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Abstract

This thesis addresses some of the issues, primarily devices and fundamental physics,
relevant to the design of future all-optical soliton communications networks. All-
optical switching is discussed in some detail, including an experiment demonstrating
cross-phase modulation switching of soliton-like pulses. The known physical limita-
tions on soliton transmission are discussed. A perturbative analysis is presented which
suggests how some important high bit-rate limitations on both soliton transmission
and storage may be overcome. A catalog of potentially useful devices is presented,
including novel proposed devices.
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Chapter 1

Introduction

1.1 Soliton Communications

The idea that solitons might propagate in optical fibers was presented by Hasegawa
in 1973 [1]. This paper appeared shortly after the famous paper of Zakharov and
Shabat in which an inverse scattering trarsform was used to solve the nonlinear
Schrodinger equation (NSE) [2], in the context of spatial solitons. Mollenauer et
al. at Bell Laboratories developed lasers with which they performed experiments
demonstrating soliton behavior in fibers (3, 4, 5, 6, 7).

The potential for using optical solitons for communications was recognized [8],
and furthermore that eolitons might be used over long distances without electronic
regeneration. CW Raman pumping along the transmission fiber could provide the
gain required to compensate the loss of the fiber [9, 10]. Eventually, as erbium-doped
fiber amplifiers (EDFAs) were developed, it was recognized that they could be used for
long distance transmission much more conveniently than CW Raman pumping [11].
EDFAs are diode-pumped, relatively polarization-insensitive, have a long upper-state
lifetime ensuring relatively data-independent gain, compact, and exhibit gain in a
25-30nm band centered around a wavelength of roughly 1.51um, which is very close
to the minimum loss wavelength for silica fiber.

A brief paragraph on the transmission format of soliton data may be in order.
To date, all such systems are on-off keyed (OOK), which is the simplest version
of amplitude shift keying (ASK). The presence or absence of a pulse in a (locally
synchronous) bit interval represents a binary ONE or ZERO, respectivcly. The data
streams can be time-division multiplexed (TDM) in which case the data are in-
terleaved, and all of the pulses have the same carrier frequency. The data can be
wavelength-(frequency-) division multiplexed (WDM), in which case there are several
data streams at different carrier frequencies, with sufficiently large frequency separa-
tion to avoid crosstalk. Each wavelength channel is partitioned into its own (equally
spaced) bit intervals, which overlap those of the other channels. There is a complica-
tion in wavelength-multiplexing solitons, however. Their frequency-pulling tendency
requires that they be well-separated when multiplexed, to avoid permanent frequency
shifts [12, 13]. Polarization-division multiplexing (PZDM) of solitons has been quite
successful [14, 15, 16]. There are other more exotic proposed transmission formats as

13
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Figure 1-1: A recirculating loop for simulating long-distance soliton transmission.

well, e.g., Refs. [17, 18].

Currently, even better performance can be achieved by introducing filters into
the transmission fibers [19, 20, 21, 22, 15]. Bandpass filters provide a restoring force
which pulls solitons towards the center wavelength(s) of the filters, reducing noise-
induced timing jitter due to the Gordon-Haus effect [23] and other similar effects [24]
(see Chapter 5). The filters also improve the signal-to-noise ratio by suppressing the
(linear) noise while not destroying the (nonlinear and “self-correcting”) solitons.

Most recent experiments have used recirculating loops of fiber containing several
EDFAs. Solitons propagate around a loop many times to simulate ultra-long distance
transmission. A typical recirculating loop experiment looks something like Fig. 1-1,
which is based upon the work of Mollenauer et al. |25, 16], and is similar to the set-up
used by Nakazawa et al. [26].

Modulators have also been successfully incorporated into transmission experi-
ments to reduce timing jitter [26, 27| in conjunction with filters [21]. Of course,
timing recovery would be required at every modulator to maintain synchronism with
the data. Although this approach has been successful, modulators may not be used
in actual long-distance transmission links because of complexity, cost and reliability.
In fact, there are those who question the use of passive filters for these very same
reasons [28] - how much moreso for modulators!

Lately, (expensive) straight-line experiments have been performed as well, with
similar results. However, it has been found that polarization selectivity in the compo-
nents can lead to time-dependent fading of the data, as the components (including the

14



fiber) stretch, bend, heat up, and cool down [29]. Solitons have also been successfully
wavelength-multiplexed and polarization multiplexed over long distances [16, 30].

Other techniques, such as tailoring the dispersion along the spans between am-
plifiers in order to keep the pulses as soliton-like as possible [31, 32, 33| are likely to
further improve the performance of soliton systems. Distributed amplification would
be wonderful because it would reduce the spatial inhomogeneity due to the gain,
which causes the solitons to lose energy as dispersive waves, and is a serious factor
limiting the achievable bit rates. CW Raman pumping can approximate distributed
gain. Distributed doped erbium fibers (long fibers with low doping concentrations)
have been fabricated and successfully utilized by BT, but the cost is likely prohibitive,
and the pumping scheme could prove cumbersome.

Simultaneously, as soliton transmission has advanced, so has nonsoliton non-
return-to-zero (NRZ) transmission. By alternating sections of positive and negative
dispersion fiber, a very low average dispersion can be achieved. This keeps the data
from spreading outside the allotted bit intervals, and also serves to discourage self-
phase modulation and the resulting spectral broadening. NRZ data can also, like
solitons, be transmitted along links which contain amplifiers rather than repeaters.
In fact, the 1995 trans-Atlantic cable will use EDFAs and NRZ format. However, it
will be difficult to wavelength multiplex many channels, because the engineered can-
cellation of dispersion is perfect for only one wavelength. Furthermore, these pulses
will not restore themselves in the presence of filtering as solitons do, so filtering likely
cannot be used.

1.2 All-Optical Switching

Switching is an essential operation for any information handling system, be it a com-
munication system, computer, etc. Broadly, we use the term “switching” to refer to
a process by which one channel (the “signal” channel) of information is modified by
information in another channel (the “control” channel). It is clear from our working
definition of switching that it is an inherently nonlinear process. We shall also allow
for the degenerate case in which the control channel and signal channel are the same:
here we refer to self-switching or self-routing processes.

The nondegenerate case is more functional, and for the most part we shall con-
centrate on this case. However, self-switching devices certainly do have applications,
and they shall not be overlooked.

1.2.1 All-Optical vs. Electrooptical vs. Electronic Switch-
ing

Before discussing the technical issues, we present several applications of switching.
Subsequent subsections will be more technical.

The first question is why should switching be done all-optically. The term “all-
optical” means different things to different people. Purists would say that the signal
and control streams must be and remain optical throughout, and furthermore that any
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control operations which might be required to accompany the switching operation,
such as clock extraction and delay for synchronous switching must be performed
optically. There are those who would relax the latter constraints and only require
that the signal and control streams be and remain optical. The relaxed definition
of “all-optical” is definitely desirable, especially for the short-term, because of the
reasonably well-developed technology of integrated electrooptical devices.

First, consider purely electronic switching. This has the advantage of extremely
well-developed and sophisticated devices which are readily commercially available.
However, there are serious concerns regarding bandwidth and complexity. Electronic
processing for optical pulses at bit rates exceeding electronics speeds might require
parallelism and could make difficult the subsequent conversion from electrical signals
to properly timed short optical pulses. If optical switches can be built with func-
tionality comparable to electronic switches, all-optical switching could prove simpler.
While electronics speeds may appear to grow without bound, it is widely believed
that there are bounds, and that optics should be considerably less constrained.

Although the issues are not precisely the same, a related issue of electronic vs.
optical implementation is amplification in long-distance undersea cable transmission.
There are several motivating factors for replacing electronic regenerators with EDFAs
including cost, bulk, complexity, and flexibility (e.g., retrofitting, or applicability
despite changes in bit rate, data format, etc.). The 1995 AT&T trans-Atlantic cable
will have EDFAs instead of electronic regenerators.

While there are clear reasons to avoid purely electronic switching in an optical
network, it is less clear, at least in the near-term, if there is any advantage to perform-
ing control operations purely optically, rather than electro-optically. Electrooptics is
advantageous because data streams can remain optical throughout the switching fab-
ric, without the need for conversions to and from electronics. But electrooptics is st:ll
restricted by the ultimate speed of the electronics. At the time of writing, several
transmission experiments have involved the use of electro-optic modulators at rates
of 2-10 GHz (for example [34, 35, 16, 36]). Laboratory rates have reached 40 GHz.
It is not clear how much higher these rates can be pushed.

All-optical switches, however, should be capable of switching at THz rates. How-
ever, most of the designs to date are pipelined and suffer from large latencies. That
is, although the switching is performed on THz-rate data, the delay from the time a
pulse enters the switch to the time it exits, based upon published switch experiments,
is in the range of 30 ns to 10 us! At 200 GHz, a bit interval is 5 ps, which is more
than three orders of magnitude less than the switching delay.

The problem is the medium in which the switching is performed: optical fiber. The
nonlinearity is just too weak. Yet, at present, there is no substitute material which
is unquestionably superior to silica fiber. Fibers with higher nonlinearity have been
fabricated, but invariably the loss is much higher than in ordinary silica |37, 38, 39].

Semiconductors, when operated with large nonlinear indices of refraction, suffer
from multiphoton absorption, which can ruin pulse shapes. Semiconductors also tend
to have large linear loss (but they can be made active), as well as much greater
insertion loss than fibers. Balancing the extra loss likely implies increased ASE noise
in the system. Active devices may suffer from data-dependent gain because of the
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rapid gain dynamics. Nevertheless, there are some very promising semiconductor
switches [40, 41].

Polymer waveguides suffer {rom similar problems, but much worse, they tend to
have very slow nonlinearities, plus many of them degrade too rapidly to be used in a
real-world system [39).

It is hoped that a material will be discovered, or a heterostructure engineered,
which will exhibit refractive nonlinearity that is much stronger (orders of magnituds=)
and as fast or faster than that of silica fiber, will have low two photon absorption,
and have low net linear loss. Coupling losses should also be minimal, ideally by
making completely integrated optical circuits for cascaded switching operations. If
solitons are desired, this will further require that the material be highly (linearly)
dispersive. If the material is not intrinsically so dispersive, it may be possible to
design distributed ieedback-type structures to increase the dispersion [42].

1.2.2 Optical Switching Applications

With regard to a communication system, switching has several applications.

It may be desirable at certain points within a network to replace the pulses con-
stituting a channel with new pulses. There are several reasons why one might wish
to do this. First, if the transmission is over extremely long distances, the pulses will
eventually degrade, and it may be desirable to replace them to maintain an adequate
eye diagram and signal-to-noise ratio. Furthermore, if the bit rate is sufficiently high
and the distance sufficiently great (not necessarily very far, at high bit rates) then (if
unchecked) Raman self-frequency shi’ts will accrue. Switches which replace the old
pulses with new upshifted pulses could be fabricated.

Second, nodal routing might be achieved via frequency-selection. The intended
destination of a data stream would determine the carrier frequency, and this could
change at each node. Tunable switches could be used to perform the frequency
conversion.

Third, the author and others independently have proposed that a tunable switch
in conjunction with a section of dispersive fiber and the inverse switch (to return the
pulses to the original carrier) could serve as a variable delay line. This is an im-
portant node function useful for multiplexing, contention-handling, and other control
operations.

Another application of switches is that they can perform Boolean logic operations.
These could be useful for a variety of signal processing applications. Nodal control
operations and routing are useful within the network, and end-users may wish to
process incoming information.

Switches are useful as time-division demultiplexers [43, 44, 45, 46, 47, 41, 48, 49,
50].
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1.3 Brief Soliton Review

Loosely, a solitary wave is a localized disturbance or wavepacket whose derivatives
with respect to the propagation coordinate vanish at +oo, and which propagates
without changing shape unless it encounters another wave. Solitons are very special
solitary waves which are natural modes of certain nonlinear and dispersive media.
Solitons have the remarkable property that after fully colliding with cach other, they
emerge unchanged, except for possible phase and position shifts. Fundamental soli-
tons are single humps or kinks which propagate without change. Higher-order humped
solitons, or “breathers,” are periodic.

In an optical fiber in which there is group velocity dispersion (GVD) and Kerr non-
linearity (the index of refraction of the medium changes proportionally with the inten-
sity of the light present, and essentially instantaneously), the nonlinear Schrodinger
equation (NSE) describes the propagation of light. The self phase modulation of the
fiber through the Kerr effect counteracts the dispersion. The nonlinear Schroedinger
equation (NSE) can be written:

Ou k" 0%u

— J-a—z' = —2——52; - n‘u|2u (11)

where u(t, z) is the slowly varying pulse envelope (the carrier frequency and wavenum-
ber have been scaled out), z is the propagation distance, ¢ is the time in the moving
frame of the pulse, k" 1s second-order dispersion, and & is the Kerr coefficient. This
equation is in a retarded coordinate frame. The coordinate frame moves with the

group velocity of the pulse.
Perhaps the most useful solution to this equation is the fundamental (also N=1,
or first-order soliton) soliton:

t 1"
u(t,z) = Asech (;) exp {j%:_—zz} (1.2)

The soliton area is fixed by the ratio of the dispersion to the Kerr nonlinearity:

Ar = ,/Lki (1.3)
KR

where the sign of k" must be negative if £ > 0, as is the case for an ordinary optical

fiber. At a given carrier frequency, there are (theoretica]ly) infinitely many possible

fur.damental solitons, of different amplitude and width, but all with the same area.
The distance in which a soliton acquires a 27 (nonlinear) phase is:

8 ("272") = 82 (1.4)

X2D
where the pulse Full-Width at Half Maximum intensity

TPWHM = 9rcosh~ V2 ~ 1.762747, (1.5)
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A is the carrier wavelength in vacuum, ¢ is the vacuum speed of light, and D is the
time-of-flight group velocity dispersion (units of time per square length, which phys-
ically represents the amount of time shift per wavelength shift per distance). Disper-
sion is sometimes given as k" (or B"), meaning the second derivative of wavenumber
with respect to frequency. The relationship between k" and D is

A2D

B = ———. 1.6

2me (1.6)
The term “soliton period” usually refers to the quantity zo as defined above. Thus a
simpler expression for the soliton period is

nr?

Zo — —m. (17)

The peak power of a single fundamental soliton is

’\Aeff

4112 Z0

(1.8)

PN=1 =

where A g is the effective area [51] of the fiber (the cross-sectional area within which
is most of soliton power) and n, is the nonlinear index of refraction in m?/Watt. For
an ordinary silica optical fiber,

ny = 3.18 x 107*m?/W .

Higher-than-first-order solitons are essentially oscillating bound states of funda-
mental solitons. The number of solitons comprising the bound state is the (integer)
order of the higher-order soliton (e.g., an N=3 soliton is a bound state of three N=1
solitons). Higher-order solitons are unlikely to be used for communications. Per-
turbations are much more likely to disturb these somewhat delicate (weak binding
energy) bound states than they are to disturb fundamental solitons.

1.4 Basic Fiber Propagation Equations

In this section, we shall examine the simplest coupled nonlinear Schrodinger equa-
tions (CNSEs) for pulse propagation in optical fibers. This thesis would not really be
enhanced by the inclusion of a derivation of these equations. The reader is referred to
Menyuk for the painstaking details [52]). Let the reader beware: these equations be-
come less adequate as pulse widths grow shorter and/or propagation distances grow
longer, and when operating near zero dispersion. Many higher-order effects mani-
fest themselves in these regimes. Typical pulse widths used in soliton transmission
experiments to date are of the order of 30 to 60 ps. Pulses of such great duration
are essentially unaffected by higher-order nonlinearities (some of these effects are dis-
cussed in the chapter on High Bit-Rate Limitations, Chapter 4) such as Raman scat-
tering, self-steepening, frequency-dependence of Kerr, etc. (however, electrostriction
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does lead to timing shifts). Such pulses will most definitely be affected by third-order
linear dispersion, if propagated too close to the zero dispersion wavelength of the
fiber Otherwise, current communications solitons are well-described by the standard

CNSEs.
In the second subsection, we consider some of the implications of these equations.
In particular, we take a brief look at polarization rotation and instability.

1.4.1 'The Equations

The unnormalized equations can be written:

AU

U, = —jk.,U—k'U,+j’"2

_ 2; {(2a + beos? )|U[*U + 2(a + bsin® 8)|V U
+ bcos?8ViU*

+ beosf sin 8 [U2V* + (2JUI + [VI)V]} (1.9)

Un

n
v, = —jt.,v—z'mj%vu

- % {(2a + beos? 6)|V2V + 2(a + bsin? §)|U 2V

+ bcos?OU*V*

+ beosd sin 6 [V2U* + 2V + UV} (1.10)
where the subscripts z and ¢ indicate purtial derivatives with respect to propagation
distance and time, respectively; the field quantities U and V' are defined such that

the positive frequency component (denoted by superscript +) of the electric field in
one polarization (denoted by subscript 1) is

Ef(z,t) = U(z,t)explj(wot — koz)] (1.11)

and the positive frequency portion of the electric field in the orthogonal polarization

Ef(z,t) = V(z,t) exp[j(wot — l,2)]; (1.12)

the dispersion relation for polarization 1 for wavenumber k as a function of frequency
wis

b = Eo + K umu(w — ws) + %k"|w=‘,,o(w —w,) + HO.T., (1.13)

H.O.T. are higher-order terms which are ignored; the dispersion relation for polariza-
tion 2, denoting wavenumber for this polarization as [, is

L= 0y 4 Voo — ) + %l"l‘,:wo(w W)+ HOT.; (1.14)
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a = X(Woy —Wo; W), b = X(wo,wo; —w,), where x is the (temporal) Fourier transform
(denoted by the tilde) of the third-order susceptibility assuming isotropic nonlinearity
(thus it is a scalar function rather than a tensor) so that

t t t
P(z,t) = /w dt, /m dtzjm dts x(t — ti,t — toit — t3) (E(z,t1) - E(2,2)) E(z, ta);
(1.15)
a = b in fiber, in which the nonlinear response is essentially instantaneous compared
with the rate of change of the pulse envelope {52, 53]; and the polarization basis is
specified by the angle § which is the azimuthal angle on the Poincaré sphere (the
polar angle is the phase difference between the fields U and V and does not appear
explicitly in the CNSEs) so that § = 0 for linear polarization and 6 = +/2 for
circular polarization.

