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Abstract

Quite often, in the control of physical systems, structural constraints are placed on
the feedback controller. Issues of complexity, computation, ease of implementation
and physical dimensions play a role in the decision to select structurally constrained
controllers. This thesis is devoted to an analysis and investigation of fundamental
properties of structurally constrained controllers from an input/output framework.
The type of structurally constrained controllers considered consist of fully decentral-
ized controllers and partially decentralized controllers. The point of view taken is
to analyze the controllers as a specific subset of the set of all stabilizing controllers
in the modern control paradigm. This involves examining the parameterized set
of structurally constrained controllers via their stable factors and associated stable
factor constraints. The thesis first examines the issue of a suitable stable factor pa-
rameterization for fully decentralized controllers. An analysis identifies a subclass of
controllers useful in autonomous designs and design methods based on iteration. An
autonomous design method for decentralized control is developed by bounding param-
eters of the controller in terms of stable factors of the plant. The method is developed
for both stable and unstable plants. Issues in developing decentralized controllers for
robust performance are examined. Fundamental obstacles to concurrent design of
robust subcontrollers are detailed and a D-K methodology for sequential design of
subcontrollers is developed. Computation issues for this sequential D-K methodology
are outlined along with some anticipated difficulties. Finally, a methodology for in-
corporating partially decentralized controllers into the input/output framework is de-
veloped. A transformation applicable to partially decentralized systems is developed
which allows partially decentralized controllers to be designed using input/output
methods developed specifically for fully decentralized systems.

Thesis Supervisor: Michael Athans
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Motivation

The last decade has witnessed a phenomenal growth in computing power. This ac-
cessible computing capability has been exploited by new control methodologies which
rely on it to develop sophisticated controllers capable of robustness in the face of model
and disturbance uncertainty. These technical advances have led to increased appli-
cation in ever widening domains of complexity and scale. Unfortunately, the control
of many large scale systems still present prohibitive costs in terms of instrument-
ing centralized control solutions. Issues of complexity, limitations on computation,
ease of implementation and physical dimension continue to play a significant role in
forcing the control engineer to place structural constraints on the feedback controller
eventually used to control large scale systems.

The most familiar structurally constrained controller is the fully decentralized
controller. A decentralized control structure imposes a partitioning and pairing of
system inputs and outputs. The resulting controller is constrained to be block di-
agonal thereby providing an individual controller for each channel of the partitioned
system. The characteristic advantages of decentralized control over centralized control
must, to a degree, be the characteristic advantages of any structurally constrained
controller in order to be beneficial. Namely, the implementation of the controller

shbuld be simplified relative to a centralized controller, the effective block diago-



nal nature of structurally constrained controllers should provide for a set of lower
order subcontrollers, a corresponding reduction in communication bottle necks and
an inherent parallel processing advantage over any centralized solution. In addition,
structurally constrained controllers can often be designed to provide reliable/strongly
stabilizable control strategies which provide for graceful degradation of system control
in the event of subcontroller failures 1], [2], [3], [4]. One disadvantage to structurally
constrained control is overall performance degradation due the structural constrains
placed on the controller (i.e. loss of full information feedback due to the partitioning
of the feedback controller into sub-blocks). Another disadvantage is that the design
and synthesis of structurally constrained controllers which satisfy overall robustness
measures and performance objectives is considerably more difficult relative to cen-
tralized controller designs.

In the last decade major strides have been made in the development of an elegant
input/output control framework based on the concept of stable factors [5] [6]. The
plant is decomposed into stable factors (i.e. the origin of the terminology “fractional
approach”). These factors can be used in a parameterization of all closed-loop sta-
bilizing controllers. The controller synthesis then reduces to selecting the controller
from the set of all stabilizing controllers that satisfies a performance metric. In the
case of optimal design, the problem is formulated in such a way that the search for
the optimal controller is conducted over the parameter set which defines the set of all
stabilizing controllers. The parameter itself is often referred to as the Youla parame-
ter as a result of one the original papers discussing this parameterization method [7].
This framework allows for the inclusion of both model and disturbance uncertainty in
the input/output sense and has lead to the solution of a number of important central-
ized control problems [8]. The salient features of this centralized control framework

are the following:
o The parameterization of all stabilizing centralized controllers.
e The controller parameter is unconstrained over the stable ring it is defined on.

o The nominal plant optimization problem results in solving a model matching
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problem where the optimization equation is affine in the controller parameter.

o This framework is applicable to both continuous-time and discrete-time, lumped

parameter system models.

o Model, disturbance and parameter uncertainty can be represented via struc-

tured perturbations.

o Robust controller design methodologies can be developed using this framework.

The main emphasis in this thesis is to study structurally constrained controllers in
the input/output framework and to provide a unification of structurally constrained
controller methodologies under the modern control paradigm currently employed in
centralized control systems. This study uses as a starting point a parameterization
of all stabilizing decentralized controllers [9] which helps to expose the rich under-
lying algebraic structure of these problems. A number of results follow from this

investigation and are more fully detailed in section 1.3.

1.2 Background

The evolution of structurally constrained controllers lies within a vast body of liter-
ature devoted to decentralized systems and control. A plethora of design strategies
and incremental adaptations have been developed over the last couple of decades [10],
[11]. The voluminous variety and often ad-hoc methods that have been developed is
understandable given the fact that a general methodology for the design of linear
time invariant decentralized controllers, which takes into account overall performance
metrics and robustness to uncertainty, still does not exist. The purpose of this section
is to provide highlights of some of the more notable trends developed for decentralized
control and to put into perspective the methods developed in this thesis with respect
to work done in the past.

A important point noted early on in connection with stability under a decen-
tralized control was the observation that under decentralized control the condition

of plant observability and controllability (in a state space setting) was not sufficient
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to guarantee arbitrary pole placement. Wang and Davison [12], [13] pioneered the
notion of fixed modes under decentralized information structure. Effectively, fixed
modes generalize the notion of observability and controllability. Under centralized
control fixed modes would be the unobservable and uncontrollable system poles. Since
fixed modes are invariant under static and dynamic decentralized control, the exis-
tence of a stabilizing decentralized controller is dependent on the absence of unstable
fixed modes. Other researches have provided alternative characterizations of fixed
modes. Anderson and Clements [14] and Tarokh [15] have provided algebraic time
domain characterizations. Seraji [16] has provided a frequency domain characteriza-
tion. Glover and Silverman [17], Reinschke [18] and Sezer and Siljak [19] [20] have
provided graph theoretic characterizations. These various characterizations provide
greater insight into the nature and cause of fixed modes and provide specific methods
for testing the system for fixed modes, given the decentralized partitioning. A defi-
nition and more detail of fixed modes in terms of stable factors [21], which fits the
input/output development in this thesis, will be give in section 2.5.

Some of the first decentralized design approaches relied on pole placement for de-
centralized stabilization and control. For systems with no fixed modes or only stable
fixed modes decentralized feedback schemes where developed to place the poles of the
closed loop systems [12], [22], [23], [24]. Richter and DeCarlo [25] presented a solution
to the decentralized pole placement problem where nonlinear pole placement equa-
tions where formulated and a numerical solution developed using homotopy methods.
Although pole placement methods would seem to have diminished impact on practical
applications due to the difficulty of translating eigenstructure assignment to perfor-
mance measures of the closed loop system, designers still rely on these methods for
decentralized control of large flexible structures [26], [27].

Due to the difficulties in designing decentralized controllers for generalized sys-
tems, many methods are based on exploiting a special property of the plant. A
broad break down of these plant characteristics which spawn individual decentral-
ized design methods would include plants with special asymptotic properties and

plants composed of a interconnection of similar subsystems. Plants possessing spe-
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cial asymptotic properties lead to a set of design methods know as nonsingular and
singular perturbation techniques [10]. Nonsingular perturbation techniques can be
applied to plants in which the off block diagonal terms of the system A matrix are
small in some measurable sense allowing the system to be approximated by decoupled
subsystems. Designs are then based on these decoupled subsystems [28], [29], [30].
Issues associated with this technique involve developing an appropriate measure of
the coupling, generating decoupled subsystems (i.e. ignore coupling, use some form
of series expansion and ignore all but zero order terms etc.) and developing a bounds
which guarantees stability of the closed loop system.

Singular perturbation techniques rely on detecting separation between multiple
time scales within the plant [31]. The simplest case is a plant which is composed
of slow and fast dynamics [32]. By using the singular perturbation decomposition
and utilizing interconnection properties the plant is partitioned into several smaller
subsystems for which controllers are designed. Problems with this method include
restrictions on the closed loop systems to be multi-timescale and requirements of
intermediate dynamics to exhibit good asymptotic separation for successful imple-
mentation of controllers [33].

Plants composed of a interconnection of similar subsystems (also referred to as a
composite system) result from identifying physical or mathematical geometries of the
system which will then allow a decomposition into similarly connected subsystems. A
variety of decentralized control techniques have been developed for plants satisfying
this condition [34], [35], [36]. The majority of the results tend to be concerned with
global stability once the individual subsystems have been stabilized [37], [38]. The
usual global stability criterion for these systems is developed from Lyapunov methods
[39] [40]. Some work has been done to develop global stability criterions and a measure
of subcontroller performance degradation due to the interconnections [41], [42].

The problem with many of the methods mentioned so far deal with the assump-
tions made. The plant is assumed perfect and often overall performance measures are
not directly dealt with. Even on the subsystem level, performance is defined only in

terms of the nominal subsystem operator. Very few examples are given which incor-
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porate model and performance uncertainties. This is primarily due to the ad-hoc and
specialized techniques developed which make a systematic treatment of uncertainty
difficult.

Recently there have been some attempts to align decentralized control methods
with the modern centralized control framework which allows for a systematic treat-
ment of model and performance uncertainty [43] [44]. An interesting example which
seeks to extend this modern framework in a relatively straight forward fashion to the
case of interconnected or composite plant systems is the work by Tan and Ikeda [45].
In their formulation of decentralized control the centralized input/output fractional
framework mentioned in section 1.1 is applied directly to the individual subsystems.
The individual Youla controller parameter is selected in such a manner as not to desta-
bilize the entire system when the individual subsystem is connected. Subsystems are
connected sequentially and the set of selected Youla parameters for the decentralized
control system will provide for closed-loop stability of the overall system. Note how-
ever that this is not a full extension of the centralized fractional control methodology.
Closed-loop stability is only one part.

As will be discussed in section 2.2 an essential component to extending decen-
tralized methods to a modern control paradigm is a set of stabilizing decentralized
compensators over which a search can be performed in order to determine the de-
centralized controller which comes closest to satisfying a prespecified performance
metric. The selection of decentralized controller parameterization makes a difference
in how much analysis can be done and how far along one can develop synthesis tools.
Manousiouthakis has developed a parameterization for decentralized controllers [46]
by relying on the traditional parameterization available for centralized controllers and
constraining the Youla parameter via a quadratic operator constraint. Unfortunately,
this particular approach to decentralized controller parameterization is very limiting
due to the lack of direct decentralizing information in the parameterization. For the
moment, the only analytical result available from this parameterization is an approx-
imation to the value of the overall performance norm achievable for the I; case using

suboptimal decentralized control [47].
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The decentralized controller parameterization used as a starting point in this the-
sis is a parameterization developed by Gundes and Desoer [9]. This parameterization
was further embellished by Date and Chow [48]. More details concerning these pa-
rameterizations will be provide in sections 3.2-3.3. The essential point is that the
Gundes/Desoer parameterization is useful for analysis precisely because information
concerning the decentralized information structure imposed on the plant is directly

available in the formulation of the decentralized parameterization.

1.3 Contribution of Thesis

The focus of this thesis has been to investigate and provide an analytical framework
for structural controllers from an input/output point of view and to align the design of
structurally constrained controllers to the methodology of centralized control systems
under the modern robust stability /robust performance paradigm [49]. This is achieved
by applying a parameterized factorization approach to the problem of structurally
constrained controllers. A number of theoretical results follow from this method as
will be discussed in this section. A robust design method is developed for decentralized
controllers in chapter 5 using this parameterized factorization approach. An analogous
approach based on previous design methods developed for decentralized controllers
could also have been developed. These issues are further elaborated on both in this
section and in section 5.5.

The type of structurally constrained controllers considered consist of fully decen-
tralized controllers and partially decentralized controllers. The point of view taken is
to analyze the controllers as a specific subset of the set of all stabilizing controllers
in a modern control paradigm as mentioned in section 1.1. As such, this involves
examining the parameterized set of structural controllers via their stable factors and
associated stable factor constraints.

The starting point for the thesis is the examination of a recently developed stable
factor parameterization for fully decentralized controllers [48]. From this investigation

a new proof (section 3.4) of some critical auxiliary stable factor identities is developed.
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This proof helps clarify the relationship of these auxiliary identities to a fundamental
stable factor stability identity (see section 3.2) upon which the parameterization of
all stabilizing decentralized controllers is built. Based on these auxiliary stable factor
identities, developed in section 3.4, a class of stabilizing decentralized controllers is
developed (see section 3.5). This class of controllers is shown to be useful for the de-
velopment of a new autonomous design method for subcontrollers (chapter 4) and in
the development of an adaptation of the D-K methodology for the sequential design
of robust decentralized controllers (chapter 5). The usefulness of this set of decen-
tralized controllers results from a simplifying assumption developed in section 3.5
which imposes a unimodular restriction on a subset of the design parameters of the
decentralized controllers. Such a restriction has the benefit of generating a set of
decentralized controllers whose individual subcontrollers have the form of the basic
Youla parameterization (see section 2.2) which results in only one design parameter
per subcontroller.

A new method for the autonomous design of subcontrollers is developed in this
thesis. Chapter 4 presents this work along with a brief discussion outlining the use-
fulness of autonomous design methods. This autonomous method relies on the class
of decentralized controllers developed in section 3.4. From this set of controllers the
associated unimodular stability constraint is exploited to develop a simplified norm
bound stability guarantee for the set of subcontroller parameters. For the case of sta-
ble plants, the subcontroller parameter bounds are in terms of the stable off-diagonal
elements of the plant (see sections 4.2-4.4). One of the distinct advantages of this
autonomous formulation based on stable factors is that it allows for the development
of a similar bound for the case of unstable plants. The development for the unstable
plant case is carried out in this thesis and presented in section 4.5. An additional
result produced by this approach is the quantification of weak-coupling within a in-
put/output plant operator point of view (see section 4.2).

The important issues concerning the design of robust stability/robust performance
are analyzed in this thesis for the design of robust decentralized controllers. Using

the stable factor formulation for decentralized controllers a stable factor decentralized
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M(-) operator is developed. Specialized decentralized interaction properties, given in
section 3.4, are used to produce a simplified decentralized M(-) operator. The M(-)
operator is used in conjunction with the structured singular value metric to assess
whether robust stability/performance requirements have been achieved and it plays
‘a integral role in the synthesis of robust controllers (see section 5.2). An analysis
indicating the difficulties in producing concurrent design methods for the parameters
of robust decentralized controllers is presented (see section 5.3).

An adaptation of the D-K methodology for the sequential design of decentralized
controllers is developed in this thesis (see section 5.4). The advantage of this adap-
tation for the design of decentralized controllers resides with the specific robustness
guarantees available from the py-framework. Decentralized controllers designed to in-
sure a specific u criterion for a specific closed loop operator extracted from the plant
and involving the decentralized controllers result in decentralized controllers which
are robust from both a stability and performance point of view. This is an improve-
ment over the guarantees available from other decentralized controller methodologies
(see section 1.2).

The utility of developing computational methods directly from this parameter-
ized D-K methodology for the sequential design of robust decentralized controllers is
outlined in section 5.5. Embedded within this sequential D-K method is a step in-
volving the iteration of subcontroller parameters. An argument can be made that the
iteration of subcontroller parameters is analogous to the iteration of individual sub-
controllers. Given this point of view the K step in the D-K method can be viewed in
the time domain framework and in an input/output framework as a form of sequential
loop closing where the iteration taking place is among the individual subcontrollers.
This point of view is relied upon (see section 5.5) in developing an alternative method
of computation for this algorithm in terms of commercially available software. Ad-
ditional computation issues for this sequential D-K methodology are outlined along
with some anticipated difficulties.

Finally, a methodology for incorporating partially decentralized controllers into

the input/output framework is developed. A novel unimodular transformation appli-
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cable to partially decentralized systems is developed (see section 6.3) which allows
partially decentralized controllers to be designed using input/output methods devel-
oped specifically for fully decentralized systems. The method is demonstrated for a
number of canonical forms of partial decentralized controllers developed in this thesis.
This unimodular transformation is sufficiently broad enough that other structurally
constrained controllers not specifically characterized can also be handled using these
same methods. The application of decentralized design methods, developed in this
thesis, to the design of partially decentralized robust controllers is presented (see
section 6.7).

1.4 Thesis Organization

Chapter 2 gives definitions and some essentials of the notation used in the thesis. A
brief synopsis of a modern control paradigm basics for centralized systems is given.
The definitions of fully decentralized systems are given. The decentralized parti-
tioning problem is mentioned and the important role of decentralized fixed modes is
detailed along with a definition compatible with the input/output framework being
developed.

Chapter 3 presents a parameterization of stabilizing decentralized controllers in
terms of stable factors and a unimodular constraint. Auxiliary properties associated
with this parameterization along with a direct proof of these properties is developed.
An analysis identifies a subclass of controllers which have special auxiliary Bezout
identity properties. These properties will be used in Chapter 4 for autonomous design
methods and Chapter 5 for methods based on iteration.

Chapter 4 presents an autonomous design method for decentralized control based
on a simplified bound of the controller parameters in terms of the stable factors of
the plant. Connections to small gain results, extension to the multichannel case and
bounds for the unstable plant case are presented.

Chapter 5 places the decentralized control problem in a p-framework. Difficul-

ties which prevent simultaneous design of robust controllers are presented. A D-K
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methodology for the sequential design of robust decentralized controllers is presented.

Chapter 6 presents a methodology for handling partially decentralized controllers.
Canonical forms of partially decentralized controllers are given. A unimodular trans-
formation applicable to partially decentralized systems is developed which allows
partially decentralized controllers to be designed using input/output methods devel-
oped specifically for fully decentralized systems. Application of this method to the
defined canonical forms of partially decentralized controllers is detailed.

