑥, 𝑧*),
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where 𝐾𝑛 = Γ𝑛

(︀
9𝐷𝛾𝑛

(︀
𝛼(𝐿𝐷 + 1 +

√
2) + 𝐿(

√
2 + 3)

)︀)︀𝑝
.

By this result, the regret of the approach defined in (2.2) depends only on the

variance and bias terms of the optimal action, 𝑧*. Because the predicted cost is

penalized by 𝑉 (𝑥, 𝑧) and 𝐵(𝑥, 𝑧), it does not matter how poor the prediction of cost

is at suboptimal actions. Theorem 2.2 immediately implies the following asymptotic

result, assuming the auxiliary feature space and decision space are fixed as the training

sample size grows to infinity.

Corollary 2.1. In the setting of Theorem 2.2, if 𝛾𝑛 = Ω(𝑛𝛽) for some 𝛽 > 0,

Γ𝑛 = 𝑂(𝑛), and 𝐵(𝑥, 𝑧*)→𝑝 0 as 𝑛→∞, then

𝜇(𝑥, 𝑧)→𝑝 𝜇(𝑥, 𝑧*)

as 𝑛→∞.

The assumptions can be satisfied, for example, with CART or random forest as

the learning algorithm with parameters set in accordance with Lemma 2 of Wager

and Athey [97]. This next example demonstrates that there exist problems for which

the regret of the uncertainty penalized method is strictly better, asymptotically, than

the regret of predicted cost minimization.

Example 2.1. Suppose there are 𝑚 + 1 different actions and two possible, equally

probable states of the world. In one state, action 0 has a cost that is deterministically

1, and all other actions have a random cost that is drawn from 𝒩 (0, 1) distribution. In

the other state, action 0 has a cost that is deterministically 0, and all other actions

have a random cost, drawn from a 𝒩 (1, 1) distribution. Suppose the training data

consists of 𝑚 trials of each action. If �̂�(𝑗) is the empirical average cost of action

𝑗, then the predicted cost minimization algorithm selects the action that minimizes

�̂�(𝑗). The uncertainty penalization algorithm adds a penalty of the form suggested by

Theorem 2.2, 𝜆
√︁

𝜎2
𝑗 ln𝑚

𝑚
. If 𝜆 ≥

√
2, the (Bayesian) expected regret of the uncertainty

penalization algorithm is asymptotically strictly less than the expected regret of the
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predicted cost minimization algorithm, E𝑅𝑈𝑃 = 𝑜(E𝑅𝑃𝐶𝑀), where the expectations

are taken over both the training data and the unknown state of the world.

This example is simple but demonstrates that there exist settings in which pre-

dicted cost minimization is asymptotically suboptimal to the method we have de-

scribed. In addition, the proof illustrates how one can construct tighter regret bounds

than the one in Theorem 2.2 for problems with specific structure.

2.3.1 Tractability

The tractability of (2.2) depends on the algorithm that is used as the predictive

model. For many kernel-based methods, the resulting optimization problems are

highly nonlinear and do not scale well when the dimension of the decision space is

more than 2 or 3. For this reason, we advocate using tree-based and linear models as

the predictive model. Tree based models partition the space 𝒳 ×𝒵 into Γ𝑛 leaves, so

there are only Γ𝑛 possible values of 𝑤(𝑥, 𝑧). Therefore, we can solve (2.2) separately

for each leaf. For 𝑗 = 1, . . . ,Γ𝑛, we solve

min �̂�(𝑥, 𝑧) + 𝜆1
√︀
𝑉 (𝑥, 𝑧) + 𝜆2𝐵(𝑥, 𝑧)

s.t. 𝑧 ∈ 𝒵

(𝑥, 𝑧) ∈ 𝐿𝑗,

(2.3)

where 𝐿𝑗 denotes the subset of 𝒳 × 𝒵 that makes up leaf 𝑗 of the tree. Because

each split in the tree is a hyperplane, 𝐿𝑗 is defined by an intersection of hyperplanes

and thus is a polyhedral set. Clearly, 𝐵(𝑥, 𝑧) is a convex function in 𝑧, as it is a

nonnegative linear combination of convex functions. If we assume homoscedasticity,

then 𝑉 (𝑥, 𝑧) is constant for all (𝑥, 𝑧) ∈ 𝐿𝑗. If 𝑐(𝑧; 𝑦) is convex in 𝑧 and 𝒵 is a convex

set, (2.3) is a convex optimization problem and can be solved by convex optimization

techniques. Furthermore, since the Γ𝑛 instances of (2.3) are all independent, we can

solve them in parallel. Once (2.3) has been solved for all leaves, we select the solution

from the leaf with the overall minimal objective value.

For tree ensemble methods, such as random forests [29] or xgboost [34], opti-
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mization is more difficult. We compute optimal decisions using a coordinate descent

heuristic. From a random starting action, we cycle through holding all decision vari-

ables fixed except for one and optimize that decision using discretization. We repeat

this until convergence from several different random starting decisions. For linear

predictive models, the resulting problem is often a second order conic optimization

problem, which can be handled by off-the-shelf solvers (details given in Appendix A.2).

2.4 Results

In this section, we demonstrate the effectiveness of our approach with two examples.

In the first, we consider pricing problem with synthetic data, while in the second, we

use real patient data for personalized Warfarin dosing.

2.4.1 Pricing

In this example, the decision variable, 𝑧 ∈ R5, is a vector of prices for a collection of

products. The outcome, 𝑌 , is a vector of demands for those products. The auxiliary

covariates may contain data on the weather and other exogenous factors that may

affect demand. The objective is to select prices to maximize revenue for a given

vector of auxiliary covariates. The demand for a single product is affected by the

auxiliary covariates, the price of that product, and the price of one or more of the

other products, but the mapping is unknown to the algorithm. The details on the

data generation process can be found in Appendix A.3.

In Figure 2-2a, we compare the expected revenues of the strategies produced by

several algorithms. CART, RF, and Lasso refer to the direct methods of training,

respectively, a decision tree, a random forest, and a lasso regression [93] to predict

revenue, as a function of the auxiliary covariates and prices, and choosing prices, for

each vector of auxiliary covariates in the test set, that maximize predicted revenue.

(Note that the revenues for CART and Lasso were too small to be displayed on the

plot. Unsurprisingly, the linear model performs poorly because revenue does not vary

linearly with price. We restrict all prices to be at most 50 to ensure the optimization
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Figure 2-2: Comparison of relevant methods on a pricing example and a Warfarin
dosing example.

problems are bounded.) UP-CART, UP-RF, and UP-Lasso refer to the uncertainty

penalized analogues in which the variance and bias terms are included in the objective.

For each training sample size, 𝑛, we average our results over one hundred separate

training sets of size 𝑛. At a training size of 2000, the uncertainty penalized random

forest method improves expected revenue by an average of $270 compared to the direct

RF method. This improvement is statistically significant at the 0.05 significance level

by the Wilcoxon signed-rank test (𝑝-value 4.4×10−18, testing the null hypothesis that

mean improvement is 0 across 100 different training sets).

2.4.2 Warfarin Dosing

Warfarin is a commonly prescribed anticoagulant that is used to treat patients who

have had blood clots or who have a high risk of stroke. Determining the optimal

maintenance dose of Warfarin presents a challenge as the appropriate dose varies sig-
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nificantly from patient to patient and is potentially affected by many factors including

age, gender, weight, health history, and genetics. However, this is a crucial task be-

cause a dose that is too low or too high can put the patient at risk for clotting or

bleeding. The effect of a Warfarin dose on a patient is measured by the International

Normalized Ratio (INR). Physicians typically aim for patients to have an INR in a

target range of 2-3.

In this example, we test the efficacy of our approach in learning optimal Warfarin

dosing with data from Consortium et al. [41]. This publicly available data set contains

the optimal stable dose, found by experimentation, for a diverse set of 5410 patients.

In addition, the data set contains a variety of covariates for each patient, including

demographic information, reason for treatment, medical history, current medications,

and the genotype variant at CYP2C9 and VKORC1. It is unique because it contains

the optimal dose for each patient, permitting the use of off-the-shelf machine learning

methods to predict this optimal dose as a function of patient covariates. We instead

use this data to construct a problem with observational data, which resembles the

common problem practitioners face. Our access to the true optimal dose for each

patient allows us to evaluate the performance of our method out-of-sample. This

is a commonly used technique, and the resulting data set is sometimes called semi-

synthetic. Several researchers have used the Warfarin data for developing personalized

approaches to medical treatments. In particular, Kallus [64] and Bertsimas et al. [21]

tested algorithms that learned to treat patients from semi-synthetic observational

data. However, they both discretized the dosage into three categories, whereas we

treat the dosage as a continuous decision variable.

To begin, we split the data into a training set of 4000 patients and a test set of

1410 patients. We keep this split fixed throughout all of our experiments to prevent

cheating by using insights gained by visualization and exploration on the training

set. Similar to Kallus [64], we assume physicians prescribe Warfarin as a function of

BMI. We assume the response that the physicians observe is related to the difference

between the dose a patient was given and the true optimal dose for that patient.

It is a noisy observation, but it, on average, gives directional information (whether
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the dose was too high or too low) and information on the magnitude of the distance

from the optimal dose. The precise details of how we generate the data are given in

Appendix A.3. For all methods, we repeat our work across 100 randomizations of

assigned training doses and responses. To measure the performance of our methods,

we compute, on the test set, the mean squared error (MSE) of the prescribed doses

relative to the true optimal doses. Using the notation described in Section 2.1, 𝑋𝑖 ∈

R99 represents the auxiliary covariates for patient 𝑖. We work in normalized units so

the covariates all contribute equally to the bias penalty term. 𝑍𝑖 ∈ R represents the

assigned dose for patient 𝑖, and 𝑌𝑖 ∈ R represents the observed response for patient

𝑖. The objective in this problem is to minimize (E[𝑌 (𝑧)|𝑋 = 𝑥])2 with respect to the

dose, 𝑧.1

Figure 2-2b displays the results of several algorithms as a function of the number

of training examples. We compare CART, without any penalization, to CART with

uncertainty penalization (UP-CART), and we see that uncertainty penalization offers

a consistent improvement. This improvement is greatest when the training sample

size is smallest. (Note: for CART with no penalization, when multiple doses give the

same optimal predicted response, we select the mean.) Similarly, when we compare

the random forest and Lasso methods with their uncertainty-penalizing analogues, we

again see consistent improvements in MSE. The “Constant” line in the plot measures

the performance of a baseline heuristic that assigns a fixed dose of 35 mg/week to all

patients. The “LB” line provides an unattainable lower bound on the performance

of all methods that use the observational data. For this method, we train a random

forest to predict the optimal dose as a function of the patient covariates. We also

compare our methods with the Counterfactual Risk Minimization (CRM) method of

Swaminathan and Joachims [91]. We allow their method access to the true propensity

scores that generated the data and optimize over all regularized linear policies for

which the proposed dose is a linear function of the auxiliary covariates. We tried

1This objective differs slightly from the setting described in Section 2.3 in which the objective
was to minimize the conditional expectation of a cost function. However, it is straightforward to
modify the results to obtain the same regret bound (save a few constant factors) when minimizing
𝑔(E[𝑐(𝑧;𝑌 (𝑧))|𝑋 = 𝑥]) for a Lipschitz function, 𝑔.
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multiple combinations of tuning parameters, but the method always performed poorly

out-of-sample. We suspect this is due to the size of the policy space. Our lasso

based method works best on this data set when the number of training samples is

large, but the random forest based method is best for smaller sample sizes. With the

maximal training set size of 4000, the improvements of the CART, random forest, and

lasso uncertainty penalized methods over their unpenalized analogues (2.2%, 8.6%,

0.5% respectively) are all statistically significant at the 0.05 family-wise error rate

level by the Wilcoxon signed-rank test with Bonferroni correction (adjusted 𝑝-values

2.1× 10−4, 4.3× 10−16, 1.2× 10−6 respectively).

2.5 Conclusions

In this chapter, we introduced a data-driven framework that combines ideas from

predictive machine learning and causal inference to optimize an uncertain objective

using observational data. Unlike most existing algorithms, our approach handles con-

tinuous and multi-dimensional decision variables by introducing terms that penalize

the uncertainty associated with the predicted costs. We proved finite sample general-

ization and regret bounds and provided a sufficient set of conditions under which the

resulting decisions are asymptotically optimal. We demonstrated, both theoretically

and with real-world examples, the tractability of the approach and the benefit of the

approach over unpenalized predicted cost minimization.
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Chapter 3

From Predictions to Prescriptions in

Multistage Optimization Problems

In this chapter, we introduce a framework for solving finite-horizon multistage opti-

mization problems under uncertainty in the presence of auxiliary data. We assume

the joint distribution of the uncertain quantities is unknown, but noisy observations,

along with observations of auxiliary covariates, are available. We utilize effective pre-

dictive methods from machine learning (ML), including 𝑘-nearest neighbors regression

(𝑘NN), classification and regression trees (CART), and random forests (RF), to de-

velop specific methods that are applicable to a wide variety of problems. We demon-

strate that our solution methods are asymptotically optimal under mild conditions.

Additionally, we establish finite sample guarantees for the optimality of our method

with 𝑘NN weight functions. Finally, we demonstrate the practicality of our approach

with computational examples. We see a significant decrease in cost by taking into

account the auxiliary data in the multistage setting.

3.1 Introduction

Many fundamental problems in operations research (OR) involve making decisions,

dynamically, subject to uncertainty. A decision maker seeks a sequence of actions that

minimize the cost of operating a system. Each action is followed by a stochastic event,
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and future actions are functions of the outcomes of these stochastic events. This type

of problem has garnered much attention and has been studied extensively by different

communities and under various names (dynamic programming, multistage stochastic

optimization, Markov decision process, etc.). Much of this work, dating back to

Bellman [6], has focused on the setting in which the distribution of the uncertain

quantities is known a priori.

In practice, it is rare to know the joint distribution of the uncertain quantities.

However, in today’s data-rich world, we often have historical observations of the un-

certain quantities of interest. Some existing methods work with independent and iden-

tically distributed (i.i.d.) observations of the uncertainties (cf. Swamy and Shmoys

[92], Shapiro [87]). However, in general, auxiliary data has been ignored in modeling

multistage problems, and this can lead to inadequate solutions.

In practice, we often have data, {𝑦1, . . . , 𝑦𝑁}, on uncertain quantities of interest,

𝑌 ∈ 𝒴 ⊂ R𝑑𝑦 . In addition, we also have data, {𝑥1, . . . , 𝑥𝑁}, on auxiliary covariates,

𝑋 ∈ 𝒳 ⊂ R𝑑, which can be used to predict the uncertainty, 𝑌 . For example, 𝑌

may be the unknown demand for a product in the coming weeks, and 𝑋 may include

data about the characteristics of the particular product and data about the volume

of Google searches for the product.

The machine learning (ML) community has developed many methods (for refer-

ence, see [26]) that enable the prediction of an uncertain quantity (𝑌 ) given covariates

(𝑋). These methods have been quite effective in generating predictions of quantities

of interest in OR applications [54, 56]. However, turning good predictions into good

decisions can be challenging. One naive approach is to solve the multistage optimiza-

tion problem of interest as a deterministic problem, using the predicted values of the

uncertainties. However, this ignores the uncertainty by using point predictions and

can lead to inadequate decisions.

In this chapter we combine ideas from the OR and ML communities to develop a

data-driven decision-making framework that incorporates auxiliary data into multi-

stage stochastic optimization problems.
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3.1.1 Multistage Optimization and Sample Average Approxi-

mation

Before proceeding, we first review the formulation of a multistage optimization prob-

lem with uncertainty. The problem is characterized by five components:

∙ The state at time 𝑡, 𝑠𝑡 ∈ 𝑆𝑡, contains all relevant information about the system

at the start of time period 𝑡.

∙ The uncertainty, 𝑦𝑡 ∈ 𝒴𝑡, is a stochastic quantity that is revealed prior to the

decision at time 𝑡. Throughout this chapter, we assume the distribution of the

uncertainty at time 𝑡 does not depend on the current state or past decisions.

∙ The decision at time 𝑡, 𝑧𝑡 ∈ 𝑍𝑡(𝑠𝑡, 𝑦𝑡) ⊂ R𝑝𝑡 , which is chosen after the uncer-

tainty, 𝑦𝑡, is revealed.

∙ The immediate cost incurred at time 𝑡, 𝑔𝑡(𝑧𝑡), which is a function of the decision

at time 𝑡.

∙ The dynamics of the system, which are captured by a known transition function

that specifies how the state evolves, 𝑠𝑡+1 = 𝑓𝑡(𝑧𝑡).

We note that it is without loss of generality that the cost and transition functions

only depend on the decision variable because the feasible set 𝑍𝑡 is allowed to depend

on 𝑠𝑡 and 𝑦𝑡. To summarize, the system evolves in the following manner: at time

𝑡, the system is known to be in state 𝑠𝑡, when the previously unknown value, 𝑦𝑡, is

observed. Then the decision 𝑧𝑡 is determined, resulting in immediate cost, 𝑔𝑡(𝑧𝑡), and

the system evolves to state 𝑠𝑡+1 = 𝑓𝑡(𝑧𝑡).

Consider a finite horizon, 𝑇 + 1 stage problem, in which the initial state, 𝑠0, is

known. We formulate the problem as follows:

min
𝑧0∈𝑍0(𝑠0)

𝑔0(𝑧0) + E[�̃�1(𝑓0(𝑧0);𝑌1))], (3.1)

where

�̃�𝑡(𝑠𝑡; 𝑦𝑡) = min
𝑧𝑡∈𝑍𝑡(𝑠𝑡,𝑦𝑡)

𝑔𝑡(𝑧𝑡) + E[�̃�𝑡+1(𝑓𝑡(𝑧𝑡);𝑌𝑡+1)]
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for 𝑡 = 1, . . . , 𝑇 − 1, and �̃�𝑇 (𝑠𝑇 ; 𝑦𝑇 ) = min
𝑧𝑇∈𝑍𝑇 (𝑠𝑇 ,𝑦𝑇 )

𝑔𝑇 (𝑧𝑇 ). The function �̃�𝑡(𝑠𝑡; 𝑦𝑡)

is often called the value function or cost-to-go function. It represents the expected

future cost that an optimal policy will incur, starting with a system in state 𝑠𝑡 with

realized uncertainty 𝑦𝑡. Of course, in practice it is impossible to solve this problem

because the distributions of 𝑌𝑡 are unknown. All that we know about the distribution

of 𝑌𝑡 comes from the available data.

A popular data-driven method for solving this problem is sample average approx-

imation (SAA) [89]. In SAA, it is assumed that we have access to independent, iden-

tically distributed (i.i.d.) training samples of 𝑌 , (𝑦𝑖1, . . . , 𝑦
𝑖
𝑇 ) for 𝑖 = 1, . . . , 𝑁 . The

key idea of SAA is to replace the expectations over the unknown distributions of 𝑌

with empirical expectations. That is, we replace E[�̃�𝑇 (𝑠𝑇 ; 𝑦𝑇 )] with
1

𝑁

𝑁∑︀
𝑖=1

�̃�𝑇 (𝑠𝑇 ; 𝑦𝑖𝑇 ).

With these known, finite distributions of the uncertain quantities, the problem can be

solved exactly or approximately by various dynamic programming techniques. Addi-

tionally, under certain conditions, the decisions obtained by solving the SAA problem

are asymptotically optimal for (3.1) [86]. The basic SAA method does not incorpo-

rate auxiliary data. In practice, this can be accounted for by training a generative,

parametric model and applying SAA with samples from this model conditioned on

the observed auxiliary data. However, this approach does not necessarily lead to

asymptotically optimal decisions, so we instead focus on a variant of SAA that starts

directly with the data.

3.1.2 Related Work

Multistage optimization under uncertainty has attracted significant interest from var-

ious research communities. Bellman [6] studied these problems under the name dy-

namic programming. For reference, see Bertsekas [11]. These problems quickly be-

come intractable as the state and action space grow, with a few exceptions that admit

closed form solutions, like linear quadratic control [46]. However, there exists a large

body of literature on approximate solution methods (see, e.g., Powell [80]).

When the distribution of the uncertainties is unknown, but data is available,

SAA is a common approach [87]. Alternative approaches include robust dynamic
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programming [62] and distributionally robust multistage optimization [55]. Another

alternative approach is adaptive, or adjustable, robust optimization (cf. Ben-Tal et al.

[7], Bertsimas et al. [20]). In this approach, the later stage decisions are typically

constrained to be affine or piecewise constant functions of past uncertainties, usually

resulting in highly tractable formulations.

In the artificial intelligence community, reinforcement learning (RL) studies a sim-

ilar problem in which an agent tries to learn an optimal policy by intelligently trying

different actions (cf. Sutton and Barto [90]). RL methods typically work very well

when the exact dynamics of the system are unknown. However, they struggle to in-

corporate complex constraints that are common in OR problems. A vast literature

also exists on bandit problems, which seek to find a series of decisions that balance

exploration and exploitation (cf. Berry and Fristedt [10]). Of particular relevance is

the contextual bandit problem (cf. Chapelle and Li [33], Chu et al. [38]), in which

the agent has access to auxiliary data on the particular context in which it is operat-

ing. These methods have been very effective in online advertising and recommender

systems [70].

Recently, the single stage optimization problem with auxiliary data has attracted

interest in the OR community. Ban and Rudin [3] studied a news-vendor problem in

the presence of auxiliary data. Cohen et al. [40] used a contextual bandit approach

in a dynamic pricing problem with auxiliary data. Ferreira et al. [49] used data on

the sales of past products, along with auxiliary data about the products, to solve

a price optimization problem for never before sold products. Bertsimas and Kallus

[15] developed a framework for integrating predictive machine learning methods in

a single-stage stochastic optimization problem. Recently, Ban et al. [4] developed

a method to solve a multistage dynamic procurement problem with auxiliary data.

They used linear or sparse linear regression to build a different scenario tree for each

realization of auxiliary covariates. Their approach assumes the uncertainty is a linear

function of the auxiliary covariates with additive noise. Our approach is more general

because we do not assume a parametric form of the uncertainty.

Statistical decision theory and ML have been more interested in the problems of
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estimation and prediction than the problem of prescription (cf. Berger [9]). However,

of integral importance to our work are several highly effective, yet simple, nonpara-

metric regression methods. These include 𝑘-nearest neighbor regression [1], CART

[30], and random forests [29].

3.1.3 Contributions and Structure

In this chapter, we consider the analogue of (3.1) in the presence of auxilliary data.

For each 𝑡 = 0, . . . , 𝑇−1, before the decision 𝑧𝑡 is made, we observe auxiliary covariates

𝑥𝑡 ∈ 𝒳𝑡 ⊂ R𝑑𝑡 . Our training data consists of (𝑥10, . . . , 𝑥
1
𝑇−1), . . . , (𝑥

𝑁
0 , . . . , 𝑥

𝑁
𝑇−1) and

(𝑦11, . . . , 𝑦
1
𝑇 ), . . . , (𝑦𝑁1 , . . . , 𝑦

𝑁
𝑇 ). By saying training data is i.i.d., we mean observation

𝑖, (𝑥𝑖0, . . . , 𝑥
𝑖
𝑇−1, 𝑦

𝑖
1, . . . , 𝑦

𝑖
𝑇 ), was sampled independently of all other observations from

the same joint distribution on 𝒳1 × · · · × 𝒳𝑇−1 × 𝒴1 × · · · × 𝒴𝑇 .

We assume throughout that the auxiliary covariates evolve according to a Markov

process, i.e., 𝑋𝑡 is conditionally independent of 𝑋0, . . . , 𝑋𝑡−2, 𝑌1, . . . , 𝑌𝑡−2 given 𝑋𝑡−1.

This framework can model more complex dependencies because we are able to choose

the auxiliary covariate space. We could for example, append 𝑋0, . . . , 𝑋𝑡−1 to the

auxiliary covariates observed at time 𝑡. In addition, we assume 𝑌𝑡 is conditionally

independent of all past observations given 𝑋𝑡−1.

The problem we seek to solve is defined:

𝑣*(𝑥0) = min
𝑧0∈𝑍0(𝑠0)

𝑔0(𝑧0) + E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0], (3.2)

where

𝑄𝑡(𝑠𝑡; 𝑦𝑡, 𝑥𝑡) = min
𝑧∈𝑍𝑡(𝑠𝑡,𝑦𝑡)

𝑔𝑡(𝑧) + E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑋𝑡 = 𝑥𝑡]

for 𝑡 = 1, . . . , 𝑇 − 2, with

𝑄𝑇−1(𝑠𝑇−1; 𝑦𝑇−1, 𝑥𝑇−1)

= min
𝑧∈𝑍𝑇−1(𝑠𝑇−1,𝑦𝑇−1)

𝑔𝑇−1(𝑧) + E[𝑄𝑇 (𝑓𝑇−1(𝑧);𝑌𝑇 )|𝑋𝑇−1 = 𝑥𝑇−1],
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and 𝑄𝑇 (𝑠𝑇 ; 𝑦𝑇 ) = min
𝑧∈𝑍𝑇 (𝑠𝑇 ,𝑦𝑇 )

𝑔𝑇 (𝑧). We summarize our key contributions here.

1. In Section 3.2, we extend the framework introduced by Bertsimas and Kallus

[15] to the multistage setting. Similarly to SAA, we replace the expectations

in (3.2) with sums over the value functions, evaluated at observations of 𝑌 .

However, unlike SAA, we weight the observations according to their relevance to

the current problem’s auxiliary data, using weight functions inspired by popular

machine learning methods.

2. In Section 3.3, we prove the asymptotic optimality and consistency of our

method with 𝑘-nearest neighbor, CART, and random forest weight functions,

under fairly mild conditions, for the multistage problem. (We formalize these

definitions in that section.) The result for the 𝑘-nearest neighbor weight func-

tion is new for the multistage setting, and the results for the CART and random

forest weight functions are new for both the single-stage and multistage settings.

3. In Section 3.4, we establish finite sample guarantees for our method with 𝑘-

nearest neighbor weight functions. These guarantees are new for both the single-

stage and multistage problems.

4. In Section 3.5, we demonstrate the practical tractability of our method with

several computational examples using synthetic data. In addition, our results

show that accounting for auxiliary data can have significant value.

3.2 Approach

In this section, we introduce our framework for solving multistage optimization prob-

lems under uncertainty in the presence of auxiliary covariates (3.2). Motivated by

the framework developed by Bertsimas and Kallus [15], and analogous to SAA, we

replace the expectations over an unknown distribution with finite weighted sums of

the value functions evaluated at the observations in the data. The weights we use are

obtained from ML methods.
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First, we use our training data to learn weight functions, 𝑤𝑡
𝑁,𝑖(𝑥𝑡−1), which quan-

tify the similarity of a new observation, 𝑥𝑡−1, to each of the training examples,

𝑥1𝑡−1, . . . , 𝑥
𝑁
𝑡−1. We then replace the conditional expectations in (3.2) with weighted

sums. In particular,

𝑣𝑁(𝑥0) = min
𝑧∈𝑍0(𝑠0)

𝑔0(𝑧) +
𝑁∑︁
𝑖=1

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧); 𝑦𝑖1, 𝑥

𝑖
1)), (3.3)

where

�̂�𝑡(𝑠𝑡; 𝑦𝑡, 𝑥𝑡) = min
𝑧∈𝑍𝑡(𝑠𝑡,𝑦𝑡)

𝑔𝑡(𝑧) +
𝑁∑︁
𝑖=1

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)�̂�𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)

for 𝑡 = 1, . . . , 𝑇 − 2, with

�̂�𝑇−1(𝑠𝑇−1; 𝑦𝑇−1, 𝑥𝑇−1)

= min
𝑧∈𝑍𝑇−1(𝑠𝑇−1,𝑦𝑇−1)

𝑔𝑇−1(𝑧) +
𝑁∑︁
𝑖=1

𝑤𝑇
𝑁,𝑖(𝑥𝑇−1)�̂�𝑇 (𝑓𝑇−1(𝑧); 𝑦𝑖𝑇 ),

and �̂�𝑇 (𝑠𝑇 ; 𝑦𝑇 ) = min
𝑧∈𝑍𝑇 (𝑠𝑇 ,𝑦𝑇 )

𝑔𝑇 (𝑧).

We note that this is analogous to the sample average approximation method,

which can be represented in this framework with the weight functions equal to 1
𝑁

. The

weight functions can be computed from various predictive machine learning methods.

We list here a few examples that we find effective in practice.

Definition 3.1. Motivated by 𝑘-nearest neighbor regression [1], the 𝑘NN weight func-

tion is given by

𝑤𝑁,𝑖(𝑥) =

⎧⎪⎨⎪⎩1/𝑘, 𝑥𝑖 is a 𝑘NN of 𝑥,

0, otherwise.

Definition 3.2. Motivated by classification and regression trees [30], the CART
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weight function is given by

𝑤𝑁,𝑖(𝑥) =

⎧⎪⎨⎪⎩1/|𝑅(𝑥)|, 𝑥𝑖 ∈ 𝑅(𝑥),

0, otherwise.
,

where 𝑅(𝑥) is the set of training points in the same partition as 𝑥 in the CART model.

Definition 3.3. Motivated by random forests [29], the random forests weight function

is given by

𝑤𝑁,𝑖(𝑥) =
1

𝐵

𝐵∑︁
𝑏=1

1

|𝑅𝑏(𝑥)|
1{𝑥𝑖 ∈ 𝑅𝑏(𝑥)},

where 𝑅𝑏(𝑥) is the set of training points in the same partition as 𝑥 in tree 𝑏 of the

random forest.

We offer two observations on the formulation in (3.3) before proceeding.

1. In SAA, we are justified in replacing E[𝜃] by 1
𝑁

𝑁∑︀
𝑖=1

𝜃𝑖 by the strong law of large

numbers. We will see in Section 3.3 that a conditional strong law of large

numbers holds under certain conditions, and this justifies replacing E[ℎ(𝑌𝑡) |

𝑋 = 𝑥] with
𝑁∑︀
𝑖=1

𝑤𝑁,𝑖(𝑥)ℎ(𝑦𝑖𝑡).

2. If the weight functions are nonnegative and sum to one (as is the case with those

presented here), then we can think of this formulation as defining a dynamic

programming problem in which the uncertain quantities have a known, finite

distribution. This means we can readily apply exact and approximate dynamic

programming algorithms to solve (3.3). For the reader’s convenience, we provide

a decomposition algorithm, tailored to our approach, in Appendix B.2, which

can be used to exactly solve small to moderately sized problems.

3.2.1 Notation

We summarize the relevant notation we use in Table 3.1. We use lower case letters for

𝑥𝑖𝑡 and 𝑦𝑖𝑡 to denote observed quantities in the data and capital letters, 𝑋 𝑖
𝑡 and 𝑌 𝑖

𝑡 , to

denote random quantities. When we discuss the asymptotic optimality of solutions
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𝑥𝑡 Auxiliary data observed at time 𝑡, 𝑥𝑡 ∈ 𝒳𝑡 ⊂ R𝑑𝑡

𝑠𝑡 State of the system at the beginning of time period 𝑡, 𝑠𝑡 ∈ 𝑆𝑡

𝑧𝑡 Decision made at time 𝑡, 𝑧𝑡 ∈ 𝑍𝑡(𝑠𝑡, 𝑦𝑡) ⊂ R𝑝𝑡

𝑦𝑡 Uncertain quantity observed after the decision at time 𝑡− 1, 𝑦𝑡 ∈ 𝒴𝑡

𝑓𝑡(𝑧𝑡) Transition function that gives the evolution of the state to 𝑠𝑡+1

𝑔𝑡(𝑧𝑡) Cost of decision 𝑧𝑡 at time 𝑡
𝑤𝑡

𝑁,𝑖(𝑥𝑡−1) Weight function for stage 𝑡, gives weighting for training sample 𝑖
𝑄𝑡(𝑠𝑡; 𝑦𝑡, 𝑥𝑡) Value function in full information problem (3.2)
�̂�𝑡(𝑠𝑡; 𝑦𝑡, 𝑥𝑡) Value function in approximate problem (3.3)
𝑣*(𝑥0) Optimal objective value of full information problem (3.2)
𝑣𝑁(𝑥0) Optimal objective value of approximate problem (3.3)

Table 3.1: Summary of notation.

in Definitions 3.4 and 3.5, the data are random quantities, and thus solutions to (3.3)

are also random. For notational convenience, we sometimes write 𝑄𝑇 (𝑠𝑇 ; 𝑦𝑇 , 𝑥𝑇 ) even

though 𝑄𝑇 does not depend on 𝑥𝑇 (because the auxiliary data observed after the last

decision is made is irrelevant to the problem).

3.3 Asymptotic Optimality

In the setting without auxiliary covariates, under certain conditions, the SAA esti-

mator is strongly asymptotically optimal [86]. Here, we provide similar results for the

multistage setting with auxiliary data.

Definition 3.4. We say 𝑧𝑁0 (𝑥0), a sequence of optimal solutions to (3.3), is strongly

asymptotically optimal if, for 𝑥0 almost everywhere (a.e.),

1. The estimated cost of 𝑧𝑁0 (𝑥0) converges to the true optimal cost:

min
𝑧∈𝑍0(𝑠0)

𝑔0(𝑧) +
𝑁∑︁
𝑖=1

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧);𝑌 𝑖

1 , 𝑋
𝑖
1)→ 𝑣*(𝑥), (3.4)

almost surely.

2. The true cost of 𝑧𝑁0 (𝑥0) converges to the true optimal cost:

E[𝑔0(𝑧
𝑁
0 ) +𝑄1(𝑓0(𝑧

𝑁
0 );𝑌1, 𝑋1)|𝑋0 = 𝑥0, 𝑧

𝑁
0 ]→ 𝑣*(𝑥0),
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almost surely.

3. The limit points of {𝑧𝑁0 (𝑥0) are contained in the set of true optimal solutions:

𝐿({𝑧𝑁0 (𝑥0) : 𝑁 ∈ N}) ⊂ arg min
𝑧∈𝑍0(𝑠0)

E[𝑔0(𝑧) +𝑄0(𝑓0(𝑧);𝑌1, 𝑋1)|𝑋0 = 𝑥0],

almost surely, where 𝐿(𝑆) denotes the limit points of the set 𝑆.

Definition 3.5. We say 𝑧𝑁0 (𝑥0), a sequence of optimal solutions to (3.3), is weakly

asymptotically optimal if, for 𝑥0 almost everywhere (a.e.),

1. The estimated cost of 𝑧𝑁0 (𝑥0) converges to the true optimal cost in probability:

min
𝑧∈𝑍0(𝑠0)

𝑔0(𝑧) +
𝑁∑︁
𝑖=1

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧);𝑌 𝑖

1 , 𝑋
𝑖
1)→𝑃 𝑣

*(𝑥). (3.5)

2. The true cost of 𝑧𝑁0 (𝑥0) converges to the true optimal cost in probability:

E[𝑔0(𝑧
𝑁
0 ) +𝑄1(𝑓0(𝑧

𝑁
0 );𝑌1, 𝑋1)|𝑋0 = 𝑥0, 𝑧

𝑁
0 ]→𝑃 𝑣

*(𝑥0).

3.3.1 𝑘-Nearest Neighbor Weight Functions

We begin by defining some assumptions under which asymptotic optimality will hold

for (3.3) with the 𝑘-nearest neighbor weight functions.

Assumption 3.1 (Regularity). For each 𝑡 = 0, . . . , 𝑇 , there exists a closed and

bounded set 𝑊𝑡 such that for any 𝑠𝑡 and 𝑦𝑡, the feasible region, 𝑍𝑡(𝑠𝑡, 𝑦𝑡), is contained

in 𝑊𝑡.

Assumption 3.2 (Existence). The full information problem (3.2) is well defined for

all stages, 𝑡 = 0, . . . , 𝑇 − 1: E|𝑔𝑡(𝑧𝑡) + 𝑄𝑡+1(𝑓𝑡(𝑧𝑡);𝑌𝑡+1, 𝑋𝑡+1)| < ∞ for all 𝑧𝑡 ∈ 𝑊𝑡

and 𝑍𝑡(𝑠𝑡, 𝑦𝑡) is nonempty for all 𝑠𝑡 and 𝑦𝑡.

Assumption 3.3 (Continuity). The function 𝑔𝑡−1(𝑧𝑡−1) + 𝑄𝑡(𝑓𝑡−1(𝑧𝑡−1); 𝑦𝑡, 𝑥𝑡) is

equicontinuous in 𝑧𝑡−1 at all stages. That is, for 𝑡 = 1, . . . , 𝑇 , ∀𝑧 ∈ 𝑊𝑡−1, 𝜖 > 0,
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∃𝛿 > 0 such that

sup
𝑦𝑡∈𝒴𝑡

sup
𝑥𝑡∈𝒳𝑡

|𝑔𝑡−1(𝑧) +𝑄𝑡(𝑓𝑡−1(𝑧); 𝑦𝑡, 𝑥𝑡)− 𝑔𝑡−1(𝑧
′)−𝑄𝑡(𝑓𝑡−1(𝑧

′); 𝑦𝑡, 𝑥𝑡)| ≤ 𝜖

for all 𝑧′ ∈ {𝑧′ : ||𝑧 − 𝑧′|| ≤ 𝛿} ∩𝑊𝑡. Additionally, the final cost function, 𝑔𝑇 (𝑧𝑇 ) is

continuous.

Assumption 3.4 (Distribution of Uncertainties). The following hold:

1. The stochastic process 𝑋0, 𝑋1, . . . , 𝑋𝑇−1 satisfies the Markov property.

2. For each 𝑡 = 1, . . . , 𝑇 , 𝑌𝑡 is conditionally independent of 𝑌1, . . . , 𝑌𝑡−1 and

𝑋0, . . . , 𝑋𝑡−2 given 𝑋𝑡−1.

3. For each 𝑡 = 0, . . . , 𝑇 − 1, the support of 𝑋𝑡, 𝒳𝑡, is compact.

4. The noise terms have uniformly bounded tails, i.e., defining 𝑁𝑡(𝑠𝑡;𝑥𝑡−1) =

𝑄𝑡(𝑠𝑡;𝑌𝑡, 𝑋𝑡)− E[𝑄𝑡(𝑠𝑡;𝑌𝑡, 𝑋𝑡)|𝑋𝑡−1 = 𝑥𝑡−1], there exists 𝜆 > 0 such that

max
𝑡=1,...,𝑇

sup
𝑥𝑡−1∈𝒳𝑡−1

sup
𝑠𝑡∈𝑆𝑡

E[𝑒𝜆|𝑁𝑡(𝑠𝑡;𝑥𝑡−1)||𝑋𝑡−1 = 𝑥𝑡−1] <∞.

5. For all 𝑡 and 𝑠𝑡, E[𝑄𝑡(𝑠𝑡;𝑌𝑡, 𝑋𝑡)|𝑋𝑡−1 = 𝑥] is a continuous function of 𝑥.

We remark that Assumption 3.3 does not preclude the possibility of integral con-

straints on 𝑧𝑡. In fact, if 𝑍𝑡 is a finite discrete set, the assumption is automatically

satisfied (choose 𝛿 < min𝑧,𝑧′∈𝑍𝑡 ||𝑧−𝑧′||). Condition 4 of Assumption 3.4 can be satis-

fied if 𝑁𝑡(𝑠𝑡;𝑥𝑡−1) are uniformly bounded random variables, are subgaussian random

variables with uniformly bounded subgaussian norms, or are subexponential random

variables with uniformly bounded subexponential norms. With these assumptions,

we have the following result regarding the asymptotic optimality of (3.3) with the

𝑘-nearest neighbor weight functions.

