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Abstract

With recent technological advancements, observations and measurements of complex
bacterial communities at single-cell resolution are now possible. Guided by these
rich experimental data sets, we develop minimal individual-based models to uncover
the governing forces driving the dynamics in microbial systems. Our model incor-
porates the biophysical processes of cell growth and division, viscous drag, bacteria
self-propulsion, and mechanical cell-surface and cell-cell interactions through inter-
action potentials. In particular, our cell-cell interaction potential accounts for hard
steric and osmotic repulsion as well as attraction mediated through secreted com-
ponents which bind cells together. Implementing this model on graphics processing
units (GPUs) such that the computational time scales linearly with the system size,
we achieve a 10x speedup over a comparable code written on central processing units
(CPUs). With this simulation framework, we investigate the collective dynamics
of Bacillus subtilis swarm expansion and Vibrio cholerae biofilm formation. Our
experimental and numerical results imply that mechanical cell-cell interactions dom-
inate the swarming motility phases and can account for the emergence of order and
structure seen in growing biofilms. Furthermore, this model is used to explore the ef-
fectiveness of surface topography on deterring biofilm formation by investigating how
locally varying boundary curvature impact the scattering and accumulation dynamics
of swimming bacteria. This work shows great promise at increasing our understand-
ing of the physics governing microbial communities, which knowledge is essential to
control and inhibit bacterial populations.

Thesis Supervisor: J6rn Dunkel
Title: Associate Professor
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normal distribution of mean 0.5 and standard deviation 0 birth size). Xdl
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2-2 Geometric parameters of the overlap coordinate. In the three cases
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2-3 Plot of G(x) = exp(--xTA-lx) where A = e2fiT + d 2 (I - fnfT) in
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gradually decays to zero in all directions. . . . . . . . . . . . . . . . 34

2-4 Geometry for the overlap potential between neighboring cells a and #

with orientations n, and fi, respectively. a is located at the origin 0.
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2-5 Cell-cell interaction potential parameters. EO characterizes the strength

of the interaction. A, is the range of the repulsion. v is the rela-

tive strength of the RbmA-mediated attraction. A, is the effective

attractive range. p, is the position of the attractive potential well.

Pao = rae/- is the cell-cell distance normalized by the range parame-

ter o. Figure from [61]. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2-6 Computational time comparison between the CPU (12 processors) and

GPU (2816 processors) implementation for the biofilm project, which

includes bacterial growth and division and translation and orienta-

tion dynamics. The translation and orientation dynamics include cell-

surface and cell-cell interactions. The same simulation input param-

eters are used for the CPU and GPU codes, with both simulations

initially starting with one cell. The GPU implementation is signif-

icantly faster than the CPU implementation as the number of cells

increase. ......... ................................. 44

2-7 Computational tile of size P x P (P < N). The computational tile

facilitates the evaluation of the pair-wise interactions. The rows and

columns of the computational tile are evaluated in parallel and in se-

quential order, respectively. Adapted from [99]. . . . . . . . . . . . . 45

2-8 Inputs and outputs of the computational tile of size P x P (P < N).

Inputs to the computational tile include the current sums of V.,,Va and

VafiV and the state variables (x, n, f, d) for the a particle. Loaded

into shared memory are the state variables for the $ particle. The

output of the computational title are the updated sums of VxVa and

V,,,Va. Adapted from [99]. . . . . . . . . . . . . . . . . . . . . . . . 46
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3-1 Adaptive microscopy reveals complete multiscale dynamics of bacterial

swarm expansion. (a) Movies at single-cell resolution are acquired at

different locations in the swarm, starting from 1 cell to 100 cells, and

follow swarm expansion until the agar plate is completely colonized.

The number of movies and locations where movies are acquired (indi-

cated by colored squares) are determined adaptively, depending on the

detected swarm size. (b)-(d), Top show qualitatively different bacte-

rial behavioral dynamics observed at distinct space-time points, which

are marked in (e)-(h) by corresponding magenta symbols. (b)-(d),

Bottom demonstrate automated extraction of single-cell positions, ori-

entations, and cell velocities (b) as well as collective behaviors, such as

formation of nonmotile clusters (c) and motile rafts (d), corresponding

to groups of aligned cells that move in the same direction. Cells as-

signed to the same nonmotile cluster or motile raft by the classification

algorithms share the same color; cells labeled in white have not been

identified as belonging to any motile raft or nonmotile cluster. Ma-

genta arrows in (d) indicate the average velocity of a raft. Scale bars

10 pm. (e) Heatmap of the cell density, obtained by averaging single-

cell data as in (b) (d) for each movie at each space-time coordinate.

The lag phase, a period following inoculation during which the swarm

does not expand, as well as the expansion phase, is indicated. (f) (h)

Additional heatmaps for the cell speed, fraction of cells that are in non-

motile clusters in a given field of view, and fraction of cells that are in

motile rafts. A total of 23 statistical observables (Table 3.1) analogous

to (e)-(h) are determined at each space-time position. Figure from [66]. 49
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3-2 Machine learning the swarming phases from microscopic dynamics. (a)

Raw data of one swarm expansion experiment, consisting of -1,500

space-time points (columns) in a 23-dimensional observation space

(rows). Additional replicates are shown in SI Appendix, Fig. S11

of 166]. Color bar indicates relative magnitudes scaled to [0, 1]. In the

case-of strongly correlated observables with high normalized mutual

information (marked by red brackets), only one of them is included

in the machine-learning analysis. (b) The values of the 14 remain-

ing observables (rows) are binned into five categories as indicated by

the color bar, providing the input data for machine learning. (c) The

2D representation of the data in (b), obtained with t-SNE; k-means

clustering robustly identifies five main dynamical phases during swarm

expansion across independent experiments (n = 3; SI Appendix, Figs.

S13-S16 and SI Text of 166]). Phases are labeled with different colors.

(d) The emergence of the different phases in time and space during

swarm expansion. The dashed lines indicate the approximate outlines

of the different phases. Figure adapted from [661. . . . . . . . . . . . 52
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3-3 Swarming dynamics are dominated by physical cell-cell interactions.

(a) Typical images for the phases identified in Fig. 3-2(c): low-density

single-cell phase (SC); high-density rafting phase (R) with a high per-

centage of comoving cells; biofilm phase (B) characterized by long,

unseparated cells; and coexistence phases that contain single cells and

rafts (SC + R) or rafts and biofilm precursors (R + BP). Scale bar

10 ptm. (b) For each phase, simulations were run with the cell shape,

motility, and density extracted from the particular phase as input pa-

rameters. (c) Detailed quantitative comparisons between experiments

(small circles), the particular experimental states shown in (a) (large

circles), and simulations (squares; error bars are SDs, n = 20) yield

good quantitative agreement, except for the B phase, confirming that

physical effects determine the four motility-based swarming phases.

Figure adapted from [661. . . . . . . . . . . . . . . . . . . . . . . . . 57

3-4 Experimentally determined data (small symbols) and simulation re-

sults with (large square) and without (large circles) hydrodynamic in-

teractions. Simulation results are averaged over 20 runs, with the stan-

dard deviation indicated by black lines. In each panel, small circles,

squares, and diamonds correspond to the results of the three differ-

ent experimental replicates. The 5 different colors correspond to the 5

different dynamical phases. Figure from [66]. . . . . . . . . . . . . . 59
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4-1 Dynamics of V. cholerae biofilm formation. (a) Cells constitutively

expressing a green fluorescent protein (sfGFP) were imaged with spin-

ning disc confocal microscopy. Images at three different z planes

are highlighted. (b) 3D reconstruction of the biofilm shown in (a),

where each cell is colored according to the nematic order parame-

ter S = (3/2(n. - n)2 - 1/2) in its vicinity. High-time-resolution

(At = 5-10 min) imagining allows tracking of cell lineages and discrim-

ination of cells (white) that are not direct descendants of the biofilm

founder cell. (c) The extracellular matrix protein RbmA mediates cell-

cell adhesion and is distributed throughout the biofilm, as visualized by

immunofluorescence. (d) Time-resolved WT* biofilm (a rugose wild-

type strain with straight cell shape) growth series. Each cell is colored

according to the cellular alignment with the z axis (for the ArbmA

mutant see Supplementary Fig. 6 in 1611). Heatmaps showing spa-

tially resolved single-cell measurements of different biofilm structural

properties inside (e) WT* and (f) ArbmA biofilms, which are used to

characterize biofilm formation (n > 3 biofilms, standard deviations are

shown in Supplementary Figs. 5 and 7 and the differences among both

strains are highlighted in Supplmentary Fig. 8 of 1611) as a function

of the distance to the biofilm center (dcentre) and the number of cells

inside the biofilm (Nceiis). Figure from 161]. . . . . . . . . . . . . . . 63

4-2 Experimental (left) and simulation (right) histograms of the dimen-

sionless length f* = f/d at Ntota = 300 cells. The histograms are

normalized by dividing the number of cells in each bin by the total

number of cells such that the height of the bars sum to 1. The ex-

periments are at flow rate 0.1 pL/min. The averages of the mean and

standard deviation of f* of the 3 experiments are 4.99 and 1.53, respec-

tively. For the 3 simulations, the averages of the mean and standard

deviation of * are 4.61 and 1.08, respectively. . . . . . . . . . . . . . 68
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4-3 Characteristic biofilm feature vector for several biofilms of the WT*

(red) and the ArbmA-mutant (blue). The parameters correspond to

the ones listed in Table 4.3, where relevant ones are spatially resolved

into the core and shell of the biofilm. Figure from [611. . . . . . . . . 72

4-4 Parameter scan to test the influence of cell-cell repulsion on the biofilm

architechture. Mean MSD values between feature vectors of ArbmA

biofilm experiments (n > 3 biofilms) and simulations upon variation

of cell-cell interaction strength E0 and repulsion range Ar. Inset: effect

of parameter variation on the cell-cell interaction potential. Figure

from 161]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4-5 Resulting simulated biofilms for different levels of cell-cell repulsion.

The figures shows a subset of biofilm renderings corresponding to a

range of different values for EO and A,. The color of each cell corresponds

to the nematic order. Figure from [611. . . . . . . . . . . . . . . . . 74

4-6 Parameter scan to test the influence of hard steric cell-cell repulsion

on biofilm phenotype. The figure shows MSD values upon variation

of A,steric and Vsteric Owing to its longer length scale, soft, osmotic

pressure-mediated repulsion prevents cells from getting close enough

to interact directly through hard steric repulsion. Figure from [61]. 75

4-7 Increased RbnA production (achieved by increasing the arabinose con-

centration) decreases the average cell-cell distance in biofilms. Without

arabinose, no RbmA is produced and the biofilm architecture is identi-

cal to the ArbmA mutant (n > 3 biofilms). Figure adapted from 1611.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6

4-8 Parameter scan to test the influence of RbmA-mediated cell-cell attrac-

tion on biofilm phenotype. MSD values for feature vectors of biofilms

with arabinose-inducible rbmA expression grown at 0.5% arabinose and

simulations upon variation of cell-cell interaction strength v, and well

width A, and well position pa. Inset: effect of parameter variation on

the cell-cell interaction potential. Figure from [61]. . . . . . . . . . . 76
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4-9 Resulting simulated biofilms for different levels of RbmA-mediated cell-

cell attraction. The figure shows biofilm renderings corresponding to

selected values of v and pa while keeping A,, constant at A, = 0.16.

Each cell is colored according to the nematic order. Figure from [611. 77

4-10 Fitting of the attractive potential parameters. The graphs show the

approximate position of the MSD minimum in (v, pa, and A, )-space

of the 5% best-matching simulations at increasing arabinose concen-

trations. corresponding to increasing amounts of secreted RbmA. Each

data point refers to the median position of the minimum and the error

bars indicate the lower and upper quartile. The position of the WT*

is shown in red (solid lines: median values, dashed lines: lower/upper

quartiles). Figure adapted from [61]. . . . . . . . . . . . . . . . . . . 78

4-11 Cell-cell interactions of various cell-cell orientations for the ArbmA

biofilm, which are modeled by a repulsive interaction potential. The

best-fit U for these biofilms has interaction parameters o = lOEflOW(5 x

10- 20J, Ar = 1.65, and v = 0. (a) Translational cell-cell interaction

forces (red, attractive; blue, repulsive). (b) Rotational cell-cell interac-

tion dynamics of cell # (dashed cell), Idn/dtl = I(I- nn)(-G U/0fina)1,

in the case where cell a (solid cell) is held in place (red, clockwise ro-

tation; blue, anticlockwise rotation). The dashed cells are plotted at

the average cell-cell distance obtained from the ArbmA experiments.

Figure adapted from [61]. . . . . . . . . . . . . . . . . . . . . . . . . 80
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4-12 Cell-cell interactions of various cell-cell orientations for a particular

level of cell-cell adhesion (0.5% arabinose), which are modeled by an

attractive and repulsive interaction potential. The best-fit U for these

biofilms has interaction parameters EO = 10EcnO(5 x 10- 2 0j Ar =

1.65, v = 0.1, Aa = 0.16, and pa = 2.75. (a) Translational cell-

cell interaction forces (red, attractive; blue, repulsive). (b) Rota-

tional cell-cell interaction dynamics of cell f (dashed cell), Idfi/dtl

I(I - niofn)(-&U/n)fi), in the case where cell a (solid cell) is held

in place (red, clockwise rotation; blue, anticlockwise rotation). RbmA-

mediated cell-cell adhesion gives rise to an attractive part (red), acting

within the range of experimentally determined average cell-cell distance

(dashed cell). Figure adapted from [61]. . . . . . . . . . . . . . . . . 81

4-13 (a) Best-fit simulation parameters for varying RbmA and arabinose

concentrations (black dots) follow a line in (v, Aa, pa) parameter space

and cross isosurfaces of average cell-cell distance (see color bar and

compare with Fig. 4-7; see Fig. 4-10 for more details about the fitting).

The RbmA level of the WT* biofilms is inferred in terms of an effective

arabinose concentration by locating the WT* along the line of different

arabinose concentrations (blue point), which is very close to the best fit

of the WT* (red point). (b) Simulated (best fit) versus experimental

WT* biofilm. (c) Comparison of biofilm architectural properties for the

WT* experiment (blue) and the WT* simulation prediction (yellow).

The architectural properties are spatially resolved for the core (top row)

and shell (bottom row) of the biofilm (experiment, n = 7; simulation,

n = 10). Figure adapted from [61]. . . . . . . . . . . . . . . . . . . . 82
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4-14 Predicting phenotypes of larger biofilms. (a) Rendered WT* experi-

mental (left) and simulated biofilm (right) for approximately 1000 cells.

Bottom: normalized MSD of feature vectors for experimental (n = 7)

and simulated biofilms (n = 3). (b) Rendered ArbmA experimental

(left) and simulated biofilm (right) for approximately 1000 cells. Bot-

tom: normalized MSD of feature vectors for experimental (n = 4) and

simulated biofilms (n = 3). Error bars are calculated by Gaussian error

propagation of the standard deviations of the individual measurements.

Figure adapted from [611. . . . . . . . . . . . . . . . . . . . . . . . . 83

5-1 Typical trajectories of swimming cells for flat, sinusoidal, and semicir-

cle surface geometries as observed in experiment and simulations. The

start and end of each trajectory are indicated by the yellow and red cir-

cle, respectively. Each trajectory is 10 s long. Bacteria align with the

surface in the flat geometry leading to significant surface accumulation

for the experiment and simulation models. The sinusoidal (A = 5.25

pm, A = 28 Jlm) and concave semicircle (R = 12 [tim) surface geome-

tries redirect the bacteria away from the surface in the experiments

and simulations. Scale bars 10 Mm. Figure from [94]. . . . . . . . . . 93

5-2 Segmented raw data for the experiment and simulations, used in the

statistical analysis. The segmented trajectories are acquired at 10 fps.

The experimental raw data exhibit higher curvature than the simula-

tion raw data likely due to hydrodynamic effects, which are not ac-

counted for in the simulations. Scale bar 10 pm. Figure from 194].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4

18



5-3 Mean bacteria surface accumulation for the sinusoidal surface over a

range of amplitudes A and wavelengths A. Accumulation at the sur-

face is measured by comparing the number of bacteria within 5 Am

from the surface to the number of bacteria in the same area 50 Am

away from the surface (Fig. 5-4). (a) The location of the circles indi-

cate the 20 combinations (A, A) of the scan, and the size of the circle

represents the standard deviation of each point. The white numbers

indicate the number of experiments per point. (b, c) 3 simulations

were performed for the same pairs (A, A) as in the experiments and bi-

linearly interpolated. The BD and RT simulations agree qualitatively

with experiment, revealing an optimum max curvature that reduces

accumulation. The set of parameters corresponding to the optimum

curvature k* is delineated by the white curve A = (k*/47r2)A 2 where

k* = 0.31 pm- 1 . Typical images for the BD and RT simulations are

shown in (d) and (e), respectively, for A = 7 pm, A = 21 pm (circle),

A = 5.25 pm, A = 28 pm (square), and A = 1.75 pm, A = 49 pm

(triangle). Scale bars 10 pm. Figure from [94]. . . . . . . . . . . . . 95
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5-4 Sampled raw data and accumulation histograms for the flat, sinusoidal

(A = 5.25 pm, A = 28 pm), and concave semicircle (R = 12 pm) sur-

face geometries for the experiment and simulations. To visualize the

spatial cell distributions, the raw data, acquired at 10 fps for 5 min,

were projected onto a single wavelength (the flat surface is assumed to

have the same wavelength as the semicircle surface) and sampled such

that the bulk density is the same in all cases (a) - (c), (e) - (g), and

(i) - (k). Both the experiments and simulations qualitatively show a

depletion zone above the boundary for the sinusoidal and semicircle

geometries. Due to the differences in the surface accumulation, the

total cell numbers differ for the three geometries. The accumulation

histograms (d), (h), and (1) quantify this effect, with accumulation

defined is the ratio of the number of bacteria in each surface bin area

(grey region for first bin) to the number of bacteria in a congruent area

50 pim away from the surface (blue region). The results are indepen-

dent of the shape of the bulk reference area (see Fig. 5-5). Histograms

(d), (h) and (1) were computed from 20 independent subsamples of the

raw data. The black dashed line indicates the bulk accumulation value

of 1. The accumulation histograms show that the concave semicircle

geometry is the most efficient at suppressing accumulation in the ex-

periment and simulations. Bin width 5 pm. Scale bars 5 pam. Figure

from 194]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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5-5 Sampled raw data and surface accumulation bar graphs for the flat,

sinusoidal (A = 5.25 /tm, A = 28 pm), and semicircle (R = 12 pm)

surface geometries for the experiment and simulations. To visualize the

spatial cell distributions, the raw data, acquired at 10 fps for 5 min,

were projected onto a single wavelength (the flat surface is assumed to

have the same wavelength as the semicircle surface) and sampled such

that the bulk density is the same in all cases (a) - (c), (e) - (g), and (i)

- (k). Due to the differences in the surface accumulation, the total cell

numbers differ for the three geometries. Accumulation is defined as the

ratio of the number of bacteria in each surface bin area (grey regions)

to the number of bacteria in an equally sized area 50 pm away from the

surface. Two shapes of equal area are considered for the bulk area: a

shape which follows the surface contour (blue) and a rectangle (green).