Chapter 7 provides a research summary and recommendations for future work.
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Chapter 2

Notation and Preliminary

Concepts

2.1 Ring Notation Essentials

This section will present some basic notation used in the thesis. Parameterizing the
set of all stabilizing decentralized controllers using rings reduces the need for repeated
duplication since the parameterization based on rings remains the same whether the
rings represent continuous time or discrete-time, lumped parameter systems. The
same can be said for parameterizations based on normed linear vector spaces as done
in [6], [50]. However, most of the earlier work in developing input/output approaches
to decentralized control have relied upon ring theory in their developments [9], [46],
(48], [44]. Therefore, this thesis will present parameterizations built upon rings. What
follows is the essential ring notation consistent with that found in the Gundes/Desoer
text [9]. For an explanation of basic ring properties which are applicable to control
systems the reader is directed to appendices A and B of the Vidyasagar text [5] and

for a more mathematical treatment see texts [51], [52].

H principle ideal domain
UcH is the group of units of H
G is the ring of fractions associated with H
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m(H) set of matrices with elements in H

m(Q) set of matrices with elements in G
m(0) set of matrices whose elements are 0
|F| determinant of F

unimodular F € m(H) is unimodular iff [F| € U

[-l refers to the H,, norm of enclosed operator

As an example to illustrate the use of the above ring notation, continuous time defi-

nitions are associated with their appropriate ring notation.

H set of real-rational, stable, proper transfer functions

UCH transfer functions whose inverse is stable and proper

G set of all real-rational transfer functions (stable and unstable)
m(H) set of stable, proper transfer matrices

m(G) set of real-rational transfer matrices

unimodular F € m(H) is unimodular iff F has a stable, proper inverse

2.2 Modern Control Paradigm Basics for Cen-
tralized Systems

In this section a brief review of a modern control paradigm for centralized systems is
presented. The reason for such a review lies with the central theme of this thesis which
is to align structured controller design methods with this framework. This modern
centralized control paradigm has been actively developed over the last decade. The
paradigm provides for model, disturbance and parameter uncertainty via structured
perturbations. Robust controller design methodologies have been developed using
this framework. A number of sources provide thorough treatments of this modern
control paradigm [6], [53], [8], [50]. Some of the highlights of this methodology will

be presented here.
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\%% Z
w: exogenous inputs —> —>
(disturb., noise, inputs) u G y
—>
Z: regulated outputs
u: control inputs

K

y: measured outputs

Figure 2-1: Block Diagram of Nominal Formulation for the General Control Problem

Figure 2-1 illustrates the nominal formulation of the modern control paradigm in
block diagram form. Virtually any linear time invariant control problem relying on
feedback control can be placed in this formulation. The open loop transfer function

matrix (TFM) for G consists of four individual operators
G Gi

G= (2.1)
G21 G22

The loop equations for figure 2-1 becomes

z = Gnw+ Gu
¥y = Guw+ Gau
v = Ky (2.2)

Effectively, the original plant is contained in Gz,. The other TFM’s Gy, G12, Ga1
represent fictitious operators developed to represent the relationship between exoge-
nous inputs to regulated and measured outputs. These fictitious operators will couple
into the performance TFM when closed loop control is implemented as indicated in
figure 2-1. The set of equations (2.2) will be well-posed if for any w there exist unique
u, y, and z's satisfying these equations. The equations will be well-posed if and only
if the inverse, (I — G2 K)™?, exists. This inverse also plays an important role in the

performance operator.
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L H_, Formulation | [; Formulation l

w € Ly lwlz <1 w E o lw]leo <1
sup,, [|z]2 = || Tzu | £ sup,, ||zl = [|T2w |l
minK—atab ”Tzwlle minK—atab ”Tzw“l

Table 2.1: Nominal problem formulations which optimizes a given induced norm

The performance operator is denoted T,,. It is the operator which maps the

exogenous inputs to the the regulated outputs.
z=T,w (2.3)

Without closed loop control T, consists solely of Gy;. However, under closed loop
control the performance operator is a linear fractional transformation in terms of G

and K and is given by
Fl(G,K) = Tzw = G11 + GlzK(I — ngK)_ngl (24)

The general nominal design objectives under this modern control paradigm are

two fold:

1. Maintain closed loop system stability

2. Minimize the effect of “w”, in some quantifiable way, on “z”

The first objective requires establishing a set of all stabilizing compensators for a given
plant. The second objective requires defining performance in terms of a norm bound
on the performance operator T3,. Table 2.1 gives two examples of nominal problem
formulation under this control paradigm for different induced operator norms. The
H, formulation is concerned with providing the best performance in terms of re-
jecting or minimizing the impact of bounded energy disturbances on the closed loop

system. This reduces to finding a stabilizing compensator K which minimizes the
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H,, norm of the performance operator T,,,. Likewise, the [; formulation is concerned
with providing the best performance in terms of rejecting or minimizing the impact
of bounded and persistent disturbances on the closed loop system. This reduces to
finding a stabilizing compensator K which minimizes the /; norm of the performance
operator T3,. Of course there is a difficulty in searching for an optimal K given the
form of the performance operator in eq. (2.4). The performance eq. (2.4) is nonconvex
with respect to the compensator operator K. In addition, a set of stabilizing compen-
sators based on a given plant has not been established. Both of these problems are
solved under this modern control paradigm via the parameterization of all stabilizing
compensators using stable factors.

An important fact, relative to developing a set of stabilizing controllers, is that K
stabilizes G (of eq. (2.1)) iff K stabilizes G, [6]. This then allows the development
of a set of stabilizing controllers to be based on stable factors of the actual plant
G3z. Before describing how a parameterization for compensators is developed a few
definitions involving coprime factors and stable factor decompositions need to be

given.

Definition 1 (Right Coprime) For S,T € m(H) which have the same number of
columns, S and T are right-coprime iff there ezist C, D € m(H) such that

CS+DT =1 (2.5)

Definition 2 (Left Coprime) For §,T € m(H) which have the same number of
rows, S and T are right-coprime iff there ezist C,D € m(H) such that

SC+TD=1 (2.6)

Equations 2.5-2.6 are respectively referred to as individual left and right Bezout iden-

tities. Two operators, S and 7', which are right coprime, effectively can be thought
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of as a stacked operator such as

s
F= (2.7)
T

where the operator is invertible from the left. Additionally, right coprime implies that
the operators S and T do not share any common zeros over the stable matrix ring
m(H). Equivalent concepts apply to operators which are left coprime.

Using these notions of right and left coprime, definitions for the decomposition
of LTI operators into stable factors can be given. As given in reference [5] any LTI

plant G3; can be decomposed into the following stable factors
G2 = ND™' = D7'N (2.8)

Where N, D are right coprime and D, N are left coprime with both D, D square
and |D|,|D| # 0. (N, D) is referred to as a right coprime factorization (r.c.f.) and
(D, N ) is referred to as a left coprime factorization (l.c.f.). The coprime stable factor
decompositions of G2, are unique to within a unimodular factor. For example, given
(N, D) are right coprime factors of G, the right coprime factors (NR,DR) are also
a right coprime factorization of G5, where R is unimodular.

Given these definitions for stable factor plant decompositions and individual Be-
zout identities an important theorem which will be instrumental in parameterizing

the set of all stabilizing compensators can now be given.

Theorem 1 For G2, € m(G) with (N, D), (D, N) any r.c.f. and Lc.f. of Gas. Given
U, Ve m(H) satisfy
VD+UN=1 (2.9)

Then there exists U, V € m(H) such that

D -U
N V

vV U
-N D

I0 }
(2.10)
0 I

Equation 2.10 is known as a doubly coprime Bezout identity (or doubly coprime fac-
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torization) for the plant G;. The proof of Theorem 1 is available in [5], p. 79. The
fundamental importance of the doubly coprime Bezout identity is that any compen-
sator which stabilizes the plant G,; has a doubly coprime factorization of the form
found in eq. (2.10). The proof of this is available in [6]. An interesting interpretation
of this is that due to internal stability requirements in the classic two block problem
(i.e. plant and compensator form the two blocks of a closed loop MIMO feedback
system), where no assumptions are made on plant stability, the closed loop map of
the system will require that four MIMO transfer functions be stable. However, this
requirement really reduces to a requirement that two stable factor return difference
matrices must have stable inverses or in other words must be unimodular. For exam-
ple, a general stable factorization decomposition for a compensator could be denoted
K = U;V;™' = V[ "!U,. The associated return difference matrices for the two block

system would be

ViD+U,N = R
NU,+DV; = R (2.11)

Due to internal stability requirements R and R must have stable inverses (i.e. be
unimodular) in order for K to be a stabilizing compensator. Rewriting eq. (2.11),
assuming K is stabilizing or equivalently R and R are unimodular, the following

equations are obtained.

RW,D+R'I)N = I
NU,R'+ DR = I (2.12)

Hence, the source of the individual Bezout identities in eq. (2.10) for a stabilizing
compensator become apparent.
Some authors [9] refer to eq. (2.11) as denominator matrices. This terminology

follows since it can be shown (see [9], p.45) that

|R| = |‘71D+(71N|
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|R| = |NU,+ DV (2.13)

form characteristic determinants of the closed loop system. However, the use of
characteristic determinant also applies to |D| and |D| where D and D might be used
to denote stable factors of an open loop system. To avoid confusion the term return
difference matrices is used to refer to equations of the form found in eq. (2.11).

An important side note is that the two stable factor return difference matrices of
eq. (2.11) are an equivalence relation with respect to the relationship that a given
compensator stabilizes a given plant. Formalizing this statement in the form of a

theorem generates the following.

Theorem 2 For Gy, K € m(G), let (N, D),(D,N) be any r.c.f. and any Lc.f. of
Ga2, and let (U1,Vl),(f/1,(-]1) be any r.c.f. and l.c.f. of K. Under these conditions,

the following are equivalent:
1. The pair (Ga2, K) is stable.
2. The matric V;D + U, N = R is unimodular.
3. The matriz NU, + DV; = R is unimodular-.

The proof for this theorem is available in [5], pp. 105-106. The point to be made
here is that only one return difference matrix, eq. (2.11), or equivalently one Be-
zout identity, eq. (2.12) is needed to generate the results for the set of all stabilizing
compensators. Results then generated from the other Bezout identity are equilva-
lent and form a complementary set. Doubly Coprime Bezout identities are useful in
steamlining the duplication efforts in generating these equilvalent results.

Theorem 1 is used directly in parameterizing the set of all stabilizing compen-
sators. The details are found in [5] and [6] but a rough outline of the method is as
follows. Multiplying the doubly coprime Bezout identity (eq. (2.10)) on the left by

I Q

) (2.14)
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and on the right by
I —
? (2.15)
0 I

the following parameterized doubly coprime Bezout identity is obtained.

D —U-DQ}:[I 0] .16
N V-NQ 0 I

V-QN U+QD

~ -

—N D

The factors of this doubly coprime Bezout identity parameterized by Q € m(H)
form left and right parameterized factorizations of compensators which stabilized
Gqy. To show these factors characterize all stabilizing compensators, a proof is done
to illustrate that any arbitrary stabilizing compensator of Gj; can be written using
these parameterized stable factors. To summarize, the following theorem presents the

parameterized set of all stabilizing compensators.

Theorem 3 Given Gay = ND~! = DN where the r.c.f. (N,D), (U,V) and the
le.f. (D,f\"), (V,U) satisfy a doubly coprime Bezout identity, the parameterized set

of stabilizing compensators is given by

K = (U+DQ)V-NQ)™, [V-NQI#0
= (V-QN) (U +QD), [V-QN|#0 (2.17)

for some Q € m(H).

Proof, as mentioned earlier, is available in [5] and [6]. This parameterization is often
referred to as the Youla or Q parameterization. A principle advantage obtained
by using this parameterization is that it will allow for a simplified reformulation of
centralized control problems such as the aforementioned He and [, formulations.
As discussed earlier in this section, the performance operator in terms of K and

G5 is a linear fractional transformation of the form
Tzu, == G11 - G12K(I + GzzK)—lel (2.18)
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Substituting the controller parameterization, eq. (2.17), into K (I 4+ G22K)™! gives
K(I+GpuK)'=(U+DQ)D (2.19)
The performance operator, eq. (2.18), then becomes
Tow = Gi1 — G12UDGy; — G13DQDGy (2.20)
Defining the following operators

H = G11—G12UDG21

i
i

G132 D
B := DGy (2.21)

the performance operator can be simplified to
T,..= H—AQB (2.22)

where H, A, B € m(H) and Q € m(H) is arbitrary. The form of eq. (2.22) is referred
to as a model matching equation and more importantly it is affine in the parameter Q
which is an element of the stable ring m(H). This effectively transforms the nominal
performance formulations from a search over a nonconvex set involving stabilizing
controllers K and a rather complex linear fractional formulation for the performance
operator to a search over a convex set involving the parameter @ and a simplified

model matching formulation for the performance operator.

2.3 Definitions for Fully Decentralized Systems

A fully decentralized control strategy has the following properties.

e The plant is partitioned into input/output pairs. Sets of actuators are associated

with sets of measured outputs.
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Figure 2-2: Decentralized Control within Framework of Modern Control Paradigm
e Individual controllers are associated with each I/O pair.
e No sharing of information occurs between the individual controllers.

Figure 2-2 illustrates, in a block diagram form, the fully decentralized control con-
figuration as realized in the general control framework. The actual plant, Gs,, is
an element of m(G) and has dimensions p x g. To implement a fully decentralized
control strategy the plant is partitioned into m channels. The structure of the input

and output take on the following form.

U = [UIT’UzTa"'aUg]T
= [leTasza"' YT]T (2.23)

Y m

This then results in a decentralized controller which is block diagonal.
K = blkdiag(K1,K;, -+, K] (2.24)
Individual subcontrollers map to their respective I/O pairs.

K;,:Y,— U, (2.25)
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And the overall dimension is accounted for in the following fashion

dpi=p and D =g (2.26)

where p; is the dimension of Y; and ¢; is the dimension of U;.

2.4 The Partitioning Problem

One of the first issues facing a designer developing a decentralized control strategy
is that of partitioning the plant into appropriate I/O pairs. Quite often the spa-
tial properties will dictate a particular plant partition. For example the geographic
extent of a packet switched network, where dynamic flow control is used to solve
problems of routing and congestion, can often require partitioning to be based on
subsystem location. Particularly when the subsystems tie into the network at loca-
tions separated from one another by large physical distances [54]. Another natural
partitioning strategy relies on geometric properties of the plant. For example, in [55]
a segmented reflector telescope was partitioned according to a geometry suggested by
the symmetric construction of the reflector from identically constructed subsystems.

In the absence of a naturally dictated partition, selecting a partition without some
sort of analytic tool can become somewhat overwhelming due to the large number
of possible pairing combinations. For example, in a centralized control strategy only
one pairing combination is possible (i.e. all outputs are interconnected to all inputs).
In a scalar decentralized strategy, where the individual subcontrollers are SISO, there
are n! pairing combinations for the case of a n x n plant.

A number of analytic tools have been developed over the years to help select a par-
tition which may be viable. Some of the first tools developed and used primarily by
the process control industry to select a pairing strategy for decentralized controllers
composed of SISO subcontrollers are the Relative Gain Array (RGA) by Bristol [56]
and the Niederlinski Index [57]. Interestingly, Niederlinski developed with heuristics

a selection method which reduces to the same pairing selections given by a quantita-
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tive method with additional interaction conditions known as Decentralized Integral
Controllability (DIC) which was developed a number of years later by Morari [58],
[59]. Arkun and Manousiouthakis [60],(61], generalized the Bristol method to decen-
tralized controllers whose individual subcontrollers are MIMO or in other words block
diagonal decentralized controllers. These methods are referred to as Block Relative
Gain (BRG) and Dynamic Block Relative Gain (DBRG). Nett and Manousiouthakis
[62] attempted to develop partitioning strategies based less on qualitative and empir-
ical validation and more on theoretical and quantitative validation. Their attempt
results in making a connection between the Block Relative Gain methods and the
Euclidean condition number. They go on to make conjectures which they hope in
the future will become fact but at the moment are the qualitative reasons for basing
partitions on these methods. Recently, Chen et al [63] have shown that in the face of
structured uncertainties the RGA and BRG methods are less reliable indicators for
partition selection than the Euclidean condition number. This development helps to
strengthen the conjectures of Nett and Manousiouthakis [62]. However, this results
primarily because the RGA and BRG depend on steady state matrices and don’t
account for possible large off diagonal elements at frequencies of interest. It would
be interesting to see the performance of the DBRG method in this context since it
incorporates frequency related information and not just steady state information in
its formulation.

The above discussion illustrates some of the tools available to the designer for
partition selection. As can be seen a good deal of engineering judgment, qualitative
and quantitative information can be involved in the selection process. In this thesis,
an underlying assumption is that a partition structure has been selected and that it is
viable. The discussion of what constitutes a viable partition for decentralized control

is the topic of the next section.
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2.5 Definitions and the Role of Decentralized Fixed
Modes

As mentioned in section 1.2 fixed modes generalize the notion of observability and
controllability under a decentralized information structure. Fixed modes arise as
a result of the constraints on the controller structure which limits how feedback
information is interconnected to control or actuation signals. Wang and Davison [12]
pioneered the notion of fixed modes and reported that fixed modes are invariant under
static and dynamic linear time invariant decentralized control. Hence, the condition
for the existence of a stabilizing LTI decentralized controller is that the plant under
a given decentralized partition must not have any unstable fixed modes.

Although there are a number of ways to characterize fixed modes [14]-[20] a char-
acterization in terms of stable factors developed by Vidyasagar and Viswanadham

[21] will be given here.

Theorem 4 (Fixed Modes) Given Gz, € m(GP*9), let (D, N) be any r.c.f. of Gss,
and observe that D € m(H*9), N € m(H?P*9). Partition D, N as

Dy N,
D=1 : N=| : (2.27)
where D; € m(H%*?), N € m(H?P*?). Finally, define

F
= m(H(pe+q;)xq) F = : = m(H(p+q)><q) (2.28)
F,

1

N;

and let 3 denote the greatest common divisor (g.c.d.) of all ¢ x ¢ minors of F obtained
by choosing ezactly q; rows from F;. Then Gi; can be stabilized by a decentralized

controller if and only if 3 = 1.

Proof of this theorem is available in [21]. The characterization of fixed modes resides
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with the factor 3. This term, 3, is referred to as the decentralized fixed determinant.
The unstable zeros of 8 correspond to the unstable decentralized fixed modes for the
plant G, under the given partition.

In reference [21] the proof of theorem 4 relies on developing conditions on whether

there exists a stable inversion of F as follows
EF =1 (2.29)

where E has a certain pattern of its minors constrained to be zero. It turns out
that an E which satisfies the constraint on its minors can always be constructed
from stable factors of a block diagonal controller with dimensions compatible with

the plant partition of G,. The formulation of E is as follows: Let
A=[A,---A)], B =[B;---B,] (2.30)

where A; € m(H7?) and B; € m(H?*(P+9). Construct E as

Vi || U
E = [ A; B ] _ € m(qu(qﬁps))
0 0
E = [E,---E,| € m(HqX(q+p)) (2.31)

Equation (2.29) has a very familiar form. To illustrate this eq. (2.29) is given for a

plant partitioned into two channels.