Let us consider the physics of each of the terms in Eq. (1.9). The equation says
that the evolution of the field U with distance is governed by the effects on the right-
hand side (RHS). The first term is the carrier wavenumber phase term. The second
term is simply an inverse velocity term which suggests that a natural inverse velocity
for U is k'. The third term represents linear group velocity dispersion (GVD). The
|U|2U term is the self-phase modulation (SPM) term which, in isolation, would result
in a change of phase profile proportional to the intensity profile. The |V|?U term
is the cross-phase modulation (XPM) term whereby (with no other effects) a pulse
accumulates phase at a rate proportional to the intensity profile of V, the orthogonally
polarized pulse. The remaining RHS terms are referred to as coherence terms, varying
sinusoidally with z if the birefringence is fixed and nonzero.

It is common to redefine the field envelope variables U and V so that they include
their spatial phase with respective wavenumbers k, and /,. This is what is done for
the scalar NSE, and for the CNSEs it makes the coherence terms instantly identifiable
as those with complex exponential multipliers:

k”
U, = —k'U:'f']'?Uu

- ﬁ— {(2a + bcos® 0)|UI?U + 2(a + bsin? 8)|V|2U

+ bcos?  V2U*e2ilkolo)z
+ bcos sin g [U2V ekt 4 (2UIP + [VP)Veilkemt:] L (1.16)
"
V., = =V, + ]%Vu
J :
- {(2a+ beos? 0)|V?V + 2(a + bsin® 8)|U|V

4+ bcos? UV e 2lkomlo)z
+ beosf sinf [V2U kol 1 2V + UV ket ]} L (117)

One typically defines self- and cross-phase modulation coefficients to simplify no-
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linear Menyuk circular
0 =01|60=2353deg. | § =90 deg.
Skofa | 3/2 4/3 1
82ko/a 1 4/3 2

Table 1.1: Self- and cross-phase modulation coefficients for three polarization bases.

tation,
2a + bcos? b
b=|— 1.1
(Zetpet), (1.18)
‘2
8, = (W) : (1.19)

Self-phase modulation is strongest for linear polarization and weakest for circular,
while cross-phase modulation is weakest for linear polarization and strongest for cir-
cular. Table 1.1 summarizes some important values, with a = b.

1.4.2 Polarization Instability and Rotation

One of the dangers to be avoided in all-optical device design and in pulse transmissiorn
is polarization instability, which has been treated by numerous authors [54, 55, 56,
57, 58, 59, 60]. This instability can arise with high-powered CW, or with pulses, and
it occurs in birefringent (and in other more unpleasantly anisotropic) media. Exact
analytic results can be obtained for dispersionless birefringent media, as in many
of the references. There are several ways to think about polarization instability.
The author prefers the following view, which is simply phase-matching of the two
polarization axes mediated by the Kerr effect: suppose light polarized along one of
the birefringent axes has an effective wavenumber k,. Suppose furthermore that if the
same light were polarized along the orthogonal axis, it would have wavenumber k,.
The Kerr effect changes the effective index of refraction, and we can think of this as an
extra wavenumber which can provide coupling between the waves with wavenumbers
ki and k,. If the potentially unstable light happens to be a soliton, then instability
will be automatically phase-matched if the soliton phase period is less than or equal
to the birefringence beat length Ly = 2m/|k; — k2|, and the soliton is polarized along
the fast aris of the birefringent medium. Experimentally and numerically it has been
found tha. a soliton tends to remain rather .oliton-like despite the instability - it
rotates, cer'ainly shedding some radiation, but seeming to maintain its character.
Nonlinear polarization rotation, as the term is usually used, refers to a different
behavior. It is simply the difference between the rates of accumulation of nonlinear
phase between two orthogonally polarized components. It is simplest to think about
this in the circular polarization basis because there are only two nonlinear phase
terms in each equation: the SPM and XPM terms. The phase accumulation difference
occurs because the power is different in the two polarizations and also because the
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SPM and XPM coefficients are different. The phase difference is zero for circularly
polarized light, since the only nonlinear phase is the SPM of the one component. The
difference is also zero for any linear polarization, since the circular components have
equal power. Any elliptic polarization will rotate. Because XPM is twice as strong
as SPM in the circular basis, the rate of differential nonlinear phase accumulation
is proportional to the difference in power between the two circular components. So
although we said that there is no rotation for circular polarization because there is
only one component, in fact the maximum rate of differential phase shift occurs with
circular polarization. However, there is no power in the second polarization with
which to measure this phase “difference.” Note that despite the name rotation, there
1s no exchange of power between the circularly polarized components.

Polarization rotation is useful for self-switching (or as the essential ingredient in a
transmissive fast saturable absorber) [61]. One can cause a pulse to undergo nonlinear
rotation, possibly convert it to another polarization, and pass it through a polarizer
to achieve the switching or fast saturable absorber (FSA) action [61, 62, 63, 64].

1.5 Overview of This Thesis

In Chapter 2, I discuss optical switching in greater detail. This includes a discussion
of experimental work I have done with others at MIT, as well as a few of my proposals
for new devices.

In Chapter 3, I present my work on an important problem which must be solved
if many wavelength channels of solitons are to be multiplexed. The problem is how
to ensure equal gain for all of the WDM channels. The gain spectrum of a typical
EDFA is far from flat. The loss spectrum for fiber is much flatter. Passive filtering
alone may be suitable, but there will likely be crosstalk between the WDM channels.
I have proposed the use of inhomogeneously broadened fiber amplifiers, to reduce the
crosstalk. Such amplifiers do exist, and in an example, I use measured data to model
such an amplifier. I describe in detail one possible gain equalization scheme, employ-
ing passive filters for crude equalization, and an inhomogeneously broadened fiber
amplifier to provide fine-tuning of the equalization via a servo-loop. The implemen-
tation is likely more complex than is required to achieve adequate equalization with
EDFAs, but might be necessary with other inhomogeneously broadened amplifiers
with much shorter upper state lifetimes.

In Chapter 4, I briefly summarize the known limitations to high bit rate soliton
transmission. This chapter further serves to motivate Chapter 5.

Chapter 5 is predominantly my own work, and it includes a perturbative analysis
of some important high bit rate soliton transmission limitations. The work is also
relevant to optical soliton storage ring memories, and these are discussed as well.

Chapter 6 is an overview of all-optical devices that are necessary or desirable for
the implementation of all-optical pulsed fiber telecommunications networks. Much of
the chapter gives the reader a rough idea of the current status of the devices. But
much of the chapter is speculative, including many new ideas proposed by the author.
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Chapter 2

All-Optical Switching

Switching is an essential operation for any information handling system, be it a com-
munication system, computer, etc. Broadly, we use the term “switching” to refer to
a process by which one channel (the “signal” channel) of information is modified by
information in another channel (the “control” channel). It is clear from our working
definition of switching that it is an inherently nonlinear process. We shall also allow
for the degenerate case in which the control channel and signal channel are the same:
here we refer to self-switching or self-routing processes.

The nondegenerate case is more functional, and for the most part we shall concen-
trate on this case. However, degenerate, or self-switching devices have applications
as well, and we shall briefly discuss these.

In the descriptions of all-optical devices in this chapter and in others in this thesis,
I have provided design parameters (real numbers) for implementation in currently
available materials, and especially in readily available grades of silica optical fiber.
It is expected that better materials will be developed in the near future. “Better”
can mean higher Kerr coefflicient, less two-photon absorption, less linear loss, greater
stability, etc. In particular, optical fiber would be far more desirable for devices if the
Kerr nonlinearity were much stronger (orders of magnitude). Commensurate with
increased Kerr, one would need increased dispersion in order to exploit solitons, and
there are ways of engineering dispersion into a device [42).

Candidate materials include chalcogenide fibers, for use in the infrared over a wider
range than the usual 1.3-1.55um wavelength regime. It is believed that a two-order-of-
magnitude improvement in linear loss may be achievable with these fibers, especially
at longer wavelengths where Rayleigh scattering is weak. Such fibers have been used
in switching experiments with only one meter of fiber [37]. In the experiment, an
As,53-based fiber was used, which was quite lossy (1 dB/m), but had a high nonlinear
index (ny = 2 x 1078 m?/W).

There is also hope that new engineered structures may offer improved performance.
The device concepts presented here can be fairly easily modified to take advantage of
materials advances.
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Figure 2-1: Conceptual interferometric switch with Kerr mediuin in one arm of inter-
ferometer.

2.1 Overview of All-Optical Switching

This section presents some basic all-optical switching ideas. Self-switching and three-
terminal switching are discussed. This section serves as a transition to the more
detailed discussions of subsequent sections.

2.1.1 Illustrative Example

An impractical but illustrative example of non-degenerate optical switching in the
broad sense involves two streams of pulses, which we label the signal and control
streams. Let us assume, as usual, that the streams are partitioned into equally-
spaced bit intervals. Suppose further that information is modulated onto the streams
in on-off keyed (OOK) fashion. That is, the presence of a pulse within a bit slot
represents a binary ONE while the absence of a pulse in a bit slot represents a binary
ZERO.

We can perform a Gedanken experiment with the components in Fig. 2-1. This is a
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Figure 2-2: A fiber Sagnac interferometer.

Mach-Zehnder (M-Z) interferometer with a Kerr medium in one arm. The signal data
enters the interferometer and is split equally into the two arms of the interferometer.
One arm contains a Kerr medium. A dichroic coupler allows us to couple in our
control data into the Kerr medium, where it can impart phase and/or timing shifts to
the half-signal. The two channels interact until the second dichroic coupler is reached,
at which point, the control data is physically separated from the signal. If the control
imparts a m phase shift to a signal pulse, then the signal pulse will exit from the
opposite output port than it would exit if there were no control pulse present.

Geometries and the means by which the phase shift is imparted distinguish the
various interferometric switches. While on paper a standard M-Z would appear to
be & reasonable geometry, in reality, the M-Z would be difficult to stabilize against
thermal and acoustic fluctuations. Perhaps the most popular geometry at the time of
writing is the Sagnac loop, usually implemented with optical fiber. (see Fig. 2-2). The
Sagnac is popularly referred to as a M-Z “folded back on itself.” Rather than travel
through two physically distinct arms of an M-Z, the pulses counterpropagate around
the same loop of fiber. Instead of distinct beamsplitters or couplers at the input and
output of the M-Z, the Sagnac has a single coupler which closes the loop and provides
input/output ports (note the orientation of the coupler - the alternative orientation
makes for an interesting signal processing device [65], or with other components inside
the loop can be a storage ring [66, 67, 68, 69, 70]).

A Sagnac with a 50:50 coupler (light entering one port of the coupler is equally
divided between the ports on the other side of the coupler), zero birefringence, and
zero loss acts as a perfect reflector [71]. This is easy to see once one recognizes that
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the coupler is a lossless, time-reversal symmetric (and therefore reciprocal) four-port
device, which implies a 7/2 phase shift between the output ports for a single in-
put [51]. Alternatively, there are ways to make the loop act as a perfect trarsmitter,
with a nonreciprocal element or by using waveplates (achievable, e.g., with fiber po-
larization controllers) in the nonlinear regime of operation [72]. Fiber is of course a
Kerr medium, and although the Sagnac appears to be symmetric unlike the interfer-
ometer of Fig. 2-1, there are ways to asymmetrize the loop. Some of these methods
are discussed below.

2.1.2 Self-Switching

A simple way to achieve (intensity-dependent) self-switching is to use an imbalanced
fiber Sagnac interferometer [73, 74, 75, 76, 77]. By making the coupler other than
50:50, and using a loop of sufficient length, the counterpropagating pulses will accu-
mulate nonlinear (Kerr) phase at different rates. The difference will be proportional
to intensity (assuming zero dispersion). In fact, with zero dispersion, each pulse in-
side the loop will acquire phase porportional to its intensity profile. This nonlinear
differential phase will distribute the pulse to the output ports as a function of inten-
sity. Using an imbalanced coupler, however, some light will always leak to the output
port through which the pulse did not enter the loop.

Another way to imbalance a fiber loop is to asymmetrically place gain or loss
within the loop (78, 79, 80, 81, 82, 83, 84, 41, 85]. This way, a 50:50 coupler can close
the Sagnac so that there is no leakage. The asymmetric location of the gain/loss
results in differential Kerr phase for the counterpropagating pulses. In this way, one
can combine amplification with artificial fast saturable absorption (FSA) action to
clean up some of the low intensity garbage between pulses in a TDM system (noise
from previous amplifiers, or other dispersive waves). For there to be no leakage, the
gain must be the same for the counterpropagating pulses (with a 50:50 coupler), which
requires that the gain either must have a response time much longer than the loop
toundtrip time, or must be well-saturated so that the response is small. The gain
could be stabilized by saturating it with another source (e.g., in another polarization
or at another frequency, so it can easily be separated from the data), or perhaps with
feedback control of the pump if the control can respond as quickly as the gain. No
matter how well the gain is stabilized, however, the amplified spontaneous emission
(ASE) noise acquired by the counterpropagating pulses will be different. The loop
will not serve to reduce noise-imparted effects of the internal amplifier. Such effects
are important limitations on transmission, and are discussed in other chapters.

Self-switching can also be achieved with waveplates, polarization rotation, and a
polarizer [61].

Self-switches are designed with a specific peak intensity in mind. If soliton data
is being used in a network, and different bit rates are being used, this could be a
problem (solitons of different widths have different intensities).
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2.1.3 Three-Terminal Switching

Self-switching has obvious limitations for applications. Much more flexible are devices
in which pulses switch pulses. Such a device has two inputs and one output, as does
a primitive Boolean logic gate.

There is an enormous body of literature relating to nonlinear directional couplers
as switches (86, 87, 39, 88]. Nonlinear couplers will not be discussed here. They
are generally implemented in semiconductors which suffer from high insertion loss,
multi-photon absorption, and if active, can provide data-dependent gain. Even in an
ideal medium, it is not clear that these devices could accurately preserve the data
in the switching process. But such devices would certainly have the advantage of
compactness.

There are a host of resistive switches as well. Again most of these devices re-
quire semiconductors, which have many problems including large inscrtion loss, two-
photon absorption which modifies pulse shapes, relatively fast satusation time con-
stants which can make the response data-dependent, and the usual electronics limi-
tations (e.g. capacitances and transport times) if the devices are hybrid. The general
question of reactive versus resistive switches is inieresting, because it might appear
that resistive devices would be more wasteful, but often reactive devices require high
switching powers and if the switching pulse energy is not recovered, the reactive
switch couid actually use more energy. However, in the case of a reactive switch, this
energy can be transported away from the switch, whereas in a resistive switch, the
energy is deposited within the switch. In any event, resistive devices such as reflection
modulators, self electro-optic devices (SEEDs), etc. will not be discussed here.

There are numerous ways to make switches utilizing the cross-phase modulation
of one pulse upon another. Many of these utilize interferometers. Others use small
frequency shifts followed by dispersive delay lines, for pulse position shifts. Polar-
ization rocking devices may be used. Four-wave mixing is another possibility. These
and other ideas are discussed in the remainder of this chapter.

2.2 XPM Collision Switches

At MIT, Keren Bergman and I, with the guidance and facilities of Professors H.A .Haus
and E.P.Ippen, have demonstrated that switching can be achieved using collisions of
orthogonally polarized solitary waves, in a Sagnac interferometer. The concept is
influenced by the nature of solitons. Namely, that the net result of a soliton collision
is that each soliton is displaced and phase-shifted. Otherwise, the solitons remain
unchanged. This is a remarkable property, and it would be ideal for designing all-
optical switches, if nature were so kind. But of course, optical fibers do not lend
themselves to easy-to-build soliton switches.

First of all, consider using copolarized solitons of different frequencies. Although
the pulses can undergo a near-perfect soliton collision, they cannot in one collision
achieve the full 7-radian phase-shift required for interferometric implementation. To
impart such a large phase shift to a fundamental soliton would require a fifth-order
soliton. Such pulses are rather unstable to perturbations. Achieving multiple colli-
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sions would not be easy. One might think of splicing together fibers of opposite dis-
persion, but the pulses would not be solitons in the positive GVD fibers, and would
therefore tend to dispeise unless some averaged-soliton game could be played. That
is, the spreading in the positive GVD fibers would be compensated by compression
in negative GVD fibers. It would be essential to avoid resonance with the averaged
soliton period, or to use large values of dispersion, to eschew sideband generation. Fur-
thermore, it is not clear that the averaged pulses would still act as averaged solitons in
the presence of the collisions, although it seems plausible. In any event, there is still
the problem of the two different frequencies. It is less convenient to design a system if
we must keep track of different frequencies which are used in the same channel. Many
two-color switches have been built and proposed {89, 90, 91, 92, 93, 94, 95, 96, 83].
These switches may be less convenient than other switches. If a two-color pulse-
replacement switch is used, the output pulse will be at a different frequency than the
input. It could be rather cumbersome to have frequencies flipping back and forth
from stage to stage.