For each geometry in (d), (h), and (1), the blue and green bar show

the mean surface accumulation calculated with the surface contour and

rectangle as the bulk area, respectively, for 20 independent subsamples

of the raw data. The error bars represent the standard deviation. The

blue and green bars are nearly equal for each case, demonstrating that

the surface accumulation estimation is independent of the shape taken

for the bulk reference area. Bin width 5 pm. Scale bars 5 pm. Figure

from [941. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A-1 5000 unit vectors drawn from the vMF distribution on the unit sphere

in (a) 2D, S1, and (b) 3D, S2. p = (1,0) and p = (1,0,0) for (a)

and (b), respectively. K = 0 (red points), K = 10 (green points), and

r = 100 (blue points). Note that the vMF distribution is uniform

on the sphere Sd-1 for , = 0 and approaches a point distribution as
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Chapter 1

Introduction

When modeling bacterial communities, two main approaches can be taken: continuum

and discrete 162, 91, 92, 1391. The continuum approach involves using differential

equations to model the dynamics at the population level, taking a top-down approach

which omits the details of the individuals [621. On the other hand, discrete models

are a bottom-up approach in which population dynamics emerge from the state and

actions of the individuals [62, 91]. Unlike continuum models, discrete models can

directly incorporate experimental single-cell observations, which have become possible

through technological advances in microscopy, microfluidics, and image analysis [621.

In the 1990s, discrete models for describing bacterial communities started to be

developed, with cellular automaton (CA) models being one of the earliest discrete

approaches [91, 1391. CA models involve a discretization in space with a lattice, and

each rectangular element can represent a biomass of cells, extracellular polymeric

substances (EPS), and other molecules. If there are enough nutrients surrounding

the rectangular biomass element, it will grow and divide with its resulting mass dis-

tributed to a random. neighboring, unoccupied lattice unit. If none of the surrounding

grid units are free, a random neighbor is first displaced [91, 106, 107]. Although sim-

ple, these CA models can reproduce some of the observed structures seen in growing

biofilms [141].

Another class of discrete models is the individual-based model (IBM). Unlike CA

models, the agents in IBMs are not limited by the grid and are free to move in
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any direction [91, 92, 139]. A list of properties for each agent define its state. These

agents interact with its environment and each other through a set of defined rules [62,
91, 92, 1391. In IBMs, the population level dynamics arise from the independent

actions of the individuals, which allows for the direct investigation of which individual

behaviors result in the observed population dynamics. IBMs can also utilize both

single-cell and population average data [62]. Taking a more molecular dynamics

approach than existing IBMs [9, 10, 43, 52, 65, 109, 109, 113, 114, 127j, an individual-

based simulation framework is developed that can investigate the underlying forces

governing the collective dynamics in such microbial systems as swarms and biofilms.

In Chapter 2, a mechanistic IBM describing collective bacteria dynamics is intro-

duced. The bacteria are modeled as ellipsoids that interact with solid surfaces and

each other through interaction potentials. Ubdy, an effective steric boundary poten-

tial, encodes cell-surface interactions, which can be applied across various geometries.

An interaction potential U captures the physical cell-cell interactions which includes

cell-cell repulsion from hard steric and osmotic pressure and cell-cell attraction from

secreted matrix components. Cell growth and division are also included in the model

along with bacterial self-propulsion and viscous drag. A custom highly parallelized

code employing graphics processing units (GPUs) is developed to perform the simu-

lations.

Chapter 3 discusses the identification of the space-time phase diagram of bacterial

swarm expansion. This work is enabled by a high-throughput adaptive microscopy

technique to track the swarming behavior of Bacillus subtillis over five orders of mag-

nitude in space and six orders of magnitude in time. The resulting videos are summa-

rized through statistical observables such as cell speed and parameters characterizing

the emergence of moving rafts and non-motile clusters. Machine learning is applied

to this high-dimensional dataset to identify five main dynamical phases during swarm

expansion. To test whether physical forces can account for the different dynamics seen

in the phases, two-dimensional (2D) individual-based active matter simulations are

performed which reveal that the microscopic swarming motility phases are dominated

by physical cell-cell interactions.

26



Chapter 4 focuses on the emergence of three-dimensional (3D) order and structure

in growing biofilms. Biofilms are sessile colonies of bacteria that form on surfaces and

are encased by a self-produced extracellular polymer matrix 1571. While some biofilms

provide positive benefits such as the treatment of waste water [961, many of these

surface-attached microbial communities cause widespread problems to a broad range

of industrial equipment and infrastructure, such as food processing facilities [20, 79],

ships and pipes [45], and surgical equipment and medical implants [32, 37, 125]. In

the medical context, these surface-attached microbial colonies are especially harm-

ful because they can lead to infections including cavities, periodontitis, and cystic

fibrosis [25]. Biofilms are quite resilient and hard to remove, being able to withstand

many stresses such as changes in temperature, pH, and antibiotic treatments [33, 50].

While previous studies have focused on the genetic and regulatory network of biofilm

formation [71, 100], recent developments in confocal microscopy allow for the visual-

ization of biofilm growth at the single-cell resolution [9, 36, 61, 147]. These technical

advancements allow for the direct investigation into the physics of biofilms, such as

the spatial organization of the individual cells within the biofilm, the mechanisms

of bacterial attachment to the surface, and the mechanical properties of the biofilm

itself [80, 82, 92, 105]. Based on the single-cell data, a microscopic basis is provided

for an effective cell cell interaction potential, which captures and predicts the growth

dynamics, emergent architecture, and local liquid-crystalline order of Vibrio cholerae

biofilms. The experimental and simulation results imply that local cellular order and

global biofilm architecture in these active bacterial communities can arise from me-

chanical cell-cell interactions, which cells can modulate by regulating the production

of particular matrix components.

In Chapter 5, the geometric control of bacterial surface accumulation is examined.

Controlling and suppressing bacterial accumulation at solid surfaces is essential for

preventing biofilm formation and biofouling. Whereas various chemical surface treat-

ments are known to reduce cell accumulation and attachment, the role of complex

surface geometries remains less well understood. Using experiments and simulations,

the effects of locally varying boundary curvature on the scattering and accumulation
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dynamics of swimming Escherichia coli bacteria in quasi-two-dimensional microflu-

idic channels are explored. The experimental and numerical results show that a

concave periodic boundary geometry can decrease the average cell concentration at

the boundary by more than 50% relative to a flat surface.

Finally, Chapter 6 provides a summary of the IBM for collective bacterial dynamics

and reviews the application of this model to investigate the dynamics of bacterial

swarming, biofilm formation, and bacterial surface accumulation. Further, extensions

of the model are presented along with proposals for future research.
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Chapter 2

Mechanistic individual-based model

A bacterium a is modeled as an ellipsoid of half-length f, and half-width d", described

by its centroid position x,(t) and orientation fi(t). The cell is assumed to move at

a constant self-propulsion speed v, in the direction of its orientation i,. The cells

grow exponentially and follow the adder principle for size homeostasis (Sec. 2.1). An

effective steric boundary potential Ubdy encodes bacterial surface interactions, which

can be applied across various geometries (Sec. 2.2). An interaction potential U cap-

tures physical bacteria-bacteria interactions (Sec. 2.3). The overdamped translation

and orientation dynamics account for the self-propulsion, viscous drag, cell-surface

interactions, and cell-cell interactions acting on a bacterium (Sec. 2.4). A highly par-

allelized code employing graphics processing units (GPUs) is developed in CUDA to

perform the simulations (Sec. 2.5).

In terms of notation, vectors and tensors will be represented in component form,

where convenient, with indices that are represented with English alphabet subscripts.

To exemplify, the components of the vector x = (X 1, x2, X 3 ) are represented as xi

where i = 1, 2, 3. The components of a second-ranked tensor A are represented as Aij

where i = 1, 2, 3 and j = 1, 2, 3. To label different entities, Greek alphabet subscripts

will be used. To exemplify, fin and fii refers to a unit vector of label a and another

unit vector of label 3, respectively.
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2.1 Growth and division

How does a cell know when to divide? This is a question that have fascinated biolo-

gists for many decades, inspiring many hypotheses and experimental investigations.

General theories for the trigger of division include the sizer model, in which the cell

divides when it reaches a critical size; the timer model, in which the cell divides

after a specific amount of time from birth; and the adder model, in which the cell

divides after it has grown a constant size between birth and divison regardless of

birth size [68]. Note that the sizer and timer models require feedback while the adder

model does not 11151. However, the verification of these models have been hindered

by the lack of single-cell data with high spatiotemporal resolution. Overcoming pre-

vious limitations, recent experiments have shown that the single-cell data supports

the adder model and falsifies the sizer and timer models [15, 1281. Furthermore, a

variety of bacterial species have been shown to follow the adder model [69, 115].

In the model, the bacteria are assumed to grow only length-wise, with the bacteria

width held constant throughout the simulation. This growth is modeled exponentially

as

-i-- =- ln(2) (2.1)
dt rg

for a single bacterium a where f, is the half-length of the bacteria at time t and 7g

is a growth time constant with units of Is]. Thus, the half-length of the bacteria will

grow as

/a = 2"72% (2.2)

where 0o, is the initial length of bacterium a. Following the adder model [128J, the

length added between birth and division ( 4 add) is constant for each cell. Thus, the

cells divide when they grow an additional eadd from their birth length (division length

fdivide a = f0 a - fadd). At division, a random number X is drawn from a normal

distribution of mean 0.5 and standard deviation Ubirth size, such that the bacterium

divides roughly in half. The length of the new daughter bacteria edl and ed2 are
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ipe cl= edivide fip

XP

daughter cells
edl dl -ed2  d

Figure 2-1: Parameters related to the growth and division of the cells. When 4p = idivide, the cell
divides. The daughter cells have lengths of id and fd2 (edl + d2 = 4p, idi = Xtp where X is a
random number drawn from a normal distribution of mean 0.5 and standard deviation O-birth size)-
Xdj and Xd2 are the centers of the daughter cells, calculated as in Eqs. (2.4). nidl and nd2 are
the orientations of the daughter cells, drawn from a vMF distrbution with mean direction f,, and
concentration parameter K.

calculated from the length of the parent bacterium 4,

id1 = XfI (2.3a)

fd2 = I - X)f, (2.3b)

such that the length of the parent cell is conserved. When drawing the random

number X, the normal distribution is truncated such that 0.1 < X < 0.9. The new

bacteria centers of the daughter bacteria are

Xdl = Xp - id10p (2.4a)

Xd2 Xp + Ifd2flp (2.4b)

The new orientations of the daughter bacteria are drawn from a von Mises-Fisher

(vMF) distribution, with mean direction corresponding to the direction of the parent

cell ni, and concentration parameter rK (see Appendix A for more details about the

vMF distrbution). The division lengths of the daughter bacteria are

idividedl = idl + tadd (2-5)
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fdivided 2 - d2 + 4 add

The parameters related to the growth and division are illustrated in Fig. 2-1.

2.2 Bacteria-surface interactions

An effective steric boundary potential Ubdy is used to encode bacterial surface inter-

actions across various geometries. Ubdy prevents the bacteria from penetrating the

boundary and forces them to align parallel with the local surface tangent. This is

achieved by penalizing the overlap between the bacteria and the surface exponentially

y 0 if za < 0 'no contact'
Ubdy (2.7

Ebdye z/O'bdy if za > 0 'contact'

where Ebdy is the strength parameter for the bacteria-boundary interaction and abdy is

a length scale parameter of the order of the bacterial width. The overlap coordinate

za of bacterium a is defined as

za = fa ia -N(xa)|I+d, - N(x,) (x, - S(xa)) (2.8)

d(Xa)

S(x0 ) is the point on the surface that is closest to the bacterium's position xQ, and

N(xa) is the surface normal vector at S(x,). Recall, f. and d. are the bacterium's

half-length and half-width, respectively. ij_, the first term in z., is the projected

half-length in the direction of the surface normal. The last term d(x,) is the signed

distance of the bacterium's center from the surface. The geometric parameters of the

overlap coordinate for three contact cases (z' > 0) are shown in Fig. 2-2.

The derivatives of the boundary potential with respect to xa and fna are Ubdy

9, Ubdya.,za and i Ubdy = a OUbdy atza , where 19zUbdy = (ebdy/Obdy)ez-/bdy.
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A

d(xa) S(Xa) _

I--- --- X c .c ..
(Xa) d(xa

eaej = d(xa) =0

Figure 2-2: Geometric parameters of the overlap coordinate. In the three cases shown, the overlap
coordinate za > 0, representing contact with the surface.

The translational gradient of z, is

n. N(xc,)
(eaza f :l . :)i - xc + S3  axAr 3 + Srx. S3 - N (2.9)

If the surface is flat, both N and S are constant and independent of the bacterium's

position xc,; thus, Eq. (2.9) simplifies to Oacz, = -Ni. Hence, for flat surfaces, the

translational force is in the direction of the surface normal. The rotational gradient

of Zc, is
nci- N(xc,)

Oki ze = fa Ni (2.10)
In^a -N(x,)|

2.3 Bacteria-bacteria interactions

An interaction potential U is used to capture physical bacteria-bacteria interactions.

This potential accounts for hard steric and osmotic repulsion and cell-cell attrac-

tion. Extending the overlap potential for ellipsoidal particles derived by Berne and

Pechukas, U applies to nonidentical ellipsoidal particles and includes repulsive and

attractive forces.
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2.3.1 Berne-Pechukas potential

In their seminal paper [8], Berne and Pechukas derived an overlap potential to model

the steric interactions between two molecules, which are approximated as ellipsoids.

This overlap potential is obtained by considering the overlap of two ellipsoidal Gaus-

sians. These Gaussians have the form

G(xi) = exp(-xiA-'xj) (2.11)

where

Ai = ninj + d2 ( - ninj) (2.12)

Here, x is a point in space. n is a unit vector in the direction of the principal axis of the

ellipsoid. e and d characterize the ellipsoid's half-length and half-width, respectively.

Jij is the Kronecker delta, as defined below

= { =0
if i =j

if i - j
(2.13)

The inverse of A is

1 1d2 (2.14)

Note, niin, is the projector which when applied to

any vector will find the component of the vector that

is in the same direction as hi. On the other hand,

(Jij - iiiiij) is the orthogonal projector which when

applied to any vector will find the component of the

vector that is on the plane consisting of all vectors

that are perpendicular to ni [931. An example of an

ellipsoidal Gaussian is shown in Fig. 2-3.

Berne and Pechukas proposed that the steric inter-

action between two identical molecules is proportional

.2,

-3

2

Figure 2-3: Plot of
G(x) = exp(-xTA-x) where
A = 12 ifiT + d2 (I - fifnT) in

which fi = 8. This simplifies to

G(x,y, z) =exp Z

In the plot, i = 2 and d = 1.
G(x), which is ellipsoidal in shape
and centered on the origin, has
the highest values in the center
and gradually decays to zero in all
directions.
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A

Ta
xx -rafl

0

a

Figure 2-4: Geometry for the overlap potential between neighboring cells a and 3 with orientations

na and fi, respectively. a is located at the origin 0. The vector rap points from the center of a to
the center of 3.

to the mathematical overlap of these ellipsoidal Gaussians, which can be calculated

through the integration over all space of the product of two ellipsoidal Gaussians.

Consider two ellipsoidal Gaussians, a and 3, with axial unit vectors, nh. and no as

shown in Fig. 2-4. The vector rac joins their centers. Note that rc6 points from

ellipsoid a to ellipsoid 0. From the figure, note that the origin of the coordinate

system is attached to ellipsoid a. The overlap potential Uoveriap is determined by

Uoveriap OC IAa 1/2|Ai--11/2 exp[-xiA-'xi - (xi - rai)A-',(xj - rapj) dXidx 2dX 3

(2.15)

Integrating,

Uoveriap Oc ir 3/ 2 IAaI-1 2 A - -1/ 2 exp 4ciSj c - rao3iApra1 (2.16)

where Si = [A-1 + A-fj] and ci = 2A 1ra8j. which simplifies to

Uoveriap OC Ir3/2JAa + Ap-1/ 2 exp[-rpi(Aaij + Apij)-rapj] (2.17)
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which can be represented as

Uoverlap coEi exp(-rao/a2 ) (2.18)

where ra = rapriao. The proportionality constant EO describes the strength of the

interaction. The strength parameter ci = f(na, n, La, to, da, do) is

E1 oc IA, + A#l- 1/ 2  (2.19)

and the range parameter - f(na, no, io L, f, da, do) is defined as

2 1
2 = oi(Aaij + 1 Aoj)-'oj (2.20)

Note that the overlap potential Uovcriap between two ellipsoids a and 3 is a function

of their axial unit vectors n, and if and the vector rao joining their centers. See

Appendix B for the full details of the Berne-Pechukas overlap potential derivation.

2.3.2 Generalized strength and range parameters

A generalized form of the strength parameter Ei, defined in Eq. (2.19), for noniden-

tical particles is derived by directly expanding the symmetric matrix Aaij + Aoij and

calculating the determinant such that

IAa + A0lj - (d2 + d )(-d2d2 - d2f2 - d 2f - ft2)

- (d2 + d )(d d - -d f- d 2e + jf2 ) (ainl) 2  (2.21)

Dividing each term by z = -(d! + do)(-d d -d a -0),

A_ +, A 1 2( 2  (2.22)

where

2- d)(f2 - d 1/2
X = J (2.23)

(t2 + d2')(f2 + d2)
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y 2 -d 2 )For identically sized particles (L= = f and d,, = = d), this reduces to ,

which matches Eq. (5b) in [8]. Thus, Ei is defined as

= [1 - 2 2 1/2 _x2(n - )2]-1/ 2  (2.24)

with r-1/2 being captured in E0. The maximum value of Ei occurs when n-a is parallel

to n,8. el equals the minimum value of 1 when n. is perpendicular to no.

Cleaver et al. derived a generalized form of the range parameter a as defined in

Eq. (2.20) for nonidentical particles, which is given in Eq. (15) in [211 and is stated

below for convenience

( - p - n a )2  - 1 ( -a 6 . - ) 2  - 2 x (-a1 - n l )( fap - fl)(- /2
X 

=ia no a -x -2(fc- n-)(2 Ono i. 1 X2 (fla . n)
(2.25)

where

0' = d+ d, (2.26)

(e - d2)(f2 - d2) 1/2
a 

= (2.27)

X (f2 + d2)(J2 + d2) '

and
-1/2a nd ~( f 2 - d 2) (E 2 + d ) 1/

a ce '3 a(2.28)
(f 2 - d 2)(f2 + d 2)

The maximum value of a occurs when n,, fne, and f ,e are all aligned. a equals

the minimum value of uO when ni, n8, and i.0 are all perpendicular to each other.

Appendix C includes the full details of the derivation for the strength and range

parameters for nonidentical particles.

2.3.3 Cell-cell interaction potential

As stated in [61], the mechanical interactions between two cells include the steric

repulsion, the repulsion mediated by the effective osmotic pressure in the intercellular

space, and the interactions of secreted matrix components. In particular, the secreted

matrix protein RbmA links cells together, contributing to cell-cell attraction [48, 105,
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129]. For two neighboring bacteria a and P centered at xa and xf6 with orientations

n,, and -,a, half-lengths f, and f,, and half-widths da and da, the cell-cell interaction

potential U is proposed to be

U=c--i + (2.29)
1 + e A a

The first term in U describes the combined effects of hard steric and osmotic repulsion.

The second term corresponds to cell-cell attraction. The amplitude is set by the

interaction strength co and generalized strength parameter 61 [Eq. (2.24)] which

accounts for the instantaneous cell lengths and cell orientations. pp = r,3/o is the

cell-cell distance normalized by the range parameter a. The vector rao = rapOg

joins the cell centers and is directed from cell a to cell # as shown in Fig. 2-4. The

generalized range parameter a [Eq. (2.25)] is the interaction length scale between

nonidentical ellipsoidal cells which depends on the instantaneous cell lengths, the

orientation of the cells relative to each other, and the individual cell orientations.