FDI'
Vi Uh 0 0 N
EF=| """ 7 =T (2.32)
0 0 ¥ 0, || D,
-Nz-
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It is straight forward to verify that eq. (2.32) is equivalent to

D,
V. 0 0, 0 ||D
EF=| " _ ' =1 (2.33)
0 V% 0 || M
-N2-

which of course is the two channel, partitioned form of the Bezout identity.
VD+UN=1 (2.34)

Note, if such a E is found to provide a stable inverse of F' this is equivalent to satisfying
the Bezout identity of eq. (2.34). However, satisfying the Bezout identity of eq. (2.34)
implies (see theorem 2) that there exists a stabilizing decentralized controller for the
plant or equivalently that no unstable fixed modes exist for the given partition.

This illustrates the connection between theorem 4 defining fixed modes and de-
centralized stability conditions in terms of stable factors. Interestingly, Vidyasagar
noted in the conclusion section of [21] that an open problem would be to characterize
all stable inverses of eq. (2.29), but that such a task would effectively be “ the problem
of characterizing all decentralized stabilizing controllers, which is known to be highly
intractable”. This is no longer an open problem, the next chapter presents a recent
parameterization of all stabilizing decentralized controllers [9] along with some new

results associated with this parameterization.
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Chapter 3

Parameterization of All Stabilizing

Decentralized Controllers

3.1 Introduction

As mentioned in section 2, the problem of parameterizing the set of all stabilizing
controllers has been solved [9]. This parameterization represents the starting point for
the developments in this thesis. This chapter will present this parameterization for
the two channel case to make the notation manageable. The notation and formulation
of the parameterization given in this thesis draws upon two sources, [9] and [48] which
are equivalent versions of the same parameterization. Section 3.2 will introduce the
decentralizing stability property known as the decentralized doubly coprime Bezout
identity (DDCBI). The parameterization will be built upon identities extracted from
the DDCBI. Section 3.3 will present all the pertinent details concerning the decen-
tralized controller parameterization and the associated unimodular constraint on the
design parameters. In section 3.4 a class of identities known as the auxiliary doubly
coprime Bezout identities (ADCBI) will be presented along with their importance and
fundamental role played in establishing the decentralized controller parameterization.
A new proof of the ADCBI will be given in this section along with a clarification of
their direct relation to the decentralized doubly coprime Bezout identity. Based on

the ADCBI developed in section 3.4 a new class of stabilizing decentralized controllers
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will be characterized in section 3.5. This class of decentralized controllers are shown
to be useful for the development of a new autonomous design method for subcon-
trollers (chapter 4) and in the development of an adaptation of the D-K methodology

for the sequential design of robust decentralized controllers (chapter 5).

3.2 Decentralized Bezout Identity

Before laying out the pieces necessary for the decentralized parameterization, the
following notion will be used to define an appropriate two channel partition of the

plant P.

Definition 3 (Two Channel Partition) Fora plant, P € m(GP*9) with l.c.f. (D4, Ny)
and r.c.f. (Na, Dq) the following represents a two channel partition of a plant where
the input channel dimensions are ¢ and g, with ¢ = ¢1 + @2 and the output channel

dimensions are p; and p; with p = p1 + p2

) P P -
P _ 11 12 (3.1)
L le Py, ]
D, — Dar | _ | Dan Da,,
L Dy, L Ddzl Ddzz
N, = Ndl _ Ndu Nd12
L N, Ndzl Ndzz
i _ .+ [ Da, Da
Di = [Da,Dar)=| ™ 7
| Ddzu Ddzz i
- - 7
A ] A7 Ndu Nd
Ny = [Nthdz] =1 . e (3.2)
Nd’n Ndzz ]

where Py € m(GPr*9t), Pyy € m(GP*%), Dy, € m(H®*%), Dy, € m(H%*%2),
an € m(le xp1), Ddzz € m(szsz)’ Ndu)fvdn € m(lequ)’ Ndzz’Ndzz € m(Hquz)

and the other blocks have conforming dimensions.
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Definition 3 applies to any arbitrary two channel partition of a plant P, and for the
moment the subscript notation (-)4 carries no special significance. However, this will
change after the discussion of decentralized Bezout identities to follow. The derivation

of block diagonal stable factors for a block diagonal compensator is defined as follows.

Definition 4 (Block Diagonal Compensator Factors) Given a compensator
Cq = blkdiag[Cy,C,) € m(G?*P), left and right coprime block diagonal factorizations

can be constructed as follows

1. For subcompensators, C; € m(G%*?) find l.c.f. (V;,U;) and r.c.f. (U;,V;) where
Vi € m(H%*%), V; € m(HPP:), U, U; € m( HExpi)

2. Define Vg = blkdiag[Vi, V3], Upy = blkdiag[Us, U], Voa = blkdiag[Vi, V3] and
Upq = blkdiag(Uy, Us,).

3. (Voa,Usa) and (Usa,Voa) are respectively lc.f. and r.c.f. of Cy. These block
diagonal factorizations are unique to within multiplication by a block diagonal
unimodular operator. (i.e. (Rdf/bd,Rd[?bd) and (UpaRg4,VeaRq) are lc.f. and
r.c.f. of Cy where Ry and Ry are block diagonal unimodular operators appropri-

ately dimensioned to preserve the block diagonal nature of the factorization).

Definition 4 illustrates by construction that every block diagonal compensator has
a corresponding set of stable block diagonal factorizations. However, not all factor-
izations of a block diagonal compensator are themselves block diagonal. For a given

block diagonal l.c.f. (f/bd, l}bd) and r.c.f. (Usg, Via) of Cy, the following factorizations

(V,0) = (RVig, RUba)

(U,V) = (UsR,VsaR) (3.3)
are also factorizations of Cj (see section 2.2) where R and R are arbitrary unimodular
operators. But, the factorizations (V,07) and (U, V) will not necessarily be block

diagonal. An interesting note is although the stable factors, (V,U7) and (U, V), will

not necessarily be block diagonal a certain pattern of minors (corresponding to the
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decentralized partition) will be constrained to equal zero (see section 2.5) and these
constraints on the minors are the same whether the stable factors are in block diagonal
form or not.

As in section 2.2 the use of a doubly coprime Bezout identity is instrumental in
establishing the set of all stabilizing controllers. For the decentralized case, construc-
tion of a special form of Bezout identity denoted decentralized doubly coprime Bezout
identity (DDCBI) significantly simplifies the synthesis of the set of all stabilizing de-
centralized controllers. Given the form of stable factors in definitions 3 and 4 the

DDCBI has the following form.

Via U, Dy, -U I0
bjl ~bd d ba | (3.4)
—Nyg Dy Ny Vg 0 I

As mentioned in section 2.5 the absence of unstable fixed modes guarantees the ex-
istence of stable factors satisfying the DDCBI (eq. (3.4)). Understanding how to
construct a DDCBI leads to an explanation of the subscript (-)4 found on the plant
stable factors in eq. (3.4).

To construct a DDCBI, find a least one stabilizing block diagonal compensator, Cy,
for the plant, P. Note, there is an assumption here that the decentralized partition
has been verified not to induce any unstable fixed modes on the plant P. Form block
diagonal l.c.f. and r.c.f. of Cy as given in definition 4. For any arbitrary r.c.f. of the

plant P given by (N, D) the following operator
R1!:= ‘-/LdD + ﬁbdN (3.5)

is unimodular. This is a direct consequence of Cy stabilizing P (see theorem 2, section

2.2). Equation (3.5) can then be rewritten as

I = %dDR + ﬁbdNR (36)
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The following plant factors of the DDCBI are then defined as
(N4, Dg) :== (NR,DR) (3.7)

Hence, the significance of the subscript (-)4 is to denote a special form of the plant
stable factors which satisfy eq. (3.6) (and likewise the appropriate single Bezout iden-
tities in eq. (3.4)) which are referred to as decentralized stable plant factors (DSPF).
Similar construction exists for the left coprime DSPF (Dd,]\-fd). DSPF are unique to
within appropriately dimensioned block diagonal unimodular operators. To illustrate
this consider the unimodular operator Ry = blkdiag|R;, R;] where R, € m(Huxa)
and R, € m(H%*%). Select the following Bezout identity from eq. (3.4)

VeaDa + UpaNg = I (3.8)
Apply operator R, to the right of eq. (3.8).
ViaDaRa + UpaNsRs = Ry (3.9)
Apply the inverse of Ry to the left of eq. (3.9).
R;"WiaD4Ry + R;*UygNyRy = 1 (3.10)

Since (R;l-ffbd,R;l[}bd) are block diagonal stable factors of C; then (NaRa, DaRy)
represents another right coprime DSPF of the plant P which varies from (N, D;) by

a properly dimensioned, block diagonal, unimodular operator, R;.

3.3 Parameterized Controllers and Unimodular
Constraint

Now that the decentralized doubly coprime Bezout identity (DDCBI) has been defined

(eq. (3.4) in the previous section) the parameterization of all stabilizing decentralized
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controllers can be stated. A compact version will be given first to illustrate the
connection to the centralized parameterization and then an expanded version in terms

of individual parameters which tends to be useful for analysis will be given.

Theorem 5 (Compact Parameterization of Decentralized Controllers) For
plant P which satisfies the partition of definition 3 and for which a DDCBI as in
eq. (3.4) can be established, the parameterized set of stabilizing decentralized con-

trollers is given by

K = (Uwa+ DiQap)(Via — NaQap)™?, [Voa — NaQap| # 0
= (Vea — QapNa) " (Tsa + QupDa), [Vea — QapVa| # 0 (3.11)

where W1, and Wa; are composed of stable factors from the partitioned plant as follows

Wiy = _Ndu Da,, + Ddu Na, = NduDdzz - ‘DduNdﬂ
Wn = _Ndzden + Ddzszzl = Ndu Dq, — de‘Ndu (3'12)

and the decentralizing parameter, Q4p, can be a member of either of the equivalent

sets

. 0 ) s
Qap € Q1 © or Q4 € < 0 Q7' (3.13)
O Qz 0 QZ

where Q.,, and Q. are both constrained to be unimodular and consist of the following

terms

Qu _ Qll QIWIZ Qu _ Qll W12Q2 (314)

Q2W21 QZZ W21 Ql QZZ

with the individual parameters being members of the following stable matriz rings

Qll € m(H'll Xth), Q22 c m(chth), Qll € m(HPlxm)

: . ) (3.15)
Q22 € m(HP*P?), Qy1,Q, € m(H®*P1), Q,,Q, € m(H©2xP2)

Equation (3.11) shows directly the relationship between the parameterization of sta-

bilizing decentralized compensators and the parameterization associated with cen-
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tralized controllers eq. (2.17). The decentralizing parameter, Qgp, is constrained to
a subset of the stable matrix ring m(H?*P). The sets over which Qg, can vary are
specifically given by eq. (3.13). Note that the decentralizing parameter Qg is uni-
modularly related to block diagonal parameters blkdiag[Q1,Qs] and blkdiag[Q1,Q,)
(see eq. (3.13)). The constraint on the parameter selection effectively resides with
eq. (3.14) and these constraints are referred to as the unimodular constraints. The
reason two constraints are given is just a reflection of being able to write the param-
eterization in an expanded left and right coprime form for the decentralized compen-

sator. This expanded form is written in the following manner.

Definition 5 (Expanded Form of Decentralized Parameterization) Ezpansion

of the parameterization into left coprime parameterized factors is as follows

C: 0
0 C,

D(_Jll Nq 0

Cq= .-
0 D¢, Ne,

(3.16)

DE}NCI = (QuVi — @ Na,) ™ (Quly + Q1Da,), 1QuVi - Q1 Ny, | #0 (3.17)
D5 Ng, = (QuVa — Qalay,) ™ (Qa2llz + @2Dus,), 1@V — Qalu, | #0 (3.18)

where the individual parameters must be selected such that the following operator is

Q. = Qu QWi (3.19)
Q:Wa Q2

unimodular

Ezpansion of the parameterization into right coprime parameterized factors is as fol-

lows

C: 0
0 C,

Ng, Dall 0
0 ch Dazl

Cq = (3.20)

NC] DE: = (U1Q11 + Ddu Ql)(%@ll - Ndlxél)_l’ 'IleAll - Ndu Qll 7& 0 (321)

N¢,Dg; = (U2Q: + anQz)(Van — NdzzQZ)_la V2Q@22 — Ny, Q5| #0 (3.22)
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where the individual parameters must be selected such that the following operator is

unimodular

Qu _ Qu W@, (3.23)

Wn@Q:  Qa

The expanded derivation can be found from the compact formulation by substitution
of partitioned values as given in definition 3 and 4 into eq. (3.11) along with sub-
stituting in the values from eq. (3.12), eq. (3.13), eq. (3.14) and strategic use of a
set of decentralized stable factor properties which arise from the DDCBI. These de-
centralized stable factor properties will be examined in section 3.4. In the expanded
form the connection of the parameterization to the centralized parameterization is
obscured due to the distribution of the individual parameters. However, as will be
seen in chapter 4 the expanded form is useful in analysis.

In order to provide a self contained listing of the various parameterizations the
special case of stable plant (i.e. P € m(H)) will be examined. This special form of
the parameterization will also be used in chapter 4. A valid DDCBI for the stable

plant case takes on the following form

I 0 I 0 I0
= (3.24)

—-P I P I 0 1
The initial compensator used is the zero compensator since the plant is stable. Note
no special adjustment is needed on plant factorization for the stable case. In other
words any stable plant will satisfy a DDCBI which implies that for the stable case
no unstable fixed modes are possible. Of course this is exactly what must occur since
there exists no partition of a stable plant which can induce any unstable modes (see
section 2.5). Also of interest is that for the stable case the DDCBI is indistinguishable
from a valid DCBI used in the centralized controller case. Decentralized expanded

parameterization for the stable case is given by definition 6.
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Definition 6 (Expanded Decentralized Parameterization for P € m(H)) Ez-

pansion of the parameterization into left coprime parameterized factors is as follows

C: 0 DZIN, 0
Cd = ! = C1 2 . . (3'25)
0 C 0 Dz N,
DG!Ne, = (Qu — @Pu)'Q1, Q11— @uPul £0 (3.26)
D5} No, = (@22 — Q2Pn)'Q, Q22 — Qo Pya # 0 (3.27)

where the individual parameters must be selected such that the following operator is

unimodular
P,
Q. = Qu Q1P (3.28)
Q2Pa1 Q22
Ezpansion of the parameterization into right coprime parameterized factors is as fol-
lows
C; 0 Ne¢, D! 0
c;=| 1 —| a7 (3.29)
0 02 0 NC’zDE':
Ng, DEII = QI(QII - P11Q1)_1, |Q11 — P11Q1| #0 (3.30)
NCzDE': = Qz(Qn — P22Q2)_17 Qs — P22Q2| #0 (3.31)

where the individual parameters must be selected such that the following operator is

unimodular

A

u —

. (3.32)
P21Q1 Q22

Qll P12Q2 J

3.4 Reliance on Auxiliary Bezout Identities

The proof of theorem 5, section 3.3, is dependent on the use of auxiliary doubly co-
prime Bezout identities (ADCBI) which follow directly from the decentralized doubly
coprime Bezout identity (DDCBI), eq. (3.4). These auxiliary doubly coprime Bezout

identities are given in the following corollary.
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Corollary 1 (Auxiliary Doubly Coprime Bezout Identities) The stable factors
which satisfy the DDCBI (eq. (3.4)) also satisfy the following auziliary doubly coprime
Bezout identities (ADCBI)

[ % O ][ D -] [10]

| ey Doy | [ Naw W | |01

% 0 | [Dm -m] [10 )
_—Ndn anJ | Napy, V2| - | 0 T ] .

These auxiliary identities indicate that not only does the overall compensator, ex-
pressed by say the stable factors U,y = blkdiag[U,,Us) and Viy = blkdiag[Vi, V3],
stabilize the plant P as indicated by DDCBI, eq. (3.4), but the individual subcom-
pensators by satisfying the ADCBI of corollary 1 stabilize fictitious plant operators
formed from the main diagonal (see eq. (3.2)) of the decentralized stable plant factors,
(i.e. (N4yy, Day,) and (Ng,, Da,,)). Note, that if the plant was decoupled it would be
immediately obvious that the above auxiliary doubly coprime Bezout identities would
be satisfied. This follows since the aforementioned fictitious plant operators would
no longer be fictitious. They would correspond to the stable factors associated with
the individual plant operators P;; and P, of the decoupled plant, and the individual
subcontrollers would be the respective stabilizing controllers for P;; and Py, It is
less obvious that the auxiliary doubly coprime identities should hold for a plant with
coupling, but when the plant stable factors are placed in the DSPF form the above
auxiliary properties can be shown to be true.

In reference [48] the proof of corollary 1 obscures its direct connection to the
DDCBI. Corollary 1, (ADCBI) follows directly from the DDCBI in a straight forward

manner and proof of this is given below.
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Proof  Substituting eq. (3.2) into the DDCBI eq. (3.4) yields
i o 0, o |[Dy Da,
0 Vv 0 0 Dy, D,
_Ndu _Ndu Ddu Ddu Ndu Ndlz
L _Ndzl _Ndzz Ddzl Ddzz i L Ndn Ndzz

=1 (3.34)

The following three equations are then immediately available from eq. (3.34).

R
[_Ndu an
RN

Also directly available from eq. (3.34) is the following relation

Nd12U2 + Ddu‘fz =0

Operating on the left by V,; ' Ny, gives

Ndn UZI/Z—lNdn + an Ndzl

Using the relation Cy = V51U, = U,V; ™! we obtain

Ndlz ffz-lU.-Zngl + de Ndzl

=0

=0

(3.35)

(3.36)

(3.37)

(3.38)

Applying the following relation (which is also from the DDCBI, eq. (3.34))

VaDg,, + U,Ng, = 0= U,N,, = —V,Dg,,

(3.39)



to eq. (3.38) yields
- NdldeZI + [)dm Ndn =0 (3'40)

From eq. (3.34) we have that
- NduDdu + DduNdu - Nandzl + ‘Ddlsz21 =0 (3'41)

By application of eq. (3.40) to eq. (3.41) we obtain

=0 (3.42)

Combining eq. (3.42) with eq. (3.35) gives the following
I 0
0 I

The proof for the other auxiliary Bezout identity in corollary 1 is completely analo-

i O
_Ndu -an

Ddu —Ul
Ny, W

a

gous.