Theorem 3.1. Suppose Assumptions 3.1-3.4 hold, and the training data is i.i.d.

Let 𝑤𝑡
𝑁,𝑖(𝑥𝑡−1) be the 𝑘-nearest neighbor weight functions for 𝑡 = 1, . . . , 𝑇 with 𝑘 =
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min{⌈𝐶𝑁 𝛿⌉, 𝑁 − 1} for 𝐶 > 0, 𝛿 ∈ (0, 1). Then {𝑧𝑁0 (𝑥)}, a sequence of optimal

solutions to (3.3), is strongly asymptotically optimal.

Comparing the result with that of Bertsimas and Kallus [15] for the single-stage

problem, we see it is quite similar. Both theorems assume regularity, existence, and

continuity. The difference in the multistage setting is that these assumptions must

hold for the value function at each stage. We also note that Bertsimas and Kallus

[15] listed several sets of regularity assumptions that could hold, whereas we only list

one for clarity. However, the extension of the other sets of regularity assumptions to

the multistage setting is straightforward.

To prove this result, we rely on several technical lemmas. Lemmas 3.1,3.3, and

3.4 are refined versions of results originally stated in Bertsimas and Kallus [15].

Lemma 3.1. Suppose for each 𝑁 ∈ N, 𝐶𝑁(𝑧|𝑥) and 𝐶(𝑧|𝑥) are equicontinuous func-

tions, i.e., ∀𝜖 > 0 and 𝑧 ∈ 𝒵, ∃𝛿 > 0 s.t. sup
𝑧′∈𝐵𝛿(𝑧)∩𝒵

sup
𝑥∈𝒳
|𝐶𝑁(𝑧|𝑥)−𝐶𝑁(𝑧′|𝑥)| ≤ 𝜖, and

likewise for 𝐶. If for every 𝑧 ∈ 𝒵,

sup
𝑥∈𝒳

⃒⃒⃒
𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)

⃒⃒⃒
→ 0,

then the convergence is uniform over any compact subset of 𝒵.

Proof. Let 𝑧𝑁 ∈ 𝒵 be a sequence that converges to 𝑧 ∈ 𝒵. For any 𝜖 > 0, by

assumption, ∃𝛿 > 0 such that sup
𝑧′∈𝐵𝛿(𝑧)∩𝒵

|𝐶𝑁(𝑧|𝑥) − 𝐶(𝑧′|𝑥)| ≤ 𝜖/2 for all 𝑥. By the

convergence of 𝑧𝑁 , there exists an 𝑁1 such that ∀𝑁 ≥ 𝑁1, 𝑧𝑁 ∈ 𝐵𝛿(𝑧) ∩ 𝒵. This

implies, ∀𝑁 ≥ 𝑁1, |𝐶𝑁(𝑧𝑁 |𝑥)−𝐶𝑁(𝑧|𝑥)| ≤ 𝜖/2 for all 𝑥. Additionally, by assumption,

∃𝑁2 s.t. ∀𝑁 ≥ 𝑁2, sup
𝑥∈𝒳

⃒⃒⃒
𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)

⃒⃒⃒
≤ 𝜖/2. Therefore, ∀𝑁 ≥ max(𝑁1, 𝑁2)

sup
𝑥∈𝒳

⃒⃒⃒
𝐶𝑁(𝑧𝑁 |𝑥)− 𝐶(𝑧|𝑥)

⃒⃒⃒
≤ 𝜖.

Therefore, for any convergent sequence in 𝒵, 𝑧𝑁 → 𝑧, sup
𝑥∈𝒳
|𝐶𝑁(𝑧𝑁 |𝑥)− 𝐶(𝑧|𝑥)| → 0.

Given a compact subset 𝐸 ⊂ 𝒵, suppose that sup
𝑧∈𝐸

sup
𝑥∈𝒳

𝐶𝑁(𝑧|𝑥)−𝐶(𝑧|𝑥)| ̸→ 0. This

implies ∃𝜖 > 0 and a sequence 𝑧𝑁 ∈ 𝐸 such that sup
𝑥∈𝒳
|𝐶𝑁(𝑧𝑁 |𝑥)−𝐶(𝑧𝑁 |𝑥)| > 𝜖 occurs
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infinitely often. Define 𝑧𝑁𝑘
to be the subsequence for which this event occurs. Since 𝐸

is compact, by the Bolzano-Weirestrass theorem, 𝑧𝑁𝑘
has a convergent subsequence

in 𝐸. If we define {𝑠𝑁} to be this subsubsequence, we have that 𝑠𝑁 → 𝑠 ∈ 𝐸

and sup
𝑥∈𝒳
|𝐶𝑁(𝑠𝑁 |𝑥) − 𝐶(𝑠𝑁 |𝑥)| > 𝜖 for all 𝑁 . We have sup

𝑥∈𝒳
|𝐶𝑁(𝑠𝑁 |𝑥) − 𝐶(𝑠𝑁 |𝑥)| ≤

sup
𝑥∈𝒳
|𝐶𝑁(𝑠𝑁 |𝑥)−𝐶(𝑠|𝑥)|+sup

𝑥∈𝒳
|𝐶(𝑠|𝑥)−𝐶(𝑠𝑁 |𝑥)|. The first term converges to 0 because

of what we showed above. The second term converges to 0 by the equicontinuity

assumption. This is a contradiction, so it must be that sup
𝑧∈𝐸

sup
𝑥∈𝒳
|𝐶(𝑧|𝑥)−𝐶(𝑧|𝑥)| → 0

for any compact set 𝐸 ⊂ 𝒵.

This lemma shows that, given an equicontinuity assumption, pointwise conver-

gence of a function implies uniform convergence over a compact set. We will apply

this with 𝐶 = 𝑄𝑡. The following two lemmas establish that strong asymptotic op-

timality follows from the uniform convergence of the objective of (3.3) to that of

(3.2).

Lemma 3.2. Suppose 𝒵 is a compact set and ℎ(𝑧) and 𝑔(𝑧) are two continuous

functions. If 𝑧* ∈ arg min
𝑧∈𝒵

ℎ(𝑧) and 𝑧′ ∈ arg min
𝑧∈𝒵

𝑔(𝑧), then

|ℎ(𝑧*)− 𝑔(𝑧′)| ≤ sup
𝑧∈𝒵
|ℎ(𝑧)− 𝑔(𝑧)|,

and

|ℎ(𝑧*)− ℎ(𝑧′)| ≤ 2 sup
𝑧∈𝒵
|ℎ(𝑧)− 𝑔(𝑧)|.

Proof. First, because of the optimality of 𝑧* and 𝑧′,

|ℎ(𝑧*)− 𝑔(𝑧′)|

≤

⎧⎪⎨⎪⎩|ℎ(𝑧*)− 𝑔(𝑧*)|, ℎ(𝑧*) ≤ 𝑔(𝑧′)

|ℎ(𝑧′)− 𝑔(𝑧′)|, ℎ(𝑧*) > 𝑔(𝑧′)

≤ sup
𝑧∈𝒵
|ℎ(𝑧)− 𝑔(𝑧)|.
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Second,

|ℎ(𝑧*)− ℎ(𝑧′)| ≤ |ℎ(𝑧′)− 𝑔(𝑧′)|+ |𝑔(𝑧′)− ℎ(𝑧*)|

≤ 2 sup
𝑧∈𝒵
|ℎ(𝑧)− 𝑔(𝑧)|.

Lemma 3.3. Fix 𝑥 ∈ 𝒳 and suppose sup
𝑧∈𝒵
|𝐶𝑁(𝑧|𝑥) − 𝐶(𝑧|𝑥)| → 0 as 𝑁 → ∞

and 𝐶(𝑧|𝑥) is a continuous function of 𝑧. In addition, suppose constraint set 𝒵 is

nonempty, closed, and bounded. Any sequence 𝑧𝑁 ∈ arg min
𝑧∈𝒵

𝐶𝑁(𝑧|𝑥) for 𝑁 ∈ N has

all of its limit points contained in arg min
𝑧∈𝒵

𝐶(𝑧|𝑥).

Proof. Suppose there is a subsequence 𝑧𝑁𝑘
, converging to 𝑧 /∈ arg min𝑧∈𝒵 𝐶(𝑧|𝑥). (We

must still have that 𝑧 ∈ 𝒵 because 𝒵 is compact.) Let 𝜖 = 𝐶(𝑧|𝑥)−min
𝑧∈𝒵

𝐶(𝑧|𝑥) > 0.

By the continuity assumption, ∃𝑘1 such that for all 𝑘 ≥ 𝑘1 |𝐶(𝑧𝑁𝑘
|𝑥)−𝐶(𝑧|𝑥)| ≤ 𝜖/4.

Additionally, by assumption, we can find a 𝑘2 such that ∀𝑘 ≥ 𝑘2, |𝐶𝑁𝑘
(𝑧𝑁𝑘
|𝑥) −

𝐶(𝑧𝑁𝑘
|𝑥)| ≤ sup

𝑧∈𝒵
|𝐶𝑁𝑘

(𝑧|𝑥)−𝐶(𝑧|𝑥)| ≤ 𝜖/4 This implies that for any 𝑘 ≥ max(𝑘1, 𝑘2),

min
𝑧∈𝒵

𝐶𝑁𝑘
(𝑧|𝑥) = 𝐶𝑁𝑘

(𝑧𝑁𝑘
|𝑥) ≥ 𝐶(𝑧𝑁𝑘

|𝑥)− 𝜖/4 ≥ 𝐶(𝑧|𝑥)− 𝜖/2 = min
𝑧∈𝒵

𝐶(𝑧|𝑥) + 𝜖/2.

From lemma 3.2, we know that

|min
𝑧∈𝒵

𝐶𝑁𝑘
(𝑧|𝑥)−min

𝑧∈𝒵
𝐶(𝑧|𝑥)| ≤ sup

𝑧∈𝒵
|𝐶𝑁𝑘

(𝑧|𝑥)− 𝐶(𝑧|𝑥)|,

which goes to 0 as 𝑘 →∞, and is thus a contradiction. Therefore, all limit points of

arg min𝑧 𝐶𝑁(𝑧|𝑥) must be contained in arg min𝑧 𝐶(𝑧|𝑥).

Lemma 3.4 shows that, given an equicontinuity assumption, if a function indexed

by 𝑧 converges almost surely for each 𝑧 in a compact set, then the convergence holds

almost surely for all 𝑧.

Lemma 3.4. Suppose for each 𝑁 ∈ N, 𝐶𝑁(𝑧|𝑥) and 𝐶(𝑧|𝑥) are equicontinuous func-

tions: i.e., ∀𝜖 > 0 and 𝑧 ∈ 𝒵, ∃𝛿 > 0 s.t. sup
𝑧′∈𝐵𝛿(𝑧)∩𝒵

sup
𝑥∈𝒳
|𝐶𝑁(𝑧|𝑥)−𝐶𝑁(𝑧′|𝑥)| ≤ 𝜖, and
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likewise for 𝐶. In addition, suppose that for each 𝑧 ∈ 𝒵, sup
𝑥∈𝒳

⃒⃒⃒
𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)

⃒⃒⃒
→ 0

almost surely (𝐶𝑁(𝑧|𝑥) is a random quantity). Furthermore, assume 𝒵 is compact.

Then, almost surely, sup
𝑥∈𝒳

⃒⃒⃒
𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)

⃒⃒⃒
for all 𝑧 ∈ 𝒵.

Proof. Let 𝒵 ′ = 𝒵∩Q𝑑∪{isolated points of 𝒵}. Because 𝒵 ′ is countable, for 𝑥 almost

everywhere, 𝑃
(︁⋂︀

𝑧′∈𝒵′{sup𝑥∈𝒳 |𝐶𝑁(𝑧′|𝑥)− 𝐶(𝑧′|𝑥)| → 0}
)︁

= 1 by the continuity of

probability measures. For any sample path for which this occurs, consider any 𝑧 ∈ 𝒵.

We have, for any 𝑧′ ∈ 𝒵 ′,

sup
𝑥∈𝒳
|𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)| ≤ sup

𝑥∈𝒳
|𝐶𝑁(𝑧|𝑥)− 𝐶𝑁(𝑧′|𝑥)|+ sup

𝑥∈𝒳
|𝐶(𝑧′|𝑥)− 𝐶(𝑧|𝑥)|

+ sup
𝑥∈𝒳
|𝐶𝑁(𝑧′|𝑥)− 𝐶(𝑧′|𝑥)|.

By equicontinuity and the density of 𝒵 ′, we can pick 𝑧′ ∈ 𝒵 ′ such that each of the first

two terms is less 𝜖/3 for any 𝜖 > 0. By assumption, we can also find an 𝑁1 such that

the third term is bounded by 𝜖/3 for all𝑁 ≥ 𝑁1, so we have sup
𝑥∈𝒳
|𝐶𝑁(𝑧|𝑥)−𝐶(𝑧|𝑥)| ≤ 𝜖

for all 𝑁 ≥ 𝑁1. This is true for any 𝑧 ∈ 𝒵 for this particular sample path. Since the

set of sample paths for which this is true constitutes a measure 1 event, we have the

desired result.

We also restate a result from Biau and Devroye [25] (Theorem 12.1) regarding the

uniform consistency of the 𝑘-nearest neighbor regression estimator.

Lemma 3.5. Let (𝑋1, 𝑌 1), . . . , (𝑋𝑁 , 𝑌 𝑁) ∈ R𝑑 ×R be i.i.d. observations of random

variables (𝑋, 𝑌 ). Assume 𝑋 has support on a compact set 𝒳 ⊂ R𝑑 and there exists

𝜆 > 0 such that

sup
𝑥∈R𝑑

E[exp(𝜆|𝑌 − E[𝑌 |𝑋 = 𝑥]|)|𝑋 = 𝑥] <∞.

In addition, assume E[𝑌 |𝑋 = 𝑥] is a continuous function. For some 𝐶 > 0, 𝛿 ∈ (0, 1),

let 𝑘𝑁 = min{⌈𝐶𝑁 𝛿⌉, 𝑁−1}. If 𝑚𝑁(𝑥) is the 𝑘𝑁 nearest neighbor regression estimator
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for 𝑌 and 𝑚(𝑥) = E[𝑌 |𝑋 = 𝑥], then

sup
𝑥∈𝒳
|𝑚𝑁(𝑥)−𝑚(𝑥)| → 0

almost surely.

From these lemmas, the proof of Theorem 3.1 follows.

Proof of Theorem 3.1. We need to show that

sup
𝑧0∈𝒵

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒→ 0

a.s. for 𝑥0 a.e. The desired result then follows from lemmas 3.2 and 3.3. To begin,

we have: ⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)−

∑︁
𝑖

𝑤1
𝑁,𝑖(𝑥0)𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)

⃒⃒⃒⃒
⃒ .

Expanding the second term on the right hand side, and using the fact that
∑︀

𝑖𝑤
1
𝑁,𝑖(𝑥0) =

1 and 𝑤1
𝑁,𝑖(𝑥0) ≥ 0, we have:

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)

(︁
�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)−𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)
)︁⃒⃒⃒⃒⃒

≤
∑︁
𝑖

𝑤1
𝑁,𝑖(𝑥0)

⃒⃒⃒
�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)−𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)
⃒⃒⃒

≤ sup
𝑥1∈𝒳1

⃒⃒⃒⃒
min
𝑧1∈𝑊1

(︃
𝑔1(𝑧1) +

∑︁
𝑖

𝑤2
𝑁,𝑖(𝑥1)�̂�2(𝑓1(𝑧1); 𝑦

𝑖
2, 𝑥

𝑖
2)

)︃

− min
𝑧1∈𝑊1

(𝑔1(𝑧1) + E[𝑄2(𝑓1(𝑧1);𝑌2, 𝑋2)|𝑋1 = 𝑥1])

⃒⃒⃒⃒
≤ sup

𝑥1∈𝒳1

sup
𝑧∈𝑊1

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑤2
𝑁,𝑖(𝑥1)�̂�2(𝑓1(𝑧); 𝑦𝑖2, 𝑥

𝑖
2)− E[𝑄2(𝑓1(𝑧);𝑌2)|𝑥1]

⃒⃒⃒⃒
⃒ ,
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where we have used lemma 3.2. Therefore, we have:⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑥0]

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑥0]

⃒⃒⃒⃒
⃒

+ sup
𝑥1∈𝒳1

sup
𝑧1∈𝑊1

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑤2
𝑁,𝑖(𝑥1)�̂�2(𝑓1(𝑧1); 𝑦

𝑖
2, 𝑥

𝑖
2)− E[𝑄2(𝑓1(𝑧1);𝑌2, 𝑋2)|𝑥1]

⃒⃒⃒⃒
⃒ .

Repeating the above argument for 𝑡 = 2, . . . , 𝑇 − 1, we have:

sup
𝑧0∈𝒵0

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

≤ sup
𝑧0∈𝒵

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

+
𝑇−1∑︁
𝑡=1

sup
𝑥𝑡∈𝒳𝑡

sup
𝑧𝑡∈𝑊𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧𝑡); 𝑦

𝑖
𝑡+1, 𝑥

𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧𝑡);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]
⃒⃒⃒⃒
.

To see that each term on the right hand side goes to 0 a.s., we first apply lemma 3.5

to each term. This shows that each term (without the supremums over 𝑧𝑡) goes to 0

a.s. for each 𝑧𝑡. Next we apply lemma 3.4 to each term to show that the convergence

holds simultaneously for all 𝑧𝑡 with probability 1. Finally, we apply lemma 3.1 to

show the convergence of each term is uniform over 𝑧𝑡 a.s. To do so, we let 𝐶𝑁(𝑧|𝑥) =∑︀
𝑖𝑤

𝑡+1
𝑁,𝑖 (𝑥)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1) and 𝐶(𝑧|𝑥) = E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥]. We can

verify the equicontinuity assumption holds for each of these functions because of

Assumption 3.3 and Jensen’s inequality (because 𝑤𝑡+1
𝑁,𝑖 (𝑥) define a probability distri-

bution). This completes the proof.

3.3.2 CART Weight Functions

In order to study the asymptotic properties of (3.3) with the CART and random forest

weight functions, we need to consider modified versions of the original algorithms of
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Breiman et al. [30] and Breiman [29]. Since greedy decision trees have proven difficult

to analyze theoretically, we instead consider a modified tree learner introduced by

Wager and Athey [97]. Formally, a regression tree is defined as

𝑇 (𝑥; 𝜉,𝑋1, 𝑌1, . . . , 𝑋𝑛, 𝑌𝑛) =
1

|{𝑖 : 𝑋𝑖 ∈ 𝑅(𝑥)}|
∑︁

{𝑖:𝑋𝑖∈𝑅(𝑥)}

𝑌𝑖,

where 𝑅(𝑥) identifies the region of the tree containing 𝑥, and 𝜉 is an auxiliary source

of randomness. Trees are built by recursively partitioning the feature space. At each

step of the training process, for each region, a feature is selected and a cutoff is chosen

to define an axis-aligned hyperplane to partition the region into two smaller regions.

This is repeated until every region contains some minimum number of training points.

In order to guarantee consistency, we place several restrictions on how the trees are

built. We use the following definitions from Wager and Athey [97].

Definition 3.6 (Random-split, regular, and honest trees). Let the regression tree

𝑇 (𝑥; 𝜉,𝑋1, 𝑌1, . . . , 𝑋𝑛, 𝑌𝑛) be the type defined above.

1. 𝑇 is a random-split tree if at each step in the training procedure, the probability

that the next split occurs in the 𝑗th feature is at least 𝜋/𝑑 for all 𝑗 = 1, . . . , 𝑑,

with some 𝜋 > 0. This source of this randomness is 𝜉.

2. 𝑇 is a regular tree if at each split leaves at least a fraction 𝜆 > 0 of the available

training examples on each side of the split. Additionally, the tree is grown to

full depth 𝑘 ∈ N, meaning there are between 𝑘 and 2𝑘 − 1 training examples in

each region of the feature space.

3. 𝑇 is an honest tree if the splits are made independently of the response variables

{𝑌1, . . . , 𝑌𝑛}. This can be achieved by ignoring the response variable entirely

when making splits or by splitting the training data into two halves, one for

making splits and one for making predictions. (If the latter is used, the tree is

regular if at least a fraction 𝜆 of the available prediction examples are on each

side of the split.)
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The standard implementation of the CART algorithm does not satisfy these def-

initions, but it is straightforward to modify the original algorithm so that it does.

It involves modifying how splits are chosen. If we learn weight functions using trees

that do satisfy these definitions, we can guarantee the solutions to (3.3) are weakly

asymptotically optimal. We first introduce two additional assumptions. We note that

these assumptions are strengthened versions of Assumptions 3.3 and 3.4.

Assumption 3.5 (Distribution of Auxiliary Covariates). The distribution of the aux-

iliary data, 𝑋, is uniform on [0, 1]𝑑 (independent in each feature)1.

Assumption 3.6 (Continuity). For each 𝑡 = 1, . . . , 𝑇 , there exists an 𝐿𝑡 < ∞ such

that ∀𝑦𝑡 ∈ 𝒴𝑡, 𝑧𝑡 ∈ 𝑊𝑡 and ∀𝑧, 𝑧′ ∈ 𝑊𝑡−1,

|𝑄𝑡(𝑓𝑡−1(𝑧); 𝑦𝑡, 𝑥𝑡)−𝑄𝑡(𝑓𝑡−1(𝑧
′); 𝑦𝑡, 𝑥𝑡)| ≤ 𝐿𝑡||𝑧 − 𝑧′||.

Furthermore, for each 𝑡 = 1, . . . , 𝑇 , E[𝑄𝑡(𝑠𝑡;𝑌𝑡, 𝑋𝑡)|𝑋 = 𝑥] is 𝑀𝑡-Lipschitz continu-

ous in 𝑥, for all 𝑠𝑡.

Theorem 3.2. Suppose Assumptions 3.1-3.6 hold, and the training data is i.i.d. Let

𝑤𝑡
𝑁,𝑖(𝑥𝑡−1) be the CART weight functions for 𝑡 = 1, . . . , 𝑇 , and assume the trees are

honest, random split, and regular with 𝑘, the minimum number of training examples

in each leaf, equal to min{⌈𝐶𝑁 𝛿⌉, 𝑁 − 1} for 𝐶 > 0, 𝛿 ∈ (0, 1). Then {𝑧𝑁0 (𝑥)}, a

sequence of optimal solutions to (3.3), is weakly asymptotically optimal.

The proof of this result follows closely the proof of Theorem 3.1. To begin, we

prove a result regarding the bias of tree based predictors. It relies on the same

argument Wager and Athey [97] used in proving their Lemma 2.

Lemma 3.6. Suppose 𝑇 is a regular, random-split tree as in Definition 3.6, and the

training covariates 𝑋1, . . . , 𝑋𝑁 are i.i.d. uniform([0, 1]𝑑) random variables. If 𝑅(𝑥)

1The result holds under more general distributional assumptions, but uniformity is assumed for
simplicity. For example, we could assume 𝑋 has a continuous density function on [0, 1]𝑑, bounded
away from 0 and ∞. See Wager and Athey [97] for a further discussion.
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denotes the partition of [0, 1]𝑑 containing 𝑥 ∈ R𝑑, and
𝑁

𝑘
→∞ as 𝑁 →∞, then

sup
𝑥

diam(𝑅(𝑥))→𝑃 0.

Proof. As in the proof of Lemma 2 in Wager and Athey [97], we define 𝑐(𝑥) to be the

number of splits leading to the leaf 𝑅(𝑥) and 𝑐𝑗(𝑥) to be the number of these splits

that are on the 𝑗th coordinate. Following the same arguments as Wager and Athey

[97], we have, conditional on 𝑋1, . . . , 𝑋𝑁 ,

𝑐𝑗(𝑥) ≥ 𝐵𝑗(𝑥),

where 𝐵𝑗(𝑥) ∼ Binom
(︂⌊︂

log(𝑁/(2𝑘 − 1))

log 𝜆−1

⌋︂
,
𝜋

𝑑

)︂
. In addition, for 𝑁 sufficiently large,

with probability at least 1− 𝑘/𝑁 (over the training data),

diam𝑗(𝑅(𝑥)) ≤ (1− 𝜆)0.99𝑐𝑗(𝑥).

We call this event 𝐴𝑁 . From here, we have, for any 𝜖 > 0,

𝑃

(︂
sup
𝑥

diam(𝑅(𝑥)) > 𝜖

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁 , 𝐴𝑁

)︂
≤ 𝑃

(︂
0.99 inf

𝑗
inf
𝑥
𝑐𝑗(𝑥) <

log 𝜖−1

log(1− 𝜆)−1

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁 , 𝐴𝑁

)︂
≤ 𝑑

(︂
𝑁

𝑘

)︂
𝑃

(︂
𝑐𝑗(𝑥) ≤ log 𝜖−1

0.99 log(1− 𝜆)−1

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁 , 𝐴𝑁

)︂
≤ 𝑑

(︂
𝑁

𝑘

)︂
𝑃

(︂
𝐵𝑗(𝑥) ≤ log 𝜖−1

0.99 log(1− 𝜆)−1

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁 , 𝐴𝑁

)︂

≤ 𝑑

(︂
𝑁

𝑘

)︂
exp

⎛⎝−2

⌊︃
log 𝑁

2𝑘−1

log 𝜆−1

⌋︃(︃
𝜋

𝑑

⌊︃
log 𝑁

2𝑘−1

log 𝜆−1

⌋︃
− log 𝜖−1

0.99 log(1− 𝜆)−1

)︃2
⎞⎠

≤ 𝑑

(︂
𝑁

𝑘

)︂
exp

(︀
−𝐶1 log3(𝑁/(2𝑘 − 1))

)︀
,

for 𝑁/𝑘 sufficiently large, where 𝐶1 > 0 is a constant that does not depend on 𝑁 or

𝑘. The second inequality follows from the union bound since there are a maximum

of 𝑁/𝑘 total partitions in the tree, and the fourth inequality follows from Hoeffding’s
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inequality. Putting everything together, we have:

𝑃

(︂
sup
𝑥

diam(𝑅(𝑥)) > 𝜖

)︂
≤ 𝑃

(︂
sup
𝑥

diam(𝑅(𝑥)) > 𝜖

⃒⃒⃒⃒
𝐴𝑁

)︂
+
𝑘

𝑁

≤ 𝑑

(︂
𝑁

𝑘

)︂
exp

(︀
−𝐶1 log3(𝑁/(2𝑘 − 1))

)︀
+
𝑘

𝑁
.

It is easy to verify that the final expression goes to 0 as 𝑁 → ∞, so the proof is

complete.

Next, we establish the uniform consistency of the CART regression estimator.

Lemma 3.7. Suppose 𝑇 is a regular, random-split, honest tree as in Definition 3.6,

the training data (𝑋1, 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁) are i.i.d. with 𝑋𝑖 uniform on [0, 1]𝑑, and

E[𝑌 |𝑋 = 𝑥] is 𝐿-Lipschitz continuous. In addition, assume there exists 𝜆 > 0 such

that the uniform noise condition is satisfied: sup
𝑥

E[exp(𝜆|𝑌𝑖 − E[𝑌𝑖|𝑋𝑖 = 𝑥]|)|𝑋𝑖 =

𝑥] <∞. Finally, suppose log𝑁/𝑘 → 0 and 𝑁/𝑘 →∞ as 𝑁 →∞. If �̂�𝑁(𝑥) denotes

the prediction of 𝑇 at 𝑋 ∈ R𝑑 and 𝜇(𝑥) = E[𝑌 |𝑋 = 𝑥], then

sup
𝑥
|�̂�𝑁(𝑥)− 𝜇(𝑥)| →𝑃 0.

Proof. To begin, we have

sup
𝑥
|�̂�𝑁(𝑥)− 𝜇(𝑥)|

≤ sup
𝑥
|�̂�𝑁(𝑥)− E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]|+ sup

𝑥
|E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]− 𝜇(𝑥)|

≤ sup
𝑥

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑁,𝑖(𝑥)(𝑌𝑖 − E[𝑌𝑖|𝑋𝑖])

⃒⃒⃒⃒
⃒+ sup

𝑥

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑁,𝑖(𝑥)(𝜇(𝑋𝑖)− 𝜇(𝑥))

⃒⃒⃒⃒
⃒

≤ sup
𝑥

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑁,𝑖(𝑥)(𝑌𝑖 − E[𝑌𝑖|𝑋𝑖])

⃒⃒⃒⃒
⃒+ sup

𝑥

∑︁
𝑖

𝑤𝑁,𝑖(𝑥) |𝜇(𝑋𝑖)− 𝜇(𝑥)|
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≤ sup
𝑥

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑁,𝑖(𝑥)(𝑌𝑖 − E[𝑌𝑖|𝑋𝑖])

⃒⃒⃒⃒
⃒+ 𝐿 sup

𝑥

∑︁
𝑖

𝑤𝑁,𝑖(𝑥)||𝑋𝑖 − 𝑥||

≤ sup
𝑥

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑁,𝑖(𝑥)(𝑌𝑖 − E[𝑌𝑖|𝑋𝑖])

⃒⃒⃒⃒
⃒+ 𝐿 sup

𝑥
diam(𝑅(𝑥)),

where 𝑤𝑁,𝑖(𝑥) is the CART weight function corresponding to tree 𝑇 . In the third

and fourth inequalities we used Jensen’s inequality and the Lipschitz continuity as-

sumption. By lemma 3.6, the latter term goes to 0 in probability. For the former, we

define 𝑀(𝑥) = |{𝑖 : 𝑋𝑖 ∈ 𝑅(𝑥)}| to be the number of training examples in the leaf

containing 𝑥. For fixed 𝑥, if 𝑐 = sup
𝑥

E[exp(𝜆|𝑌𝑖 − E[𝑌𝑖|𝑋𝑖 = 𝑥]|)|𝑋𝑖 = 𝑥], then by

Lemma 12.1 of Biau and Devroye [25], we have, for any 𝜖 > 0,

𝑃

(︃⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑁,𝑖(𝑥)(𝑌𝑖 − E[𝑌𝑖|𝑋𝑖])

⃒⃒⃒⃒
⃒ > 𝜖

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁

)︃

≤ 2 exp

(︂
−𝑀(𝑥)

min(𝜖,min(1, 2𝑐)/𝜆)2𝜆2

8𝑐

)︂
.

Because there are a maximum of 𝑁/𝑘 leaves in the tree, there are a maximum of

𝑁/𝑘 values of the weight function 𝑤𝑁,𝑖(𝑥). Therefore, we can use the union bound to

show:

𝑃

(︃
sup
𝑥

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑁,𝑖(𝑥)(𝑌𝑖 − E[𝑌𝑖|𝑋𝑖])

⃒⃒⃒⃒
⃒ > 𝜖

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁

)︃

≤ 2𝑁

𝑘
exp

(︂
−𝑀(𝑥)

min(𝜖,min(1, 2𝑐)/𝜆)2𝜆2

8𝑐

)︂
≤ 2𝑁

𝑘
exp

(︂
−𝑘min(𝜖,min(1, 2𝑐)/𝜆)2𝜆2

8𝑐

)︂
= exp

(︂
log(2𝑁)− log 𝑘 − 𝑘min(𝜖,min(1, 2𝑐)/𝜆)2𝜆2

8𝑐

)︂

where the second inequality follows because 𝑀(𝑥) ≥ 𝑘 by assumption. Taking the

expectation of both sides and the limit as 𝑁 →∞ completes the proof.

We prove one more intermediate result, and the proof of Theorem 3.2 will follow.

Lemma 3.8. Suppose ℎ(𝑧; 𝑦) is an 𝐿 Lipschitz continuous function for all 𝑦 (with
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respect to || · ||𝑝), and 𝒵 ⊂ R𝑑 is nonempty, closed, and bounded with diameter 𝐷. It

follows that

𝑃

(︂
sup
𝑧∈𝒵

ℎ(𝑧;𝑌 ) > 𝜖

)︂
≤
(︂

2𝜌𝐷𝐿

𝜖

)︂𝑑

sup
𝑧∈𝒵

𝑃
(︁
ℎ(𝑧;𝑌 ) >

𝜖

2

)︁
,

where 𝜌 > 0 is a constant that depends only on 𝑝.

Proof. This result follows from a standard covering number argument. We can con-

struct a 𝜈-net of 𝒵, 𝑧1, . . . , 𝑧𝐾 with 𝐾 ≤
(︂
𝜌𝐷

𝜈

)︂𝑑

. That is, ∀𝑧 ∈ 𝒵, there exists 𝑖

such that ||𝑧 − 𝑧𝑖|| ≤ 𝜈. If we define 𝑖(𝑧) to be the function that returns this index,

then, for all 𝑦,

ℎ(𝑧; 𝑦) ≤ ℎ(𝑧𝑖(𝑧), 𝑦) + |ℎ(𝑧; 𝑦)− ℎ(𝑧𝑖(𝑧); 𝑦)| ≤ ℎ(𝑧𝑖(𝑧), 𝑦) + 𝐿||𝑧 − 𝑧𝑖(𝑧)||

≤ ℎ(𝑧𝑖(𝑧), 𝑦) + 𝐿𝜈.

Taking the supremum of both sides over 𝑧 ∈ 𝒵, we have

sup
𝑧∈𝒵

ℎ(𝑧; 𝑦) ≤ max
𝑖=1,...,𝐾

ℎ(𝑧𝑖; 𝑦) + 𝐿𝜈.

Next, we select 𝜈 =
𝜖

2𝐿
, and we have:

𝑃

(︂
sup
𝑧∈𝒵

ℎ(𝑧;𝑌 ) > 𝜖

)︂
≤ 𝑃

(︂
max

𝑖=1,...,𝐾
ℎ(𝑧𝑖;𝑌 ) >

𝜖

2

)︂
≤
(︂

2𝜌𝐷𝐿

𝜖

)︂𝑑

sup
𝑧∈𝒵

𝑃
(︁
ℎ(𝑧;𝑌 ) >

𝜖

2

)︁
,

where the final inequality follows from the union bound.

Proof of Theorem 3.2. The proof follows the same outline as the proof of Theorem

3.1. We need to show

sup
𝑧0∈𝒵

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒→𝑃 0,

for 𝑥0 a.e. The desired result then follows from lemma 3.2. Following the same steps
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as in the proof of Theorem 3.1, we have:

sup
𝑧0∈𝒵0

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

≤ sup
𝑧0∈𝒵

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

+
𝑇−1∑︁
𝑡=1

sup
𝑥𝑡∈𝒳𝑡

sup
𝑧𝑡∈𝑊𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧𝑡); 𝑦

𝑖
𝑡+1, 𝑥

𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧𝑡);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]
⃒⃒⃒⃒
.

Next, we have, for all 𝑥𝑡,⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)− E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]

⃒⃒⃒⃒
⃒

−

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧

′); 𝑦𝑖𝑡+1, 𝑥
𝑖
𝑡+1)− E[𝑄𝑡+1(𝑓𝑡(𝑧

′);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)(𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)−𝑄𝑡+1(𝑓𝑡(𝑧

′); 𝑦𝑖𝑡+1, 𝑥
𝑖
𝑡+1))

⃒⃒⃒⃒
⃒

+ |E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)−𝑄𝑡+1(𝑓𝑡(𝑧
′);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]|

≤ 2 sup
𝑥𝑡+1,𝑦𝑡+1

|(𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑡+1, 𝑥𝑡+1)−𝑄𝑡+1(𝑓𝑡(𝑧
′); 𝑦𝑡+1, 𝑥𝑡+1))|

≤ 2𝐿𝑡+1||𝑧 − 𝑧′||.

Rearranging, and taking the supremum over both sides, we have

sup
𝑥𝑡∈𝒳𝑡

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)− E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]

⃒⃒⃒⃒
⃒

≤ sup
𝑥𝑡∈𝒳𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧

′); 𝑦𝑖𝑡+1, 𝑥
𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧
′);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]

⃒⃒⃒⃒
+ 2𝐿𝑡+1||𝑧 − 𝑧′||,
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which demonstrates

sup
𝑥𝑡∈𝒳𝑡

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)− E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]

⃒⃒⃒⃒
⃒

is 2𝐿𝑡+1 Lipschitz. We now apply lemma 3.8 to get:

𝑃

(︂
sup
𝑧𝑡∈𝑊𝑡

sup
𝑥𝑡∈𝒳𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]
⃒⃒⃒⃒
> 𝜖

)︂
≤
(︂

2𝜌𝐷𝑡𝐿𝑡+1

𝜖

)︂𝑝𝑡

𝑃

(︂
sup
𝑥𝑡∈𝒳𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]
⃒⃒⃒⃒
>
𝜖

2

)︂
.

By lemma 3.7, the right hand side goes to 0 in probability. Repeating this argument

for all 𝑡 completes the result.

3.3.3 Random Forest Weight Functions

A random forest is an ensemble method that aggregates regression trees as base learn-

ers in order to make predictions. To aggregate the trees into a random forest, Breiman

suggested training each tree on a bootstrapped sample of the training examples. In

order to facilitate the theoretical analysis, we instead build a forest by training trees

on subsamples of size 𝑠𝑁 of the training data. The random forest estimator is given

by:

𝑅(𝑥; 𝜉,𝑋1, 𝑌1, . . . , 𝑋𝑁 , 𝑌𝑁) =
1

𝐵

𝐵∑︁
𝑏=1

𝑇 (𝑥; 𝜉𝑏, 𝑋𝑆𝑏
, 𝑌𝑆𝑏

), (3.6)

where (𝑋𝑆𝑏
, 𝑌𝑆𝑏

) denotes a random subset of training examples of size 𝑠𝑁 . Given this

definition of a random forest, we have the following asymptotic optimality result for

random forest weight functions.

Theorem 3.3. Suppose Assumptions 3.1-3.6 hold, and the training data is i.i.d. Let

𝑤𝑡
𝑁,𝑖(𝑥𝑡−1) be the random forest weight functions for 𝑡 = 1, . . . , 𝑇 . Assume the trees
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that make up the forest are honest, random split, and regular and 𝑘, the minimum

number of training examples in each leaf, equals min{⌈𝐶1𝑁
𝛿⌉, 𝑁 − 1} for 𝐶1 > 0, 𝛿 ∈

(0, 1). Furthermore, assume 𝑠𝑁 , the subsample size, equals min{⌈𝐶2𝑁
𝛼⌉, 𝑁 − 1} for

𝐶2 > 0, 𝛼 ∈ (𝛿, 1). Then {𝑧𝑁0 (𝑥)}, a sequence of optimal solutions to (3.3), is weakly

asymptotically optimal.

Proof. The proof exactly mirrors the proof of Theorem 3.2, except we use lemma 3.9

in place of lemma 3.7.

This theorem shows it is possible to obtain asymptotically optimal solutions to

(3.3) with random forest weight functions. The random forest model we use is slightly

different than Breiman’s original algorithm, which is implemented in common machine

learning libraries. For example, we require that 𝑘, the minimum number of training

examples in each leaf, grows with 𝑁 , whereas the original algorithm has 𝑘 fixed at 1.