Ar is the range of the repulsion. v is the relative strength of the RbmA-mediated

attraction. A,, is the effective attractive range. pa is the position of the attractive

potential well. Each contribution and parameter in the potential U thus has a well-

defined physical meaning. The parameters in the cell-cell potential are assumed to be

constant for a given bacterial strain, a simplification that could be relaxed in future

models. The schematic diagram of U is shown in Fig. 2-5.

The generalized strength and range parameters are reproduced below for convenience.

61 = [1 - x2(n n) 2 -1 / 2  (2.30)

-1-p.fl,3) 2  ] -X1/23

7 - x0 X - )2 + (fp - 2X(ao -na)(rap n-fn)(nac fi)-J

1 2(nae -ng2
(2.31)

where

UO= d2+dj, (2.32)
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Co Ar

Pa
A a

I VC 0

Figure 2-5: Cell-cell interaction potential parameters. EO characterizes the strength of the interaction.
A, is the range of the repulsion. v is the relative strength of the RbmA-mediated attraction. A, is
the effective attractive range. Pa is the position of the attractive potential well. pp = ra,/o- is the
cell-cell distance normalized by the range parameter o. Figure from [61].
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1 ( 3 1/2

a)x=-d (2.33)
(f2 + d2)4 2 2) '

and

(a - ) d V(p + da)
a =

(2.34)

With respect to x,, key derivatives of the potential are

aU ap3 19rcrp

ap6 ar, Oxa

aU
= E0E 1

apa#

Orap o
i 9rc,p r.

OXC~i

19Paj3
aux
19a

aia/3j
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rapa
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(2.35)
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+ npj(Tap - n)]]

(2.40)
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With respect to n- a, key derivatives of the potential are
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(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)
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2.4 Translation and orientation dynamics

In the model, a bacterium a is described by its position xa(t), orientation fia(t),

half-length a, and half-width da. The forces acting on the bacterium are

fthrusta - YlVna (2.50)

f =isc, = -r. a (2.51)

f -= -bdy (2.52)

&Va
fcel-cell interactions,= - a (2.53)

fthrust, is the self-propulsion force of the bacteria. fvjsc, is the viscous drag force

acting on the bacteria. fbdyQ is the force arising from bacteria-surface interactions.

fceii-ceii interactions, is the force resulting from mechanical interactions between bacteria.

r, is a translation friction tensor with units of [kg/s], -yi is a friction coefficient with

units of [kg/s], Ubdy, as described in Sec. 2.2, is the boundary potential with units of

[JI, and Va is the total potential of all the pairwise interactions with units of [JI and

is expressed by
N

Va = U (2.54)
0=1, 0sa

where N is the total number of bacteria and U, as described in Sec. 2.3.3, is the

interaction potential between two bacteria a and /.

The equation of motion for bacterium a is thus

maxa = 'ylvna - paka - &Ubdy a Va (2.55)
a xa Oxa

where ma is the mass of bacterium a. Because cells live at low Reynolds number

(Re 0 10--'), inertial effects are neglected (maka -+ 0). The resulting overdamped

dynamics are
dxa _[ OUbdy _ Val
d = 11 na - a O9aJ (2.56)dt 19x" aa
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The friction tensor is assumed to have the following form

r = 7[rYi (n n- ) + C(I - Taine)] (2.57)

which accounts for the fact that the bacteria experience more drag when moving

perpendicular to their orientation. The inverse is

ra- =![i(nnT)+ (I - e nnT) (2.58)

For the orientation dynamics, first note that

n . n=1

d d
(n -n) = -(1)

dt dt

2 -- n)=0 (2.59)

which shows that i and n are perpendicular to each other. Thus, to conserve the

unit length of n, the orientation dynamics are modeled as

dfic MT n_1 ( Ubdy C a
= I n n. ) Da af -c (2.60)

where Q, is a rotational drag tensor with units of [kg m2 / s] and is approximated as

isotropic,

fia = WO'YRI (2.61)

-yo = 67ryd and wo = 87rpfd2 are the Stokesian translational and rotational friction

coefficients, respectively. Surface adhesion of the cells is captured by increasing the

magnitude of the friction tensor r by a factor of 30 if the cells are within 1.5d of

the surface. 'yl, 7-L, and -yR are dimensionless geometric parameters characterizing

the longitudinal, transverse, and rotational friction parameters of elongated particles

that depend only on the aspect ratio a, = 1a/da. Below are the expressions given
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in 11301 for rod-like macromolecules

27ra I 0.980 0.133 (2.62a)

7||a. a2

4iraa _0.185 0.233
SIna. + 0.839 + 5+ 02 (2.62b)

71a. a2

ira2 0.917 0.050
a = In a,, - 0.662 + - 2 (2.62c)

3 -YR a. a.

For ellipsoidal particles, the expressions for -yjj, -L, and _YR are given in 1601 as

'71| = / c+r::- (2.63a)= 2ac, 2a, 83 _____

+ ,2- ln/

a 8/3 (2.63b)
a21 + " In(a0 + a--1)

2 a 4 - 1
7R 1 a- (2.63c)

a 2 1 ln a , + a -+- 1a. acT -1) ao,1

2.5 Implementation

The growth [Eq. (2.1)], translation [Eq. (2.56)], and orientation [Eq. (2.60)] dynamics

are nondimensionalized for the simulations. To perform the simulations, a highly

parallelized code employing GPUs is developed in CUDA. The numerical integra-

tion is performed using the forward Euler scheme, and n is renormalized at each

time step to correct for integration errors. The code is adapted to each project.

See Secs. 3.2.1, 4.2.1, and 5.2.3 for specific implementation details for the bacterial

swarming, biofilm, and bacterial surface accumulation projects.
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Figure 2-6: Computational time comparison between the CPU (12 processors) and GPU (2816
processors) implementation for the biofilm project, which includes bacterial growth and division and
translation and orientation dynamics. The translation and orientation dynamics include cell-surface
and cell-cell interactions. The same simulation input parameters are used for the CPU and GPU
codes, with both simulations initially starting with one cell. The GPU implementation is significantly
faster than the CPU implementation as the number of cells increase.

2.5.1 Code development

Initially, the individual-based code was written in C++ for central processing units

(CPUs). It consisted of the following main functions: bacteria growth, neighbor list

creation, and time-marching. The bacteria growth and neighbor list creation func-

tions are performed sequentially, whereas the time-marching function is parallelized,

utilizing OpenMP. Bacteria grow and divide in the bacteria growth function. The

creation of the neighbor lists are facilitated by binning the bacteria according to their

physical locations. The neighbor lists are only updated at certain time steps and

when a division occurs. In the time-marching function, the cell-surface and cell-cell

interactions are calculated and the translation and orientation dynamics are numer-

ically integrated. Bacterial positions, orientations, and sizes are outputted as text

files at specific time steps. Basic tests were performed to ensure that the cell-surface

and cell-cell interactions were behaving as expected.

In order to speed up the calculation (see Fig. 2-6), the code was then written
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Figure 2-7: Computational tile of size P x P (P < N). The computational tile facilitates the eval-
uation of the pair-wise interactions. The rows and columns of the computational tile are evaluated
in parallel and in sequential order, respectively. Adapted from [99].

for GPUs to take advantage of the inherent parallelism in the problem. The main

functions in the GPU code include the bacteria growth, cell-surface interaction cal-

culation, cell-cell interaction calculation, and time-marching. In the bacteria growth

function, bacteria grow and divide. VxaUbdy and Vf.Ubdy are calculated in the cell-

surface interaction function. All pair-wise cell-cell interactions are evaluated through

the CUDA implementation of the all-pairs N-body algorithm 199], described below.

All of the functions are performed in parallel except the bacteria growth function to

avoid memory collisions when new bacteria are created after division. The output

from the code is a text file that includes the bacterial positions, orientations, and

sizes at specific time steps. Using the same input parameters and cell configuration,

tests were performed to ensure the GPU code could reproduce the final positions and

orientations of the cells as the CPU code.

In the CUDA all-pairs N-body algorithm, computational tiles of size P x P (P <

N) as illustrated in Fig. 2-7 are utilized to facilitate the evaluation of the O(N 2 )

pairwise interactions. The rows and columns of the computational tile are evaluated

in parallel and in sequential order, respectively, balancing computational speed and
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memory use. Inputs for the computational tile are the 2P body descriptions and the

current sums of V..V, and , and the outputs are the updated sums of V.,Va

and VaV, as illustrated in Fig. 2-8.

aVa

dxa

xI d

dva
and

Ua 

xaiiapea,,da

updated

(3Vaand a
dik.

aVa
dxa

PxP

Figure 2-8: Inputs and outputs of the computational tile of size P x P (P < N). Inputs to the
computational tile include the current sums of V..,Va and Vft.V,, and the state variables (x, fi, t,
d) for the a particle. Loaded into shared memory are the state variables for the # particle. The
output of the computational title are the updated sums of V..Va and Vj,&Va. Adapted from [99].
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Chapter 3

Bacterial swarming

Collective migration of flagellated cells across surfaces, termed swarming, is a fun-

damental bacterial behavior that facilitates range expansions and the exploration of

nutrient patches, with profound implications for disease transmission, gene flow, and

evolution' [24, 43, 73, 90, 118, 123, 135, 137, 150]. Due to its biomedical and ecological

importance, bacterial swarming has been widely investigated in microbiology and bio-

physics as a model system for multicellular self-organization, development, motility,

and active matter [1, 4, 11, 12, 18, 19, 26, 31, 38, 41, 53, 64, 85, 117, 133, 140, 145, 149].

Previous studies have revealed important physiological and biophysical factors that

control particular aspects of the local swarming behavior, such as the differentiation

into distinct cell types [14, 27, 58, 59, 74-76, 101] and the role of osmolarity gradients

and surfactant production in maintaining thin liquid films above the surface, through

which the cells swim during swarming [28, 67, 72, 77, 108, 112, 122, 146]. However,

establishing a comprehensive, causal connection between intracellular, intercellular,

and macroscopic behaviors has remained a major challenge due to limitations in data

acquisition and analysis techniques suitable for multiscale dynamics. Here, a high-

throughput adaptive microscopy approach combined with machine learning allows the

identification of key biological and physical mechanisms that determine distinct micro-

'The results of Chapter 3 are published in: Hannah Jeckel. Eric Jelli, Raimo Hartmann,
Praveen K. Singh, Rachel Mok, Jan Frederik Totz, Lucia Vidakovic, Bruno Eckhardt, J6rn Dunkel,
and Knut Drescher. Learning the space-time phase diagram of bacterial swarm expansion. Proc.

Nati. Acad. Sci. U.S.A., 116(5):1489-1494, 2019.
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scopic and macroscopic collective behavior phases which develop as Bacillus subtilis

swarms expand over five orders of magnitude in space (Sec. 3.1). This phase identi-

fication is combined with particle-based simulations (Sec. 3.2) to infer that cell-cell

interactions within each swarming phase are dominated by mechanical interactions

(Sec. 3.3).

3.1 Experiments

To track the swarming behavior of B. subtilis over five orders of magnitude in space

at the single-cell level, an adaptive microscope that acquires high-speed movies at

times and locations determined by a live feedback between image feature recognition

and an automated movement of the scanning area is developed 2 [Fig. 3-1(a)]. This

technique allows the imaging of a radially expanding swarm at single-cell resolution

in space and time (Fig. 3-1), acquiring movies at a frame rate of 200 Hz over the 10-h

duration of a single experiment. Movies are recorded along one line through the swarm

[Fig. 3-1(a)], with the length of the line determined adaptively based on the swarm

diameter. From each movie, the time-dependent positions, orientations, and velocities

of all individual cells are extracted (Fig. 3-1(b) Supplementary Fig. S1 of [66]). To

compress, analyze, and visualize this large amount of microscopic time-resolved data,

each movie is represented by a list of statistical observables, which include single-

cell parameters such as aspect ratio and motility, as well as emergent parameters that

characterize the formation of nonmotile clusters and moving rafts [Figs. 3-1(c)-3-1(d)].

The full list of 23 observables extracted at each space-time coordinate is described

in Table 3.1. The spatiotemporal evolution of these observables during swarming is

visualized in heatmaps (Figs. 3-1(e)-3-1(h) and Supplementary Figs. S2-S6 of [661),

where the color of each pixel is assigned according to an averaged statistical observable

of a movie. In the online interactive data explorer (http: //drescherlab. org/data/

swarm/), the space-time heatmap coordinates are linked to the associated microscopic

2 The single-cell experiments and data analysis were performed by Hannah Jeckel, Eric Jelli,
Raimo Hartmann, Praveen K. Singh, and Lucia Vidakovic of the Drescher lab. Jan Frederik Totz
also assisted in the data analysis.
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Figure 3-1: Adaptive microscopy reveals complete multiscale dynamics of bacterial swarm expan-
sion. (a) Movies at single-cell resolution are acquired at different locations in the swarm, starting
from 1 cell to 100 cells, and follow swarm expansion until the agar plate is completely colonized. The
number of movies and locations where movies are acquired (indicated by colored squares) are deter-
mined adaptively, depending on the detected swarm size. (b)-(d), Top show qualitatively different
bacterial behavioral dynamics observed at distinct space-time points, which are marked in (e)-(h) by
corresponding magenta symbols. (b)-(d), Bottom demonstrate automated extraction of single-cell
positions, orientations, and cell velocities (b) as well as collective behaviors, such as formation of
nonmotile clusters (c) and motile rafts (d), corresponding to groups of aligned cells that move in
the same direction. Cells assigned to the same nonmotile cluster or motile raft by the classification
algorithms share the same color; cells labeled in white have not been identified as belonging to any
motile raft or nonmotile cluster. Magenta arrows in (d) indicate the average velocity of a raft. Scale
bars 10 p~m. (e) Heatmap of the cell density, obtained by averaging single-cell data as in (b)-(d)
for each movie at each space-time coordinate. The lag phase, a period following inoculation during
which the swarm does not expand, as well as the expansion phase, is indicated. (f)-(h) Additional
heatmaps for the cell speed, fraction of cells that are in nonmotile clusters in a given field of view, and
fraction of cells that are in motile rafts. A total of 23 statistical observables (Table 3.1) analogous
to (e) -(h) are determined at each space-time position. Figure from [66].

movies within the swarm, to allow for a direct inspection of the connection between

microscopic and macroscopic dynamics.
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Aspect ratio Average aspect ratio of cells

Average cell length Average length of cells pm

Speed The most likely cell speed as determined by
Speed _______ Rayleigh distribution fit

Biomass density Fraction of area covered by cells

Enclosed density Like Biomass density, but small gaps between cells _
are removed

Cell density Number of cells per area # /100 pm 2

Quantification factor of the rafting behavior of
cells, defined as the number of cells within a circle

Rafting factor of radius 10 pm swimming in a similar direction -
(tolerance 100) divided by all cells within the 10
Am circle.

Ratio of rafting cells Fraction of cells within rafts

Average raft size Average over all raft sizes in the field of view # cells per raft

Size of largest raft Size of the largest identified raft in the field of view # cells

Number of rafts Number of rafts per area # /1000 /pm
2

Average speed in rafts Average speed of cells within rafts pm/s

Ratio of cells speed Average speed of cells within the raft divided by
within/outside of rafts average speed of cells outside of a raft

Total raft size Combined size of all rafts within the field of view # cells

Size of non-motile clusters averaged over the field

Average cluster size of view. Clusters are defined as a non-motile cell # cells per cluster
clump which consists of at least 5 neighboring cells
with speeds no faster than ~ 15pm/s.

Number of clusters Number of cluster per area # /1000 pm 2

Ratio of cells within clusters Fraction of cells identified to belong to a cluster -

Total cluster size Combined size of all clusters within the field of # cells
view

Orthogonal velocity correla- Distance at which the orthogonal velocity correla-
tion half distance tion function drops below half its initial value

Parallel velocity correlation Distance at which the parallel velocity correlation
half distance function drops below half its initial value

Local biomass density varia- Variation of local biomass density determined by
tion slicing the image into 64 squares

Local enclosed density varia- Variation of local enclosed density determined by
tion slicing the image into 64 squares

Density time variation Variation of local biomass density over time

Table 3.1: List of parameters measured from movie data (observables), including a brief description.
Table adaped from [66].

During the lag and expansion phase, the swarm shows remarkable behavioral com-

plexity at the microscopic level at different points in space and time [Figs. 3-1(b)-3-

1(d)]. The heatmaps [Figs. 3-1(e)-3-1(h)] identify and characterize the microscopic

50

Observable name Observable description Units



motility behaviors during swarming, indicating a wide range of different behaviors

that occur at different space-time points. The strong spatiotemporal variation of

each observable indicates the presence of different regimes of bacterial dynamical be-

haviors. However, some features of the motility behaviors remain hidden when only

one or few observables are taken into account, and high-dimensional datasets with

many observables that vary in space and time are intrinsically difficult to visualize.

Therefore, unsupervised machine learning is applied to identify the dynamical phases

from the full set of statistical observables in space and time. To avoid a bias resulting

from double counting strongly correlated observables, the pairwise normalized mu-

tual information is first determined. Discounting redundant observables reduced the

total number of observables from 23 to 14 (Fig. 3-2(a) and Supplementary Fig. S11

of [66]). To denoise and normalize the data, each of the remaining 14 observables

was binned into five categories of equal size (Fig. 3-2(b) and Supplementary Fig. S12

of [661). After this preprocessing, t-stochastic neighborhood embedding (t-SNE) [871

is used to obtain 2D and 3D representations, followed by the application of k-means

clustering to the t-SNE data [Fig. 3-2(c)]. The resulting division into five clusters is

robust under variations of target dimensionality and distance metrics used for t-SNE

(Supplementary Figs. S13-SI6 of 166]). Across independent replicas of the swarming

experiment (Supplementary Figs. S13--S16 of [661), three pure and two coexistence

phases are consistently observed. These phases are a single-cell phase (SC) character-

ized by low cell densities and little collective behavior, a rafting phase (R) exhibiting

high fractions of comoving cells, and a biofilm phase (B) where cells are organized

in nonmotile structures reminiscent of liquid crystals [61]; the coexistence phases are

the mixture of single-cell and rafting behavior (SC + R), as well as the mixture of

rafts and biofilm precursors (R + BP), which differ qualitatively [Fig. 3-3(a)] and

quantitatively [Fig. 3-3(c)] from the pure phases. The biofilm phase and the rafting

phase are consistent with observations of chaining cells in the center of the swarm

and rafting cells near its edge [75]. Mapping the distinct phases back onto the space-

time heatmap of swarm expansion reveals the complete dynamical phase evolution of

bacterial swarming [Fig. 3-2(d)].
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Figure 3-2: Machine learning the swarming phases from microscopic dynamics. (a) Raw data of one
swarm expansion experiment, consisting of ~1,500 space-time points (columns) in a 23-dimensional
observation space (rows). Additional replicates are shown in SI Appendix, Fig. S11 of [66]. Color
bar indicates relative magnitudes scaled to [0, 1]. In the case of strongly correlated observables with

high normalized mutual information (marked by red brackets), only one of them is included in the
machine-learning analysis. (b) The values of the 14 remaining observables (rows) are binned into
five categories as indicated by the color bar, providing the input data for machine learning. (c) The
2D representation of the data in (b), obtained with t-SNE; k-means clustering robustly identifies
five main dynamical phases during swarm expansion across independent experiments (n = 3; SI
Appendix, Figs. S13-S16 and SI Text of [66]). Phases are labeled with different colors. (d) The
emergence of the different phases in time and space during swarm expansion. The dashed lines
indicate the approximate outlines of the different phases. Figure adapted from [66].