As mentioned earlier the ADCBI are used in the proofs of theorem 5. In section 3.5
they will be used in the parameterization of a special class of decentralized compen-
sators. In addition the ADCBI are used in establishing a set of relations between the
interaction terms, Wy, and W, and the decentralized stable plant factors (DSPF)
(see eq.(3.2)). These relations are used in the necessary and sufficient parts of the
proofs for theorem 5 and will be used in chapter 5 to simplify stable factor terms.
Although, the relationships were never given explicitly in reference (48] an analysis
of the proofs given in that reference indicate that a number of algebraic relationships
in the proofs relied on these properties being true. For completeness these properties
will be collected here in the following table 3.1 and will be referred to as the decen-
tralized interaction properties (DIP). These properties are derived by applying the
definitions of Wi,, Way, (see eq. (3.12)) and the ADCBI (see corollary 1).
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| Left DIP B Right DIP |

WiV = Ny, Uy Wy, = — Dy,
Wa Vi = N, UsWy = — Dy,
WiUs = — Dy, ViWi, = Ny,
WUy = —Dg,, VaWa = Ny,

Table 3.1: Decentralized Interaction Properties (DIP)
3.5 Class of Decentralized Controllers Which Al-
ways Satisfy ADCBI

This section is devoted to characterizing a subclass of stabilizing decentralized con-
trollers which are useful in autonomous design methods and in design methods based
on iteration. These controllers will be used in chapter 4 and chapter 5. The subclass
of controllers is defined by imposing a unimodular restriction on the parameters used
in the expanded form of the decentralized parameterization of definition 5. The pa-

rameters affected by this unimodular restriction are given in the following definition.

Definition 7 (Unimodular Parameter Restriction (UPR)) For the set of pa-
rameters satisfying the ezpanded form of decentralized parameterization, (definition 5),
unimodular parameter restriction (UPR) refers to constraining the parameters, Qq1,

Q22, Q11, and sz to being unimodular.

An important relationship between the parameters established in [48] is the following.

Q:1Qu = Qu@: (3.43)
Qzsz = szQz (3.44)

For the case involving UPR these relationships become

Q1_11Q1 = Q1Q1—11 where Q1_11Q1’ Qlé;ll € m(H) (3.45)

47



Q'Zlez = Q2Q;21 where Q;21Q2a Qzégzl € m(H) (3'46)

The following theorem 6 shows that the UPR leads to a set of subcontrollers which
always satisfies an ADCBI.

Theorem 6 (Subcontrollers Which Always Satisfy ADCBI) Given the expanded
form of decentralized parameterization, (definition 5), selecting a subset of the param-

eters to satisfy UPR, (definition 7), results in subcontrollers which satisfy a parame-
terized ADCBI, (corollary 1).

Proof  Starting with the following ADCBI

I;; U~"i Ddg,‘ _Ui I 0
S = (3.47)
_Nd.'.‘ Dd.'.' Nd.'.' Vi 0 I

for 7 = 1,2. Operating on the left by

[ Qi Qs ] (3.48)
0 I

and on the right by

[ I -e ] (3.49)
0 Qi

yields the following

QiVi — QiNa, Qul; + Q:Da,

Dy, —(Dd.-,-Qi + UiQii) ] _

_Ndii Dd.‘; Ndii WQii - NdiiQ‘i
Qi QiQi — Qi Q: (3.50)
0 Qi
Equations (3.43)-(3.44) imply
QiQii — Q@i =0 (3.51)
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Since Q;; and Q;; are unimodular by UPR, the operator blkdiag[Qy;, Q;;] is unimod-
ular. Operating on eq. (3.50) from the right by the stable inverse of blkdiag[Qi;, Q]

yields

QiV: — QiNa, QuUi + QiDa,
_Ndﬁ ‘Dd

Ddii i—il —(DdiiQi+UiQii)Qﬁl N
Ny Q' (ViQui — Na0:)Qi!

I

i1

which is a parameterized version of ADCBI for both i = 1, 2.

a

The following theorem gives the subclass of decentralized controllers which always

satisfy ADCBI and result from applying the unimodular parameter restriction.

Theorem 7 (Unimodular Parameter Restricted Controllers (UPRC)) Given
the ezpanded form of stabilizing decentralized controllers, (definition 5), applying the
UPR, (definition 7), leads to the following subset of stabilizing decentralized con-
trollers.

Ezpansion of the parameterization into left coprime parameterized factors is as follows

C: 0 DN, 0
Co=1| " =|Tere T (3.52)
0 C, 0 Dzl Ne,
DE&INCl = (f/l - QlNdu)_l(ﬁl + Qlan)7 |‘71 - Qlfvdul 7é 0 (353)
D(_leﬁcz = (‘72 - Q2Nd22)_1(ﬁ2 + Q2Ddzz)’ “./2 - Q-ZNJzzI 7é 0 (354)

where the individual parameters must be selected such that the following operator is

) I &l (3.55)
Q:Wa I

Ezpansion of the parameterization into right coprime parameterized factors is as fol-

unimodular

lows

Ci 0
0 G,

Ng, Dall 0
0 Ng, Dg.:

Cy =

(3.56)
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NC1D511 = (Ul + Ddu Ql)(‘/l - Ndqu)_l’ I‘/l - Nd11Q1| 7é 0 (357)
NCzDE;l = (U2 + DdzzQ2)(I/2 - Nan_Z)_li |V2 - Nd22Q2| :lé 0 (358)

where the individual parameters must be selected such that the following operator is

[ I Wi, ] (3.59)

unimodular

Wa1Q: I

Where Ql € m(H‘h"Pl) and Qz € m(HthXPz)

Proof  The form of the left coprime parameterized subcompensators of eq. (3.17)

and eq. (3.18) can be rewritten

Ci = (QuVi— QiNg,) ™ (Quli + Q:Dyg,)  i=1,2
= (Qu(Vi - Q7' QiNa,)) ™ (Qul: + Q:Dy,)
= (Vi - Q7' QiNg,) (Ui + Q5'QiDu,,)
= (Vi = QiNa,) ' (U: + Q:Dy,) (3.60)

where Q; = Q;'Q; € m(H), for i = 1,2, since Q;; is constrained to be unimodular.
The form of eq. (3.60) is UPRC, (see eq. (3.53-3.54)), the unimodular operator con-
straint, (eq. (3.55)), is obtained as follows. By rewriting the unimodular operator of

eq. (3.19) the following is obtained

11 1W12
o — | @ @ }

| QW1 Q2
_ | @u 0 I Q1 @1V, (3.61)
0 Q22 2_21Q2W21 I

Since Q11 and @3, are unimodular, blkdiag[@11,Q2,) is also unimodular. Hence the

above unimodular constraint becomes
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I I W
@. unimodular < _ Q12 unimodular (3.62)
Q. Wa I -

The proof for the right coprime UPRC, (see eq. (3.57)-(3.59)), is completely analo-

gous.

3.6 Summary

In chapter 3 the parameterization of all stabilizing decentralized controllers along with
a number of associated properties and useful subclasses of decentralized controllers
has been presented. In section 3.2 the decentralizing stability property was presented
in the form of a specially constructed decentralized doubly coprime Bezout identity
(DDCBI). The special form of decentralized stable plant factors (DSPF) and their
role in the DDCBI were explained. Section 3.3 was devoted to a through overview of
the parameterized decentralized controllers and the associated unimodular constraint.
Parameterizations were presented in a compact form, expanded form and expanded
form for the special case of a stable plant. Section 3.4 presented auxiliary doubly
coprime Bezout identities (ADCBI) and indicated their uses and importance. A new
proof for the ADCBI was given and it established a more direct link of the ADCBI
to their respective DDCBI. A summary, in table form, of a set of decentralized in-
teraction properties (DIP), which follow from definitions of the interaction operators
and ADCBI was presented. These decentralized interaction properties will find use in
chapter 5 to simplify complex stable factor terms. Finally, section 3.5 ends the chap-
ter by characterizing a new subset of stabilizing decentralized controllers which will be
used in chapter 4 for autonomous design methods and in chapter 5 for methods based
on iteration. The characterization involves defining the type of parameter restriction,
which was denoted as a unimodular parameter restriction (UPR). A link was estab-
lished to ADCBI for the individual subcontrollers. The resulting expanded form of
specialized parameterization for the controllers, (designated, unimodular parameter

restricted controllers (UPRC)), was presented.
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Chapter 4

Autonomous Design of

Subcontrollers

4.1 Introduction

The method of autonomous design for subcontrollers deals with the design of indi-
vidual subcontrollers for individually identified subsystems of the plant. Effectively
the individual subsystems are associated with the main diagonal of the plant. This is
usually the case when the plant is stable. The difficulty arises in developing a method-
ology which allows designing the individual subcontrollers and then guaranteeing that
the effective overall decentralized controller does not destabilize the nominal plant.
Essentially, one desires a means of accounting for the coupling elements in the plant
with out needlessly complicating the design of the individual subcontrollers. These
types of design methods are often used in process control [11] and are associated
with nonsingular perturbation design techniques [10] and design techniques aimed at
plants composed of similar interconnected subsystems [36].

A recent method [45] developed for the autonomous design of subcontrollers in-
volves the use of Youla parameterization for the individual subcontrollers. The stable
factors of the subsystem plant operator are used to parameterize the class of all stabi-
lizing controllers for this subsystem in a manner identical to that used with centralized

design (see section 2.2, eq. 2.17). The Youla parameter selected for each subsystem is
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done in a sequential fashion where the interconnection operators constrain the choice
of parameter as each loop is closed. In this way the set of selected Youla parameters
for the decentralized control system will provide closed loop stability for the overall
system.

In this chapter a method will be develop which allows for the autonomous design
of subcontrollers in a nonsequential fashion. In other words, design of subcontroller
i does not rely on subcontrollers 1 through ¢ — 1 having been designed first. In this
chapter the decentralized parameterization, eq. (3.17-3.18), will be recast into the
more familiar Youla parameterization form for the individual subcontrollers. This
formulation of the controllers will effectively turn out to be the stable version of the
UPRC developed in section 3.5, theorem 7. The sequential loop closing and sequen-
tial selection of Youla parameters of [45] will be avoided by using the unimodular
constraint, eq. (3.19). From the unimodular constraint, eq. (3.19), imposed on the
parameters for the class of all stabilizing decentralized compensators a simple norm
bound will be derived which constrains the Youla parameters of the individual sub-
systems in terms of the plant off diagonal operators (i.e. the interaction operators
of the plant not accounted for in stabilization of the individual subsystems). The
bound serves as an interaction measure and provides a upper threshold which when
met by the set of subsystem Youla parameters provides a stability guarantee for the
overall closed loop system. Section 4.2 derives these results for the two channel case.
The interaction measure in the form of a norm bound effectively quantifies the notion
of weak coupling which is a condition for nonsingular perturbation design of decen-
tralized control [64]. These issues will be elaborated on in section 4.2. Section 4.3
compares the bound derived for the two channel case with a small gain bound derived
by placing the problem in a robust stability type framework. It will be shown that
any pair of Youla parameters which satisfy this small gain bound will also satisfy the
bound derived from the unimodular constraint of section 4.2. The converse of this is
not true, thereby making the aforementioned bound less conservative than the small
gain bound in the two channel case. In section 4.4 extensions to the multiple channel

case are developed. Finally, in section 4.5 a compatible bound is developed for the
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unstable plant case, (i.e. P € m(Q)).

4.2 Parameter Bound of Two Channel, Stable
Plant Case

Figure 4-1 illustrates the two channel decentralized control problem. The parame-
terization of all stabilizing decentralized compensators for the two channel case with
stable plant, P € m(H), was given by definition 6, section 3.3. In this section we will
use the left coprime parameterization of the compensator from definition 6 which has

the form
(Qu — Q1P11)-1Q1 0
Cy=
0 (Qa22 — Q2P2)71Q,

for some @11, Qa3, Q1, Q, € m(H) such that

(4.1)

y 2
Q= Qu QP is unimodular (4.2)

QZPZI Q22

If the plant P is initially decoupled the interaction constraint (eq. 4.2) reduces to Q;;

and @»; being unimodular. To prove this the following lemma will be useful.

Lemma 1 (see [5, p. 393, Fact B.1.26] for proof) F € m(H) (where m(H) corre-
sponds to the matriz ring of proper stable systems) is unimodular iff |F| is a unit in

H (where H corresponds to the ring of proper stable transfer functions).

For a decoupled plant, P;; = 0 and P,; = 0, the interaction constraint reduces as
follows

Q = diag(Q11,Q32) is unimodular < |Q| is a unit

Since |Q| = |Q11]|Q22| and @11, Q22 are elements of m(H) then |@11], |Q22| must
be units in H which by Lemma 2 implies ()1; and @3, are unimodular. The lack of
coupling in the plant will allow reformulating the individual compensator parameteri-

zations in eq. (4.1) to the one parameter Youla form [6]. The observation that Q,; and
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Figure 4-1: The Two Channel Decentralized Control Problem

(22 must become unimodular as the coupling vanishes facilitates this reformulation.

Specifically, for Cy = diag(Cy,C2) both compensators can be rewritten as

Ci = (Qi— Q:P:) ' Q: fori=1or2
= (Qu(I - Q'Q:Py) " Q,
= (I-Qa'Q:P) ™ Q7'Qs
= (I - Q-iPii) - Qs
where Q: = Qi'Q (4.3)

Since @ is unimodular, Q;'Q; is an element in m(H) and therefore Q; is also an
element in m(H). This then places eq. (4.3) in the Youla parameterization form for
the case of stable plant operators P;; and Ps,.

When the plant is coupled (i.e. P13, Py; # 0) the above parameterization can be
extended by accounting for the effect of the cross coupling on the Q;, Q, terms. This
effect will be accounted for in terms of a norm bound on the Q,, Q, parameters. The

following induced operator norm will be used

1P|l = sup o(P(iw)) (4.4)
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Before deriving the bound on the Youla parameters the following lemma will prove

useful.

Lemma 2 (see [5, p. 22, Lemma 2.2.19] for proof) For R € m(H) if |R|| < 1 then
|I — R| is a unit in H.

To derive the bound we begin with the interaction constraint from eq. (4.2).

is unimodular (4.5)

0- Qu Q1P
Q2P21 Q22

Invoking lemma 1 and using the well known Schur determinantal formula [65], con-

straint 4.5 becomes

Q] = |Qu] |Q22 — (Qan)(Ql_ll)(QlPlz)} is a unit (4.6)
= |Qul[Q2] ‘I - Q;21Q2P21Q1_11Q1P12‘ (4.7)

Requiring @1; and @32 to be unimodular ensures parameterization given by eq. (4.3).

In addition, since Q11,Q, are elements of m(H), |@Q| will be a unit if and only if

‘I - Q{21Q2P21Q1—11Q1P12| is a unit. Substituting @, for Q7'Q; and @, for Q5 Q.

this constraint becomes
Q] isaunit & |[I-@PuGiP| s a unit (4.8)

Q2P21Q1P12 is a element of m(H) and invoking lemma 2 means II - Q2P21Q~1P12|
will be a unit if ||Q2P21 Q1P12|| < 1. Use of the submultiplicative property of induced

operator norms gives

1Q2P21Q1 Prz|| < || Q||| Paall|| Gal]| Prll (4.9)
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Therefore, forcing ||Q5||||Po1|||@1[]| Pr2|| < 1 ensures |Q| is a unit and provides the

following bound on the design parameters in terms of the off diagonal plant operators

I1Q:MIPalll@ullll Prafl < 1 (4.10)

~ ~ 1
< T 4.11
||Q2||”Q1H ||P21||”P12|| ( )

Thus the controller parameterization of eq. (4.3) will provide for closed loop stability
if the above bound, eq. (4.11), is satisfied.

The following set of remarks provide interpretation and checks on the bound of
eq. (4.11).
Remark 1 As ||Pia]| — 0 and || Py|| — 0, effectively the restrictions on the
parameters Q; and (), disappear. That is the upper bound of eq. (4.11) becomes
virtually infinite and the set of Youla parameters expands to encompass the entire
matrix ring of proper stable systems m(H). This is the expected result and quantifies
the notion of weak coupling. Specifically, the bound of eq. (4.11) specifies an upper
bound on the Youla parameters in terms of the off diagonal operators P, and P,;. The
expectation is that as the cross coupling in the plant becomes small (i.e. || P2 — ¢
and || Py || — € where ¢ < 1) stabilization of the overall system is not compromised by
simply ensuring that the individual compensators for P;; and P,, provide stabilization
for these individual loops. As this coupling goes to zero the expectation is that the
set of individual stabilizing compensators for P;; and P, grows to encompass the
entire set of all stabilizing compensators for P;; and P,, (i.e. the parameterization in
eq. (4.3)). In effect this is exactly what the bound of eq. (4.11) provides. Precisely
how the set of stabilizing compensators grow to encompass the entire set, is quantified
by the upper bound placed on the Youla parameters in terms of P;; and Py;.
Remark 2 It is expected for a block triangular plant (i.e. ||Pi2| = 0 or
[|Pa1]| = 0) that no restriction should exist on the individual stabilizing controllers
that can be applied to P;; and P,,. Stabilization of the overall system is once again
not compromised by simply stabilizing the individual subsystems, P;; and P;,. The

bound of eq. (4.11) satisfies this condition. For example as || Py,| goes to zero the
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bound on the Youla parameters Q; and @, disappears. An interesting aspect of this
is that the bound in the face of weak triangular coupling behaves similarly to case
of weak coupling discussed in remark 1. That is as | Pps|| — € (or || Pyl — ¢) for
€ < 1 there exist a rather large set of stabilizing compensators for P;; and P;, which
also do not destabilize the overall system. As ¢ — 0 this set grows to encompass the

entire set of all stabilizing compensators for P;; and P,,.

4.3 Connection to Small Gain Methods

The problem can be approached from a robust stability point of view where the
decoupled plant is treated as the nominal plant and the off diagonal plant operators,
Py; and Py, become an additive perturbation. Using the parameterization of eq. (4.3)
we seek the constraints placed on the Youla parameters by the Small Gain Theorem.
It will be shown that any Youla parameters which satisfy this small gain constraint
will also satisfy the bound of eq. (4.11). This is reassuring in the sense that the
bound of eq. (4.11) is derived via small gain arguments (see lemma 2). It is extended
beyond the small gain bound only as a consequence of the existence of a simple
determinantal formula (eq. 4.7) for the two channel case which allows separation of
the Youla parameters from the off diagonal plant operators. As will be seen in the
multichannel case (section 4.4), when using the same line of reasoning as in section 4.2,
the absence of a similar simple determinantal formula results in a bound from the
multi-channel unimodular constraint which is identical to a small gain bound derived
using only the robust stability framework of this section.