As an alternative, we might use orthogonally polarized “solitons” of the same
frequency, in birefringent fiber. Although it is possible to launch solitons in a fiber,
these solitons act as solitons only with light of the same polarization. Propagation
in a fiber can be described with two coupled nonlinear Schréodinger equations, as
in Chapter 1. If one of the polarizations is completely unexcited, then iight in the
other polarization behaves according to the dynamics of the one-dimensional nonlinear
Schrédinger equation, which is an integrable equation, meaning that it has soliton
solutions. A soliton, after colliding with another, remains completely intact, merely
acquiring a uniform phase shift and a timing shift. In contrast, the system of coupled
equations is not integrable. This means that the coupled equations do not exhibit
true soliton behavior. Specifically, orthogonally polarized “solitons” are distorted by
a collision, and shed dispersive waves. More distortion and shedding occur for slower
collisions. Neither distortion nor continuum is desirable for switching.

There is an integrable pair of coupled nonlinear Schrédinger equations, the Man-
akov system [97, 98], but fibers support Manakov-like behavior only for a specific
elliptic polarization [52] (and this case is not strictly integrable, because of coherence
terms - the coherence terms are often neglected because they vary rapidly, averag-
ing to zero). Achieving and maintaining such polarization states might not be an
easy task, and thus far there have been no experimental papers demonstrating such
switching.

One might imagine that rapidly scrambling the polarizations of tlie pulses might
give rise to averaging over the Poincaré sphere, yielding averaged Manakov solitons,
but it is not clear whether or not this concept would be applicable to switching. In
fact, it seems unlikely that polarization scrambling can be achieved on a desirably
short distance scale for switching.

Again, a single collision will not achieve a 7 phase shift, and because the collisions
must be “fast,” even less phase might be achieved in one collision than in an integrable
system. However, it is now easier to achieve multiple collisions. We simply splice
together birefringent fibers with the birefringence axes rotated by 7/2, so that a
pulse which was on the fast axis of the first fiber enters the second on the slow
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Figure 2-3: Orthogonally polarized pulses collide once in each of two sections of
cross-spliced high-birefringence fiber.

axis. This is illustrated in Fig. 2-3. This was the approach used at MIT for a
proof-of-principle experiment with a fiber Sagnac loop [99], and discussed in greater
detail, with discussion of applications and generalizations [100]. A single-collision
polarization switch was demonstrated back in 1987 [101]. Use of the special integrable
(if one ignores coherence terms) elliptic polarization was discussed in Ref. [102]. The
MIT work was followed up by more sophisticated experiments at AT&T [103, 43,
104, 105]. Some of those follow-up experiments did not use solitons, and although it
was not stated in those papers, it is likely (based upon the physics, and for one of
the papers, based upon simulations by F.I.Khatri) that the output of those devices
was chirped. This very likely means that the devices would not be cascadable. In
Ref. [104], the AT&T group used the near-soliton operation of the MIT switch to
build a successful circulating shift register with inverter.

There are many advantages to the MIT type of switch. First, the pulses remain
nearly fundamental solitons, and this is highly advantageous because the output of a
switch need not be post-processed in order to be compatible with whatever follows the
switch, e.g. subsequent switches or transmission lines. Most other all-optical switch
designs to date require some type of post-processing. What most authors avoid
saying is that their output pulses are highly chirped. Such chirping implies that the
devices do not lend themselves well to cascading. Some sort of chirp cancellation
is required. Two-frequency switches utilizing a single collision cannot possibly use
fundamental solitons to achieve a 7 phase shift. Time domain chirp switches [106]
or soliton dragging switches [107, 108] would require some sort of gating or cross-
correlation at the output, and no one to date has published a demonstration of such
a post-processor.

Another advantage is timing jitter insensitivity. If an incoming bit stream which
has accumulated some timing jitter is input to the switch, the other input stream has
no jitter, and the switch is designed to replace the jittery stream with the other stream,
then the switch can effectively perform timing correction. This can be achieved
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Figure 2-4: Set-up of MIT switch proof-of-principle experiment. M = mirror, PBS
= polarizing beam splitter, A/2 = half-wave plate, A\/4 = quarter-wave plate, dashed
curve = free space light path, solid curve = fiber, x = PM fiber cross-splice.

because the switch consists of several segments, each of which supports one collision.
If the segment length exceeds that required for a collision, and one of the pulses is
slightly mistimed, then the collision can still be confined within that one segment.

The details of our experiment may be found in Ref. [99], but will be briefly sum-
marized here. The experimental set-up is shown in Fig. 2-4. The switch consisted
of eleven segments of Alcoa Fujikura PM fiber, and the total loop length was 10.2
m. Kevin Champagne of C.S.Draper Laboratories performed the splicing. With
our parameter values, a complete switch would have required twenty-seven segments.
The refractive index difference between the ordinary and extraordinary axes was
An = 5.4 x 1074, the polarization extinction ratio was at least 30 dB, the dispersion
at free space wavelength 1.52 um was 8.8 ps/(nm-km) anomalous, and the fiber core
diameter was 7.5 pm. The Sagnac was joined by a specialty coupler which was speci-
fied to be 50:50 for one linear polarization and 100:0 for the orthogonal polarization.
In this way, the signal would be split into two counterpropagating pulses, while the
control would traverse the loop in one direction only. The control and half of the
signal would undergo repeated collisions, so as to achieve a phase shift. Interference
of the phase-shifted half of the signal with the reference half of the signal would result
in some transmission from the normally reflective Sagnac.
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As a source, we used an additive pulse mode-locked Tl:KCl color center laser
which was synchronously pumped at 100 MHz by an actively (acousto-optically)
mode-locked Nd:YAG laser. The APM laser provided 230 fs pulses, each of which
was split into orthogonally polarized control and signal pulses of equal energy for
the switch. Each pulse had twice the fundamental soliton energy, and the switching
energy was 195 pJ. A delay stage was used to adjust the timing difference between
signal and control.

Because the difterences between the colliding signal and control pulses, and be-
cause of the pulse widths and distance, I designed the switch such that every other
section of fiber was of the same length, while neighboring fibers differed in length by
a small amount. This was so that the more intense pulses would spend more time
along the slow axes of the fibers than the lower intensity pulses, to compensate the
differential Raman self-frequency shift. This alternation of lengths would of course
be unnecessary if all of the pulses in the loop were the same.

In the lab, we found that the specialty coupler did not behave as advertised, nor
were we able to improve its performance. While the coupler leaked very little of the
polarization which was supposed to be unaffected by the coupler, the polarization
which should have undergone a 50:50 splitting underwent a 61.5:38.5 splitting (at
best). This was a serious problem because the split pulses were supposed to be
solitons, and since the device length was four soliton periods, each imperfect pulse
underwent significant shape modification and radiated considerable dispersive wave
radiation. This degraded the constructive interference and led to pedestals. The
results are shown in Fig. 2-5. A polarizer was used at the output to select only
the signal polarization. The lower trace shows the leakage through the device when
only signal pulses were present. The upper trace shows the enhanced transmission
with control pulses present. We found that, as expected by design, the enhanced
transmission persisted as we adjusted the delay between signal and control by several
pulse widths. The autocorrelation contrast ratio was 2.82:1.

2.3 MIT Switch Design

The switch design is quite straightforward. In fact, the basic approach to design is
applicable to a variety of switches based upon collisional phase-shift accumulation.
First, the amount of phase shift per collision depends upon the relative speed of
the pulses, their energies and polarizations. The collision must be sufficiently rapid
that the pulses not undergo significant shape changes during a collision (what is
“significant” depends on the purpose of the switch). The number of sections in the
switch is simply the number required to achieve a w-radian phase shift. Section lengths
are determined by the amount of timing jitter to be tolerated. Another constraint,
which is perhaps surprising but could be very relevant at high bit rates and high
powers, is that the average power passing through the switch should not exceed a
Watt or so, or the fiber core could melt. If narrow, high-intensity pulses are used,
Raman can become a problem. If the pulses within the loop are unequal, they will
downshift by different amounts in the loop, and the section lengths will have to be
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adjusted to compensate.

We can estimate the phase shift in one collision using soliton perturbation the-
ory (109, 110, 21] (see also Chapter 5). In the rapid-collision limit for equal-frequency
pulses, we ignore the coherence terms. The nonlinear Schrodinger equation is lin-
earized about soliton #1, the cross-phase modulation term from the coupled nonlinear
Schrédinger equations is treated as the perturbation, and a projection is performed
onto that linear bound-state eigenfunction which is interpreted to represent the change
in soliton phase. The reader should refer back to the description of the CNSE’s in
Chapter 1. The equation of motion for the soliton phase is

dAo . * . g 2, (o)
= _Re/_mdtio(—ﬂﬂv[ ul) (2.1)
where ;
u(®) = A;sech (—) (2.2)
1

is a solution of the CNSE’s if v = 0 and is used as the zeroth-order solution for the
perturbation theory,
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and the product of the phase projection function with u(®) is

L;u(") = —%‘i—.ﬁlfsech2 (;tl—) [1 - ;_tl-tanh (;_t:)] . (2.6)
I have used the subscript “1” just as a reminder that the v-pulse may have a different
amplitude and width than the u-pulse. We are interested in the total phase shift from
the collision, so we should integrate over z. The only z-dependence in the integrand
on the right-hand side (RHS) is that of |v|2. Suppose that the intensity profile of v
remains essentially unchanged as it collides with u, so that |v|? is a function of the
single argument (¢ — v;1z). Then,

oo 1 oo _
/_m dz|v|? = o] / dt|v|? = E, /v (2.7)
g —00

where we have denoted the field energy of v as E,. So, if we reverse the order of
integration in the equation for Ab, performing the integral over z first, then the
integral over ¢ is simply the integral over 8, times the projection function. The latter
integral evaluates to 6,, and the result is that the increase in phase resulting from
one collision is

|1A8] = 6,E, /|;]. (2.8)
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The phase shift equals the product of the cross-phase modulation coefficient with the
energy of the v pulse, divided by the magnitude of the relative inverse group velocity.
If one channel has index of refraction n and the second channel has index n + An,

then

. (n+An n) An
v = = —

g ¢

, (2.9)

c c
which is not the reciprocal of the group velocity. This is simply because the equation of
motion describes the change of the time profile with distance. The relevant measure of
“speed” is the timeshift over a fixed distance, rather than the usual notion of velocity
as a shift in position over a fixed time interval.

Now we have an expression for the collisional phase shift, but the expression is
approximate, and, conservatively, we would like to achieve collisions which leave the
pulses undistorted. A rough (and conservative) rule for equal pulses, based upon
comparison of simulations and theory [111] is to keep the normalized slip parameter

(k' =1 _TAn
W T

slip = (2.10)
greater than 3 or so. The meaning of this is that the puises should travel at least
37 (roughly five FWHMs) relative to each other over a distance of one characteristic
length. The value selected for the normalized slip depends upon the total number
of collisions, length of the device, and tolerance for distortion. If slip is measured
in terms of the switched pulse (thus, 7 = 1), then the required minimum slip will
increase as the switching pulse power increases. Not only is this a limitation in the
above approach, but also it is unlikely that a large improvement can be attained using
(say, N=1) pulses of different widths.

Timing jitter insensitivity is a very desirable feature of the MIT switches. The
amount of insensitivity depends upon the length of each section of birefringent fiber.
The length of a section can be written

N.rc

section — An

L (2.11)
where N, is the number of pulsewidths of timing shift between the pulses in the
fast and slow axes in propagating through the section, 7 is the pulsewidth, c is the
vacuum speed of light, and An is the difference in the effective index of refraction of
the fast and slow axes. One might expect that N, = 2 would be a minimum value,
and that this would be a good value only where the timing jitter is negligible. With
timing jitter, N, > 4 is perhaps a good rule of thumb. Reasonable numbers might be
N, = 4,7 = 500fs, and An = 3 x 10~*, which gives Lgoc4i0n = 2m.

It seems unlikely that the spatial periodicity of an MIT switch will lead to signifi-
cant coupling of energy out of the pulses and into dispersive waves. This is especially
true if the splices are not very lossy (so that there is little pulse amplitude variation)
and the birefringence is high (suppressing nonlinear polarization rotation). How-
ever, it is wise in general when designing devices to bear in mind the potential for
instabilities.
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Figure 2-6: A two-input AND gate. Cross-splices in loop not shown. The coupler
closing the Sagnac is 50:50. The couplers inside the loop are BAR for the control
polarization and CROSS for the signal polarization.

It is desirable to minimize the propagation delay in an all-optical switch. Contrary
to this goal is the desire to minimize the amount of energy required for switching.
Likewise, avoiding short pulses avoids Raman downshifting. Optimizing the switches
depends on the types of operations being performed, and conversely, the details of
the architecture are optimized depending upon the characteristics of the switches.

It is quite straightforward to design switches which perform any Boolean oper-
ation. For example, an AND gate which uses only the two input pulses is shown
in Fig. 2-6. One input, which I shall call A (the control in Fig. 2-6) is split by the
Sagnac and the other input, B (the signal in Fig. 2-6), is coupled inside the loop in
the orthogonal polarization. If the loop is normally reflecting for A, then this device
acts as an AND gate, with Boolean output AB. Of course gain or loss is required
for one input if the device is to be perfectly balanced and use solitons in the loop.
If the device does not need to have symmetric inputs, and there is no loss or gain
at the inputs, then the control A will have greater energy than B, so relative to B,
the device has gain. If the loop is normally transmitting, this device will output AB.
This is not a standard logic gate, but it is nevertheless useful at times to be able to
distinguish two inputs (e.g., for pattern recognition).

Other gates can be designed which have two data inputs and a clock input. The
clock could in principle be used in a manner similar to its usual use in digital elec-
tronics so that a switched output only appears if the data inputs are properly timed.
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Figure 2-7: An XOR or XOR gate. Cross-splices not shown. The coupler closing the
Sagnac is 50:50. The couplers inside the loop are BAR for the control polarization
and CROSS for the signal polarization.

However, in this case, the motivation is simply to design gates which can output ONEs
when there is no data input. An example is shown in Fig. 2-7. This device is com-
pletely symmetric in A and B, and when there is an output, it is the clock pulse. In
this device, the inputs travel in one direction around the loop, opposite to each other,
adding nonlinear phase to the corresponding half of the clock pulse. If the device is
normally reflecting for the clock, then a single input provides the m phase shift needed
for transmission of the clock. If both inputs are high, both halves of the clock are
phase shifted so that there is no relative phase and the clock reflects. Thus, this is an
XOR gate. If the device is normally transmitting, then we have an XOR gate. Note
that an XOR gate with a single input is an inverter. With inverters and AND gates
we can construct any Boolean logic gate. For example NAND and NOR are Boolean
complete. To build a NAND gate one can follow an AND gate witls an inverter, as
illustrated in Fig. 2-8. To build a NOR gate, one can invert the two inputs to an
AND (A +B =AB).

It is the nature of the switches discussed above that one loop serves to compare
only two inputs. To do multi-input comparisons generaily requires cascaded loops,
which implies greater latency. So long as latency is a problem, parallelism (a tree
structure) with two-input gates will likely be preferable to single multi-input gates
(unless of course the “multi-input gate” is the appropriate tree structure).

There are uses for nonstandard gates such as the AB gate discussed above. An-
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Figure 2-8: NAND gate as cascade of AND and XOR inverter.

other type of alternative gate compares bits in different clock cycles. This is again
useful for pattern recognition. An example is shown in Fig. 2-9, which is essentially
the same as Fig. 10 in Ref. [100]. Special polarization-sensitive coupler is shown in
the figure, but as in Figs. 2-6 and 2-7, more ordinary polarization-selective couplers
can be used internal to the loop, and a simple 50:50 coupler can close the Sagnac.
The device has two inputs A and B which are offset in time. The C input is polarized
orthogonal to A and B. It can be timed to be between the A and B pulses, as shown.
The device is designed so that C and B collide repeatedly in the first loop, and C and
A collide in the second loop. So if both loops act as AND gates, the device outputs a
ONE only when A and B (and C) are high. If the first loop is an AND and the second
is a CA, then the output of the device is high only when B is high and A is low.
Continuing in this manner, any sequence of two bits can be identified. In fact, we
can cascade as many loops as we wish, and match patterns of any length. However,
we incur latency which grows linearly with the number of bits in the pattern. For
large patterns, it may be more efficient to replicate the pattern and perform parallel
pairwise comparisons. To design a reconfigurable pattern-matcher, one could have
both an AND and a DE at each stage, with a routing switch to select one of the
gates. The routing switch could be activated with a control stream of pulses.

2.4 Other Switching Concepts

2.4.1 XPM Collision Switches Using Pulses Other Than
Fundamental Solitons

Instead of collisions of fundamental (N=1) solitons, one might try to achieve a large
phase-shift quickly by using an N>>1 pulse to perform the switching on an N=1
soliton. If phase-shift is proportional to switching pulse energy, and if 25 collisions
would be required if v were an N=1, then v would have to be an N=5 for switching
in a single collision. One problem is that such pulses spread very rapidly in the time
domain, and would likely do so irreversibly because the high power of these pulses
makes them more sensitive to non-NSE fiber properties. Such pulses would have to be
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not shown.
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removed from the switch before the wings spread outside the bit interval. This would
likely require that all collisions would have to occur in much less than one soliton
period. Furthermore, such high-power collisions would likely result in large timing
shifts per collision, so it would protably be necessary to choose an even number of
collisions.

One could go even further by using both switched and switching pulses which are
supersolitonic and for which the dispersion length greatly exceeds the length of the
switch. As usual, collisions could be achieved using pulses in different polarizations
or of different frequencies. By using one or more complete collisions, the cross-phase
modulation-induced phase shift should be uniform. However, each pulse acquires
significant chirp from self-phase modulation. This goes completely counter to the
philosophy of the soliton switches, in which solitons are used because they maintain
constant temporal shape AND spectral shape. Using solitons ensures cascadability
and WDM-compatibility. Nevertheless, if active devices are used to replace pulses
before they degrade, solitons may be unnecessary.