3.2 Simulations

With identification of the five phases of collective behavior in swarms, it is now possi-

ble to identify which cell-cell interaction mechanisms govern the dynamics within each

phase and address whether these phases can be explained in terms of common phys-
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ical principles. To test whether physical forces can account for the dynamics within

each behavioral phase and the differences between phases, 2D individual-based active

matter simulations are performed. Bacteria are modeled as interacting ellipsoids, all

of which share the same minor axis half-length d. Each bacterium a is then described

by its major axis half-length f, position xa, and orientation na. The bacteria are

assumed to move at a constant self-propulsion speed v0 in the direction of their ori-

entation. Due to the fact that bacteria swim at low Reynolds number (Re ~ 104),

inertial effects are ignored and the dynamics are approximated as over-damped. De-

noting the identity matrix by I, the over-damped translation and orientation dynamics

for a single bacterium are
dx (aV
d= vn - r-1 (3.1)

d I - nT) -n-1 v (3.2)
dt a n

where use has been made of the fact that ~ 1 [compare Eq. (2.56)] r and f2 are

r = -y oy(nn T ) + (I - nnT) (3.3)

f = wI (3.4)

where -yo and w are the translational and rotational friction coefficients, respectively.

-yI and -yL are dimensionless geometric parameters characterizing the longitudinal

and transverse friction parameters that depend only on the aspect ratio a = /d.

The expressions for -,'j and ' _L given in [130] for rod-like macromolecules Eqs. (2.62a)

and (2.62b) are used. V is the total potential of a single cell a for all the N pairwise

cell-cell interactions between cell a and cell / (V = _N U). The steric cell-cell

interactions are described in terms of an effective repulsive potential U (Eq. (2.29)

with A = 1 and v = 0) that depends on the distance ra6 between neighboring cells

a and 3, and their orientations ic, and n (see Sec. 2.3.3 for more details).

Using d, rt = 2 , and o., as characteristic length, time, and energy scales, the
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equations of motion Eqs. (3.1) and (3.2) can be represented in dimensionless form

dx* * [1( 1(~ V* 35* n - _ -- T) + -(I_ -T)] (3.5)

dt* V T 1 _1 ax*

d nT 1 aV*
=i (I - in) ( (3.6)

dt* a* On

where superscript * indicates a dimensionless quantity and use has been made of the

following definitions and ratios x* = x/d, V = t/Tt, V*= V/co, v* = v/6, and

W* = .The time scale rt is the translation relaxation time, i.e. the time it takes

for the bacteria to reach an equilibrium configuration in the absence of self-propulsion.

Anticipated differences exist for the B phase, as the model does not account for the

highly elongated and flexible cells. To qualitatively capture these long, incompletely-

divided, flexible chains of cells, the model is extended to include growth and division,

representing the incompletely-divided cell chains as divided chains of cells. As the

cells are non-motile and only interact through steric interactions, the ends of the cells

should remain in close proximity during the simulation. Thus, for a cell a

fa(t) = fooeCt (3.7)

where c is the growth rate and fco is the initial length. When a cell reaches its division

length fa divide, the cell will divide. At division, the new positions of the daughter

cells (label dl and d2) are

Xdl = Xa + fa divide/2 - a (3.8)

Xd2 = Xa - ea divide/2 - a (3.9)

respectively. The orientations of the daughter cells are equal to the mother's orien-

tation, and the lengths of the daughter cells are fa divide/2. The new division length

for each daughter cell is drawn from a normal distribution after each division event.
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3.2.1 Implementation

In the simulations, new positions and orientations of the bacteria are obtained by

numerically integrating the dimensionless translation and orientation dynamics Eqs.

(3.5) and (3.6) at each time step. Each 2D simulation runs with a fixed number of

cells within a confined square box with periodic boundaries. To ensure the periodic

boundaries do not add any undesirable effects, the area of the box is chosen to be

2.25 times as large as the field of view, i.e. the area for which the analysis is exe-

cuted and videos are generated. Non-motile cells do not self-propel and have a 10-fold

higher translation and orientation friction coefficient compared to motile cells, which

is motivated by the experimental observation that non-motile cells barely move, even

when pushed by several other cells. The cells are initially loaded with random posi-

tions and orientations. Analysis of the simulation is performed after it has reached

its equilibrium state (after at least 10 5 time steps are executed).

For the R + BP phase, the non-motile cells are arranged into a more realistic

configuration than random initial conditions by allowing the non-motile cells to be

pushed by the motile cells for 7.5 x 10' time steps. During this time, the translation

and orientation friction coefficients of the non-motile cells are equal to the motile cells.

After this initialization, the friction coefficients of the non-motile cells are increased

by a factor of 100, enforcing that the clusters rarely move as observed in experimental

videos.

For the B phase, N = 50 non-motile cells are first distributed in a small area

(~ 12 x 12 ptm). These cells grow for 2 x 105 time steps. This approximately equals 2

s with a growth factor c = 2 x 10-5, which corresponds to a doubling time of ~ 0.35s.

Thus, approximately 5-6 division events per cell can be expected with the final cell

number to be about 2500. Once the growth process is completed, the simulation is

continued for another 1.5 x 105 time steps for the system to reach equilibrium.

3.2.2 Parameters

A summary of all relevant simulation parameters is given in Table 3.2. The vari-

able parameters for each simulation are the number of cells, their motility, and their
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shape, which are all directly extracted from the experimental data for each phase.

In particular, the number of cells in a simulation is set as the median cell density of

a specific phase measured in the experiments. The fraction of non-motile cells in a

simulation equals the fraction of cells within non-motile clusters determined in the

experiment, and the speed of the motile cells are drawn from a Rayleigh-distribution,

whose parameters depend on the experimentally determined bacterial speed. In each

phase, all of the aspect ratios of all cells within the field of view of each experimental

video are collected. The aspect ratios used for the simulations are drawn from this

distribution, after eliminating abnormally small or large values. For the R + BP

phase, the long and non-motile cells are simulated by increasing the aspect ratios of

the non-motile cells by a factor of 2.

Parameter Value Description

d 0.58 pm Bacteria half-width

Eo 1.575 x 10-16 J Cell-cell interaction potential strength

yo 4.63 x 10-9 kg/s Translation friction coefficient

w 1.56 x 10-" kg -m2 /s Rotation friction coefficient

Table 3.2: Summary of bacterial swarming simulation parameters. Table adapted from [66].

3.3 Results

The simulated dynamics for all of the identified dynamical phases qualitatively agree

with their experimental counterparts [Figs. 3-3(a)-3-3(b)]. Additionally, the simula-

tions of the SC, R, SC + R, and R + BP phases are in good quantitative agreement

with experiment for many of the measured observables [Fig. 3-3(c) and Fig. 3-4]. As

mentioned previously, because the extended simulation model for the B phase rep-

resents the long, undivided cells seen in experiments as divided chains of cells, the

simulation is not expected to quantitatively match the experiment.

In Fig. 3-4, the simulation results are represented as large symbols, with the

error bars indicating the standard deviation based on 20 simulation runs. As shown

in Fig. 3-4, there are discrepancies between the simulation and the experiment for

56



(a) @

(b) F77]_
(C)

C- ~ .. .. .

E3

0 20 40 60 80 0 0.2 0.4 0.0 0.8
Coll speed (pm/a)

#1

Ratio of cells within clusters
0 0.2 0.4 0.6 0.8

Ratio of rafting cells

Figure 3-3: Swarming dynamics are dominated by physical cell-cell interactions. (a) Typical images
for the phases identified in Fig. 3-2(c): low-density single-cell phase (SC); high-density rafting phase
(R) with a high percentage of comoving cells; biofilm phase (B) characterized by long, unseparated
cells; and coexistence phases that contain single cells and rafts (SC + R) or rafts and biofilm
precursors (R + BP). Scale bar 10 pm. (b) For each phase, simulations were run with the cell
shape, motility, and density extracted from the particular phase as input parameters. (c) Detailed
quantitative comparisons between experiments (small circles), the particular experimental states
shown in (a) (large circles), and simulations (squares; error bars are SDs, n = 20) yield good
quantitative agreement, except for the B phase, confirming that physical effects determine the four
motility-based swarming phases. Figure adapted from [661.

some of the observables (marked in italic font). Because a group of cells swimming

in the same direction are perfectly aligned in the simulations, the rafting factor of

the simulations is larger than in experiments for all of the motility phases. This

rafting factor influences the cutoff value for the determination of rafts, which leads to

increases in number of rafts, total raft size, and ratio of rafting cells for the simulations

compared to experiments. The average cluster size of the simulations are smaller

than the experiments for the SC, SC + R, and R phases because the simulations only

capture the swarm dynamics not near the swarm front. In the experiments, for the

SC and SC + R phases located at the swarm front, the cells at the edge of the swarm

hardly move (observed swarm front speed is 0.6 - 5.6 pm/s), such that they would be
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classified as non-motile clusters. Further, non-motile clusters form in the experiment

due to the growth of non-motile cells or by the gathering of non-motile cells from being

pushed around by the motile cells, and only the second is captured in the simulations.

The measured cell length for the R + BP phase in the simulations are larger than

the experiments because of the doubling of the aspect ratios of the non-motile cells.

Because the cells in the simulations do not run-and-tumble, the simulation rafts last

longer than in experiments, i.e. the rafts split and merge less often. When these rafts

move through the field of view, the local density is high at the position of rafts and

low in other regions, which leads to a high spatial density fluctuation. On the other

hand, the constant splitting and merging of rafts lead to a more homogeneous spatial

density distribution in the experiments. Thus, the biomass density variation and

enclosed density variation for the simulation are higher compared to the experiment

for the SC + R and R phases.

The numerical investigations show that hydrodynamic interactions are not a dom-

inant effect, but that steric interactions and motility suffice to explain the collective

behavior among swarming bacterial cells and account for the differences in the distinct

dynamical regimes (Fig. 3-4).
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Figure 3-4: Experimentally determined data (small symbols) and simulation results with (large

square) and without (large circles) hydrodynamic interactions. Simulation results are averaged over
20 runs, with the standard deviation indicated by black lines. In each panel, small circles, squares,
and diamonds correspond to the results of the three different experimental replicates. The 5 different
colors correspond to the 5 different dynamical phases. Figure from [66].
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Chapter 4

Bacterial biofilms

Vibrio cholerae cells can swim through liquids as isolated individuals, but they are

more commonly attached to surfaces, where they grow into clonal colonies termed

biofilms, with reproducible spatial organization, global morphology, and cellular ar-

rangements' [46, 78]. Biofilm architectures often display striking local nematic order

analogous to molecular ordering in abiotic liquid crystals, yet biofilms differ funda-

mentally in that they are active systems, driven by cell growth and metabolism [34,

56, 138, 151]. As these active nematic systems operate far from thermodynamic equi-

librium [90], there are no relevant fundamental conservation laws known that could

be used to characterize the biofilm developmental dynamics.

To investigate whether potential-based descriptions can account for the experi-

mentally observed morphologies, new experimental imaging and image analysis tech-

niques are developed to reconstruct and track all individual cells inside growing 3D

biofilms (Sec. 4.1) and particle-based simulations implementing an effective cell-cell

interaction potential are performed (Sec. 4.2). This combined experimental and sim-

ulation analysis implies that local cellular order and global biofilm architecture in

these active bacterial communities can arise from mechanical cell-cell interactions,

which cells can modulate by regulating the production of particular matrix compo-

nents (Sec. 4.3). These results establish an experimentally validated foundation for

'The results of Chapter 4 are published in: Raimo Hartmann, Praveen K. Singh, Philip Pearce,
Rachel Mok, Boya Song, Francisco Diaz-Pascual, J6rn Dunkel, and Knut Drescher. Emergence of
three-dimensional order and structure in growing biofilms. Nature Phys., 15:251-256, 2019.
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improved continuum theories of active matter and thereby contribute to solving the

important problem of controlling biofilm growth.

4.1 Experiments

To achieve a detailed qualitative and quantitative understanding of such biologically

ubiquitous yet physically exotic bacterial communities, new experimental imaging and

image analysis techniques are developed for obtaining high spatiotemporal-resolution

data of the biofilm development process up to 104 cells, 2 representing mid-sized biofilm

microcolonies that have already established the architechtural state of macroscopic

V. cholerae biofilms 1361. By using automated confocal microscopy, with an adaptive

live feedback between image acquisition, feature recognition and microscope control,

followed by a ground-truth-calibrated, novel 3D image-segmentation technique, the

complete 3D biofilm development at cellular resolution with minimal phototoxicity

[Figs. 4-1(a)-4-1(b)] and minimal segmentation error can be observed (see Methods

and Supplementary Information of [611 for more details). The high temporal resolu-

tion (At = 5 - 10 min) allows for cell lineage reconstruction, measurements of local

growth rates, and the identification of all cells in a field of view that are not related

to the original biofilm founder cell [Figs. 4-1(b)-4-1(d)]

When investigating whether the non-equilibrium dynamics of biofilm development

and the emergence of local order can be captured quantitatively through effective

cell-cell interaction potentials, it is important to account for the essential biophysical

processes-cell growth, cell division, cell-surface interactions and cell-cell interac-

tions [29, 55, 85, 105, 111, 116, 131, 138, 148]. Whereas growth and division are

driven by nutrient availability and metabolism, cell-surface and cell-cell attractions

are typically mediated by secreted or membrane-associated polysaccharides and pro-

teins [89, 105]. For V. cholerae biofilms, the molecular basis for cell-cell interactions

has been intensively investigated: cells are embedded in a self-secreted extracellular

2The single-cell experiments and data analysis were performed by Raimo Hartmann, Praveen K.
Singh, and Francisco Diaz-Pascual of the Drescher lab.
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Figure 4-1: Dynamics of V. cholerae biofilm formation. (a) Cells constitutively expressing a green
fluorescent protein (sfGFP) were imaged with spinning disc confocal microscopy. Images at three
different z planes are highlighted. (b) 3D reconstruction of the biofilm shown in (a), where each cell
is colored according to the nemnatic order parameter S = (3/2(fia - fi) 2 - 1/2) in its vicinity. High-
time-resolution (At = 5 - 10 min) imagining allows tracking of cell lineages and discrimination of
cells (white) that are not direct descendants of the biofilm founder cell. (c) The extracellular matrix
protein RbmA mediates cell-cell adhesion and is distributed throughout the biofilm, as visualized
by immunofluorescence. (d) Time-resolved WT* biofilm (a rugose wild-type strain with straight
cell shape) growth series. Each cell is colored according to the cellular alignment with the z axis
(for the ArbmA mutant see Supplementary Fig. 6 in [61]). Heatmaps showing spatially resolved
single-cell measurements of different biofilm structural properties inside (e) WT* and (f) ArbmA
biofilms, which are used to characterize biofilm formation (n > 3 biofilms, standard deviations are
shown in Supplementary Figs. 5 and 7 and the differences among both strains are highlighted in
Supplmentary Fig. 8 of [61]) as a function of the distance to the biofilm center (dcentre) and the
number of cells inside the biofilm (Nceis). Figure from [61].

matrix composed of the Vibrio polysaccharide (VPS), extracellular DNA, and pro-

teins [6, 48, 1291. The osmotic pressure resulting from a high concentration of matrix
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components in the intercellular space, as well as steric cell-cell interactions, are both

expected to contribute to cell-cell repulsion. Cell-cell attraction is primarily medi-

ated by the protein RbmA, which localizes throughout the biofilm [Fig. 4-1(c)] 16, 48]

and links cells to each other [47, 48, 88]; its expression levels are inversely related

to cell-cell spacing (Fig. 4-7). VPS also weakly binds cells together, yet elevated

levels of VPS production do not cause stronger cell-cell attraction or decreased cell-

cell spacing (see Supplementary Fig. 11 in [61]). Based on these cell-cell interaction

processes, biofilm architectures are hypothesized to be primarily determined by the

relative strength of the effective mechanical cell-cell attraction and repulsion forces.

To determine the impact of cell-cell attraction, the 3D biofilm architecture dy-

namics of a rugose wild-type strain with straight cell shape (WT*) are quantitatively

compared with that of a mutant strain (ArbmA) with significantly weakened inter-

cellular adhesion (see Methods of [61]). Biofilms grown in a low-shear environment

approximately display hemispherical symmetry [Fig. 4-1(d)], which allows the char-

acterization of the biofilm architectures [Fig. 4-1(e)] to be a function of the distance

to the biofilm center in the basal plane dcentre using the cell number in the biofilm

Nceiis as a quantification of the developmental state. The measurements reveal strong

structural differences between the outer biofilm layer and its central part, as well

as several distinct architectural phases of the biofilm during growth [Figs. 4-1(e)-4-

1(f)]. Interestingly, the cellular growth rate remains homogeneous in space during

WT* biofilm development in the conditions and for the biofilm sizes studied here

(Fig. 4-1(e) and Supplementary Fig. 5 of [61]), in contrast to theories assuming steep

nutrient gradients inside biofilms [105, 1471. The nematic order, cell-cell spacing, and

cellular orientations with respect to the vertical (z) and radial (r) directions differ

significantly between WT* and ArbmA mutants (Figs. 4-1(e)-4-1(f) and Supplemen-

tary Figs. 5-8 of [61]), revealing the strong effect of cell-cell adhesion on biofilm

architecture dynamics.
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4.2 Simulations

Based on the high-resolution spatiotemporal data of biofilm development of different

bacterial strains, the hypothesis that the biofilm internal structure and external shape

originate from mechanical interactions between cells is investigated. The cells are

modeled as interacting ellipsoids of half-length f and half-width d, described by their

position x and orientation ft. Because cells live at low Reynolds number (Re ~ 10-4),

the dynamics are approximated as over-damped, ignoring any inertial effects. Bacte-

rial self-propulsion is neglected as cell movement in V. cholerae biofilms is dominated

by passive cell displacement from biofilm expansion [61]. Cells can interact with the

wall boundary and other cells through interaction potential functions, Ubdy and V.

Ubdy, Eq. (2.7), encodes cell-surface interactions through a repulsive interaction

potential that is proportional to the overlap between a cell and the wall boundary

(see Sec. 2.2 for more details). V is the total potential of a single cell a for all the

N pairwise cell-cell interactions between cell a and cell 3 (V = E _ U). The

effective mechanical interactions are described in terms of an effective potential U

(Eq. (2.29), reproduced below) that depends on the distance rO between neighboring

cells a and 3, and their orientations nc and A 0 (see Sec. 2.3.3 for more details).

(4 (4.1U = co 1  e +_ . (4.1)
I1+ e X.

where p.0 = rco/u is the shape-normalized cell-cell distance. - is the interaction

length scale between nonidentical ellipsoidal cells which depends on the instantaneous

cell lengths, the orientation of the cells relative to each other, and the individual

cell orientations. The amplitude is set by the interaction strength Eo and strength

parameter El, which accounts for the instantaneous cell lengths and cell orientations.

The first term of the interaction potential describes the combined effects of hard

steric and osmotic repulsion with range A,. The second term corresponds to cell-cell

attraction and adds an attractive part of relative depth v, width Aa, and position

Pa. The potential is assumed to be independent of the biofilm developmental state

or nutrient levels. As shown in Sec. 4.3, this simplification suffices to capture the
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main features of the small to medium-sized biofilms studied here but is expected to

become inaccurate at the later stages of biofilm development, when spatiotemporal

heterogeneities become relevant.