We include an additional theorem in the appendix which proves the strong asymptotic

optimality of random forest weight functions with 𝑘 fixed for the single stage version

of the problem. However, the proof does not extend to the multistage problem we

consider here. The proof of Theorem 3.3 uses the following lemma.

Lemma 3.9. Suppose 𝑅 is a random forest consisting of 𝐵 regular, random-split,

honest trees, each trained on a random subset of the training data of size 𝑠𝑁 . Assume

the training data (𝑋1, 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁) are i.i.d. with 𝑋𝑖 uniform on [0, 1]𝑑, E[𝑌 |𝑋 =

𝑥] is 𝐿-Lipschitz continuous, and there exists 𝜆 > 0 such that the uniform noise

condition is satisfied: sup
𝑥

E[exp(𝜆|𝑌𝑖−E[𝑌𝑖|𝑋𝑖 = 𝑥]|)|𝑋𝑖 = 𝑥] <∞. Finally, suppose

log 𝑠𝑁/𝑘𝑁 → 0 and 𝑠𝑁/𝑘𝑁 →∞ as 𝑁 →∞. If �̂�𝑁(𝑥) denotes the prediction of 𝑅 at

𝑋 ∈ R𝑑 and 𝜇(𝑥) = E[𝑌 |𝑋 = 𝑥], then

sup
𝑥
|�̂�𝑁(𝑥)− 𝜇(𝑥)| →𝑃 0.

Proof. We define the prediction of the 𝑏th tree in the ensemble to equal �̂�𝑏
𝑁(𝑥), so we
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have, by Jensen’s inequality,

sup
𝑥
|�̂�𝑁(𝑥)− 𝜇(𝑥)| ≤ 1

𝐵

𝐵∑︁
𝑏=1

sup
𝑥
|�̂�𝑏

𝑁(𝑥)− 𝜇(𝑥)|.

By lemma 3.7, we immediately have that each term on the right hand side goes to 0

in probability. Because 𝐵 does not depend on 𝑁 , this completes the result.

3.4 Finite Sample Guarantees

In this section, we establish finite sample, probabilistic guarantees for the difference

between the cost of a solution to (3.3) and the true optimal cost. We focus on 𝑘-

nearest neighbor weight functions. To the best of our knowledge, this is the first finite

sample bound for either the single-stage or multistage setting with auxiliary data.

To facilitate the presentation of our result, we begin by discussing convergence

rate results for the single stage setting. Without auxiliary data, the problem we want

to solve is given by

min
𝑧∈𝒵

E[𝑐(𝑧;𝑌 )].

If 𝑧𝑁 represents the SAA approach applied to this problem, then, under appropriate

conditions, the regret, E[𝑐(𝑧𝑁 , 𝑌 )] −min
𝑧∈𝒵

E[𝑐(𝑧;𝑌 )], is ̃︀𝑂𝑝

(︂
1√
𝑁

)︂
, where the ̃︀𝑂𝑝 no-

tation suppresses logarithmic dependencies (see, for example, [89]). This implies that

for any confidence level, 𝛼, we know that the regret is bounded by a term of order

1/
√
𝑁 with probability at least 1− 𝛼. We contrast this with the setting in which we

have auxiliary data,

min
𝑧∈𝒵

E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥].

If 𝑧𝑁(𝑥) represents a solution to this problem using the approach of Bertsimas and

Kallus [15] with the 𝑘-nearest neighbor weight functions, then the regret,

E[𝑐(𝑧𝑁(𝑥), 𝑌 )|𝑋 = 𝑥]−min
𝑥∈𝒳

E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥] = ̃︀𝑂𝑝

(︂
1

𝑁1/2𝑑

)︂
,

for 𝑑 ≥ 2, where 𝑑 is the dimension of the auxiliary covariate space. The problem
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with auxiliary data is clearly harder. The baseline with respect to which we compute

the regret is smaller because it takes into account the value of the auxiliary covariates.

Furthermore, many of the 𝑥𝑖s in the training data will be very different from the 𝑥

we are concerned with. In fact, with the 𝑘-nearest neighbor weight functions, we

effectively throw out all but the 𝑘 most relevant training examples. Because of this,

we pay a penalty that depends on the dimension of the auxiliary covariate space.

To formalize the above discussion for the multistage setting, we add two additional

assumptions.

Assumption 3.7 (Distribution of auxiliary covariates). For each 𝑡, 𝑋𝑡 has its support

contained in [0, 1]𝑑𝑡 and ∀𝑥𝑡 ∈ support(𝑋𝑡) and ∀𝜖 > 0, 𝑃 (𝑋 ∈ 𝐵𝜖(𝑥𝑡)) > 𝑔𝜖𝑑 with

𝑔 > 0, where 𝐵𝜖(𝑥) = {𝑥′ : ||𝑥− 𝑥′|| ≤ 𝜖}.

This assumption is satisfied, for example, if 𝑋𝑡 is uniformly distributed or has

finite support and, thus, is more general than Assumption 3.5.

Assumption 3.8 (Subgaussian noise terms). The noise terms are uniformly subgaus-

sian, i.e., defining 𝑁𝑡(𝑠𝑡;𝑥𝑡−1) = 𝑄𝑡(𝑠𝑡;𝑌𝑡, 𝑋𝑡) − E[𝑄𝑡(𝑠𝑡;𝑌𝑡, 𝑋𝑡)|𝑋𝑡−1 = 𝑥𝑡−1], there

exists 𝜎2 > 0 such that

max
𝑡=1,...,𝑇

sup
𝑥𝑡−1∈𝒳𝑡−1

sup
𝑠𝑡∈𝑆𝑡

E[𝑒𝜆𝑁𝑡(𝑠𝑡;𝑥𝑡−1)|𝑋𝑡−1 = 𝑥𝑡−1] ≤ exp(𝜆𝜎2/2),

for all 𝜆 > 0.

This assumption implies condition 4 of Assumption 3.4. With these additional

assumptions, we have the following theorem.

Theorem 3.4. Suppose Assumptions 3.1-3.4 and Assumptions 3.6-3.8 hold, the train-

ing data, (𝑋1, 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁), is i.i.d., and 𝑤𝑡
𝑁,𝑖(𝑥𝑡) are the 𝑘𝑁 nearest neighbor

weight functions with 𝑘𝑁 = min{⌈𝐶𝑁 𝛿⌉, 𝑁 − 1} for 𝐶 > 0 and 𝛿 ∈ (0, 1). We define

𝑅𝑁(𝑥0) = 𝑔0(𝑧
𝑁
0 ) + E[𝑔0(𝑧

𝑁
0 ) +𝑄1(𝑓0(𝑧

𝑁
0 );𝑌1, 𝑋1)|𝑋0 = 𝑥0]− 𝑣*(𝑥0),

where 𝑧𝑁0 is an optimal solution to (3.3). For any 𝛼 ∈ (0, 1), with probability at least
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1− 𝛼,

𝑅𝑁(𝑥0) ≤
𝑇𝐶1

𝑁 𝛿/2

(︃√︂
log

1

𝛼
+
√︀

2𝑑 log𝑁 + 𝐶2

)︃

+ 𝑇𝐶3

(︃(︂
1

𝑁
log

1

𝛼

)︂1/2𝑑

+ 𝐶4𝑁
(𝛿−1)/𝑑 +

𝐶5

𝑁1/2𝑑

)︃
,

for 𝑁 ≥ 25𝑑, for 𝑥0 almost everywhere. (Here, 𝑑 = max𝑡 𝑑𝑡.) 𝐶1, 𝐶2, 𝐶3, 𝐶4, and 𝐶5

are constants that may depend only logarithmically on 𝑇 and log 1
𝛼

and are defined in

(3.7) in the proof.

𝑅𝑁(𝑥0) represents the regret of the solution to (3.3), i.e., the difference between

the cost of the solution and the true optimal cost, 𝑣*(𝑥0). We can optimize the bound

by choosing 𝛿 =
2

2 + 𝑑
and restate the result more prosaically:

𝑅𝑁(𝑥0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

̃︀𝑂𝑝

(︂
𝑇

𝑁1/3

)︂
, 𝑑 = 1,

̃︀𝑂𝑝

(︂
𝑇

𝑁1/2𝑑

)︂
, 𝑑 ≥ 2.

As before, this result is best understood in comparison with the multistage SAA

problem without any auxiliary covariates. For this problem, regret is ̃︀𝑂𝑝

(︂
𝑇√
𝑁

)︂
[89,

ch. 5]. We pay a penalty that depends on 𝑑, the maximum dimension of the auxiliary

covariate spaces, 𝒳𝑡.

To prove this result, we rely on the following lemma, which provides a finite sample

guarantee on the error of the 𝑘NN regression estimator.

Lemma 3.10. Suppose 𝑋 has support 𝒳 ⊂ [0, 1]𝑑, 𝑃 (𝑋 ∈ 𝐵𝜖(𝑥)) > 𝑔𝜖𝑑 for all

𝑥 ∈ 𝒳 , and 𝑌 − E[𝑌 |𝑋 = 𝑥] is conditionally subgaussian given 𝑋 = 𝑥 with variance

proxy 𝜎2, uniformly for all 𝑥 ∈ 𝒳 . Assume the training data, (𝑋1, 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁)

is i.i.d. and that E[𝑌 |𝑋 = 𝑥] is 𝐿-Lipschitz. If �̂�𝑁(𝑥) denotes the 𝑘NN regression
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estimator at 𝑥 and 𝜇(𝑥) = E[𝑌 |𝑋 = 𝑥], then

𝑃

(︂
sup
𝑥∈𝒳
|�̂�𝑁(𝑥)− 𝜇(𝑥)| > 𝜖

)︂
≤

(︃
4
√
𝑑𝜌𝐿

𝜖

)︃𝑑

exp

(︃
− 2

𝑁

(︂
𝑁𝑔
(︁ 𝜖

4𝐿

)︁𝑑
+ 1− 𝑘

)︂2
)︃

+ 2

(︂
25

𝑑

)︂𝑑

𝑁2𝑑 exp

(︂
− 𝑘𝜖

2

8𝜎2

)︂
,

for any 𝜖 ≥ 2𝐿

(︂
𝑘 − 1

𝑁𝑔

)︂1/𝑑

and 𝑁 ≥ 2𝑑.

Proof. We decompose sup
𝑥∈𝒳
|�̂�𝑁(𝑥) − 𝜇(𝑥)| into a sum of two terms: sup

𝑥∈𝒳
|�̂�𝑁(𝑥) −

E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]| and sup
𝑥∈𝒳
|𝜇(𝑥)−E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]|. For the latter term, we

utilize the Lipschitz assumption to show

sup
𝑥∈𝒳
|𝜇(𝑥)− E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]| ≤ 𝐿 sup

𝑥∈𝒳

1

𝑘

𝑘∑︁
𝑖=1

||𝑋(𝑖)(𝑥)− 𝑥||,

where 𝑋(𝑖)(𝑥) denotes the 𝑖th nearest neighbor of 𝑥 out of 𝑋1, . . . , 𝑋𝑁 , as measured

by Euclidean distance. Next, we note that 1
𝑘

∑︀𝑘
𝑖=1 ||𝑋(𝑖)(𝑥) − 𝑥|| ≤ ||𝑋(𝑘)(𝑥) − 𝑥||.

This gives:

𝑃

(︂
sup
𝑥∈𝒳
|𝜇(𝑥)− E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]| > 𝐿𝜖

)︂
≤ 𝑃

(︂
sup
𝑥∈𝒳
||𝑋(𝑘)(𝑥)− 𝑥|| > 𝜖

)︂
= 𝑃

(︂
inf
𝑥∈𝒳
|{𝑖 : 𝑋𝑖 ∈ 𝐵𝜖(𝑥)| ≤ 𝑘 − 1

)︂
.

Next, we construct an 𝜖/2-net for 𝒳 , �̂�1, . . . , �̂�𝑚, with 𝑚 ≤

(︃
2
√
𝑑𝜌

𝜖

)︃𝑑

. For any

𝑥 ∈ 𝒳 , there exists a 𝑗 such that 𝐵𝜖/2(�̂�𝑗) ⊂ 𝐵𝜖(𝑥). Therefore, we can upper bound
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the above expression by

𝑃

(︂
min

𝑗=1,...,𝑚
|{𝑖 : 𝑋𝑖 ∈ 𝐵𝜖/2(�̂�𝑗)| ≤ 𝑘 − 1

)︂
≤

(︃
2
√
𝑑𝜌

𝜖

)︃𝑑

𝑃 (𝐵 ≤ 𝑘 − 1),

where 𝐵 ∼ Binom(𝑁, 𝑔(𝜖/2)𝑑). Applying Hoeffding’s bound, we have:

𝑃

(︂
sup
𝑥∈𝒳
|𝜇(𝑥)− E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]| > 𝜖

)︂
≤

(︃
2
√
𝑑𝜌𝐿

𝜖

)︃𝑑

exp

(︂
− 2

𝑁

(︀
𝑁𝑔(𝜖/2𝐿)𝑑 + 1− 𝑘

)︀2)︂
,

for any 𝜖 ≥ 2𝐿

(︂
𝑘 − 1

𝑁𝑔

)︂1/𝑑

.

For the second part, we use Theorem 12.2 of Biau and Devroye [25], which says

the number of possible distinct orderings of neighbors of 𝑋1, . . . , 𝑋𝑁 ∈ R𝑑 is less than

or equal to
(︂

25

𝑑

)︂𝑑

𝑁2𝑑 for all 𝑁 ≥ 2𝑑. Therefore,

𝑃

(︂
sup
𝑥∈𝒳
|�̂�𝑁(𝑥)− E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]| > 𝜖

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁

)︂
≤
(︂

25

𝑑

)︂𝑑

𝑁2𝑑 sup
𝑥∈𝒳

𝑃

(︂
|�̂�𝑁(𝑥)− E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]| > 𝜖

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁

)︂
=

(︂
25

𝑑

)︂𝑑

𝑁2𝑑 sup
𝑥∈𝒳

𝑃

(︃⃒⃒⃒⃒
⃒1𝑘

𝑘∑︁
𝑖=1

(𝑌(𝑖)(𝑥)− 𝜇(𝑋(𝑖)(𝑥)))

⃒⃒⃒⃒
⃒ > 𝜖

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁

)︃
,

where 𝑌(𝑖) denotes the observation 𝑌 corresponding to 𝑋(𝑖)(𝑥). It is easy to verify, see

Proposition 8.1 of Biau and Devroye [25] for example, that 𝑌(1)(𝑥)− 𝜇(𝑋(1)(𝑥)), . . . ,

𝑌(𝑘)(𝑥) − 𝜇(𝑋(𝑘)(𝑥)) are conditionally independent given 𝑋1, . . . , 𝑋𝑁 . Therefore, we

apply Hoeffding’s bound for sums of subgaussian random variables to get, for any
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𝜖 > 0,

𝑃

(︂
sup
𝑥∈𝒳
|�̂�𝑁(𝑥)− E[�̂�𝑁(𝑥)|𝑋1, . . . , 𝑋𝑁 ]| > 𝜖

⃒⃒⃒⃒
𝑋1, . . . , 𝑋𝑁

)︂
≤ 2

(︂
25

𝑑

)︂𝑑

𝑁2𝑑 exp

(︂
− 𝑘𝜖

2

2𝜎2

)︂
.

Taking the expectation of both sides and combining with the previous part completes

the result.

Now, we can prove the main result.

Proof of Theorem 3.4. By lemma 3.2, the regret is bounded by

2 sup
𝑧0∈𝒵

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒ .

Following the same steps as in the proof of Theorem 3.1, we have:

2 sup
𝑧0∈𝒵0

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

≤ 2 sup
𝑧0∈𝒵

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)𝑄1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒

+ 2
𝑇−1∑︁
𝑡=1

sup
𝑥𝑡∈𝒳𝑡

sup
𝑧𝑡∈𝑊𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧𝑡); 𝑦

𝑖
𝑡+1, 𝑥

𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧𝑡);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]
⃒⃒⃒⃒
.

We next apply lemma 3.8, as in the proof of Theorem 3.2, to see, for each 𝑡,

𝑃

(︂
2 sup
𝑧𝑡∈𝑊𝑡

sup
𝑥𝑡∈𝒳𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]
⃒⃒⃒⃒
>

𝜖

𝑇

)︂
≤
(︂

4𝑇𝜌𝐷𝑡𝐿𝑡

𝜖

)︂𝑝𝑡

𝑃

(︂
sup
𝑥𝑡∈𝒳𝑡

⃒⃒⃒⃒∑︁
𝑖

𝑤𝑡+1
𝑁,𝑖 (𝑥𝑡)𝑄𝑡+1(𝑓𝑡(𝑧); 𝑦𝑖𝑡+1, 𝑥

𝑖
𝑡+1)

− E[𝑄𝑡+1(𝑓𝑡(𝑧);𝑌𝑡+1, 𝑋𝑡+1)|𝑥𝑡]
⃒⃒⃒⃒
>

𝜖

4𝑇

)︂
.
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Next, we use lemma 3.10 to upper bound this expression by

(︂
4𝑇𝜌𝐷𝑡𝐿𝑡

𝜖

)︂𝑝𝑡
[︃(︂

16𝑇
√
𝑑𝑡𝜌𝑀𝑡

𝜖

)︂𝑑𝑡

exp

⎛⎝− 2

𝑁

(︃
𝑁𝑔

(︂
𝜖

16𝑇𝑀𝑡

)︂𝑑𝑡

+ 1− 𝑘𝑁

)︃2
⎞⎠

+ 2

(︂
25

𝑑𝑡

)︂𝑑𝑡

𝑁2𝑑𝑡 exp

(︂
− 𝑘𝑁𝜖

2

64𝑇 2𝜎2

)︂]︃
,

for any 𝜖 ≥ 8𝑇𝑀𝑡

(︂
𝑘𝑁 − 1

𝑁𝑔

)︂1/𝑑𝑡

and 𝑁 ≥ 2𝑑𝑡. Combining the results for 𝑡 =

0, . . . , 𝑇 − 1 with the union bound, and plugging in for the definitions of 𝑘𝑁 , 𝑑,

𝑝, 𝐿, 𝑀 , and 𝐷, we have:

𝑃

(︃
2 sup
𝑧0∈𝒵

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
⃒ > 𝜖

)︃

≤ 𝑇

(︂
4𝑇𝜌𝐷𝐿

𝜖

)︂𝑝
[︃(︃

16𝑇
√
𝑑𝜌𝑀

𝜖

)︃𝑑

exp

(︃
− 2

𝑁

(︂
𝑁𝑔
(︁ 𝜖

16𝑇𝑀

)︁𝑑
+ 1− 𝐶𝑁 𝛿

)︂2
)︃

+ 2

(︂
25

𝑑

)︂𝑑

𝑁2𝑑 exp

(︂
− 𝐶𝑁

𝛿𝜖2

64𝑇 2𝜎2

)︂]︃
,

for all 𝜖 ≥ 8𝑇𝑀

(︂
𝐶𝑁 𝛿 − 1

𝑁𝑔

)︂1/𝑑

and 𝑁 ≥ 2𝑑. From this we deduce that for any

𝛼 ∈ (0, 1),

𝑃

(︂
2 sup
𝑧0∈𝒵

⃒⃒⃒⃒∑︁
𝑖

𝑤1
𝑁,𝑖(𝑥0)�̂�1(𝑓0(𝑧0); 𝑦

𝑖
1, 𝑥

𝑖
1)− E[𝑄1(𝑓0(𝑧0);𝑌1, 𝑋1)|𝑋0 = 𝑥0]

⃒⃒⃒⃒
> 𝜖

)︂
≤ 𝛼

76



is implied by the following system of inequalities:

𝐶𝑁 𝛿𝜖2

64𝑇 2𝜎2
≥ log

1

𝛼
+ 2𝑑 log𝑁 + 𝑝 log

1

𝜖
+ log

(︃
4𝑇

(︂
25

𝑑

)︂𝑑

(4𝑇𝜌𝐷𝐿)𝑝

)︃
,

2

(︂√
𝑁𝑔
(︁ 𝜖

16𝑇𝑀

)︁𝑑
− 𝐶𝑁 𝛿−1/2

)︂2

≥ log
1

𝛼
+ (𝑝+ 𝑑) log

1

𝜖

+ log(2𝑇 (4𝑇𝜌𝐷𝐿)𝑝(16𝑇
√
𝑑𝜌𝑀)𝑑),

𝜖 ≥ 8𝑇𝑀

(︂
𝐶𝑁 𝛿−1

𝑔

)︂1/𝑑

.

Following some algebraic manipulations, we see the above system of inequalities is

implied by:

𝜖 ≥ 𝑇𝐶1

𝑁 𝛿/2

(︃√︂
log

1

𝛼
+
√︀

2𝑑 log𝑁 + 𝐶2

)︃

+ 𝑇𝐶3

(︃(︂
1

𝑁
log

1

𝛼

)︂1/2𝑑

+ 𝐶4𝑁
(𝛿−1)/𝑑 +

𝐶5

𝑁1/2𝑑

)︃
,

where

𝐶1 =
8𝜎√
𝐶
, (3.7)

𝐶2 =

⎯⎸⎸⎷log

(︃
4𝑇

(︂
25

𝑑

)︂𝑑

(4𝑇𝜌𝐷𝐿)𝑝

)︃
+

⎯⎸⎸⎷𝑝𝛿

2
log

2

𝑇𝐶1

√︁
log 1

𝛼

,

𝐶3 =
16𝑀

(
√

2𝑔)1/𝑑
,

𝐶4 =
(︁√

2𝐶
)︁1/𝑑

+
8𝑀

𝐶3

(︂
𝐶

𝑔

)︂1/𝑑

,

𝐶5 =
(︁

log(2𝑇 (4𝑇𝜌𝐷𝐿)𝑝(16𝑇
√
𝑑𝜌𝑀)𝑑)

)︁1/2𝑑
+

⎛⎝(𝑝+ 𝑑)𝛿 log
2

𝑇𝐶1

√︁
log 1

𝛼

⎞⎠1/2𝑑

.
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3.5 Computational Examples

In this section, we illustrate the practical applicability of our approach with two

examples using synthetic data. These examples also serve to demonstrate the value

of accounting for auxiliary data.

3.5.1 Multistage Inventory Control

First, we consider a multistage inventory control problem [14], in which we manage

the inventory level of a single product subject to 𝑇 periods of uncertain demand. At

each time step, we observe auxiliary data, which may include data about the product

as well as data on time-varying external factors that may be used to predict demand,

such as the season of the year, the price of the S&P 500 index, or the demand for

a similar product during the previous time period. We also have historical data of

the demand for products we’ve sold in the past as well as the corresponding auxiliary

data for each of these products.

At the beginning of time period 𝑡, we observe the demand 𝑦𝑡 and the new auxiliary

covariates 𝑥𝑡. Demand can be served by ordering 𝑧2𝑡 units at price 𝑐2 for immediate

delivery or by ordering 𝑧1𝑡 units at price 𝑐1 < 𝑐2 for delivery at the beginning of the

next time period. If there is a shortfall in the inventory, orders can be backlogged,

incurring a cost of −𝑐𝑏 per unit. If there is excess inventory at the end of a time

period, we pay a holding cost of 𝑐ℎ per unit. In addition, there is an ordering budget,

so the cumulative advance orders (
∑︀

𝑠≤𝑡 𝑧
1
𝑠) must not exceed 𝑧tot,𝑡 at any time 𝑡. We

assume all ordering and inventory quantities are continuous, and we represent the

amount of inventory at the end of time period 𝑡 by 𝐼𝑡 (with 𝐼−1 = 0 and 𝑧1−1 = 0). If

demand is known, we have the following deterministic formulation of the problem.
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min
𝑇∑︁
𝑡=0

𝑐1𝑧
1
𝑡 + 𝑐2𝑧

2
𝑡 + max{𝑐𝑏𝐼𝑡, 𝑐ℎ𝐼𝑡}

s.t. 𝐼𝑡+1 = 𝐼𝑡 + 𝑧1𝑡 + 𝑧2𝑡+1 − 𝑦𝑡+1 ∀𝑡 = −1, . . . , 𝑇 − 1

𝑡∑︁
𝑠=0

𝑧1𝑠 ≤ 𝑧tot,𝑡 ∀𝑡 = 0, . . . , 𝑇

𝑧1𝑡 , 𝑧
2
𝑡 ≥ 0 ∀𝑡 = 0, . . . , 𝑇.

We used the parameters 𝑐1 = 5, 𝑐2 = 10, 𝑐ℎ = 5, and 𝑐𝑏 = −10. We assumed

the initial inventory to be 0 and set 𝑧tot,𝑡 = 50(𝑡 + 1). To generate training data,

we sampled 𝑥𝑖𝑡 independently from a 3 dimensional AR(1) process such that 𝑥𝑖𝑡 =

0.7𝑥𝑖𝑡−1 + 𝑤𝑖
𝑡, where 𝑤𝑖

𝑡 is a sample of a 𝒩 (0, 𝐼3) random variable. We used a factor

model for the demand.

𝑦𝑖𝑡 = max
{︀

0, 50 + 12𝑎𝑇𝑡 (𝑥𝑖𝑡−1 + 0.25𝜑𝑡) + 5𝑏𝑇𝑡 𝑥
𝑖
𝑡−1𝜃𝑡

}︀
∀𝑡 = 1, . . . , 𝑇

where {𝜑𝑡} are drawn independently from a 3 dimensional standard Gaussian and {𝜃𝑡}

are drawn independently from a 1 dimensional standard Gaussian. At each time step,

the factor loadings, 𝑎𝑡 and 𝑏𝑡, are permutations of
(︁

0.8 1 1
)︁𝑇

and
(︁
−1 1 0

)︁𝑇
,

respectively (held constant for all samples). The results we present here show the

average cost of policies based on out-of-sample testing as a function of the amount

of training observations, 𝑁 . All results are averaged over one hundred realizations of

training sets.

Figure 3-1 shows the expected cost of policies learned using our method versus

the number of training samples. We see that the SAA approach, which ignores the

auxiliary data, is suboptimal. Our method, using the 𝑘-nearest neighbor and random

forest weight functions, is asymptotically optimal. We obtain a reduction in cost of

over 15% by accounting for auxiliary data.
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Figure 3-1: Out of sample results with various weight functions for a twelve stage
inventory control problem. Vertical axis represents expected cost of policy (smaller
is better).
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3.5.2 Multistage Lot Sizing

For our second computational example, we consider a multistage lot sizing problem

[14]. This problem is similar to the multistage inventory control problem, but it

includes binary decision variables. The continuous ordering decision for immediate

delivery, 𝑧2𝑡 , is replaced with 𝑀 binary ordering decisions, 𝑧2𝑡𝑗, 𝑗 = 1, . . . ,𝑀 . Each of

these decisions corresponds to a quantity, 𝑞𝑗, which is delivered immediately for cost

𝑐2𝑗 > 𝑐1 per unit. Additionally, there is no longer the option to backorder demand.

All demand must be satisfied immediately. These restrictions make the problem more

realistic because it is often not feasible to produce an arbitrary amount of a product

immediately, and it is difficult to estimate the cost of lost customer goodwill due to

backordering. Instead, in order to meet demand, the decision maker must buy from

another supplier a fixed quantity of product at a higher price.

If demand is known, we have the following deterministic formulation (where we

assume 𝐼−1 = 0, 𝑧1−1 = 0, and 𝑦0 = 0).

min
𝑇∑︁
𝑡=0

𝑐1𝑧
1
𝑡 +

𝑀∑︁
𝑗=1

𝑐2𝑗𝑞𝑗𝑧
2
𝑡𝑗 + 𝑐ℎ𝐼𝑡

s.t. 𝐼𝑡+1 = 𝐼𝑡 + 𝑧1𝑡 +
𝑀∑︁
𝑗=1

𝑐2𝑗𝑞𝑗𝑧
2
𝑡𝑗 + 𝑐ℎ𝐼𝑡

𝑡∑︁
𝑠=0

𝑧1𝑠 ≤ 𝑧tot,𝑡 ∀𝑡 = 0, . . . , 𝑇

𝑧1𝑡 , 𝐼𝑡 ≥ 0 ∀𝑡 = 0, . . . , 𝑇

𝑧2𝑡𝑗 ∈ {0, 1} ∀𝑡 = 0, . . . , 𝑇 ∀𝑗 = 1, . . . ,𝑀.

We used the same parameters and data generating procedure as in the multistage

inventory control example. The only differences were that we capped 𝑦𝑡 at 200 (to

ensure feasibility) and we drew 𝑐2𝑗 independently from a uniform distribution on

(5, 10) for each 𝑗.

To solve the problem, we use an approximate DP algorithm. To develop the

algorithm, we recall that basestock policies are optimal for a wide variety of inventory
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Figure 3-2: Average out-of-sample cost of policies computed using various weight
functions for twelve stage lot sizing problem. Horizontal axis shows number of training
examples.
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control problems. A basestock policy is one in which there is some ideal amount of

inventory, 𝑟𝑡, which we desire at the start of time period 𝑡. If we have less than

𝑟𝑡, we place advanced orders (if available) to have this amount. If we have more

than 𝑟𝑡, we order nothing in advance. We then serve the remaining demand with

immediate orders. A basestock policy will not be optimal for the lot sizing problem

because of the nonconvexity of the value function, but it does provide a reasonable

approximation. To account for auxiliary data, we have 𝑁 different basestock amounts

for each time period. Therefore, 𝑟𝑖𝑡 denotes the target basestock at time 𝑡 when the

observed axuiliary data is 𝑥𝑖𝑡. Parametrizing the policy space with 𝑁𝑇 parameters

greatly reduces the amount of computation required to solve the problem and allows

us to solve much larger problem instances than we could otherwise.

Figure 3-2 shows the results of our method for the SAA, 𝑘-nearest neighbor, and

random forest weight functions on a twelve stage lot sizing problem. The SAA method

is again clearly suboptimal. We see that the static 𝑘NN and static RF methods, which

only use the auxiliary covariates at time 0, offer a significant improvement over the

SAA method. However, the 𝑘NN and RF methods which take into account the

auxiliary data that arrives over time outperforms all of the above methods, again

illustrating the value of auxiliary data. With very little additional computational

cost, we are able to obtain an improvement in cost of nearly 15%.

3.6 Conclusion

In this chapter, we introduced a data-driven framework for solving multistage op-

timization problems under uncertainty with auxiliary covariates. We demonstrated

how to develop specific methods by integrating predictive machine learning methods

such as 𝑘NN, CART, and random forests. Our approach is well suited for multistage

optimization problems in which the distribution of the uncertainties is unknown, but

samples of the uncertainty and auxiliary data are available.

We demonstrated that our method with the 𝑘-nearest neighbor, CART, and ran-

dom forest weight functions are asymptotically optimal. We also provided finite sam-
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ple guarantees for the method with 𝑘NN weight functions. Additionally, we showed

how to apply the framework with two computational examples. Because we can think

of (3.3) as a dynamic programming problem, we have at our disposal a variety of exact

and approximate solution techniques. The problem is often tractable in practice and

can lead to significant improvements over methods that ignore auxiliary data.

We leave for future work the extension in which the decision affects the distribution

of the uncertainty. This type of problem appears in applications such as pricing where

the choice of price affects the distribution of the demand. We also leave for future

research the development of efficient variants of our methods for specific applications.

In a world in which the availability of data continues to grow, our proposed approach

utilizes this data efficiently and has the potential to make a significant impact in OR

applications.
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Chapter 4

Sample Robust Optimization with

Covariates

In this chapter, we present a data-driven framework for incorporating side information

in dynamic optimization under uncertainty. Specifically, our approach uses predic-

tive machine learning methods (such as 𝑘-nearest neighbors, kernel regression, and

random forests) to weight the relative importance of various data-driven uncertainty

sets in a robust optimization formulation. Through a novel measure concentration

result for local machine learning methods, we prove that the proposed sample ro-

bust optimization with covariates framework is asymptotically optimal for stochastic

dynamic optimization with covariates. We also describe a general-purpose approxi-

mation for these optimization problems, based on overlapping linear decision rules,

which is computationally tractable and produces high-quality solutions for dynamic

problems with many stages. Across a variety of examples in shipment planning, in-

ventory management, and finance, our method achieves improvements of up to 15%

over alternatives and requires less than one minute of computation time on problems

with twelve stages.

85



4.1 Introduction

Dynamic decision making under uncertainty forms the foundation for numerous fun-

damental problems in operations research and management science. In these prob-

lems, a decision maker attempts to minimize an uncertain objective over time, as

information incrementally becomes available. For example, consider a retailer with

the goal of managing the inventory of a new short life cycle product. Each week, the

retailer must decide an ordering quantity to replenish its inventory. Future demand

for the product is unknown, but the retailer can base its ordering decisions on the

remaining inventory level, which depends on the realized demands in previous weeks.

A risk-averse investor faces a similar problem when constructing and adjusting a

portfolio of assets in order to achieve a desirable risk-return tradeoff over a horizon of

many months. Additional examples abound in energy planning, airline routing, and

ride sharing, as well as in many other areas.

To make high quality decisions in dynamic environments, the decision maker must

accurately model future uncertainty. Often, practitioners have access to side informa-

tion or auxiliary covariates, which can help predict that uncertainty. For a retailer,

although the future demand for a newly introduced clothing item is unknown, data

on the brand, style, and color of the item, as well as data on market trends and social

media, can help predict it. For the risk-averse investor, while the returns of the assets

in future stages are uncertain, recent asset returns and prices of relevant options can

provide crucial insight into upcoming volatility. Consequently, organizations across

many industries are continuing to prioritize the use of predictive analytics in order

to leverage vast quantities of data to understand future uncertainty and make better

operational decisions.

A recent body of work has aimed to leverage predictive analytics in decision

making under uncertainty. For example, Ban and Rudin [3], Bertsimas and Kallus

[15], Hannah, Powell, and Blei [59], Ho and Hanasusanto [61] investigate prescriptive

approaches, based on sample average approximation, that use machine learning to

assign weights to the historical data based on covariates. Bertsimas and Van Parys
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[19] propose adding robustness to those weights to achieve optimal asymptotic budget

guarantees. Elmachtoub and Grigas [47] develop an approach for linear optimization

problems in which a machine learn-ing model is trained to minimize the decision cost.

All of these approaches are specialized for single-stage or certain two-stage optimiza-

tion problems, and do not immediately generalize to problems with many stages. For

a class of dynamic inventory problems, Ban, Gallien, and Mersereau [4] propose a

data-driven approach by fitting the stochastic process and covariates to a parametric

regression model, which is asymptotically optimal when the model is correctly spec-

ified. Bertsimas and McCord [18] propose a different approach based on dynamic

programming to use nonparametric machine learning methods to handle auxiliary

covariates. However, these dynamic approaches require scenario tree enumeration

and suffer from the curse of dimensionality. To the best of our knowledge, no pre-

vious work leverages machine learning in a computationally tractable, data-driven

framework for decision making in dynamic environments with covariates.

Recently, Bertsimas, Shtern, and Sturt [22] developed a data-driven approach for

dynamic optimization under uncertainty that they call sample robust optimization

(SRO). Their SRO framework constructs a robust optimization problem in which an

uncertainty set is constructed around each historical sample path. They show this

data-driven framework enjoys nonparametric out-of-sample performance guarantees

for a class of dynamic linear optimization problems without covariates and show

that this framework can be approximated using decision rule techniques from robust

optimization. Furthermore, Bertsimas, Shtern, and Sturt [24] show that a class of

two-stage sample robust optimization problems can be tractably approximated to

near optimality using overlapping linear decision rules.

4.1.1 Contributions

In this chapter, we present a new framework for leveraging machine learning in sam-

ple robust optimization. Specifically, we propose combining the predictive analytics

approach of Bertsimas and Kallus [15] with the SRO framework to incorporate aux-

iliary covariates into dynamic optimization. Through a new measure concentration
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result for local machine learning methods, we show that the proposed sample robust

optimization with covariates framework is asymptotically optimal, providing the as-

surance that the resulting decisions are nearly optimal in the presence of big data. We

also demonstrate the tractability of the approach by introducing a multi-policy ap-

proximation for dynamic optimization problems with many stages. To the best of our

knowledge, our method is the first nonparametric approach for tractably solving dy-

namic optimization problems with covariates, offering practitioners a general-purpose

tool for better decision making with predictive analytics. We summarize our main

contributions as follows:

∙ We present a general-purpose framework for leveraging machine learning in

data-driven dynamic optimization with covariates. Our approach extends the

sample robust optimization framework by assigning weights to the uncertainty

sets based on covariates. The weights are computed using machine learning

methods such as 𝑘-nearest neighbor regression, kernel regression, and random

forest regression. By using all available data, we show that our method produces

decisions that achieve improved out-of-sample performance.

∙ We provide theoretical justification for the proposed framework in the big data

setting. First, we develop a new measure concentration result for local machine

learning methods (Theorem 4.2), which shows that the weighted empirical dis-

tribution produced by local predictors converges quickly to the true conditional

distribution. To the best of our knowledge, such a result for local machine

learning is the first of its kind. We use this result to establish that the proposed

framework is asymptotically optimal for dynamic optimization with covariates

(Theorem 4.1) without any parametric assumptions.

∙ To find high quality solutions in practical computation times, we introduce

a multi-policy approximation scheme for dynamic optimization problems with

many stages. Specifically, we propose using separate linear decision rules for

each uncertainty set to approximate the costs incurred in each stage. We show

that the approximation is computationally tractable, both with respect to the
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number of stages and size of the historical dataset, and results in high-quality

solutions.

∙ In a variety of examples (shipment planning, inventory management, and fi-

nance), across a variety of time horizons, our proposed method outperforms

alternatives, in a statistically significant manner, achieving up to 15% improve-

ment in average out-of-sample cost. Moreover, our algorithm is practical and

scalable, requiring less than one minute of computation time on examples with

up to twelve stages.

The chapter is organized as follows. Section 4.2 introduces the problem setting and

notation. Section 4.3 proposes the new framework for incorporating machine learn-

ing into dynamic optimization. Section 4.4 develops theoretical guarantees on the

proposed framework. Section 4.5 presents the multi-policy approximation scheme for

the proposed framework. Section 4.6 presents a detailed investigation and computa-

tional simulations of the proposed methodology in finance, shipment planning, and

inventory management. We conclude in Section 4.7.

4.1.2 Comparison to Related Work

This chapter follows a recent body of literature on data-driven optimization under

uncertainty in operations research and management science. Much of this work has

focused on the paradigm of distributionally robust optimization, in which the opti-

mal solution is that which performs best in expectation over a worst-case probability

distribution from an ambiguity set. Motivated by probabilistic guarantees, distribu-

tionally robust optimization has found particular applicability in data-driven settings

in which the ambiguity set is constructed using historical data, such as Delage and Ye

[42], Esfahani and Kuhn [48], Van Parys, Esfahani, and Kuhn [94], Xu, Caramanis,

and Mannor [99]. In particular, the final steps in our convergence result (Section 4.4.4)

draw heavily from similar techniques from Esfahani and Kuhn [48] and Bertsimas,

Shtern, and Sturt [22]. In contrast to previous work, this chapter develops a new

measure concentration result for the weighted empirical distribution (Section 4.4.3)

89



which enables machine learning and covariates to be incorporated into sample robust

optimization and Wasserstein-based distributionally robust optimization for the first

time.