2.4.2 XPM Copropagation Switches

Farzana Khatri and I have begun an experiment, described in the paragraph following
this one, to test a cross-phase modulation switching concept which sacrifices timing-
jitter insensitivity for gain and reduced switching energy, and perhaps reduced latency.
It is likely that timing restoration need only be performed on data which have traveled
some distance greater than the distance between ports of a node. Thus incoming data
would pass through a single timing restoration device, and then subsequent logic
within the node would be performed with devices which are timing-jitter sensitive.

The device concept we are testing uses a Sagnac loop which splits pulses in one
polarization (label it “signal”) and can be biased so that the loop is normally reflecting
or transmitting for these pulses. The same layout as shown in Fig. 2-6 is used, except
that ordinary fiber can be used - no cross-splices are required. The pulses in the
orthogonal polarization (“control”) traverse the loop in one direction only. Rather
than using collisions, we launch the pulses into the loop of nonbirefringent fiber so that
they copropagate, phase shifting each other continuously through the loop, achieving
XPM phase very efficiently. However, if the loop length is great enough that the
dispersion plays a role in pulse shaping, it will be necessary to make both a half-
signal and the half-signal-plus-control nearly solitons within the loop. The control
pulses are very much sub-solitonic in the loop. When a control pulse is launched
simultaneously with a half-signai pulse, the two form a near-soliton which is in a
different polarization than the half-switching pulses alone. If the loop is normally
transmitting for the signal pulses, and there is a polarizer at the output which selects
the signal pulses and rejects the controls, and the controls are the incoming data,
then the device operates as an inverter with “gain” (the small data pulse has been
replaced with a big signal pulse). If the device is too long, or the data pulses too
energetic, the nonlinear polarization rotation of the copropagating pulses must be
accounted for. Our experiment is very muv.h like this example.

It might appear that it would be best to use very intense pulses to make the

40



switch short and to avoid the distortion from the interplay of nonlinear phase and
dispersion, but in order to do so, the data pulses would have to have constant intensity
across the switching pulses to achieve flat nonlinear phase and complete switching.
There are lots of ways to produce pulses which would be sufficiently square for this
application - examples being cascaded nonsoliton loop mirrors, cascaded polarization
rotation intensity discrimination devices, and perhaps other overdriven Giunzburg-
Landau [112] devices. High power may in fact prove to be the best approach, but
silica fiber will probably not be the right medium because of the small product of
nonlinearity and melting energy [113].

2.4.3 Time-Domain Switches

Switches which do not utilize interferomet=rs include time domain switches, such
as soliton trapping gates [108], soliton dragging switches [107, 114], and time-domain
chirp switches [106, 115, 116], all of which have been fabricated and tested by M.Islam
et al. at AT&T and analyzed by both the AT&T group and by C.R.Menyuk et al.
at the University of Maryland. As with most gates, the presence/absence of a pulse
in an input port (or polarization, etc.) indicates a ONE or ZERO in that port. The
basic principle of a time-domain switch is that the time delay for a pulse traveling
from the input to the output of a device can be used for logic. However, this requires
very fast gating (i.e., another ultra-fast all-optical logic gate...) or cross-correlation
(inefficient) at the output of each switch.

As an example, consider a device which has inputs A and B, and which passes
onily the (possibly modified) A pulse as its output. Suppose furthermore that the
time delay for A traveling from input to output is different (by at least two pulse
widths) depending on whether B is a ONE or a ZERO. If the cross-correlator operates
as a gate to pass pulses arriving within a time window which includes the output A
pulse only when the B input was present, then the device operates as an AND gate.

Soliton trapping switches utilize the frequency shifts of pulses which are orthogo-
nally polarized and overlapping in birefringent fiber, and which form a bound state.
Trapping switches require that the incoming pulses be nearly synchronized so that
each will be trapped in the potential well of the other pulse, in a birefringent fiber.
The concept is illustrated in Fig. 2-10. For a given birefringence, there is a mini-
mum power requirement in order for the bound state to be formed, obviously with
more power required at higher birefringence. In order to form a bound state, the
pulses must shift their center frequencies (initiated by cross-phase modulation) so as
to have equal group velocities. Of course, pulses which are orthogonally polarized
and are detuned so as to cancel the birefringence walk-off will more readily form a
bound state, but this would not be useful for the device described here. The bound
state of the equal-frequency pulses is generally a nonequilibrium state, and will radi-
ate dispersive wave energy. If the bound state is to be close to an N=1 soliton-like
pulse [117, 118, 119}, without radiating too much continuum, then the input pulses
must be sub-solitonic, and the interaction must occur soon after the pulses enter the
fiber, or else they will disperse and not trap.

The bound state travels at a group velocity which is between the group velocities
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Figure 2-11: Time-domain chirp switch. (a) block diagram. (b) one implementation.

that each pulse would have in the absence of the other pulse. Thus, with ultra-fast
gating (likely another type of all-optical switch) or with some sort of cross-correlation
scheme, the timing shifts can be used for logic operations. If the trapping results in
sufficiently large frequency shifts, filtering could be used to remove one of the pulses.
Trapping devices are very sensitive to timing errors in the inputs, they do not produce
clean solitons, and they generate dispersive waves.

An improvement is the soliton dragging approach. Rather than forming a bound
state of two orthogonally polarized pulses, we cause the two pulses to collide in an
asymmetric fashion. This can be done by launching the pulses into the birefringent
fiber so that they overlap, and the collision is incomplete. A device using this approach
is illustrated in Fig. 2-11 (the figure is based upon a figure of Islam et al. [106]).
Or the collision can be asymmetrized by prechirping one of the pulses so that it
compresses during the collision. Or an amplifying or lossy birefringent fiber could
be used, etc. Early switches used collisions with large frequency shifts, leading to
shifted carrier frequencies, so that filtering could be used to separate the pulses. Such
strong interactions lead to distorted pulses and continuum, in addition to the problem
of frequency-shifted output. More recent switches have used small frequency shifts,
followed by long sections of fiber in which the small chirp leads via GVD to a timing
shift. 'These time-domain chirp switches offer improved, but still far from perfect
timing insensitivity. And the problem of cross-correlation remains.
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2.4.4 Nondegenerate Four-Wave Mixing

An alternative might be to use nondegenerate four-wave mixing (4WM) in semicon-
ductor traveling wave amplifiers [40]. The data and a frequency-shifted pump (e.g.
a train of pulses or a block of strong CW of length equal to that of a packet) would
mix in the TWA and generate new pulses at a new frequency which could then be
filtered out. One likely problem is that the new pulses are not transform-limited --
two photon absorption and self- and cross-phase modulation degrading the pulses.
Second, the device in this simple form can perform only an AND function, which is
not Boolean complete.

If this approach were used for switching out of a soliton storage ring, the residual
pulses would be a problem. As a possibility, successful tapping could trigger the
suppression of a packet’s worth of clock pulses in a regenerative buffer (see Chapter
6, Network Devices, the section on Bufters/Memories). Or, in a laser-style buffer, the
4WM pump could be fed into the loop to saturate the gain to kill the residual data.
The pump could be filtered out of the loop after one roundtrip. This approach might
render the ring inoperable for an unacceptably long time, however.

2.4.5 Polarization Rocking Switches

Another concept which can be applied to switching is the polarization rocking concept,
which was originally employed in the design of passband filters [120]. The device
consists of sections of birefringent fiber of equal length spliced together in series.
Every other section of fiber has the same birefringence axis orientation. N eighboring
sections have axes which differ by some small angle (twist angle 8,), e.g. by one degree.
Two adjacent sections of fiber constitute one twist period. For some frequency, each
section of fiber is exactly one-half of a beat length (beat length = A\/An, where A
is the wavelength and An is the difference in index of refraction between the fast
and slow axes). This means that the light components along the slow and fast axes
acquire an extra 7-radian phase shift between them, in traversing one section. So if
light enters the device linearly polarized along the fast axis of the first section of fiber,
it remains so polarized throughout the first section. Upon entering the second section,
the light is linearly polarized at an angle 6, to the fast axis of this second section of
fiber. When it reaches the end of the second section, it is linearly polarized at an
angle of —6, to the fast axis. Upon entering the third section, the light is linearly
polarized at an angle of 26, to the fast axis of the third section. This continues with
the light advancing by an angle of 26, in each twist period.

At other frequencies, power will not be so efficiently coupled. Thus, with a polar-
izer, the device acts as a passband filter. Stolen et al. demonstrated filters with the
following typical numbers: passbands of the order of 5-10nm at a wavelength A of
around 600nm, twist period of 1.5cm, An = 4 x 10~°, and total fiber length of 200cm.
Even scaling to 1.565um, the device would be only around one half meter long.

So far, the analysis has been entirely linear. As discussed in the introductory
chapter, through the Kerr effect, the index of refraction of the medium changes by
an amount proportional to the intensity of the light propagating within the medium.
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Thus, in a birefringent medium, light can change the birefringence, and therefore the
beat length. For example, suppose the usual pulses entering the device are effectively
linear and that high-power control light is launched into the device orthogonal to
the signal. The full analysis could get rather complicated, but it is clear that in the
presence of the control light, the birefringence will be different than when the control
light is absent. Thus, it should be possible to design a device which rotates the signal
light by angles differing by 90 degrees depending upon the presence or absence of the
control. This has actually been achieved experimentally (50]. The author suggests
that with CW pump light over a packet interval, this device could serve as a compact
(less than one meter!) packet switch.

2.5 Summary

In this chapter, I have provided an overview of current all-optical switching ideas, with
emphasis on (nearly) lossless switches. A significant portion of the chapter was de-
voted to the cross-phase modulation switches designed, fabricated and tested at MIT
and C.S.Draper Laboratories by the author and coworkers at MIT and C.S.Draper
Labs. Some of the author’s ideas for switches which have yet to be built were pre-
sented, as well.
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Chapter 3

Ultra-Long Distance
Wavelength-Division-Multiplexed
Soliton Transmission Using

Inhomogeneously Broadened
Fiber Amplifiers

3.1 Introduction

Note to the reader: this chapter is based upon reference [121].

It may be possible to wavelength-division-multiplex (WDM) solitons for multi-
megameter distances, while it appears less likely that WDMed conventional linear
transmission will be feasible for such distances[11, 122, 123, 124]. Two-channel WDM
soliton transmission has been achieved [16] An important problem to be solved be-
fore multi-channel soliton WDM becomes a reality, however, is the problem of gain
equalization. That is, each of the WDM channels should experience the same aver-
age gain over the course of transmission. However, the gain spectrum of an EDFA
is generally quite peaked, and the frequency-dependence of the fiber loss only tends
to make matters worse. Practical schemes exhibiting dynamic gain equalization for
more than two wavelength channels for ultra-long distance soliton transmission have
not been demonstrated to date, to the author’s knowledge.

Many of the EDFAs discussed in the literature to date exhibit primarily homoge-
neous broadening. It may be difficult to dynamically equalize the gain for multiple
WDM channels using such amplifiers [125]. Some sort of channel scrambling scheme,
in which the data hops (via nonlinear mixers) between channels at several locations
along the transmission line, might achieve net gain equalization for all channels [126].
However, here I propose that inhomogeneously-broadened gain media may be suit-
able for soliton WDM. Several authors have reported inhomogeneous broadening with
erbium-doped fibers with germanosilicate (Ge0,:Si0;) cores [127, 128, 129, 130].

In inhomogeneously broadened media, there is some degree of independence of the
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gain saturation for channels at different wavelengths. If nearest-neighbor channels are
separated by a homogeneous linewidth, one can saturate so that each channel sees
the same gain. Cross-saturation limits the minimum channel-spacing. Continuously-
operating low-power lasers (control lasers) tuned in between the channels could be
adjusted through feedforward /feedback to maintain the desired saturated gain profile
with time-varying data. A related compensation scheme has been demonstrated with
homogeneously broadened fiber amplifiers [131]. Narrowband notch filters, such as
the proposed channel-dropping filters {132, 133], could be used to filter the control
laser output.

3.2 Amplifier Model

For the purposes of this discussion, it will suffice to consider a simplified model
of an erbium-doped fiber amplifier. I shall assume a superposition of simple two-
level systems, and I shall use a truly lumped model, assuming that the effects of
propagation within the amplifier can be incorporated into an overall gain profile. For
more thorough modeling, see Giles and Desurvire [134] and references therein.

The lineshape of the gain for a two-level system can be written (this is a simple
generalization io several narrowband saturating signals, and simplification to a two-
level system, of un expression given by Yariv [135])

0.2 oo . d
W) = 81rAn]2VTcV2 /_w gta(y’fﬁ'(i?(if)u- (31)
P (1 + 8mn?h 2.‘i=1 T‘L)

where I(v,z) = I(v,0)exp{y(v)z}, z is distance of propagation through the gain
medium, the notation I(v) or I, henceforth implies z = 0, v is frequency, I is spectral
intensity, AN? is the steady-state population inversion with no optical signal present,
c is the speed of light in vacuo, 7,, is the spontaneous emission lifetime for transi-
tions from the upper state to the lower state, g;(f) is the probability distribution of
homogeneous packets (used in determining the inLomogeneous lineshape) satisfying

/_ ‘: a(f)df =1, (3.2)

f is frequency, gn(v, f) is the homogeneous lineshape centered about 1 = f satisfying

/ : an(v, f)dv = 1, (3.3)

v is frequency, M is the number of WDM channels plus the number of control lasers,
v; denotes the center frequency of a narrowband signal (WDM channel or control
laser), I,; denotes the corresponding intensity temporally-averaged over several bit
periods, n is index of refraction, and h = 6.6262 x 10~3* J-s is Planck’s constant. Note
that the integral is symmetric in v, but the lineshape is not quite symmetric, because
of the v? in the denominator. Wanting values for AN® and z, I shall conservatively
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assume a peak unsaturated gain of 31 dB, which is 3 dB below the value measured
by Laming et al. [127].

For WDM transmission, I(v) is the spectral intensity of several on-off keyed
(OOK), return-to-zero (RZ) pseudorandom trains of pulses (most probably solitons).
I choose to simplify things by assuming that the gain recovery time is long compared
to the bit-spacings in any channel, so that the amplifier sees the signal spectral den-
sity averaged over several bit-spacings. Fluorescence lifetimes of erbium-doped fibers
are typically a few milliseconds [136]. bit being a ONE,

Soliton peak power is a function of wavelength,

A

)
4n2 Zo

Iso) = Psol/Aeft = (3.4)

I is intensity, P is power, A g is the effective mode area (which also varies with
wavelength, but I shall ignore this), n, is the Kerr coefficient which for pure silica is
3.18 x 10-2°* m?/W, and
B mlct?
o= 4(cosh™v/2)2A2D
is a soliton scale length, where ¢, is pulse width, ¢ is the vacuum speed of light, and
D is the magnitude of the anomalous group velocity dispersion.

The signal spectrum will be taken to be a series of Dirac delta functions at the
channel carrier wavelengths and control laser wavelengths. This is justifiable because
the pulse bandwidth, which is the width of the envelope of the (noise-free) data
spectrum, is much less than the homogeneous linewidths and the channel-spacings.
In the example below, the pulse bandwidth is more than two orders of magnitude less
than the smallest homogeneous linewidth. The average intensity at the input to an

amplifier for the jth WDM channel is

(3.5)

I, = (Isolj)(weight for sech train)(fiber loss factor)

- () (5o (e —) (3:6)

where R is the bit rate, a; is the (positive) power loss coefficient (m~!) for the jth
channel for propagation between amplifiers, and Lspan is the length of transmission
fiber between successive amplifiers.

The objective is to saturate each channel to approximately the same level of
gain. The target gain for each channel will not be identical in general, since the loss
between amplifiers (and therefore the requisite gain) may be different for the different
channels. Equalization in this context is used to mean that the signal power in one
channel is preserved when path-averaged, or equivalently, that the level diagram does
not manifest growth or decay on a length scale greater than the amplifier spacing.
I remind the reader that any wavelength-dependent variations in gain within the
amplifier are absorbed into the lumped gain profile in our simplified model.

Zyskind et al. (129, 130] have measured linewidths for transitions near 1.5-1.6 pm
in erbium-doped fibers with germanosilicate cores. They have found that the mea-
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sured lineshape can be modeled reasonably well between 1.53 pm and 1.55 pm with
a Voigt profile with the following: transitions at 1.552 pm (193.2 THz) and 1.543 um
(194.3 THz) with homogeneous linewidths of 3 nm (0.38 THz), and inhomogeneous
linewidths of 11 nm (1.4 THz), and a transition at 1.535 pm (195.3 THz) with a
homogeneous linewidth of 4 nm (0.51 THz), and an inhomogeneous linewidth of 8
nm (1.0 THz). The relative oscillator strengths of these transitions are 0.53, 0.13,
and 1 respectively. Linewidths are taken to be half-power linewidths. In the example
below, the gain proiile is a superposition of terms of the form (3.1) with the above
parameters.
I take the homogeneous lineshapes to be Lorentzian

— 5"
2n{(v - £)2 +(8/2)2}°

with 8, being the width of the distribution at half of its peak magnitude, and f the
center frequency. I shall assume that g;(f) is gaussian

g.'(f) — %\/inTizexp { _(4111 2)‘(5.5 - fctr)Z} , (38)

where §; is the full-width at half-maximum, and f, is the frequency of the center of
the distribution.

