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Abstract

Capturing the propagation of microscale physics to macroscale phenomena is intractable
for many large systems. Scale propagation is a major issue in granular media, wherein
two extremes are often taken. In one, granular materials are modeled as a continuum,
which greatly reduces the number of degrees of freedom that describe the system and can
thus be simulated relatively quickly. However continuum models are not always precise
and have difficulty capturing certain effects such as particle size dependence. In discrete
element methods (DEM), every grain and the interactions between them are simulated.
DEM is accurate but solve time scales poorly with large grain numbers. Here, we present a
hybrid simulation scheme, which seeks a best-of-both-worlds solution by bridging these two
approaches.

A mass of granular media is partitioned into three domains: a continuum domain repre-
sented using the material point method (MPM), discrete grains using DEM, and a transition
zone of both MPM and DEM that are coupled via kinematic constraints. An "oracle" de-
termines which areas of the domain are MPM and which are DEM, and converts between
the two. In the canonical example of silo flow, flow with a sufficiently small orifice jams,
resolving length scale dependent effects. Collapse of granular columns modeled with the
hybrid method compare quantitatively well with pure discrete simulation and experiments
in literature. A significant speedup is seen with the hybrid method over a similar domain of
pure discrete grains.

Thesis Supervisor: Kenneth Kamrin
Title: Associate Professor
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Chapter 1

Introduction

Modeling is a game of balance. Tractability and reasonable solution times fight against

the physical realities of vast length and time scales. The assumptions one makes when

formulating a model directly impact the solution methods that can be brought to bear to

the problem at hand. There are almost always guaranteed trade-offs between the level of

simplification of a model and the amount of time needed to solve that model.

Granular media present an interesting intermediary between the world of the discrete

and the continuum. While oftentimes they are studied in contexts where continuum approx-

imations are appropriate (i.e. geological), their behavior at much smaller length scales (a

bucket of sand at the beach or flow through an hour glass) are still of great interest. However

at those more everyday scales, the length scale of a single grain of sand is a relatively large

proportion of the scale of the entire problem, and thus cannot be ignored. And even at the

larger aforementioned geological scales, the initiation of an earthquake, for an example, still

relies on individual grains of sand slipping and deforming against each other.

The great challenge, then is to formulate a model that can capture length scale effects

but still have enough simplifying assumptions to make the problem solvable with efficient

methods. This however seems to fly in the face of the modeling trade-off previously discussed;

it is nearly impossible to have a single model that allows for fine-scale resolution and yet

ignores those small length scales to become efficiently solvable. The solution we now propose

addresses this issue by ignoring the "single" part of the "single model" clause, and instead

hybridizes two distinct models to yield the two distinct attributes desired: resolution of

length scale while maintaining efficient solvability. It is noted that the current work focuses

17



on cohesionless granular systems, and thus approximate dry granular systems with no sources

of attraction, like liquid bridges or electrostatic charges. This work is an elaboration and

expansion of the work shown in Yue et al [56].

The work is structured as follows. The remainder of chapter 1 puts the current work in

the greater academic context and discusses prior work on the modeling of granular media.

Hybridization models in and out of granular media contexts are also discussed.

Chapter 2 discusses the discrete element method used and some details of its algorithmic

solution. While the level of detail presented may seem overly exhaustive, it provides im-

portant context for where the hybridization technique interfaces with the discrete element

method.

Chapter 3 discusses the continuum models used. The method used to solve these models,

the Material Point Method, is also discussed in detail.

Chapter 4 introduces the hybridization technique. Its goal, formulation, and solution

are discussed.

Chapter 5 shows examples of the hybridization technique at work, with comparisons to

the discrete and continuum model solutions, as well as to literature.

Chapter 6 builds off of the work shown in the previous sections, and introduces new

enrichment schemes that are needed for problems beyond the ones discussed in Chapter 5.

Finally chapter 7 concludes the thesis and discusses future work.

1.1 Granular Media Modeling

The ubiquity of granular media in everyday life cannot be understated. We walk on it on

trails, drive over it on roads [48], ingest it in our pharmaceuticals, and eat it in our meals.

Slightly less directly, granular media is second only to water for the type of material most

commonly handled in industry [35]. Granular materials also appear often in the context of

special effects in visual media. CGI scenes at a beach or desert require realistic simulation of

granular media, and the most straightforward way to do this is to solve physically realistic

models for granular behavior. Despite this ubiquity, a comprehensive model that can capture

the behavior of granular media remains elusive.