Several recent papers have focused on tractable approximations of two- and multi-

stage distributionally and sample robust optimization. Many approaches are based

around policy approximation schemes, including lifted linear decision rules [23], 𝐾-

adaptivity [58], and finite adaptability [22]. Alternative approaches include tractable

approximations of copositive formulations [57]. Closest related to the approximation

scheme in this chapter are Chen, Sim, and Xiong [36] and Bertsimas, Shtern, and

Sturt [24], which address two-stage problems via overlapping decision rules. Chen,

Sim, and Xiong [36] propose a scenario-wise modeling approach that leads to novel

approximations of various distributionally robust applications, including two-stage

distributionally robust optimization using Wasserstein ambiguity sets and expecta-

tions of piecewise convex objective functions in single-stage problems. Independently,

Bertsimas, Shtern, and Sturt [24] investigate a multi-policy approximation of two-

stage sample robust optimization that introduces a separate linear decision rule for

each uncertainty set and prove that the approximation gap converges to zero as the

amount of data goes to infinity. In Section 4.5 of this chapter, we show how to extend

similar techniques to dynamic problems with many stages.

As discussed previously, the methodology in this chapter also follows recent work

on incorporating covariates in optimization under uncertainty using local predic-

tive methods (such as 𝑘-nearest neighbor regression, kernel regression, and random

forests). In particular, the asymptotic optimality justification of Bertsimas and Kallus

[15] in single-stage settings relies on the strong universal consistency for local pre-

dictive models (e.g., Walk [98]). Our proof of asymptotic optimality instead relies

on convergence guarantees rooted in distributionally robust optimization. The rea-

son we use a different approach is that the arguments for the convergence for local

predictive models from Bertsimas and Kallus [15] require finite dimensional decision

variables. In contrast, the convergence guarantees in this chapter apply for dynamic

optimization over general spaces of policies.
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4.2 Problem Setting

We consider finite-horizon discrete-time stochastic dynamic optimization problems.

The uncertain quantities observed in each stage are denoted by random variables

𝜉1 ∈ Ξ1 ⊆ R𝑑1𝜉 , . . . , 𝜉𝑇 ∈ Ξ𝑇 ⊆ R𝑑𝑇𝜉 . The decisions made in each stage are denoted by

x1 ∈ 𝒳1 ⊆ R𝑑1𝑥 , . . . ,x𝑇 ∈ 𝒳𝑇 ⊆ R𝑑𝑇𝑥 . Given realizations of the uncertain quantities

and decisions, we incur a cost of

𝑐 (𝜉1, . . . , 𝜉𝑇 ,x1, . . . ,x𝑇 ) ∈ R.

A decision rule 𝜋 = (𝜋1, . . . ,𝜋𝑇 ) is a collection of measurable functions 𝜋𝑡 : Ξ1×· · ·×

Ξ𝑡−1 → 𝒳𝑡 which specify what decision to make in stage 𝑡 based of the information

observed up to that point. Given realizations of the uncertain quantities and choice

of decision rules, the resulting cost is

𝑐𝜋
(︀
𝜉1, . . . , 𝜉𝑇 , ) := 𝑐(𝜉1, . . . , 𝜉𝑇 ,𝜋1, . . . ,𝜋𝑇 (𝜉1, . . . , 𝜉𝑇−1)

)︀
.

Before selecting the decision rules, we observe auxiliary covariates 𝛾 ∈ Γ ⊆ R𝑑𝛾 .

For example, in the aforementioned fashion setting, the auxiliary covariates contain

information on the brand, style, and color of a new clothing item and the uncertainties

represent the demand for the product in each week of the item’s lifecycle. Given a

realization of the covariates 𝛾 = �̄�, our goal is to find decision rules which minimize

the conditional expected cost:

𝑣*(�̄�) := min
𝜋∈Π

E
[︂
𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )

⃒⃒⃒⃒
𝛾 = �̄�

]︂
. (4.1)

We refer to (4.1) as dynamic optimization with covariates. The optimization takes

place over a collection Π which is any subset of the space of all non-anticipative

decision rules.

In this chapter, we assume that the joint distribution of the covariates and uncer-

tain quantities (𝛾, 𝜉1, . . . , 𝜉𝑇 ) is unknown, and our knowledge consists of historical
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data of the form

(𝛾1, 𝜉11, . . . , 𝜉
1
𝑇 ), . . . , (𝛾𝑁 , 𝜉𝑁1 , . . . , 𝜉

𝑁
𝑇 ),

where each of these tuples consists of a realization of the auxiliary covariates and the

ensuing realizations of the uncertainties over the stages. For example, in the fashion

setting, each tuple corresponds to the covariates of a past fashion item as well as

its demand over its lifecycle. We do not assume any parametric structure on the

relationship between the covariates and future uncertainty.

The goal of this chapter is a general-purpose, computationally tractable, data-

driven approach for approximately solving dynamic optimization with covariates. In

the following sections, we propose and analyze a new framework which leverages non-

parametric machine learning, trained on historical data, to predict future uncertainty

from covariates in a way that leads to near-optimal decision rules to (4.1).

4.2.1 Notation

The joint probability distribution of the covariates 𝛾 and uncertain quantities 𝜉 =

(𝜉1, . . . , 𝜉𝑇 ) is denoted by P. For the purpose of proving theorems, we assume through-

out this chapter that the historical data are independent and identically distributed

(i.i.d.) samples from this distribution P. In other words, we assume that the historical

data satisfies

((𝛾1, 𝜉1), . . . , (𝛾𝑁 , 𝜉𝑁)) ∼ P𝑁 ,

where P𝑁 := P×· · ·×P is the product measure. The set of all probability distributions

supported on Ξ := Ξ1×· · ·×Ξ𝑇 ⊆ R𝑑𝜉 is denoted by 𝒫(Ξ). For each of the covariates

�̄� ∈ Γ, we assume that its conditional probability distribution satisfies P�̄� ∈ 𝒫(Ξ),

where P�̄�(·) is shorthand for P(· | 𝛾 = �̄�). We sometimes use subscript notation

for expectations to specify the underlying probability distribution; for example, the
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following two expressions are equivalent:

E𝜉∼P�̄� [𝑓(𝜉1, . . . , 𝜉𝑇 )] ≡ E [𝑓(𝜉1, . . . , 𝜉𝑇 ) | 𝛾 = �̄�] .

4.3 Sample Robust Optimization with Covariates

In this section, we present our approach for incorporating machine learning in dynamic

optimization. We first review the sample robust optimization framework of Bertsimas,

Shtern, and Sturt [22], and then we introduce our new sample robust optimization with

covariates framework.

4.3.1 Preliminary: Sample Robust Optimization

Consider a stochastic dynamic optimization problem of the form (4.1) in which there

are no auxiliary covariates. The underlying joint distribution of the random vari-

ables 𝜉 ≡ (𝜉1, . . . , 𝜉𝑇 ) is unknown, but we have data consisting of sample paths,

𝜉1 ≡ (𝜉11, . . . , 𝜉
1
𝑇 ), . . . , 𝜉𝑁 ≡ (𝜉𝑁1 , . . . , 𝜉

𝑁
𝑇 ). For this setting, Bertsimas, Shtern, and

Sturt [22] propose using sample robust optimization to find approximate solutions in

stochastic dynamic optimization. To apply their framework, one constructs an uncer-

tainty set around each sample path in the training data and then the chooses decision

rules that optimize the average of the worst-case realizations of the cost. Formally,

this framework results in the following robust optimization problem:

min
𝜋∈Π

𝑁∑︁
𝑖=1

1

𝑁
sup
𝜁∈𝒰 𝑖

𝑁

𝑐𝜋(𝜁1, . . . , 𝜁𝑇 ), (4.2)

where 𝒰 𝑖
𝑁 ⊆ Ξ is an uncertainty set around 𝜉𝑖. Intuitively speaking, (4.2) chooses the

decision rules by averaging over the historical sample paths which are adversarially

perturbed. Under mild probabilistic assumptions on the underlying joint distribu-

tion and appropriately constructed uncertainty sets, the authors prove that sample

robust optimization converges asymptotically to the underlying stochastic problem.

They also show that (4.2) is amenable to approximations similar to dynamic robust
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optimization.

4.3.2 Incorporating covariates into sample robust optimiza-

tion

We now present our new framework, based on sample robust optimization, for solving

dynamic optimization with covariates. In the proposed framework, we first train

a machine learning algorithm on the historical data to predict future uncertainty

(𝜉1, . . . , 𝜉𝑇 ) as a function of the covariates. From the trained learner, we obtain

weight functions 𝑤𝑖
𝑁(�̄�), for 𝑖 = 1, . . . , 𝑁 , each of which captures the relevance of the

𝑖th training sample to the new covariates, �̄�. We incorporate the weights into sample

robust optimization by multiplying the cost associated with each training example

by the corresponding weight function. The resulting sample robust optimization with

covariates framework is as follows:

𝑣𝑁(�̄�) := min
𝜋∈Π

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

𝑐𝜋(𝜁1, . . . , 𝜁𝑇 ), (4.3)

where the uncertainty sets are defined

𝒰 𝑖
𝑁 :=

{︀
𝜁 ∈ Ξ : ‖𝜁 − 𝜉𝑖‖ ≤ 𝜖𝑁

}︀
,

and ‖ · ‖ is some ℓ𝑝 norm with 𝑝 ≥ 1.

The above framework provides the flexibility for the practitioner to construct

weights from a variety of machine learning algorithms. We focus on weight func-

tions which come from nonparametric machine learning methods. Examples of viable

predictive models include 𝑘-nearest neighbors (kNN), kernel regression, classification

and regression trees (CART), or random forests (RF). We describe these four classes

of weight functions.
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Definition 4.1. The 𝑘-nearest neighbor weight functions are given by:

𝑤𝑖
𝑁,𝑘NN(�̄�) :=

⎧⎪⎨⎪⎩
1

𝑘𝑁
, if 𝛾𝑖 is a 𝑘𝑁 -nearest neighbor of �̄� out of {𝛾1, . . . ,𝛾𝑁},

0, otherwise.

For technical details, we refer the reader to Biau and Devroye [25].

Definition 4.2. The kernel regression weight functions are given by:

𝑤𝑖
𝑁,KR(�̄�) :=

𝐾(‖𝛾𝑖 − �̄�‖/ℎ𝑁)∑︀𝑁
𝑗=1𝐾(‖𝛾𝑗 − �̄�‖/ℎ𝑁)

,

where 𝐾(·) is the kernel function and ℎ𝑁 is the bandwidth parameter. Examples of

kernel functions include the Gaussian kernel, 𝐾(𝑢) = 1√
2𝜋
𝑒−𝑢2/2, the triangular kernel,

𝐾(𝑢) = (1− 𝑢)1{𝑢 ≤ 1}, and the Epanechnikov kernel, 𝐾(𝑢) = 3
4
(1− 𝑢2)1{𝑢 ≤ 1}.

For more information on kernel regression, see Friedman, Hastie, and Tibshirani [52,

Chapter 6].

The next two types of weight functions we present are based on classification and

regression trees [30] and random forests [29]. We refer the reader to Bertsimas and

Kallus [15] for technical implementation details.

Definition 4.3. The classification and regression tree weight functions are given by:

𝑤𝑖
𝑁,CART(�̄�) :=

⎧⎪⎪⎨⎪⎪⎩
1

|𝑙𝑁(�̄�)|
, 𝑖 ∈ 𝑙𝑁(�̄�),

0, otherwise,

where 𝑙𝑁(�̄�) is the set of indices 𝑖 such that 𝛾𝑖 is contained in the same leaf of the

tree as �̄�.

Definition 4.4. The random forest weight functions are given by:

𝑤𝑖
𝑁,RF(�̄�) :=

1

𝐵

𝐵∑︁
𝑏=1

𝑤𝑖,𝑏
𝑁,CART(�̄�),
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where 𝐵 is the number of trees in the ensemble, and 𝑤𝑖,𝑏
𝑁,CART(�̄�) refers to the weight

function of the 𝑏th tree in the ensemble.

All of the above weight functions come from nonparametric machine learning

methods. They are highly effective as predictive methods because they can learn

complex relationships between the covariates and the response variable without re-

quiring the practitioner to state an explicit parametric form. Similarly, as we prove in

Section 4.4, solutions to (4.3) with these weight functions are asymptotically optimal

for (4.1) without any parametric restrictions on the relationship between 𝛾 and 𝜉.

In other words, incorporating covariates into sample robust optimization via (4.3)

leads to better decisions asymptotically, even without specific knowledge of how the

covariates affect the uncertainty.

4.4 Asymptotic Optimality

In this section, we establish asymptotic optimality guarantees for sample robust op-

timization with auxiliary covariates. We prove that, under mild conditions, (4.3)

converges to (4.1) as the number of training samples goes to infinity. Thus, as the

amount of data grows, sample robust optimization with covariates becomes an opti-

mal approximation of the underlying stochastic dynamic optimization problem. Cru-

cially, our convergence guarantees do not require parametric restrictions on the space

of decision rules (e.g., linearity) or parametric restrictions on the joint distribution of

the covariates and uncertain quantities. These theoretical results are consistent with

empirical experiments in Section 4.6.

4.4.1 Main result

We begin by presenting our main result. The proof of the result depends on some

technical assumptions and concepts from distributionally robust optimization. For

simplicity, we defer the statement and discussion of technical assumptions regarding

the underlying probability distribution and cost until Sections 4.4.3 and 4.4.4, and
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first discuss what is needed to apply the method in practice. The practitioner needs

to select a weight function, parameters associated with that weight function, and the

radius, 𝜖𝑁 , of the uncertainty sets. While these may be selected by cross validation,

we show that the method will in general converge if the parameters are selected to

satisfy the following:

Assumption 4.1. The weight functions and uncertainty set radius satisfy one of the

following:

1. {𝑤𝑖
𝑁(·)} are 𝑘-nearest neighbor weight functions with 𝑘𝑁 = min(⌈𝑘3𝑁 𝛿⌉, 𝑁 − 1)

for constants 𝑘3 > 0 and 𝛿 ∈ (1
2
, 1), and 𝜖𝑁 =

𝑘1
𝑁𝑝

for constants 𝑘1 > 0 and

0 < 𝑝 < min
(︁

1−𝛿
𝑑𝛾
, 2𝛿−1
𝑑𝜉+2

)︁
.

2. {𝑤𝑖
𝑁(·)} are kernel regression weight functions with the Gaussian, triangular,

or Epanechnikov kernel function and ℎ𝑁 = 𝑘4𝑁
−𝛿 for constants 𝑘4 > 0 and

𝛿 ∈
(︁

0, 1
2𝑑𝛾

)︁
, and 𝜖𝑁 =

𝑘1
𝑁𝑝

for constants 𝑘1 > 0 and 0 < 𝑝 < min
(︁
𝛿, 1−𝛿𝑑𝛾

2+𝑑𝜉

)︁
.

Given Assumption 4.1, our main result is the following.

Theorem 4.1. Suppose the weight function and uncertainty sets satisfy Assump-

tion 4.1, the joint probability distribution of (𝛾, 𝜉) satisfies Assumptions 4.2-4.4 from

Section 4.4.3, and the cost function satisfies Assumption 4.5 from Section 4.4.4.

Then, for every �̄� ∈ Γ,

lim
𝑁→∞

𝑣𝑁(�̄�) = 𝑣*(�̄�), P∞-almost surely.

The theorem says that objective value of (4.3) and the out-of-sample cost of

optimal decisions to (4.3) converge almost surely to the optimal value of the full-

information problem, (4.1), as 𝑁 goes to infinity. The assumptions of the theorem

require that the joint distribution of the auxiliary covariates and uncertain quanti-

ties and the feasible decision rules are well behaved. We will discuss these technical

assumptions in more detail in the following sections.

In order to prove the asymptotic optimality of sample robust optimization with

covariates, we view (4.3) through the more general lens of Wasserstein-based distri-
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butionally robust optimization. We first review some properties of the Wasserstein

metric and then prove a key intermediary result from which our main result follows.

4.4.2 Review of the Wasserstein metric

The Wasserstein metric provides a distance function between probability distribu-

tions. In particular, given two probability distributions Q,Q′ ∈ 𝒫(Ξ), the type-

1 Wasserstein distance is defined as the optimal objective value of a minimization

problem:

d1 (Q,Q′) := inf

⎧⎨⎩E(𝜉,𝜉′)∼Π ‖𝜉 − 𝜉′‖ :
Π is a joint distribution of 𝜉 and 𝜉′

with marginals Q and Q′, respectively

⎫⎬⎭ .

The Wasserstein metric is particularly appealing because a distribution with finite

support can have a finite distance to a continuous distribution. This allows us to

construct a Wasserstein ball around an empirical distribution that includes contin-

uous distributions, which cannot be done with other popular measures such as the

Kullback-Leilbler divergence [69]. We remark that the 1-Wasserstein metric satisfies

the axioms of a metric, including the triangle inequality [39]:

d1(Q1,Q2) ≤ d1(Q1,Q3) + d1(Q3,Q2), ∀Q1,Q2,Q3 ∈ 𝒫(Ξ).

Important to our analysis, the 1-Wasserstein metric admits a dual form, as shown by

Kantorovich and Rubinstein [66],

d1(Q,Q′) = sup
Lip(ℎ)≤1

|E𝜉∼Q[ℎ(𝜉)]− E𝜉∼Q′ [ℎ(𝜉)]| ,

where the supremum is taken over all 1-Lipschitz functions. Note that the absolute

value is optional in the dual form of the metric, and the space of Lipschitz functions

can be restricted to those which satisfy ℎ(0) = 0, without loss of generality. Finally,

we remark that Fournier and Guillin [51] prove under a light-tailed assumption that

the 1-Wasserstein distance between the empirical distribution and its underlying dis-
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tribution concentrates around zero with high probability. Theorem 4.2 in the following

section extends this concentration result to the setting with auxiliary covariates.

4.4.3 Concentration of the weighted empirical measure

Given a local predictive method, let the corresponding weighted empirical measure

be defined as

P̂𝑁
�̄� :=

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)𝛿𝜉𝑖 ,

where 𝛿𝜉 denotes the Dirac probability distribution which places point mass at 𝜉. In

this section, we prove under mild assumptions that the weighted empirical measure P̂𝑁
�̄�

concentrations quickly to P�̄� with respect to the 1-Wasserstein metric. We introduce

the following assumptions on the underlying joint probability distribution:

Assumption 4.2 (Conditional Subgaussianity). There exists a parameter 𝜎 > 0 such

that

P (‖𝜉‖ − E[‖𝜉‖ | 𝛾 = �̄�] > 𝑡 | 𝛾 = �̄�) ≤ exp

(︂
− 𝑡2

2𝜎2

)︂
∀𝑡 > 0, �̄� ∈ Γ.

Assumption 4.3 (Lipschitz Continuity). There exists 0 < 𝐿 <∞ such that

d1(P�̄� ,P�̄�′) ≤ 𝐿‖�̄� − �̄� ′‖, ∀�̄�, �̄� ′ ∈ Γ.

Assumption 4.4 (Smoothness of Auxiliary Covariates). The set Γ is compact, and

there exists 𝑔 > 0 such that

P(‖𝛾 − �̄�‖ ≤ 𝜖) ≥ 𝑔𝜖𝑑𝛾 , ∀𝜖 > 0, �̄� ∈ Γ.

With these assumptions, we are ready to prove the concentration result, which

relies on the dual form of the Wasserstein metric and a discrete approximation of the

space of 1-Lipschitz functions.

Theorem 4.2. Suppose the weight function and uncertainty sets satisfy Assump-

tion 4.1 and the joint probability distribution of (𝛾, 𝜉) satisfies Assumptions 4.2-4.4.
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Then, for every �̄� ∈ Γ,

P∞
(︁
{d1(P�̄� , P̂𝑁

�̄� ) > 𝜖𝑁} i.o.
)︁

= 0.

Proof. Without loss of generality, we assume throughout the proof that all norms ‖·‖

refer to the ℓ∞ norm.1 Fix any �̄� ∈ Γ. It follows from Assumption 4.1 that

{𝑤𝑖
𝑁(�̄�)} are not functions of 𝜉1, . . . , 𝜉𝑁 ; (4.4)

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) = 1 and 𝑤1

𝑁(�̄�), . . . , 𝑤𝑁
𝑁 (�̄�) ≥ 0, ∀𝑁 ∈ N; (4.5)

𝜖𝑁 =
𝑘1
𝑁𝑝

, ∀𝑁 ∈ N, (4.6)

for constants 𝑘1, 𝑝 > 0. Moreover, Assumption 4.1 also implies that there exists

constants 𝑘2 > 0 and 𝜂 > 𝑝(2 + 𝑑𝜉) such that

lim
𝑁→∞

1

𝜖𝑁

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)‖𝛾𝑖 − �̄�‖ = 0, P∞-almost surely; (4.7)

EP𝑁

[︃
exp

(︃
−𝜃∑︀𝑁

𝑖=1𝑤
𝑖
𝑁(�̄�)2

)︃]︃
≤ exp(−𝑘2𝜃𝑁𝜂), ∀𝜃 ∈ (0, 1), 𝑁 ∈ N. (4.8)

The proof of the the above statements under Assumption 4.1 is found in Appendix C.1.

Now, choose any fixed 𝑞 ∈ (0, 𝜂/(2 + 𝑑𝜉)− 𝑝), and let

𝑏𝑁 := 𝑁 𝑞, 𝐵𝑁 :=
{︀
𝜁 ∈ R𝑑𝜉 : ‖𝜁‖ ≤ 𝑏𝑁

}︀
, 𝐼𝑁 := 1

{︀
𝜉1, . . . , 𝜉𝑁 ∈ 𝐵𝑁

}︀
.

1To see why this is without loss of generality, consider any other ℓ𝑝 norm where 𝑝 ≥ 1. In this
case,

‖𝜉 − 𝜉′‖𝑝 ≤ 𝑑
1/𝑝
𝜉 ‖𝜉 − 𝜉′‖∞.

By the definition of the 1-Wasserstein metric, this implies

d𝑝1(P�̄� , P̂𝑁
�̄� ) ≤ 𝑑

1/𝑝
𝜉 d∞1 (P�̄� , P̂𝑁

�̄� ),

where d𝑝1 refers to the 1-Wasserstein metric with the ℓ𝑝 norm. If 𝜖𝑁 satisfies Assumption 4.1, 𝜖𝑁/𝑑
1/𝑝
𝜉

also satisfies Assumption 4.1, so the result for all other choices of ℓ𝑝 norms follows from the result
with the ℓ∞ norm.
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Finally, we define the following intermediary probability distributions:

Q̂𝑁
�̄� :=

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)P𝛾𝑖 , Q̂𝑁

�̄�|𝐵𝑁
:=

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)P𝛾𝑖|𝐵𝑁

,

where P𝛾𝑖|𝐵𝑁
(·) is shorthand for P(· | 𝛾 = 𝛾𝑖, 𝜉 ∈ 𝐵𝑁).

Applying the triangle inequality for the 1-Wasserstein metric and the union bound,

P∞
(︁
{d1(P�̄� , P̂𝑁

�̄� ) > 𝜖𝑁} i.o.
)︁
≤ P∞

(︁{︁
d1(P�̄� , Q̂𝑁

�̄� ) >
𝜖𝑁
3

}︁
i.o.
)︁

+ P∞
(︁{︁

d1(Q̂𝑁
�̄� , Q̂𝑁

�̄�|𝐵𝑁
) >

𝜖𝑁
3

}︁
i.o.
)︁

+ P∞
(︁{︁

d1(Q̂𝑁
�̄�|𝐵𝑁

, P̂𝑁
�̄� ) >

𝜖𝑁
3

}︁
i.o.
)︁
.

We now proceed to bound each of the above terms.

Term 1: d1(P�̄� , Q̂𝑁
�̄� ):

By the dual form of the 1-Wasserstein metric,

d1(P�̄� , Q̂𝑁
�̄� ) = sup

Lip(ℎ)≤1

⃒⃒⃒⃒
⃒E[ℎ(𝜉)|𝛾 = �̄�]−

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)E[ℎ(𝜉)|𝛾 = 𝛾𝑖]

⃒⃒⃒⃒
⃒ ,

where the supremum is taken over all 1-Lipschitz functions. By (4.5) and Jensen’s

inequality, we can upper bound this by

d1(P�̄� , Q̂𝑁
�̄� ) ≤

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︃
sup

Lip(ℎ)≤1

⃒⃒
E[ℎ(𝜉)|𝛾 = �̄�]− E[ℎ(𝜉)|𝛾 = 𝛾𝑖]

⃒⃒)︃

=
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)d1

(︀
P�̄� ,P𝛾𝑖

)︀
≤ 𝐿

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)‖�̄� − 𝛾𝑖‖,
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where the final inequality follows from Assumption 4.3. Therefore, it follows from

(4.7) that

P∞
(︁{︁

d1(P�̄� , Q̂𝑁
�̄� ) >

𝜖𝑁
3

}︁
i.o.
)︁

= 0. (4.9)

Term 2: d1(Q̂𝑁
�̄� , Q̂𝑁

�̄�|𝐵𝑁
):

Consider any Lipschitz function Lip(ℎ) ≤ 1 for which ℎ(0) = 0, and let �̄� ∈ N satisfy

𝑏�̄� ≥ 𝜎+ sup�̄�∈Γ E[‖𝜉‖|𝛾 = �̄�] (which is finite because of Assumption 4.4). Then, for

all 𝑁 ≥ �̄� , and all �̄� ′ ∈ Γ,

E[ℎ(𝜉)|𝛾 = �̄� ′]− E[ℎ(𝜉) | 𝛾 = �̄� ′, 𝜉 ∈ 𝐵𝑁 ]

= E[ℎ(𝜉)1{𝜉 /∈ 𝐵𝑁} | 𝛾 = �̄� ′] + E[ℎ(𝜉)1{𝜉 ∈ 𝐵𝑁} | 𝛾 = �̄� ′]

− E[ℎ(𝜉) | 𝛾 = �̄� ′, 𝜉 ∈ 𝐵𝑁 ]

= E[ℎ(𝜉)1{𝜉 /∈ 𝐵𝑁} | 𝛾 = �̄� ′] + E[ℎ(𝜉) | 𝛾 = �̄� ′, 𝜉 ∈ 𝐵𝑁 ]P (𝜉 ∈ 𝐵𝑁 | 𝛾 = �̄� ′)

− E[ℎ(𝜉) | 𝛾 = �̄� ′, 𝜉 ∈ 𝐵𝑁 ]

= E[ℎ(𝜉)1{𝜉 /∈ 𝐵𝑁} | 𝛾 = �̄� ′]− E[ℎ(𝜉) | 𝛾 = �̄� ′, 𝜉 ∈ 𝐵𝑁 ]P(𝜉 /∈ 𝐵𝑁 | 𝛾 = �̄� ′)

≤ E[‖𝜉‖1{𝜉 /∈ 𝐵𝑁} | 𝛾 = �̄� ′] + 𝑏𝑁P(𝜉 /∈ 𝐵𝑁 | 𝛾 = �̄� ′)

=

∫︁ ∞

𝑏𝑁

P (‖𝜉‖ > 𝑡 | 𝛾 = �̄� ′) 𝑑𝑡+ 𝑏𝑁P (‖𝜉‖ ≥ 𝑏𝑁 | 𝛾 = �̄� ′)

≤ (𝜎 + 𝑏𝑁) exp

(︃
− 1

2𝜎2

(︂
𝑏𝑁 − sup

�̄�′∈Γ
E[‖𝜉‖|𝛾 = �̄� ′]

)︂2
)︃
.

The first inequality follows because |ℎ(𝜉)| ≤ 𝑏𝑁 for all 𝜉 ∈ 𝐵𝑁 and |ℎ(𝜉)| ≤ ‖𝜉‖ oth-

erwise. For the second inequality, we used the Gaussian tail inequality
∫︀∞
𝑥
𝑒−𝑡2/2𝑑𝑡 ≤

𝑒−𝑥2/2 for 𝑥 ≥ 1 [96, Proposition 2.1.2] along with Assumption 4.2. Because this
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bound holds uniformly over all ℎ, and all �̄� ′ ∈ Γ, it follows that

d1(Q̂𝑁
�̄� , Q̂𝑁

�̄�|𝐵𝑁
) = sup

Lip(ℎ)≤1,ℎ(0)=0

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︀
E[ℎ(𝜉)|𝛾 = 𝛾𝑖]− E[ℎ(𝜉)|𝛾 = 𝛾𝑖, 𝜉 ∈ 𝐵𝑁 ]

)︀⃒⃒⃒⃒⃒
≤

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

Lip(ℎ)≤1,ℎ(0)=0

⃒⃒
E[ℎ(𝜉)|𝛾 = 𝛾𝑖]− E[ℎ(𝜉)|𝛾 = 𝛾𝑖, 𝜉 ∈ 𝐵𝑁 ]

⃒⃒
≤ sup

�̄�′∈Γ
sup

Lip(ℎ)≤1,ℎ(0)=0

|E[ℎ(𝜉)|𝛾 = �̄� ′]− E[ℎ(𝜉)|𝛾 = �̄� ′, 𝜉 ∈ 𝐵𝑁 ]|

≤ (𝜎 + 𝑏𝑁) exp

(︃
− 1

2𝜎2

(︂
𝑏𝑁 − sup

�̄�′∈Γ
E[‖𝜉‖|𝛾 = �̄� ′]

)︂2
)︃
,

for all 𝑁 ≥ �̄� . It is easy to see that the right hand side above divided by 𝜖𝑁/3 goes

to 0 as 𝑁 goes to infinity, so

P∞
(︁{︁

d1(Q̂𝑁
�̄� , Q̂𝑁

�̄�|𝐵𝑁
) >

𝜖𝑁
3

}︁
i.o.
)︁

= 0.

Term 3: d1(Q̂𝑁
�̄�|𝐵𝑁

, P̂𝑁
�̄� ):

By the law of total probability,

P𝑁
(︁
d1(Q̂𝑁

�̄�|𝐵𝑁
, P̂𝑁

�̄� ) >
𝜖𝑁
3

)︁
≤ P𝑁(𝐼𝑁 = 0) + P𝑁

(︂
d1(Q̂𝑁

�̄�|𝐵𝑁
, P̂𝑁

�̄� ) >
𝜖𝑁
3

⃒⃒⃒⃒
𝐼𝑁 = 1

)︂
.

We now show that each of the above terms have finite summations. First,

∞∑︁
𝑁=1

P𝑁(𝐼𝑁 = 0) ≤
∞∑︁

𝑁=1

𝑁 sup
�̄�′∈Γ

P(𝜉 /∈ 𝐵𝑁 | 𝛾 = �̄� ′)

≤
∞∑︁

𝑁=1

𝑁 sup
�̄�′∈Γ

exp

(︃
−(𝑏𝑁 − E [‖𝜉‖ | 𝛾 = �̄� ′])2

2𝜎2

)︃
<∞.

The first inequality follows from the union bound, the second inequality follows from

Assumption 4.2, and the final inequality follows because sup�̄�′∈Γ E[‖𝜉‖|𝛾 = �̄� ′] < ∞

and the definition of 𝑏𝑁 .

Second, for each 𝑙 ∈ N, we define several quantities. Let 𝒫𝑙 be the partitioning
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of 𝐵𝑁 = [−𝑏𝑁 , 𝑏𝑁 ]𝑑𝜉 into 2𝑙𝑑𝜉 translations of (−𝑏𝑁2−𝑙, 𝑏𝑁2−𝑙]𝑑𝜉 . Let ℋ𝑙 be the set

of piecewise constant functions which are constant on each region of the partition

𝒫𝑙, taking values on {𝑘𝑏𝑁2−𝑙 : 𝑘 ∈ {0,±1,±2,±3, . . . ,±2𝑙}}. Note that |ℋ𝑙| =

(2𝑙+1 + 1)2
𝑙𝑑𝜉 . Then, we observe that for all Lipschitz functions Lip(ℎ) ≤ 1 which

satisfy ℎ(0) = 0, there exists a ℎ̂ ∈ ℋ𝑙 such that

sup
𝜁∈𝐵𝑁

|ℎ(𝜁)− ℎ̂(𝜁)| ≤ 𝑏𝑁2−𝑙+1.

Indeed, within each region of the partition, ℎ can vary by no more than 𝑏𝑁2−𝑙+1.

The possible function values for ℎ̂ are separated by 𝑏𝑁2−𝑙. Because ℎ is bounded by

±𝑏𝑁 , this implies the existence of ℎ̂ ∈ ℋ𝑙 such that ℎ̂ has a value within 𝑏𝑁2−𝑙+1 of ℎ

everywhere within that region. The identical reasoning holds for all other regions of

the partition.

Therefore, for every 𝑙 ∈ N,

P𝑁

(︂
d1(Q̂𝑁

�̄�|𝐵𝑁
, P̂𝑁

�̄� ) >
𝜖𝑁
3

⃒⃒⃒⃒
𝐼𝑁 = 1

)︂

= P𝑁

⎛⎜⎝ sup
Lip(ℎ)≤1
ℎ(0)=0

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︀
ℎ(𝜉𝑖)− E[ℎ(𝜉)|𝛾 = 𝛾𝑖, 𝜉 ∈ 𝐵𝑁 ]

)︀
>
𝜖𝑁
3

⃒⃒⃒⃒
⃒𝐼𝑁 = 1

⎞⎟⎠
≤ P𝑁

(︃
sup
ℎ̂∈ℋ𝑙

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︁
ℎ̂(𝜉𝑖)− E

[︁
ℎ̂(𝜉)|𝛾 = 𝛾𝑖, 𝜉 ∈ 𝐵𝑁

]︁)︁
>
𝜖𝑁
3
− 2 · 𝑏𝑁2−𝑙+1

⃒⃒⃒⃒
𝐼𝑁 = 1

)︃

≤ |ℋ𝑙| sup
ℎ̂∈ℋ𝑙

P𝑁

(︃
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︁
ℎ̂(𝜉𝑖)− E

[︁
ℎ̂(𝜉)|𝛾 = 𝛾𝑖, 𝜉 ∈ 𝐵𝑁

]︁)︁
>
𝜖𝑁
3
− 𝑏𝑁2−𝑙+2

⃒⃒⃒⃒
𝐼𝑁 = 1

)︃
,

where the final inequality follows from the union bound. We choose 𝑙 =
⌈︁
2 + log2

6𝑏𝑁
𝜖𝑁

⌉︁
,

in which case

𝜖𝑁
3
− 𝑏𝑁2−𝑙+2 ≥ 𝜖𝑁

6
.
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Furthermore, for all sufficiently large 𝑁 ,

|ℋ𝑙| = (2𝑙+1 + 1)2
𝑙𝑑𝜉 ≤

(︂
96
𝑏𝑁
𝜖𝑁

)︂24
𝑑𝜉 (𝑏𝑁/𝜖𝑁 )

𝑑𝜉

= exp

(︃
24𝑑𝜉

(︂
𝑏𝑁
𝜖𝑁

)︂𝑑𝜉

log
96𝑏𝑁
𝜖𝑁

)︃
.

Applying Hoeffding’s inequality, and noting |ℎ̂(𝜉𝑖)| is bounded by 𝑏𝑁 when 𝜉𝑖 ∈ 𝐵𝑁 ,

we have the following for all ℎ̂ ∈ ℋ𝑙:

P𝑁

(︃
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︁
ℎ̂(𝜉𝑖)− E[ℎ̂(𝜉)|𝜉 ∈ 𝐵𝑁 ,𝛾 = 𝛾𝑖]

)︁
>
𝜖𝑁
6

⃒⃒⃒⃒
𝐼𝑁 = 1

)︃

= E

[︃
P𝑁

(︃
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︁
ℎ̂(𝜉𝑖)− E[ℎ̂(𝜉)|𝜉 ∈ 𝐵𝑁 ,𝛾 = 𝛾𝑖]

)︁
>
𝜖𝑁
6

⃒⃒⃒⃒
𝐼𝑁 = 1,𝛾1, . . . ,𝛾𝑁

)︃ ⃒⃒⃒⃒
𝐼𝑁 = 1

]︃

≤ E

[︃
exp

(︃
− 𝜖2𝑁

72
∑︀𝑁

𝑖=1(𝑤
𝑖
𝑁(�̄�))2𝑏2𝑁

)︃ ⃒⃒⃒⃒
𝐼𝑁 = 1

]︃

= E

[︃
exp

(︃
− 𝜖2𝑁

72
∑︀𝑁

𝑖=1(𝑤
𝑖
𝑁(�̄�))2𝑏2𝑁

)︃
𝐼𝑁

]︃(︂
1

P𝑁(𝐼𝑁 = 1)

)︂

≤ 2E

[︃
exp

(︃
− 𝜖2𝑁

72
∑︀𝑁

𝑖=1(𝑤
𝑖
𝑁(�̄�))2𝑏2𝑁

)︃]︃

≤ 2 exp

(︂
−𝑘2𝑁

𝜂𝜖2𝑁
72𝑏2𝑁

)︂
,

for 𝑁 sufficiently large that P(𝐼𝑁 = 1) ≥ 1/2 and 𝜖2𝑁/72𝑏2𝑁 < 1. Note that (4.8) was

used for the final inequality. Combining these results, we have

P𝑁

(︂
d1(P̂𝑁

�̄� , Q̂𝑁
�̄�|𝐵𝑁

) > 𝜖𝑁/3

⃒⃒⃒⃒
𝐼𝑁 = 1

)︂
≤ 2 exp

(︃
24𝑑𝜉

(︂
𝑏𝑁
𝜖𝑁

)︂𝑑𝜉

log
96𝑏𝑁
𝜖𝑁
− 𝑘2𝜖

2
𝑁𝑁

𝜂

72𝑁𝑏2𝑁

)︃
,

for 𝑁 sufficiently large. For some constants 𝑐1, 𝑐2 > 0, and sufficiently large 𝑁 , this

is upper bounded by

2 exp
(︀
−𝑐1𝑁𝜂−2(𝑝+𝑞) + 𝑐2𝑁

𝑑𝜉(𝑞+𝑝) log𝑁
)︀
.

Since 0 < 𝑑𝜉(𝑝+ 𝑞) < 𝜂− 2(𝑝+ 𝑞), we can conduct a limit comparison test with 1/𝑁2

to see that this term has a finite sum over 𝑁 , which completes the proof.
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4.4.4 Proof of main result

Theorem 4.2 provides the key ingredient for the proof of the main consistency result.

We state one final assumption, which requires that the objective function of (4.1) is

upper semicontinuous and bounded by linear functions of the uncertainty.

Assumption 4.5. For all 𝜋 ∈ Π, 𝑐𝜋(𝜁1, . . . , 𝜁𝑇 ) is upper semicontinuous in 𝜁 and

|𝑐(𝜁,x)| ≤ 𝐶(1 + ‖𝜁‖) for all 𝜁 ∈ Ξ and some 𝐶 > 0.

Under this assumption, the proof of Theorem 4.1 follows from Theorem 4.2 via

arguments similar to those used by Esfahani and Kuhn [48] and Bertsimas, Shtern,

and Sturt [22]. We state it fully in Appendix C.2.