In this chapter 1 will consider an example with soliton transmission in seven
WDM channels at 2 Gb/s each. I shall suppose that within a channel, the soli-
tons are separated by 5 times the pulsewidth [122]. Thus the solitons have a 100
ps width, corresponding to a transform-limited power spectral density half-width of
0.314/(100ps) = 3 GHz. Thus another simplification is possible, as mentioned above,
because the pulse bandwidth is much smaller than the homogeneous linewidth and
the channel-spacing. I shall assume non-bursty traffic, and equal numbers of ONEs and
ZEROs averaged over the gain recovery time. I shall also assume that the loss between
amplifiers is the same for each of the seven WDM channels, and therefore that the
desired gain is indeed equal for each channel. When specific results are presented,
the following parameters are assumed: anomalous group velocity dispersion D = 1
ps/nm/km, loss between amplifiers = 0.21 dB/km, distance between nearest-neighbor
amplifiers Lspan = 20 km, and total transmission distance Lgystem = 107 m.

gn(v, f) (3.7)

3.3 Gain Equalization

The unsaturated lineshape is far from flat (see top curve of Fig. 3-1). There are
several ways to achieve equalization. I shall consider an approach which is likely
more complex than would be required in practice. The idea is to use passive notch
filters to approximately flatten the gain spectrum. The data in each channel further
saturates the gain. Finally, fine-tuning is achieved with CW power which is fed into
the amplifier (and filtered out afterwards if desired) at strategic frequencies which
are detuned from the signal channels. The pulse widths and bit rates, although
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Figure 3-1: Inhomogeneously broadened gain lineshape (log scale). Vertical lines
— WDM channels. Horizoatal line — target gain. Top (solid) curve — unsaturated.
Middle curve - with linear filters for coarse equalization. Bottom curve — with linear
filters, 2-Gb/s data in each channel, and control lasers.
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potentially useful degrees of freedom, will be assumed to be the same in each channel.
A set of passive, linear, Lorentzian notch filters of different stopband bandwidths will
be included at each amplifier, to achieve coarse equalization.

More importantly, a control system is needed for dynamic gain equalization. For
example, a set of semiconductor lasers, operating continuously at wavelengths in
between adjacent channels, could be placed before each amplifier. These control lasers
would affect the saturation of the gain without disturbing the bit streams. Through
a feedforward/feedback system (see Ref. [131]) the output powers of the individual
lasers could be dynamically adjusted in response to data power fluctuations.

Narrowband notch filters could be cascaded following the amplifiers, to remove
this power from the transmission fiber, if desired. The consequences of such filtering
on interacting pulses, whose spectra are broadened during interaction, need to be
investigated. It should be possible to design channel-dropping filters with stopband
bandwidths of less than 1 GHz and passbands of over 50 nm [126].

The control systems could perhaps be spaced by several amplifier-spacings. This
would impose stricter requirements on the dynamic range of the control systems.
The control laser power should be low, so that its propagation between amplifiers is
effectively linear.

3.3.1 Linear Filters

Next, consider an example. A set of linear filters and WDM channels was selected to
achieve very rough equalization (top curve of Fig. 3-2 and middle curve of Fig. 3-1).
The gain profile is a sum of terms of the form (3.1), one for each gain transition.
The gain is multiplied by the (power) transfer functions of the inteasity-independent
passive filters. The I,, correspond to the WDM channels, and the control laser
wavelengths. The control lasers are conservatively tuned 50 GHz away from the
WDM channel center frequencies (50 GHz above each of the three highest frequency
channels and 50 GHz below each of the four lowest frequency channels).

The model passive lossy filters have the following (power) transfer characteristic:

(8ui/2)
(v — vie)? + (b1e/2)2
where k = 1,...5 labels the filter, h; is the depth of the notch (0 < hy < 1), vy is

the half-width of the notch, and v, is the center frequency. Table 3.3.1 contains the
parameters used in the example discussed here.

(3.9)

Hk(u) =1- hk

3.3.2 Channel Separation

In addition to the homogeneous linewidths, another important consideration in deter-
mining channel-spacing is the problem of collisions between solitons in the presence
of amplifiers. Amplification asymmetrizes the frequency-pulling effect of one pulse
on the other, resulting in undesired net frequency-shifts, with subsequent timing jit-
ter [122].
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Figure 3-2: Inhomogeneously broadened gain lineshape (linear scale). Vertical lines -
WDM channels. Horizontal line - target gain. Top (solid) curve — with linear filters
for coarse equalization. Middle curve — with filters and 2-Gb/s data in each channel.
Bottom curve — with filters, data, and control lasers.

52



Afilter _ \o (nm) width 6A (nm) depth I

—1.80 11.0 0.9597
0.90 12.0 0.9360
3.60 8.0 0.8197

14.60 11.0 0.6448
18.05 11.0 0.6920

Table 3.1: Lorentzian notch filter parameters: center wavelength A/"*" (nm), k =
1,...5 relative to Ag=1.535pum; width of notch (nm); and depth of notch (fraction of
unity). See text.

The maximum such frequency-shift, for one collision of a soliton pair passing
through a single amplifier, occurs when the pulses maximally overlap at the location
of the amplifier. That is, the collision is centered about the amplifier. Preceding
the amplifier, the interacting solitons are weak, having suffered fiber losses, and they
interact weakly. There is a weak unidirectional frequency-pulling effect on each soliton
due to the nonlinearity. The effect is opposite for the two pulses - i.e. one is redshifted
while the other is blueshifted. Beyond the amplifier, the pulses are more intense, and
the interaction is stronger, giving rise to a stronger frequency-pulling effect. This
frequency-pulling is in the opposite direction (i.e., a pulse which was blueshifted
preceding the amplifier is redshifted following the amplifier). In the absence of the
amplifier, these effects cancel.

Next I consider how this collisional frequency-shift changes as the wavelength
difference A\ between the two solitons is varied. Through group velocity dispersion,
A determines the relative speed of the collision. L.y = 2t,/(DAJ) is the collision
length which is defined as the distance in which a pulse in one channel travels two
pulsewidths with respect to a pulse in the other channel. Solitons colliding at high
relative speeds (large A), small collision length L)) interact weakly. In fact, in the
limit L4 /Lspan — 0, the net frequency-shift is zero, regardless of the amplifier.
As L .11/ Lspan is increased, the interaction becomes stronger, resulting in increasing
frequency-shifts. However, when L ;)| = Lspan, the effect of neighboring amplifiers
cannot be neglected. The result is that the net frequency-shift is reduced. For
example, the amplifier preceding the center amplifier gives rise to frequency-pulling
which partially counteracts the frequency-pulling due to the center amplifier. In fact,
as Lcoll / Lspan is further increased, the net frequency-shift again approaches zero. In

summary, the net frequency-shift goes to zero for L_,)j/Lspan — 0 or co and reaches
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a maximum in the neighborhood of LcoH/LSPaH =1.
In Ref. [122], the authors suggest choosing narrow channel-spacings so that soliton
collisions are spread over at least two inter-amplifier spacings, in order to average-out
the frequency-shifts. The authors explain that this is a safe upper bound on the
separation between the lowest- and highest-wavelength channels for a given ampli-
fier spacing; smaller amplifier-spacing allowing larger wavelength separation. In our
equalization example, channels separated by less than 5 nm satisfy the criterion that
the ratio L .}, Lspan be greater than 2. Most of our channel-spacings violate this
criterion, but the net timing-shifts are tolerable, as shown below.
The expression for the magnitude of the frequency-shift experienced by a pulse in
a collision is
80‘L§pan zt & jicsch?(jz)

Ttozo i azLépan +(275)?’

Afeoll = (3.10)

where @ = 48 Mm™! is the (power) loss cocfficient, z = 2.80Lcoll/Lspan, to =
t,/1.763, and the soliton period is

242
meclg

~ D

20

This result can be derived as in the appendix of Ref. [122].

The frequency-shifts incurred by pulses separated by greater than 5 nm are not
unreasonably large. Amongst the channel-spacings in our example, the spacing 17.6
nm (between the third and seventh channels counting from the shortest wavelength
channel), results in the largest frequency-shift per pulse per collision, 2.3 MHz. This
is near the maximum of the Af . vs. Lcoll/LSPan curve. After undergoing a
single 2.3 MHz shift, a pulse would walk off by a pulse width after traveling 5.5 Gm
> Lsystem = 10 Mm.

Next, we find a conservative upper bound on the timing-shift at the receiver which
results from the frequency-shifts for two channels, labeled [ and m. Suppose a pulse
underwent only worst-case collisions (same frequency-shift as a collision centered at
an amplifier) over the entire 10 Mm distance. The total timing-shift resulting from
frequency-shifts would be

J
Stim = Y 3(AXT)DLTY (3.11)
j=1

where A/\i:"(‘)u is the collisional wavelength shift between channels [ and m (which
can be calculated from the appendix of reference [122] although several harmonics
must be included in the Fourier expansion), D is dispersion, Li;’i) is the distance in
which an unshifted pulse in one channel moves one bit-spacing relative to the second
channel, J = (Lsystem / Lll:"b) approximates the number of collisions, Lgystem = 107
m is t.ae total transmission distance, and

1 le

le — — coll .
bb = RDA),. 2Rt (3.12)
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[AFPM _ X (nm) [ < Pyata > [ < Pop, > [ < Pigtal > |

-4.178 6.018 17.160 23.178
1.997 6.091 3.215 9.306
6.812 6.149 5.260 11.409
10.144 6.189 7.170 13.359
13.415 6.228 2.470 8.693
16.701 6.268 0.410 6.678
20.150 6.310 9.960 16.270

[ Totals: [ 43253 | 45.645 | 88.898 |

Table 3.2: Time-averaged power (uW) at amplifier input for channels centered at
/\__‘,-VDM, J=1...7. A = 1.535um. < Py.i, > = unmodulated 2 Gb/s soliton
streams; < Pgp, > = control lasers tuned 50 GHz away from Aj; < Py 4,1 > = sum.

where R is the bit rate, .L";u is the collision length which is defined as the distance in
which a pulse in channel ftra.vels two pulsewidths with respect to a pulse in channel
m, t, 1s the pulse full-width at half-maximum, ar-1 A\, is the wavelength separation
between channels ! and m. Thus,

l ’
(A’\c'gﬂ)DLéystem

Im

6t ~ (3.13)

for each pair of channels [, m.

Consider collisions between a pulse in the longest wavelength channel with streams
of ONEs in the remaining six channels. Summing Eq. (3.13) over these six channel
pairs we find a displacement upper bound of 112 ps, or 1.12 pulse widths. For a pulse
in the shortest wavelength channel, colliding with streams of ONEs in the other six
channels, the upper bound is 153 ps, in the opposite direction.

The reader is reminded that we have only considered frequency-shift-induced

timing-shifts above. Soliton collisions result in pure timing-shifts as well, which were
addressed by Mollenauer et al. [122].

3.3.3 Numerical Results

It is essential that the control system have sufficient dynamic range to handle power-
level extremes. Consider a string of ONEs with no ZEROs being transmitted in each
channel. Numerically, the output powers of the control lasers have been adjusted
to achieve static equalization. Table 3.3.3 lists the center wavelengths of the WDM
channels in the first column. For each channel is listed the soliton power at the input
of an amplifier, the (nearest) control laser power required for equalization, and the
sum of soliton and control laser power. The total average power at the output of an
amplifier is 233.83 pW.
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Fig. 3-1 shows the gain lineshape (dB) in the absence of optical signals (top
curve); in the presence of the passive, linear, lossy, Lorentzian notch filters (middle
curve); and with the filters, seven WDM channels at 2 Gb/s each, and control laser
equalization (lower curve). The flat horizontal line indicates the desired gain. The
vertical lines indicate the locations of the WDM channels. The ordinate in Fig. 3-2
is gain on a linear scale. The horizontal and vertical lines are as in Fig. 3-1 The top
curve is the gain in the presence of the linear filters. The middle curve shows the gain
with the filters and with the WDM channels. The lower curve includes filters, WDM

channels, and control lasers adjusted for equalization.

3.4 Discussion

Flatter gain could be achieved with better linear filtering. Better linear filtering
would also reduce the power required for several of the control lasers. Alternatively,
if filtering is problematic, or if amplifier flexibility for retrofitting is desired, more
control laser power could be used for equalization.

There is an advantage to tuning the control lasers as close as possible to the WDM
channels. In doing so, equalization can be nearly achieved simply by keeping the total
power associated with each channel (sum of data and nearest control laser power, as
in column 4 of Table 2) fixed. 1n the example above, equalization for the continuous
streams of ONEs was better than 1072 dB. In the other extreme of no signals (all
ZEROs), simply choosing control laser powers from column 4 numerically resulted in
equalization to within 0.08 dB. Better consistency could be achieved by placing the
control lasers closer to the WDM channels (recall that our spacing was 50 GHz, while
the pulse spectral full-width at half-maximum was only 3 GHz). Of course, it might be
possible to increase the WDM channel density, so that the channels are spaced more
closely than a homogeneous linewidth. The filter specifications, stability of filters
and lasers, and the soliton frequency-jitter iinpose lower bounds on the permissible
frequency-spacing between channels and control lasers.

In the example considered in this chapter, the control laser power typically exceeds
the signal power. In the previous section, we found upper bounds on the timing-shifts
of data which resulted from frequency-shifts from asymmetrized interactions with data
in other channels. If the control laser power were not filtered immediately following
each amplifier, this power would contribute substantially to the the frequency-shifts,
and consequently to the timing-shifts.

Alternative schemes have appeared in the literature following Ref. [121]. One
scheme replaces the control lasers with a fiber ring which includes the EDFA [137].
The loop is similar to an inhomogeneously-broadened gain laser, within which lasing
can occur at each of the longitudinal modes within the bandwidth of net gain, and for
each mode the steady state saturated gain equals the loss (which may be frequency-
dependent) in the laser. How the data and circulating CW are isolated from each
other, I am not certain.

A cascade of inhomogeneously-broadened EDFAs with no servo-control has been
tested experimentally [138), with reasonable results, but the author believes much
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better results could be achieved with (much more expensive and perhaps unreliable)
servo-control.

Another receatly proposed approach uses a twin-core EDFA which acts like a cou-
pler {139]. The coupling period is frequency dependent, and inhomogeneous broaden-
ing is achieved because each individual channel overlaps with a different set of erbium
ions.

In summary, I have proposed that inhomogeneously broadened lumped fiber am-
plifiers may be appropriate for wavelength-division-multiplexed optical soliton trans-
mission. WDM channel-spacing may be limited by the homogeneous linewidths and
by timing-jitter from interchannel collisions in the presence of amplifiers. I have
demonstrated equalization with an example with achievable parameter values. I have
proposed a dynamic gain equalization scheme, in which the output powers of control
lasers, tuned between the WDM channels, are dynamically adjusted as controlled
by a feedback/feedforward control system. Better performance could be achieved
using amplifiers with wider inhomogeneous linewidths and narrower homogeneous
linewidths than those considered in ([129, 130]).
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Chapter 4

High Bit-Rate Limitations

This chapter attempts to summarize all currently understood limitations on both soli-
ton and nonsoliton optical pulse communications, both for long distance propagation
(e.g. greater than 100 km) and for shorter distances. The first section summarizes
limitations for nonsoliton pulse communications. The second section summarizes
himitations for soliton pulse communications.

Some of the limitations which the author has researched are treated in the chap-
ter on Stability and Timing Maintenance of Solitons. The other chapter analyzes
limitations due to RSFS, third-order dispersion, and noise.

4.1 Summary of Optical Transmission Limitations

4.1.1 Amplifier Noise

Propagation over multi-kilometer and longer distances requires amplification. Current
optical fibers impose a minimum of around 0.2dB/km loss. Quantum mechanically,
any loss or gain by necessity (fluctuation-dissipation theorem) introduces noise.

When people speak of amplitude noise, they are imagining that the transmission
line is linear with regard to amplifier noise. A receiver at the end of the transmission
line has some threshold(s) for distinguishing ONEs and ZEROs. The system is designed
to be relatively error-free, with some nominal bit error rate (BER), e.g. 107!2, mean-
ing that on average there should be no more than one incorrectly read bit for every
trillion bits transmitted.

Consider a system with optical repeaters (amplifiers) spaced at a distance L.
Furthermore, consider one wavelength channel (i.e., the channel in a purely TDM
system, or one of several WDM channels) with net transmission loss a (meaning
Pout/ Py = exp{—az} ). The amplifier is treated as discrete, which is reasonable if
the soliton period is much greater then the length of the amplifier, the latter being
typically in the vicinity of 30m. Therefore the required power gain is G = exp{aL}
(meaning Poy¢ /P = G).

The amplified spontaneous emission (ASE) noise power spectral density from an
amplifier of power gain G is

B(G — 1)hv (4.1)
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per polarization where G is the excess noise factor (noise figure), h is Planck’s con-
stant, and vp is the carrier frequency. One should also consider the shot noise of the
detector, the beating between the ASE and the data at the detector, and the beating
between the ASE and itself, not to mention the intensity fluctuations of the source
lasers themselves. There are of course other sources of “noise” as well, such as contin-
uum generation from pulses, various scattering effects in the transmission fiber and
other components. Given expressions for the noise sources, and characteristics of the
detector, one can calculate the minimum signal power required for a given amplifier
spacing for a given bit error rate. With their personal choices, some authors have
published such calculations [140, 141, 142].

In most of the work done by our group at MIT, we are interested in the opposite
limit, the high power limit. This is the limit considered in the chapter on Stability
and Timing Maintenance.

4.1.2 Self-Phase Modulation (SPM)

Self-phase modulation (SPM) is a limitation only for nonsoliton transmission. Solitons
maintain their unchanging nature through a balance of group velocity dispersion with
SPM. Thus, soliton proponents consider SPM to be beneficial.