Denoting the identity matrix by I, the over-damped translational and orientation

dynamics for a single cell are

dx -1 [ Ubdy V1

dt r. [ x ax (

df n-T) [-1 (aObdy _ 0/N
dt =(I nn) a i fij (4.3)

where r and f are

n = nm (i(nT) +7y(I -- ni)] (4.4)

2 = WmYRI (4.5)

Here, 7ym and Wm are the translational and rotational drag coefficients for Stokes' drag

in the extracellular matrix for a spheroid (ym = 67rImd, wm = 87rpmtid2 where pm is

the viscosity of the extracellular matrix). Surface adhesion of the cells is captured

by increasing the magnitude of the friction tensor r by a factor of 30 if the cells are

within 1.5d of the surface. yH, -y-, and -yR are dimensionless geometric parameters

characterizing the longitudinal and transverse friction parameters that depend only

on the aspect ratio a = f/d of the cell. The expressions for 7i, -YI, and yR given in [601

for elliptical particles Eqs. (2.63) are used. The instantaneous cell length growth rate

for a single cell is

- ln(2) (4.6)
dt rg

Tr is the growth time constant (obtained by experimental measurements). The divi-

sion of the cells follow the adder model [128] as described in Sec. 2.1.

Using d, rt = ,yd2 and co as characteristic length, time, and energy scales, Eqs.

(4.2), (4.3), and (4.6) are recast into dimensionless form

dx* [11( ) [Ud a V*4
- =-nT) + -(I -- T)] (4.7)b

dt* Y1| TL 9x* ax*
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dnf (I B*dy V*)-_= (I fnnT) [3 (4.8)
dt* 4a-YR n On

- = - * ln(2) (4.9)
dt* T,

where superscript * indicates a dimensionless quantity and use has been made of the

following definitions and ratios x* = x/d, f* = e/d, t* = t/1t, V* V/co, and Ubdy

Ubdy/co. Note that t can be interpreted as the translation relaxation time, i.e. a time

scale of how long it takes for a bacterium to reach an equilibrium configuration from

the cell-cell interaction potential. If the overlap coordinate z* > 0, the dimensionless

boundary potential is Udy = Ubdy/co - Eez/"bdy where Cr = Ebdy/CO, z zd, and

Obdy = Oybdy/d.

4.2.1 Implementation

In the simulations, new positions and orientations of the bacteria are obtained by

numerically integrating the dimensionless translation and orientation dynamics Eqs.

(4.7) and (4.8) and growth law Eq. (4.9) at each time step. The wall boundary is

modeled as an xy plane located at the origin with N = (0, 0, 1) and S = (0, 0, 0).

A single cell is initially loaded with x = (0, 0, d) and i = (1, 0, 0) which grows and

divides. The simulation ends when the specified number of cells is reached. The same

analysis algorithms used to extract features from the experimental biofilms are used

for the simulations.

4.2.2 Parameters

Bypassing previous limitations of individual-based biofilm models [62, 81], the pa-

rameters of our model (cell aspect ratio, division time distribution; Table 4.4) are

determined from single-cell properties of experimental biofilms. The average half-

width d = 0.2775 pm and growth time constant -r = 6130 s are obtained from

experimental measurements. pm, the dynamic viscosity of the EPS matrix, is esti-

mated to be 1 Pa-s 1102], resulting in a drag coefficient of ym = 5.23 x 10-6kg/s. To

prevent penetration of the cells into the boundary, the strength of the cell-surface
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Figure 4-2: Experimental (left) and simulation (right) histograms of the dimensionless length * =
/d at Ntotai = 300 cells. The histograms are normalized by dividing the number of cells in each bin

by the total number of cells such that the height of the bars sum to 1. The experiments are at flow
rate 0.1 jpL/min. The averages of the mean and standard deviation of f* of the 3 experiments are
4.99 and 1.53, respectively. For the 3 simulations, the averages of the mean and standard deviation
of * are 4.61 and 1.08, respectively.

interaction is chosen to be Cbdy = 10o, resulting in E, = 10. The interaction length

scale of the boundary potential -Ubdy should be of the order to the half-width of a

bacterium, which non-dimensionalizes to oU*dy = 1. The dimensionless length added

after division aadd and dimensionless standard deviation for the birth size OUbirth size are

chosen such that the resulting simulation distributions of dimensionless lengths e* of

300 cells represent a tighter distribution around the experimental t* means (Fig. 4-2),

as the larger experimental f* are likely a result of under-segmentation. 13ecause the

orientation of daughter cells are highly correlated to the orientation of the parent cell,

a high value of the concentration parameter r for the von Mises-Fisher distribution

(used in bacterial division) is chosen, with r, = 100.

Fitting the cell-cell potential parameters

To obtain the key potential parameters c0, Ar, V, Aa, and Pa for V. cholerae biofilms,

the attractive term in U is assumed to be attributed primarily to RbmA levels, with

the VPS acting as a Woods-Saxon background potential [144] akin to the mean-field

potential in nucleon models. This potential is assumed to provide the weak cell-

cell binding (with binding strength approximately equal to the Stokes drag felt by
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Axial cell position height Am Z-coordinate of each cell centroid.

Cell alignment with a Angle between each cell's major axis (see cell ori-
diretio of low angle (nieu, flow) raddirection of flow entation) and the direction of the flow.

Angle between each cell's major axis (see cell ori-
entation) and the radial vector r pointing from the

Radial alignment angle (nice, r) rad biofilin's center of mass projected to the bottom of
the biofilm (z = 0 pm) to the corresponding cell's
center.

Vertical alignment angle(fice, z) rad Angle between each cell's major axis (see cell ori-
entation) and the z axis.

Cell volume v yIm3  Cell volume as obtained by the segmentation.

Cell dimensions (length, height and width), as de-
termined by principal component analysis (PCA)

Cell size 1, h, w Im of the segmented cell (equivalent to fitting an ellip-
soid into the cell and deriving the three eigenvalues
which correspond to the lengths of the main axes).

.(e, e2 , e3 ) Vector of the cell's major axis determined by PCA
(eigenvector with largest eigenvalue).

Assuming radially symmetric biofilm growth in

Distance to center spherical coordinates (which is a good estimate
Distac tdcenter Pm for the low flow regime) each cell can be described

spatially by its distance to the center of mass pro-
jected onto the z = 0 p/m plane.

Distance to nearest Euclidian centroid-to-centroid distance to the

neighbor dneighbor eighbor pm nearest cell.

Shortest distance of a particular cell to the outer
Distance to surface dsurace ,am surface of the biofilm.

Biovolume of cells in a vicinity (defined as a sphere
Local cell density Plocal - of radius 3 pim around a cell) normalized by the

volume of the vicinity.

Nematic order parameter S = (3/2(fli ii) 2 -1/2)
in a vicinity defined as a sphere of radius 3 pm

Local order (ne- around a cell. fi and nij are the orientation vectors
matic order) of cells i and j, respectively. For S = 1, the cells

are perfectly aligned with their neighbors. For S =

0, the cells are randomly oriented [36].

Single cell growth
rate

growth rate

Single cell growth rate dvi/dt of cell i (fixed by
cell tracking) with volume vi as determined by
comparing the cell volume in frame N and N + 1
at times tN and tN+1: Avi/AtN = (Vi,N+1 -
Vi,N)/(tN+1 - tN). Potential bias caused by over-

/under-segmentation and/or cell dispersion/off-
shearing was corrected by setting Vi,N+1 to zero
for cells with no children and setting Vi,N to zero
for cells with no parents. Using this approach,
the global biofilm volume V(t), as determined by
segmentation, matches V(t) = f E Avidt.

Table 4.1: List of calculated single-cell biofilm features. Table adapted from [61].
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a cell at the edge of the biofilm at low flow rate of 0.1 pL/min) that prevents the

disintegration of biofilms from fluid shear acting on ArbmA mutant biofilms. This

assumption is motivated by the experimental findings that increased VPS levels do

not increase the cell-cell attraction (see Supplementary Fig. 11 of [611), yet biofilms

that lack RbmA display a small residual mechanical cohesion (see Fig. 3e of [611),

indicating that VPS does contribute weakly to cell-cell binding. Note that even at

small sizes, the V. cholerae biofilms used in this study produce RbmA and VPS. In

simulations performed at zero shear, the VPS contribution to cell-cell attraction can

be neglected as the Woods-Saxon potential is approximately constant in the bulk of

the biofilm.

The values of the cell-cell potential parameters are obtained by comparing simu-

lations with experiments through feature vectors which show the development of the

biofilm architecture. The feature vector consists of a set of parameters that represent

the phenotype and architecture as fully and accurately as possible. These parameters

include the following averaged single cell parameters: local order, vertical alignment,

radial alignment, cell-cell distance, local density, and cell length and the following

global biofilm parameters: global density, biofilm aspect ratio, and biofilm base cir-

cularity (descriptions of these parameters can be found in Tables 4.1 and 4.2). The

nematic order, vertical alignment, radial alignment, cell-cell distance, and local den-

sity parameters are spatially resolved into the biofilm core (dcenter < max(dcenter)/2)

and the biofilm shell (max(dcenter)/2 < dcenter < max(dcenter)). To capture the time

evolution and logarithic growth of these parameters, biofilms are sampled at 40 log-

Name Parameter Unit Description

Aspect ratio Z/XY - Biofilm height divided by average biofilm base ra-

dius.

Biofilm base circu- Deviation of biofilm cross section from a circle

larity Bcirc - Bcire = 11 - Z/XY. The cross section is a slice of
the biofilm with a xz plane.

Global cell density Pbiofilm pm- 3 Number of cells divided by the volume of the

biofilm's convex hull.

Biofilm volume V pm3  Sum of the volume of all individual cells.

Table 4.2: List of calculated global biofilm features. Table adapted from 1611.
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Normalization range [min - max] I Weight

Nematic order 0 - 0.8 10

Vertical alignment 0.2 - 1.37 rad 10

Radial alignment 0.2 - 1.37 rad 3

Cell-cell distance 0.8 - 2 psm 20

Local density 0 - 0.2 10

Cell length 1 - 3 jm 1

Global density 0 - 0.015 pm 3  5

Biofilm aspect ratio (Z/XY) 0 - 0.8 1

Biofilm base circularity 0 - 0.8 1

Table 4.3: Biofilm parameters and corresponding normalization ranges and weights. Table adapted
from [61].

arithmically spaced cell numbers, ranging from 10 to 300 cells. The different pa-

rameters are normalized by the typical data ranges occurring in the data sets and

weighted according to their relative importance in representing biofilm phenotypes,

as summarized in Table 4.3.

Therefore, these feature vectors (Fig. 4-3) show the temporal variation up to 300

cells of 14 different architechtural properties of the biofilms. For both WT* and

ArbmA biofilms, the nematic order in the core, radial alignment in the core, and

cell length is approximately constant throughout the development. The nematic

order decreases in the shell, indicting a more random configuration among cells and

their neighbors as WT* and ArbmA biofilms grow. The angle between each cell's

major axis and the z axis (biofilm parameter vertical alignment) decreases in the

core and shell for both WT* and ArbmA biofilms, indicating that the number of

vertically aligned cells increases as the biofilm develops, with more vertical cells in

the shell than core at 300 cells. As the biofilm grows, the radial alignment in the

shell increases in both WT* and especially for ArbmA biofilms, which indicates that

the cells in the shell are aligning less with the r. The cell-cell distance decreases for

WT* in the core and shell and increases for ArbmA in the core, in agreement with

the fact that WT* have RbmA proteins linking cells together while ArbmA do not.

In the shell, the cell-cell distance of ArbmA remains constant. The global density

decreases initially and then remains approximately constant for WT* and decreases

continuously for ArbmA biofilms. This indicates that the WT* and especially the
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ArbmA biofilms expand rapidly. The decrease in biofilm base circularity for both the

WT* and ArbmA biofilms indicates that the deviation between their cross sections

and a circle increases as the biofilm develops. The aspect ratio (Z/XY) increases

for both biofilms, implying that the biofilms increase in height more than in width.

Because of the growth, the number of neighboring cells increase for both biofilms

which leads to an increase of the local density in the shell and core. The similarity

between a simulation and an experimental biofilm is assessed in terms of the mean

square distance (MSD) between the two feature vectors.
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Figure 4-3: Characteristic biofilm feature vector for several biofilms of the WT* (red) and the

ArbmA-mutant (blue). The parameters correspond to the ones listed in Table 4.3, where relevant

ones are spatially resolved into the core and shell of the biofilm. Figure from [61].

Repulsive cell-cell potential parameters

The repulsive parameters E0 and A, of the potential U are obtained by comparing

experimental ArbmA biofilms, which lack the attractive potential term (v = 0), with

simulated biofilms, using the MSD of the feature vectors as a metric. The energy

scale of cell-cell interactions Eo is estimated to be within several orders of magnitude

of the energy scale of interactions between the cells and the flow Eflow such that

eflow < E0 5 104 6flow where Eflow = 0.005 x 10- 18 J. Eflow = Fnow - 0.1prm where 0.1 prm
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is the estimated attractive length scale between cells. The Stokes drag force Ffl0 , is

calculated by considering Stokes flow with flow rate 0.1 pL/min in a channel with

the dimensions used the experiments past a sphere with the mean cell volume of 0.4

pm- 3 that is located 2.4 pm above a no-slip boundary, which is the average cell-

cell distance at the biofilm surface. The cell-cell distance in the biofilm core, where

cell-cell repulsion dominates, is around 1 pm. This corresponds to A, = 1.4 for a

representative range parameter of o- = 0.7 pm, which is the value o- would take for

the interaction between two spheres with mean cell volume of 0.4 Pm-3. Therefore,

A, is estimated to be between 0.8 to 2. Simulations resulting from a systematic

variation of co and A, results in a broad minimum of MSD values (Fig. 4-4), with

the corresponding biofilm phenotypes shown in Fig. 4-5, which show that as both Co

and A, increase the cells spread out and become more aligned with their neighbors.

Best-fit simulations (with parameters EO = 10 Eflow = 5 x 10-20 J and A, = 1.65) show

high similarity to experiments (Fig. 4-5).

The joint effects of steric cell-cell repulsion and osmotic pressure-mediated cell-cell

MSD 14 M 60
2

U
1.8

1.6

Ar 1.4
p

1.2

1

0.8
1 10 100 1000

E0 Eflow

120 1019 l-18 101710 10 10~- 10

co (W

Figure 4-4: Parameter scan to test the influence of cell-cell repulsion on the biofilm architechture.
Mean MSD values between feature vectors of ArbmA biofilm experiments (n > 3 biofilms) and
simulations upon variation of cell-cell interaction strength EO and repulsion range Ar. Inset: effect
of parameter variation on the cell-cell interaction potential. Figure from [61].
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Resulting simulated biofilms for different levels of cell-cell repulsion. The figures shows
biofilm renderings corresponding to a range of different values for CO and A,. The color
corresponds to the nematic order. Figure from [611.

repulsion are modeled with a relatively soft Gaussian function. To test if this model

is appropriate, the effect of both contributions to cell-cell repulsion is tested sepa-

rately where a second, short-ranged, and very strongly repulsive Gaussian function is

embedded into the existing potential.

U = OcEi vsterice s eri+ + e +a_+
1 +e a

(4.10)
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The added Gaussian function v'sterice rsteric represents steric repulsion and is peaked

at p = 0 and characterized by Ksteric and Ansteric < Ar- 6o and Ar are fixed to the opti-

mal values obtained by the comparison with the experimental values for the ArbmA

biofilm. The exploration of the parameter space is shown in Fig. 4-6. The additional

term for hard steric repulsion in Eq. (4.10) does not have any influence on the biofilm

phenotype as the MSD values show no variance irrespective of interaction strength

Vsteric and range A,steric. This justifies modeling the effects of hard steric and soft, os-

motic pressure-mediated repulsion in a combined manner, as the longer length scale of

the soft, osmotic pressure-mediated repulsion prevents cells from getting close enough

to interact directly through hard steric repulsion.

1

0.8 80

0.6

0.4 18

0.2

0 0.2 0.4 0.6 0.8 1

vr,steric/ 0

Figure 4-6: Parameter scan to test the influence of hard steric cell-cell repulsion on biofilm phenotype.
The figure shows MSD values upon variation of Ar,steric and vsteric. Owing to its longer length scale,
soft, osmotic pressure-mediated repulsion prevents cells from getting close enough to interact directly
through hard steric repulsion. Figure from [61].

Attractive cell-cell potential parameters

Because the attraction parameters (V, Pa, Aa) in potential U depend on the con-

centration of RbmA, V. cholerae is genetically modified so that the production of

RbmA (and therefore the strength of the attraction) can be tuned, by adding dif-

ferent concentrations of a compound that induces the rbmA-expression construct
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Figure 4-7: Increased RbmA production (achieved by increasing the arabinose concentration) de-
creases the average cell-cell distance in biofilms. Without arabinose, no RbmA is produced and the
biofilm architecture is identical to the ArbmA mutant (n > 3 biofilms). Figure adapted from [611.

homogeneously inside the biofilm: arabinose. Experimentally, increasing arabinose

concentrations resulted in decreased cell-cell spacing (Fig. 4-7), consistent with the

assumption that RbmA mediates cell-cell attraction. The repulsive component (cO,

A,) is fixed based on the ArbmA biofilms. The attraction shift pa is estimated for

each arabinose concentration by considering the typical cell-cell distance at the edge

of biofilms, where attraction dominates, which suggests using values of pa between 2

and 4 (again using - = 0.7 pm). The attraction width Aa is estimated by considering

the standard deviation of cell-cell distances near the edge of biofilms, which was found

U

0.08

0.6 P
a O.4 24

0.2 22
0 206

0 2 18
0.15 2.5 16

0.1 3
S0.05 3.5

Figure 4-8: Parameter scan to test the influence of RbmA-mediated cell-cell attraction on biofilm
phenotype. MSD values for feature vectors of biofilms with arabinose-inducible rbmA expression
grown at 0.5% arabinose and simulations upon variation of cell-cell interaction strength v, and
well width Aa and well position Pa. Inset: effect of parameter variation on the cell-cell interaction
potential. Figure from [611.
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Figure 4-9: Resulting simulated biofilms for different levels of RbmA-mediated cell-cell attraction.

The figure shows biofilm renderings corresponding to selected values of v and pa while keeping Aa

constant at A = 0.16. Each cell is colored according-to the nematic order. Figure from [611.

to be approximately 0.3 pim for all biofilms; therefore, A, is expected to be around

0.4 (again using o = 0.7 pm).

The attractive potential component (v, Pa, Aa) are fitted for a range of differ-

ent arabinose concentrations through comparing the experiments with simulations

conducted with a systematic variation of v, Pa, and Aa using the MSD as a metric.

Figure 4-8 shows the MSD values of the scan for the 0.5% (wt/vol), with the cor-

responding biofilm phenotypes shown in Fig. 4-9. As v increases at constant Pa, the

simulated biofilms become more compact, verifying that as the attractive strength

increases so does the cell-cell attraction. Similarly, as Pa increases at constant v, the
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cell-cell distance decreases in the simulated biofilms, indicating an increase in the cell-

cell attraction force. As the position of the attractive well increases, the attractive

force increases because the repulsive force decreases with increasing distance. For

v -+ 0.2 and pa -i 4.0, the simulated biofilms form star like structures, indicating

that the attraction force is too strong compared to the repulsive force in the cell-cell

potential. The mean of the corresponding v, pa, and Aa of the 5% best matching

simulations with the lowest MSD values for each arabinose concentration are defined

as the best fit (Fig. 4-10). The best-fit parameters for the experimentally observed

WT*-phenotype are v = 0.13, A, = 0.16, and pa = 2.93. A summary of all relevant

simulation parameters is given in Table 4.4.