While much of the difficulty stems from the length and time scale problems mentioned

before, granular media is also unique from many other materials in its ability to transition
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Figure 1-1: Bottom of an hourglass displaying three distinct granular phases.

between different states. This is clearly evident in a flowing hourglass, as shown in Figure

1-1. At the bottom of the hourglass, settled sand acts as a solid, able to support compressive

stress without flowing. At the top of the static pile is a region of grains flowing over the

static region, acting like a liquid. In between the top and bottom of the hourglass the grains

flow much like a dilute gas, with no cohesive structure and interacting via collisions.

Different models and solution techniques are able to capture granular behavior in a given

state, though of course with trade-offs in accurately capturing behavior in other states. A

summary of different methods are discussed.

1.1.1 Discrete Methods

Perhaps the most straightforward way one could model a system of granular material is to

model the grains themselves. Methods that model individual grains and the interactions

between them fall under the umbrella of discrete methods. While this can be expensive for

very large systems (greater than approximately 50,000 particles per core given current CPU

capabilities), the one-to-one correspondence of a single simulated grain to a physical grain

can produce accurate results. Discrete element methods can largely be broken down into

two classes: penalty based methods and contact dynamics.

Penalty methods, as their names suggest, penalize the overlap of particles with some

type of force that is a function of that overlap. The discrete element method (note that

in some literature the term "discrete element method" is used to denote the larger class

of what is here termed "discrete methods"), first formulated by Cundall and Strack, still

enjoys much use due to its simplicity and accuracy [7]. Even within the confines of the

simplicity of the proposed method though, great generalizability can be realized by having

a free choice of the penalty function. The advantages of course come at some cost. For

example, a major drawback is that, depending on the choice of penalty function, multiple
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material parameters may need to be fit to experiment. The material parameters themselves

may then put constraints on the computational solve time. To concretely demonstrate this

point, many penalty models have some notion of an elastic parameter that must be tuned.

However, most individual grains of sand are fairly stiff, with Young's moduli on the order of

100GPa and densities on the order of 2000kg/m3 [52]. These properties, combined with the

small size of many grains ( 0.1 mm in diameter), result in a large wave speed through the

material that travels a small distance, and this must be resolved within a given time step.

Implicit methods of course exist to alleviate this issue somewhat, but those come with the

usual drawbacks of additional computational overhead elsewhere.

Contact dynamics on the other hand treats grains as completely rigid and allow no over-

laps. They are then formulated as optimization problems, and more specifically, mixed lin-

ear complementarity formulations, minimizing some potential with a no overlap constraint.

While the question of material properties is then largely avoided in these methods, the intro-

duction of friction and other properties is much less straightforward than in the formulation

of discrete element methods. The lack of material properties is also a double-edged sword of

sorts, as while infinitely stiff grains are often a better approximation of a system of grains

than computational grains that are extremely soft, the reality is that grains do have a finite,

though large, stiffness. Capturing that finite stiffness and its consequences, such as a finite

wave speed and non-negligible grain deformation, can be crucial in some applications. These

properties are in fact important for the hybrid scheme, and will be discussed later.

A key characteristic of both classes of discrete methods is that they can easily capture

all phases of discrete matter. If compressed by exterior forces or boundaries, they act like a

solid, able to support load through the creation of force chains, much like physical granular

media. The removal of these forces and boundaries, and/or the introduction of shear forces,

causes grains to flow over other grains in a liquid-like fashion. Pouring a system of discrete

grains will see the grains separate, capturing a granular gas.

Another property of discrete element methods is that they are able to elucidate particle

level properties and dynamics that are difficult to gather from experiment. Photoelastic

disks can be used to investigate force chains, such as in the pioneering work of Behringer

et al and continued by the likes of Daniels et al [10, 181. However these photoelastic disks

are made of relatively soft polymers and are mostly used to investigate 2D arrangements of

disks, and not 3D arrangements of spheres. On the other hand, discrete element methods
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calculate inter-particle forces out of necessity and can thus report quantitative data for these

contacts. Expanding from 2D to 3D is also a straightforward process, and every contact in a

3D system can be easily obtained. The dynamics of every single grain in a system modeled

with discrete methods can also be tracked and studied, which can be done in experiment,

but only with much difficulty and cost, i.e. methods such as X-ray tomography and CT

scans [24]. While computational expenses can limit the size of simulated systems, physical

limitations of scanning equipment can limit the size of an experimental system that can be

studied, greatly hampering one of the key advantages of experiments over simulations in

granular media: scale.