In nonsoliton transmission, signal powers are kept as low as possible to avoid SPM.
However, there is a minimum power required in order maintain adequate signal-to-
noise (S/N) ratio for a desired amplifier spacing, and in practice the Kerr effect
cannot be overlooked in long distance propagation. In a fiber, the index of refraction
is reasonably well modeled as

n=mn,+ nal

where n, is the linear index of refraction, n, is the Kerr coeflicient (n, = 3.18 x 10-2°
m?/W in ordinary glass fibers), and I is the instantaneous intensity of the linearly
polarized light traveling in the fiber. The nonlinear index is actually a tensor, so that
light in different polarizations will see different effective indices of refraction. This is
discussed in Chapter 1.

The actual Kerr response is not instantaneous, of course, but is for the most part
extremely fast, as near infrared light is far away from any resonances in the fiber. The
noninstantaneous portion is primarily the Ranan response, which is usually negligible
unless sub-picosecond pulses or very long propagation distances are involved. While
the “instantaneous” Kerr effect is a photon-photon interaction, the Raman response
involves coupling to optical phonon modes which have no electric dipole moments.

If the fiber had no dispersion at all, over the bandwidth of the pulse (which
would be a rare situation, requiring a dispersion-flattened fiber which is flattened
at the zero-dispersion wavelength, or requiring very narrowband “puises”), then any
amplitude variation in the time profile of the pulse would give rise to chirp, and the
pulse bandwidth would grow with distance, but the amplitude profile would remain
constant.

In a direct detection TDM system, spectral broadening with truly zero dispersion
would not be a problem. It most certainly would be a problem in directly-detected
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FDM or WDM systems where neighboring channels began to overlap, and in co-
herent communications. In reality, there will be some dispersion of some order in
any fiber, and it will lead to distortion of highly chirped pulses (see the Dispersion
subsection below). A successful trick used in so-called “linear” transmission (usually
non-return-to-zero or NRZ format), is to use alternating sections of positive and neg-
ative dispersion fiber, so that the average dispersion is near zero, but the dispersion
at any particular point is nonzero, suppressing phase-matching for SPM.

4.1.3 Cross-Phase Modulation (XPM)

In a WDM or FDM system, one must also consider the Kerr effect induced by one
pulse on pulses in the other wavelength channels. In a fiber which is dispersion-free
over the total bandwidth of the WDM channels (as mentioned in the SPM section
above, the pulses in the different WDM channels would all travel at the same speeds.
If they were TDMed as well as WDMed, cross-phase modulation (XPM) would not
be an issue. If, however, there were more channels than time slots available between
intrachannel pulses, there would have to be some overlapping pulses. This would lead
to further spectral broadening than from SPM alone.

The reality of current systems is that the dispersion is not zero for any channel,
although the second-order dispersion (GVD) might be zero for one channel. This
means that each channel has its own group velocity, and interchannel collisions will
occur. There is no doubt as to whether or not this would have to be taken into
account for nonsoliton transmission.

Quantitatively, the amount of XPM is a function of the polarization states of the
interacting pulses. The weakest interaction occurs for pulses which are linearly and
orthogonally polarized, and which are traveling relatively rapidly with respect to each
other (to make the coherence terms negligible). At the other extreme, pulses which
are orthogonally circularly polarized see 2/3 as strong SPM and twice as strong XPM
as linearly polarized pulses.

4.1.4 Dispersion

Group velocity dispersion (GVD) is the quadratic dependence of wavenumber on

frequency:
n

"
k=k, +kw+ %wz + ?wa + ... (4.2)

which if nonzero describes a linear variation of phase velocity and group velocity with
frequency. In ordinary optical fiber, there is a zero-dispersion point at a (free-space)
wavelength around 1.3x, with longer wavelengths being in the anomalous GVD regime
(k" < 0). The zero-dispersion point can be shifted to longer wavelengths by changing
the geometry of the fiber cross-section.

The effect of dispersion, acting alone, is to cause the different frequency com-
ponents of a waveform to travel at different speeds. The waveform might initially
compress if chirped properly, but if it travels sufficiently far, it must eventually spread.

Dispersion could make extraction of information difficult. In a pulse code mod-
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ulation system, the pulses spread and overlap. In a phase-shift keyed (PSK) or
frequency-shift keved (FSK) system, the waveform becomes amplitude modulated,
and subsequently phase-shifted by the Kerr effect. A group in Germany has designed
a system in which information is transmitted as PSK or FSK but is received as an
amplitude modulated signal [143]. If dispersion were the only problematic effect other
than noise, then there would be a simpler solution. One could simply equalize prior
to detection. That is, we would send the waveform through a medium with the dis-
persion of the opposite sign of that in the transmission fiber and much stronger than
that in the transmission fiber. Dispersion is a linear operator, and perfect equalization
would be achievable in principle.

Of course, things are never that easy. In reality, there is self-phase modulation to
contend with. The signal power may seem rather low, but the Kerr effect cannot be
neglected. If the signals overlap at all, then the distortion will be pattern-dependent,
so that fixed equalization will not be optimal.

Operating at the zero dispersion point is not a good solution because self-phase
modulation is uninhibited and leads to much spectral broadening. Although it has
been neglected in most studies of nonsoliton transmission, if the pulses are too short,
third-order dispersion will also distort the pulses in time, and will alter the Kerr
spectral broadening. “Too short” means that 73/k" is less than ihe system length.

Current wisdom suggests that the best solution is to perform near-equalization
quasi-continuously in the transmission fiber. The transmission fiber consists of alter-
nating positive and anomalous dispersion sections of fiber spliced together {123, 124].
This gives net zero dispersion. The nonzero dispersion inhibits phase-matching in
each section of fiber and reduces the spectral broadening, but broadening will still
occur. Note that one might be tempted to model this analytically by saying that
to lowest order, dispersion is the only dominant effect, path average over the disper-
sive spreading and compression to obtain an effective equation for the path-averaged
nonlinearity. We would expect that such an approximation would tell us that the
nonlinearity seen by the pulse on average is proportional to the intensity averaged
over one period of dispersive spreading and compression. It would be interesting to
compare the analytic prediction and the simulations of Marcuse {123, 124].

Whether intentional or not, the alternating-dispersion approach for nonsoliton
transmission might also reduce the deleterious effects of third-order dispersion. SPM
and third-order dispersion together wreak more havoc than SPM and GVD (see e.g.
Refs. (144, 145, 146, 147, 148, 149)).

A serious drawback of “current wisdom,” (the alternating dispersion approach)
is that it would be impossible, if the pulses behaved truly linearly, to wavelength
multiplex nonsoliton channels and achieve proper equalization in each channel. This
limits the wavelength multiplexing capability. Inability to wavelength multiplex could
be the eventual downfall of nonsoliton transmission.

4.1.5 Polarization

The use of non-polarization maintaining (nonPM) fiber can create a number of prob-
lems. Cost is a primary reason why nonPM fiber will be used. It is also appar-
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ently quite difficult to produce fiber which is uniformly birefringent for long lengths.
Nonuniformity of the birefringence axes can lead to polarization scattering.

NonPM fiber is of course not nonbirefringent. Birefringence would not be a prob-
lem if it were predictable. However, fibers come with intrinsic and unknown bire-
fringence which varies along the length of the fiber. This birefringence results from
the stresses of the drawing and cooling processes. The processes are too rapid for all
stresses to equilibrate before the fiber is frozen.

The stresses described above are effectively time-invariant with regard to com-
munications. There are also birefringences resulting from externally applied stresses,
such as thermal expansion and contraction, and any bending or torsion. These bire-
fringences are time-varying.

A headache for development teams has been polarization-dependent loss. Received
signals fade in and out as the polarization wanders. It has been found that small
polarization dependent losses do not significantly affect polarization mode dispersion
(PMD) [150]. However, PMD in the general sense, which includes wandering of the
states of polarization, leads in a system with polarization-dependent losses to time-
dependent fading (29, 151].

Polarization mode dispersion is an important concern for several reasons. The
source of this dispersion is the birefringence of the fiber. Consider an unchirped pulse
launched into a birefringent fiber in some polarization state other than one of the
birefringent axes. The pulse can be thought of as a superposition of its projections
onto the birefringence axes. The birefringence will tend to pull these projections apart.
At very low powers, the two projections will simply separate at an inverse velocity of
An/c. One could define a differential group delay (DGD) to be the difference between
the delays for light polarized along the birefringence axes.

Ordinary telecommunications fibers have weak birefringence which varies along
the length of the fiber and varies with time. This of course complicates the mea-
surement of PMD. It is generally assumed that the power is sufficiently weak that
the nonlinearities can be ignored. When a number for PMD is given, it is a measure
of the amount of DGD in the fiber. One such measure is the mean square timing
deviation

PMD =v<T?> - < T >? (4.3)

where T is the deviation of the elapsed time of flight from the mean time of flight
along a given fiber, and the averaging is ensemble averaging.

In the linear limit, PMD is completely characterized by a wavelength-dependent
three-dimensional polarization dispersion vector [152]. This is equivalent, in turn, to
specification of two principal states of polarization (PSPs) and a differential group
delay, both as a function of wavelength. Indeed, for light whose coherence time is
greater than the DGD, the two PSPs are the fastest and slowest polarization modes,
they are orthogonal if the losses are polarization-independent, and they are stable to
first order in wavelength [153]. The change in DGD with wavelength can be termed
differential group delay dispersion (DGDD) and is equivalent to GVD [154]. The
change in PSPs with wavelength can lead to distortion.

With higher powers, cross phase modulation can provide the glue necessary to
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keep the projections bound into a single pulse. However, in the process, the pulse will
likely spread and shed some linear dispersive waves. Such complications are typically
ignored in theoretical discussions, but could be important for soliton transmission
and for long-haul nonsoliton transmission. Some authors have attempted to model
these effects, with some success in characterization [155, 156, 157].

4.2 Summary of Soliton Transmission Limitations

4.2.1 Amplifier Noise - Linear Limit

Just as in the linear case, amplified spontaneous emission (ASE) degrades the signal-
to-noise ratio in the system. There is a minimum signal power required for a target bit
error rate. The use of guiding filters [19, 20, 21] or sliding guiding filters [22, 15] can
suppress much of the ASE without destroying solitons, and this reduces the minimum
power requirement.

4.2.2 Gordon-Haus Effect

Because solitons travel in a dispersive medium, independent noise-induced frequency
shifts of the individual pulses will in the course of propagation give rise to timing
jitter [23]. This effect is analyzed in detail in another chapter (stability and timing
maintenance...), along with several ways to reduce the jitter, such as filtering, modu-
lation (amplitude and/or phase), (saturating) fast saturable absorption or gain, and
various dispersion compensation techniques. The latter techniques are discussed in
the chapter on network devices, in the section equalization, in the subsection on re-
active equalization. These methods of jitter reduction apply to a host of other effects
besides the Gordon-Haus effect.

4.2.3 Raman-Induced Timing Jitter

This is similar to the Gordon-Haus effect, in that it is a noise-induced effect which
gives rise to frequency shifts which then lead to timing jitter. However, the frequency-
shift mechanism is different. Raman self-frequency shift (RSFS) has a strong fourth-
power dependence upon photon number of a soliton. Furthermore, RSFS is a rate of
change of frequency, which through dispersion is like an acceleration in timing. Thus,
noise-induced photon number fluctuations lead to different rates of acceleration for
the individual pulses, leading to timing jitter. At bit rates exceeding 30 Gb/s, this
effect can dominate the Gordon-Haus effect.

Even the classical RSFS poses potential problems for transmission and storage
because the pulses arrive at a different frequency than that at which they were trans-
mitted. In a multipoint network with dynamically allocated data paths, the rela-
tionship between the received and transmitted frequencies would be unknown to the
receiver.

I have analyzed this problem, especially the noise-induced problem, in some detail
as it applies both to high-speed transmission and to storage rings. The analysis
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appears in another chapter, which I hope to publish with W.S. Wong and H.A.Haus.

4.2.4 Third-Order Dispersion

Ordinary optical solitons exist in media with second-order dispersion. Third-order
dispersion causes solitons to radiate dispersive waves. If the third-order dispersion
is strong enough, one wing of the spectrum will perfectly phase-match to dispersive
waves at one frequency, and the soliton will dump energy into this mode. Periodic
amplification provides a nice set of grating wavenumbers which can phase-match the
soliton to even more sidebands.

Similar to the RSFS noise problem, noise-induced photon number (bandwidth)
fluctuations change the speed of solitons, giving rise to timing jitter.

Third-order dispersion is discussed in some detail in another chapter.

4.2.5 Pulse Phase Resonances

A soliton has, in addition to its carrier wavenumber, a nonlinear wavenumber. It
is truly a single wavenumber, as the phase does not change across the pulse (in a
coordinate frame moving with the soliton).

Small amplitude dispersive waves are essentially unaffected by the Kerr effect (if
they are well away from any pulses). These linear waves obey the linear dispersion
relation in the medium, and they have a continuum of possible wavenumbers.

There is a wavenumber bandgap between a soliton and the dispersive waves. For
ideal transmission, we would like to have solitons with no dispersive waves. However,
if there are spatial inhomogeneities in the transmission fiber with significant (spa-
tial) spectral components which cross the wavenumber bandgap in a portion of the
(temporal) spectrum where the soliton has significant energy, then the soliton will
dissipate energy into dispersive wave modes.

That this was a problem was discovered in transmission systems with periodic
amplification/loss [10]. It is also a performance limitation for soliton fiber lasers [158,
159, 160, 161]. The effect does not in general disappear if non-soliton pulses are used,
of course, but solitons are quite susceptible because of their fixed wavenumbers.

The most practical way to solve the problem is to choose large enough pulse widths
with low enough dispersion that the soliton period is much greater than the amplifier
spacing. However, when pushing to bit rates over, say, 25 Gb/s, this may become a
problem because the amplifier spacing will have to be reduced. The phone companies
seem to be quite unwilling to reduce the amplifier spacings to less than roughly 20 km.
In non-ultra-long-haul links within a network, all-optical regeneration (see chapters
on Switching and Network Devices) may be a good solution.

Distributed erbium fibers have been fabricated and used successfully to reduce the
gain/loss transients seen by pulses, but these fibers are very expensive, and would
probably require a fairly complicated pumping scheme. Distributed Raman amplifi-
cation was the first scheme tried, but this approach is too complex.
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4.2.6 Electrostriction

In a 1989 paper, K.Smith and L.F.Mollenauer noted a strange interaction amongst
solitons traveling very great distances [162]. They found that solitons seemed to
attract or repel each other in a phase-independent manner.

This is in contrast to the well-known phase-dependent soliton-soliton interaction
which is a consequence of the overlap of the pulse tails. In this effect, solitons which
are in phase are attracted to each other, while those which are out of phase repel.

Another strange feature of this effect is that the strength of attraction (positive
and negative) is an oscillatory function of the pulse separation.

This effect remained a mystery until 1990, when Dianov et al. [163] found that
they could roughly model the behavior by taking into account electrostriction in the
fiber. Electrostriction refers to mechanical deformation resulting from an applied
electric field. In this case, the electric field is provided by the optical pulses, and
the mechanical deformation is constriction of the optical fiber. As a result of the
constriction, the index of refraction of the fiber changes. Clearly, for a fixed location in
the fiber, this is a transient effect: wherever a pulse is located, the fiber is constricted,
perhaps with a delayed response. In its wake, the fiber radius and index of refraction
undergo a damped oscillation. If the pulses are sufficiently intense and closely spaced,
then a pulse following another pulse will see a different index of refraction than the
lead pulse, and the two pulses will travel at different speeds.

What Dianov et al. did not discuss in their paper was the tensor nature of the
electrostriction. They treated the problem as if the light caused a radial response
regardless of the polarization of the light. It might be interesting to investigate the
sensitivity of the effect to changes in the eccentricity of the fiber cross-section.

4.2.7 Raman Bit-Rate Compression

RSFS bit-rate compression is a rather weak effect which I have investigated. With
narrow pulses or long distances, self-Raman can also lead to bit rate compression and
expansion. Compression can occur in TDM or WDM. Consider TDM for simplicity.
Consider a packet being launched onto a fiber. The first bit immediately begins to
redshift (spectrally shift to longer wavelengths). This pulse decelerates in time. The
second bit does not begin to decelerate until it enters the fiber, one bit interval later.
Thus the leading pulse is always traveling slower than the pulses behind it, and the
data temporally compresses as it travels through the fiber. Fortunately, this effect is
quite weak.

In WDM systems the effect can be exacerbated. The reason is that interchannel
collisions modify the rate of self-frequency shift during the collision, and lead to energy
transfer from the higher frequency channel to the lower frequency channel. Energy
loss (gain) leads to a weakening (strengthening) of the subsequent self-frequency shift
for a pulse. As an example, consider a two-channel WDM system. Assume that the
fiber is filled with pulses (a sequence of ONEs) in the lower frequency channel, channel
1, and contains no pulses in the higher frequency channel, channel 2. Now a sequence
of ONEs in channel 2 enters the fiber and a sequence of ZEROs in channel 1 enters the

65



fiber. The first channel 2 pulse begins to decelerate before the other pulses as before,
etc. This time, however, the first pulse also catches up with a pulse in channel 1,
before any other pulse in channel 2 can do so. The lead pulse transfers energy to
channel 1 and decelerates even more, etc. Clearly, with real (pseudorandom) data,
this effect is also a source of timing jitter. Because this is an amplification/loss
process, we might expect a noise contribution as well.