The Plant P can be decomposed in the following manner

P, 0 0 P
P=F+A= + (4.12)
0 Py Py 0
Gundes and Desoer [9] formulation of the two channel decentralized control prob-

lem (see figure 4-1) is in the form of the two block problem where the controller is

constrained to be block diagonal (see figure 4-2). The parameterization of eq. (4.3),
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Figure 4-2: Centralized Two Block Problem

where C' = Cg = diag(C1, C;) guarantees internal stability for the closed loop map of
the two block problem illustrated in figure 4-2. That is for the closed loop map

H(C,Py): [T}H!e]

(I+PC)t  —(I+ PC) 1P,
(I+CP)"1C  (I+CPy)"

where

H(C,Py) = (4.13)

all transfer functions which are elements of H(C, P) are in m(H) (i.e. they are stable).
By applying the additive perturbation to the two block problem and performing the
linear fractional transformation indicated in figure 4-3 the closed loop system is now
in a form where the Small Gain Theorem can be applied directly. Note that the
operator M is defined as

M: d—u where M=—-(I+CPh)'C (4.14)

and M € m(H) by internal stability, also A € m(H) since P € m(H). Because M
and A are both stable the Small Gain Theorem [66] provides that the closed loop

remains stable as long as

IMA| < 1 (4.15)

Substituting C' = diag(C1, C;) and Py = diag(Py1, Pr;), M becomes

M = —(I+CR)!C
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u M|Ed

Figure 4-3: Transformation to Small Gain Loop

_ [ ~(I+ C1 Py )1y 0 (4.16)

0 —(I+ Oszz)_102

Substituting in the Youla parameterization from eq. (4.3) each term in M reduces as

follows
~(I+CiP;)7'C; = —(I+(I—QiP:)*QiPs) (I — Q:P;)10;

= - ((I —Q:P)(I+(I - Q.iPii)_IQiPii))_l Qs
= — ((I — QiPii) + QiPii) - Q;

= -Q; for 4 =1 or 2 (4.17)
And MA becomes
-0 0 0 P
MA — Ql i 12
0 -0, Py 0
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0 _Q1P12

o.r . (4.18)
“w2i21

To find the constraint on the Q, and ), the following lemma will prove useful

Lemma 3

Proof

Therefore

0 Hy»
For H =
Hyy 0
|H| < 1 iff |Hi2]| <1 and | Hall < 1 (4.19)
[H|| = sup&(H(iw))
weR
= sup [Nmex(H*(iw) H(iw))]*/?
weER
- * 1/2
( 0 le 0 H12
= sup |[Amex
“’E&_ \| A2 0 Hy 0
- / 1/2
H; Hy 0
= sup |Amax
weR | 0 H:,Hi,
= sug [ma.x [Amax(H;1H21)1/2, Amax(HszIZ)l/z]]
we
= max [sup [Amax(Hgl.Hz])l/z] , Sup [Amax(Hszlz)l/z]]
weR weR
= max [sup o(Hy (iw)),sup &(le(iw))]
weER weR
=  max[||Hxul, || H|]
lH|| <1 <— |Hiz|| <1 and [[Hall < 1

(]

Thus to find the constraints on Q; and ), we invoke lemma 3. That is |IMA] <1
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iff ”Q1P12” <1 and ||Q2P21|] < 1. This then leads to the following constraint on the

Youla parameters due to the Small Gain Theorem

- 1 ~ 1
_ d _ 4.2
“QIH < ||P12|| an ”Q2” < ”P21” ( 0)

From the above bound we can derive the bound in equation 4.11 as follows

- 1
<
”Q2” ”P21”
- 161
<
Qe <
1
< — 4.21
TBallliPal (4:21)

This then says that any Youla parameters which satisfy the Small Gain bound of
eq. (4.20) also satisfy the bound found earlier in section 4.2 given by eq. (4.11).
However, the converse is not true. This is seen by considering the following example.
If || Py2|| — 0 the bound on Q; and Q, from eq. (4.11) disappears but as can be seen
from eq. (4.20) the Small Gain bound still constrains Q, when ||Pz21]] # 0. Hence
arbitrary parameters Q; and @, which satisfy the bound given by eq. (4.11) may not
satisfy the bound imposed by the Small Gain condition given by eq. (4.20). This
illustrates that the bound of eq. (4.11) encompasses a larger set of Youla parameters
which will stabilize the closed loop system then is given by the small gain bound
eq. (4.20). Note however that in a fundamental sense these two seemingly different
frameworks (unimodular constraint v.s. stability robustness) give precisely the same
conditions for stability and hence result in the same bound. This is seen as follows,
stability of the closed loop involving the stable operators A and M in figure 4-3 is
guaranteed as long as |[I — MA| is a unit. Substituting in the matrix values for MA
from eq. (4.18) results in precisely the constraint of eq. (4.8) which is derived from

the unimodular constraint of eq. (4.5).
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4.4 Extension to Multichannel Case

From [9] the unimodular constraint for the m channel case where P € m(H) is

Qll Q1P12 Q1P13 e QIPIm
Q2P21 Q22 Q2P23 e Q2P2m
Q = Q3Ps1  Q3Ps Q33 r Q3Piy (4.22)
| Quml QumZ QumS ot Qmm i

Directly generalizing the method in section 4.2 for finding an interaction measure
in the form of a norm bound on the Youla parameters for the individual subsystem

compensators would require finding a determinantal formula for the following matrix

[ I 6Py (P - OiPin
@Pn I QP - Q4P |
Q = Q3P31 Q~3P32 I Qsplm (4-23)
| Qmpml QumZ Q-um3 e I J

And deriving a norm which would allow separation of the Q;’s and P;;’s in the form
of an inequality which provides that |Q| is a unit (see section 4.2 eq. (4.5) through
eq. (4.11)). The complexity of determinantal formula for the m channel case pre-
cludes this approach. Another approach which generalizes the intent of the bound
in eq.(4.11) for the multi-channel case and takes advantage of the equivalence of the
stability constraint in both the robust stability framework and unimodular interac-

tion setting (as noted at the end of section 4.3) is as follows. Rewriting eq. (4.23) we
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obtain

By application of lemma 2, |Q| will be a unit if

or equivalently

| diag(Gy,

or by lemma 3

Q:

0

P21

Qm JL Pml

,Qm)” <

0 Py

Py 0

< -

Pml Pm2
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Py
0

Pm2

0

Pml

P12

-Pm2

le
P2m

le
P2m

le-

P2m

(4.24)

(4.25)

(4.26)

(4.27)



Note however that this bound is identical to that given by the Small Gain Theorem

for the multi-channel case. For the multi-channel case

Q1 0
Q2 Py,

Qm_ _Pml

Py
0

Pm2

le
P2m

0

(4.28)

The Small Gain bound requirement | MA| < 1 is equivalent to eq.(4.25). Remarks

from section 4.2 extend in an analogous fashion to the above multi-channel bound.

4.5 Parameter Bound for Unstable Plants

A similar bound to the one developed for stable plants (i.e. P € m(H)) in section 4.2

can be developed for the more general case P € m(G). Or in other words, the

case were the plant, P, could be unstable. A close examination of the constraints

placed on @1; and @33 in section 4.2 reveals that this is the same constraint as UPR

(unimodular parameter constraint) of definition 7, section 3.5. Assuming P € m(QG)

is partitioned such that no unstable fixed modes exist, the associated left coprime

UPRC (see eq. (3.53)-(3.55)) is

(¢ 0
Ci =
0 o
_ (‘71 - QlNdll)_l(ﬁl + led11) 0
0 (‘72 - Qszzz)_l(ﬁZ’ + Qz'bdzz)

with the following associated unimodular constraint

I )W,
Q — i Ql 12
Q:Wan I
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The operators Wi, and Wy, are formed from stable factors of the plant P in the

following fashion.

Wi = _Ndn Dg,, + Ddu Ng,, = Ndn‘Ddzz - I-Jdlszn
Wn = _Ndzden + Ddzszn = Nandn - anNdu (431)

Since W1z and Wy, are stable, (i.e. Wiz, Wy € m(H)), egs. (4.8)-(4.10) apply with
Py3 and Py; replaced by Wi, and W;. This then gives the following bound for the
case P € m(G).

QMW Qull[Wafl < 1

< 1
1@:llll@all <

_— 4.32
W lTWa] (4-32)

Thus the controller parameterization of eq. (4.29) will provide for closed loop sta-
bility if the above bound, eq. (4.32), is satisfied. The use of this bound provides
for a simplified method of designing autonomous subcontrollers when the plant is
no longer strictly stable. This is a natural extension (from the symmetry of the
input/output stable factor point of view) for the methods developed in section 4.2.
However, because the off-diagonal operators of P may no longer be strictly stable,

the interpretation used in section 4.3 is not applicable to this case.

4.6 Summary

The set of stabilizing compensators for a decoupled, two channel, plant consists of a
compensator of the form Cy = diag(Cy, C;) where the individual compensators C; and
C> have a Youla parameterization. For coupled stable plants this parameterization
can be extended by constraining the norm of the Youla parameters by the norm of the
off diagonal plant operators P, and P,; as was done in section 4.2, eq. (4.11). This
bound was derived from the unimodular interaction constraint associated with the
parameterization of stabilizing compensators found in section 4.2, eq. (4.2). One result

from such a bound is the quantification of weak coupling with respect to stabilizing
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decentralized compensators. This bound provides for the recovery of the entire set
of stabilizing compensators for the individual plant operators P;; and P,, as the
coupling goes to zero. A relationship is made to a bound derived using the Small Gain
Theorem. It is shown that Youla parameters for the decentralized controllers which
satisfy this small gain bound (eq. 4.20) will also satisfy the bound derived via the
interaction constraint (eq. 4.11). It is noted that fundamentally the robust stability
framework setup in section 4.3 effectively produces the same stability constraint as
the unimodular interaction constraint of section 4.2. This observation is then used in
section 4.4 when extending the bound to the multichannel case. Finally in section 4.5
a similar bound is developed for the unstable plant case (i.e. P € m(G)). However an
equivalent interpretation in terms of off diagonal stable perturbations as developed

in section 4.3, for the case P € m(H), is no longer possible for the more general case,

P € m(G).
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Chapter 5

Developing Decentralized
Controllers for Robust

Performance

5;1 Introduction

One of the purposes of the modern control paradigm, as given in section 2.2 and
illustrated by figure 2-1, is to provide not only for nominal stability and nominal
performance of the plant but to also have a methodology which can provide for robust
stability and robust performance. This is accomplished by accounting for model
uncertainties and model errors in terms of norm bounded perturbations. The nominal
plant when coupled with a modeling device for uncertainties in the form of say additive
uncertainty, input multiplicative uncertainty, output multiplicative uncertainty, etc.
(these terms will be defined in the next section), generates a set of plants, F. If the
selected compensator stabilizes the nominal plant G and in addition all plants which
are elements of F the system is said to be robustly stable. A more profitable way to
view this, as will be done in section 5.2, is to develop a set of closed loop transfer
matrices associated with each perturbation in an input/output sense. The controller
selected is said to be robustly stabilizing if the closed loop maps remain stable in

the face of the feedback perturbation used to model the uncertainties. The notion
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of robust performance is added to this framework by scaling the norm bound of the
performance operator, 7T,,,, appropriately such that it can be connected to a fictitious
unity norm bounded perturbation which is augmented to the previous perturbation
structure. The machinery developed for robust stability extends to provide a notion
of robust performance via this use of a fictitious performance perturbation.

An important point to mention is that the design methodology used in develop-
ing robust MIMO controllers is important. For example selecting a controller which
provides for robust stability and good nominal performance does not in general guar-
antee that the overall system will achieve robust performance [49]. The reason for this
is that exclusive consideration of robust stability and nominal performance neglect
closed loop transfer matrices associated with the aggregated uncertainty/performance
perturbation structure which affect the robust performance of the closed loop system.
The use of an appropriate analysis metric which accounts for all relevant closed loop
transfer matrices associated with the perturbation structure is an important element
in a framework for developing robust controllers. Such a metric exists and it is known
as the structured singular value (its definition will be presented in section 5.2). The
structured singular value as an analysis tool accounts for all relevant closed loop
transfer matrices and a synthesis method for robust controllers exists based on this
analysis tool.

It is possible to use a more general metric referred to as the structured norm.
The structured norm identifies the type of perturbation allowed, (linear time varying,
nonlinear time varying) along with the sense in which the perturbation is bounded (i.e.
bounded in the sense of an I, induced norm). The use of the structured norm in this
chapter will be avoided primarily for two reasons. First the focus in this chapter will
be on stable, LTI, bounded perturbations. Secondly the necessary development and
definitions for the appropriate norm bounded vector spaces has not been made and
such a development will not necessarily further illuminate the ideas to be presented
in this chapter. The interested reader is referred to [50] for information concerning
the use of structured norms.

Clearly, making a connection to the modern centralized methods for robust con-
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troller design will be beneficial to developing robust decentralized controllers. Many
of the issues remain the same with the fundamental difference being that the selected
robust controller must also satisfy a decentralized structural constraint. Section 5.2
defines some of the essentials of the y-framework (i.e. the structured singular value
framework) and then places the decentralized problem in this framework. Section 5.3
details the problems encountered in trying to develop robust decentralized controllers.
Section 5.4 develops a D-K methodology for the sequential design of decentralized
controllers. And finally, in section 5.5, computation methods are discussed for the
D-K sequential design algorithm for robust decentralized controllers along with some

anticipated difficulties.

5.2 [Essentials of Robust Stability /Performance
Methodology

In this section the essential tools needed for using the y-framework will be defined.
The source for this material and many more of the details is available from [49], [67].
Placing the decentralized problem in this framework will then be demonstrated with
the use of a specific example in section 5.3.

One of the first elements needed for a robust framework is a means to incorporate
model uncertainties and modeling errors with the nominal plant model. Figure 5-1
illustrates various methods of formulating model uncertainty. Typically the uncer-
tainty is modeled via a norm bounded perturbation and a scalar weight. Figure 5-2
illustrates this perturbation approach to uncertainty modeling. The weight is usually
restricted to be a unit, W; € U, which for continuous time definitions implies that
the weight is usually restricted to be a real-rational transfer function which is stable,
minimum phase, proper and has an inverse which is also stable, minimum phase and
proper [68]. The uncertainty modeling perturbations in this chapter will be restricted
to A; € m(H) which for continuous time systems implies LTI, stable. In addition the
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perturbations will be constrained to satisfy a unity norm bound.

1Al <1 (5.1)

Given this form of uncertainty modeling the plants modeled using multiplicative input

uncertainty can be represented by

P e {P,(I+WiA)} (5.2)
Plants modeled using multiplicative output uncertainty are given by

P e {(I+WoA[)P,} (5.3)
And plants modeled using additive uncertainty are given by

Pe {Pn + WAAA} (54)

Now that a means of mathematically reflecting uncertainty in the nominal plant
has been established, figure 2-1 which represents the nominal formulation for the
generalized control problem can be modified to include the set of plants formed by the
perturbation approach to modeling uncertainty. Figure 5-3 represents this pictorially

and this formulation is simply referred to as the general control problem formulation.

Using the notation of Linear Fractional Transformations (LFT) from section 2.2,
eq. (2.4), important operators can be described. For example, viewing the plant G

as being partitioned in the following manner

b o G a

2 — 11 12 w (5.5)
C';21 G22

y u
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................

Figure 5-1: Typical Forms of Input/Output Model Uncertainty

>Lwi —)‘Ai——) «—> Fi —

Figure 5-2: Standard Method of Representing Uncertainty Blocks
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K

Figure 5-3: Block Diagram of the Formulation for the General Control Problem

allows formulating the set of systems to be controlled in the following way
{FAG AL : Ay € m(H), 1A]] < 1} (5.6)

where A, is the perturbation used to model uncertainty in the plant. An important
LFT which can be extracted from the general formulation using the 2 x 2 partition

of the general plant G, eq. (5.5), is
M(G,K) := Fi(G,K) (5.7)

The M(-) designation is commonly used for this LFT in the literature and this par-
ticular operator will be the one use in analysis tests to determine whether the system
is meeting the desired robust stability and performance under closed loop control.

Figure 5-4 illustrates the general control formulation in terms of the M () operator.

The following LFT
Fu(M(G, K),Au) - Mgz + leAu(I — MllAu)_1M12 (58)
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Figure 5-4: M-system With Uncertainty Perturbation Loop Closed

represents the nominal performance operator perturbed by the model uncertainty.
If there is no model uncertainty, (i.e. ||A,|| = 0), eq. (5.8) reduces to the original

nominal performance operator, T,,,. Or in other words
M22 = Tzw (5-9)
Other elements of the M(-) operator yield the following facts [67]

o Nominal performance is satisfied if and only if

|| M| < 1 (5.10)

e System is robustly stable (meaning all plants in the set of plants formed by the
uncertainty modeling are stabilized by the selected compensator K) if and only
if

M| <1 (5.11)

Finally, since the nominal performance objectiveis ||T,,|| < 1, the robust performance
objective is to try and maintain this performance in the face of the uncertainty per-

turbation, or specifically the LFT of eq. (5.8) should be less than one for all unity
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Figure 5-5: M-system With Uncertainty and Performance Perturbation Loops Closed

norm bound perturbations. This js expressed by the following equation.

IF(M(G,K),A)|[ <1 forall |ja,f<1 (5.12)

Equation (5.12) represents our optimization objective. In terms of analysis however
the norm bounded LFT of eq. (5.12) represents a difficulty due to the dependence on
the uncertainty perturbation, A,. What is needed is an analysis tool which operates
on an expression independent of A, but indicates when the objective of eq. (5.12) is
satisfied.

Such a tool exists, it is referred to as the structured singular value. To provide a
definition useful for the robust control problems we desire to solve, the perturbation
structure used in the general control formulation must be augmented. Figure 5.5
shows how connecting a fictitious perturbation, (denoted A, for performance pertur-
bation) between the performance output, z, and the performance input, w, produces
overall a closed loop consisting of a structured perturbation operator, A, and the M (1)
operator which represents the “known” closed loop system. By “known” closed loop
system we mean that M( ) has the performance and uncertainty weighting functions
reflected into it, contains the nominal performance operator, the nominal plant op-

erator and other operators resulting from the uncertainty structure. The structured
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perturbation, A, is an element of the following set

3

Placing the generalized control problem in the form of a M(:)-A closed loop will

A,
0 A,

| Ay € Ay, A, € m(H”‘"""')} (5.13)

allow applying a metric on the M (-) operator to assess whether the desired robustness
properties under closed loop control have been achieved. The following definition is

a operator equivalent definition for the structured singular value.