Thus despite the drawbacks of discrete element methods, they are still popular and

widely used in congruence with, and sometimes in the place of, physical experiment. The

ability to accurately capture grain-scale level dynamics, and to obtain quantitative data

for every grain and contact, means that they can effectively be treated as computational

"ground truth" for simulated granular systems. When accuracy in a simulation is needed,

discrete element methods can be used with confidence, at least compared to other methods.

1.1.2 Continuum Models

Figure 1-2: Aftermath of a landslide in La Conchita, California [51].
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As stated before, for large systems one can ignore the fact that there are individual

grains of sand, treat the system as a continuous granular medium, and retain many physical

properties of the system. A classic example of this can be seen in Figure 1-2, which shows

the aftermath of a landslide. A useful feature of the shown landslide is that a road can be

seen that cuts through the hill, and acts as a deformation marker. The deformed shape

is reminiscent of Poiseuille flow, suggesting that the moving bulk is well represented by a

continuum.

The basis of continuum theory applied to granular media in fact goes back more than

200 years, with the pioneering work of Coulomb who proposed a relation between shear

stress, pressure, and a coefficient of friction in a granular continuua, very similar in form

to Coulomb friction [11]. Since that initial proposal, granular continuum theory has been

greatly expanded upon. The incorporation of additional complexity displayed in physical

granular systems into the continuum theory have resulted in models that capture behavior

such as critical-state, and anisotropy [39][9].

Much work on granular continuum theory has been conducted in the fields of civil en-

gineering and soil mechanics, where understanding the behavior of granular systems under

load is crucial [36]. There is thus a large body of work on granular media in a solid phase,

and continuum modeling of grains in this state is well understood. Granular gases too have

been well investigated, with kinetic theory being effectively used to understand granular

systems in this state.

The "liquid" flowing phase of granular materials has been much more difficult to model.

It was only recently that a seminal study conducted by GDR MiDi suggested a possible model

for flowing granular systems [16]. The rheological model posited, commonly referred to as

the p(I) relation (p of I), suggests a yield condition similar to that suggested by Coulomb

nearly half a century ago, but with a friction coefficient dependent on a nondimensional

inertial number, I, which describes the ratio of inertia to confining pressures in a granular

system. Further work by Jop and De Cruz provided empirical relations between the friction

coefficient mu and I [20, 8]. Further extensions of this model have since been proposed,

and work continues to this day on clarifying the high and low inertia number bounds of the

mu(I) relation.

All of the previously described models, while increasingly complex, still retain some

simplicity in the sense that they are all local models. No length-scale is introduced, and
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thus no non-local effects are captured. This deficiency has been recently addressed by the

work of Kamrin et al, who have proposed a non-local continuum model and thus introduce

a notion of a length scale back into the continuum model [22]. At first glance this seems

provides a possible solution to the beginning stated problem of capturing length-scale effects

while retaining the ability of efficient continuum equation solving methods. However, much

additional work must be done to completely characterize these non-local models, and thus for

now cannot be relied upon to have the fidelity of discrete methods which capture length-scale

effects by their very nature.

1.1.3 Related Hybridization Work

The hybridization of two different methods that are suited to two different length scales is

an idea that has been explored before in other contexts. Specifically, in crystal plasticity,

molecular dynamics simulations have been hybridized with continuum models to better

inform the continuum models of the finer-scale kinematics occuring at slip planes [50, 44,

41, 57, 12]. In granular media, discrete methods have been coupled with finite element

methods, but in a manner that differs from what we propose here. In such methods, the

output of discrete element simulations are used at the quadrature points of a finite element

method to construct strain and stress fields; the classic finite element method is then used

to advect the continuum mesh. Arlequin-type methods are used to decompose overlapped

discrete and continuum domains, which we follow in this study. The validity of these types

of methods has only recently been explored [54], with some work being done on analyzing

when continuum methods and discrete methods are both accurate [37, 21, 23]. The potential

practical use of these types of methods is explored, for example, in a study by Wellmann

that used discrete methods to enrich the stress field around drill tips [53].