Attractive well depth Attractive well width Attractive well position
0.25 1 2

0.2 0.8 2.5

0.15 0.6

0.1 0.4

0.05 0.2 0.5 1 3.5

0 1.
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

Arabinose conc. (w/v %) Arabinose conc. (w/v %) Arabinose conc. (w/v %)

Figure 4-10: Fitting of the attractive potential parameters. The graphs show the approximate
position of the MSD minimum in (v, pa, and A. )-space of the 5% best-matching simulations at
increasing arabinose concentrations, corresponding to increasing amounts of secreted RbmA. Each
data point refers to the median position of the minimum and the error bars indicate the lower and
upper quartile. The position of -the WT* is shown in red (solid lines: median values, dashed lines:

lower/upper quartiles). Figure adapted from [61].
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d 0.2775 pm Average half-width of the bacteria from experimental measurements.

7 6130 s Growth time constant (average cell division time of biofilm-associated

I cells obtained from experiments).

m1 Pas Estimate of the dynamic viscosity of the EPS matrix at room temper-
ature [102].

7M 5.23 x 10-6 kg/s Typical drag coefficient for Stokes' drag in EPS matrix (7ym = 67rpmd).

10 Ratio comparing the strength of the bacteria-boundary interaction to
the strength of the bacteria-bacteria interaction E = Ebdy/co

U*dy 1 Non-dimensional boundary potential length scale parameter.

eadd 3.65 Non-dimensional length added to bacteria after division.

Non-dimensional standard deviation of the normal distribution for the
_ _birth size 0'07 daughter bacteria birth size.

100 Concentration parameter for the von Mises-Fisher distribution for the
daughter bacteria division orientation.

Translational time scale due to repulsion in matrix (typical time
rt 8.05 s needed for daughter cells in matrix to reach their equilibrium con-

figurations due to repulsion after cell division).

60 5 x 10-20 J Strength of the repulsive part of the cell-cell potential.

Width of the repulsive part of the cell-cell potential (corresponds to

1.65 1.16 pm at a typical overlap factor of a = 0.7 pm, which is the value
it would take for a sphere with the typical mean cell volume of 0.4
pm3).

S0.13 (WT*) Strength of the attractive part of the cell-cell potential (corresponds
to 0.65 -10-20 j).

A, 0.16 (WT*) Well-width of the attractive part of the cell-cell potential (corresponds
to 0.11 pm at a typical overlap factor of a = 0.7 pm).

P a 2.93 (WT*) Position of the attractive part of the cell-cell potential (corresponds to
2.0 pm at a typical overlap factor of o = 0.7 pm).

Table 4.4: Key simulation parameters. The parameters Eo, Ar, V, Aa, Pa, are determined by fitting as
described above. Table adapted from [61].

4.3 Results

For two aligned cells, the cell-cell interaction range for the best-fit U for the ArbmA

(Fig. 4-11) and WT*. (Fig. 4-12) biofilms acts within the range of the experimentally

determined average cell-cell distance (dashed cell). An effective arabinose concentra-

tion for the WT* is inferred by locating the WT* biofilm architecture in the (V, Aa,

Pa) space along the curve of different arabinose concentrations [Fig. 4-13(a)]. The

simulations based on the WT* parameters for biofilms up to 300 cells show good
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qualitative [Fig. 4-13(b)] and quantitative [Fig. 4-13(c)] agreement with experiments.

Predictions of the architectural development for larger biofilms (Nces > 300) show

high quantitative and qualitative agreement with experimental data, for both the

WT* and the ArbmA biofilms up to 10' cells (Fig. 4-14).

4.3.1 Cell-cell translational forces and rotational dynamics

Cell-cell interaction inside ArbmA mutant biofilms lacking cell-cell adhesion are mod-

eled by a repulsive interaction potential, for which the best-fit U results in the transla-

tional forces and rotational dynamics shown in Fig. 4-11. As shown in Fig. 4-11(a), U

(with best-fit parameters fo = 5 x 10- 20 J, A, - 1.65, and v = 0) results in a repulsive

(blue) region of translational forces around the cell, capturing the combined effects of

hard steric and osmotic repulsion. With cell a (solid cell) held in place, the best-fit

repulsive U results in the rotation of cell f (dashed cell) such that contact between

the cells is minimized [Fig. 4-11(b)]. The interaction range for two aligned cells is very

close to the experimentally observed average cell-cell spacing of the ArbmA mutant

(dashed cells).

For biofilms with cell-cell adhesion, cell-cell interactions are modeled with an at-

tractive and repulsive interaction potential, for which the best-fit U of a particular

(a) 2 F(pN) -0.1 0.5 2 2 Idn/dtl (s-) -0.01 (KE') 0.01 2

0 0
2-2 -2

2 20
-2-2 -2 -2

-2 -10 1 2 -2 0 2 -2 -1 0 1 2 -2 0 2

x (pm) x(PM) x(pm) (PM)

Figure 4-11: Cell-cell interactions of various cell-cell orientations for the ArbmA biofilm, which
are modeled by a repulsive interaction potential. The best-fit U for these biofilms has interaction
parameters co = 0Eflw(5 x 10 2 0J, A, = 1.65, and v = 0. (a) Translational cell-cell interaction
forces (red, attractive; blue, repulsive). (b) Rotational cell-cell interaction dynamics of cell 3 (dashed
cell), Idfi/dtl= I(I - fi T)(- aU/Og)1, in the case where cell a (solid cell) is held in place (red,
clockwise rotation; blue, anticlockwise rotation). The dashed cells are plotted at the average cell-cell
distance obtained from the ArbmA experiments. Figure adapted from [61].

80



(a) 2 F (pN) -0.1 0.5 2 (b) 2 Idn/dtl (sI) -0.01(KU') 0.01 2
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Figure 4-12: Cell-cell interactions of various cell-cell orientations for a particular level of cell-cell

adhesion (0.5% arabinose), which are modeled by an attractive and repulsive interaction potential.

The best-fit U for these biofilms has interaction parameters Eo = 1OEflOw(5 x 10- 20J, A, = 1.65,
V = 0.1, A, = 0.16, and p, = 2.75. (a) Translational cell-cell interaction forces (red, attractive;

blue, repulsive). (b) Rotational cell-cell interaction dynamics of cell 3 (dashed cell), Idni/dtl =

(I - fn#ftn)(-f7 oU/fip)I, in the case where cell a (solid cell) is held in place (red, clockwise

rotation; blue, anticlockwise rotation). RbmA-mediated cell-cell adhesion gives rise to an attractive

part (red), acting within the range of experimentally determined average cell-cell distance (dashed

cell). Figure adapted from [611.

level of cell-cell adhesion (0.5% arabinose) results in the translational forces and ro-

tational dyanmics shown in Fig. 4-12. U (with best-fit parameters 60 = 5 x 10- 2 0j,

Ar = 1.65, v = 0.1, Aa = 0.16, and pa = 2.75) results in translational forces around

the cell with a repulsive (blue) region, capturing the combined effects of hard steric

and osmotic repulsion, and an attractive (red) region, capturing the RbmA-mediated

cell-cell adhesion [Fig. 4-12(a)]. With cell a (solid cell) held in place, the best-fit U

results in a repulsive region where cell 0 (dashed cell) rotates away from cell a such

that the contact between the cells is minimized and an attractive region where cell #

rotates toward cell a [Fig. 4-12(b)]. The attractive part of the best-fit U acts within

the range of the experimentally determined average cell-cell distance (dashed cell) for

aligned cells.

4.3.2 Fitting the WT*

With the calibrated simulation, an effective arabinose concentration for the WT* of

c = 0.68 0.19% (wt/vol) is inferred by locating the WT* biofilm architecture in

the (v, Aa, pa) space along the curve of different arabinose concentrations [Fig. 4-

13(a)]. Extracting an effective arabinose concentration and RbmA level for the WT*
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is based on the simplifying assumption that all cells in the biofilms express the same

levels of the key matrix components, which represents a minimal model that is in

quantitative agreement with the experimental data, as the best-fit (V, Aa, Pa) values

for the WT* are close to the effective (v, Aa, Pa) values for the WT* on the curve

of different arabinose concentrations [Fig. 4-13(a)]. The simulations based on the

WT* parameters for biofilms up to 300 cells show good quantitative agreement with

experiments [Fig. 4-13(c)]. Remarkably, these simulations also show architechtural

properties that were not included in the feature vector used for MSD minimization,

such as local density variations and the occurrence of patches of highly aligned cells

inside the biofilm (red cells in Fig. 4-13(b), characterized by high local ordering),

which are characteristic for biofilms with high concentrations of RbmA.

(a) (b) Simulation Experiment

FArabinose-inducible mutant
"WT* (effective)
"WT* (best fit)

0.8 %(ArbMA) 0.05% 3 e s 295 cells M

0.6 oil%
a 0.4 5% c= 0.68 019 % (C) Cell-cell distance Local density

22 Experiment (1) 0 (100 pm 3 ) Nematic order

0.2 2a.52 (.10.5

0.2 1
0.0

.5 .8Se 2 0.1 0.5A

Cell-cell distance (pm)1 0 0
Biofilm 10 50 300 10 50 300 10 50 300

Ncells Ncenis Ncells

Figure 4-13: (a) Best-fit simulation parameters for varying RbmA and arabinose concentrations
(black dots) follow a line in (v, Aa, pa) parameter space and cross isosurfaces of average cell-cell
distance (see color bar and compare with Fig. 4-7; see Fig. 4-10 for more details about the fitting).
The RbmA level of the WT* biofilms is inferred in terms of an effective arabinose concentration
by locating the WT* along the line of different arabinose concentrations (blue point), which is very
close to the best fit of the WT* (red point). (b) Simulated (best fit) versus experimental WT*
biofilm. (c) Comparison of biofilm architectural properties for the WT* experiment (blue) and the
WT* simulation prediction (yellow). The architectural properties are spatially resolved for the core
(top row) and shell (bottom row) of the biofilm (experiment, n = 7; simulation, n = 10). Figure
adapted from [61].
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4.3.3 Prediction of larger biofilms

The cell-cell interaction potential is calibrated based on biofilms growing to 300 cells

(Sec. 4.2.2). To test the ability of the calibrated simulations to predict the structure of

biofilms with more than 300 cells, a feature vector containing the same parameters as

the ones used in Sec. 4.2.2 is used. The MSD between the experimental and simulation

feature vectors is calculated for biofilms sampled at 40 intermediate logarithmically

spaced cell numbers from 10 to 300 and from 300 to 1000, separately for each chosen

number of cells (in contrast to Sec. 4.2.2 where a single MSD between temporal feature

vectors is calculated), and is normalized by the average value of the MSD between

10 and 300 cells. Predictions of the architectural development for larger biofilms

(Nceis > 300) show high quantitative and qualitative agreement with experimental

data, for both the WT* and the ArbmA biofilms up to 10' cells (Fig. 4-14). These

results indicate the remarkable ability of the potential-based simulations calibrated on

biofilm development up to 300 cells to predict the development of larger biofilms. To

achieve accurate simulation results for very large biofilms (> 10' cells), spatiotemporal

heterogeneity in gene expression, matrix composition, and growth rates probably have

to be included in future simulations. The combined experimental and theoretical

(a) Wr* (b) ArbmA
- xjirMenrnSiMUlre 6 SimD"IOn

1.0

Q3
T Calibrated

2 - P+Fd[f ted

10 100 1000 10 100 1000
N cells Nells

Figure 4-14: Predicting phenotypes of larger biofilms. (a) Rendered WT* experimental (left) and
simulated biofilm (right) for approximately 1000 cells. Bottom: normalized MSD of feature vectors
for experimental (n = 7) and simulated biofilms (n = 3). (b) Rendered ArbmA experimental (left)
and simulated biofilm (right) for approximately 1000 cells. Bottom: normalized MSD of feature
vectors for experimental (n = 4) and simulated biofilms (n = 3). Error bars are calculated by
Gaussian error propagation of the standard deviations of the individual measurements. Figure
adapted from [61].
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analysis therefore suggests that mechanical interactions between cells suffice to ac-

count for the internal cellular order and architecture up to mid-size V. cholerae

biofilms.
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Chapter 5

Bacterial surface accumulation

In the vicinity of surfaces, the behavior of swimming bacteria can change dramat-

ically.1 In contrast to their approximately straight-line locomotion in bulk fluids,

non-tumbling flagellated bacteria typically follow circular trajectories near surfaces,

often for an extended period of time [49]. Furthermore, several wild-type peritrichous

bacterial strains have been found to exhibit longer run times and smaller mean tum-

bling angles at the surface compared to their bulk run and tumbles [951. Exploiting

cell-surface interactions, recent studies demonstrated that bacteria can be concen-

trated by funnel walls [51], drive asymmetric microgears [30, 121], and self-organize

into collective vortices 198, 142]. A well-known consequence of bacteria-surface inter-

actions is the accumulation of cells near solid surfaces: Local concentration values for

both non-tumbling and tumbling strains near a flat surface can exceed the correspond-

ing bulk concentrations by a factor of 5 or more 17, 83, 84, 95]. Such accumulation

increases the possibility cell-surface attachment, facilitating undesirable secondary

effects like biofouling and biofilm formation [22, 136].

Over the past two decades, much progress has been made in designing antifoul-

ing surfaces based on chemical surface modification [2, 97, 110]. Common surface

treatments include released-based coatings in which a biocidal agent (e.g. silver ions,

antibiotics, or quaternary ammonium compounds) is released into the environment,

1The results of Chapter 5 appear in preprint: Rachel Mok, J6rn Dunkel, and Vasily Kantsler.
Geometric control of bacterial surface accumulation. arXiv preprint arXiv:1903.00926, 2019.
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hydrophilic polymer coatings, and self-assembled monolayers. However, the antifoul-

ing properties of these surface treatments are often temporary because of the depletion

of the biocidal substance within the coating or the masking of the coating's chem-

ical functionality by the absorption of biomolecules from the surrounding environ-

ment [2, 97, 1101. Further, chemical surface treatments can leach into and have toxic

effects on the local ecosystem and have led to the rise of antibiotic- and silver-resistant

bacterial strains [2, 110]. Thus, chemical surface modifications alone are unlikely to

provide long-term solutions to the antifouling problem. An interesting alternative ap-

proach, inspired by the Nepenthes pitcher plant, utilizes a lubricant-infused coating

that results in a slippery surface 142, 1431. Another nontoxic, persistent solution may

be the manipulation of the surface topology to deter bacterial adhesion. Important

previous studies of bacterial adhesion on various 2D polydimethylsiloxane (PDMS)

patterned surfaces have explored nanoscale tall spatially organized designs [104], a

shark skin inspired micrometer high diamond pattern [161, and a nested hierarchically

wrinkled surface topography with length scales spanning from tens of nanometers to

a fraction of a millimeter [40]. Yet, many aspects of the interplay between complex

surface geometries and cell accumulation are not yet well understood.

To contribute to a more detailed understanding, experiments (Sec. 5.1) and simu-

lations (Sec. 5.2) are performed to investigate the effects of locally varying boundary

curvature on the scattering and accumulation dynamics of swimming Escherichia

coli bacteria in quasi-2D microfluidic chambers (Fig. 5-1). To explore the effects of

partially convex and concave boundary geometries on the spatial cell distributions,

the experiments are complemented with simulations of 2D particle-based models for

both Brownian Dynamics (BD) and Run and Tumble (RT) dynamics. The analysis

confirms that a minimal steric interaction model [83, 84] suffices to account for the

main aspects of the experimental data (Sec. 5.3). Both experimentally observed and

simulated cell trajectories illustrate that the non-convex boundary features redirect

the bacteria away from the surfaces (Fig. 5-1). Throughout, data from experiments

and simulations are analyzed using the same algorithms to compare the observed

and predicted surface accumulation (Fig. 5-2). Scanning a range of geometric surface

86



parameters, an optimal curvature is determined that minimizes the bacterial accumu-

lation for a sinusoidal boundary geometry (Fig. 5-3). Furthermore, a strictly concave

periodic base geometry is shown to decrease the average cell accumulation near the

boundary by more than 50% relative to a flat surface (Figs. 5-4 and 5-5).

5.1 Experiments

Thin microfluidic chambers (4 mm long, 2 mm wide, 3-4 pm thick) were produced

by standard soft lithography technique from PDMS (Dow Corning), resulting in a

quasi-2D environment. 2 For the sinusoidal geometries [Fig. 5-1(b)], the top and bot-

tom boundaries of each chamber are designed as +Asin(27rx/A), and 20 different

parameter combinations are investigated with amplitudes A [1.75, 3.5, 5.25, 7] Pm

and wavelengths A = [21, 28, 35, 42, 49] /Im. The boundaries for the concave semicir-

cle geometry [Fig. 5-1(c)] are designed with radius R = 12 Atm. To ensure the cell

dynamics and statistics are not biased by reflections from the opposing boundary, a

large boundary separation distance of 2 mm is chosen. After a 40 s exposure to oxygen

plasma (Harrick Plasma, PDC-002) the PDMS chambers were bonded to the glass

coverslips initially cleaned in hydrogen peroxide. Dilute suspensions (approximately

108 cells/mL) of non-chemotactic E. coli cells (strain HCB1733, provided by Howard

C. Berg) carrying the pYFP plasmid (Clontech, BD Biosciences), which were washed

with 0.1% bovine serum albumin to prevent bacterial adhesion, are loaded into the mi-

crofluidic chambers. The device inlets are sealed with unpolymerised PDMS to avoid

background fluid flow. The bacteria motion is measured using a Nikon TE2000U

inverted microscope with a 40x oil immersion objective (NA 1.3) at 10 frames per

second (Evolve Delta. Photometrics) or LSM 510 Zeiss Axiovert 200 M at 3 frames

per second (fps). Single-cell trajectory data are reconstructed using a custom Matlab

particle tracking script.

2The experiments and data analysis were performed by Vasily Kantsler.
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5.2 Simulations

To test whether steric surface collisions can account for the experimentally observed

cell distributions, 2D particle-based simulations are performed. Focusing on minimal

models, hydrodynamic effects 183, 84] are neglected because the small chamber thick-

ness in the experiments strongly suppresses hydrodynamic flows. Similarly, steric

cell-cell interactions can be ignored as only dilute bacterial suspensions are consid-

ered throughout. The bacteria are modeled as non-interacting ellipsoids of half-length

f and half-width d, described by their position x(t) and orientation n-(t). Cells are

assumed to move at a constant self-propulsion speed v in the direction of their ori-

entation n. An effective steric boundary potential Ubdy is used to encode bacterial

surface interactions across various geometries. Bacteria in the experiments display

occasional stochastic reorientation as they swim [35]. To account for this, simulations

for both BD and RT reorientation are performed and compared. In the BD model,

bacteria are reoriented through Gaussian rotational noise. In the RT model, a cell

moves deterministically for a fixed period of time (run stage) before undergoing a

stochastic reorientation event (tumble stage).

5.2.1 Brownian Dynamics (BD)

Denoting the d-dimensional unit matrix by I, the over-damped Langevin equations

for a single bacterium with position x(t) and orientation fi(t) in the BD model are

dx = (Vf - I'-VXUbdy)dt (5.1a)

dn = (I - nT) ((1 - d)Dn - G- 1 VfiUbdy) dt + V/2DR(I - nnT) - dZ (5.1b)

Here, v is the self-swimming speed, DR the rotational diffusion coefficient, and Z is

a d-dimensional Gaussian random variable of zero mean and variance dt. Note, use

has been made of the fact that ~1- - 1 [compare Eq. 2.56]. The boundary potential
-yosre.