Definition 8 (Structured Singular Value) For A € A and M € m(H) the Struc-
tured Singular Value is a map from the matriz ring, m(H), of stable operators to the

positive reals and is defined as
-1
pa(M) = [igf{HAH | (I — MA) is no longer unimodular}] (5.14)

If for every A € A, (I — MA) is unimodular, then pa(M) := 0.
Using definition 8 the following robustness theorem is obtained.

Theorem 8 (Robust Stability/Performance Test) The generalized control sys-
tem, figure 5-3, is stable and satisfies the perturbed performance objective of eq. (5.12)
forall A, € A, iff M(G, K) is an element of m(H) and the following condition holds

pa(M(G,K)) < 1 (5.15)

Due to a “maximum-modulus-like” theorem associated with linear fractional trans-
formations, [69], p-robustness tests for continuous time systems reduces to one di-
mensional searches along the jw axis. The robustness theorem for this continuous

time case then becomes

Theorem 9 Robust Stability/Performance is guaranteed iff

max (M (G, K)(jw)) < 1 (5.16)
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Note the structured singular value used in thm. 9 is defined in terms of complex

matrices at each frequency. This definition is commonly given as

Definition 9 (14 in terms of complex matrices) For M € C"xn
pa(M) = [min{5(A) | A € A,det(I — MA) = 0}]* (5.17)

If for every A € A, (I — MA) nonsingular, then pa(M) := 0.

The set, A, for definition 9 is defined as, A € C™*" with

A = {blkdiag[6:1,,,--,6,1,,,A1,-+-,A[] | 6; € C

AjeCmX™, 1<i<s5,1<5< f} (5.18)

The formulation of the structured singular value in terms of complex matrices plays
an important role in numerical computations. In section 5.4 a convex upper bound
calculation for p4(-) will be given. This upper bound also plays an additional role in

the synthesis of robust controllers and this also will be discussed in section 5.4.

5.3 Placing the Decentralized Problem in the p-
Framework

Given the background provided in section 5.2, the decentralized control problem can
now be placed in the y-framework through the use of a specific example. Figure 5-6
is a representative robust control problem. Model uncertainty is given in the form
of output multiplicative uncertainty perturbation indicated by the scalar weight W,
and the uncertainty perturbation A,. The performance operator will effectively be
a input sensitivity transfer function matrix scaled by W,. In order to develop the
M operator to be used for robust analysis, as indicated in section 5.2, a fictitious
unity norm bound performance perturbation, A,, is included in the control setup of

figure 5-6. M is a map of the perturbation outputs to the perturbation inputs and is
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Z
! A Ap—l |—Wu—> AUJ
C P, >

defined as

L) e

For LTI systems, the elements of the 2 X 2 M operator can be found by breaking the
loops associated with the perturbations and finding the transfer matrices, Tyo, Thw, L 2a,
and T,,, which result from the four input/output combinations of the uncertainty and
performance perturbations, A, and A,. These individual transfer matrices, which are

elements of M, take on the following values.

My = Ty=—W.P.(I—CP,)"'C

My = Th = WuPo(I+ CP.)W,

My = T,o=~-(I+CPR)'C

My = Tu=(I+CP)'W, (5.20)

Which implies the M operator has the following form.

. [ W, 0| [ -P.(1-cP)1C P.(I+CP)!

0 I —(I+CP)'C (I+CP)!

[I 0} 521
A

By satisfying the conditions of theorem 3 in section 2.2 the M operator can be written
in terms of stable coprime factors of the nominal plant, P,,. To prove this the following

equivalence between a sensitivity transfer matrix and its stable factor form must be
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observed.

(I+CP,)™' =D(V —-QN) (5.22)

This equivalence is readily obtained by application of the Youla parameterization
for all stabilizing controllers, eq. (2.17) and properties available from the doubly
coprime Bezout identity, eq. (2.10). Application of eq. (5.22) to the elements of the
M operator, eq. (5.21), along with parameterized stable factor form of C, eq. (2.17)
and stable factors of P,, eq. (2.8), yield the following stable factor form for M.

M_EWU o|| -NT+@QD) NV-om) ][I 0] 523

—D(U+@QD) D(V-QN)

0 I

The M operator associated with the decentralized problem is obtained by assuming
the nominal plant, P, € m(G), satisfies the two channel partition of eq. (3.1) without
inducing any unstable fixed modes. A decentralized doubly coprime Bezout identity
(DDCBI) of the form found in eq. (3.4) then exists for the nominal plant, P,. The
expression for the operator M, eq. (5.23), can then be rewritten in terms of the

decentralized stable factors satisfying the DDCBI.

W, 0
M =
[0 1

—N,
—-Dyg Dy

(Upa + QDy) 0
0 (Vha — Q)

I 0 }
(5.24)
0 W,

Substituting in the decentralizing parameters from eq. (3.13) and eq. (3.14) yields the
following expressions for (ﬁbd + QDd) and (f}},d — QNy,).

=~ ~ _ [ Q [7+Q'Ddu Q[Wﬁ-l_bu]
(Ubd + QDd) — Qul 11V1 ! 1 ’ 1 ~12 2 ~d (5.25)
i Q2[Wnli + Da,]  Q22U, + Q@2Dg,,
(‘-/ Q]"V ) Q_l Qll“./?l + QlNdu QI[WIZ% - Nd]_z] (5 26)
bd — d = U ~ -~ -~ P *
| Q:[WaVi — Ny, ] Q22Va + Q2 Ny,

Application of left decentralized interaction properties from table 3.1 will produce a
simplification for egs. (5.25)-(5.26). Applying the following pair of left decentralizing
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interaction properties

WU, = —Dg,
W21 ﬁl - _Ddzl

(5.27)

to eq. (5.25) and applying the following pair of left decentralizing interaction proper-

ties

le‘.fz - Ndlz
WaV; Ny,

to eq. (5.26) results in the following simplifications.

[ - .

(f]bd + Q-Dd) — Q;l QuU: :QIDdu

(f/bd - QNd) = Q—l ( Qllvl + QINdu
0

(5.28)
0
0 (5.29)
Q2:U; + Q2 Dy,
0
. _ (5.30)
QR2:Va + Q2 Ny,

Hence the M operator for the decentralized version of the robust problem in figure 5-6

takes the following form.

W, 0| -N@:t Mozt | [T o [[1 o
M: dQ dQ dl (5.31)
0 I —Dy4Q;' DiQ;?t 0 T 0 W,
Where
Qllﬁl + Qlan 0
le = - -
i 0 Q22U + Q2 Dy,
r - -
Vi + @1 N, 0
T, = Q1:1Vi + Q1 N4, ) ) (5.32)
0 Q2:V2 + Q2 Ny,

As will be shown in the following section 5.4 the M operator is used in a stan-

80

b e e 0



dard H_, formulation for the synthesis of robust controllers. For centralized controller
problems there exists a solution methodology [70], but for the decentralized form of
the M operator given in eq. (5.31) a difficulty exists. The inverse of the unimodu-
lar constraint, Q !, effects every element of the M operator (see eq. (5.31)). The
formulation of a convex, concurrent solution to generate simultaneously the design
parameters Q11, Q1, @22, @2 is hindered by the presence of the Q! term associated
with each element of M. To see this more clearly consider the nominal performance

operator, My;. For the centralized case this operator takes the form
My, = Do(V — QN)W, (5.33)

This equation clearly takes the affine form, T} — T>QT5, where

T]_ == Ddf/Wp
T, = Dy
T; = NW, (5.34)

The centralized nominal performance problem
i%f |77 — T2QTs|| (5.35)

is solvable for Q@ € m(H). However, the M,, operator for the decentralized problem,

using the unimodular parameter restriction of section 3.5, is of the form

Vi + Q1N 0

M,; = DsQ7* . -
0 Va+ Q2Ng,

W, (5.36)

where the unimodular constraint takes the form

2 = [ I QWi ] 5.7
Q2W21 I
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Now the elements in the bracketed center term of eq. (5.36) take on an affine structure,
but because the @Q, shares similar terms (namely, @; and Q) the overall My, term
is not convex with respect to the design parameters (); and @; and hence a convex

solution algorithms for the following type of concurrent design problem

Jnf 1M (5.38)

is not available. This is the same difficulty associated with concurrent design problems
for decentralized M operator, eq. (5.31). In the next section a iterative strategy will
be introduced which will restore a convexity property for the parameter searches and
allow the problem formulation to remain in the p-framework, thereby providing for

the synthesis of robust stability/robust performance decentralized controllers.

5.4 D-K Methodology for Sequential Design of
Decentralized Controllers

In this section a methodology for the sequential design of decentralized controllers
is developed. It is adapted from a centralized synthesis technique for the design of
robust controllers known as the D-K synthesis technique and represents a natural
extension of these centralized methods to the case of decentralized control. The
D-K method is developed using the structured singular analysis tools outlined in
section 5.2. The advantage of developing a method of synthesizing decentralized
controllers via an adapted version of D-K resides with maintaining a design method
within the confines of the y-framework. Hence, decentralized controllers developed
to satisfy the robustness constraints of the y-framework are then guaranteed to be
robustly stabilizing and provide robust performance for a defined global objective.
Before developing the method for decentralized controllers some essential elements of
the D-K method for centralized systems must be presented.

The p-synthesis methods result from an upper bound developed to compute pa(-).

The following notation will be used for norm-bounded subsets of the perturbation set
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A given in eq. (5.18).
Ba={AeAd|a(A)<1} (5.39)

The following subset of C**" will shortly be shown to be rather useful.

D = {blkdiag[Ds,- -+, Dy, dyprlmyy -+ dyssIm,] |
D; € C'*"i,D; = D} > 0,d,4; > 0} (5.40)

Where for any A € A, and D € D, DA = AD. From these definitions it can be
shown, [49], that the following are tight upper and lower bounds for the computation
of pa(’).

= < i % -1 .
o p(AM) = pa(M) < inf 5(DMD™) (5.41)

The upper and lower bounds of pa(-) allow it to be numerically tractable and the
upper bound has convex properties which make it computationally attractive (see
[49] for details).

The synthesis method relies on developing from the upper bound, frequency do-
main scales denoted D(s). This is accomplished as follows. From the p robust stabil-

ity /performance test of eq. (5.16) the following synthesis equation can be formulated.
n}{in max pa[M(G, K)(jw)] (5.42)

This equation formulates the following objective, find the controller, from the set
of all stabilizing controllers, which minimizes the peak value pa(M(G, K)). Where
M(G, K) represents the closed loop system transfer matrices of the general control
problem. Equation (5.42) can be approximated using the u4(-) upper bound as follows

. . - - _1
min max mig o[D.M(G,K)(jw)D'] (5.43)

where D, is chosen from the set of scalings, D, independently at every w. From these
D,, scalings frequency domain scalings D(s) can be constructed. These scalings are

usually restricted to real-rational, stable, minimum-phase transfer functions and the
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optimization becomes

mip min IDM(G, K)(jw)D|| (5.44)

We are now in é.position to describe the D-K synthesis. The robust controllers are
synthesized under D-K method by performing a number of iterations where alternately
the D(s) scales or the compensator K(s) are held fixed. Holding the D(s) scales fixed
it is readily established [49] that the following equation

min || DM(G, K)(jw)D| (5.45)

is equivalent to

min ||M(Gp, K| (5.46)

Where the frequency scales D(s) and D(s)~? are absorbed directly into the generalized
plant, G. The form of eq. (5.46) is in a standard H,, formulation for which a solution
algorithm exists, [70].
Holding the compensator, K(s), fixed, the following upper bound calculation of
pa(+) is performed.
i, 51D, M(G, K)(jw) D] (547

From the set of D, found at each discrete frequency point evaluated, a set of D(s)
scale transfer functions are constructed. Reflecting these D(s) back into the gener-
alized plant is the mechanism by which the H, minimization is forced to focus its
efforts over specific frequency ranges to try an lower the peak value of the pa(-) for
the closed loop generalized system. Iterating back and forth between the steps of
fixing the D(s) scales and the compensator, K(s), comprises the D-K methodology.
Although, as indicated in [67], the D-K method does not necessarily converge to a
global minimum, it has proven quite successful in practice for synthesizing robust
controllers [49].

Now adapting the D-K method to synthesizing robust decentralized controllers

is accomplished as follows. Having placed the decentralized control problem in the
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p-framework (see section 5.2), the decentralized problem is positioned to develop a
set of D(s) scalings in an identical fashion to the centralized case by holding the
decentralized compensator fixed during the D step of the D-K iteration.

The difficulty resides in the step where the D(s) scales are held fixed and a decen-
tralized compensator is sought out to satisfy eq. (5.46). The way this can be resolved
is to impose the unimodular parameter restriction, definition 7, section 3.5. This
then reduces the number of design parameters to be found for each subcompensator
to one. The design parameter of the subcompensator is individually found by hold-
ing the other subcompensator’s parameters fixed. After a new design parameter is
found, the decentralized doubly coprime Bezout identity, DDCBI, is recomputed so
that the new parameterized subcompensator becomes the factorized subcompensator
for the newly adjusted DDCBI. After this step, the design parameter for the second
subcompensator is sought out, while holding the first subcompensator fixed. In order

for this algorithm to be effective two issues must be resolved.

1. If at each step the resulting M(-) operator can be shown to be convex in the
individual design parameter sought, the problem can then be reduced to a

solvable algorthm using convex methods.

2. Iterating between the controllers must reduce the over all optimization problem

in a monotonic decreasing fashion.

Both properties will be demonstrated for this sequential design method for decentral-

ized controllers.

5.4.1 Convexity of the M(-) Operator

To demonstrate the resulting convexity of the M(-) in terms of the single design
parameter when sequentially designing subcontrollers we will work with the M(-)

operator developed for the two channel decentralized control problem in section 5.2.
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The M operator for the decentralized control problem, eq. (5.31), can be rewritten as

w. o|[-N N, AT 0 I 0
M= a Ng Q' Ta (5.48)
0 I —Dqg D4 0 Q;'Ty, 0w,
where
=1 r _ _
Q1T Qu QWi QU1 + @1Dg,, 0
u dl = - -
i Q:Wa1 Q2 1 1 0 Q22Us + Q2Dy,,
N -1 F _ .
Q-'T Qu  Q:1Wh QuVi + Q1Ng, 0 (5.49)
u d2 = - - .
i Q:Wa1 Q2 | i 0 QR22V2 + Q2Ng,,

For the case of finding subcontroller one, (1, impose the unimodular restriction on

the parameters Qi1 , @22 and set ||@»|| = 0. Equation (5.49) becomes

0-'T I —QyWy, | | Uy + @Dy, 0
u tdy = -
i 0 I 0 U,
[ 7, 0 0 |[ Doy, Wil
_ 1 : N Q1 d 12Uz (5.50)
i 0 U, 0 & 0 0
Q-'T I —@Q1Wi Vi+Q:iNg, O
u 4dy = -
0 I 0 Vs
R o | [ Fu, Wl
_ 1 i + Ql diy 12V2 (5.51)
i 0 Vv, 0 & 0 0

The middle term of eq. (5.48) can now be written

Vo 0 +lQ1“ 0 ”Sl 0] (5.52)
0 Qld 0 SZ

0 Wi

Q. T, 0
0 Q;lez
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with

Ubd

| 7%}

Qld

S1

S2

[ 7, 0

LO U,
S

L 0 %

o, 0]
0 @

[ Da, —Wialh
i 0 0

[ N —WaaVs
i 0 0

Given the form of eq. (5.52) the M(-) operator becomes

M=T + T2Q1T3

where the expressions Ty, T; and T3 take on the values

Ty =

Tzz

T3 =

Iy

le

The M(-) operator

follows.

(5, 0
0 S,

Qld
0

I 0
0 W,
] = blkdzag[Qh Qla Ql’ Ql]

Q1.

[N, N [Uw 0
| —D4 Dq4 | 0 Vi
N, Ny
| —Da Da |

(5.53)

(5.54)

(5.55)

is convex in the design parameter ;. The proof of this is as
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Proof M is affine in Q, (see eq. (5.54)) and O, is convex in the parameter Q,

which implies M is convex in the design parameter Q).

d

This means that the optimization problem eq. (5.46) is solvable using convex algo-
rthmic methods, [71].

Assume the optimization problem eq. (5.46) for the individual subcontroller pa-
rameterized by @, is solved and the selected parameter is Q}. Using the stable
factors of the new subcontroller, C, the decentralized doubly coprime Bezout iden-
tity, eq. (3.4) can be adjusted, as indicated in section 3.2. This will preserve the stable
factor structure of M(-) operator, eq. (5.48), with the old stable factors replaced by
the appropriate new factors from the adjusted DDCBI. This will then allow a design
iteration for subcontroller two, Cy, by once again enforcing a unimodular parameter
restriction for parameters @11, Q22 and setting ||@Q1]] = 0 to obtain a M(-) operator
which is convex in @Q,.

Following a similar method as used with controller one, C;, the M(-) in terms of

Q- has the following form. The middle term of eq. (5.48) will become

Q'Ty;, 0 U o | Qs O S 0 (5.56)
0 QIlTy 0 v 0 Qs || 0 S
with
S
o = |
0 U, |
S
o = |0
e 0 V2
0, o
Q24 = ’
LO Q2
s [ o 0
1 = ~ -
| -Wal N

88



. 0 0
S, = e (5.57)
—Wal ) Ndn

Where the superscript, (-)(), refers to the new stable factors resulting from the first
iteration which designed a new controller for the first channel. The M(-) operator

will once again have the form
MO =T, + T,0,T; (5.58)

where the expressions Ty, T, and T3 take on the values

. (w, o[ -N® MO [v® o |1 o
=
o I|{-DP D o P[0 w,
(W, o[ -n® N ]
I = ®  pO)
| o 1| |-DP DY
(& o |[1 o
T3 == R
0 S0 w,
. [ @2, O .
Q= | = blkdiag|Qs, Q2, @2, Q2] (5.59)
0 Q

Due to the similar form of M(-)(*) in eq. (5.58) to eq. (5.54), M(-)(!) is convex in the

subcontroller parameter @),.