A major goal of the current technique is to speed up simulations while maintaining some

measure of accuracy in zones that do not need to be well resolved. Techniques exist that aim

to simply speed up discrete method simulations while ignoring the resolution of stresses and

strains in zones that do not need to be simulated well; however, these techniques are useful

in that they provide ideas on how to decompose the simulation into regions that need to be

well resolved and those that do not. The graphics community in particular are interested in

these techniques, as what occurs out of view of the audience does not need to be resolved.

For example, in zones of granular media that are deemed sufficiently stationary, grains are
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frozen and are not used in the update of subsequent time steps [45]. These techniques are

well suited to flows such as rotating drums and collapsing sand piles or growing sand piles,

where the core of those geometries remain steady over time [31, 19, 58, 51. We aim to

build upon the ideas used in these at times disparate fields to formulate a physically and

mechanically consistent decomposition of a simulation into discrete and continuum regimes.
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Chapter 2

Discrete Element Method

As described generally in Chapter 1, the discrete element method (DEM) models a system

of grains by modeling each grain as a separate entity and calculates the dynamics of each

grain by integrating what essentially amounts to Ef = ma through time. In 2D, each grain

is modeled as a disk with a radius r, parameterized by three degrees of freedom: two for

the center of mass position of the disk (held by a position vector xd c R2), and a third for

the rotation of the disk relative to some rest state. The dynamics are captured by another

three parameters: two for the center of mass velocity and a third for the angular velocity

about the center of mass. In 3D this representation is generalized to a sphere, again with

radius r and six degrees of freedom: three for the center of mass (xd C R3 ) position and

three for the angles that describe grain orientation. The dynamics analogously generalize to

six parameters, with three for center of mass velocity and three for angular velocities. For

a system of K particles, the degrees of freedom of all particles can be concatenated into a

single degree of freedom list, the generalized coordinate vector qd. In 2D, qd c R3K and in

3D, qd C R6 K. A generalized velocity vector, vd can be similarly defined, with Vd C R3K

in 2D and vd c R6K in 3D. Momentum balance for the whole granular system can then be

summarized with

Mdad = fd(qd, vd, t)

where Md c R3Kx3K (2D) and Md C R6Kx6K (3D) is the mass matrix, ad c R3 K (2D)

and ad c R 6K (3D) is the generalized acceleration vector, and fd is the force vector that

encapsulates all internal and external forces of the system. The evolution of the system
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configuration can then be described with

qd =d (qd, Vd, ad)

where q9j is a function that encapsulates configuration updates.

2.1 DEM Model

The construction of fd, and specifically the contact model that goes into fd, has been the

source of much work. Popular contact models include Hertzian contact and linear spring-

dashpot systems, the latter of which we use [17, 7]. While Hertzian contact in theory

accounts for a nonlinear penalty force with respect to penetration depth due to geometric

considerations not present in the simple Hookean spring model, the simplicity of the Hookean

spring model along with its acceptable accuracy from literature motivate the latter's use in

the current study [34].

n t

d

Figure 2-1: Two disks in contact with relevant properties labeled for DEM.

In the current work, the contact force, f., is a linear combination of a normal contact

force f, and tangential contact force ft, such that simply f, = f" + /At, where A is the

coefficient of friction. fd more concretely is

f. = kndn - -ynvn

where k, is the Hookean spring constant in the normal direction, d is the penetration depth
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between the two disks, n is the contact normal unit vector, -y, is the normal damping

coefficient, and v, is the normal component of the relative velocity between the two disks.

Similarly, the tangential contact force is given by

fat = ktAs - -ytvt

where kt is the spring constant in the tangential direction, -Yt is the tangential damping

coefficient, and vt is the tangential component of the relative velocity. Friction is captured

in this model by requiring that

ft < tf.

which is accomplished by adjusting As. For a given enduring contact over time, As for that

contact is the time integral of the tangential relative velocity during that contact. As is

then rescaled so that it ft falls within the friction cone determined by pf,.

With the given spring-dashpot system, a coefficient of restitution (COR) e can be tuned

as a function of the model parameters. Given a desired e and a normal spring coefficient ka,

y is determined as

yn = V/mkn(-2 log e)/ 2(7r2 +log e2

where m is the mean mass of a grain [23]. Note that the use of a "mean" mass is due to

the fact that in all of the simulations conducted in this study, a slight polydispersity in

granular radii is used with a single density for all particles, resulting in a mass distribution.