4.2.8 Polarization Dispersion

Polarization is a rather interesting topic in the soliton communications arena because
of the length scales involved. Polarization-maintaining (PM) fiber is readily available,
but currently considerably more expensive than non-PM fiber. PM fiber “maintains
polarization” because of its large linear birefringence. Light coupled along one of the
birefringence axes (linearly polarized) will remain on that axis up to very high powers.
Only when the nonlinear birefringence (from XPM) exceeds the built-in birefringence
does the fast axis become unstable (see Chapter 1). Non-PM fiber permits nonlinear
polarization rotation, tends to have locally linear and small birefringence, and the
birefringence axes vary along the length of the fiber (intrinsically) and with time
(due to perturbations). There certainly are disadvantages to using ordinary non-
polarization-maintaining fiber, but cost and nonuniformity of PM fiber have kept it
out of consideration.

Polarization dispersion, which was discussed in the previous section, can lead to
excessive dispersive wave shedding. It is important to use low-PMD fiber [154, 29,
155, 157, 156, 153].

4.2.9 Soliton-Soliton Interaction

The phase-dependent soliton-soliton interaction can be described as a force between
neighboring solitons, making them attractive or repulsive. The force is mediated by
the Kerr effect. An easy way to think about it is that light tries to travel as slowly as
possible — it likes to sit in regions of high refractive index. In a medium with positive
Kerr effect such as a silica fiber, the presence of light increases the local index of
refraction. The center of a soliton (or any bell-shaped pulse) has a high local index,
and the index decreases symmetrically away from the center of the pulse. If two
solitons are near each other, their wings overlap. If the pulses are in phase, the wings
will add constructively, increasing the index in the region between the pulses. Each
soliton finds that the index is slightly higher on the side of the neighboring pulse, and
the pulses attract. If the solitons are out of phase, the wings tend to cancel. The
solitons see net higher index on the side away from the neighboring pulse, and the
two repel.

A perturbative formalism for handling pulses with overlapping tails was presented
by Karpman and Solov’ev [164]. Gordon treated the special case of two neighbor-
ing solitons, showing the exponential interaction clearly [165]. Soliton interaction
in a more complicated system, with periodic gain and loss, has also been investi-
gated [166, 167]. Strong multiple-pulse interactions have been investigated numer-
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ically by Uzonov et al. [168, 169], using various tricks to suppresss the interaction
between the pulses.

Some of these tricks include the following. First, one can in principle adjust
the phases between neighboring data pulses so that the interaction is neutralized.
This is not likely to be practical in a TDM system with multiple sources. Another
alternative is to alternate the intensities (and widths, so the pulses are solitons) of
neighboring pulses. The way I like to think about this approach is that the nonlinear
wavenumbers (“soliton phase” wavenumbers) of the neighboring pulses are different,
so that as the pulses travel down the fiber, the relative phase between the pulses is
constantly changing.

Other tricks not considered by Uzonov et al. include the following. Amplitude or
phase modulators can keep TDMed pulses from drifting out of their timeslots, but
the modulation must be done often enough that the pulses cannot drift far between
modulators. Saturable absorption can be used to suppress low-intensity light, includ-
ing the overlapping pulse tails. With currently known saturable absorbers, this is
limited to TDM systems as well. These effects are used in pulse storage rings (see
chapters on Stability and on Network Devices).

4.2.10 Asymmetric Collisions (WDM only)

Solitons are truly remarkable in that they are nonlinear entities which emerge un-
scathed from collisions with others of their kind. A soliton is time-shifted and phase-
shifted as the results of a collision, but otherwise returns to its original state.

In a system with periodic amplification and loss, the symmetry of a collision is
lost. The cross-phase modulation of one pulse on the other may be different in the
first half of the collision than in the second half, resulting in net frequency shifts for
the pulses. This is most undesirable in a transmission system because it results in bit-
pattern-dependent timing jitter. One way to avoid this problem is to ensure that the
shortest soliton collision length is greater than twice the amplifier spacing [122, 170].
This can be done by minimizing the dispersion or the frequency separation of the
most widely-spaced WDM channels.

4.2.11 Gain Equalization (WDM only)

In 2 WDM system, it would be desirable if all of the WDM channels experienced
the same path-averaged gain. However, the spectrum of the gain of an EDFA is not
flat. Some possible solutions are discussed in the chapter on network devices, in the
section on equalizers. My proposal (I am not aware of any prior reference) of the use
of inhomogeneously-broadened fiber amplifiers and one possible, albeit complicated
implementation, is presented in an earlier chapter and in Ref. [121].
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4.3 Raman-Imposed Limitations for Solitons

I havelooked at these issues in some detail and some of the results are presented in the
chapter on stability and timing maintenance in soliton transmission and memories.

4.4 Third-order dispersion

This is another topic I have considered in some detail and which is addressed in the
chapter on stability and timing maintenance of solitons. See also Ref. [171].

4.5 Polarization problems for WDM

There are several scale lengths (times), whose interrelationship determines which set
of problems arise for WDMed solitons in non-PM fiber. These scales include the
polarization scattering length, the time for the local birefringence axes to change due
to thermal and bending eflects, the rate of relative polarization scatter for pulses of
different frequencies, the pulse collision length, the amplifier spacing, and the soliton
period. If the relative polarizations of colliding pulses change rapidly during collision,
this could imply that WDM collisions act like ordinary soliton collisions (Manakov [97]
limit). At the other extreme, the polarizations of colliding pulses might be frozen but
arbitrary and if the slip (number of pulsewidths of relative motion in one soliton
period) is too small, dispersive waves and pulise distortion may result. Polarizations
which vary slightly during the collision could be even worse, because the collisions
could be asymmetrized. Although cotraveling pulses generally scatter around the
Poincaré sphere, it is believed that relative polarizations are preserved reasonably well
for same-frequency data. The scattering should be frequency-dependent, however.

Time permitting, the author would like to investigate conditions under which the
Manakov limit might be achieved. The author is also investigating a novel class of
instabilities for WDM solitons, and ways to overcome this problem.
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Chapter 5

Stability and Timing Maintenance
in Soliton Transmission and
Storage Rings

5.1 Introduction

Solitary wave transmission in optical fibers appears very promising for long distance
communications, in view of recent experiments [25, 12, 16, 34] using erbium-doped
fiber amplifiers. Optical fiber pulse storage rings are also promising [26, 70, 172, 173].
It is therefore important to consider the limitations which such systems face, and how
to overcome these limitations. Gordon and Haus [23] have analytically estimated a
noise-imparted limitation (see also the more recent references [174, 141]), namely,
spontaneous emission noise from the amplifiers can shift the frequency of a soliton,
in turn shifting the velocity of the soliton through group velocity dispersion. These
random velocity shifts give rise to timing errors. The timing errors limit the achievable
bandwidth-transmission distance product.

Here we consider another noise-imparted limitation, due to fluctuations of the
Raman self-frequency shift (RSFS). Gordon [175] has provided a simple model for
the classical RSFS, and has shown that for a soliton the rate of frequency shift with
distance of propagation is inversely proportional to the fourth power of pulse width,
in agreement with experiment [176].

In addition to the noise-imparted velocity fluctuations considered by Gordon and
Haus, there are photon number fluctuations. Photon number fluctuations are com-
mensurate with pulse width fluctuations as a result of the fixed-area property of
solitons. A fluctuation in photon number/pulse width alters the rate of RSFS of a
soliton, or equivalently, alters the rate at which the inverse group velocity changes
with distance. This is analogous to a changing deceleration.

When integrating over long distances the effect can be important. For compar-
ison, we include the effects of third-order fiber dispersion. The timing jitter from
third-order fiber dispersion does not increase as rapidly with distance as the RSFS-
imparted jitter. The Raman limitation has been discussed by Wood [113] and studied
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numerically by Nakazawa et al. [177]. Finally, we show that filtering can dramatically
reduce the growth of the timing variance.

Pulse storage rings are potentially useful devices, e.g. for buffering data in optical
communications networks. A variety of such devices have been proposed and built.
Perhaps the most successful to date has been the synchronous recirculating loop of
Nakazawa et al. [27, 26, 178] (intended as a long-distance transmission simulator, but
clearly of use as a storage ring). Filtering and amplitude modulation were used in
this loop to preserve the timing of the ONE’s (solitons) and to suppress the growth of
noise in bit intervals containing ZERO’s (absence of solitons). More recently, analyses
of the benefits of phase modulation have appeared [179, 172, 180]. Here, we propose
the use of intensity-dependent absorption/gain (which we abbreviate FSA for fast
saturable absorption, although absorption and gain may both saturate) to provide a
thresholding effect which not only guarantees suppression of low intensities (robust-
ness of ZEROs), but also provides a restoring force for intensity, driving the intensity
to a fixed value. This is not only beneficial for maintaining the intensity and width (in
a near-soliton system, or in a system with feedback to the gain pump) of the pulses,
but also for reducing timing jitter, because RSFS and TOD both couple intensity
fluctuations into timing jitter. The intensity-dependent absorption may be provided
by self-phase modulation followed by an interferometric transformation of phase mod-
ulation into amplitude modulation (as in Additive Pulse Mode-Locking [181]).

There are certainly other effects which we have not considered in this work which
limit transmission and storage. Pushing to very high bit rates with multi-tens-of-km
amplifier spacings, dispersive wave generation should not be overlooked, as it drains
energy from the pulses, can be detected as false ONEs, and can induce timing jitter
in the ONEs. Deleterious effects of polarization mode dispersion (PMD) are not
discussed, as it is assumed that low PMD fibers are used. Also of importance are
those effects which couple solitons to their neighbors, such as the phase-dependent
soliton-soliton interaction, electrostriction, etc.

5.2 Model

The starting equation includes effects of filters, modulators, and fast saturable ab-
sorption, so as to make it applicable to either storage rings or to long distance trans-
mission.

The path-averaged nonlinear Schrédinger equation with (in order of appearance)
noise, RSFS, TOD, extra gain required to b- 'nce filtering loss, four terms which are
a polynomial fit to the intensity-dependent absorption/gain, amplitude modulation,
phase modulation, and filtering, can be written

ou 0%u ) O|ul? k" 03u
ou 6lul?u = 2 Fou
5z ]D6t2 tirblulu =S+ jertb—put+ o

+ Agu + (—-LFSA + vslul® + pslul* + ’77|“|6)

Mppywiy(t+ T — Ty )*u

Mapwhp(t + T — Tamr)?u + j

2l AM 2l
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lf
@ [2 ”‘] e m[ 3] 6t3} (5.1)
where |k”| L18%
b= 2 2 [gw? |’ (52)
_ 2mnahwo
6= NoAog , (5.3)
—w
X = P_Qf fo (5.4)

k" and k"™ represent path-averaged values, and cg is the effective relaxation time
associated with RSFS.

A is the modal effective area in the fiber, A(= 1.05 x 1073% J-s) is Planck’s
constant divided by 2w, wy is the soliton initial carrier (mean) frequency (rad/s), and
for silica the nonlinear index n, = 3.2 X 1072° m2?/W. In the case of long-distance
transmission, we should also average over the polarization scattering, which gives an
extra factor of 8/9 on é [14]. We have normalized the field such that

N = /_ " Juffdt (5.5)

is the photon number. From path-averaging [174, 182],
r? = (1 - e 2)/(21) (5.6)

where I' is the field loss coefficient which accounts for fiber loss, splice losses, etc.
but not filter loss, and ! is the distance between successive amplifiers. This factor
applies to the self-Raman effect as well as the Kerr effect, which is obvious from
the interpretation of the self-Raman effect as a delayed Kerr effect [175, 183]. The
coefficient cp is a measure of the strength of the RSFS term, which is a fraction of
the Raman delay time, weighted by the shape of the Raman response curve. Path-
averaging is valid if the amplifier spacing ! is much less than the soliton phase period
(which is eight times larger than zo, the so-called soliton period) 8z = 2772/ D.

The filtering terms we have chosen are for illustrative purposes. They are based
upon the approximation of the logarithm of a complex Lorentzian for small deviations
from the center frequency of the filter. We have truncated the expansion at third
order. At the next order, we would have picked up an imaginary third-derivative term
which could help to cancel RSFS, but the imaginary first-derivative term already does
so in the perturbative treatment.

We define several relevant frequencies and frequency shifts: wy is the initial carrier
frequency of the solitons, (wp — p) is the actual carrier frequency of a soliton, and
wyo is the difference between wy and the filter center frequency. In general, the filter
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center frequency may be chosen to be a function of distance, in order to suppress the
growth of dispersive waves. Linear shifting has been treated elsewhere [22]. We will
consider oscillatory shifting, so that we can use shifting filters in a storage ring, or so
that the pulse carrier frequency can be made to be the same at the input and output
of the transmission line.

wfo = wyoo + F(z) , (5.7)

and we shall treat the periodic z-dependent term F(z) as weak and slowly-varying.
We define the timing of the initial soliton to be zero, the current timing of the soliton
is T, and Tppr and Typr are the timing of the phase and amplitude modulation.
Intensity-dependent absorption can be achieved in many ways. Examples include
nonlinear Mach-Zender interferometers, asymmetric loop mirrors, and the use of non-
linear polarization ellipse rotation with polarizers and waveplates. These examples
exhibit absorption which is an oscillatory function of intensity which can be ade-
quately approximated with a polynomial in intensity (simplifying the analysis). In
conjunction with gain, this effect can be used to make a storage ring with threshold-
ing. Ideally we would bias the devices so that very low intensities see loss, damping
out noise and dispersive waves. At slightly higher intensities, the loss begins to de-
crease with increasing intensity until it becomes gain. At even higher intensities, the
gain decreases with increasing intensity, which provides a restoring force for the peak
intensity [112]. For an effective gain vs. intensity curve which has the correct limiting
behavior at high intensities, the polynomial coefficients satisfy one of the following
two sets of inequalities: (1) Lrsa,ys > 0 and 73,7 < 0, or (2) Lrsa,va > 0, 75 <0,
and 97 = 0. A sample gain vs. intensity curve and the cubic fit are shown in Fig. 5-1.

The analysis in this paper will be based upon soliton perturbation theory, but
the utility of this sort of thresholding is not limited to near-solitons. Clearly if the
nonlinear absorption/gain is too strong, the pulses will not maintain their hyperbolic
secant profiles.

The phase (amplitude) modulation in our model is completely described by a
frequency wpm(wanm), timing Tpp(Tanm), and depth of modulation Mpp(M4p) per
length lpa(lap). The modulation frequency is likely to be 2r/R, where R is the
bit rate. We use a distributed model for the action of periodic lumped modulators.
Suppose the lumped amplitude modulator multiplies the time profile by (1 — M +
M 4p1 cos wapmt), where M4z is actually half of the full depth of modulation. Then the
corresponding distributed oper: .or is (1/lap)In(1 — Mapr + Map cos wapmt), which is
approximately —Mapw?pt?/(2lanm). If the phase mc dulator multiplies the time pro-
file by exp —j{#p\ + Mpm(cos wppt—1)}, then the corresponding distributed opera-
toris (—j/lpm){dpy + Mpa(cos wppt—1)}, or approximately — Mpywhyt?/(2lpp),
where we have ignored the constant phase term which can be trivially scaled out. The
obvious implementation is with discrete electro-optic modulators. However, it may
be possible to achieve continuous phase modulation using cross-phase modulation.
For example, suppose the ring is made with polarization-maintaining fiber and the
data remains in one polarization. Broad pulses could be injected in the orthogonal
polarization at the appropriate frequency for group-velocity matching. The data are
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Figure 5-1: Cubic fit to a gain vs. intensity curve with saturating FSA.

matching. The data are likely to distort the phase-modulation pulses, so the latter
may need to be removed after a roundtrip and new pulses injected.

The term S represents both the noise introduced by the amplifiers and the noise
from zero-point fluctuations due to the loss. It is assumed that the gain balances the
loss. Strictly, the noise and the soliton amplitude should be treated as operators. In
a quantum analysis, half of the noise is due to the zero-point fluctuations associated
with the loss, and half with those associated with the gain (when the gain medium is
distributed and perfectly inverted). A semiclassical analysis gives the same result, if
the total noise is associated with the compensation by the amplifiers of the loss. In
the limit of distributed amplification, with white, delta-function-correlated noisc we

have [174]
(5°(t1,21)S(t2, 22)) = ’B(Ll_l_)

where [ is the excess noise parameter [141], G is the power gain of an amplifier, and
lis the distance between amplifiers. We have normalized |u?| to photon flux (photon
number per unit time), which accounts for the absence of the factor hwg in (5.8).

If the communication system or memory device is such that the gain is not dis-
tributed to cancel the loss at each pocint, but the gain is lumped into amplifiers,
it has been shown [182, 174] that soliton behavior can be maintained on the aver-
age under practically realizable conditions. There is a path-averaging noise-penalty

8(z1 — 22)b(ts — t2) (5.8)
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factor[174, 141]
f _ (G — 1)2
- Gln*@
which will arise in our analysis. The gain balances the loss, or 2I'l = In G, where
! is the distance between amplifiers. The path-averaging factor r? (see Eq. (5.6) )
therefore satisfies
. (G-1)

(5.9)

r= e (5.10)
Effectively,
<S.(t1,21)5(t2,22)) = NN6(21 b Zz)6(t1 — tz) (511)
where or
Ny = rff . (5.12)

As for actual numbers, with I' = 0.0242 km~' (power loss of 0.21 dB/km), we find
that for a transmission line with [ = 20 km, f = 1.081 and r? = 0.64. For a storage
ring of lengtl: I = 1 km, the noise penalty and path-averaging coefficien. can be
neglected: f = 1.0002 and 2 = 0.98.

5.3 Classical Considerations

There are some basic considerations that restrict transmission and storage even in the
absence of noise. These include the maximum power the fiber can support without
melting, RSFS shifting the pulses beyond the amount deemed tolerable, and shedding
of dispersive waves through phase matching when the carrier frequency is near the
zero of dispersion. Compensation for some of these effects are discussed here, and
noise limitations and further compensation are treated in subsequent sections.