5.4.2 Monotonic Decreasing Property of Iterative Subcon-

troller Design

In order for the iteration between subcontrollers to be useful, the overall norm bound
of the optimization equation should decrease in a monotonic fashion. The optimiza-

tion problem in terms of M(-) is given by eq. (5.46). For the sequential design of
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subcontrollers, eq. (5.46) is rewritten in the following manner
min IMO(Q1,Qr)|| for i=1or2 j=0,1,2,-- (5.60)

where only one design parameter is being sought during a given minimization. In
other words if the minimization is over the entire set of Q1 € m(H), then ||Q.|| =0
and vice-versa. The superscript, 7, is an iteration index to keep track of what iteration
is currently proceeding. The alternating between controller parameters @} and Q.
has the desirable effect of monotonically decreasing the H,, norm bound of the M(-)
operator. To see this consider the following, before any iteration takes place, the
DDCBI has assigned stable factors for a stable compensator. Using these factors the

value of the M(-) before any iteration is
[1M©)(0,0)]| = & (5.61)
The first iteration optimization problem is
min || M®)(Qs,0)]] (5.62)
Since the above is convex in @1, we’ll assume Q7 is the minimum of eq. (5.62). Define
1MO(Q1,0)]] =: 6o (5.63)

By definition we have that
5 <$§ (5.64)

The subcontroller one obtained from @} is absorbed back in to a newly adjusted

DDCBI and we obtain the following

|1M®(0,0)]] = [|M©(Q3,0)]] (5.65)
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Now on this next iteration we are looking to solve
min ||M(0,Q5)]| (5.66)
2

Once again since the above is convex in @,, we'll assume @3 is the minimum of
eq. (5.66). Define
1M(0,Q3)I| =: & (5.67)

By definition we have that
8 < &g (5.68)

Continued iteration proceeds in a similar fashion and hence we have established the

monotonic decreasing property for iterating between the subcontrollers.

5.5 Computation Methods Using Existing D-K
Tools

Ideally, the D-K sequential design algorithm for robust decentralized controllers pre-
sented in section 5.4 could be reduced to computation via direct state-space inter-
pretations of the DDCBI and associated unimodular restricted parameterization of
decentralized controllers, theorem 7, section 3.5. The reparameterizations, which
must occur between parameter iterations, could also be reduced to a systematic com-
putation in this state-space setting. The remaining problem to be solved resides with
the reduction of the optimization problem, eq. (5.60), to a computable algorithm. One
method might be to formulate the sequential M(-) operator (see eq. (5.54)), which
is convex with respect to an individual design parameter (see section 5.4.1), in terms
of a linear matrix inequality, LMI [72]. A LMI formulation lends itself to a direct
implementation in terms of numerical convex optimization algorithms which should
be solvable in polynomial-time. In any event, however one chooses to numerically
solve the convex optimization problem, eq. (5.60), the appeal of the sequential D-K

method as specified in section 5.4 is as follows:
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e The method as developed is defined in terms of a general class of stable rings,
meaning the method as specified corresponds to continuous time and discrete

time lumped parameter systems and can be used in conjunction with a number

of norm bounds, (H;, He, l1).

e The sequential method being posed in terms of decentralized stable factors
retains a link to the more difficult concurrent decentralized stable factor problem
(see section 5.3) and direct implementations of this method may provide a

window to a possible concurrent algorithm.

e Finally, development of subcontrollers based on iterating design parameters
provide aggregated decentralized controllers from an identified subset of the set

of all possible stabilizing decentralized controllers (see section 3.5).

Another approach is to reformulate or effectively approximate the method of sec-
tion 5.4 in such a way as to take advantage of existing commercial software. Currently,
the elementary methods of D-K synthesis for centralized design is widely available in
toolbox form from a commercial vendor of control software [73]. These tool boxes
provide the necessary software for continuous time problems, specifically D-K ro-
bust controller synthesis where the K step optimization is based on induced operator
norms for finite energy signals, i.e. the H,, norm. An argument can be made that the
sequential design method based on parameter iteration suggested in section 5.4 can
be effectively implemented through the direct iteration of the subcontrollers which
form the overall decentralized controller. To illustrate this, figure 5-7 shows the gen-
eralized control formulation for the case of a two channel decentralized controller.
If a sequential design method based on iterating the subcontrollers is pursued, this
generates a series (dependent on the number of iterations) of two distinct generalized
control formulations. Each one associated with its respective subcontroller. Figure 5-
8 illustrates the two generalized control formulations which result from iterating the
subcontrollers associated with the original two channel control problem in figure 5-7.

During any given iteration sequence the optimization problems being solved take the
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Figure 5-7: Formulation for the Two Channel Generalized Control Problem
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Figure 5-8: Resulting Individual Control Problems from Iterating Subcontrollers
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form

min || M(Gp(K3), Ka)ll  or  min [[M(Gp(K7), o) (5.69)

depending of course on which subcontroller is currently being sought. The optimiza-
tion problems in eq. (5.69) are individually in a form similar to eq. (5.46) which
implies they are in a standard H,, form for which a solution algorithm exists (namely
the Doyle et al [70] algorithm). Note, K represents the optimal subcontroller found
in a previous iteration step. Hence, the proof for a monotonic decreasing property
when iterating between subcontrollers follows in a similar fashion to the proof given
in section 5.4.2 for the case of iterating between design parameters. Also notice that
selection of a given subcontroller, say K; for example, updates the respective Gp(-)
operator which in turn causes the respective M(:) operator to be updated between
iterations. The updating of these respective operators between iterations is directly
analogous to the reparameterizations required when iterating between design param-
eters in the stable factor formulation.

Finally, a difficulty that becomes apparent in this sequential method is the po-
tential for quite a large growth in dimensionality of the subcontrollers. This occurs
due to the iteration process. As each subcontroller is designed it is reabsorbed into
the closed loop system upon successive iterations. The dimension of the subcontroller
increases the overall dimension of the closed loop system which in turn has the ef-
fect of increasing the dimension of the successively designed subcontrollers within
this iteration process. There is of course no guarantee, or even a mechanism, in the
algorithm as currently outlined to provide for a minimal realization of robust de-
centralized controllers. One possible solution to this problem would be to take the
current subcontroller found in a given iteration step and project it to a subcontroller
of fixed lower dimension [74]. This reduced order subcontroller would then only be
accepted if it represented an improvement in its respective norm bound, eq. (5.69),

over the prior subcontroller.
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5.6 Summary

Chapter 5 covered a number of issues concerning the development of decentralized
controllers for robust performance. Section 5.2 provided the necessary structures
and definitions for developing controllers under the p-framework. Section 5.3 demon-
strated how the decentralized control problem could be placed in the p-framework.
Use of decentralizing interaction properties from section 3.4 helped to simplify the
decentralized stable factor formulation of the M(-) operator. An examination of the
difficulties in developing a concurrent method for generating design parameters for
the decentralized controllers in the robust framework was also provided. Finally,
section 5.4 provided a methodology for developing sequentially robust decentralized
controllers in the u-framework. As illustrated in this chapter development of decen-
tralized controllers under this framework provides the benefit of specifically trying to
synthesize decentralized controllers which satisfies the structured Singular Value ro-
bustness tests for the closed loop system. The net result is decentralized control with
robust stability and robust performance properties. The sequential design method
consisted of an adaptation of the D-K synthesis for centralized systems. Effectively,
the D scales developed from an upper bound estimate of the structured singular val-
ues were developed in a fashion consistent with the way they are used in centralized
problem except that the controllers providing the closed loop feedback are decentral-
ized. An iteration scheme was developed using the unimodular parameter restriction
technique developed in chapter 3. This simplified the number of design parameters
per subcontroller to one. Based on this restriction and searching for the design pa-
rameters sequentially lead to convex properties for the M(-) operator which makes the
problem solvable via convex algorithm methods. It is shown that as the controllers
are iterated in the K step the norm of the generalized closed loop system exhibits a
monotonic decreasing property. Finally, the computation issues associated with this
sequential D-K method for robust decentralized controllers is discussed along with

some anticipated difficulties.
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Chapter 6

Partially Decentralized

Controllers

6.1 Introduction

Partially decentralized control structures can be characterized by the way in which
local information between channels is shared. In general, any constraint on feedback
information will lead to some form of a structurally constrained controller. Partially
decentralized controllers are singled out because of their resemblance in form to fully
decentralized controllers and this in turn leads to some practical applications. The
use of partially decentralized controllers usually arises out of physical systems where
strong local interactions of subsystems exist. For example, reference [75] demonstrates
the benefits of using a partially decentralized controller over a fully decentralized con-
troller in terms of the performance obtainable in the simulated closed loop systems.
These controllers were used in the design of the Laser Demonstration Facility (LDF)
laser alignment control system at the Lawrence Livermore National Laboratory. The
subsystems of the laser transport scheme comprised a chain-like structure. The par-
tially decentralized controller used in this system employs a local information sharing
structure which consists of individual subsystems sharing the feedback channel infor-
mation with the adjacent subsequent subsystem in the chain-like system structure.

In this chapter theoretical issues associated with developing partially decentral-
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ized controllers via stable factor methods are examined. Section 6.2 characterizes
three types of partially decentralized controllers. The characterization is limited to
a natural order in which local information between channels would most likely be
shared, however the method used to generate controllers with such structure can be
applied to any particular combinations of local information sharing between feedback
channels. Section 6.3 develops a novel unimodular transformation applicable to the
partially decentralized systems which permits partially decentralized controllers to
be designed using input/output methods developed specifically for fully decentralized
systems. Sections 6.4 and 6.6 provide the details of applying this method to the
canonical partially decentralized forms given in section 6.2. Section 6.5 discusses the
issue of coupling for partially decentralized controllers. Finally, section 6.7 discusses
the application of decentralized methods developed in chapters 4 and 5 to the design
of partially decentralized controllers.

6.2 Developing a Set of Partially Decentralized
Controllers

Figure 6-1 gives the representation of the standard two block problem. The plant is
represented by G where G : u — y, is an element of m(G) and has dimension p X gq.
The compensator is represented by C' where C : e — k, is an element of m(G) and
has dimension ¢ X p. For a plant G partitioned into m channels the associated fully

decentralized controller has the following structure:

[ kl ] -01 W [ €1 ]

k C e

2 | _ 2 | '2 (6.1)
_km_ i Cm_ | em |

With S;p; = p and Y;q¢ = q¢ where p; is the dimension of e; and ¢; is the

dimension of k;. The feedback channels e, ;- - €,, are independent of one another or
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Figure 6-1: Two Block Control Problem

in other words the channels share no information between one another. Three partially
decentralized controller structures based on the local sharing of information among
the feedback channels are characterized in the following manner. A Type 1 partially

decentralized controller, C; : e — k, is defined to have the following structure:

[ Cn1 0 e 0
Cy1 Cao 0 o 0
Cl = 0 032 Caz 0 v 0 (62)
0 o 0 C"rn,m—l CY'mrn,

Where the local sharing of information in the feedback channel with respect to the
k; output channel of the controller consist of information in channels e;_; and e;. A

Type 2 partially decentralized controller, C; : e — k, is defined to have the following

structure: _
011 012 0 e 0
0 C C 0o .- 0
C, = 22 23 (6.3)
i 0 - 0 Com ]

Where the local sharing of information in the feedback channel with respect to the k;
output channel of the controller consist of information in channels e; and e;;;. And

finally a Type 3 partially decentralized controller, C3 : e — k, is defined to have the
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Figure 6-2: Two Block Control Problem for G

following structure:

Cy Cip O . 0
021 C'22 C'23 0 e 0
0 C O C e 0
Cy = 32 CUss 34 (6.4)
0 e Cm_1,m—2 Cm—l,m—l C’m—l,m
I 0 ces 0 Cm,m—l Crmm

Where the local sharing of information in the feedback channel with respect to the k;
output channel of the controller consist of information in channels e;_1, €; and e;41.
In the case of the fully decentralized compensator the structure of the compensator
factorization into stable factors is readily apparent. For example, one factorization
of the block diagonal compensator could be Cy = V~'U where V and U are coprime
and also block diagonal (see section 3.2, definition 4). However, the complex struc-
ture of the partially decentralized controllers (as exhibited by eqgs. (6.2)-(6.4)) do not
simplify into a readily recognizably stable factors structure and hence the parame-
terization of partially decentralized controllers using stable factors directly becomes
difficult. The method developed in this chapter takes advantage of the stable factor
parameterization indirectly by transforming the original plant operator via left and
right unimodular transformations and then lifting or effectively repartitioning the re-
sulting operator into a multichannel operator which can be stabilized by the set of
parameterized fully decentralized controllers as given in chapter 3. The desired partial

decentralized controller will then be recovered from the fully decentralized controllers
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by the reciprocal left and right unimodular transformations. Before detailing the pre-
cise steps involved in this method section 6.3 presents some needed definitions and

theorems.

6.3 Unimodular Transformations

A Left unimodular operator is defined as follows:

Definition 10 (Left Unimodular) An operator N an element of m(H) is left uni-
modular if there ezists an operator Z € m(H) such that ZN = 1.

Likewise a right unimodular operator is defined as follows:

Definition 11 (Right Unimodular) An operator M an element of m(H) is right
unimodular if there ezists an operator W € m(H) such that MW = I.

Synthesis of structurally constrained controllers from say fully decentralized con-
trollers is dependent on establishing a relation between the original plant operator G
and an operator G. For example figure 6-2 shows the two block problem for operator
G and stabilizing controller C. By requiring that the relation G = M GN holds, where
M is right unimodular with MW =TI and N is left unimodular with ZN =1, a two
block diagram can be written as shown in figure 6-3. Where M : 7 — rand Z : 9 — v.
This leads to the following theorem which will be instrumental in recovering partially

decentralized controllers from fully decentralized controllers.

Theorem 10 Given C stabilizes G and G = MGN where M is right unimodular
with MW = I and N is left unimodular with ZN = I, C = ZCW stabilizes G.

Proof
H(C,G) i where
v 1
\ I+G0)t —(I+GC)¢G H, H
H(C,G) = ( +AA) . ( ‘A) _ .11 A12
(I+CE)C ([I+CG)1? Hy,, Hy,




Figure 6-3: Two Block Problem Transformed Using Left and Right Unimodular Op-

erators
¢  stabilizes G — IAL-J- em(H) Vi,j

G = MGN where M is right unimodular with MW = T and N is left unimodular
with ZN = I, and with C defined as C Ll ZOW the following maps are defined:

W:r» —» 7
M: é — e
N: v —
Z: 1 = u

Using these above maps the mapping corresponding to H (C’ , G’) can be rewritten as

é .. |7
= H(G,Q)
3 B
Moo |fe] (M 0 L w ool
= C,Q)
0 Z||@ 0z 0 N||w
-6 . -MIAIHW MﬁlgN r
| v | _ZﬂnW ZH,,N v
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r

Note however that the map from [
v

e

] to [ ] is the closed loop map H(C,G).
u

Therefore

MH,W MH,,N

H(C’ G) = R N
ZH W  ZH,N

Since M, W, N, Z € m(H) this implies MHW, MH;,N, ZHyyW, ZHy, N are
elements of m(H) and that C stabilizes G.
O

Using Theorem 10, in general a number of structurally constrained controller can
be synthesized. The focus here will be on synthesizing partially decentralized controls
as given in egs. (6.2)-(6.4). To illustrate this method the synthesis of a three channel,
type 3 controller will be developed since the type 3 structure is more complex then
the other two controller types. Extensions to the multichannel case proceeds directly

along the lines outlined in the next section for the three channel case.

6.4 Synthesizing Type 3 Controllers

For the following three channel plant, using the notation described above and in

Figure 6-3:
Y1 G111 G2 Gis Uy
y2 | = | Ga1 G2z Gas Uy (6.5)
Y3 Gsz1 G32 Gss U3

The structure corresponding to a three channel, type 3 controller takes the form:

kl 011 012 0 (4]
k2 | = | Cax Ch O €2 (6°6)
k3 0 Cs Css €3

As will be demonstrated a m-channel, type 3 controller can be recovered from a
(m —1)-channel fully decentralized controller where the channel dimension has been

appropriately increased. For the 3-channel, type 3 controller, it will be recovered from
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a 2-channel fully decentralized controller in the following manner:

C=2CW (6.7)
Where C has the following 2-channel structure
C(l) ¢ o 0 |
¢m 0 ¢ 6y o o0
: " o) - (6.8)
0 C® o o ¢® ¢¥
0 0 0(2) 0(2)

The type 3 controller C' can be recovered from C by using the following right and left

unimodular operators:

Iy 0 0 O
Z = 0 Iiz Iiz 0 (69)
0 0 0 Ig
(I, 0 0 ]
0 I, 0
W = (6.10)
0 I,, O
| 0 0 I |

The identity operator I;; is compatible with the input dimension of the plant operator
G,; and likewise I,; is compatible with the output dimension of G;;. Applying Z and
W to C as given in eq. (6.7) gives the following:

G e 0
C=2CW=|0W ¢V +6® ¢ (6.11)
0 ¢ Cf

Which has the desired structure of a type 3, 3-channel controller. C will be stabilizing,
according to theorem 10 as long as G = MGN where M is right unimodular with
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MW =T and N is left unimodular with ZN = I. Based on Z and W as given in
egs. (6.9)-(6.10), M and N can have the following form:

I, 0 0 0
M = |0 5L, 50, 0 (6.12)
0 0 0 I

(I, 0 0|
0 5I, 0
N = (6.13)
0 5L, 0
0 0 Iy

What needs to be determined is the structure of G.

Since G must satisfy

G = MGN (6.14)

G can be obtained in the following fashion
G=WGZ+S§ (6.15)
Applying eq. (6.14) we obtain:

G = M(WGZ+S)N
= G+ MSN (6.16)

Which is satisfied if MSN € m(0) where m(0) is the matrix ring whose elements are
all zero. For the three channel case W(GZ has the following form:

[ G, Gi Gi Gig
G G G G
WGZ — 21 G2z G2z Ga3 (6.17)
G21 GZZ G22 GZ3

Gs1 Gz2 Gay G |
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Before lifting W(GZ to a two channel plant for which a set of parameterized fully
decentralized controllers can be developed using stable factors, an S operator can be
added which will minimize the size of the coupling operator, [76], for G. An operator

S having the following form will achieve this:

-

0 G2 —Gp 0
G Goy —Goy —G
. 21 22 22 23 (6.18)
—Ga1 —Gy2 Giy G

0 —G32 G32 G33 ]

And @ takes the following form:

G = WGZ+S

Gu 2G12 0 G13
2Gy 2G 0 0
_ 21 22 (619)
0 0 2Gy 2G33

L G 0 2Gs Ga |

Now ( can be lifted or equivalently repartitioned into a two channel plant having the

structure:
. Gn G
_ An A12 (6.20)
Ga1 Ga
where
) [ 6. 26
Oy = 11 12
L2G21 2G>,
A [0 @
Gy = 13
0 0
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) 0 0
G21 =
Gis 0
L
X 2G5 2Gas
G = (6.21)

Now if G has no unstable fixed modes [13] a parameterized set of two channel fully
decentralized controllers exists based on the stable factor method presented in chap-
ter 3. And from each two channel fully decentralized controller a type 3 partially

decentralized controller can be recovered as given in eq. (6.11).