4.5 Tractable Approximations

In the previous sections, we presented the new framework of sample robust optimiza-

tion with covariates and established its asymptotic optimality without any significant

structural restrictions on the space of decision rules. In this section, we focus on

tractable methods for approximately solving the robust optimization problems that

result from this proposed framework. Specifically, we show how to extend the multi-

policy approximation scheme from Bertsimas, Shtern, and Sturt [24] to find high-

quality solutions for these problems. In combination with linear decision rules, this

approach enables us to approximately solve real-world problems with more than ten

stages in less than one minute, as we demonstrate in Section 4.6.

We focus on dynamic optimization problems with cost functions of the form

𝑐 (𝜉1, . . . , 𝜉𝑇 ,x1, . . . ,x𝑇 )

=
𝑇∑︁
𝑡=1

(︃
fᵀ𝑡 x𝑡 + gᵀ

𝑡 𝜉𝑡 + min
y𝑡∈R𝑑𝑡𝑦

{︃
hᵀ
𝑡y𝑡 :

𝑡∑︁
𝑠=1

A𝑡,𝑠x𝑠 +
𝑡∑︁

𝑠=1

B𝑡,𝑠𝜉𝑠 + C𝑡y𝑡 ≤ d𝑡

}︃)︃
.

(4.10)

Such cost functions appear frequently in applications such as inventory management

and supply chain networks. Unfortunately, it is well known that these cost functions

are convex in the uncertainty 𝜉1, . . . , 𝜉𝑇 . Thus, even evaluating the worst-case cost
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over a convex uncertainty set is computationally demanding in general, as it requires

the maximization of a convex function.

As an intermediary step towards developing an approximation scheme for (4.3)

with the above cost function, we consider the following optimization problem:

𝑣𝑁(�̄�) := min
𝜋∈Π

y𝑖
𝑡∈ℛ𝑡 ∀𝑖,𝑡

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

𝑇∑︁
𝑡=1

(︀
fᵀ𝑡 𝜋𝑡(𝜁1, . . . , 𝜁𝑡−1) + gᵀ

𝑡 𝜁𝑡 + hᵀ
𝑡y

𝑖
𝑡(𝜁1, . . . , 𝜁𝑡)

)︀
s.t.

𝑡∑︁
𝑠=1

A𝑡,𝑠𝜋𝑠(𝜁1, . . . , 𝜁𝑠−1) +
𝑡∑︁

𝑠=1

B𝑡,𝑠𝜁𝑠 + C𝑡y
𝑖
𝑡(𝜁1, . . . , 𝜁𝑡) ≤ d𝑡

∀𝜁 ∈ 𝒰 𝑖
𝑁 , 𝑖 ∈ {1, . . . , 𝑁}, 𝑡 ∈ {1, . . . , 𝑇},

(4.11)

where ℛ𝑡 is the set of all functions y : Ξ1 × · · · × Ξ𝑡 → R𝑑𝑡𝑦 . In this problem,

we have introduced auxiliary decision rules which capture the optimal value of the

minimization portion of the cost function in (4.10) in each stage. We refer to (4.11)

as a multi-policy approach, as it involves different auxiliary decision rules for each

uncertainty set. The following theorem shows that (4.11) is equivalent to (4.3).

Theorem 4.3. For cost functions of the form (4.10), 𝑣𝑁(�̄�) = 𝑣𝑁(�̄�).

Proof. See Appendix C.3.

We observe that (4.11) involves optimizing over decision rules, and thus is com-

putationally challenging to solve in general. Nonetheless, we can obtain a tractable

approximation of (4.11) by further restricting the space of primary and auxiliary de-

cision rules. For instance, we can restrict all primary and auxiliary decision rules as

linear decision rules of the form

𝜋𝑡

(︀
𝜁1, . . . , 𝜁𝑡−1

)︀
= x𝑡,0 +

𝑡−1∑︁
𝑠=1

X𝑡,𝑠𝜁𝑠, y𝑖
𝑡(𝜁1, . . . , 𝜁𝑡) = y𝑖

𝑡,0 +
𝑡∑︁

𝑠=1

Y𝑖
𝑡,𝑠𝜁𝑠.

One can alternatively elect to use a richer class of decision rules, such as lifted linear

decision rules [35, 53] or finite adaptability [12]. In all cases, feasible approximations

that restrict the space of decision rules of (4.11) provide an upper bound on the cost

𝑣𝑁(�̄�) and produce decision rules that are feasible for (4.11).
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The key benefit of the multi-policy approximation scheme is that it offers many

degrees of freedom in approximating the nonlinear cost function. Specifically, in

(4.11), a separate auxiliary decision rule y𝑖
𝑡 captures the value of the cost function

for each uncertainty set in each stage. We approximate each y𝑖
𝑡 with a linear decision

rule, which only needs to be locally accurate, i.e., accurate for realizations in the

corresponding uncertainty set. As a result, (4.11) with linear decision rules results in

significantly tighter approximations of (4.3) compared to using a single linear decision

rule, y𝑡, for all uncertainty sets in each stage. Moreover, these additional degrees of

freedom come with only a mild increase in computation cost, and we substantiate

these claims via computational experiments in Section 4.6.2.

For completeness, we now show how to reformulate the multi-policy approximation

scheme with linear decision rules into a deterministic optimization problem using

standard techniques from robust optimization. First, it is readily observed that any

instance of (4.11) using linear decision rules can be rewritten in the following compact

form:

min
x0∈R𝑑𝑥 ,X∈R𝑑𝑥×𝑑𝜉

y𝑖
0∈R

𝑑𝑦 , Y𝑖∈R𝑑𝑦×𝑑𝜉

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

{︀
fᵀ(x0 + X𝜁) + gᵀ𝜁 + hᵀ

(︀
y𝑖
0 + Y𝑖𝜁

)︀}︀
s.t. A(x0 + X𝜁) + B𝜁 + C

(︀
y𝑖
0 + Y𝑖𝜁

)︀
≤ d

x0 + X𝜁 ∈ 𝒳

∀𝜁 ∈ 𝒰 𝑖
𝑁 , 𝑖 ∈ {1, . . . , 𝑁},

(4.12)

where 𝒳 := 𝒳1 × · · · × 𝒳𝑇 and the matrices X and Y are non-anticipative; for

technical details, see Appendix C.3. Note that the linear decision rules in the above

optimization problem are represented using 𝑂(𝑑𝜉 max{𝑑𝑥, 𝑁𝑑𝑦}) decision variables,

where 𝑑𝑥 := 𝑑1𝑥+ · · ·+𝑑𝑇𝑥 and 𝑑𝑦 := 𝑑1𝑦 + · · ·+𝑑𝑇𝑦 . Thus, the complexity of representing

the primary and auxiliary linear decision rules scales efficiently both in the size of the

dataset and the number of stages. For simplicity, we present the reformulation for

the case in which there are no constraints on the decision variables and no support

constraints on the random variables (i.e., 𝒳 = R𝑑𝑥 and Ξ = R𝑑𝜉), but a more general
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Table 4.1: Relationship of four methods.

𝜖𝑁 𝑤𝑖
𝑁(�̄�) = 1

𝑁
for all 𝑖 𝑤𝑖

𝑁(�̄�) from machine learning

= 0 Sample average approximation Bertsimas and Kallus [15]
> 0 Bertsimas, Shtern, and Sturt [22] This chapter

reformulation for when Ξ = R𝑑𝜉
+ is found in Appendix C.3.

Theorem 4.4. Suppose Ξ = R𝑑𝜉 and 𝒳 = R𝑑𝑥. Then, (4.12) is equivalent to

min
x0∈R𝑑𝑥

X∈R𝑑𝑥×𝑑𝜉

y𝑖
0∈R

𝑑𝑦

Y𝑖∈R𝑑𝑦×𝑑𝜉

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︀
fᵀ
(︀
x0 + X𝜉𝑖

)︀
+ gᵀ𝜉𝑖 + hᵀ

(︀
y𝑖
0 + Y𝑖𝜉𝑖

)︀
+ 𝜖𝑁

⃦⃦
Xᵀf + g + (Y𝑖)ᵀh

⃦⃦
*

)︀

s.t. A
(︀
x0 + X𝜉𝑖

)︀
+ B𝜉𝑖 + C

(︀
y𝑖
0 + Y𝑖𝜉𝑖

)︀
+ 𝜖𝑁

⃦⃦
AX + B + CY𝑖

⃦⃦
* ≤ d

∀𝑖 ∈ {1, . . . , 𝑁}.

where ‖ · ‖* is the dual norm and ‖Z‖* := (‖z1‖*, . . . , ‖z𝑟‖*) ∈ R𝑟 for any matrix

Z ∈ R𝑟×𝑛.

Proof. The proof of Theorem 4.4, as well as generalizations, are found in Appendix C.3.

4.6 Computational Experiments

We perform computational experiments to assess the out-of-sample performance and

computational tractability of the proposed methodologies across several applications.

These examples are two-stage shipment planning (Section 4.6.1), dynamic inventory

management (Section 4.6.2), and portfolio optimization (Section 4.6.3).

We compare several methods using different machine learning models. These

methods include the proposed sample robust optimization with covariates, sample

average approximation (SAA), the predictions to prescriptions (PtP) approach of

Bertsimas and Kallus [15], and sample robust optimization without covariates (SRO).

In Table 4.1, we show that each of the above methods are particular instances of
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(4.3) from Section 4.3. The methods in the left column ignore covariates by assigning

equal weights to each uncertainty set, and the methods in the right column incorporate

covariates by choosing the weights based on predictive machine learning. The methods

in the top row do not incorporate any robustness, and the methods in the bottom

row incorporate robustness via a positive 𝜖𝑁 in the uncertainty sets. In addition, for

the dynamic inventory management example, we also implement and compare to the

residual tree algorithm described in Ban, Gallien, and Mersereau [4].

In each experiment, the relevant methods are applied to the same training datasets,

and their solutions are evaluated against a common testing dataset. Further details

are provided in each of the following sections.

4.6.1 Shipment planning

We first consider a two-stage shipment planning problem in which a decision maker

seeks to satisfy demand in several locations from several production facilities while

minimizing production and transportation costs. Our problem setting closely follows

Bertsimas and Kallus [15], in which the decision maker has access to auxiliary co-

variates (promotions, social media, market trends), which may be predictive of future

sales in each retail location.

Problem Description. The decision maker first decides the quantity of inventory

𝑥𝑓 ≥ 0 to produce in each of the production facilities 𝑓 ∈ ℱ := {1, . . . , |ℱ|}, at a

cost of 𝑝1 per unit. The demands 𝜉ℓ ≥ 0 in each location ℓ ∈ ℒ := {1, . . . , |ℒ|} are

then observed. The decision maker fulfills these demand by shipping 𝑠𝑓ℓ ≥ 0 units

from facility 𝑓 ∈ ℱ to location ℓ ∈ at a per-unit cost of 𝑐𝑓ℓ > 0. Additionally, after

observing demand, the decision maker has the opportunity to produce additional

units 𝑦𝑓 ≥ 0 in each facility at a cost of 𝑝2 > 𝑝1 per unit. The fulfillment of each unit

of demand generates 𝑟 > 0 in revenue. Given the above notation and dynamics, the
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cost incurred by the decision maker is

𝑐(𝜉,x) =
∑︁
𝑓∈ℱ

𝑝1𝑥𝑓 −
∑︁
ℓ∈

𝑟𝜉ℓ + min
s∈Rℒ×ℱ

+ ,y∈Rℱ
+

∑︁
𝑓∈ℱ

𝑝2𝑦𝑓 +
∑︁
𝑓∈ℱ

∑︁
ℓ∈

𝑐𝑓ℓ𝑠𝑓ℓ

s.t.
∑︁
𝑓∈ℱ

𝑠𝑓ℓ ≥ 𝜉ℓ ∀ℓ ∈

∑︁
ℓ∈

𝑠𝑓ℓ ≤ 𝑥𝑓 + 𝑦𝑓 ∀𝑓 ∈ ℱ .

Experiments. We perform computational experiments using the same parameters

and data generation procedure as Bertsimas and Kallus [15]. Specifically, we consider

an instance with |ℱ| = 4, || = 12, 𝑝1 = 5, 𝑝2 = 100, and 𝑟 = 90. The network

topology, transportation costs, and the joint distribution of the covariates 𝛾 ∈ R3

and demands 𝜉 ∈ R12 are the same as Bertsimas and Kallus [15], with the exception

that we generate the covariates as i.i.d. samples as opposed to an ARMA process

(but with the same marginal distribution).

In our experiments, we compare sample robust optimization with covariates, sam-

ple average approximation, sample robust optimization without covariates, and pre-

dictions to prescriptions. For the robust approaches (bottom row of Table 4.1), we

construct the uncertainty sets from Section 4.3 using the ℓ1 norm and Ξ = R12
+ , solve

these problems using the multi-policy approximation with linear decision rules de-

scribed in Section 4.5, and consider uncertainty sets with radius 𝜖 ∈ {100, 500}. For

the approaches using covariates (right column of Table 4.1), we used the 𝑘𝑁 -nearest

neighbors with parameter 𝑘𝑁 = 2𝑁
5

. All solutions were evaluated on a test set of size

100 and the results were averaged over 100 independent training sets.

Results. In Figure 4-1, we present the average out-of-sample profits of the various

methods. The results show that the best out-of-sample average profit is attained

when using the proposed sample robust optimization with covariates. Interestingly,

we observe no discernible differences between sample average approximation and sam-

ple robust optimization in Figure 4-1, suggesting the value gained by incorporating

covariates in this example. Compared to the approach of Bertsimas and Kallus [15],
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Figure 4-1: Out-of-sample profit for the shipment planning example.

Table 4.2: Statistical significance for shipment planning problem.

𝜖

𝑁 100 500
50 4.6× 10−13 5.3× 10−16

75 1.3× 10−14 6.4× 10−12

100 1.2× 10−13 1.1× 10−7

125 2.6× 10−15 1.5× 10−11

150 3.4× 10−12 1.2× 10−6

200 1.4× 10−12 1.0× 10−8

250 3.4× 10−10 1.0× 10−4

300 1.8× 10−6 5.2× 10−4

The 𝑝-values from the Wilcoxon signed rank test for comparison with the predictive to prescriptive analytics method

(PtP-𝑘NN) and sample robust optimization with covariates (SRO-𝑘NN). After adjusting for multiple hypothesis

testing, all results are significant at the 𝛼 = 0.05 significance level because all 𝑝-values are less than 0.05
16

≈ 3.1×10−3.

sample robust optimization with covariates achieves a better out-of-sample average

performance for each choice of 𝜖. Table 4.2 shows that these differences are statisti-

cally significant. This example demonstrates that, in addition to enjoying asymptotic

optimality guarantees, sample robust optimization with covariates provides meaning-

ful value across various values of 𝑁 .
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4.6.2 Dynamic inventory management

We next consider a dynamic inventory control problem over the first 𝑇 = 12 weeks

of a new product. In each week, a retailer observes demand for the product and

can replenish inventory via procurement orders to different suppliers with lead times.

Our problem setting closely follows Ban, Gallien, and Mersereau [4], motivated by

the fashion industry in which retailers have access to auxiliary covariates on the new

product (color, brand, Google trends, promotions) which can be predictive of how

demand unfolds over time.

Problem Description. In each stage 𝑡 ∈ {1, . . . , 𝑇}, the retailer procures inven-

tory from multiple suppliers to satisfy demand for a single product. The demands

for the product across stages are denoted by 𝜉1, . . . , 𝜉𝑇 ≥ 0. In each stage 𝑡, and

before the demand 𝜉𝑡 is observed, the retailer places procurement orders with various

suppliers indexed by 𝒥 = {1, . . . , |𝒥 |}. Each supplier 𝑗 ∈ 𝒥 has per-unit order cost

of 𝑐𝑡𝑗 ≥ 0 and a lead time of ℓ𝑗 stages. At the end of each stage, the firm incurs a

per-unit holding cost of ℎ𝑡 and a backorder cost of 𝑏𝑡. If inventory is fully backlogging

and the firm starts with zero initial inventory, the cost incurred by the firm over the

time horizon is captured by

𝑐(𝜉1, . . . , 𝜉𝑇 ,x1, . . . ,x𝑇 ) =
𝑇∑︁
𝑡=1

∑︁
𝑗∈𝒥

𝑐𝑡𝑗𝑥𝑡𝑗+ min
𝑦𝑡∈R

𝑦𝑡

s.t. 𝑦𝑡 ≥ ℎ𝑡

⎛⎝∑︁
𝑗∈𝒥

𝑡−ℓ𝑗∑︁
𝑠=1

𝑥𝑠𝑗 −
𝑡∑︁

𝑠=1

𝜉𝑠

⎞⎠
𝑦𝑡 ≥ −𝑏𝑡

⎛⎝∑︁
𝑗∈𝒥

𝑡−ℓ𝑗∑︁
𝑠=1

𝑥𝑠𝑗 −
𝑡∑︁

𝑠=1

𝜉𝑠

⎞⎠ .

Experiments. The parameters of the procurement problem were chosen based on

Ban, Gallien, and Mersereau [4]. Specifically, we consider the case of two suppliers

where 𝑐𝑡1 = 1.0, 𝑐𝑡2 = 0.5, ℎ𝑡 = 0.25, and 𝑏𝑡 = 11 for each stage. The first supplier

has no lead time and the second supplier has a lead time of one stage. We generate
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Table 4.3: Average out-of-sample cost for dynamic procurement problem.

𝜖

Method 𝑘 0 100 200 300 400 500 600 700
Sample robust optimization

Linear decision rules
no covariates 9669 8783 8590 8789 9150 9604 10102 10614
k-nearest neighbors 26 9600 8566 8411 8642 9030 9494 10001 10528

20 9640 8544 8375 8603 8996 9464 9974 10505
13 9862 8561 8365 8573 8960 9433 9943 10473

Linear decision rules, multi-policy
no covariates 8967 7759 7360 7320 7460 7716 8038 8412
k-nearest neighbors 26 11346 8728 7651 7269 7241 7381 7636 7966

20 13012 9460 7925 7328 7195 7289 7519 7835
13 16288 10975 8576 7585 7243 7236 7412 7697

Average out-of-sample cost for the dynamic procurement problem using sample robust optimization with 𝑁 = 40. For

each uncertainty set radius 𝜖 and parameter 𝑘, average was taken over 100 training sets and 100 test points. Optimal

is indicated in bold. The residual tree algorithm with a binning of 𝐵 = 2 in each stage gave an average out-of-sample

cost of 27142.

training and test data from the same distribution as the shipment planning problem in

Section 4.6.1. In this case, the demands produced by this process are interpreted as the

demands over the 𝑇 = 12 stages. We perform computational experiments comparing

sample robust optimization with and without covariates, as well as the residual tree

algorithm proposed by Ban, Gallien, and Mersereau [4]. In particular, we compare

sample robust optimization with covariates with the multi-policy approximation as

well as without the multi-policy approximation (in which we use a single auxiliary

linear decision rule for 𝑦𝑡 for all uncertainty sets in each stage). The uncertainty sets

are defined with the ℓ2 norm and Ξ = R12
+ . The out-of-sample cost resulting from the

decision rules were averaged over 100 training sets of size 𝑁 = 40 and 100 testing

points, and sample robust optimization with covariates used 𝑘-nearest neighbors with

varying choices of 𝑘 and radius 𝜖 ≥ 0 of the uncertainty sets.

Results. In Table 4.3, we show the average out-of-sample cost resulting from sam-

ple robust optimization with covariates using linear decision rules, with and without

the multi-policy approximation from Section 4.5. In both settings, we used 𝑘-nearest

neighbors as the machine learning method and evaluated the out-of-sample perfor-

mance by applying the linear decision rules for the ordering quantities. The results of

these computational experiments in Table 4.3 demonstrate that significant improve-

ments in average out-of-sample performance are found when combining the multi-
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Table 4.4: Statistical significance for dynamic procurement problem.

𝜖

Method 𝑘 0 100 200 300 400 500 600 700
Sample robust optimization

Linear decision rules
no covariates * * * * * * * *
k-nearest neighbors 26 * * * * * * * *

20 * * * * * * * *
13 * * * * * * * *

Linear decision rules, multi-policy
no covariates * * * * * * * *
k-nearest neighbors 26 * * * * 1.4× 10−5 * * *

20 * * * * - * * *
13 * * * * 5.8× 10−3 1× 10−3 * *

The 𝑝-values of the Wilcoxon signed rank test for comparison with sample robust optimization using linear decision

rules with multi-policy, 𝑘 = 20, and 𝜖 = 400. An asterisk denotes that the 𝑝-value was less than 10−8. After adjusting

for multiple hypothesis testing, each result is significant at the 𝛼 = 0.05 significance level if its 𝑝-value is less than
0.05
63

≈ 7.9× 10−4.

Table 4.5: Average computation time (seconds) for dynamic procurement problem.

𝜖

Method 𝑘 0 100 200 300 400 500 600 700
Sample robust optimization

Linear decision rules
no covariates 3.86 25.04 24.75 25.82 28.70 35.37 31.13 31.95
k-nearest neighbors 26 4.02 25.43 23.39 25.15 27.88 33.42 30.87 31.60

20 3.99 25.98 23.56 24.93 27.41 32.67 30.69 31.50
13 4.19 26.53 24.89 24.99 26.79 31.64 30.23 31.32

Linear decision rules, multi-policy
no covariates 0.16 28.31 30.01 29.05 31.13 36.03 35.57 36.09
k-nearest neighbors 26 0.15 27.74 28.69 27.78 30.54 34.44 35.50 36.15

20 0.15 27.87 28.51 27.74 30.60 34.36 35.65 36.99
13 0.14 27.78 28.30 27.27 30.00 33.67 35.91 37.76

Average computation time (seconds) for the dynamic procurement problem using sample robust optimization with

𝑁 = 40. For each choice of uncertainty set radius 𝜖 and parameter 𝑘, average was taken over 100 training sets. The

residual tree algorithm of Ban, Gallien, and Mersereau [4] with a binning of 𝐵 = 2 in each stage had an average

computation time of 23.20 seconds. We were unable to run this algorithm with binning of 𝐵 = 3 in each stage.

policy approximation with covariates via 𝑘-nearest neighbors. We show in Table 4.4

that these results are statistically significant. For comparison, we also implemented

the residual tree algorithm from Ban, Gallien, and Mersereau [4]. When using their

algorithm with a binning of 𝐵 = 2 in each stage, their approach resulted in an aver-

age out-of-sample cost of 27142. We were unable to run with a binning of 𝐵 = 3 in

each stage due to time limitations of 103 seconds, as the size of the resulting linear

optimization problem scales on the order 𝑂(𝐵𝑇 ). Such results are consistent with the

estimations of computation times presented in [4, Section 6.3]. The running times of

the various methods are displayed in Table 4.5.
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4.6.3 Portfolio optimization

Finally, we consider a single-stage portfolio optimization problem in which we wish to

find an allocation of a fixed budget to 𝑛 assets. Our goal is to simultaneously maximize

the expected return while minimizing the the conditional value at risk (cVaR) of

the portfolio. Before selecting our portfolio, we observe auxiliary covariates which

include general market indicators such as index performance as well as macroeconomic

numbers released by the US Bureau of Labor Statistics.

Problem Description. We denote the portfolio allocation among the assets by

x ∈ 𝒳 := {x ∈ R𝑛
+ :

∑︀𝑛
𝑗=1 𝑥𝑗 = 1}, and the returns of the assets by the random

variables 𝜉 ∈ R𝑛. The conditional value at risk at the 𝛼 ∈ (0, 1) level measures the

expected loss of the portfolio, conditional on losses being above the 1 − 𝛼 quantile

of the loss distribution. Rockafellar and Uryasev [82] showed that the cVaR of a

portfolio can be computed as the optimal objective value of a convex minimization

problem. Therefore, our portfolio optimization problem can be expressed as a convex

optimization problem with an auxiliary decision variable, 𝛽 ∈ R. Thus, given an

observation �̄� of the auxiliary covariates, our goal is to solve

min
x∈𝒳 ,𝛽∈R

E
[︂
𝛽 +

1

𝛼
max(0,−xᵀ𝜉 − 𝛽)− 𝜆xᵀ𝜉

⃒⃒⃒⃒
𝛾 = �̄�

]︂
, (4.13)

where 𝜆 ∈ R+ is a trade-off parameter that balances the risk and return objectives.

Experiment. Our experiments are based on a similar setting from Bertsimas and

Van Parys [19, Section 5.2]. Specifically, we perform computational experiments on

an instance with parameters 𝛼 = 0.05 and 𝜆 = 1, and the joint distribution of the

covariates and asset returns are chosen the same as Bertsimas and Van Parys [19,

Section 5.2].

In our experiments, we compare sample robust optimization with covariates, sam-

ple average approximation, sample robust optimization without covariates, and pre-

dictions to prescriptions. For the robust approaches (bottom row of Table 4.1), we
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construct the uncertainty sets from Section 4.3 using the ℓ1 norm. For each training

sample size, we compute the out-of-sample objective on a test set of size 1000, and

we average the results over 100 instances of training data.

In order to select 𝜖𝑁 and other tuning parameters associated with the machine

learning weight functions, we first split the data into a training and validation set.

We then train the weight functions using the training set, compute decisions for

each of the instances in the validation set, and compute the out-of-sample cost on

the validation set. We repeat this for a variety of parameter values and select the

combination that achieves the best cost on the validation set.

Following a similar reformulation approach as Esfahani and Kuhn [48], we solve

the robust approaches exactly by observing that

min
x∈𝒳 , 𝛽∈R

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

{︂
𝛽 +

1

𝛼
max{0,−xᵀ𝜁 − 𝛽} − 𝜆xᵀ𝜁

}︂

= min
x∈𝒳 , 𝛽∈R

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

{︂
max

{︂
𝛽 − 𝜆xᵀ𝜁,

(︂
1

𝛼
+ 𝜆

)︂
xᵀ𝜁

}︂}︂

= min
x∈𝒳 , 𝛽∈R

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) max

{︃
sup
𝜁∈𝒰 𝑖

𝑁

{𝛽 − 𝜆xᵀ𝜁} , sup
𝜁∈𝒰 𝑖

𝑁

(︂
1

𝛼
+ 𝜆

)︂
xᵀ𝜁

}︃
,

= min
x∈𝒳 , 𝛽∈R,v∈R𝑁

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)𝑣𝑖

s.t. 𝑣𝑖 ≥ 𝛽 − 𝜆xᵀ𝜁

𝑣𝑖 ≥
(︂

1

𝛼
+ 𝜆

)︂
xᵀ𝜁

∀𝜁 ∈ 𝒰 𝑖
𝑁 , 𝑖 ∈ {1, . . . , 𝑁}.

The final expression can be reformulated as a deterministic optimization problem by

reformulating the robust constraints.

Results. In Figure 4-2, we show the average out-of-sample objective values using

the various methods. Consistent with the computational results of Esfahani and

Kuhn [48] and Bertsimas and Van Parys [19], the results underscore the importance

of robustness in preventing overfitting and achieving good out-of-sample performance
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Figure 4-2: Out-of-sample objective for the portfolio optimization example.

in the small data regime. Indeed, we observe that the sample average approximation,

which ignores the auxiliary data, outperforms PtP-𝑘NN and PtP-CART when the

amount of training data is limited. We believe this is due to the fact the latter methods

both throw out training examples, so the methods overfit when the training data is

limited, leading to poor out-of-sample performance. In contrast, our methods (SRO-

𝑘NN and SRO-CART) typically achieve the strongest out-of-sample performance,

even though the amount of training data is limited.

4.7 Conclusion

In this chapter, we introduced sample robust optimization with covariates, a new

framework for solving dynamic optimization problems with side information. Through

three computational examples, we demonstrated that our method achieves signifi-

cantly better out-of-sample performance than scenario-based alternatives. We com-

plemented these empirical observations with theoretical analysis, showing our non-

parametric method is asymptotically optimal. Finally, we showed our approach in-

herits the tractability of robust optimization, scaling to problems with many stages

via the multi-policy approximation scheme.
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Chapter 5

Data-Driven Optimization of

Operating Room Blocks

Many hospitals face significant census variability throughout the week, which limits

the amount of patients they can accept due to resource constraints during the peak

times. Partnering with a major US hospital, we develop a data-driven algorithm

for optimizing the operating room block schedule to alleviate census peaks. Our

approach adapts the predictive-to-prescriptive analytics framework of Bertsimas and

Kallus [15] to efficiently use all available data. It employs predictive machine learning

to estimate surgical patients’ length of stay distributions and then incorporates the

estimates into an integer optimization formulation. Our approach accommodates

many types of constraints and also accounts for the impact that the day of the week

on which a surgery occurs has on the patient’s ensuing length of stay. We demonstrate

the effectiveness of the approach with simulation results using real hospital data and

find that we can reliably reduce the maximal weekly census with only a few changes

to the block schedule.

5.1 Introduction

Interest in data-driven optimization has grown significantly in recent years. As

the amount of data collected by governments, private companies, and hospitals has
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surged, so too has the need for efficient algorithms to turn that data into decisions

that result in lower costs and higher revenues. In this chapter, we perform a case study

in which we apply modern techniques from data-driven optimization to schedule the

operating rooms at a major US hospital.

Many hospitals, including our partner institution, operate near capacity. The

challenge facing them is that the hospital can reach 100% occupancy during peak

census periods, creating a situation in which additional patients cannot be admitted,

despite demand being present. In particular, in the case of our partner institution,

the peak census at times has been found to prevent high-priority transfer patients

from being admitted at the time of the request. While some of these transfer requests

can be accommodated after a waiting period, other patients can not wait, so the

transferring institutions end up sending the patients elsewhere. Therefore, we observe

a negative societal impact from census peaks when patients are unable to gain access

to their preferred institution for care. In addition, census peaks cause organizational

challenges due to the increased amount of communication and collaboration required

to accommodate admission requests during periods of limited capacity. Finally, census

peaks have a drastic financial impact on healthcare institutions, as the lost transfer

requests encountered during these peaks represent millions of dollars in missed revenue

opportunity.

Our approach aims to address these challenges by scheduling the operating rooms

to minimize the peak weekly hospital census, thus maximizing access and revenue

potential. Prior to this project, we found that total hospital census tended to be

higher between Tuesday and Thursday than between Friday and Monday. As shown

in Figure 5-1, although same-day admission (SDA) patients account for less than 20%

of the total census, they provide the primary source of census variability. At a high

level, this phenomenon makes sense, due to the fact that same-day surgical admits

are only scheduled between Monday and Friday, and these patients generally tend

to have shorter lengths of stay than medical patients who are admitted throughout

the seven-day week. This presents an opportunity for improvement because same-

day admits are non-emergency cases, so modifying the operating room (OR) schedule
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Figure 5-1: Average overnight census by day of the week.

affects the subset of patients that creates census peaks.

The operating room schedule at our partner institution, as well as at many other

hospitals, consists of blocks, each belonging to a particular surgeon. Each block occurs

in the same time slot each week. Some surgeons own multiple blocks, which they may

use for different procedure types. We can affect the operating room schedule by

moving the blocks to different time slots in the week.

The hospital does not behave as a deterministic system. There are several key

sources of uncertainty. One is the patients’ lengths of stay following their procedure.

We have access to data on the historical arrivals and stays of patients, which are able

to use to construct predictive models for these uncertain quantities. In particular,

the data includes:

∙ Covariates for each surgical patient, i.e., age, gender, diagnosis, etc.

∙ The name, department, and speciality of the surgeon performing each operation.

∙ The length of stay of each surgical patient.

∙ The total census of all other patients in the hospital on each day, i.e., emergency

patients and transfer patients.
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From this historical data, we can build models to predict the distributions of future

patients’ lengths of stay. Another source of uncertainty is the number and types of

patients that will undergo procedures during each block. While SDA patients are

scheduled ahead of time, the hospital sets the operating room schedule many months

in advance, so patient arrivals are uncertain at that time. In Section 5.3, we explain

how we incorporate predictive models into our data-driven optimization framework,

allowing us to account for uncertainty while optimizing the operating room block

schedule.

5.1.1 Related work

There has been significant interest in developing efficient scheduling procedures for

hospital operating rooms. McManus et al. [74] found that at a large children’s hos-

pital, variability in demand for services inhibits the efficient distribution of hospital

resources, and a significant proportion of that variability is due to scheduled surg-

eries. Similarly, Ragavan et al. [81], in a different hospital, found that variation in

scheduled surgery admissions was more than three times higher than variation in

emergency surgery admissions. Both support our observations at our partner institu-

tion that there is significant potential for improving hospital efficiency by optimizing

the operating room schedule.

Researchers have considered various objectives to try to improve. Denton et al. [43]

attempted to minimize operating room idle time. Similarly, VanBerkel and Blake [95]

aimed to minimize patient waiting time (and thus maximize the throughput of the op-

erating room). Dexter and Macario [44] consider various scheduling systems and their

effect on the efficiency of the operating room, which they define as a combination of

underutilization and overutilization. Underutilization refers to the situation in which

operating rooms are available, but unused, and overutilization refers to the situation

in which the operating room time exceeds that which was scheduled. Overutilization

can occur because the durations of surgeries are nondeterministic. This type of ob-

jective is reminiscent of a newsvendor approximation to the scheduling problem (see,

for example, Petruzzi and Dada [79]).
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More related to the objective we seek to optimize is work by Marcon and Dexter

[72] and Marcon and Dexter [71]. They consider the downstream impact of the

operating room schedule on the post-anesthesia care unit (PACU). Specifically, they

find that reducing variability in the rate of flow of patients from the operating room to

the PACU improves efficiency and reduces delays. Kim and Horowitz [68] considered

the effect of operating room scheduling on the intensive care unit (ICU). We believe

these types of downstream effects are crucial and must be incorporated into the

objective for effective operating room scheduling.

Financial objectives might be the most general and most appropriate type of ob-

jective to consider for our purpose. However, as Dexter et al. [45] note, accounting

data for hospitals is often lacking, so it is not always possible to accurately compute

the financial impact of scheduling decisions. For that reason, we instead use an objec-

tive that is correlated with hospital profit, but is easily computable using admission,

discharge, and transfer data.

When considering the decision to optimize, the most general setting is one in which

the algorithm has the ability to schedule every patient (either in an online fashion or

offline for a fixed horizon) individually. However, this is impractical because staffing

considerations impose considerable constraints on the space of feasible schedules.

Blake et al. [27] develop an approach that creates a master schedule that remains

the same from week to week for the surgeons, and then makes limited modifications

each week to account for the particular demand. Due to the needs of our partner

institution, we focus on optimizing a schedule that will remain fixed for many months,

but it would be straightforward to extend our approach to the setting in which a new

schedule is optimized each week. In addition, we take the blocks in the schedule as

fixed entities. Each block typically corresponds to a single surgeon, but surgeons

may have multiple blocks which they use for different types of procedures. It is also

possible to have blocks which are shared by multiple surgeons. Previous work by

Beliën et al. [5] and Chow et al. [37] has focused on optimizing the groupings of

surgeons/procedures into blocks. We do not discuss that problem in this chapter, but

it is possible to extend our approach to optimize for that as well.
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Uncertainty plays a key role in the census impact of an operating room schedule.

First, patients’ lengths of stay are unknown. Second, although SDA procedures are

scheduled in advance, the number of types of patients that will receive procedures

each day are unknown at the time the operating room schedule is made. Little

previous work has accounted for these uncertainty sources (see Cardoen et al. [32] for

a catalogue). Persson and Persson [78] developed a simulation model for operating

room scheduling that accounts for uncertainty in patient arrivals and the durations

of the procedures, but, to our knowledge, no previous work has incorporated patient

length of stay uncertainty into an optimization framework.

In our work, we focus on uncertainty in patient arrivals and in lengths of stay. As

our objective concerns the down-stream effects of the operating room, we believe these

are the most important sources of uncertainty for our problem. The approach most

closely related to ours is developed by Zenteno et al. [100]. Their method finds the OR

block schedule that would have minimized peak hospital census for the training data.

It assumes each patient’s length of stay does not depend on the day of the week the

procedure occurred. Our approach differs in that we use patient and surgeon covariate

data to build a machine learning model from which we impute predicted length of

stay distributions for each patient. This de-noising results in improved out-of-sample

performance in simulations.

5.1.2 Contributions and Structure

The primary purpose of this case study is to demonstrate how to apply the data-

driven optimization techniques developed by Bertsimas and Kallus [15] to a real-world

hospital scheduling problem. While the formulations we describe are specific to the

operating room scheduling problem at our partner institution, the same techniques

can apply to more general operational problems facing hospitals. In Section 5.2, we

formulate the problem as an integer optimization problem, assuming all uncertain

quantities are known deterministically from historical data. Solving this formulation

gives the schedule that would have worked best on the training data, although it

will not necessarily perform well on test data. In Section 5.3, we develop a data-
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driven formulation by incorporating a machine learning model on patient and surgeon

covariates. Finally, in Section 5.4, we present the results of our method on simulations,

based on real hospital data, and describe the real-world impact of the model.

5.2 Problem Formulation and Deterministic Approach

To begin, we introduce a deterministic formulation for the OR scheduling problem.

It takes as fixed the patient arrivals and finds the schedule that would have been best

historically if all patients’ lengths of stays remained the same.

Data and problem parameters For concreteness, we define the data and problem

parameters as follows.

∙ ℬ: set of blocks in the schedule. Each block consists of a surgeon and a procedure

type. (Some surgeons perform different types of procedures in different blocks.)

∙ 𝒥 : the set of potential time slots in which blocks can be scheduled. For our

particular problem, this consists of each week day, but 𝒥 can also include specific

times of the day.

∙ 𝑑(𝑗) for 𝑗 ∈ 𝒥 : the day of the week (of {1, . . . , 7}) on which time slot 𝑗 occurs.

∙ 𝚥(𝑏) for 𝑏 ∈ ℬ: the time slot in which block 𝑏 is currently scheduled.

∙ 𝑇 : the number of weeks in the training data.1

∙ 𝒫 : the set of all SDA patients in the training data.

∙ 𝒫𝑏 for 𝑏 ∈ ℬ: the subset of ℬ consisting of all block 𝑏 patients in the training

data.

1We do not include the first and last weeks of the training data in this count because we consider
the effect of shifting each block by up to one week. The training data actually consists of weeks 0
through 𝑇 + 1.
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∙ 𝑥𝑖 for 𝑖 ∈ 𝒫 : covariates for patient 𝑖. This includes demographic data on the

patient, the type of procedure the patient receives, and the name of the primary

surgeon performing the patient’s procedure.

∙ 𝑁 𝑡
𝑏,𝑑 for 𝑡 ∈ {0, . . . , 𝑇 + 1}, 𝑏 ∈ ℬ, and 𝑑 ∈ {1, . . . , 7}: number of patients from

block 𝑏 who are in the hospital at 11:59 pm on day 𝑑 of week 𝑡.

∙ 𝑁 𝑡,other
𝑑 for 𝑡 ∈ {1, . . . , 𝑇} and 𝑑 ∈ {1, . . . , 7}: total number of patients, other

than same-day surgical admits, that are in the hospital at 11:59 pm on day 𝑑

of week 𝑡.

∙ 𝑀𝑏 for 𝑏 ∈ ℬ: average number of patients who undergo procedures each week

in block 𝑏.

∙ 𝐶𝑗 for 𝑗 ∈ 𝒥 : capacity of operating rooms during time slot 𝑗. This is computed

as the maximum historical utilization of the operating rooms during any time

slot.