First is the melting threshold. It has been found [113] that the average power
should be kept below roughly one Watt. Assuming solitons, the average power is

Pa,ve = 1-1357'FWHMPka (5.13)
Mg

Ppk - m (5.14)
2r7?

, = , 5.1

8z D (5.15)

(5.16)

As an example, with n; = 3.18 x 107 m?/W, A.g = 40pm?, D' = 1 ps/nm/km,
A = 1.55um, and assuming 10RTrwam = 1, we find R < 270 Gb/s.

Raman self-frequency shift is treated by Gordon [175]). For a fundamental soliton,
the rate of change of the soliton frequency with distance is

D' h(TrwHM)

(5.17)
“’o"';"WHM

i:z—o(rad/s/m) = —2.88 x 10°°
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where all quantities are in SI units (note 1 ps/nm/km = 107® s/m/m). Gordon
introduces a function h(TFwma) in his analysis which is based upon actual data for
silica. This function is plotted in Ref. [175] and can take on values between zero and
unity.

We can estimate the propagation distance or time that it takes for a soliton to
frequency-shift by half a pulse bandwidth. The above equation does not take into
account the change of dispersion with changing frequency. Let us assume XA = 1.55um
and D' = 1 ps/nm/km. If the pulse width is 1 ps (bandwidth 2.5nm), h(1ps)= 0.5,
the pulse can propagate for 480 us, or a distance of 100 km. In an extreme case in
which the pulse bandwidth is approximately the same as the erbium gain bandwidth,
with a pulse width of 100 fs (bandwidth 25 nm), h(1lps)= 0.9, and the pulse can
propagate for 270 ns, or a distance of 56 m.

Third-order dispersion is more difficult to handle analytically. It is perhaps best
treated by simulation. Nevertheless, we can state a few things. Even weak TOD leads
to radiation of dispersive wave tails from the pulse, but this may often be neglected.
If TOD is sufficiently strong or the pulse carrier frequency is sufficiently close to the
zero-dispersion frequency there is a much more serious problem. The TOD provides
automatic phase-matching between a soliton and a certain freqrency in the normal
dispersion regime. If the soliton has sufficient bandwidth so that it has significant
energy at this frequency, then energy will be continuously coupled out of the soliton.
We should keep

|k"l|
6|k"|T

} or propagating several soliton periods, without any continuum clean-up mechanism,
the minimum should probably be somewhere in the range 0.05—0.1 [149]. For shorter
distances, the number may be higher, and for longer distances, lower. Filtering loss,
amplitude modulation, and FSA can all help to clean up these dispersive waves, but
we do not expect these to suppress the coupling mechanism. Another reason to avoid
using sections of fiber in which the dispersion is very low is to reduce the effects of
polarization mode dispersion.

However, there is an unexpected benefit of filtering. Compare the filtering term
which involves a third-order time derivative with the fiber TOD term. They are of the
same form, but fiber TOD is usually positive, while the TOD from filtering is negative.
The numbers work out nicely as well. For example, if the spacing between filters is
33 km, and if we choose the filter bandwidth to be ten times the pulse bandwidth,
we find that the fiber and filter TODs cancel if the pulse width is 22 ps. If the filter
spacing is reduced to 33 m, under the same assumptions, then the TODs cancel at a
pulse width of 2 ps. These numbers are rough, of course, but it is clear that filtering
can reduce TOD. However, it is equally clear that if the filtering is discrete, it will
do little to combat continuum generation in the fiber sections themselves, although
it will reduce the noise-imparted fluctuations described below.

Another way to reduce the deleterious effects of TOD is to use only short sections
of fiber which violate Eq.(5.18). It may be preferable to use sections of positive
dispersion fiber alternating with anomalous instead of either using very low dispersion

< some minimum. (5.18)
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fiber or grading the fiber dispersion exactly to preserve solitons in the presence of
loss [31, 32]. The average dispersion can be graded to preserve solitons: ordinarty
grading can be used where the dispersion satisfies Eq.(5.18), and elsewhere alternating
positive and anomalous dispersion fibers, which alternate on a distance scale shorter
than a soliton period.

There is a classical consideration which does not explicitly appear in our model,
but which is very important in determining the conditions under which our perturba-
tion theory is useful. This is the coupling of energy from solitons to dispersive waves
through phase-matching via spatial periodicities in the system. A soliton satisfying
the nonlinear Schrodinger equation has a positive wavenumber which is a function
of its intensity (width). A continuum of low-intensity waves can be supported by,
and satisfy the linear dispersion relation of the fiber. These waves have negative
semidefinite wavenumbers. Spatial inhomogeneities in the system which have sig-
nificant spatial frequency components bridging the gap in wavenumbers can allow a
soliton to couple its energy into dispersive waves. In a transmission link, amplifier
spacings are measured in tens of kilometers. With typical silica fiber loss, this implies
gradual loss of several dB between amplifiers and a sudden gain of several dB at an
amplifier. This is therefore a dramatic spatial inhomogencity. To avoid the associated
coupling problem, the amplifier spacings are typically chosen to be much less than a
path-averaged soliton phase period. Adhering to a minimum amplifier spacirg of say
20 km, and demanding that the amplifier spacing be less than say one-fifth of a soli-
ton period, with path-averaged dispersion of 0.4 ps/nm/km, at a carrier wavelength
of 1.55 pm, and if we assume that the pulses must be spaced by at least five times
the pulse full-width at half-maximum intensity (FWHM), this implies a maximum
bit rate of 20 Gb/s, which is less than some of the bit rates considered in this pa-
per. There are other ways to reduce the coupling to the continuum which can relax
the constraint that the amplifier spacing be much less than a soliton period. One
of these is to use distributed or semi-distributed amplification. Another is to grade
the dispersion in the fiber so that a soliton of fixed width is approximately preserved
through the fiber, despite the loss. This could be achieved by splicing together sec-
tions of fiber with different dispersion, with the strongest dispersion directly following
an amplifier (31, 32].

In a storage ring, it is entirely a different matter. The amplifier spacing is likely
to be less than or equal to 1 km, making the gain/loss perturbation much weaker. We
therefore anticipate that bit rates much higher than 20 Gb/s could be accommodated
without the difficult or expensive perturbation-reduction techniques discussed above
for transmission.

5.4 The ZEROs

The analysis in this section was performed by William S. Wong.

To analyze the stability of the ZEROs, we ignore the nonlinear and the third-order
dispersion terms in Eq. (5.1), and focus on the spectral components of the noise near
the passband of the filter where x ~ 0. We shall determine the conditions under
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which all eigenmcdes of the linear evolution equation are damped.
The equation of motion for low intensity light (well below the intensity of a data
pulse) is

0 0%u
-3; = S_JDaz + Agu — Lpsau
1 1
— MAM“-’AMt U+ j— Mprth u
2lam 2lpy
1 0%
—_— 1
T 371, B (5.19)

Following the approach by Haus and Mecozzi [70] we look for an eigenfunction
solution to Eq. (5.19) of the form yn(z,t) = Z,(2)Tx(t). Substitution of y,(z,t) yields

2
( L _ jD) ¢T(t) _ (M"ngMtz _ i Mem e g2y E,,) Tot)  (5.20)
M PM

29}1,« dt? 214 21
and iz
;zz) = (Ag — Lrsa + Ep) Za(z) + Sa(2) (5.21)
If we denote
) AMw,gM PMw
— = (5.22)
To n}t

the eigenfunctions

T, (t) = Ho (%) exp (—t—:) (5.23)

274

. . . 2 —1)mn! n-2m
are Hermite-Gaussian functions where H,(t) = ;/=0 L—I")‘—,(';—E%r forn=0,1,2,....

The eigenvalues are

1 1\
—(2’n + 1) [ MAM“"AM ]2ZPM MPMWIZDM) (m - ]D)] . (5.24)

There are two criteria to ensure the stability of the ZEROs. Firstly, the evolution
of the low-intensity noise is damped provided that all its eigenmodes are damped:

Ag — Lpsa + Re[E,) <0 (5.25)

for all n.
The value of Ag is chosen such that there is no systematic change in the photon

number. From Eq. (5.39),

1 wir?
+ Mamw?pr + Lrsa —

2 3
73"‘0 _ ’)’5710 _ ")’7710 (5.26)
61,0272 ' 241,y

A
9= 6r 1572 3573
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Note that if Re[Eo] < 0, {Re[Eo], Re[E,],...} forms a monotonically decreasing se-
quence. Therefore, one only needs to ensure that Ag— Lpg, +Re[Ey] < 0 for stability.
Since one can choose the parameters Lrsy4, 73, 75, and 77 freely in Eq. (5.26) to satisfy
the first criterion, it is immediately clear that fast saturable absorption can suppress
the growth of noise.

Secondly, the evolution of the change ir. the photon number in Eq. (5.40) has to
be damped as well. This additional constraint is

2 nir? 2vsn,  8ysn?2 12y

— M 2
3l,n}r2+6l,,M AMCam 3t T5 T ase

<0 (5.27)

Because it is not clear how to implement FSA in a long-haul, non-polarization-
preserving transmission system, we shall analyze the stability of ZEROs in a system
without FSA. It is useful to define dimensionless variables

Pl
Dl_fQ%Tz
72 Mapw?pm?
HaM = '5 Lant
_ T MprIz;MT
HPM = 5 lPM

that are proportional to the strength of filtering, amplitude modulation, and phase
modulation respectively.

A. Systems with Amplitude Modulation and Filtering

This case was also discussed by Haus and Mecozzi [70]. Without saturable absorption,
the gain Ag must be kept below an upper limit set by Eq. (5.25). In terms of

dimensionless variables,

w3 [+ ] wfw ()] o

This inequality states that one cannot increase the filtering strength F arbitrarily;
otherwise, the limited gain cannot balance the loss caused by filtering.

The use of amplitude modulation tends to shorten the soliton pulse width and
broaden its spectrum, which can be counteracted by filtering only if the amount of
modulation is not excessive. Specifically, from Eq. (5.27), we require that

w? 2
— =F .
g HAM < 3 (5.29)

The stability region has to satisfy Eq. (5.28) and Eq. (5.29) simultaneously and
is given in Fig. 5-2.
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Figure 5-2: Stability diagram for soliton storage ring with amplitude modulation and
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B. Systems with Phase Modulation and Filtering

A phase modulator changes the phase of an input signal while leaving its photon
number intact. Therefore, in the absence of amplitude modulation and saturable
absorption, the criterion for photon number stability given by Eq. (5.27) is always
satisfied provided F' > 0. The stability region is (see Fig. 5-3):

(o) [(5) +] cos [y (5)] (5.30)

5.5 The ONEs

We consider classical and noise effects upon near-soliton pulses, using soliton pertur-
bation theory.

A simple fundamental soliton solution of the unperturbed nonlinear Schrédinger
equation (Eq. (5.1) without the RHS), is

T — 2Dpz)

T

U = Aosech{(t_ }expj{—%z—i—Dpzz—p(t—T)+0}. (5.31)

with 0 an arbitrary phase, T the temporal displacement, p the change of inverse group
velocity, which is equivalent to the shift of frequency as defined above, and which we
have labeled ‘p’ suggestive of quantum mechanical momentum [109]. Note that in this
momentum analog, a positive momentum leads to motion in the positive ¢ direction.
However, this is a delay, and we are in the anomalous dispersion regime, where lower
frequencies are delayed. Thus a positive change in momentum corresponds to a
negative change in frequency. The pulsewidth

4D
T = (nr"’&) = 0-567TFWHM (5.32)

where Tpw gy is full-width-at-half-maximum-intensity, and
2A%r = n. (5.33)

The perturbation of a soliton may be treated as a perturbation of the photon
number An, displacement AT, momentum Ap, and phase A§. We can express this
as [109]

Au(z,t) = fo(t)An(z) + fr(t)AT(2) + fo(t)Ap(2) + fo(t)AB(2) + continuum. (5.34)

By ‘continuum,’” we mean nonsoliton, dispersive wave radiation [2]. One can use
the perturbation approach of Haus et al. [109, 21| or equivalently, the approach of
Kaup [110] with the pulse amplitude and width coupled.

Our approach will be to expand the driving terms (RHS of Eq.(5.1)) to first order
in the soliton parameters, and to solve self-consistently. The continuum plays an
important role if, for example, the TOD is sufficiently large, if the soliton period is
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Figure 5-3: Stability diagram for soliton storage ring with phase modulation and

filtering. Note that the system is marginally stable with no filtering (along the hori-
zontal axis).
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too short, or if narrowband filters with fixed passband are used without saturable
gain/absorption. Proper treatment of the continuum could also describe the long-
term instability of RSFS and filtering simulated by Blow et al. [184]. The analysis in
this section assumes that the influence of the continuum is weak. The parameters of
the initial soliton are denoted with ‘0’ subscripts, and without loss of generality, we
choose p=T=0=0 at z = 0.

The ansatz (5.34) is introduced into (5.1) and the equations for An, Ap, AT and
Af are projected out. The projection functions are the adjoints f (t), obeying the
orthogonality relations [109]

Re [~ f1(0)f(t)dt = 8 ,i,j € {n,T,p,0) (5.35)

and equal to

f.@) = 2Aosech(£)

B T
10 = 2 (Yua () ()
£(8) = —%tanh G) Aosech(;)

iT(t) = %tAosech (;t_-) .

We are not interested in the change of phase 8 (it does not couple back to the other
parameters). We are interested in change of the soliton position (timing) AT due to
the fluctuations. The evolution equations of interest have many terms, but all have
simple physical interpretation. They are at first presented in full, and then simpler
limiting cases will be analyzed, culminating in an analysis of the entire system. The
equations are:

dAn 1 w? wir? M apw?a, T2
— 2Aq — _ _f0o M 2 AML AM
dz [ TR T 0 T T2y, AMYAM Tant
Y3no | 29sni | 2yl
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2Aq — _ fo M 2 _ AM+ AM
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+ (—2Lpss + 32" 4 5207 | 2ymo\] A
Fsa T g0 1572 3573
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dAp _ IGCRD 2(.0}0 +Mpr}23MTpM
dz - 1574 3[;0%1’2 lpM

82



64crD 4wy 2
An—-|——| A
(151’4n0 + 31,9}1'%0) n (31’”,9%) P

M 2
— ZRMUPMAT 4 §.(2) (5.37)
lpm
dAT ﬂ+1rszM4MwiMTAM 1 wy B 1
dz - 672 GIAM l_fﬂf l_fQ? 3lf93'1'2
k" B T2 Mapw? e Tam B 2 A
3r2n, 3nolam 3lf9}'r'~’n,, "
2,2 2
+ (2D 4 20} pp - T Mamam np g0y, (5.38)
1,03 6lan

In the equation for An, Eq. (5.36), there is excess gain required to offset the loss
seen by the pulse from filtering and amplitude modulation. There is filtering loss
from the finite bandwidth of the pulse and more loss if the pulse carrier frequency
is offset from the center of the filter passband. The amplitude modulator gives loss
as a function of timing, so a wider pulse will see more loss. Furthermore, if the
pulse is offset from the timing of the modulator, there will be loss. The final four
terms multiplying n, are the FSA terms, which by definition provide loss that is a
function of intensity. Next we have a large number of terms multiplying An. The
interpretation of these is the same as for the terms multiplying n,, but these terms
show the trends as the photon number changes. Most have the same sign, wiih one
exception - the amplitude modulator term which depends on the pulse width. This
simply means that there is net loss due to AM, and the loss increases as the pulse
gets weaker and wider. The term multiplying Ap shows that as the pulse carrier
frequency shifts, the pulse sees more or less loss depending upon whether the carrier
frequency is moving away from or towards the center of the filter passband. The
AT term is similar, showing that as the pulse drifts in time, it sees more or less loss
as it moves away from or towards the timing of maximum transmission through the
amplitude modulator. The final term is that portion of the noise which affects the
photon number of the pulse.

The gain of the fiber amplifiers has to be adjusted so that there is no systematic
change of the photon number, i.e.

w? mir? M pw? T
2A — f0 M 2 A AM+* AM
97 3 T Dol AMCAM T
Yano _ 2vsmg  2vimg
L - - - . .
L = T R (5:39)
The equation for An then simplifies:

dAn 2 nir? 2vsn,  8ysn?  12ymd
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2
2now2fo) Ap + (2MAM“’AMTAM) AT 4 S,(z) (5.40)

At least naively, the larger the quantity (Ag — Lrsa), the greater is the opportunity
for the growth of noise at the center frequency of the filter and at the maximum
transmission of the amplitude modulator. In a memory device, it should be possible
to keep (Ag — Lrsa) < 0, suppressing the growth of noise. By simply choosing
parameters such that the peak intensity of the pulse sees suflicient loss with increasing
intensity from the FSA, the sum of the FSA terms with v-coeflicients in Eq. (5.40)
will be negative. Cases with no saturable absorption are treated in Section IV,

In the equation for Ap, Eq. (5.37), the first cg term is the classical self-frequency
shift. The next term is frequency-pulling (from the effective refractive index profile
associated with the filter) due to the initial offset of center frequencies. The third
term is frequency-pulling from the phase modulator, which chirps mistimed pulses.
At the next order, we have the terms multiplying An. The first shows that if the
photon number fluctuates, then the power and bandwidth of the soliton change, and
this alters the rate of RSFS - increased photon number (intensity and bandwidth)
implies stronger RSFS. The other term shows that as the pulse bandwidth changes,
the frequency pulling due to the filtering changes. The Ap term describes the restoring
force which filtering imposes on the pulse center frequency. The AT term shows that
as the pulse walks off in time, it is chirped by the phase modulator. Finally, there is
the noise S,.

The lowest order terms in Eq. (5.38) are the deterministic timing terms, which, if
we are interested in ti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>