This is done to better match real shape distributions in a granular system, and to avoid

crystallization that commonly arises in monodisperse systems. The choice of kn and other

material parameters is further explained for specific simulations later in the study, but in

general is chosen to be as stiff as possible while still retaining a reasonable cost per time

step, with a timestep usually on the order of 10-6 seconds.

2.2 DEM Algorithm

The DEM code used in this study was built completely in house, though is similar in general

algorithmic structure to many DEM codes that exist, such as LAMMPS or LIGHTS. Thus for

transparency as well as necessity when later explaining the hybrid algorithm, the structure

of the used DEM code is discussed.
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Algorithm 1 OverallDEMAlgorithm

1: BroadPhaseCollisionDetection
2: for i = 0 ... numpossiblecollisions do
3: NarrowPhaseCollisionDetection
4: end for
5: CollisionUpdate
6: for eachcollisiontype do
7: UpdateProperties

8: IntegrateAs
9: end for

10: ForceUpdate
11: for eachcollision do
12: Calculate_PenaltyForce
13: CorrectAs

14: AddForceToContactGrains
15: end for
16: Time_Integration

The Broad_ Phase _Collision Detection creates an axis-aligned bounding box (AABB)

around each grain, and checks the intersection of those AABBs with a background grid. Each

grid cell then has a vector of AABBs that intersect it, with each combination of AABB in

that vector constituting a possible collision. All possible collisions are then looped over for

an actual collision detection (NarrowPhaseCollision Detection) and any real colli-

sions are added to a vector of actual collisions for a given type. Collision types include, for

example, circlecircle collisions for grains in contact, or circleplane collisions for grains in

contact with a rigid plane. The list of all collisions for every collision type are then looped

over, and properties such as penetration depth and As are updated. With this information,

a penalty force is calculated at every contact according to the model presented in 2.1. With

these forces, an explict Forward Euler update is used to numerically integrate the velocity

of the grains, which is then used to integrate the position of the grains.

Though dry, cohesionless grains are the focus of the current work, it is noted that the

DEM framework allows one to simply extend the model to cohesive grains. A new collision

type can be defined that allows for tracking of grain interactions at a distance. As will be

explained later, some initial work has in fact been done on this, by tracking liquid bridges

that provide a source of cohesion, in order to extend the hybrid method for cohesive systems.

As a final note, the DEM code is an extension and modification of the SCISIM code de-

veloped by Smith for contact dynamics [43]. In fact, as will be later discussed, that contact
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dynamics code was first used as the discrete method of choice for the hybrid project. How-

ever, the explicit penalty method was determined to better suit the needs of hybridization.
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Chapter 3

Continuum Model

We use two continuum models in this study. The first, a hyperelastic formulation, is the

model used for all of the simulations shown in the Results section. The second, a hypoelastic

formulation, is used to extend the hybrid technique for geometries like inclined chute flow.

The notation used mostly follows that of Gurtin, Fried and Anand [32]. Bold face Greek and

Latin characters are tensors and vectors (differentiated by context), non-bold face Greek and

Latin characters are scalers, the trace of a tensor A is trA, and the deviator, or trace-less

part of a tensor is denoted by a subscript 0, such that AO = A - itrAI, where dim is

the spatial dimension of the domain being considered.

3.1 Hyperleastic-Plastic Model

To begin the discussion of the hyperelastic model, the evolution of the system is governed

by the conservation of momentum

Dv
pDt V + pfext, (3.1)

and the conservation of mass

Dp
Dt +pVV - =0, (3.2)

where o is the Cauchy stress tensor, D is the material derivative, and fext denotes any

external body forces, like gravity.

In order to fully close the model, one must further define the kinematics and the con-
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stitutive law of the system. In regards to the kinematics, we make use of the classic large

deformation kinematics governed by F, the deformation gradient, defined as

F = ax/oX (3.3)

where x is the coordinate space of a deformed body and X is the coordinate space of the

reference body. Furthermore, with the use of plasticity in our constitutive law, we take the

Kroner, or multiplicative, decomposition of the deformation gradient, F = FeFP. Fe is

the elastic, and FP is the plastic component of the deformation gradient. Again connecting

to the constitutive law, we define and make use of B, the left Cauchy-Green strain tensor

defined as B = FFT.