∙ 𝐶𝑗,𝒜 for 𝑗 ∈ 𝒥 and 𝒜 ⊂ ℬ: capacity of operating rooms during time slot 𝑗

for blocks in the set 𝒜. This consists of blocks corresponding to particular

procedure types that require specific surgical equipment.

∙ 𝒮: set of surgeons that hold block time.

∙ ℬ𝑠 for 𝑠 ∈ 𝒮: subset of blocks which are used by surgeon 𝑠.

These quantities are all readily computable from the data. For convenience, we also

define the quantity

𝑁 𝑡,𝑗
𝑏,𝑑 := 𝑁

𝑡+⌊(𝑑+𝑑(𝑗)−𝑑(𝚥(𝑏)))/7⌋
𝑏,(𝑑+𝑑(𝑗)−𝑑(𝚥(𝑏)) mod 7)

. (5.1)

This simply computes the number of patients from block 𝑏 that would have been in

the hospital on day 𝑑 of week 𝑡 if block 𝑏 had been scheduled in time slot 𝑗. For the

deterministic model, we assume patient lengths of stay remain the same regardless

of when their procedures occur, so (5.1) just shifts the census for each block by the

appropriate amount of days. Next, we describe the integer optimization formulation

that we construct to optimize the block schedule.
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Decision variables We optimize the schedule by moving around the time slots

corresponding to the blocks. We define the binary variables:

𝑧𝑏,𝑗 :=

⎧⎪⎨⎪⎩1, if block 𝑏 is scheduled for time slot 𝑗,

0, otherwise,

for 𝑏 ∈ ℬ and 𝑗 ∈ 𝒥 . For convenience, we also define the binary variables:

𝑥𝑠 :=

⎧⎪⎨⎪⎩1, if any of the blocks belonging to surgeon 𝑠 are modified,

0, otherwise,

for 𝑠 ∈ 𝒮. These variables allow us to count how many surgeons’ schedules are

modified.

Objective The objective we seek to minimize is the average maximum weekly cen-

sus of the hospital. Formally, this is given by:

1

𝑇

𝑇∑︁
𝑡=1

max
𝑑∈{1,...,7}

[︃∑︁
𝑏∈ℬ

∑︁
𝑗∈𝒥

𝑁 𝑡,𝑗
𝑏,𝑑𝑧𝑏,𝑗 +𝑁 𝑡,other

𝑑

]︃
.

This objective accounts for same-day surgical admit patients, whose admission dates

are affected by the OR schedule, and all other inpatients, whose admission dates do

not depend on the decision variables. We note that, as written, the objective is not a

linear function of the decision variables. However, since each term in the summation

is the maximum of a finite number of linear functions, we can easily linearize it in a

mixed integer optimization formulation.

Constraints We include several types of constraints. The first constraints ensure

each block is scheduled exactly once.

∑︁
𝑗∈𝒥

𝑧𝑏,𝑗 = 1, ∀𝑏 ∈ ℬ.
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The next set of constraints force the schedule to respect the capacities of the operating

rooms.

∑︁
𝑏∈ℬ

𝑀𝑏𝑧𝑏,𝑗 ≤ 𝐶𝑗, ∀𝑗 ∈ 𝒥 ,

∑︁
𝑏∈𝒜

𝑀𝑏𝑧𝑏,𝑗 ≤ 𝐶𝑗,𝒜, ∀𝑗 ∈ 𝒥 ,∀𝒜 ⊂ ℬ.

We also constrain the problem so each surgeon can only have one block in time slot

𝑗. ∑︁
𝑏∈ℬ𝑠

𝑧𝑏,𝑗 ≤ 1, ∀𝑗 ∈ 𝒥 ,∀𝑠 ∈ 𝒮.

Finally, we add constraints that limit the number of surgeons whose schedules can be

modified, which we limit by the parameter 𝜆. We have found that almost 90% of the

potential improvement can be captured by modifying less than 10% of the surgeons’

schedules. To constrain 𝑥𝑠 to be the indicator of whether surgeon 𝑠’s schedule is

modified, we have ∑︁
𝑏∈ℬ𝑠

(1− 𝑧𝑏,𝚥(𝑏)) ≤ |ℬ𝑠|𝑥𝑠, ∀𝑠 ∈ 𝒮.

To limit the number of changes, we have

∑︁
𝑠∈𝒮

𝑥𝑠 ≤ 𝜆.

These constraints are general and apply to most hospitals. There may also be

specific constraints needed for any particular hospital. For example, there may be

certain blocks that cannot be scheduled for Fridays because of a lack of resources for

the post-op patients over the weekends. MIO permits the flexibility to incorporate

these types of constraints into the model. We denote the projection of the set of the

above constraints onto the 𝑧 decision variables by 𝒵.
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5.3 Data-driven Approach

Several shortcomings of the deterministic approach described in Section 5.2 make it

overly optimistic in its prediction of the maximum weekly census. First, it assumes

that all patients’ lengths of stay remain the same, regardless of which day of the week

their procedure occurs. In practice, weekends often delay a patient’s discharge due

to lower availability of resources, so a patient’s length of stay depends on when the

procedure occurs. For example, if a patient had a procedure on Wednesday and was

discharged on Friday, it is unlikely that patient would be discharged before Monday

if he or she instead had that procedure on Thursday. Second, the deterministic

formulation overfits to the training data. By building a model to predict length of stay

distributions, we can significantly improve the estimate of schedule changes on the

census. In Section 5.3.1, we review the predictive-to-prescriptive analytics framework,

which we then apply to the operating room scheduling problem in Section 5.3.2.

5.3.1 Review of predictive-to-prescriptive analytics framework

The predictive-to-prescriptive analytics framework, introduced by Bertsimas and Kallus

[15], combines optimization with machine learning in order to incorporate auxiliary

covariates in data-driven optimization problems. In a traditional stochastic optimiza-

tion problem, the objective is to minimize a function that depends on an uncertain

quantity 𝑌 in expectation,

min
𝑧∈𝒞

E[𝑐(𝑧;𝑌 )], (5.2)

where 𝑐 is a cost function and 𝑧 is the decision variable which lies in constraint set

𝒞. In practice, the distribution of 𝑌 is unknown, but instead independent, identically

distributed observations 𝑌1, . . . , 𝑌𝑁 are available. The method of sample average ap-

proximation replaces the expectation over an unknown distribution with an empirical

expectation,

min
𝑧∈𝒞

1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑧;𝑌𝑖). (5.3)
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Under certain technical conditions on the cost function, the constraint set, and the

distribution of 𝑌 , the sample average approximation method produces asymptotically

optimal solutions. That is, as 𝑁 grows to infinity, the set of optimal solutions of (5.3)

converges to the set of optimal solutions of (5.2). (For more information, see Shapiro

et al. [89].)

By contrast, the predictive-to-prescriptive analytics framework instead aims to

minimize the conditional expectation of an objective function, given some observed

auxiliary covariates, 𝑥 ∈ 𝒳 :

min
𝑧∈𝒞

E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥]. (5.4)

In this setting, the training data consists of observations of the covariates paired with

the uncertain quantity, (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛). Instead of weighting all of the training

samples equally, as in sample average approximation, the predictive-to-prescriptive

analytics framework weights each training example according to its similarity to the

new auxiliary covariate vector:

min
𝑧∈𝒞

𝑛∑︁
𝑖=1

𝑤𝑁
𝑖 (𝑥)𝑐(𝑧;𝑌𝑖), (5.5)

where {𝑤𝑁
𝑖 (𝑥)} are weight functions derived from a machine learning method. For

example, CART weight functions are derived from the classification and regression

tree algorithm of Breiman et al. [30]. This tree-based method partitions the space of

covariates, 𝒳 , into leaves, and the corresponding weight functions are given by:

𝑤𝑁,CART
𝑖 (𝑥) =

1

|{𝑖 : 𝑋𝑖 ∈ 𝑙(𝑥)}|
1{𝑋𝑖 ∈ 𝑙(𝑥)},

where 𝑙(𝑥) is the leaf node of the trained regression tree that contains 𝑥. Similarly,

random forest weight functions are based on the random forest regression algorithm

of Breiman [29]. They average the weights of an ensemble of 𝐵 CART learners, each
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trained on a random subset of the data.

𝑤𝑁,RF
𝑖 (𝑥) =

1

𝐵

𝐵∑︁
𝑏=1

𝑤𝑁,CART
𝑖,𝑏 ,

where 𝑤𝑁,CART
𝑖,𝑏 refers to the weight function corresponding to the 𝑏th tree in the en-

semble. Bertsimas and Kallus [15] detail several further examples of weight functions.

They also prove that under an appropriate choice of weight function, and mild tech-

nical assumptions, the solutions to (5.5) are asymptotically optimal for (5.4). The

value of considering (5.4) instead of (5.2) is that it takes into account all available

information.

An extension, developed by Bertsimas et al. [21] and Bertsimas and McCord [17],

deals with the setting in which the decision variable affects the distribution of the

uncertain quantity, 𝑌 . Under the Neyman-Rubin potential outcomes model [84],

there exist multiple potential states of the world, one for each possible decision. That

is, there exist random variables {𝑌 (𝑧)} for all 𝑧 ∈ 𝒞. However, the only state that

is observed in the training data is the one that corresponds to the selected decision.

Therefore, the training data consists of tuples of covariates, decision, and outcome,

(𝑋𝑖, 𝑍𝑖, 𝑌𝑖(𝑍𝑖)) for 𝑖 = 1, . . . , 𝑁 .

Bertsimas and McCord [17] proved that, under technical assumptions, applying

the predictive-to-prescriptive analytics framework with (𝑋𝑖, 𝑍𝑖) as the auxiliary co-

variates gives an asymptotically consistent algorithm in this setting. That is, instead

of solving (5.5), one should solve

min
𝑧∈𝒞

𝑛∑︁
𝑖=1

𝑤𝑁
𝑖 (𝑥, 𝑧)𝑐(𝑧;𝑌𝑖),

where {𝑤𝑁
𝑖 (𝑥, 𝑧)} are weight functions trained on the covariate/decision tuples.

To model the OR block scheduling problem with the predictive-to-prescriptive an-

alytics framework, we use the same decision variables, 𝑧𝑏,𝑗, and constraints, 𝒵, as in

Section 5.2. The auxiliary covariates consist of the patient covariates for all patients.

The uncertain quantity, 𝑌 , consists of individual patients’ lengths of stay. In this
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setting, the decision does affect the uncertainty because the day of the week on which

a procedure occurs affects the ensuing length of stay for the patient. In the next

section, we develop a data-driven formulation of the OR block scheduling problem.

Although the problem differs slightly from the idealized predictive-to-prescriptive an-

alytics setting, the insights gained from the setting discussed here provide significant

value.

5.3.2 Data-driven OR scheduling formulation

For the data-driven formulation, we use the same decision variables and constraints

as in the deterministic formulation of Section 5.2. However, we modify the objective

to account for uncertainty. We begin by defining the following random variables:

∙ �̃� 𝑗
𝑏,𝑑: the number of block 𝑏 patients in the hospital at 11:59 pm of day 𝑑 of the

week, assuming block 𝑏 is scheduled in time slot 𝑗.

∙ �̃�other
𝑑 : the number of non-SDA patients in the hospital at 11:59 pm of day 𝑑 of

the week.

We seek to minimize, in expectation, the maximum weekly census. That is, we aim

to solve

min
𝑧∈𝒵

E

[︃
max

𝑑∈{1,...,7}

∑︁
𝑏∈ℬ

∑︁
𝑗∈𝒥

�̃� 𝑗
𝑏,𝑑𝑧𝑏,𝑗 + �̃�other

𝑑

]︃
. (5.6)

We note that two sources of uncertainty contribute to the objective. First is the

uncertainty in patient arrivals within each block. As we discussed previously, SDA

procedures are typically scheduled several weeks in advance. However, the schedule

remains fixed for many months at a time, so the patient arrivals in each block are

unknown when optimizing the schedule. The second source of uncertainty is the

uncertainty in patients’ lengths of stay. When patients arrive for procedures, we do

not know how long they will remain in the hospital.

In order to handle the first type of uncertainty, we fix the patient arrival pattern

from the historical data for each block. We assume that, for each week in the his-

torical data, the patients in each block remain the same regardless of when in the
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schedule that block is moved. We average over many weeks of historical data to cre-

ate a reasonable estimate of the distribution of arrivals. To express this formally, we

introduce the following random variables, which are defined on the probability space

corresponding to the measure on which the patient arrival pattern is fixed.

∙ �̃� 𝑡,𝑗
𝑏,𝑑: the number of block 𝑏 patients in the hospital at 11:59 pm of day 𝑑 of

week 𝑡, assuming block 𝑏 is scheduled in time slot 𝑗.

∙ �̃� 𝑡,other
𝑑 : the number of non-SDA patients in the hospital at 11:59 pm of day 𝑑

of week 𝑡.

Our first approximation to (5.6) is given by

min
𝑧∈𝒵

E

[︃
1

𝑇

𝑇∑︁
𝑡=1

[︃
max

𝑑∈{1,...,7}

∑︁
𝑏∈ℬ

∑︁
𝑗∈𝒥

�̃� 𝑡,𝑗
𝑏,𝑑𝑧𝑏,𝑗 + �̃� 𝑡,other

𝑑

]︃ ⃒⃒⃒⃒
{𝑥𝑖 : 𝑖 ∈ 𝒫}

]︃
, (5.7)

where we condition on the patient covariates. In (5.7), the only remaining source of

uncertainty is the uncertainty in patients’ lengths of stay.

Because �̃� 𝑡,other
𝑑 counts a large number of patients across many different depart-

ments, we estimate it with 𝑁 𝑡,other
𝑑 , the observed number of non-SDA patients in the

hospital on day 𝑑 of week 𝑡. This estimate is justified by concentration of measure

results which show that functions of many independent random variables that do not

depend too much on any single random variable are approximately constant. �̃� 𝑡,other
𝑑

is a function of many individual patients’ lengths of stay, which we assume to be

mutually independent, but is not highly sensitive to any single patient’s length of

stay, so we can reasonably assume 𝑁 𝑡,other
𝑑 is a good estimate of it. (See Boucheron

et al. [28] for a reference on measure concentration.)

The deterministic formulation of Section 5.2 also estimates �̃� 𝑡,𝑗
𝑏,𝑑 with a constant,

𝑁 𝑡,𝑗
𝑏,𝑑. However, most blocks in the operating room schedule only contribute a couple

of patients towards the census at a time, so the measure concentration justification

for this approximation does not hold. We instead use machine learning to estimate

the distributions of patients’ lengths of stay.
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To do so, we rewrite �̃� 𝑡,𝑗
𝑏,𝑑 as a function of the individual patients’ lengths of stay.

�̃� 𝑡,𝑗
𝑏,𝑑 =

∑︁
𝑖∈𝒫𝑏

1{�̃�𝑗
𝑖 > 𝑙*𝑖,𝑗,𝑑,𝑡}, (5.8)

where �̃�𝑗
𝑖 is the random variable for the length of stay of patient 𝑖 if the procedure

is scheduled in time slot 𝑗, and 𝑙*𝑖,𝑗,𝑑,𝑡 is the minimum length of stay necessary for

that patient to be in the hospital on day 𝑑 of week 𝑡. For example, if patient 𝑖 has a

procedure during week 1 in a time slot on Wednesday, then 𝑙*𝑖,𝑗,𝑑,𝑡 = 2 for 𝑑 = Friday

and 𝑡 = 1. If patient 𝑖’s procedure is scheduled after day 𝑑 of week 𝑡, then 𝑙*𝑖,𝑗,𝑑,𝑡

is defined to be infinity. The right hand side of (5.8) simply counts the number of

block 𝑏 SDA patients in the hospital on day 𝑑 of week 𝑡. We note that �̃�𝑗
𝑖 exists in

the potential outcomes model, but in the historical data we only observe the length

of stay for each patient corresponding to the block time slot in which the procedure

actually occurred, which we denote 𝐿𝑖.

In order to estimate the distribution of the objective in (5.7), we independently

estimate the distribution of �̃�𝑗
𝑖 for each patient 𝑖 by constructing a length of stay

prediction model. As features we include the patient covariates, 𝑥𝑖. This includes

demographic information on patient 𝑖, a categorical variable indicating the type of

procedure, and a categorical variable indicating the name of the primary surgeon. We

also include as a feature the day of the week on which the procedure occurred. We

do so because we know the day of the week on which the procedure occurs affects the

patient’s ensuing length of stay. Including this feature allows the model to learn the

effect of admission day on length of stay from the historical data.

As in the predictive-to-prescriptive analytics framework, we train a machine learn-

ing model on these features and denote the resulting weight functions by {𝑤𝑘(𝑥, 𝑗)}.

That is, 𝑤𝑘(𝑥, 𝑗) denotes the weight assigned to patient 𝑘 from the training data

when trying to predict the length of stay for a patient with covariates 𝑥 and proce-

dure scheduled in block 𝑗. The model’s estimate of the distribution of �̃�𝑗
𝑖 is given
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by

P
(︁
�̃�𝑗
𝑖 > 𝑙

)︁
≈
∑︁
𝑘∈𝒫

𝑤𝑘(𝑥𝑖, 𝑗)1{𝐿𝑘 > 𝑙}. (5.9)

Using these distributional estimates for �̃�𝑗
𝑖 , and the assumption that patients’ lengths

of stay are independent, we can compute estimated distributions for �̃� 𝑡,𝑗
𝑏,𝑑 and for the

objective of (5.7).

However, this estimated distribution for the objective of (5.7) relies on the product

of |𝒫| independent distributions, one for each SDA patient in the training data.

Solving the resulting problem requires an exponential number of decision variables and

is intractable for the number of patients in our problem. We instead approximately

solve (5.7) for the estimated distribution of the objective implied by (5.9). To do

so, we independently sample 𝑁 lengths of stay for each patient from the distribution

(5.9). We let �̂�𝑗,𝑛
𝑖 represent the 𝑛th sample of �̃�𝑗

𝑖 and

�̂� 𝑡,𝑗,𝑛
𝑏,𝑑 :=

∑︁
𝑖∈𝒫𝑏

1{�̂�𝑗,𝑛
𝑖 > 𝑙*𝑖,𝑗,𝑑,𝑡},

the number of block 𝑏 patients in the hospital on day 𝑑 of week 𝑡 if 𝑏 is scheduled in

time slot 𝑗, under scenario 𝑛. We then solve an approximate version of (5.7),

min
𝑧∈𝒵

1

𝑁

𝑁∑︁
𝑛=1

[︃
1

𝑇

𝑇∑︁
𝑡=1

[︃
max

𝑑∈{1,...,7}

∑︁
𝑏∈ℬ

∑︁
𝑗∈𝒥

�̂� 𝑡,𝑗,𝑛
𝑏,𝑑 𝑧𝑏,𝑗 +𝑁 𝑡,other

𝑑

]︃]︃
. (5.10)

This type of sampling approach is justified by consistency results for sample average

approximation (see, for example, Shapiro et al. [89]). We can solve (5.10) by lineariz-

ing the objective and applying an off-the-shelf MIO solver such as Gurobi [77].

We conclude by highlighting the two major differences between the deterministic

formulation of Section 5.2 and the data-driven formulation of this section. First, the

deterministic formulation estimates each patient’s length of stay as a deterministic

quantity while the data-driven formulation estimates a length of stay distribution

for each patient using covariate data. The improved estimates of patients’ length of

stay distributions help curb the model’s overfitting and lead to better performance
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out-of-sample. Second, the deterministic formulation assumes each patient’s length

of stay remains the same regardless of when the procedure occurs. The data-driven

formulation learns from the data how the day of surgery affects the patient’s ensuing

length of stay.

We note that we did not directly apply the predictive-to-prescriptive analytics

framework to the OR block scheduling problem. The objective of (5.7) depends on

all patients lengths of stay, so there is only a single observation of the uncertain

quantity. However, because we assume patients’ lengths of stays are independent,

the data consists of |𝒫| i.i.d. observations of patient covariates and their lengths of

stay, {(𝑥𝑖, 𝐿𝑖) : 𝑖 ∈ 𝒫}. Therefore, we were able use ideas from the predictive-to-

prescriptive analytics framework to construct improved estimates of patient length

of stay distributions. With these improved, data-driven estimates, the out-of-sample

performance of the optimized schedule improves tangibly.

5.4 Application and Impact

Incorporating the results of the models described above has the potential to provide

significant operational impact in the hospital setting. We first describe the results

of a simulation study, based on real hospital data, and then discuss the real-world

impact of the model.

5.4.1 Results

In order to demonstrate the positive impact our approach to operating room schedul-

ing, we conduct a study using 12 months of real data from our partner institution.

We use the first 6 months to train the models and then the last 5 months of data

to evaluate the performance of the proposed schedules. We leave out a month in the

middle to minimize the overlap of patients between the training and testing sets.

In order to evaluate proposed schedule changes on the test data, we need to

estimate how patients’ lengths of stay are affected when their admission dates change.

Using domain knowledge, we developed the following heuristic. We assume each
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patient’s length of stay remains the same under the new schedule, unless the patient

is scheduled to be discharged on a weekend, in which case we extended the length of

stay until the following Monday. This is conservative because it assumes lengths of

stay only increase due to schedule changes, but it accounts for the lesser availability of

hospital services on weekends, which often delays discharge. In addition, in order to

augment the limited test data we have available, we extend the test horizon by adding

100 additional weeks via bootstrapping. That is, we sample, with replacement, 100

weeks of patient arrivals from the set of weeks in the test data. We add each of these

weeks of patient arrivals to extend the test horizon. Although these patients and

their lengths of stay have already been seen in the test data, the hospital census in

each of these additional test weeks is new because the order of the weeks matters. We

believe this provides a realistic setting to test the impact of schedule changes over a

long horizon.

We compare the impacts of proposed schedules from the deterministic formulation

and the data-driven formulation. For the data-driven formulation we use both the

CART and the random forest weight functions. We set the number of scenarios we

sample for the data-driven formulation, 𝑁 , equal to 100. We solve all optimization

problems using Gurobi v8.0.1 [77].

Our results are shown in Figure 5-2. The horizontal axis plots the number of

surgeons whose schedules the model is allowed to change (the 𝜆 parameter from Sec-

tion 5.2), and the vertical axis shows the out-of-sample improvement in average max-

imum weekly census (compared to the current OR schedule). With all approaches,

we see diminishing returns in the number of changes. For most numbers of allowed

changes, the data-driven approaches outperform the deterministic approach. There

are a few instances in which the deterministic performance is superior, but in gen-

eral its performance is more erratic because it overfits more to the training data. In

particular, for between 12 and 17 allowed changes, the deterministic formulation pro-

duces schedules that perform very poorly compared to the schedules produced by the

data-driven approaches. There are many very different feasible schedules that have

similar objective values, so small errors in estimation of the objective can lead to
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Figure 5-2: Out-of-sample reduction in average maximum weekly census for each of
the various models.

big changes in out-of-sample performance. Therefore, the de-noising of the objective

function, provided by the data-driven approaches, gives more stable out-of-sample

performance, in much the same way that regularization benefits out-of-sample per-

formance in linear regression.

5.4.2 Extension for Targeted Growth

As of early 2019, our partner institution has modified the schedules of three surgeons

in response to the suggestions of the data-driven model. In addition to suggesting

changes to existing surgeons’ schedules, our model has also allowed institutions to

examine the expected census impact of new surgeons being added to the OR schedule

to inform the days on which they should operate. As part of our partner institution’s

strategic growth plan, the Department of Orthopedics planned to increase its annual

total joint replacement volume by bringing on a new surgeon. Without access to the

model, Orthopedics likely would have placed the surgeon’s OR day on whichever day
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had block time availability. However, by using the model, the department worked with

the institution’s OR block governance committee to place the new surgeon on the day

that would have the smallest impact on peak census. As a result, Orthopedics expects

to achieve its targeted volume growth (representing approximately 350 inpatient days)

without increasing peak census above current state, thereby allowing the inpatient

units to handle incremental demand without any adverse effects on capacity.

5.5 Conclusion

In this chapter, we developed a new, data-driven approach to the operating room block

scheduling problem. We adapted the predictive-to-prescriptive analytics framework of

Bertsimas and Kallus [15] to this particular problem in order to minimize the average

maximum weekly census. With machine learning methods such as CART and random

forest, we estimated the distributions of patients’ lengths of stay and incorporated

these estimates into a mixed integer optimization problem formulation. In addition,

our model used the training data to learn the effects of a patient’s admission day

on the ensuing length of stay. We showed via simulation results that our approach

out-performs the deterministic approach to OR scheduling, which does not take into

account all available data. Our data-driven optimization approach has the potential

to significantly benefit our partner institution by reducing census variability and,

thus, increasing the effective capacity of the hospital.
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Chapter 6

Conclusion

This thesis developed and analyzed data-driven algorithms for optimization under

uncertainty with auxiliary covariates. In Chapter 2, we introduced a method to solve

observational optimization problems. We demonstrated, both theoretically and em-

pirically, that accounting for the uncertainty in the predicted cost of each decision

improves out-of-sample performance. In Chapter 3, we developed an approach for

dynamic problems. We showed how to use machine learning to construct a stochastic

process with finite support that approximates the true, unknown stochastic process

of the uncertainty, and we showed that solving the dynamic programming problem

corresponding to the approximate stochastic process gives asymptotically optimal

solutions to the true problem. In Chapter 4, we introduced an alternative, distribu-

tionally robust approach to dynamic optimization with covariates. By introducing

robustness, this approach avoids the need to consider an exponential number of sce-

narios and proves tractable and effective both in theory and in computational exam-

ples. In the process of developing this approach, we showed how to use nonparametric

machine learning methods to learn the conditional distribution of a random variable

given covariates, instead of just the conditional expectation. Finally, in Chapter 5,

we applied these methods to schedule a hospital’s operating rooms, demonstrating

how data-driven optimization can provide significant societal and financial value in

real-world applications.
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Appendix A

Appendix for Chapter 2

A.1 Proofs

To begin, we prove the following lemma.

Lemma A.1. Suppose Assumptions 2.1-2.5 hold. If (𝑥, 𝑧) and (𝑥, 𝑧′) are in the same

partition of 𝒳 × 𝒵, as specified by Assumption 2.3, then

|Ψ(𝑧, 𝛿)−Ψ(𝑧′, 𝛿)| ≤
(︁
𝛼(𝐿𝐷 + 1 +

√︀
2𝜆max ln 1/𝛿) + 𝐿(

√︀
2 ln 1/𝛿 + 3)

)︁
||𝑧 − 𝑧′||,

where Ψ(𝑧, 𝛿) = 𝜇(𝑥, 𝑧)− �̂�(𝑥, 𝑧)− 2
3𝛾𝑛

ln(1/𝛿)−
√︀

2𝑉 (𝑥, 𝑧) ln(1/𝛿)− 𝐿 ·𝐵(𝑥, 𝑧).

Proof. We first note |𝜇(𝑥, 𝑧)− 𝜇(𝑥, 𝑧′)| ≤ 𝐿||𝑧 − 𝑧′|| by the Lipschitz assumption on

𝑐(𝑧; 𝑦).
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Next, since (𝑥, 𝑧) and (𝑥, 𝑧′) are contained in the same partition,

|�̂�(𝑥, 𝑧)− �̂�(𝑥, 𝑧′)| =

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑖(𝑥, 𝑧)𝑐(𝑧;𝑌𝑖)− 𝑤𝑖(𝑥, 𝑧
′)𝑐(𝑧′;𝑌𝑖)

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑖(𝑥, 𝑧)𝑐(𝑧;𝑌𝑖)− 𝑤𝑖(𝑥, 𝑧)𝑐(𝑧′;𝑌𝑖)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑖(𝑥, 𝑧)𝑐(𝑧′;𝑌𝑖)− 𝑤𝑖(𝑥, 𝑧
′)𝑐(𝑧′;𝑌𝑖)

⃒⃒⃒⃒
⃒

≤ 𝐿||𝑧 − 𝑧′||+ ||𝑤(𝑥, 𝑧)− 𝑤(𝑥, 𝑧′)||1

≤ (𝐿+ 𝛼)||𝑧 − 𝑧′||,

where we have used Holder’s inequality, the uniform bound on 𝑐, and Assumption

2.3.

Similarly, for the bias term,

|𝐿𝐵(𝑥, 𝑧)− 𝐿𝐵(𝑥, 𝑧′)| = 𝐿

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑖(𝑥, 𝑧)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧)|| − 𝑤𝑖(𝑥, 𝑧
′)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧′)||

⃒⃒⃒⃒
⃒

≤ 𝐿

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑖(𝑥, 𝑧)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧)|| − 𝑤𝑖(𝑥, 𝑧)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧′)||

⃒⃒⃒⃒
⃒

+ 𝐿

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑖(𝑥, 𝑧)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧′)|| − 𝑤𝑖(𝑥, 𝑧
′)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧′)||

⃒⃒⃒⃒
⃒

≤ 𝐿
∑︁
𝑖

𝑤𝑖(𝑥, 𝑧) |||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧)|| − ||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧′)|||

+ 𝐿||𝑤(𝑥, 𝑧)− 𝑤(𝑥, 𝑧′)||1 sup
𝑖
||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧)||

≤ (𝐿+ 𝐿𝛼𝐷)||𝑧 − 𝑧′||.

Next, we consider variance term. We let Σ(𝑧) denote the diagonal matrix with
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Var(𝑐(𝑧;𝑌𝑖)|𝑋𝑖, 𝑍𝑖) for 𝑖 = 1, . . . , 𝑛 as entries. As before,

⃒⃒⃒√︀
𝑉 (𝑥, 𝑧)−

√︀
𝑉 (𝑥, 𝑧′)

⃒⃒⃒
=

⃒⃒⃒⃒
⃒
√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧)Var(𝑐(𝑧;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)

−
√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧

′)Var(𝑐(𝑧′;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒
√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧)Var(𝑐(𝑧;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)

−
√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧)Var(𝑐(𝑧′;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒
√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧)Var(𝑐(𝑧′;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)

−
√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧

′)Var(𝑐(𝑧′;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)

⃒⃒⃒⃒
⃒

=
⃒⃒⃒√︀

𝑤(𝑥, 𝑧)𝑇Σ(𝑧)𝑤(𝑥, 𝑧)−
√︀
𝑤(𝑥, 𝑧)𝑇Σ(𝑧′)𝑤(𝑥, 𝑧)

⃒⃒⃒
+
⃒⃒
||𝑤(𝑥, 𝑧)||Σ(𝑧′) − ||𝑤(𝑥, 𝑧′)||Σ(𝑧′)

⃒⃒
,

where ||𝑣||Σ =
√
𝑣𝑇Σ𝑣. One can verify that, because Σ is positive semidefinite, || · ||Σ

is seminorm that satisfies the triangle inequality. Therefore, we can upper bound the

latter term by

√︀
(𝑤(𝑥, 𝑧)− 𝑤(𝑥, 𝑧′))𝑇Σ(𝑤(𝑥, 𝑧)− 𝑤(𝑥, 𝑧′)) ≤ ||𝑤(𝑥, 𝑧)− 𝑤(𝑥, 𝑧′)||

≤ ||𝑤(𝑥, 𝑧)− 𝑤(𝑥, 𝑧′)||1

≤ 𝛼||𝑧 − 𝑧′||,

where we have used the assumption that |𝑐(𝑧; 𝑦)| ≤ 1.
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The former term can again be upper bounded by the triangle inequality.⃒⃒⃒⃒
⃒⃒√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧)Var(𝑐(𝑧;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)−

√︃∑︁
𝑖

𝑤2
𝑖 (𝑥, 𝑧)Var(𝑐(𝑧′;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)

⃒⃒⃒⃒
⃒⃒

≤
√︃∑︁

𝑖

𝑤2
𝑖 (𝑥, 𝑧)(

√︀
Var(𝑐(𝑧;𝑌𝑖)|𝑋𝑖, 𝑍𝑖)−

√︀
Var(𝑐(𝑧′;𝑌𝑖)|𝑋𝑖, 𝑍𝑖))2 (A.1)

Noting that
√︀

Var(𝑐(𝑧;𝑌𝑖)) = ||𝑐(𝑧;𝑌𝑖) − E[𝑐(𝑧;𝑌𝑖)]||𝐿2 (dropping conditioning for

notational convenience), we can apply the triangle inequality to the 𝐿2 norm:

(||𝑐(𝑧;𝑌𝑖)− E[𝑐(𝑧;𝑌𝑖)]||𝐿2 − ||𝑐(𝑧′;𝑌𝑖)− E[𝑐(𝑧′;𝑌𝑖)]||𝐿2)
2

≤ ||𝑐(𝑧;𝑌𝑖)− 𝑐(𝑧′;𝑌𝑖)− E[𝑐(𝑧;𝑌𝑖)− 𝑐(𝑧′;𝑌𝑖)]||2𝐿2

≤ E[(𝑐(𝑧;𝑌𝑖)− 𝑐(𝑧′;𝑌𝑖))2]

≤ 𝐿2||𝑧 − 𝑧′||2.

Therefore, we can upperbound (A.1) by√︃∑︁
𝑖

𝑤2
𝑖 (𝑥, 𝑧)𝐿2||𝑧 − 𝑧′||2

≤
∑︁
𝑖

𝑤𝑖(𝑥, 𝑧)𝐿||𝑧 − 𝑧′|| = 𝐿||𝑧 − 𝑧′||,

where we have used the concavity of the square root function. Therefore,

|
√︀
𝑉 (𝑥, 𝑧)−

√︀
𝑉 (𝑥, 𝑧′)| ≤ (𝛼 + 𝐿)||𝑧 − 𝑧′||.

Combining the three results with the triangle inequality yields the desired result.

Proof of Theorem 2.1. To derive a regret bound, we first restrict our attention to

the fixed design setting. Here, we condition on 𝑋1, 𝑍1, . . . , 𝑋𝑛, 𝑍𝑛 and bound �̂�(𝑥, 𝑧)

around its expectation. To simplify notation, we write 𝑋 to denote (𝑋1, . . . , 𝑋𝑛) and

𝑍 to denote (𝑍1, . . . , 𝑍𝑛). Note that by the honesty assumption, in this setting, �̂� is

a simple sum of independent random variables. Applying Bernstein’s inequality (see,
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for example, Boucheron et al. [28]), we have, for 𝛿 ∈ (0, 1),

𝑃

(︂
E[�̂�(𝑥, 𝑧) | 𝑋,𝑍]− �̂�(𝑥, 𝑧) ≤ 2

3𝛾𝑛
ln(1/𝛿) +

√︀
2𝑉 (𝑥, 𝑧) ln(1/𝛿)

⃒⃒⃒⃒
𝑋,𝑍

)︂
≥ 1− 𝛿.

Next, we need to bound the difference between E[�̂�(𝑥, 𝑧)|𝑋,𝑍] and 𝜇(𝑥, 𝑧). By the

honesty assumption, Jensen’s inequality, and the Lipschitz assumption, we have

|E[�̂�(𝑥, 𝑧) | 𝑋,𝑍]− 𝜇(𝑥, 𝑧)| =

⃒⃒⃒⃒
⃒∑︁

𝑖

𝑤𝑖(𝑥, 𝑧)(𝜇(𝑋𝑖, 𝑍𝑖)− 𝜇(𝑥, 𝑧))

⃒⃒⃒⃒
⃒

≤
∑︁
𝑖

𝑤𝑖(𝑥, 𝑧)|𝜇(𝑋𝑖, 𝑍𝑖)− 𝜇(𝑥, 𝑧)|

≤ 𝐿
∑︁
𝑖

𝑤𝑖(𝑥, 𝑧)||(𝑋𝑖, 𝑍𝑖)− (𝑥, 𝑧)||

= 𝐿 ·𝐵(𝑥, 𝑧).

Combining this with the previous result, we have, with probability at least 1 − 𝛿

(conditioned on 𝑋 and 𝑍),

𝜇(𝑥, 𝑧)− �̂�(𝑥, 𝑧) ≤ 2

3𝛾𝑛
ln(1/𝛿) +

√︀
2𝑉 (𝑥, 𝑧) ln(1/𝛿) + 𝐿 ·𝐵(𝑥, 𝑧) (A.2)

Next, we extend this result to hold uniformly over all 𝑧 ∈ 𝒵. To do so, we partition

𝒳 × 𝒵 into Γ𝑛 regions as in Assumption 2.3. For each region, we construct a 𝜈-net.

Therefore, we have a set {𝑧1, . . . , 𝑧𝐾𝑛} such that for any 𝑧 ∈ 𝒵, there exists a 𝑧𝑘

such that (𝑥, 𝑧) and (𝑥, 𝑧𝑘) are contained in the same region with ||𝑧 − 𝑧𝑘|| ≤ 𝜈. For

ease of notation, let 𝑘 : 𝒵 → {1, . . . , 𝐾𝑛} return an index that satisfies these criteria.

By assumption, 𝒵 ⊂ R𝑝 has finite diameter, 𝐷, so we can construct this set with

𝐾𝑛 ≤ Γ𝑛(3𝐷/𝜈)𝑝 (e.g., Shalev-Shwartz and Ben-David [85, pg. 337]).

By Lemma A.1 (and using the notation therein), we have

Ψ(𝑧, 𝛿) ≤ Ψ(𝑧𝑘(𝑧), 𝛿) + 𝜈
(︁
𝛼(𝐿𝐷 + 1 +

√︀
2 ln 1/𝛿) + 𝐿(

√︀
2 ln 1/𝛿 + 3)

)︁
.
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Taking the supremum over 𝑧 of both sides, we get

sup
𝑧

Ψ(𝑧, 𝛿) ≤ max
𝑘

Ψ(𝑧𝑘, 𝛿) + 𝜈
(︁
𝛼(𝐿𝐷 + 1 +

√︀
2 ln 1/𝛿) + 𝐿(

√︀
2 ln 1/𝛿 + 3)

)︁
.

If we let 𝜈 = 1
3𝛾𝑛

(︀
𝛼(𝐿𝐷 + 1 +

√
2) + 𝐿(

√
2 + 3)

)︀−1
, we have

𝑃 (sup
𝑧

Ψ(𝑧, 𝛿) > 0|𝑋,𝑍)

≤ 𝑃

(︂
max

𝑘
Ψ(𝑧𝑘, 𝛿) + 𝜈

(︁
𝛼(𝐿𝐷 + 1 +

√︀
2 ln 1/𝛿) + 𝐿(

√︀
2 ln 1/𝛿 + 3)

)︁
> 0

⃒⃒⃒⃒
𝑋,𝑍

)︂
≤ 𝑃

(︂
max

𝑘
Ψ(𝑧𝑘, 𝛿) + 𝜈

(︁
𝛼(𝐿𝐷 + 1 +

√
2) + 𝐿(

√
2 + 3)

)︁
ln 1/𝛿 > 0

⃒⃒⃒⃒
𝑋,𝑍

)︂
≤
∑︁
𝑘

𝑃

(︂
Ψ(𝑧𝑘, 𝛿) +

ln 1/𝛿

3𝛾𝑛
> 0

⃒⃒⃒⃒
𝑋,𝑍

)︂
≤
∑︁
𝑘

𝑃

(︂
Ψ(𝑧𝑘,

√
𝛿) > 0

⃒⃒⃒⃒
𝑋,𝑍

)︂
≤ 𝐾𝑛

√
𝛿,

where we have used the union bound and (A.2). Replacing 𝛿 with 𝛿2/𝐾2
𝑛 and inte-

grating both sides to remove the conditioning completes the proof.