Ubdy, Eq. (2.7), used for the cell-surface interactions is described in Sec. 2.2. The
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friction tensor

yo [-Y1 (nnT ) + dL -InnT)] (5.2)

accounts for the fact that the bacteria experience more drag when moving perpendic-

ular to their orientation. Rotational drag is approximated as isotropic,

Q = WOyRI. (5.3)

-yo and wo = kBT/DR are the Stokesian translational and rotational friction coeffi-

cients, respectively. kB is the Boltzmann constant, and T is the temperature. -i|, 7i,

and -y are dimensionless geometric parameters characterizing the longitudinal, trans-

verse, and rotational friction parameters of elongated particles that depend only on

the aspect ratio a = f/d. The expressions given in [130] for rod-like macromolecules

Eqs. (2.62) are used.

Adopting cell length f and T = f/v as characteristic length and time scales and

defining the following P6clet numbers PT v-eyo/kBT and PR = v/DRC, Eq. (5.1) is

recast in nondimensional form. Denoting dimensionless quantities with a superscript

* results in

* _ (i_ Cbdy 1T 1 I lT

dx* = -b )- V(* dt* (5.4a)

L'YiTi fb i T)]

dfi = (I - nT) (1 - d) n - - dt* + t* nn dZ
PR kB R fR U dt + R

(5.4b)

where Cbdy characterizes the strength of the bacteria-boundary potential interaction.

5.2.2 Run and Tumble (RT)

During the run stage of the RT model, which lasts a duration run, the deterministic

motion of a cell is governed by Eq. (5.1) with DR = 0. Rescaling to a dimensionless

form using the same characteristic length and time scales as before, the run motion
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is described by

dx* = n - L (nnT) 1 I- T)1 Vx* U*dy dt* (55a)
kBT -1 1

^T bdy11dfi = (I -innT) - dt* (5.5b)
kBTP R UbyRd

where the rotational Peclet number due to tumbling is now determined as follows: At

the end of Trun, the bacterium undergoes a tumbling event. Let 0 be the angle between

the previous orientation and new orientation after a tumble. 0 is drawn from a von

Mises-Fisher (vMF) distribution with the mean angle equal to the original bacterial

orientation and concentration parameter K (see Appendix A for more details about

the vMF distrbution). To relate , to experimental values, note that for weakly

tumbling cells > 1. In this case, the mean squared angular change per tumble is

(02) = DRTrun ' 1/K, yielding the effective rotational P6clet number PR = V/(Re)-

5.2.3 Implementation

Mirror-symmetric confinements parallel to the y = 0 line are considered, with the

surfaces defined as sy = f (s:) with f_(s.) = -f+(sz). S = (s., s.) denotes a point

on the surface. The distance, d, of a bacterium at position x = (X, y) from a surface

f is given by the function

d(sX) = [(X - sx)2 + (y - (sx))2] (5.6)

where the numerical prefactor 1/2 was chosen for convenience. To find the point on

the surface closest to the bacterium, the following equation

S= sX - X + (SY - y)* = 0 (5.7)

is solved numerically with the bisection method. The second derivative is used to

confirm that the surface point found results in a minimum distance. The boundary

surface equations for the flat, sinusoidal, and semicircle surfaces used in the simula-
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tions are

sy4= C (5.8)

sy = A sin ( s + C (5.9)

sy = R2{-- cos cos sx) - R } C (5.10)

C = 1000 pm is the displacement from the y = 0 line for all geometries. Because

there is a discontinuity in the derivative of the semicircle geometry at the peaks

(sX = 2Rn for n = 0, 1, 2, ... ), the boundary potential is neglected for a region of scale

~ r at the peaks for bacteria that are not vertical and the peaks are treated as a

flat boundary for bacteria that are vertical to prevent the cells from penetrating the

surface.

In the simulations, new positions and orientations of the bacteria are obtained

from solving the dimensionless over-damped translation and orientation equations for

the BD and RT models, Eqs. (5.4) and (5.5) at each time step. Cells are initially

loaded uniformly within the computational domain with random orientations and

with random start run times for the RT model. Periodic boundary conditions are

applied in the x-direction. Measurements are taken after the simulations had relaxed

to a statistical steady-state with constant (y2 )

5.2.4 Parameters

The bacteria are modelled as 1 pm in width and 7 pm in length, accounting for the

flagella in addition to cell body length. It is known that E. coli move at a speed of

approximately 20 pm/s 135], and the run time is typically 1 s [5, 132]. Simulation

scans were performed to find Ebdy and DR that resulted in surface accumulations that

best matched with the experiments for the sinusoidal surface. For the BD model, we

found Ebdy = 175 kBT and DR = 0.08 rad2 /s, and for the RT model Ebdy = 1500 kBT

and )R = 0.1 rad2 /s. The fitted near-surface DR values for both models are of the

same order of magnitude as the measured bulk DR = 0.057 rad2 /s for non-tumbling

E. coli [351. For both models Ebdy > kBT, indicating that the boundary potential is
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highly repulsive. The large Ebdy is required to prevent the bacteria from penetrating

the boundary as the models do not account for the reduction in swimming speed

as the cells approach the surface.

sinusoidal surface are also used for

summary of all relevant simulation

Parameter BD RT

The fitted 'Eby and DR values obtained for the

simulations of the flat and semicircle surfaces. A

parameters is given in Table 5.1.

Description

3.5 prm 3.5 pm Bacteria half-length
d 0.5 pm 0.5 pam Bacteria half-width
v 20 pm/s 20 pm/s Self-propulsion speed

Ebdy 175 kBT 1500 kBT Boundary potential strength parameter
Ubdy 0.5 pum 0.5 Mm Boundary potential scale parameter

DR DR 0.08 rad2 /s 0.1 rad 2/s Rotational diffusion coefficient

PT 0.0014 0.0014 Translational P6clet number
Trun - 1 s Run time

I 10 Concentration parameter for
Fisher distribution

von Mises-

Table 5.1: Summary of bacterial surface accumulation simulation parameters. Table from t94].

5.3 Results

For the experiments and simulations, the cell trajectories (Fig. 5-1) of the flat, sinu-

soidal, and semicircle geometries are segmented (Fig. 5-2) to quantify -the bacterial

accumulation. To identify optimal sinusoidal surfaces for the reduction of bacterial

surface accumulation, a scan is performed over a range of amplitudes and wavelengths

(Fig. 5-3). The cell distributions of the optimal sinusoidal and semicircle surfaces are

quantified and compared, with the semicircle geometry proving to be the most efficient

at reducing bacterial accumulation (Figs. 5-4 and 5-5).

5.3.1 Tracking data

The simulated particle trajectories agree well with the experimental cell trajectories

(Fig. 5-1). In the flat geometry, bacteria collide and align with the surface 183, 841,

contributing to surface accumulation in the experiments and simulations. Comparing
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Figure 5-1: Typical trajectories of swimming cells for flat, sinusoidal, and semicircle surface geome-
tries as observed in experiment and simulations. The start and end of each trajectory are indicated
by the yellow and red circle, respectively. Each trajectory is 10 s long. Bacteria align with the surface
in the flat geometry leading to significant surface accumulation for the experiment and simulation
models. The sinusoidal (A = 5.25 pm, A = 28 pmi) and concave semicircle (R = 12 pm) surface
geometries redirect the bacteria away from the surface in the experiments and simulations. Scale
bars 10 pm. Figure from [94].

Figs. 5-1(d) and 5-1(g), we note bacterial residence time at the surface appears shorter

in the BD model than the RT model due to the orientation noise. Because of the non-

convex features present in both the sinusoidal and semicircle geometries, the bacteria

are redirected away from the surface in both the experiment and simulations, leading

to a reduction in surface accumulation. The segmented raw data is normalized to

the same frame rate for both the experiment and simulations (Fig. 5-2). Thus, the

same analysis algorithms are used to examine the experimental and simulation data.

The experimental raw data Figs. 5-2(a)-5-2(c) exhibit higher curvature than the

simulation raw data, likely caused by hydrodynamic effects from the chamber walls,

which are not accounted for in the simulations.
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Figure 5-2: Segmented raw data for the experiment and simulations, used in the statistical analysis.
The segmented trajectories are acquired at 10 fps. The experimental raw data exhibit higher curva-
ture than the simulation raw data likely due to hydrodynamic effects, which are not accounted for
in the simulations. Scale bar 10 pm. Figure from [94].

5.3.2 Optimal sinusoidal boundaries

To determine optimal sinusoidal boundary geometries, a parameter scan over a range

of amplitudes A and wavelengths A is performed. The cell accumulation at the sur-

face is measured in each case [Fig. 5-3(a)]. The bacterial surface concentration is

determined from the number of cells between the surface boundary and the boundary

contour shifted 5 microns away from the surface (grey regions in Fig. 5-4). The bulk

concentration is the number of bacteria in a congruent area 50 Pm away from the

boundary (blue regions in Fig. 5-4). Accumulation is quantified as the ratio of the

surface concentration over the bulk concentration. Figures 5-3(a)-5-3(c) illustrate

the resulting mean surface accumulation of the scan. The location and size of the

grey circles in Figs. 5-3(a)-5-3(c) designate the 20 combinations (A, A) and the stan-

dard deviation, respectively. In Fig. 5-3(a), the white numbers indicate the number

of experiments performed per point. Three simulations were performed for the same
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Figure 5-3: Mean bacteria surface accumulation for the sinusoidal surface over a range of amplitudes
A and wavelengths A. Accumulation at the surface is measured by comparing the number of bacteria
within 5 pm from the surface to the number of bacteria in the same area 50 Am away from the
surface (Fig. 5-4). (a) The location of the circles indicate the 20 combinations (A, A) of the scan,
and the size of the circle represents the standard deviation of each point. The white numbers
indicate the number of experiments per point. (b, c) 3 simulations were performed for the same
pairs (A, A) as in the experiments and bilinearly interpolated. The BD and RT simulations agree
qualitatively with experiment, revealing an optimum max curvature that reduces accumulation.
The set of parameters corresponding to the optimum curvature k* is delineated by the white curve
A = (k*/47r2)A 2 where k* = 0.31 pm'. Typical images for the BD and RT simulations are shown
in (d) and (e), respectively, for A = 7 jm, A = 21 jm (circle), A = 5.25 jm, A = 28 jm (square),
and A = 1.75 jm, A = 49 jm (triangle). Scale bars 10 jm. Figure from [941.

20 combinations (A, A) as in the experiment for Figs. 5-3(b)-5-3(c).

As evidenced by the mean surface accumulation, both the BD and RT models

agree qualitatively with the experiment. Typical still images from the simulations

are shown in Figs. 5-3(d)-5-3(e) for A = 7 pm, A = 21 Mm (circle), A = 5.25 /Lm,

A = 28 Mrm (square), and A = 1.75 pm, A = 49 pim (triangle). Due to the steep

curvature of the sinusoidal boundary at A = 7 pum, A = 21 Am, the cells become

trapped in the surface pockets, leading to increased accumulation. The BD and

especially the RT model can also capture the high accumulation at A = 1.75 /Lm,

A = 49 pm. Here, the surface is nearly flat and does not deflect the bacteria away

from the surface, resulting in high accumulation. Quantitative differences between
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the experiment and simulations can likely be attributed to hydrodynamic effects. The

low-accumulation region in both the experiment and simulations suggests that there

exists an optimal curvature for suppressing bacterial accumulation. Characterizing

this effect in terms of the maximal local curvature k* of the sine wave, we find the

relation

A = (k*/47r 2)A 2  (5.11)

After smoothing the experimental values with bilinear interpolation, all the points

that are within 15% of the minimum accumulation are fitted to Eq. (5.11), resulting

in the optimal maximal curvature k* = 0.31 pm-. This is plotted as the white curve

in Figs. 5-3(a)-5-3(c).

5.3.3 Sinusoidal vs. concave geometries

Previous work has shown that bacteria can be trapped by convex walls 11191. This

suggests that surface accumulation could be suppressed even further by replacing the

sinusoidal boundaries with strictly concave structures. To test this hypothesis, the

strictly non-convex semicircle geometry (R = 12 pum) seen in Fig. 5-1(c) are created.

To compare this semicircle surface with the flat and the optimal sinusoidal (A = 5.25

pm, A = 28 pm) surfaces, the segmented bacteria trajectories (acquired at 10 fps

for 5 min) are projected onto one wavelength. The flat surface is set to have the

same wavelength as the semicircle geometry. Because the bacterial concentration is

different for the three surfaces, the raw data is normalized by using Bernoulli sampling

to ensure the bulk density, defined as the density 50 pim away from boundary, is the

same in each case. Samples of the resulting normalized data in Fig. 5-4 illustrate the

distribution of cells for the three surfaces for the experiment and simulations. The

total cell numbers differ between the three geometries reflecting the differences in the

surface entrapment. After contact with the sinusoidal and semicircle geometries, the

bacteria leave the surface at a particular angle, as evidenced by the inward streaks in

Figs. 5-4(b)-5-4(c). This behavior is more clearly reproduced in the RT simulations

than the BD simulations. Above the boundaries, there are depletion zones for the
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Figure 5-4: Sampled raw data and accumulation histograms for the flat, sinusoidal (A = 5.25
pm, A = 28 jm), and concave semicircle (R = 12 jm) surface geometries for the experiment and
simulations. To visualize the spatial cell distributions, the raw data, acquired at 10 fps for 5 min,
were projected onto a single wavelength (the flat surface is assumed to have the same wavelength
as the semicircle surface) and sampled such that the bulk density is the same in all cases (a) -
(c), (e) - (g), and (i) - (k). Both the experiments and simulations qualitatively show a depletion
zone above the boundary for the sinusoidal and semicircle geometries. Due to the differences in
the surface accumulation, the total cell numbers differ for the three geometries. The accumulation
histograms (d), (h), and (1) quantify this effect, with accumulation defined is the ratio of the number
of bacteria in each surface bin area (grey region for first bin) to the number of bacteria in a congruent
area 50 pm away from the surface (blue region). The results are independent of the shape of the
bulk reference area (see Fig. 5-5). Histograms (d), (h) and (1) were computed from 20 independent
subsamples of the raw data. The black dashed line indicates the bulk accumulation value of 1.
The accumulation histograms show that the concave semicircle geometry is the most efficient at
suppressing accumulation in the experiment and simulations. Bin width 5 jm. Scale bars 5 Am.
Figure from 1941.
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sinusoidal and, more prominently, the semicircle geometry. The fact that these deple-

tion zones are also reproduced by the simulations suggests that they arise from the

scattering dynamics and not by hydrodynamic effects. The accumulation histograms

in Figs. 5-4(d), 5-4(h), and 5-4(1) quantify and compare the bacterial distribution,

where the solid line and shaded regions represent the mean and standard deviation

of the accumulation ratio for 20 independent subsamples of the raw data.

As before, accumulation is defined as the number of bacteria in the each bin area

(grey region for the first bin near the surface) divided by the number of bacteria

in the bulk area (blue region), which is 50 pm away from the surface. Each bin is

5 /um wide and follows the boundary contour. The results are independent of the

shape taken for the bulk area (Fig. 5-5). The black dashed line at height 1 indicates

the bulk reference value. As evident from Fig. 5-4(d), both the flat geometry (blue

line) and the partially convex sinusoidal geometry (red line) lead to cell accumulation

above the bulk level up to 30 pm from the surface, although this effect is substantially

weaker for the sinusoidal geometry. By contrast, except very close to the surface, the

distribution of cells for the semicircle geometry (green line) is at the bulk level. Close

to the surface, the semicircle geometry decreases the average cell concentration by

70% relative to a flat surface. Thus, the concave semicircle geometry is the most

efficient at suppressing accumulation, in agreement with the predictions from the BD

and RT models.

Compared to the RT model, the cells in the BD model leave the surface more

easily. This can be seen in the histogram curves for the flat geometries (blue lines),

which show good agreement between the BD model and experiment, whereas the RT

model overestimates the accumulation in the first bin [Fig. 5-5(1)]. Yet, the RT model

performs slightly better at replicating the trajectories of the cells after contact with

curved surfaces than the BD model [Figs. 5-4(c), 5-4(g), and 5-4(k)]. Thus, bacterial

reorientation in the experiments is likely a combination of BD and RT. While the

BD and RT underestimate the accumulation for the sinusoidal geometry, they both

agree well with experiment for the semicircle geometry, suggesting that near-field

hydrodynamics could play a larger role in the bacterial surface entrapment for flat
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and convex geometries than for concave geometries.
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Figure 5-5: Sampled raw data and surface accumulation bar graphs for the flat, sinusoidal (A = 5.25
pm, A = 28 pm), and semicircle (R = 12 pm) surface geometries for the experiment and simulations.
To visualize the spatial cell distributions, the raw data, acquired at 10 fps for 5 min, were projected
onto a single wavelength (the flat surface is assumed to have the same wavelength as the semicircle
surface) and sampled such that the bulk density is the same in all cases (a) - (c), (e) - (g), and (i)
- (k). Due to the differences in the surface accumulation, the total cell numbers differ for the three
geometries. Accumulation is defined as the ratio of the number of bacteria in each surface bin area
(grey regions) to the number of bacteria in an equally sized area 50 pm away from the surface. Two
shapes of equal area are considered for the bulk area: a shape which follows the surface contour
(blue) and a rectangle (green). For each geometry in (d), (h), and (1), the blue and green bar show
the mean surface accumulation calculated with the surface contour and rectangle as the bulk area,
respectively, for 20 independent subsamples of the raw data. The error bars represent the standard
deviation. The blue and green bars are nearly equal for each case, demonstrating that the surface
accumulation estimation is independent of the shape taken for the bulk reference area. Bin width
5 jim. Scale bars 5 im. Figure from [94].
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Chapter 6

Concluding remarks

In this thesis, a mechanistic individual-based model for collective bacteria dynamics

is introduced (Chapter 2). This model accounts for biophysical processes such as

bacteria growth and division, bacteria self-propulsion, viscous drag, bacteria-surface

interactions, and bacteria-bacteria interactions. Specifically, this model utilizes in-

teraction potentials to capture the physical cell-surface and cell-cell interactions. In

particular, cell-surface interactions are captured by a repulsive potential, which mod-

els the steric interactions between bacteria and a surface. Cell-cell interactions are

encoded in a repulsive and attractive potential, which accounts for hard steric and

osmotic repulsion and cell-cell attraction through secreted components. A highly

parallel version of this model is implemented on GPUs, achieving a 10x speedup

compared to the CPU code and allowing for O(N) scaling. This code is used to in-

vestigate a diverse range of bacterial systems. Here, simulations, which are validated

by single-cell experimental data, are performed to determine the relevant forces and

interactions that determine the dynamics in bacterial swarming, biofilm formation,

and bacterial surface accumulation.

Chapter 3 describes an novel adaptive microscopy approach which allowed for the

single-cell imaging of swarm dynamics spanning five orders of magnitude in space and

six orders of magnitude in time. Because cell proliferation and swarming are both

far-from equilibrium biophysical processes, the absence of fundamental conservation

laws makes it difficult to identify and characterize qualitatively distinct dynamical
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phases with conventional equilibrium-thermodynamic approaches. To overcome this

conceptual challenge, experiments are combined with particle-based active matter

modeling with machine learning to identify and characterize the spatiotemporal evo-

lution of three pure and two coexistence phases during swarm development. This

integrated approach suggests that steric interactions and motility are sufficient for

explaining the observed dynamics within each phase, which enables a unified concep-

tual understanding of the emergent multiscale behavioral complexity in swarms in

terms of basic biophysical parameters.

Chapter 4 describes the combined experimental and theoretical analysis which

showed that the emergence of local nematic order in growing V. cholerae biofilms can

be captured by an experimentally constrained effective cell-cell interaction poten-

tial that translates molecular mechanisms into force parameters. Given the immense

complexity of the molecular interactions, metabolism, and signaling that occur be-

tween cells, the availability of an experimentally validated potential-based description

of biofilm development presents a significant conceptual advance that can provide

a microscopic basis for constructing predictive macroscopic continuum theories, by

building on coarse-graining techniques recently developed for other classes of active

matter [17, 90j. At the same time, a refined model will be needed to account for

the spatial heterogeneities and time dependencies that become relevant at the later

stages of biofilm development. Such progress is essential'for identifying new strate-

gies towards understanding, controlling, and inhibiting biofilm growth under realistic

physiological conditions, which remains one of the foremost challenges in biomedi-

cal [89, 118, 137] and biophysical research [36, 105, 120].