6.5 Coupling in Partially Decentralized Controllers

As demonstrated in reference [76] weak coupling can be quantified in terms of the
norm of the off-diagonal elements of a stable plant operator for which fully decentral-
ized controllers are to be designed. The effect as the coupling goes to zero is that the
unimodular constraint which restricts the design parameters used in the selection of
fully decentralized controllers disappears. These notions serve to provide a measure
of the improvement obtainable via the use of partially decentralized controllers versus
applying a fully decentralized control strategy directly to the plant operator G. For
example, a stable three channel plant as given in eq. (6.5) would have the following

coupling operator norm if a three channel fully decentralized controller where to be

designed:
0 G2 Gis
IGell=| G 0 Gas (6.22)
Gs1 Gsz 0

However, when a three channel, type 3 controller is designed for G, a fully decen-

tralized controller is designed using the associated G operator as given by eq. (6.20).
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The coupling operator norm for a stable G is

. 0 &
e =15
G21 0
= max[|Ga, |Gz (6.23)
Due to eq. (6.21), it follows that ||Ga|| = ||Gai| and |G1all = ||G1s|l- Hence the

coupling norm when using a type 3 controller is given by ||G.|| = max [||Ga|, || Gas|]-
This implies (as outlined in section 4.2 for the general two channel fully decentralized
case) a quantification of weak coupling can be developed using only the norms of
the Gy3 and G3; operators of the three channel plant when controlled by a type 3
controller. This simplification with respect to the more complicated coupling opera-
tor for the fully decentralized 3 channel controller (see eq. (6.22)) is not unexpected
considering information sharing occurs between adjacent channels in the type 3 con-
troller (see eq. (6.6)) unlike the fully decentralized 3 channel controller where there

is no sharing of information among the feedback channels.

6.6 Synthesizing Type 1 and Type 2 Controllers

Synthesizing Type 1 and Type 2 controllers follows the same basic pattern as per-
formed for the type 3 controller. To demonstrate this a 3 channel type 1 controller will
be developed. The type 2 controllers are developed in a complementary fashion. In
general a type 1 or type 2, m-channel controller can be synthesized from a m-channel
fully decentralized controller where (m — 1) of the fully decentralized channels have

an increased dimension. The structure of the 3 channel, type 1 controller is

Cin O 0
C=|0Cn Cp 0 (6-24)
0 Cs Css
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Such a controller can be recovered from a three block fully decentralized controller

with the following form:

CO 0 0
¢ = 0 ¢@ g (6.25)
0 o0 (¢®

~

ct) o 0 0 0
_ 0 C? &P o 0 (6.26)
0 0 0 ¢©® ¢®

The right and left unimodular operators Z and W have the following form

7 = I (6.27)
(I, 0 0 |
ILi 0 0
W o= |0 I, 0 (6.28)
0 L, 0
[0 0 Is

And the recovered type 1 controller has the following form:

¢V o0 0
C=|¢P 6@ o (6.29)
0 C® &P
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Once again G is found from G = WGZ + S where

WGZ

Resulting in a G of the following form:

oy

Now (3 can be repartitioned into a three channel plant having the structure:

where

Gi1 G2 Gis
G111 Gy Gis
= Ga1 Gaz Gas
Gy1 Gy Gas
| G G Gas |
[ Gn -G Gy |
—-G11 Gz —Gys
= -Gy Gy —Ga3
Ga1 —Gr2 Gy
0 0 Oj
(261, 0 2G4 |
0 2Gy, 0
0 2G5 O
2Gy; 0 2G5
| Gn Gm Gm

Gu

é: é21

G12
G22
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G13
G23
Gias

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)



€1

A ki — > A ki
€1 C (&) C
e, —> AQ) k2 —> 6(2) k2
— €3>
€3 A@3) __>k3 A@G) _k3 >
C C
—>
Type 1 Type 2

Figure 6-4: Type 1 and Type 2 Controller Structure

a

G13 - 2G13 (635)

X [ 2G,, |

G22 = (6.36)
= 2G22 -

. [ 2G,, |

Gy = “ (6.37)
b G31 -

) [ 0

G32 = (6.38)
| G32

A [ 26

G33 - 2 (639)
i G33

And G, Ga1,Gos € m(0). Now once again if G has no unstable fixed modes [13]
a parameterized set of three channel fully decentralized controllers exists based on
the stable factors method presented in chapter 3. And from each three channel fully
decentralized controller a type 1 partially decentralized controller can be recovered as
given in eq. (6.29). Finally figures 6-4 and 6-5 illustrate how the recovered partially
decentralized controllers maintain the desirable property of parallel processing with
(in the case of a type 3 controller) the small additional overhead of output channel

summations.
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Figure 6-5: Type 3 Controller Structure
6.7 Application of Decentralized Design Methods

to Partially Decentralized Controllers

The methods developed in this chapter rely on recovering the desired partially de-
centralized controller via left and right unimodular transformations applied to an
appropriately designed fully decentralized controller. This section discusses how the
autonomous design methods of chapter 4 and the robust design methods of chap-
ter 5, originally developed for fully decentralized systems, would impact the design

of partially decentralized controllers.

6.7.1 Autonomous Design for Partially Decentralized Con-

trollers

Applying the autonomous design method of chapter 4 to the design of partially de-
centralized controllers is relatively straight forward. For example, in section 4.2,
figure 4-1 illustrates the two channel, fully decentralized problem. Equation (4.11)
gives the simplified design bound for the subcontroller parameters for the case of a
stable plant, P € m(H) and eq. (4.32) gives this bound for the more generalized case,
P € m(G). In section 6.4, a type 3, partially decentralized controllers is developed
for a three channel plant. The partially decentralized controller, eq. (6.6), will be
recovered from a two channel, fully decentralized controller (see eq. (6.8)). The sim-
plified bounds for the subcontroller parameters will be in terms of the transformed

plant, G. For the case, G € m(H), (i.e. the original plant is stable) the subcontroller
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parameters must satisfy

1Qall@ull < (6.40)

1
|G ||| Gzl

In the more generalized case, G € m(G), the subcontroller parameters must satisfy

(Al B[RS (6.41)

[|War || || W]

where W,; and Wi, are formed from the two channel partitioned stable factors of
G as given by eq. (4.31). In both cases, the subcontrollers can be designed in an
autonomous fashion as long as the appropriate design bounds, eq. (6.40) or eq. (6.41)
are observed. The resulting subcontrollers are then aggregated into a stabilizing,
fully decentralized controller C. A stabilizing partially decentralized controller of

the form given by eq. (6.6) will be recovered from C via left and right unimodular

transformation as given by eq. (6.11).

6.7.2 Robust Design for Partially Decentralized Controllers

The application of autonomous design methods to partially decentralized controllers
presented essentially no technical difficulties because the overall objective was the de-
velopment of a stabilizing partially decentralized controller for a nominal plant. This
situation changes when the partially decentralized controller is required to provide for
an overall performance criterion while simultaneously stabilizing a family of plants
which reflect model uncertainty and errors of the original nominal plant. This is of
course the robust partially decentralized control problem. The methods of chapter 5
can be adapted to provide a framework for developing robust partially decentral-
ized controllers. The key is providing a connection between the robust formulation
of the problem when synthesizing a robust fully decentralized controller, C, for the
transformed plant P, and the original system which had the model uncertainty per-
turbation topology along with performance criterion defined in terms of a partially

decentralized controller and the original nominal plant. This connection is provided

by relating the LFT, M(G,C), to the LFT, M(&,C) which is used to synthesize a
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Figure 6-6: Robust Control Problem For Partially Decentralized Controller

decentralized controller C'. To illustrate this the robust control problem of section 5.3
will be used.

Figure 6-6 is the robust control problem from section 5.3 with scalar performance
and uncertainty weights A, and A,. The controller C, for this problem is constrained

to be a partially decentralized controller. The M(-) operator is the closed loop map

-1
— (6.42)

and is constructed with respect the structured perturbation A = blkdiag[A,, A,).

M(G,Cy):

By relying on theorem 10, namely C stabilizes P, implies Cp %/ ZCW stabilizes P,

where

MW = T
ZN = I (6.43)

figure 6-6 is rewritten using these unimodular operators to formulate the robust con-
trol problem in terms of P, and C (see figure 6-7). For the moment ignore the ele-

ments inside the dotted boxes of figure 6-7. The block diagram of figure 6-7 defines

the structure for following LFT
a b
— (6.44)
w z

113




Figure 6-7: Transformed Partially Decentralized Robust Control Problem

where the structured perturbation is A = blkdiag[A,, A,] and G is the transformed
generalized plant where Gas = P,. The operator M (é’,é’) is important since the
compensator synthesis component of any D-K method (and this includes the sequen-
tial D-K method of section 5.4) will be done in terms of this operator. This is how
compensator synthesis in terms of a fully decentralized compensator, C, is applied to
the synthesis of robust partially decentralized systems. The robust partially decen-
tralized compensator, Cp, will be recovered from the fully decentralized compensator
obtained from solving the optimization problem involving the M (G’, C ) operator (see
eq. (5.46)).

By defining the perturbations in figure 6-7 in the following manner

A, = WA M
A, = NAZ (6.45)

a connection between the p-framework for (A, M(+)) and (A, M(-)) can be made in
the form of a unimodular transformation. This connection is made in the following

way. From eq. (6.45) the following signal transformations are obtained.

b (Mmoo ][ b
z 0 Z zZ
| ‘w0 ][«
- (6.46)
w 0 N w

114




This leads to the following correspondence between M(@,C) and M(G, C,).

K N
= M(G,C)
| 2 )
Moo l[b] (v o). .. [w oo]]e
= M(G,0)
0 Z || 2] | 0 Z | 0 N w
[ 5 | [ MAMLW MIN || e
- : ’ (6.47)
| z ] | ZM21W ZMzzN w
a b
Note however that the map from ] to l is the operator M(G,C,). Hence
| w z

the correspondence between M(G,C) and M(G, C,) is established.

An interesting open issue exists with the implementation of a D-K algorithm
as applied to the synthesis of robust partially decentralized controllers. Only the
controller synthesis (or K step) of the D-K algorithm requires the use of the M (é ,C )
operator. The actual p computation and reflecting of D scales back into the plant
could be carried out in the framework which uses the (A, M (G, C)) combination or
the framework which uses the (A, M(G,C,)) combination since the compensator is
fixed during the D step. Performing the D step using the operators (A, M(G, C,))
would intuitively seem the wiser choice since this is the original problem setting and
contains the original uncertainty and performance topology. Determination of the
advantages, if any, of either of these approaches remains an area available for future

research.

6.8 Summary

Partially decentralized controllers can be beneficial for physical systems where strong
local interactions of subsystems exist. LDF laser alignment control system [75] exhib-
ited improved performance through the use of a partially decentralized control. This

chapter classifies three types of partially decentralized controllers (egs. (6.2)-(6.4))
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and presents a method of controller synthesis linked to stable factor methods. The
method developed in this chapter is sufficiently broad enough that other structurally
constrained controllers not specifically contained in the three classifications can also
be synthesized. The general notion of left and right unimodular transformations are
developed for the recovery of a stabilizing compensator C for the plant G as given
by theorem 10 in section 6.3. Using these ideas a method of synthesizing partially
decentralized controllers from the parameterized set of fully decentralized controllers
is developed. Section 6.4 illustrates the method for type 3 partially decentralized
controllers and section 6.6 illustrates the method for type 1 and type 2 partially de-
centralized controllers. A discussion quantifying the concept of weak plant coupling
under partial decentralized control is examined in section 6.5 and insight is gained
by contrasting this against weak plant coupling in the more familiar sense [76] under
fully decentralized control. F inally, section 6.7 discussed the application of decentral-
ized methods developed in chapters 4 and 5 to the design of partially decentralized

controllers.
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Chapter 7

Conclusions

7.1 Research Summary

The focus of thesis has been to develop a framework for the design of structurally
constrained controllers which is aligned with the methodology of centralized control
systems under the modern robust stability/robust performance paradigm. To that
end a number of significant results have been contributed by the work in this thesis.

In section 2.4 an important discussion concerning the decentralized partitioning
problem was presented. This was augmented by section 2.5 where the fundamental
condition for a partition to be viable for decentralized control was presented and the
development presented for fixed modes was selected to fit the input/output stable
factors approached used in this thesis.

A starting point for the thesis resided with the use of a recently developed sta-
ble factor parameterization of stabilizing decentralized controllers for all admissible
partitioned plants. The pertinent details of this parameterization are given in sec-
tions 3.2-3.3. In section 3.4 a class of identities known as the auxiliary doubly coprime
Bezout identities (ADCBI) were presented along with their importance and funda-
mental role played in establishing the decentralized controller parameterization. A
new proof of the ADCBI was given in this section along with a clarification of their
direct relation to the decentralized doubly coprime Bezout identity. Based on the
ADCBI developed in section 3.4 a new class of stabilizing decentralized controllers
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were developed in section 3.5. This class of controllers are shown to be useful for
the development of a new autonomous design method for subcontrollers (chapter 4)
and in the development of a new decentralized D-K methodology for the sequential
design of decentralized controllers (chapter 5). The usefulness of this set of decen-
tralized controllers results from a simplifying assumption developed in section 3.5
which imposes a unimodular restriction on a subset of the design parameters of the
decentralized controllers. Such a restriction has the benefit of generating a set of
decentralized controllers whose individual subcontrollers have the form of the basic
Youla parameterization (see section 2.2) which results in only one design parameter
per subcontroller.

In chapter 4 a new method for autonomous design for subcontrollers was devel-
oped. Section 4.1 details the applications for which these type of controllers are most
often used. The germane issues associated with any autonomous design method are
ease of design and a stability guarantee so that aggregating the subcontrollers into a
fully decentralized control scheme provides for closed loop stability. The new method
developed in this thesis relies on the set of decentralized controllers developed in sec-
tion 3.5. From the set’s associated unimodular constraint a simplified norm bound
stability guarantee is developed for the set of subcontroller parameters. Section 4.2
gives this bound for the two channel, stable plant case. Section 4.3 compares this
bound to bounds developed using the stable off diagonal plant operators and small
gain methods. Section 4.5 develops a similar bound on the design parameters for the
case of unstable plants. This highlights the unique nature of this approach since by
employing a stable factor approach symmetric results are obtainable for the unstable
plant case. For comparison purposes an autonomous design method developed in [77],
relying on the multivariable Nyquist criterion for a stability guarantee, made an at-
tempt to extend the result to unstable plants. However, the restrictions on the plant
were so specialized that the researchers conceded that the method effectively only
held for stable plants. The method developed in this thesis avoided such problems
by relying on a unimodular stability criterion and by using stable factor methods.

In chapter 5.1 the decentralized problem is placed in the p-framework. Or in
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other words issues concerning the design of robust stability/robust performance are
examined for decentralized controllers. Tying the development of decentralized con-
trollers to this generalized framework, initially developed for centralized controllers,
as opposed to other decentralized controller methodologies (see section 1.2), has the
advantage of a specific guarantee. That is, if a specific closed loop operator extracted
from the plant and involving the decentralized controllers satisfies a given u criterion
the synthesized decentralized controllers are guaranteed to be robust from both a
stability and performance point of view. In section 5.3 a decentralized M(-) operator
in a stable factor form is developed. The difficulties of synthesizing concurrently the
design parameters of decentralized controllers satisfying a p constraint are detailed.
Section 5.4 presents a novel adaptation of the D-K methodology for the sequential
design of decentralized controllers. The critical step, shown in section 5.4.1, involved
the development of a iteration scheme using the parameter constraints of section 3.5
to develop a M(-) operator which would be convex in the design parameters for the
decentralized subcontrollers. Section 5.4.2 then presented the result that iteration
between the subcontrollers produced a monotonic decrease in the norm bound of the
M(-) operator which then produces a viable decentralized controller synthesis for the
D-K framework. Finally, in section 5.5 the computation issues associated with this
sequential D-K method for robust decentralized controllers is discussed along with
some anticipated difficulties.

In chapter 6 an important connection between decentralized controllers and a
collection of structurally constrained controllers denoted, partially decentralized con-
trollers, was made. It effectively allows the extension of decentralized stable factor
methods to be extended to the domain of partially decentralized controller design.
Section 6.2 develops canonical forms for partial decentralized controllers. In sec-
tion 6.3 a novel transformation in terms of unimodular operators is developed. This
unimodular transformation provides the key to extending decentralized design meth-
ods to the development of partially decentralized controllers. A fully detailed applica-
tion of this novel unimodular transformation to partially decentralized controllers was

provided. The unimodular transformation method developed in this thesis is suffi-
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ciently broad enough that other structurally constrained controllers not characterized

in section 6.2 can also be handled using these same methods.

7.2 Recommendations for Future Research

The results and framework developed in this thesis provide additional motivation for
future research.

An important area for future work would involve the coding of a practical imple-
mentation of the D-K Methodology, developed in chapter 5, for the sequential design
of robust decentralized controllers. A number of practical issues associated with the
coding of this algorithm need to be worked out. These would include, for example,
the number of iterations among subcontrollers between each pass in the D-K iteration
and a mechanism for handling or constraining the growth of the individual dimensions
of the subcontrollers due to the iteration process. Many of these issues will naturally
be problem/application dependent.

A difficult open problem still remains for problems in the robust framework of
chapter 5 which involves the development (if possible) of a concurrent algorithm (i.e.
an algorithm which would lead to the synthesis of decentralized design parameters si-
multaneously) for the synthesis of decentralized controllers. The envisioned advantage
of such an algorithm would be the development of minimal forms for the dimensions
of the individual subcontrollers. However, the tradeoff may be that a stringent sim-
plifying condition may need to be imposed on the diagonalizing parameter, eq. (3.13),
which in turn would lead to a synthesis method for decentralized controllers which
would be highly restricted in terms of the overall performance obtainable.

Another interesting area to be investigated would be to develop some criteria for
the selection of uncertainty and fictitious performance perturbation structure along
with their associated weights which would take advantage of the decentralized infor-
mation pattern to be imposed on the plant. The idea here is that when the plant is
decoupled, one effectively has a set of individual subplant operators along the main

diagonal of the original plant. Essentially, a p formulation could be developed for
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these individual subplant operators by treating them as individual plants. By aggre-
gating the uncertainty and performance perturbation structures of these individual
subplants an effective decoupled uncertainty and performance perturbation structure
has been defined. The questions become what are the interpretation of these de-
coupled perturbation structures once coupling in the plant is reintroduced? Does
this decoupled perturbation structure lead to any useful, simplified design methods
within the robust framework? Or in other words does a simplified methodology for
the design of robust decentralized controllers in the face of weak coupling result?
Finally, an interesting open issue exists with the implementation of a D-K algo-
rithm as applied to the synthesis of robust partially decentralized controllers. The
specific issues involved in this future research area are outline at the end of sec-

tion 6.7.2.
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