Proof of Theorem 2.2. By Theorem 2.1, with probability at least 1− 𝛿/2,

𝜇(𝑥, 𝑧) ≤ �̂�(𝑥, 𝑧) +
4

3𝛾𝑛
ln(2𝐾𝑛/𝛿) + 𝜆1

√︀
𝑉 (𝑥, 𝑧) + 𝜆2𝐵(𝑥, 𝑧)

≤ �̂�(𝑥, 𝑧*) +
4

3𝛾𝑛
ln(2𝐾𝑛/𝛿) + 𝜆1

√︀
𝑉 (𝑥, 𝑧*) + 𝜆2𝐵(𝑥, 𝑧*),

where the second inequality follows from the definition of 𝑧. Using the same argument

we used to derive (A.2), since 𝑧* is not a random quantity, we have, with probability

at least 1− 𝛿/2,

�̂�(𝑥, 𝑧*)− 𝜇(𝑥, 𝑧*) ≤ 2

3𝛾𝑛
ln(2/𝛿) +

√︀
2𝑉 (𝑥, 𝑧*) ln(2/𝛿) + 𝐿 ·𝐵(𝑥, 𝑧*)

≤ 2

3𝛾𝑛
ln(2𝐾𝑛/𝛿) + 𝜆1

√︀
𝑉 (𝑥, 𝑧*) + 𝜆2𝐵(𝑥, 𝑧*).
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Combining the two inequalities with the union bound yields the desired result.

Proof of Corollary 2.1. We show 𝜇(𝑥, 𝑧) − 2𝐿 · 𝐵(𝑥, 𝑧*) →𝑝 𝜇(𝑥, 𝑧*). The desired

result follows from the assumption regarding 𝐵(𝑥, 𝑧*) and Slutsky’s theorem. First,

we note, due to the assumption |𝑐(𝑧; 𝑦)| ≤ 1,

𝑉 (𝑥, 𝑧*) =
∑︁
𝑖

𝑤𝑖(𝑥, 𝑧
*)Var(𝑐(𝑧*;𝑌𝑖)|𝑋𝑖, 𝑍𝑖) ≤

1

𝛾𝑛

∑︁
𝑖

𝑤𝑖(𝑥, 𝑧
*) =

1

𝛾𝑛
.

We have, for any 𝜖 > 0,

𝑃 (|𝜇(𝑥, 𝑧)− 2𝐿𝐵(𝑥, 𝑧*)− 𝜇(𝑥, 𝑧*)| > 𝜖)

≤ 𝑃 (𝜇(𝑥, 𝑧)− 2𝐿𝐵(𝑥, 𝑧*)− 𝜇(𝑥, 𝑧*) > 𝜖/2)

+ 𝑃 (𝜇(𝑥, 𝑧*)− 𝜇(𝑥, 𝑧) + 2𝐿𝐵(𝑥, 𝑧*) > 𝜖/2).

By Theorem 2.2, for large enough 𝑛, the first term is upper bounded by

2𝐾𝑛 exp

(︃
− 𝜖2

4(2/𝛾𝑛 + 4
√︀
𝑉 (𝑥, 𝑧*))2

)︃

≤ 2𝐾𝑛 exp

(︂
− 𝜖2

4(2/
√
𝛾𝑛 + 4/

√
𝛾𝑛)2

)︂
= 2Γ𝑛

(︁
9𝐷𝛾𝑛

(︁
𝛼(𝐿𝐷 + 1 +

√
2) + 𝐿(

√
2 + 3)

)︁)︁𝑝
exp

(︂
−𝛾𝑛𝜖

2
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)︂
≤ 𝐶1𝑛

1+𝛽 exp(−𝐶2𝑛
𝛽)→ 0.

Because 𝜇(𝑥, 𝑧*) ≤ 𝜇(𝑥, 𝑧), the latter term is upper bounded by

𝑃 (𝐵(𝑥, 𝑧*) > 𝜖/4𝐿)→ 0.

Proof of Example 2.1. First we consider the case that the zero variance action has

cost 0, and the other actions have cost 1 (call this event 𝐴). Because the cost of the

optimal action is 0 and the cost of a suboptimal action is 1, the expected regret in
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this problem equals the probability of the algorithm selecting a suboptimal action.

Noting that �̂�(𝑗) ∼ 𝒩 (1, 1/𝑚) for 𝑗 = 1, . . . ,𝑚, we can express the expected regret

of the predicted cost minimization algorithm as

E[𝑅𝑃𝐶𝑀 |𝐴] = 𝑃 (�̂�(𝑗) < 0 for some 𝑗 ∈ {1, . . . ,𝑚}|𝐴) = 𝑃

(︂
max

𝑗
𝑊𝑗 >

√
𝑚

)︂
,

where 𝑊1, . . . ,𝑊𝑚 are i.i.d. standard normal random variables. Similarly, the ex-

pected regret of the uncertainty penalized algorithm can be expressed as

E[𝑅𝑈𝑃 |𝐴] = 𝑃

(︃
�̂�(𝑗) < −𝜆

√
ln𝑚√
𝑚

for some 𝑗 ∈ {1, . . . ,𝑚}
⃒⃒⃒⃒
𝐴

)︃

= 𝑃

(︂
max

𝑗
𝑊𝑗 >

√
𝑚+ 𝜆

√
ln𝑚

)︂

We can construct an upper bound on E𝑅𝑈𝑃 with the union bound and a concentration

inequality (as in the proof of Theorem 2.1). Applying the Gaussian tail inequality

(see, for example, Vershynin [96, Proposition 2.1.2]), we have

E[𝑅𝑈𝑃 |𝐴] ≤ 𝑚𝑃 (𝑊1 >
√
𝑚+ 𝜆

√
ln𝑚)

≤
√
𝑚√
2𝜋

exp

(︂
−1

2
(
√
𝑚+ 𝜆

√
ln𝑚)2

)︂
=

√
𝑚

𝑚𝜆2/2
√

2𝜋
exp(−𝑚/2) exp(−𝜆

√
𝑚 ln𝑚)

≤ 1
√
𝑚
√

2𝜋
𝑒−𝑚/2,

where we have used the assumption 𝜆 ≥
√

2.
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To lower bound the expected regret of the predicted cost minimization algorithm,

we can use a similar Gaussian tail inequality.

E[𝑅𝑃𝐶𝑀 |𝐴] = 1−
[︀
1− 𝑃 (𝑊1 >

√
𝑚)
]︀𝑚

≥ 1−
[︂
1−

(︂
1− 1

𝑚

)︂
1

√
𝑚
√

2𝜋
𝑒−𝑚/2

]︂𝑚
≥ 1−

[︂
1− 1

2
√
𝑚
√

2𝜋
𝑒−𝑚/2

]︂𝑚

≥ 1−

[︃[︂
1− 1

2
√
𝑚
√

2𝜋
𝑒−𝑚/2

]︂2√2𝜋𝑚 exp(𝑚/2)
]︃√𝑚 exp(−𝑚/2)/2

√
2𝜋

,

where the second inequality is valid for all 𝑚 ≥ 2. One can verify that (1− 1/𝑛)𝑛 is

a monotonically increasing function that converges to 𝑒−1. Therefore, for all 𝑚 ≥ 2,

E[𝑅𝑃𝐶𝑀 |𝐴] ≥ 1− exp

(︂
−
√
𝑚

2
√

2𝜋
exp(−𝑚/2)

)︂
.

Next, we use these bounds to compute the ratio E[𝑅𝑈𝑃 |𝐴]/E[𝑅𝑃𝐶𝑀 |𝐴] in the limit

as 𝑚→∞.

E[𝑅𝑈𝑃 |𝐴]

E[𝑅𝑃𝐶𝑀 |𝐴]
≤

1√
𝑚
√
2𝜋
𝑒−𝑚/2

1− exp
(︁
−

√
𝑚

2
√
2𝜋

exp(−𝑚/2)
)︁ .

Applying L’Hopital’s rule, the limit of the right hand side is equal to the limit of

2(2𝜋)−1/2
(︀
−𝑚−3/2𝑒−𝑚/2 −𝑚−1/2𝑒−𝑚/2

)︀
(2𝜋)−1/2 [𝑚−1/2𝑒−𝑚/2 −𝑚1/2𝑒−𝑚/2] exp

(︁
−

√
𝑚

2
√
2𝜋
𝑒−𝑚/2

)︁
= 2
−1−𝑚
𝑚−𝑚2

· exp

(︂ √
𝑚

2
√

2𝜋
𝑒−𝑚/2

)︂
→ 0.

Next, we consider the case that the zero variance action has cost 1, and the other

actions have cost 0. The expected regret equals the probability that the zero variance
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action is selected. For sufficiently large 𝑚,

E[𝑅𝑈𝑃 |𝐴𝑐] = 𝑃

(︃
�̂�(𝑗) > 1− 𝜆

√
ln𝑚√
𝑚

∀𝑗 ∈ {1, . . . ,𝑚}
⃒⃒⃒⃒
𝐴𝑐

)︃
≤ 𝑃 (𝑊1 >

√
𝑚− 𝜆

√
ln𝑚)𝑚

≤ 𝑃 (𝑊1 >
√
𝑚/2)𝑚

≤
(︂

2√
2𝜋
𝑒−𝑚/8

)︂𝑚

≤ 𝑒−𝑚2/8 = 𝑜(E[𝑅𝑈𝑃 |𝐴]).

Therefore, for sufficiently large 𝑚 and some constant 𝐶,

E[𝑅𝑈𝑃 ]

E[𝑅𝑃𝐶𝑀 ]
=

E[𝑅𝑈𝑃 |𝐴] + E[𝑅𝑈𝑃 |𝐴𝑐]

E[𝑅𝑃𝐶𝑀 |𝐴] + E[𝑅𝑃𝐶𝑀 |𝐴𝑐]

≤ E[𝑅𝑈𝑃 |𝐴] + E[𝑅𝑈𝑃 |𝐴𝑐]

E[𝑅𝑃𝐶𝑀 |𝐴]

≤ (1 + 𝐶)
E[𝑅𝑈𝑃 |𝐴]

E[𝑅𝑃𝐶𝑀 |𝐴]
→ 0.

A.2 Optimization with Linear Predictive Models

Here, we detail the optimization of (2) with linear predictive models. We focus on

the case that 𝑐(𝑧;𝑌 ) = 𝑌 for simplicity. For these models, we posit the outcome is a

linear function of the auxiliary covariates and decision. That is there exists a 𝛽 such

that, given 𝑋 = 𝑥, 𝑌 (𝑧) = (𝑥, 𝑧)𝑇𝛽 + 𝜖, where 𝜖 is a mean 0 subgaussian noise term

with variance 𝜎2. If we let 𝐴 denote the design matrix for the problem, a matrix with

rows consisting of (𝑋𝑖, 𝑍𝑖) for 𝑖 = 1, . . . , 𝑛, then the ordinary least squares (OLS)

estimator for 𝛽 is given by

𝛽𝑂𝐿𝑆 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌.

The ordinary least squares estimator is unbiased, so when solving (2), we set 𝜆2 = 0.

The variance of (𝑥, 𝑧)𝑇𝛽𝑂𝐿𝑆 is given by 𝜎2(𝑥, 𝑧)𝑇 (𝐴𝑇𝐴)−1(𝑥, 𝑧). (𝐴𝑇𝐴)−1 is a positive
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semidefinite matrix, so
√︀
𝑉 (𝑥, 𝑧) is convex. Therefore, (2) becomes

min
𝑧∈𝒵

(𝑥, 𝑧)𝑇𝛽𝑂𝐿𝑆 + 𝜆1𝜎
√︀

(𝑥, 𝑧)𝑇 (𝐴𝑇𝐴)−1(𝑥, 𝑧),

which is a second order conic optimization problem if 𝒵 is polyhedral and can be

solved efficiently by commercial solvers. Even if 𝒵 is a mixed integer set, commercial

solvers such as Gurobi [77] can still solve the problem for sizes of practical interest.

For regularized linear models such as ridge and lasso regression, we use a similar

approach. Although these estimators are biased, we set 𝜆2 = 0 for computational

reasons. The ridge estimator for 𝛽 has a similar form to the OLS estimator:

𝛽𝑅𝑖𝑑𝑔𝑒 = (𝐴𝑇𝐴+ 𝛼𝐼)−1𝐴𝑇𝑌,

for some 𝛼 ≥ 0. The resulting optimization problem is essentially the same as with

the OLS estimator. The lasso estimator does not have a closed form solution, but we

can approximate it as in Tibshirani [93]:

𝑃𝛽𝐿𝑎𝑠𝑠𝑜 ≈ (𝑃𝐴𝑇𝐴𝑃 𝑇 + 𝛼𝑃𝑊 )−1𝑃𝐴𝑇𝑌,

where 𝑊 = diag(1/|𝛽*
1 |, . . . , 1/|𝛽*

𝑑+𝑝|), 𝛽* is the true lasso solution, and 𝑃 is a pro-

jection matrix that projects to the nonzero components of 𝛽*. (The zero components

of 𝛽* are still 0 in the approximation.) With this approximation, the resulting opti-

mization takes the same form as those for the OLS and ridge estimators.

A.3 Data Generation

A.3.1 Pricing

For our synthetic pricing example, we consider a store offering 5 products. We gen-

erate auxiliary covariates, 𝑋𝑖, from a 𝒩 (10, 1) distribution. We generate historical

153



prices,𝑍𝑖, from a Gaussian distribution,

𝒩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑋𝑇

𝑖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

1 0

0 1

0 1

0.5 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 100𝐼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We compute the expected demand for each product as:

𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

500− (𝑍1
𝑖 )2/10−𝑋1

𝑖 · 𝑍1
𝑖 /10− (𝑋1

𝑖 )2/10− 𝑍2
𝑖

500− (𝑍2
𝑖 )2/10−𝑋1

𝑖 · 𝑍2
𝑖 /10− (𝑋1

𝑖 )2/10− 𝑍1
𝑖

500− (𝑍3
𝑖 )2/10−𝑋2

𝑖 · 𝑍3
𝑖 /10− (𝑋2

𝑖 )2/10 + 𝑍1
𝑖 + 𝑍2

𝑖

500− (𝑍4
𝑖 )2/10−𝑋2

𝑖 · 𝑍4
𝑖 /10− (𝑋2

𝑖 )2/10 + 𝑍1
𝑖 + 𝑍2

𝑖

500− (𝑍5
𝑖 )2/10−𝑋2

𝑖 · 𝑍5
𝑖 /20−𝑋1

𝑖 · 𝑍5
𝑖 /20− (𝑋2

𝑖 )2/10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and generate 𝑌𝑖 from a 𝒩 (𝜇, 2500𝐼) distribution. This example serves to simulate the

situation in which some products are complements and some are substitutes.

A.3.2 Warfarin Dosing

To simulate how physicians might assign Warfarin doses to patients, we compute a

normalized BMI for each patient (i.e. body mass divided by height squared, normal-

ized by the population standard deviation of BMI). For each patient, we then sample

a dose (in mg/week), 𝑍𝑖, from

𝑍𝑖 ∼ 𝒩 (30 + 15 · BMI𝑖, 64).

If 𝑍𝑖 is negative, we assign a dose drawn uniformly from [0, 20]. If the data dose not

contain the patients height and/or weight, we assign a dose drawn uniformly from

[10, 50], a standard range for Warfarin doses.

To simulate the response that a physician observes for a particular patient, we
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compute the difference between the the assigned dose and the true optimal dose for

that patient, 𝑍*
𝑖 , and add noise. We then cap the response so it is less than or equal

to 40 in absolute value. The reasoning behind this construction is that the INR

measurement gives the physician some idea of whether the assigned dose is too high

or too low and whether it is close to the optimal dose. However, if the dose is very

far from optimal, then the information INR provides is not very useful in determining

the optimal dose (it is purely directional). The response of patient 𝑖 is given by

𝑌𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−40, 𝑅𝑖 < −40

𝑅𝑖, −40 ≤ 𝑅𝑖 ≤ 40

40, 𝑅𝑖 > 40

,

where 𝑅𝑖 ∼ 𝒩 (𝑍𝑖 − 𝑍*
𝑖 , 400).

A.4 Sensitivity to Selection of Tuning Parameters

To test the sensitivity of the method to the selection of tuning parameters, we conduct

an experiment on the Warfarin example with the random forest as the base learner.

We compute the out-of-sample error for many combinations of 𝜆1 and 𝜆2. From

Figure A-1, we see that the out-of-sample performance is not too sensitive to the

selection of parameters. All of the selected parameter combinations out-perform the

unpenalized method with the exception of (𝜆1 = 100, 𝜆2 = 0), which is an extreme

choice. This demonstrates that the tuning parameter selection does not have to be

extremely precise to improve performance.
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Figure A-1: Effect of 𝜆 tuning on the random forest method for Warfarin example
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Appendix B

Appendix for Chapter 3

B.1 Additional Results on Random Forest Weight

Functions

Here we provide an additional result on the strong asymptotic optimality of the

method with random forest weight functions in the single stage setting. Here, we

consider random forests as defined in Wager and Athey [97]. The random forest

consists of an ensemble of trees, each trained on a subsample of the data of size 𝑠.

Each of the trees in the forest is a regular, random-split, and honest regression tree

as in Definition 3.6. The prediction of the random forest at 𝑥 is given by

𝑅(𝑥,𝑋1, 𝑌1, . . . , 𝑋𝑁 , 𝑌𝑁) =

(︂
𝑁

𝑠

)︂−1 ∑︁
𝑖1,...,𝑖𝑠

E𝜉[𝑇 (𝑥, 𝜉,𝑋𝑖1 , 𝑌𝑖1 , . . . , 𝑋𝑖𝑠 , 𝑌𝑖𝑠)]. (B.1)

In practice, this is estimated by training trees on random subsamples of the data and

random draws of 𝜉.

Assumption B.1 (Random Forest Specification). The random forest, as defined

in (B.1), has random-split, regular, and honest regression trees as its base learners.

In addition, 𝜆 ≤ 0.2, and the subsample size, 𝑠𝑁 , scales with 𝑁𝛽. That is, 𝑠𝑁 =

min(⌊𝐶𝑁𝛽⌋, 𝑁 − 1) with 𝐶 > 0 and 𝛽 ∈
[︂(︁

2 + 𝜋 log(1−𝜆)
𝑑 log 𝜆

)︁−1

, 1
2

)︂
.

This assumption ensures the forest consists of diverse trees, each with low bias,
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so they can be aggregated into a consistent regressor.

Theorem B.1. Suppose 𝒵 ⊂ R𝑝 is nonempty and compact, and the training data

is i.i.d. In addition, suppose |𝑐(𝑧; 𝑦)| ≤ 1, for all 𝑧 ∈ 𝒵, 𝑦 ∈ 𝒴, and that 𝑐(𝑧; 𝑦) is

a well-defined 𝐿-Lipschitz continuous function of 𝑧 for all 𝑦. Finally, suppose 𝑋 𝑖 is

uniformly distributed on [0, 1]𝑑 and E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥] is an 𝑀-Lipschitz continuous

function of 𝑥 for all 𝑧. Let 𝑤𝑁,𝑖(𝑥) be the random forest weight function, satisfying

assumption B.1. Then {𝑧𝑁0 (𝑥)}, a sequence of optimal solutions to

min
𝑧∈𝒵

𝑁∑︁
𝑖=1

𝑤𝑁,𝑖(𝑥)𝑐(𝑧; 𝑦𝑖),

is strongly asymptotically optimal with respect to the true problem, min
𝑧∈𝒵

E[𝑐(𝑧;𝑌 )|𝑋 =

𝑥].

This result shows that our method can be strongly asymptotically optimal for the

single stage problem with random forest weight functions. Some of the assumptions

are slightly stronger than in Theorem 3.3. For example, we require that the value

functions are bounded and the random forests are slightly different. However, we do

not require that the minimum number of training samples per leaf, 𝑘, grows with 𝑁

as we do for Theorem 3.3. This is consistent with Breiman’s original random forest

algorithm in which 𝑘 is fixed at 1. To prove this theorem, we first prove a result on

the strong consistency of the random forest estimator.

Lemma B.1. Suppose (𝑋1, 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁) ∈ R𝑑+1 are i.i.d. samples, the distri-

bution of 𝑋1 uniform on [0, 1]𝑑, and |𝑌 | ≤ 1, a.s. Let 𝜇(𝑥) = E[𝑌1|𝑋1 = 𝑥] be a

Lipschitz continuous function. Define �̂�𝑁(𝑥) to be the prediction of a random forest

that satisfies Assumption B.1. Then, almost surely,

�̂�𝑁(𝑥)→ 𝜇(𝑥)

for 𝑥 a.e.

Proof. We first note that the bias of the predictions goes to 0, |E�̂�𝑁(𝑥)− 𝜇(𝑥)| → 0,
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for 𝑥 a.e. by Theorem 3 from [97]. (The assumptions are satisfied by Assumption

B.1.) Next, we define ℎ𝑥(𝑍1, . . . , 𝑍𝑁) = �̂�𝑁(𝑥), where 𝑍𝑖 = (𝑋𝑖, 𝑌𝑖). We note that for

any 𝑍𝑘, 𝑍
′
𝑘 ∈ 𝒳 × 𝒴 ,

|ℎ𝑥(𝑍1, . . . , 𝑍𝑘, . . . , 𝑍𝑁)− ℎ𝑥(𝑍1, . . . , 𝑍
′
𝑘, . . . , 𝑍𝑁)| ≤ 2𝑠𝑁

𝑁
.

This is due to the assumption that |𝑌𝑖| ≤ 1. Since each tree predicts at 𝑥 by averaging

the 𝑌𝑖s corresponding to training samples in the same partition of the feature space as

𝑥, the prediction of any tree is bounded between -1 and 1. Changing a single training

sample only affects the trees trained on subsets of the data including that example.

This only affects a fraction 𝑠𝑁/𝑁 of the trees in the forest. Since the prediction of the

random forest is the average of the predictions of all the trees, the most the prediction

can be changed by altering a single training sample is 2𝑠𝑁/𝑁 . Applying McDiarmid’s

inequality, we have, for 𝜖 > 0,

𝑃 (|�̂�𝑁(𝑥)− E�̂�𝑁(𝑥)| > 𝜖) ≤ 2 exp

(︂
−𝑁𝜖

2

2𝑠2𝑁

)︂
.

By our assumption, this can be rewritten

𝑃 (|�̂�𝑁(𝑥)− E�̂�𝑁(𝑥)| > 𝜖) ≤ 2 exp

(︂
−𝑁

1−2𝛽𝜖2

𝐶22

)︂
,

where 𝛽 < 1/2. From this we see
∑︀∞

𝑁=1 𝑃 (|�̂�𝑁(𝑥) − E�̂�𝑁(𝑥)| > 𝜖) < ∞, so, by the

Borel Cantelli lemma, |�̂�𝑁(𝑥)−E�̂�𝑁(𝑥)| → 0 a.s. Combining the two results with the

triangle inequality completes the proof.

Theorem B.1. We need to show

sup
𝑧∈𝒵

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑤𝑁,𝑖(𝑥)𝑐(𝑧; 𝑦𝑖)− E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥]

⃒⃒⃒⃒
⃒→ 0

a.s. for 𝑥 a.e. The desired result then follows from lemmas 3.2 and 3.3. If we ignore

the supremum, we can apply lemma B.1 to see it goes to 0 a.s. Next, we apply

lemma 3.4 to see that the convergence holds simultaneously for all 𝑧 with probability
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1. Finally, we apply lemma 3.1 to show the convergence is uniform over 𝑧 a.s.

B.2 Decomposition Algorithm

For the reader’s convenience, we present a decomposition algorithm, similar to that

of Shapiro [88], tailored for use with our methods. Given weight functions, which we

compute from an appropriate machine learning algorithm, our goal is to solve (3.3).

If the decisions spaces and state spaces are finite sets with small cardinality, it may

be possible to solve the problem exactly using the classical dynamic programming

algorithm (see, for example, Bertsekas [11]). However, in many OR problems, this is

not the case, and we need to deal with continuous decision and state spaces.

We note that it is possible to formulate (3.3) as a large, but finite sized, single

stage optimization problem. To do so, we create 𝑁 copies of 𝑧1, 𝑁2 copies of 𝑧2,

etc. These copies of the decision variables represent our contingency plan. For each

potential realization of 𝑌1, . . . , 𝑌𝑡, we have a distinct copy of 𝑧𝑡. If the 𝑓𝑡 and 𝑔𝑡

functions are linear and the 𝑍𝑡 sets are polyhedral, the resulting problem will be a

linear optimization problem, which can be solved in time that is polynomial in the size

of the formulation. However, the number of variables in the formulation is 𝑂(𝑁𝑇 ),

and this formulation becomes impractical for moderately sized 𝑁 and 𝑇 . In order

to solve larger problems, we resort to a Benders-like decomposition approach. (For a

review of Benders decomposition methods, see, for example, Murphy [76].)

Algorithm 1 describes the approach. The main idea is that we maintain a piecewise

linear, convex lower bound, 𝜓𝑡(𝑠𝑡, 𝑥𝑡−1), on
𝑁∑︀
𝑖=1

𝑤𝑡
𝑁,𝑖(𝑥𝑡−1)�̂�𝑡(𝑠𝑡; 𝑦

𝑖
𝑡, 𝑥

𝑖
𝑡) for each 𝑡 =

1, . . . , 𝑇 . We have the relaxed problems:

𝑃𝑡(𝑠𝑡, 𝑥𝑡, 𝑦𝑡, 𝜓𝑡+1) := min
𝑧𝑡∈𝑍𝑡(𝑠𝑡,𝑦𝑡)

𝑔𝑡(𝑧𝑡) + 𝜓𝑡+1(𝑓𝑡(𝑧𝑡), 𝑥𝑡) (B.2)

(For 𝑡 = 0, there is no dependence on 𝑦0.) If 𝑔𝑡 and 𝑓𝑡 are linear functions and 𝑍𝑡 is a

polyhedral set, then the relaxed problem can be reformulated as a linear optimization

problem because 𝜓𝑡+1 is the maximum of a finite set of linear functions.
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The algorithm consists of two main steps, which are repeated until convergence.

First, 𝑀 sample paths for 𝑋 and 𝑌 are sampled (with replacement) from the training

data. Then, in the forward step, for each of these sample paths, trial states are

computed by solving the relaxed problems from 𝑡 = 0 to 𝑡 = 𝑇 , assuming the system

evolves according to the corresponding sample path. Using the costs of each of these

sample paths, we can compute a statistical upper bound on the optimal value of

(3.3) (assuming 𝑀 and 𝑁 are such that a central limit theorem is a reasonable

approximation).

In the backward step, we update the 𝜓𝑡 functions. We proceed backwards, starting

with 𝑡 = 𝑇 , and solve 𝑃𝑡 for each of the trial states. We compute the cut coefficients

(which we will discuss in more detail next), and then average them across all possible

realizations 𝑦𝑗𝑡 and 𝑥𝑗𝑡 , according to the distribution {𝑤𝑡
𝑁,𝑖(𝑥

𝑗
𝑡−1)}𝑁𝑖=1. We then update

𝜓𝑡 with this new cut. Finally, we update the lower bound on the optimal value of the

problem by solving 𝑃0(𝑠0, 𝑥0, 𝜓1).

There are several possible stopping criteria we can use. One is to stop when the

statistical upper bound (line 15 in Algorithm 1) is within a specified 𝜖 > 0 of the

lower bound (line 26). This will give us an 𝜖-optimal solution with probability at

least 1 − 𝛼 (assuming 𝑀 is sufficiently large and 𝑁 is much larger than 𝑀 so that

the central limit theorem is a reasonable approximation). Alternatively, we can stop

when the lower bound stabilizes or after a fixed number of iterations. All three of

these can allow the algorithm to construct lower bounds, {𝜓𝑡}, that are reasonable

approximations to the value functions.

The crucial component required for this algorithm to work is the cuts. We begin

with a definition from [101].

Definition B.1 (Valid, tight, and finite cut). Let (𝛽𝑡, 𝜋𝑡) be the stage 𝑡 cut coefficients

computed in the backward step of Algorithm 1. We say that the cut is:

1. Valid if
𝑁∑︁
𝑖=1

𝑤𝑡
𝑁,𝑖(�̂�𝑡−1)𝑄𝑡(𝑠𝑡; 𝑦

𝑖
𝑡, 𝑥

𝑖
𝑡) ≥ 𝛽𝑡 + 𝜋𝑇

𝑡 𝑠𝑡 ∀𝑠𝑡.

161



Algorithm 1: SDDP algorithm for multistage optimization.
Input: 𝑠0, 𝑥0, weight functions {𝑤𝑡

𝑁,𝑖(𝑥𝑡−1)}𝑖=1,...,𝑁 ;𝑡=1,...,𝑇

1 Initialize: 𝐿𝐵 ← −∞, 𝑈𝐵 ←∞, and initial lower bounds {𝜓𝑡}𝑇𝑡=1

2 while stopping criterion not satisfied do
3 Sample 𝑀 scenarios {𝑦𝑗1, 𝑥

𝑗
1, 𝑦

𝑗
2, . . . , 𝑥

𝑗
𝑇−1, 𝑦

𝑗
𝑇}𝑀𝑗=1 with replacement from the

training set, such that 𝑦𝑗1 and 𝑥𝑗1 are sampled from the probability
distribution defined by 𝑤1

𝑁,𝑖(𝑥0), 𝑦
𝑗
2 and 𝑥𝑗2 are sampled from the

probability distribution defined by 𝑤2
𝑁,𝑖(𝑥

𝑗
1), etc.

4 /* Forward step */
5 for 𝑗 = 1, . . . ,𝑀 do
6 Initialize 𝑠𝑗0 ← 𝑠0
7 for 𝑡 = 0, . . . , 𝑇 do
8 Solve problem 𝑃𝑡(𝑠

𝑗
𝑡 , 𝑥

𝑗
𝑡 , 𝑦

𝑗
𝑡 , 𝜓𝑡+1) for optimal solution 𝑧𝑗𝑡

9 Update state 𝑠𝑗𝑡+1 ← 𝑓𝑡(𝑧
𝑗
𝑡 )

10 end

11 𝑣𝑗 ←
𝑇∑︀
𝑡=0

𝑔𝑡(𝑧
𝑗
𝑡 )

12 end

13 /* Statistical upper bound */

14 �̂�← 1
𝑀

𝑀∑︀
𝑗=1

𝑣𝑗 and �̂�2 ← 1
𝑀−1

𝑀∑︀
𝑗=1

(𝑣𝑗 − �̂�)2

15 𝑈𝐵 ← �̂�+ 𝑧𝛼/2
�̂�√
𝑀

16 /* Backward Step */
17 for 𝑡 = 𝑇, . . . , 1 do
18 for 𝑗 = 1, . . . ,𝑀 do
19 for 𝑖 = 1, . . . , 𝑁 do
20 Solve 𝑃𝑡(𝑠

𝑗
𝑡 , 𝑥

𝑖
𝑡, 𝑦

𝑖
𝑡, 𝜓𝑡+1) to compute cut coefficients (𝛽𝑗𝑖

𝑡 , 𝜋
𝑗𝑖
𝑡 )

21 end
22 Update

𝜓𝑡(𝑠𝑡, 𝑥
𝑗
𝑡−1)← max

{︂
𝜓𝑡(𝑠𝑡, 𝑥

𝑗
𝑡−1),

𝑁∑︀
𝑖=1

𝑤𝑡
𝑁,𝑖(𝑥

𝑗
𝑡−1)(𝛽

𝑗𝑖
𝑡 + (𝜋𝑗𝑖

𝑡 )𝑇 𝑠𝑡)

}︂
23 end
24 end

25 /* Lower bound update */
26 Solve 𝑃0(𝑠0, 𝑥0, 𝜓1) and set 𝐿𝐵 to its optimal value
27 end
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2. Tight if
𝑁∑︁
𝑖=1

𝑤𝑡
𝑁,𝑖(�̂�𝑡−1)𝑃

*
𝑡 (𝑠𝑡, 𝑥

𝑖
𝑡, 𝑦

𝑖
𝑡, 𝜓𝑡+1) = 𝛽𝑡 + 𝜋𝑇

𝑡 𝑠𝑡,

where 𝑃 *
𝑡 represents the optimal value of (B.2), 𝑠𝑡 is the trial state computed

during the corresponding forward pass of the algorithm, and �̂�𝑡−1 is the auxiliary

covariate from the forward pass of the algorithm.

3. Finite if solving (B.2) for fixed 𝜓𝑡+1 can only generate finitely many possible

cuts.

Under the conditions that 𝑓𝑡 and 𝑔𝑡 are linear functions, 𝑍𝑡 are polyhedral sets,

and at every stage, (B.2) is feasible with finite optimal value, it is shown in [88]

that the SDDP algorithm will converge to an optimal solution in a finite number of

iterations with probability 1, provided the cuts used are valid, tight, and finite. [101]

showed that this result also holds if the state variables are purely binary, instead of

continuous.

The validity of the cuts ensures that the {𝜓𝑡} functions maintain lower bounds on

the value functions at each stage. Next, we describe several classes of valid cuts that

can be used within the SDDP algorithm.

Benders’ Cut

A well known class of cuts is the Bender’s cut [8]. These cuts are valid for linear

problems, even with integer constraints, and are tight for linear optimization problems

(or more generally convex optimization problems) in which strong duality holds. To

compute the cuts for stage 𝑡 in the SDDP algorithm we solve the following form of

𝑃𝑡(𝑠
𝑗
𝑡 , 𝑥

𝑖
𝑡, 𝑦

𝑖
𝑡, 𝜓𝑡+1):

min
𝑧𝑡,𝑠𝑡

𝑔𝑡(𝑧𝑡) + 𝜓𝑡+1(𝑓𝑡(𝑧𝑡), 𝑥
𝑖
𝑡)

s.t. 𝑧𝑡 ∈ 𝑍𝑡(𝑠𝑡, 𝑦
𝑖
𝑡)

𝑠𝑡 = 𝑠𝑗𝑡 .

We then let 𝜋𝑗𝑖
𝑡 be the optimal dual solution (of the LO relaxation if there are

integer variables) corresponding to the indicated constraint and set 𝛽𝑗𝑖
𝑡 =
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𝑃 *
𝑡 (𝑠𝑗𝑡 , 𝑥

𝑖
𝑡, 𝑦

𝑖
𝑡, 𝜓𝑡+1)−(𝜋𝑗𝑖

𝑡 )𝑇 𝑠𝑗𝑡 , where 𝑃 *
𝑡 (𝑠𝑗𝑡 , 𝑥

𝑖
𝑡, 𝑦

𝑖
𝑡, 𝜓𝑡+1) is the optimal value of the above

problem. In order for these cuts to be finite, we should always use basic solutions for

𝜋𝑗𝑖
𝑡 .

Integer Optimality Cut

If the state space is binary, the SDDP algorithm with Benders’ cuts is not guaranteed

to produce an optimal solution. This is because they are not guaranteed to be tight.

Instead, we can solve the above integer optimization problem to optimality and choose

cuts defined by the linear expression:

(𝑃 *
𝑡 (𝑠𝑗𝑡 , 𝑥

𝑖
𝑡, 𝑦

𝑖
𝑡, 𝜓𝑡+1)− 𝐿𝑡)

(︃∑︁
𝑘

(𝑠𝑡𝑘(1− 𝑠𝑗𝑡𝑘) + (1− 𝑠𝑡𝑘)𝑠𝑗𝑡𝑘)

)︃
+ 𝑃 *

𝑡 (𝑠𝑗𝑡 , 𝑥
𝑖
𝑡, 𝑦

𝑖
𝑡, 𝜓𝑡+1).

These cuts are valid, tight, and finite when the state space is binary. However, they

tend to be very ineffective in practice.

Lagrangian Cut

The third class of cut we describe was introduced by [101] and shown to be valid and

tight when the state space is binary. They are much more effective than the integer

optimality cuts in practice. These cuts are computed by solving the Lagrangian dual

problem:

max
𝜋𝑗𝑖
𝑡

ℒ𝑡(𝜋
𝑗𝑖
𝑡 ) + (𝜋𝑗𝑖

𝑡 )𝑇 𝑠𝑗𝑡 ,

where
ℒ𝑡(𝜋

𝑗𝑖
𝑡 ) = min

𝑧𝑡,𝑠𝑡
𝑔𝑡(𝑧𝑡) + 𝜓𝑡+1(𝑓𝑡(𝑧𝑡), 𝑥

𝑖
𝑡)− (𝜋𝑗𝑖

𝑡 )𝑇 𝑠𝑡

s.t. 𝑧𝑡 ∈ 𝑍𝑡(𝑠𝑡, 𝑦
𝑖
𝑡)

𝑠𝑡 ∈ [0, 1]𝑝.

We then use the cut with 𝜋𝑗𝑖
𝑡 equal to the optimal solution of the Lagrangian dual

problem and 𝛽𝑗𝑖
𝑡 equal to the optimal value of ℒ𝑡(𝜋

𝑗𝑖
𝑡 ).

These three classes of cuts allow us to solve problems where the state space is

continuous or pure binary with the SDDP algorithm. When the state space is a
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mixed integer set, we can perform a binary expansion to desired accuracy on the

continuous variable to convert the problem to the pure binary case. Of course, we

can also combine different classes of cuts, and this can speed convergence.

165



166



Appendix C

Appendix for Chapter 4

C.1 Properties of Weight Functions

In this section, we show that the 𝑘-nearest neighbor and kernel regression weight

functions satisfy several guarantees. These results are used in the proof of Theorem 4.2

in Section 4.4.3. The main result of this section is the following. For convenience, the

equations below are numbered the same as in the proof of Theorem 4.2 in Section 4.4.3.

Theorem C.1. If Assumptions 4.1 and 4.4 hold, then

{𝑤𝑖
𝑁(�̄�)} are not functions of 𝜉1, . . . , 𝜉𝑁 ; (4.4)

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) = 1 and 𝑤1

𝑁(�̄�), . . . , 𝑤𝑁
𝑁 (�̄�) ≥ 0, ∀𝑁 ∈ N. (4.5)

Moreover, there exists constants 𝑘2 > 0 and 𝜂 > 𝑝(2 + 𝑑𝜉) such that

lim
𝑁→∞

1

𝜖𝑁

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)‖𝛾𝑖 − �̄�‖ = 0, P∞-almost surely; (4.7)

EP𝑁

[︃
exp

(︃
−𝜃∑︀𝑁

𝑖=1𝑤
𝑖
𝑁(�̄�)2

)︃]︃
≤ exp(−𝑘2𝜃𝑁𝜂), ∀𝜃 ∈ (0, 1), 𝑁 ∈ N. (4.8)

Proof. We observe that (4.4) and (4.5) follow directly from the definitions of the

weight functions. The proofs of (4.7) and (4.8) are split into two parts, one for the
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𝑘-nearest neighbor weights and one for kernel regression weights.

k-Nearest Neighbors:

For the proof of (4.7), we note

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)‖𝛾𝑖 − �̄�‖ ≤ ‖𝛾(𝑘𝑁 )(�̄�)− �̄�‖,

where 𝛾(𝑘𝑁 )(�̄�) denotes the 𝑘𝑁th nearest neighbor of �̄� out of 𝛾1, . . . ,𝛾𝑁 . Therefore,

for any 𝜆 > 0,

P𝑁

(︃
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)‖𝛾𝑖 − �̄�‖ > 𝜆𝜖𝑁

)︃
≤ P𝑁

(︀
‖𝛾(𝑘𝑁 )(�̄�)− �̄�‖ > 𝜆𝜖𝑁

)︀
≤ P𝑁

(︀⃒⃒{︀
𝑖 : ‖𝛾𝑖 − �̄�‖ ≤ 𝜆𝜖𝑁

}︀⃒⃒
≤ 𝑘𝑁 − 1

)︀
.