In Chapter 5, experiments and simulations are used to investigate the scattering

and accumulation dynamics of swimming bacteria in the vicinity of curved periodic

boundaries. The results demonstrate that a concave boundary can reduce the av-

erage cell accumulation by more than 50% relative to a flat surface. Despite the

simplifying model assumptions, simulations of a basic steric interaction model can

account for experimental observations across the different geometries. In the future,

it would be interesting to perform a similar analysis for 2D microtopographic sur-
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face designs where hydrodynamic near-field interactions [35, 124] can be expected to

become relevant.

Extensions to this work would be to improve the cell-surface adhesion, to include

the spatialtemporal heterogeneities that exist in larger biofilms (> 1000 cells), and to

capture the effect of flow on biofilms. Specific details of each of these extensions will

be discussed in more detail below.

In the current model, cell-surface attachment is represented by an increase in the

friction near the surface. To improve upon this, the cell-surface adhesion should be

directly modeled. These attachment forces, which can range from a few to hundreds

of picoNewtons, are a result of the secreted components, protein structures, and short

appendages (such as fimbriae and type IV pilus) that cells use to remain attached

to the surface [89, 105, 134]. Cell-surface attachment is also important in the ver-

ticalization of biofilms [9]. To capture cell-surface adhesion, an attractive part to

the cell-surface potential as in [91 can be added to the model. Or, springs between

the cell and the surface can also be used to represent these attachement forces. The

location of these adhesive forces on the cell also makes a difference in the microcolony

morphogenesis where the asymmetry of the surface attachment induces mechanical

tension and buckling of the daughter cells [23, 39I.

In order to capture the formation dynamics of larger biofilm systems (> 1000

cells), the model needs to account for spatialtemporal heterogeneities. For example,

in larger biofilms, the growth rates of the cells vary depending on where the cell is

located, with cells in the center having lower growth rates than cells on the edge due

to the availability of nutrients [86]. This could be added to the model by varying

the growth rate with position in the biofilm or by modeling the diffusion of the en-

vironment's nutrient fields. Also, spatialtemporal heterogeneities in gene expression

and matrix composition should be included in the model. Physiological heterogeneity

arises in large biofilms as the cells adapt to chemical gradients and local environmen-

tal conditions and through cell mutations [126]. This can be added in the model by

including gene expression as a state variable of the cells. Matrix composition also

varies throughout the biofilm. In V. cholerae biofilms in particular, the matrix is
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composed of four main proteins, where RbmA is distributed homogeneously through-

out the biofilm and provides cell-cell adhesion, Bapi adheres the cells to the surface,

and a mixture of VPS, RbmC, and Bapi encloses the cell clusters [6]. To include

these different adhesive forces from the proteins, the cell-cell potential can be ad-

justed to vary in space. Also, this matrix composition heterogenity will contribute

to an increase in the local friction experienced by the cells, with larger amounts of

matrix resulting in more friction. This can be captured by varying the viscosity felt

by each cell by location, with the highest local viscosity corresponding to highest

concentration of cells [103]. By adding age as a state variable, the effects of cell death

can also be captured, as the DNA from the lysed cells adds to the structural integrity

of the matrix for certain species of bacteria [3].

It would also be interesting to add the effect of external fluid flow into the model,

as high fluid shear is known to change the architecture and morphology of developing

biofilms [37, 57, 611. Biofilms under high shear flow show strong alignment with

the flow and anisotropic biofilm expansion toward the downstream direction of the

flow 161]. In order to capture this in the model, the cell-surface attachment needs to

be improved, as discussed above, and the attraction between mother and daughter

cells needs to be captured more accurately because it was observed that cells align

with the flow due to the fluid drag and because of this asymmetrical attachment

between cells after division [1031. This attachment between mother and daughter

cells can be modeled with a spring between the polar endpoints of the cells [103].

An exciting application of this simulation framework would be in the design of

synthetic multi-cell assemblies and patterns. Using surface-bound nanobodies and

antigens that only bind in specific combinations, researchers have developed a cell-cell

adhesion library which enables the design of static self-assembling multi-cell structures

depending on the cell shape and mixing ratios of the cells expressing the surface-

bound nanobodies and antigens [54]. By adding a state variable specifying what kind

of nanobody or antigen is expressed on the cell, the simulation framework could be

extended to capture this selective cell-cell adhesion by forming a spring between cells

of a specific type. The simulations could then provide predictions and insights into
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the dynamics behind these synthetic self-assembling multicellular patterns and aid in

the design of future multicellular morphologies.
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Appendix A

von Mises-Fisher Distribution

The von Mises-Fisher (vMF) distribution can be described as a Gaussian distribu-

tion of a (d - 1)-dimensional sphere S -1 embedded in Rd. As defined in [44], the

probability density function of the vMF distribution is

f(xI[, r) - cd(r,)eKPTX (A.1)

where x is a unit random vector (x E Rd and ljxii= 1), y is the unit vector (Iipti = 1)

describing the mean direction, and r, is the concentration parameter (, > 0). K

describes how concentrated the unit vectors drawn from the vMF distribution are to

A. For K = 0, the vMF distribution is uniform on the sphere Sd-1. For r, -+ oc,

the vMF distribution approaches a point distribution. This is illustrated in Fig. A-1,

which shows points drawn from the 2D and 3D vMF distributions for various values

of r. The normalization constant Cd(K) is

Cd(K) W= d/21 (A.2)
(27r) d/2 Id/2-1 (K)

where I,(-) is the modified Bessel function of the first kind at order r. For d = 2,

c2 (r) is

C. (() (A.3)
27ro (r,)
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(a) 2D vMF, p = (1,0) (b) 3D vMF, p=(1,0, 0)

Figure A-1: 5000 unit vectors drawn from the vMF distribution on the unit sphere in (a) 2D, Si,
and (b) 3D, S2. p = (1, 0) and I = (1, 0, 0) for (a) and (b), respectively. K = 0 (red points), K = 10
(green points), and K = 100 (blue points). Note that the vMF distribution is uniform on the sphere
Sd-1 for K = 0 and approaches a point distribution as K -+ oo.

For d = 3, c3 (t.) simplifies to

K K

47r sinh(r) 27r(en - e-)
(A.4)

The Matlab program randvonMisesFisher3.m [70] is used to draw points from the

vMF distribution in the code.

108



Appendix B

Derivation of the Berne-Pechukas

potential

The overlap potential, as described in [8], is obtained by considering the overlap of

two ellipsoidal Gaussians, which have the form

(B.1)

where

(B.2)

Here, x is a point in space. n is a unit vector in the direction of the principal axis of the

ellipsoid. f and d characterize the ellipsoid's half-length and half-width, respectively.

Ji, is the Kronecker delta, as defined below

k = { 1

0

if i = j

if i / j
(B.3)

Note, it is possible to derive an expression for A-.. Assuming that A 1 has a

similar form to Aij in that A = Bij = g +I(6 - ijh,). Therefore,

6 ik = Aj 3 Bjk
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G(xi) = exp(-xiA- j)

Aij = j2hinj + d 2(6i _ - i j)



n^,2~i. + d' (6ij - ^ifpt,)) (/3hft~?k + 0' (6jk j 72j7k))

- din'jk - d2 /iifinjok + d2/iiiJk

= ( ^2,f +2 - _20j+d23 - d231+d - d2/3 d2n /)iik d23Iik

= (2In - d2 k3)fik + d 2_fjik (B.4)

where use has been made of the fact that

ni72j72ja = nininink + nin2fl2fk + nin3n3nk

= 20272(nini + 2 2 2 2 + 7272)

= 2 k (1)

= 72 ink (B.5)

because d is a unit vector. Thus, Eq. (B.4) requires

111 11d - ~ d ik

(j=02and 1 (B.6)

which results in

A = njif + V2 j1,.,n - in ) (B.7)

Berne and Pechukas proposed that the overlap potential is proportional to the

mathematical overlap of these ellipsoidal Gaussians, which can be calculated through

the integration over all space of the product of two ellipsoidal Gaussians. Consider

two ellipsoidal Gaussians, a and , with axial unit vectors, a and nf. The vector

ra joins their centers. Note that rl points from ellipsoid a to ellipsoid t as shown

in Fig. 2-4. From the figure, note that the origin of the coordinate system is attached
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to ellipsoid a. The overlap is determined by

Uoverlap c< I Aa -1/
2 IA l- 1 /

2
exp[-xjA-1 xj - (xi - rapi)A- (xj - rcp#)]dxidx 2 dx 3

-(00B.
(B-8)

The argument of the exponential function can be simplified to

xi A x (xi - ra,3i)A (xj - rcoj) (B.9)

= -x A-l x - xiA-lxj + xjA-1 raj + rapi A-lxj - rap8 A- 1 rag3= aij +. 2 i ijf 3iij

=-X[- A - -~j 2xjA1raj - raOiA-'jra)j

-x Sijxj + cixi - raajA-1,rapj (B.10)

where Sj = [A~-' +A-'] and ci = 2A-lrj. Note that use has been made of the fact

that A-' is symmetric. Eq. (16.11) of [13], which is reproduced below for convenience,

Iexp( _YTSY +DTY]7dyi 7S)exp
i-CC i=1det(S)

(D TS-1 D) (B.11)

in which S is a positive symmetric matrix and D is a complex vector, gives the

integration of Eq. (B.8) such that

Uoverlap.(ni, fin, ra,3)

c 13 2 |Aa -1/2 A 3 -1/2-1S 1/ 2 exp[-rapjA-ra1] exp c

c 13 2 IAa-1/2IA -1/21I1/ 2 exp -- r A ral

(B.12)

Note,

|Aa|~ 1/ 2  -1/ 2 A31-1/ 2 = |AaikSkmAamj|- 1/ 2

= |Aaik[A- + A-] A 3m|- 1/ 2

= jAaikA- A3 mj + AcikA- Amj |-1/2
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= 6imAmj + Aaik6kj1- 1 / 2

=I A 6i j + Acij 1-1/ 2

= Aa + A3 1-1/ 2  (B.13)

where use has been made of the fact that IAIIB ICI = A B Cl.

Eq. (24) from [631 (with U = v = I) gives the inverse of a sum of matrices A and

B, which is reproduced below for convenience

(A + B)- 1 = A- 1 - A-1 B(I + A- 1B)- 1 A- 1  (B.14)

and is applied to S

(A-' + A- 1)-'

=Aij - AflikA-(6mn + A ,'A-n) 1 A6nj (B.15)

This results in

1 1 21 r
ciSc. = I (2 t A rct)[Aij - A/3ikA-1(6mn + AfmrA-n)- 1Anj] (2A-'raw)

ratra6wA -[A, 3 s - AflikAm(6mn + A]A-An) 1Anj] A-Jw

= rap r 'Sti[A1 - 6 tk Aam (6mn + A ,3mrA)-1 Aj3]A nj|

= raprap,[6Aj - AJ-m(6n + A,3mr A-n- 6n]

= ratra, [A-', - [-'m + A,tA- )Aamn- 16nw]

= rarar3w [A'W - (Atm + APtrA6n- 1 6n]1

= raotra,[ [A-' - (Aatn + At>n)- 1 Jn6]

= ratra,3w[A - [6tn(Aanw + Apnw)]1]

= ra3 traow [A-' - (Aat, + Aptw)t 1 ]

= raoi [A-1 - (Aoi + Apjj)- 1]rag3j (B.16)

where use has been made of the fact that Aj1 is symmetric, I- 1 = I, and that
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(B)-(A)-1= (A B)- 1.

Therefore, the overlap potential can be written as

Uoveriap(fia, no, rao)

0c 7r3 / 2 Ac + A -1 / 2 exp[raoi [A,- - (Acij + Aoij)- 1 ]r ,3j - raoiAlrj]

0c 7r 3 / 2 |Aa + Agj- 1 / 2 exp[-rofl (Acjj + Aij)- 1ra3 j] (B.17)

Expressing r,=,3 ra3ioa, where rao is the magnitude of rao and f,# is the unit vector

in the direction of ra,3, Eq. (B.17) can be written as

(B.18)

where EO describes the strength of the interaction. Eo captures the magnitude of the

product of 7r3 / 2 and other constants. The strength parameter e1(n. , fng) is

(B.19)

and the range parameter -(fnc, no, i ,3 ) is defined as

U2 (na,3 ia)=
1

rcai (Aai + Aoi3j) -rlaj
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(B.20)

Uoverlap (nia, no , r,,) = EOIE1 (nC,ng)n exp[-r.0/02, nr p]

El (ni, no) (x I A, + Ao 1-1/2
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Appendix C

Derivation of generalized strength

and range parameters

To derive a generalized form of the strength parameter E, defined as

ci(n, fi) oc IAa + AO1-1/ 2
(C.1)

for nonidentical particles, the elements of matrix Aa + A3 are expanded and the

determinant is calculated. Note that the determinant of a symmetric matrix with

elements Bij is

IBI = BjjB22 B33 - Bj(B23 - -B22(B13)2 - B33 (B12 ) 2 + 2B12B13B23 (C.2)

Aai + Aoij can be rewritten as

Aaij + Aoij = 7jaaiia j + njfIingj + (Oi (C .3)

where % =f2 - d, p = - d), and = d + d2. The elements of A, + A3 can be

calculated as

(Aa + Af)jj = 7a (flai) 2 + ?77(fiol) 2 + C

(Aa + A,) 22 = 7a (fa2) 2 + ?7(ii,32 )2 + (
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(Ac + A,) 33 = r7 (ii3)2 + 770(f103)2 + c (C.4)

(Aa + Ag) 1 2 = (Ac + Aa) 21 = 7afiaifa2 + 171 3 flolf1n2

(Aa + A3)13 = (Aa + Ao) 3 1 = 77alaifa 3 + 77#fI/ 3 fIn33

(Aa + Ao) 23 = (Aa + Ao) 3 2 = 97aflQ2fa3 + ?71 fl 1 2hl 13

and inserted into Eq. (C.2), which results in

jAo + AflI =7ang {(?42) 2 + (nis) 2 + (if2) 2 + (ias) 2 - )2( - )2(3)2

- 2522522- 2n)(p)2- 25aia2 2i0i1i# 2 - 2inalia3niinif3 - 2?5i2 l03 ii 2 iy3}

-+A,=r {(ii 2 ) 2 + (a3) 2  (0 2)2 + (33)
2 - 2 - (a2) 3

- 2(fa2) 2 (f102)2 - 2(iia 3 )2 (fn, 3) 2 + (i21a) 2 (ii, 2 + (u02)2(3f2 )2 + ( )2 (3)2

- [2aiic 2fiii 2 + 2uainaanii3 + 2q3(22a3+2(33

+ (i21) 2  2 + ( 2)
2( 2)

2 + (ii )2(ip )2]}

-Haq,( ft.2 (a (f10 f,3 (h3(t2 (t2(t

= (-[(f2)2 + (as) 2 + (2,32)2 + (ia3 )2 - (03)2(,2)2 -

+ (?ta) 2  )2 - (a2)
2 ( n2 )2 - ( )2(n)2 _ 2

+ 'a 2 +T,3( 2 +c(3

=Ta?70[I - (ai ui )2] + ?lC 2 + 732 + (

= --(d d 2)(-dd1 -d -d - t)

- (d 8 + dj)(dad2 - 2 f2 + j)( 2n )2  (C.5)

where use has been made of (uini)2 = U2n 2+u2in2 + ulnri+ 2uju2nin2 + 2uju3inn3 +

2U2U3 n2n3 where ui and ni are two vectors and n - f = 1. Dividing each term by

= -(d2 + d)(-did2 - dif2 - dij- fif))

IA, + A1 1 - (C.6)
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where

(C.7)

This reduces to fd when i, = f4 = f and d, = do = d which matches Eq. (5b) in

[8]. Thus, ci is defined as

E1(na, n6) =[1 - X2(a 2 1/2 -
2(na (C.8)

and z-1/2 can be captured in O. The minimum value of 1 occurs when fa is perpen-

dicular to ii. The maximum value occurs when i, is parallel to fi.

To derive an expression for a generalized form of the range parameter o defined

as

.2(na7l, 0,ao)
1

rap3i(Aai + Aoij) T rapj

for nonidentical particles, Aa + A3 is rewritten as in Eq. (C.3) and (Aa + AO)3 1 is

assumed to be of the form

(Ao + AO) = tjiiaifIaj + K2fl/if3j + 3n~aif/3j + I 4 ' ?ijf + A643 (C.10)

This results in

6 ik =(r7anfaifnaj + -| flhintip -- 6 ij)(P1faiflaj + K2fl/3ifn/j + h3flaiflI8j + K4 'Pinaj + Mij)

=(rlaPx + r7a'A + (ri + ?laI4flaji/j)lai nak

+ (77r2 + 7,3 A + (K 2 + 2)3ii0 hajfin3j)Afin,3k

+ (77a/3 + (K 3 + T/aI2fajfI/j)flaifI,3k

+ (77O K4 + (K 4 + 2)1iajfajfIj)hifak

(C.11)+ A'6 ik

which sets up the following equations

1
(C.12)
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(C.9)

(f21 -- da)(f2 -_d) 1/2

X(f2 + dj)4+2!



77a l + + (K 1 + 7a r14flag/j = 0

73K2 + +(K 2 + 70K3riaj j = 0

77aK3 + K 3 + ?laK2flajn = 0

77,6K4 + (K 4 + j?3K1flajIjn = 0

(C.13)

(C.14)

(C.15)

(C.16)

Solving this system of equations for the remaining unknowns K1, K 2, K3 , K4 results in

K 2 =

K3 =

r7(,q + )
(77a 73 - 77o 7(iajnipj) 2 + 7 (+ 7,c + (2)

((?7c'q - 'qapp,(fiajfI,32 + qa + 77,3 + (2)

(C.17)

(C.18)

(C.19)

(C.20)

?p?7(,ajnaj)
((?7a7,3 - +7(aji3 )2+7a + 78 + (2)

71a- 7) 6 (ha) + )
((%770 - r7a?7,3(,h a ft, )2 + 77a + 1r,8( + (2)

Thus,

a%( Aa + A))- 1ifa3j

= iafli(Kif1cjdfhaj + K2Aflij + K 3flxaiin0 + K4flpiflaj + Mjj faoj

-i(ra 3i ^ai)2  K(Taaifl1 3 i) 2 + 3Pgr~~i~~/j+Kiafli i~,,aj fij + A (C. 21)

The range parameter can then be expressed as

0,(-a, ^ , -C"3) = [K1( C"Binai)2+ (aip)2+ fpnjpn;xfpnpfljapjfzc+A] -1/2

(C.22)

which has been confirmed to match Eq. (15) of [21] (stated below for convenience)

= [1- n,)2 + (f/ - ng) 2 - 2x(ff -fia)(fa -fi 1 )(nc -fno) 1/2

X 2(6a - ng )2

(C.23)

where

ao= + d, (C.24)
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(f2 -dd) (f2 - d2)- 1/2

X = (C.25)

and

d (e2 _- d )( + d ) (/2 (C.26)(f2 -- d2)(f2 + d2)

The maximum value of o occurs when na, n#, and iag are all aligned. - equals the

minimum value of o- when ni, ng, and ra,3 are all perpendicular to each other.
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