By Assumption 4.4, this probability is upper bounded by P(𝛽 ≤ 𝑘 − 1), where 𝛽 ∼

Binom(𝑁, 𝑔(𝜆𝜖𝑁)𝑑𝛾 ). By Hoeffding’s inequality,

P𝑁

(︃
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)‖𝛾𝑖 − �̄�‖ > 𝜆𝜖𝑁

)︃
≤ exp

(︂
−2(𝑁𝑔(𝜆𝑘1/𝑁

𝑝)𝑑𝛾 − 𝑘𝑁 + 1)2

𝑁

)︂
,

for 𝑘𝑁 ≤ 𝑁𝑔(𝜆𝑘1/𝑁
𝑝)𝑑𝛾 + 1. We note that this condition on 𝑘𝑁 is satisfied for 𝑁

sufficiently large because 𝛿+𝑝𝑑𝛾 < 1 by Assumption 4.1. Because the right hand side

in the above inequality has a finite sum over 𝑁 , (4.7) follows by the Borel Cantelli

lemma.

For the proof of (4.8), it follows from Assumption 4.1 that

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)2 ≤ 𝑘3𝑁

1−2𝛿

deterministically (for all sufficiently large𝑁 such that ⌈𝑘3𝑁 𝛿⌉ ≤ 𝑁−1) and 𝑝(2+𝑑𝜉) >

2𝛿 − 1. Thus, (4.8) follows with 𝜂 = 2𝛿 − 1.
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Kernel regression:

Assumption 4.1 stipulates that the kernel function 𝐾(·) is Gaussian, triangular, or

Epanechnikov, which are defined in Section 4.3. It is easy to verify that these kernel

functions satisfy the following:

1. 𝐾 is nonnegative, finite valued, and monotonically decreasing (for nonnegative

inputs).

2. 𝑢𝛼𝐾(𝑢)→ 0 as 𝑢→∞ for any 𝛼 ∈ R.

3. ∃𝑢* > 0 such that 𝐾(𝑢*) > 0.

For the proof of (4.7), define 𝑞 > 0 such that 𝑝 < 𝑞 < 𝛿. Letting 𝐷 be the diameter

of Γ and 𝑔𝑁(�̄�) =
∑︀𝑁

𝑖=1𝐾(‖𝛾𝑖 − �̄�‖/ℎ𝑁), we have

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)‖𝛾𝑖 − �̄�‖

=
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)1{‖𝛾𝑖 − �̄�‖ ≤ 𝑁−𝑞}‖𝛾𝑖 − �̄�‖

+
1

𝑔𝑁(�̄�)

𝑁∑︁
𝑖=1

𝐾

(︂
‖𝛾𝑖 − �̄�‖

ℎ𝑁

)︂
1{‖𝛾𝑖 − �̄�‖ > 𝑁−𝑞}‖𝛾𝑖 − �̄�‖

≤ 𝑁−𝑞 +
𝑁𝐷𝐾(𝑁−𝑞/ℎ𝑁)

𝑔𝑁(�̄�)
,

where the inequality follows from the monotonicity of 𝐾. By construction, 𝑁−𝑞/𝜖𝑁 →

0, so we just need to handle the second term. We note, for any 𝜆 > 0,

P𝑁

(︂
𝑁𝐷𝐾(𝑁−𝑞/ℎ𝑁)

𝑔𝑁(�̄�)
> 𝜆𝜖𝑁

)︂
≤ P𝑁

(︃
𝑁∑︁
𝑖=1

𝑍𝑁
𝑖 𝐾(𝑢*) <

𝑁𝐷𝐾(𝑁−𝑞/ℎ𝑁)

𝜆𝜖𝑁

)︃
,

where 𝑍𝑁
𝑖 = 1{‖𝛾𝑖 − �̄�‖ ≤ 𝑢*ℎ𝑁}. To achieve this inequality, we lower bounded

each term in 𝑔𝑁(�̄�) by 𝐾(𝑢*) or 0, because of the monotonicity of 𝐾. By Hoeffding’s
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inequality,

P𝑁

(︃
𝑁∑︁
𝑖=1

𝑍𝑁
𝑖 𝐾(𝑢*) <

𝑁𝐷𝐾(𝑁−𝑞/ℎ𝑁)

𝜆𝜖𝑁

)︃

≤ exp

⎛⎜⎝−2
(︁
𝑁E𝑍𝑁

𝑖 − 𝑁𝐷
𝜆𝜖𝑁𝐾(𝑢*)

𝐾(𝑁−𝑞/ℎ𝑁)
)︁2
+

𝑁

⎞⎟⎠
≤ exp

⎛⎜⎝−2
(︁
𝑁𝑔(𝑢*ℎ𝑁)𝑑𝛾 − 𝑁𝐷

𝜆𝜖𝑁𝐾(𝑢*)
𝐾(𝑁−𝑞/ℎ𝑁)

)︁2
+

𝑁

⎞⎟⎠
= exp

(︁
−
(︀
𝑘5𝑁

1/2−𝛿𝑑𝛾 − 𝑘6𝑁1/2+𝑝𝐾(𝑘4𝑁
−𝑞+𝛿)

)︀2
+

)︁
,

for some constants 𝑘5, 𝑘6 > 0 that do not depend on 𝑁 . We used Assumption

4.4 for the second inequality. Because 𝛿 > 𝑞, the second kernel property implies

𝑁1/2+𝑝𝐾(𝑘4𝑁
−𝑞+𝛿) goes to 0 as 𝑁 goes to infinity, so that term is irrelevant. Because

1/2 − 𝛿𝑑𝛾 > 0 by Assumption 4.1, the right hand side of the inequality has a finite

sum over 𝑁 , and thus (4.7) follows from the Borel Cantelli lemma.

For the proof of (4.8), define

𝑣𝑁 =

⎛⎜⎜⎜⎝
𝐾(‖𝛾1 − �̄�‖/ℎ𝑁)

...

𝐾(‖𝛾𝑁 − �̄�‖/ℎ𝑁)

⎞⎟⎟⎟⎠ .

We note that

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)2 =

‖𝑣𝑁‖22
‖𝑣𝑁‖21

≤ ‖𝑣
𝑁‖∞
‖𝑣𝑁‖1

≤ 𝐾(0)

𝐾(𝑢*)
∑︀𝑁

𝑖=1 𝑍
𝑁
𝑖

,

where 𝑍𝑁
𝑖 is defined above. The first inequality follows from Holder’s inequality, and

the second inequality follows from the monotonicity of 𝐾. Next, we define 𝑍𝑁
𝑖 to be
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a Bernoulli random variable with parameter 𝑔(𝑢*ℎ𝑁)𝑑𝛾 for each 𝑖. For any 𝜃 ∈ (0, 1),

EP𝑁

[︃
exp

(︃
−𝜃∑︀𝑁

𝑖=1𝑤
𝑖
𝑁(�̄�)2

)︃]︃
≤ EP𝑁

[︃
exp

(︃
−𝜃𝐾(𝑢*)

∑︀𝑁
𝑖=1 𝑍

𝑁
𝑖

𝐾(0)

)︃]︃
=
(︀
1− 𝑔(𝑢*ℎ𝑁)𝑑𝛾 + 𝑔(𝑢*ℎ𝑁)𝑑𝛾 exp(−𝜃𝐾(𝑢*)/𝐾(0))

)︀𝑁
≤ exp

(︀
−𝑁𝑔(𝑢*ℎ𝑁)𝑑𝛾 (1− exp(−𝜃𝐾(𝑢*)/𝐾(0)))

)︀
≤ exp

(︂
−𝑁𝑔(𝑢*ℎ𝑁)𝑑𝛾

𝜃𝐾(𝑢*)

2𝐾(0)

)︂
= exp

(︂
−𝜃𝐾(𝑢*)𝑔(𝑘4𝑢

*)𝑑𝛾𝑁1−𝛿𝑑𝛾

2𝐾(0)

)︂
.

The first inequality follows because 𝑔(𝑢*ℎ𝑁)𝑑𝛾 is an upper bound on P(‖𝛾𝑖 − �̄�‖ ≤

𝑢*ℎ𝑁) by Assumption 4.4. The first equality follows from the definition of the moment

generating function for a binomial random variable. The next line follows from the

inequality 𝑒𝑥 ≥ 1+𝑥 and the following from the inequality 1−𝑒−𝑥 ≥ 𝑥/2 for 0 ≤ 𝑥 ≤ 1.

Because 1− 𝛿𝑑𝛾 > 𝑝(2 + 𝑑𝜉), this completes the proof of (4.8) with 𝜂 = 1− 𝛿𝑑𝛾 and

𝑘2 = 𝐾(𝑢*)𝑔(𝑘4𝑢
*)𝑑𝛾/2𝐾(0).

C.2 Proofs from Section 4.4.4

To connect Theorem 4.2, a result regarding concentration in 1-Wasserstein distance,

to sample robust optimization, we consider the∞-Wasserstein metric, which is given

by:

d∞ (Q,Q′) ≡ inf

⎧⎨⎩Π-ess sup
Ξ×Ξ

‖𝜉 − 𝜉′‖ :
Π is a joint distribution of 𝜉 and 𝜉′

with marginals Q and Q′, respectively

⎫⎬⎭ ,

where the essential supremum of the joint distribution is defined as

Π-ess sup
Ξ×Ξ

‖𝜉 − 𝜉′‖ = inf {𝑀 : Π (‖𝜉 − 𝜉′‖ > 𝑀) = 0} .
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We make use of the following result from Bertsimas, Shtern, and Sturt [22]:

Lemma C.1. For any measurable 𝑓 : Ξ→ R,

𝑁∑︁
𝑖=1

𝑤𝑁
𝑖 (�̄�) sup

𝜁∈𝒰𝑖
𝑁

𝑓(𝜁) = sup
Q∈𝒫(Ξ): d∞(P̂𝑁

�̄� ,Q)≤𝜖𝑁

E𝜉∼Q[𝑓(𝜉)].

The proof of Lemma C.1 follows identical reasoning as in Bertsimas, Shtern, and

Sturt [22] and is thus omitted.

Next, we state a result from Bertsimas, Shtern, and Sturt [22] (their Theo-

rem EC.1), which bounds the difference in worst case objective values between 1-

Wasserstein and ∞-Wasserstein distributionally robust optimization problems. We

note that Bertsimas, Shtern, and Sturt [22] proved the following result for the case

that Q′ is the unweighted empirical measure, but their proof carries through for the

case here in which Q′ is a weighted empirical measure.

Lemma C.2. Let 𝒵 ⊆ R𝑑, 𝑓 : 𝒵 → R be measurable, and 𝜁1, . . . , 𝜁𝑁 ∈ 𝒵. Suppose

that

Q′ =
𝑁∑︁
𝑖=1

𝑤𝑖𝛿𝜁𝑖

for given weights 𝑤1, . . . , 𝑤𝑁 ≥ 0 that sum to one. If 𝜃2 ≥ 2𝜃1 ≥ 0, then

sup
Q∈𝒫(𝒵): d1(Q′,Q)≤𝜃1

E𝜉∼Q[𝑓(𝜉)] ≤ sup
Q∈𝒫(𝒵): d∞(Q′,Q)≤𝜃2

E𝜉∼Q[𝑓(𝜉)] +
4𝜃1
𝜃2

sup
𝜁∈𝒵
|𝑓(𝜁)|.

We now restate and prove the main result, which combines the new measure con-

centration result from this paper with similar proof techniques as Bertsimas, Shtern,

and Sturt [22] and Esfahani and Kuhn [48].

Theorem 4.1. Suppose the weight function and uncertainty sets satisfy Assump-

tion 4.1, the joint probability distribution of (𝛾, 𝜉) satisfies Assumptions 4.2-4.4 from

Section 4.4.3, and the cost function satisfies Assumption 4.5 from Section 4.4.4.

Then, for every �̄� ∈ Γ,

lim
𝑁→∞

𝑣𝑁(�̄�) = 𝑣*(�̄�), P∞-almost surely.
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Proof. We break the limit into upper and lower parts. The proof of the lower part

follows from an argument similar to that used by Bertsimas, Shtern, and Sturt [22].

The proof of the upper part follows from the argument used by Esfahani and Kuhn

[48].

Lower bound.

We first show

lim inf
𝑁→∞

𝑣𝑁(�̄�) ≥ 𝑣*(�̄�), P∞-almost surely. (C.1)

To begin, we define

𝐷𝑁 := {𝜁 : ‖𝜁‖ ≤ log𝑁},

and let P�̄�|𝐷𝑁
(·) be shorthand for P(· | 𝛾 = �̄�, 𝜉 ∈ 𝐷𝑁). Then, applying Assump-

tion 4.2,

P𝑁
(︀
∪𝑁𝑖=1𝒰 𝑖

𝑁 ̸⊆ 𝐷𝑁

)︀
(C.2)

≤ P
(︂

max
𝑖≤𝑁
‖𝜉𝑖‖+ 𝜖𝑁 > log𝑁

)︂
≤ 𝑁P(‖𝜉‖ > log𝑁 − 𝜖𝑁)

= 𝑁E [P(‖𝜉‖ − E[‖𝜉‖ | 𝛾] > log𝑁 − 𝜖𝑁 − E[‖𝜉‖ | 𝛾] | 𝛾)]

≤ 𝑁E
[︂
P
(︂
‖𝜉‖ − E[‖𝜉‖ | 𝛾] > log𝑁 − 𝜖𝑁 − sup

𝛾′∈Γ
E[‖𝜉‖ | 𝛾 = 𝛾 ′] | 𝛾

)︂]︂
≤ 𝑁E

[︂
2 exp

(︂
−

(log𝑁 − 𝜖𝑁 − sup𝛾′∈Γ E[‖𝜉‖ | 𝛾 = 𝛾 ′])2

2𝜎2

)︂]︂
= 2 exp

(︂
log𝑁 −

(log𝑁 − 𝜖𝑁 − sup𝛾′∈Γ E[‖𝜉‖ | 𝛾 = 𝛾 ′])2

2𝜎2

)︂
, (C.3)

which has a finite sum over 𝑁 ∈ N. Therefore, by the Borel-Cantelli lemma, there

exists 𝑁0 ∈ N, P∞-almost surely, such that

∪𝑁𝑖=1𝒰 𝑖
𝑁 ⊆ 𝐷𝑁 ∀𝑁 ≥ 𝑁0.
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We now choose any 𝑟 > 0 such that 𝜖𝑁𝑁−𝑟 satisfies Assumption 4.1, and define

𝑁1 := max{𝑁0, 2
1
𝑟 }. Then, the following holds for all 𝑁 ≥ 𝑁1 and 𝜋 ∈ Π:

sup
Q∈𝒫(𝐷𝑁∩Ξ): d1(Q,P̂𝑁

�̄� )≤ 𝜖𝑁
𝑁𝑟

E𝜉∼Q[𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )]

≤ sup
Q∈𝒫(𝐷𝑁∩Ξ): d∞(Q,P̂𝑁

�̄� )≤𝜖𝑁

E𝜉∼Q[𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )] +
4

𝑁 𝑟
sup

𝜁∈𝐷𝑁∩Ξ
|𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )|

=
𝑁∑︁
𝑖=1

𝑤𝑁
𝑖 (�̄�) sup

𝜁∈𝒰 𝑖
𝑁

𝑐𝜋(𝜁1, . . . , 𝜁𝑇 ) +
4

𝑁 𝑟
sup

𝜁∈𝐷𝑁∩Ξ
|𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )|

≤
𝑁∑︁
𝑖=1

𝑤𝑁
𝑖 (�̄�) sup

𝜁∈𝒰 𝑖
𝑁

𝑐𝜋(𝜁1, . . . , 𝜁𝑇 ) +
4𝐶

𝑁 𝑟
(1 + log𝑁). (C.4)

Indeed, the first supremum satisfies the conditions of Lemma C.2 since 𝑁 ≥ 𝑁0 and

𝑁 ≥ 2
1
𝑟 , and the equality follows from Lemma C.1 since 𝑁 ≥ 𝑁0. The final inequality

follows from Assumption 4.5 and the construction of 𝐷𝑁 . We observe that the second

term on (C.4) converges to zero as 𝑁 →∞. Next, we observe that

E[𝑐𝜋(𝜉1, . . . , 𝜉𝑇 ) | 𝛾 = �̄�] , E𝜉∼P�̄� [𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )]

= E𝜉∼P�̄� [𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )1{𝜉 /∈ 𝐷𝑁}]

+ E𝜉∼P�̄� [𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )1{𝜉 /∈ 𝐷𝑁}].

We handle the first term with the Cauchy-Schwartz inequality,

E𝜉∼P�̄� [𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )1{𝜉 /∈ 𝐷𝑁}] ≤
√︁

E𝜉∼P�̄� [𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )2]P�̄�(𝜉 /∈ 𝐷𝑁).

By Assumptions 4.2 and 4.5, the above bound is finite and converges to zero as

𝑁 →∞ uniformly over 𝜋 ∈ Π. The second term is handled by the new concentration

measure from this paper. Specifically, it follows from Theorem 4.2 that there exists

an 𝑁2 ≥ 𝑁1, P∞-almost surely, such that

d1(P�̄� , P̂𝑁
�̄� ) ≤ 𝜖𝑁

𝑁 𝑟
∀𝑁 ≥ 𝑁2.
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Therefore, for all 𝑁 ≥ 𝑁2 and decision rules 𝜋 ∈ Π:

E𝜉∼P�̄� [𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )1{𝜉 ∈ 𝐷𝑁}]

= E𝜉∼P�̄�

[︂(︂
𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )− inf

𝜁∈𝐷𝑁∩Ξ
𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )

)︂
1{𝜉 ∈ 𝐷𝑁}

]︂
+ P�̄�(𝜉 ∈ 𝐷𝑁) inf

𝜁∈𝐷𝑁∩Ξ
𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )⏟  ⏞  

𝛼𝑁

≤ sup
Q∈𝒫(Ξ): d1(Q,P̂𝑁

�̄� )≤ 𝜖𝑁
𝑁𝑟

E𝜉∼Q

[︂(︂
𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )− inf

𝜁∈𝐷𝑁∩Ξ
𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )

)︂
1{𝜉 ∈ 𝐷𝑁}

]︂
+ 𝛼𝑁

= sup
Q∈𝒫(Ξ∩𝐷𝑁 ): d1(Q,P̂𝑁

�̄� )≤ 𝜖𝑁
𝑁𝑟

E𝜉∼Q

[︂
𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )− inf

𝜁∈𝐷𝑁∩Ξ
𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )

]︂
+ 𝛼𝑁

= sup
Q∈𝒫(Ξ∩𝐷𝑁 ): d1(Q,P̂𝑁

�̄� )≤ 𝜖𝑁
𝑁𝑟

E𝜉∼Q[𝑐𝜋(𝜉1, . . . , 𝜉𝑇 )]− P�̄�(𝜉 /∈ 𝐷𝑁) inf
𝜁∈𝐷𝑁∩Ξ

𝑐𝜋(𝜁1, . . . , 𝜁𝑇 ).

Indeed, the inequality follows because 𝑁 ≥ 𝑁2. It follows from Assumption 4.5 and

(C.3) that the second term in the final equality converges to zero as 𝑁 →∞ uniformly

over 𝜋 ∈ Π. Combining the above, we conclude that

lim inf
𝑁→∞

𝑣𝑁(�̄�) = lim inf
𝑁→∞

inf
𝜋∈Π

𝑁∑︁
𝑖=1

𝑤𝑁
𝑖 (�̄�) sup

𝜁∈𝒰𝑖
𝑁

𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )

≥ inf
𝜋∈Π

E[𝑐𝜋(𝜉1, . . . , 𝜉𝑇 ) | 𝛾 = �̄�] = 𝑣*(�̄�),

where the inequality holds P∞-almost surely. This completes the proof of (C.1).

Upper bound.

We now prove that

lim sup
𝑁→∞

𝑣𝑁(�̄�) ≤ 𝑣*(�̄�), P∞-almost surely. (C.5)

Indeed, for any arbitrary 𝛿 > 0, let x𝛿 ∈ 𝒳 be a 𝛿-optimal solution for (4.1). By Es-

fahani and Kuhn [48, Lemma A.1] and Assumption 4.5, there exists a non-increasing
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sequence of functions 𝑓 𝑗(𝜁1, . . . , 𝜁𝑇 ), 𝑗 ∈ N, such that

lim
𝑗→∞

𝑓 𝑗(𝜁1, . . . , 𝜁𝑇 ) = 𝑐x𝛿(𝜁1, . . . , 𝜁𝑇 ), ∀𝜁 ∈ Ξ

and 𝑓 𝑗 is 𝐿𝑗-Lipschitz continuous. Furthermore, for each 𝑁 ∈ N, choose any proba-

bility distribution Q̂𝑁 ∈ 𝒫(Ξ) such that d1(Q̂𝑁 , P̂𝑁
�̄� ) ≤ 𝜖𝑁 and

sup
Q∈𝒫(Ξ): d1(Q,P̂𝑁

�̄� )≤𝜖𝑁

E𝜉∼Q[cx𝛿(𝜉1, . . . , 𝜉𝑇 )] ≤ E𝜉∼Q̂𝑁 [cx𝛿(𝜉1, . . . , 𝜉𝑇 )] + 𝛿.

For any 𝑗 ∈ N,

lim sup
𝑁→∞

𝑣𝑁(�̄�) ≤ lim sup
𝑁→∞

sup
Q∈𝒫(Ξ): d∞(Q,P̂𝑁

�̄� )≤𝜖𝑁

E𝜉∼Q[cx𝛿(𝜉1, . . . , 𝜉𝑇 )]

≤ lim sup
𝑁→∞

sup
Q∈𝒫(Ξ): d1(Q,P̂𝑁

�̄� )≤𝜖𝑁

E𝜉∼Q[cx𝛿(𝜉1, . . . , 𝜉𝑇 )]

≤ lim sup
𝑁→∞

E𝜉∼Q̂𝑁 [cx𝛿(𝜉1, . . . , 𝜉𝑇 )] + 𝛿

≤ lim sup
𝑁→∞

E𝜉∼Q̂𝑁 [𝑓 𝑗(𝜉1, . . . , 𝜉𝑇 )] + 𝛿

≤ lim sup
𝑁→∞

E𝜉∼P�̄� [𝑓 𝑗(𝜉1, . . . , 𝜉𝑇 )] + 𝐿𝑗d1(P�̄� , Q̂𝑁) + 𝛿

≤ lim sup
𝑁→∞

E𝜉∼P�̄� [𝑓 𝑗(𝜉1, . . . , 𝜉𝑇 )] + 𝐿𝑗(d1(P�̄� , P̂𝑁
�̄� ) + d1(Q̂𝑁 , P̂𝑁

�̄� )) + 𝛿

≤ lim sup
𝑁→∞

E𝜉∼P�̄� [𝑓 𝑗(𝜉1, . . . , 𝜉𝑇 )] + 𝐿𝑗(d1(P�̄� , P̂𝑁
�̄� ) + 𝜖𝑁) + 𝛿

= EP�̄� [𝑓 𝑗(𝜉1, . . . , 𝜉𝑇 )] + 𝛿, P∞-almost surely,

where we have used the fact d1(P,Q) ≤ d∞(P,Q) for the second inequality, the dual

form of the 1-Wasserstein metric for the fifth inequality (because 𝑓 𝑗 is 𝐿𝑗-Lipschitz),

and Theorem 4.2 for the equality. Taking the limit as 𝑗 → ∞, and applying the

monotone convergence theorem (which is allowed because E𝜉∼P�̄� |𝑓 1(𝜉1, . . . , 𝜉𝑇 )| ≤

𝐿1E𝜉∼P�̄�‖𝜉‖+ |𝑓 1(0)| <∞ by Assumption 4.4), gives

lim sup
𝑁→∞

𝑣𝑁(�̄�) ≤ E𝜉∼P�̄� [cx𝛿(𝜉1, . . . , 𝜉𝑇 )] + 𝛿 ≤ 𝑣*(�̄�) + 2𝛿, P∞-almost surely.
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Since 𝛿 > 0 was chosen arbitrarily, the proof of (C.5) is complete.

C.3 Technical Details for Section 4.5

C.3.1 Proof of Theorem 4.3

We restate the theorem for convenience.

Theorem 4.3. For cost functions of the form (4.10), 𝑣𝑁(�̄�) = 𝑣𝑁(�̄�).

Proof. We first show that 𝑣𝑁(�̄�) ≥ 𝑣𝑁(�̄�). Indeed, consider any primary decision rule

�̄� and auxiliary decision rules ȳ𝑖
1, . . . , ȳ

𝑖
𝑇 for each 𝑖 ∈ {1, . . . , 𝑁} which are optimal

for (4.11).1 Then, it follows from feasibility to (4.11) that

hᵀ
𝑡 ȳ

𝑖
𝑡(𝜁1, . . . , 𝜁𝑡) ≥ min

y𝑡∈R𝑑𝑡𝑦

{︃
hᵀ
𝑡y𝑡 :

𝑡∑︁
𝑠=1

A𝑡,𝑠�̄�𝑠(𝜁1, . . . , 𝜁𝑠−1) +
𝑡∑︁

𝑠=1

B𝑡,𝑠𝜁𝑠 + C𝑡y𝑡 ≤ d𝑡

}︃
.

for each 𝑖 ∈ {1, . . . , 𝑁}, 𝜁 ∈ 𝒰 𝑖
𝑁 , and 𝑡 ∈ {1, . . . , 𝑇}. Thus,

𝑣𝑁(�̄�) = min
𝜋∈Π

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)𝑐𝜋(𝜁1, . . . , 𝜁𝑇 )

≤
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)𝑐�̄�(𝜁1, . . . , 𝜁𝑇 )

≤
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰𝑖
𝑁

𝑇∑︁
𝑡=1

(︀
fᵀ𝑡 �̄�𝑡(𝜁1, . . . , 𝜁𝑡−1) + gᵀ

𝑡 𝜁𝑡 + hᵀ
𝑡 ȳ

𝑖
𝑡(𝜁1, . . . , 𝜁𝑡)

)︀
= 𝑣𝑁(�̄�).

The other side of the inequality follows from similar reasoning. Indeed, let �̄� be an

optimal solution to (4.3). For each 𝑖 ∈ {1, . . . , 𝑁} and 𝑡 ∈ {1, . . . , 𝑇}, define ȳ𝑖
𝑡 ∈ ℛ𝑡

as any decision rule that satisfies

ȳ𝑖
𝑡(𝜁1, . . . , 𝜁𝑡) ∈ arg min

y𝑡∈R𝑑𝑡𝑦

{︃
hᵀ
𝑡y𝑡 :

𝑡∑︁
𝑠=1

A𝑡,𝑠�̄�𝑠(𝜁1, . . . , 𝜁𝑠−1) +
𝑡∑︁

𝑠=1

B𝑡,𝑠𝜁𝑠 + C𝑡y𝑡 ≤ d𝑡

}︃

1If no optimal solution exists, then we may choose any 𝜂-optimal solution.
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for every 𝜁 ∈ 𝒰 𝑖
𝑁 . Then,

𝑣𝑁(�̄�) ≤
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

𝑇∑︁
𝑡=1

(︀
fᵀ𝑡 �̄�𝑡(𝜁1, . . . , 𝜁𝑡−1) + gᵀ

𝑡 𝜁𝑡 + hᵀ
𝑡 ȳ

𝑖
𝑡(𝜁1, . . . , 𝜁𝑡)

)︀
=

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

𝑐�̄�(𝜁1, . . . , 𝜁𝑇 ) = 𝑣𝑁(�̄�).

Combining the above inequalities, the proof is complete.

C.3.2 Compact representation of multi-policy approximation

Consider the multi-policy approximation scheme

min
𝜋,y

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

𝑇∑︁
𝑡=1

(︀
fᵀ𝑡 𝜋𝑡(𝜁1, . . . , 𝜁𝑡−1) + gᵀ

𝑡 𝜁𝑡 + hᵀ
𝑡y

𝑖
𝑡(𝜁1, . . . , 𝜁𝑡)

)︀
s.t.

𝑡∑︁
𝑠=1

A𝑡,𝑠𝜋𝑠(𝜁1, . . . , 𝜁𝑠−1) +
𝑡∑︁

𝑠=1

B𝑡,𝑠𝜁𝑠 + C𝑡y
𝑖
𝑡(𝜁1, . . . , 𝜁𝑡) ≤ d𝑡

∀𝜁 ∈ 𝒰 𝑖
𝑁 , 𝑖 ∈ {1, . . . , 𝑁}, 𝑡 ∈ {1, . . . , 𝑇}

where we restrict to linear decision rules of the form

𝜋𝑡

(︀
𝜁1, . . . , 𝜁𝑡−1

)︀
= x𝑡,0 +

𝑡−1∑︁
𝑠=1

X𝑡,𝑠𝜁𝑠, y𝑖
𝑡(𝜁1, . . . , 𝜁𝑡) = y𝑖

𝑡,0 +
𝑡∑︁

𝑠=1

Y𝑖
𝑡,𝑠𝜁𝑠.

We now show how to transform this problem into a more compact representation.

First, we combine the primary linear decision rules across stages as
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x0 =

⎡⎢⎢⎢⎣
x1,0

...

x𝑇,0

⎤⎥⎥⎥⎦ ∈ R𝑑𝑥 ,

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0

X2,1 0 0 · · · 0 0 0

X3,1 X3,2 0 · · · 0 0 0
...

...
... . . . ...

...
...

X𝑇−2,1 X𝑇−2,2 X𝑇−2,3 · · · 0 0 0

X𝑇−1,1 X𝑇−1,2 X𝑇−1,3 · · · X𝑇−1,𝑇−2 0 0

X𝑇,1 X𝑇,2 X𝑇,3 · · · X𝑇,𝑇−2 X𝑇,𝑇−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑑𝑥×𝑑𝜉 .

We note that the zero entries in the above matrix are necessary to ensure that the lin-

ear decision rules are non-anticipative. Similarly, for each 𝑖 ∈ {1, . . . , 𝑁} we represent

the auxiliary linear decision rules as

y𝑖
0 =

⎡⎢⎢⎢⎣
y𝑖
1,0

...

y𝑖
𝑇,0

⎤⎥⎥⎥⎦ ∈ R𝑑𝑦 , Y𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y𝑖
1,1 0 · · · 0 0

Y𝑖
2,1 Y𝑖

2,2 · · · 0 0
...

... . . . ...
...

Y𝑖
𝑇−1,1 Y𝑖

𝑇−1,2 · · · Y𝑖
𝑇−1,𝑇−1 0

Y𝑖
𝑇,1 Y𝑖

𝑇,2 · · · Y𝑖
𝑡,𝑡−1 Y𝑖

𝑇,𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑑𝑦×𝑑𝜉 .
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We now combine the problem parameters. Let d = (d1, . . . ,d𝑇 ) ∈ R𝑚 and

f =

⎡⎢⎢⎢⎣
f1
...

f𝑇

⎤⎥⎥⎥⎦ ∈ R𝑑𝑥 , A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 0 · · · 0 0

A2,1 A2,2 · · · 0 0
...

... . . . ...
...

A𝑇−1,1 A𝑇−1,2 · · · A𝑇−1,𝑇−1 0

A𝑇,1 A𝑇,2 · · · A𝑡,𝑡−1 A𝑇,𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑚×𝑑𝑥 ,

g =

⎡⎢⎢⎢⎣
g1

...

g𝑇

⎤⎥⎥⎥⎦ ∈ R𝑑𝜉 , B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1,1 0 · · · 0 0

B2,1 B2,2 · · · 0 0
...

... . . . ...
...

B𝑇−1,1 B𝑇−1,2 · · · B𝑇−1,𝑇−1 0

B𝑇,1 B𝑇,2 · · · B𝑡,𝑡−1 B𝑇,𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑚×𝑑𝑥 ,

h =

⎡⎢⎢⎢⎣
h1

...

h𝑇

⎤⎥⎥⎥⎦ ∈ R𝑑𝑦 , C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1,1 0 · · · 0 0

0 C2,2 · · · 0 0
...

... . . . ...
...

0 0 · · · C𝑇−1,𝑇−1 0

0 0 · · · 0 C𝑇,𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑚×𝑑𝑥 .

Therefore, using the above compact notation, we can rewrite the multi-policy approx-

imation with linear decision rules as

min
x0∈R𝑑𝑥 ,X∈R𝑑𝑥×𝑑𝜉

y𝑖
0∈R

𝑑𝑦 , Y𝑖∈R𝑑𝑦×𝑑𝜉

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

{︀
fᵀ(x0 + X𝜁) + gᵀ𝜁 + hᵀ

(︀
y𝑖
0 + Y𝑖𝜁

)︀}︀
s.t. A(x0 + X𝜁) + B𝜁 + C

(︀
y𝑖
0 + Y𝑖𝜁

)︀
≤ d

x0 + X𝜁 ∈ 𝒳

∀𝜁 ∈ 𝒰 𝑖
𝑁 , 𝑖 ∈ {1, . . . , 𝑁}.

C.3.3 Proof of Theorem 4.4

We present here a generalization of Theorem 4.4 in which there are nonnegativity

constraints on the support of Ξ.
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Theorem 4.4. Suppose Ξ = R𝑑𝜉
+ and 𝒳 = R𝑑𝑥. Then, (4.12) is equivalent to

min
x0,X,y0,Y,Λ,s

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︂
fᵀ
(︀
x0 + X𝜉𝑖

)︀
+ gᵀ𝜉𝑖 + hᵀ

(︀
y𝑖
0 + Y𝑖𝜉𝑖

)︀
+ (s𝑖)ᵀ𝜉𝑖

+ 𝜖𝑁
⃦⃦
Xᵀf + g + (Y𝑖)ᵀh + s𝑖

⃦⃦
*

)︂
s.t. A

(︀
x0 + X𝜉𝑖

)︀
+ B𝜉𝑖 + C

(︀
y𝑖
0 + Y𝑖𝜉𝑖

)︀
+ Λ𝑖𝜉𝑖

+ 𝜖𝑁
⃦⃦
AX + B + CY𝑖 + Λ𝑖

⃦⃦
* ≤ d ∀𝑖 ∈ {1, . . . , 𝑁}

x0 ∈ R𝑑𝑥 ,X ∈ R𝑑𝑥×𝑑𝜉 ,y𝑖
0 ∈ R𝑑𝑦 , Y𝑖 ∈ R𝑑𝑦×𝑑𝜉 ,Λ𝑖 ∈ R𝑚×𝑑𝜉

+ , s𝑖 ∈ R𝑑𝜉
+ ,

where ‖Z‖* := (‖z1‖*, . . . , ‖z𝑟‖*) ∈ R𝑟 for any matrix Z ∈ R𝑟×𝑛.

It follows form the following reformulation that the case where Ξ = R𝑑𝜉 easily

follows in which each of the variables Λ𝑖 and s𝑖 are constrained to zero.

Proof. For any c ∈ R𝑑𝜉 and 𝜉 ∈ Ξ, it follows directly from strong duality for conic

optimization that

max
𝜁≥0
{cᵀ𝜁 : ‖𝜁 − 𝜉‖ ≤ 𝜖} = min

𝜆≥0
{(c + 𝜆)ᵀ𝜉 + 𝜖 ‖c + 𝜆‖*} .

We use this result to reformulate the objective and constraints of (4.12). First, let

the 𝑗-th rows of A,B,C and the 𝑗-th element of d be denoted by a𝑗 ∈ R𝑑𝑥 , b𝑗 ∈ R𝜉,

c𝑗 ∈ R𝑑𝑦 , and 𝑑𝑗 ∈ R. Then, each robust constraint has the form

aᵀ
𝑗 (x0 + X𝜁) + bᵀ

𝑗𝜁 + cᵀ𝑗 (y
𝑖
0 + Y𝑖𝜁) ≤ 𝑑𝑗 ∀𝜁 ∈ 𝒰 𝑖

𝑁 .

Rearranging terms,

(aᵀ
𝑗X + bᵀ

𝑗 + cᵀ𝑗Y
𝑖)𝜁 ≤ 𝑑𝑗 − aᵀ

𝑗x0 − cᵀ𝑗y
𝑖
0 ∀𝜁 ∈ 𝒰 𝑖

𝑁 ,
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which applying duality becomes

∃𝜆𝑖
𝑗 ≥ 0 :

(︀
Xᵀa𝑗 + b𝑗 + (Y𝑖)ᵀc𝑗 + 𝜆𝑖

𝑗

)︀ᵀ
𝜉𝑖 + 𝜖𝑁

⃦⃦
Xᵀa𝑗 + b𝑗 + (Y𝑖)ᵀc𝑗 + 𝜆𝑖

𝑗

⃦⃦
*

≤ 𝑑𝑗 − aᵀ
𝑗x0 − cᵀ𝑗y

𝑖
0.

Rearranging terms and applying the definition of ‖ · ‖* for matrices, the robust con-

straints for each 𝑖 ∈ {1, . . . , 𝑁} are satisfied if and only if

∃Λ𝑖 ≥ 0 : A
(︀
x0 + X𝜉𝑖

)︀
+ B𝜉𝑖 + C

(︀
y𝑖
0 + Y𝑖𝜉𝑖

)︀
+ Λ𝑖𝜉𝑖 + 𝜖𝑁

⃦⃦
AX + B + CY𝑖 + Λ𝑖

⃦⃦
*

≤ d,

where the dual norm for a matrix is applied separately for each row. Similarly, the

objective function takes the form

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�) sup

𝜁∈𝒰 𝑖
𝑁

{︀
fᵀ(x0 + X𝜁) + gᵀ𝜁 + hᵀ

(︀
y𝑖
0 + Y𝑖𝜁

)︀}︀
=

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︃
fᵀx0 + hᵀy𝑖

0 + sup
𝜁∈𝒰 𝑖

𝑁

(︀
fᵀX + gᵀ + hᵀY𝑖

)︀
𝜁

)︃

=
𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︂
fᵀx0 + hᵀy𝑖

0

+ inf
s𝑖≥0

{︀(︀
Xᵀf + g + (Y𝑖)ᵀh + s𝑖

)︀ᵀ
𝜉𝑖 + 𝜖𝑁

⃦⃦
Xᵀf + g + (Y𝑖)ᵀh + s𝑖

⃦⃦
*

}︀)︂
=

𝑁∑︁
𝑖=1

𝑤𝑖
𝑁(�̄�)

(︂
fᵀ
(︀
x0 + X𝜉𝑖

)︀
+ gᵀ𝜉𝑖 + hᵀ

(︀
y𝑖
0 + Y𝑖𝜉𝑖

)︀
+ inf

s𝑖≥0

{︀
(s𝑖)ᵀ𝜉𝑖 + 𝜖𝑁

⃦⃦
Xᵀf + g + (Y𝑖)ᵀh + s𝑖

⃦⃦
*

}︀)︂
.

Combining the reformulations above, we obtain the desired result.
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