Being a hyperleastic model, the constitutive law is derived from a strain energy density

function. Under small strains, we desire to have the material behave elastically. In 2D the

strain energy density function we use to achieve this is:

= ~1j2 1 1
W= (J2 -1) -In J + -G(Tr[e - 2) (3.4)

2 12 1 2

and in 3D is:
1 [12 1 1 e

W= [ -(J2 - 1) -In J + -G(Tr[Be] - 3) (3.5)
2 _2 _ 2

where Be det (Be)- 1/dim B' is the isovolumetric component of the elastic left Cauchy-

Green strain, J = det (F), and dim is the spatial dimension (2 for 2D and 3 for 3D). The

resulting Kirchoff stress is:

r = (J 2 - 1) 1 + Gdev[Vs] (3.6)

where K and G are the bulk and shear moduli respectively of the material.

One of the key properties of a granular media is that like a solid it can resist compression,

but under tension it changes phases, acts like a fluid, and cannot resist extension. Therefore

to allow the granular medium to separate with no resistance, we consider a "no-tension"

rule. We model this effect with a free-flow mode, similar to Dunatunga et al. [14]. If

det[B'] > 1, the material is in extension. When this occurs, the deformation of the material

is projected into the isovolumetric space where det[Be] = 1, by multiplying by the inverse

of J2 , or B' = det (Be')-/dim B'. With no elastic volumetric strain under this projection

in tension, the pressure drops to 0.
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In order to incorporate plasticity, we must define a yield condition and a plastic flow

rate. For the yield condition we take a simple Drucker-Prager model defined as

-r- p 0, (3.7)

where p is the internal friction coefficient, i is the equivalent shear stress and p is the

pressure defined by

2 (o0 :oo) (3.8)

1
p -- o (3.9)

3

Substituting in the elastic constitutive law (3.6), the yield condition can also be expressed

as

4 = GIldev[beI IF + PyN (j 2 
- 1) (3.10)

When 4' < 0, the material behaves elastically and no plastic evolution occurs, while when

P > 0, the material plastically flows. The Drucker-Prager yield criterion looks very similar

in form to Coulomb friction, and this is not a coincidence. An analogy can be drawn between

the two, such that when the yield function is less than 0, the shear stress (or tangential force)

is not enough to overcome the pressure scaled by the internal friction coefficient (normal

force and friction coefficient) and the material deforms elastically (does not slip). When

the yield criterion is met, yield or slip occurs. Much like how the friction coefficient can

be used to control the incline angle at which a block at rest will start slipping, the internal

friction coefficient t is a tuning parameter that controls how easily the material yields, which

macroscopically determines behavior like the repose angle of a pile of collapsed grains.

To complete the system definition we require a plastic flow rule. We choose to ignore

any sort of plastic softening or hardening effects to keep the flow rule as simple as possible,

and so we model the granular continuum as perfectly plastic. We also assume isochoric

plastic flow. One advantage of this perfect plasticity approach is that we do not have to

track plastic strains, which in a granular medium can be very large. This would result in

numerical issues, as FP can become very large in comparison to F'. Thus, we only track

the evolution of the elastic strain measure of choice, B' through the evolution rule

E = VvBe + BCVVT + AJBE (3.11)
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We take into account the yield condition by taking a predictor-corrector style of approach

and follow the return mapping method of Simo [42]. First the strains and stresses are

assumed to be purely elastic and we update B' via

E = VvBe + BeVvT (3.12)

The new predicted B', which we denote as Be'*, is then used to calculate a new stress and

pressure -*, and p* respectively. If D < 0 then the system is not plastically yielding, and

so the predictor * quantities are taken as the final, end-step quantities. If however, 4 > 0

then the yield criterion is violated.

To return the material to a valid state, we keep in mind the isochoric plastic flow re-

quirement as well as the fact that final accepted state, which we denote as Be'P must satisfy

the yield condition, such that Be',P. We also assume that plastic flow is codirectional with

the shear stress. With these assumptions in place, the admissible strain is decomposed into

Be'p - A 1 1 + A 2dev[det[Be'*]] (3.13)

The goal is to solve for A1 and A 2 that satisfies the constraints. We therefore substitute

(3.13) into (3.10) to obtain:

D (r (Be'P)) = pIdev[Be'P]IF + J2 - 1)2

pA 2 I1dev[B'*]IF + 2e(_ _ 1) (3.14)
2

=0

We use the expansions of the determinants such that in 2D, det[I + A] = 1 + det[A] + Tr[A]

and in 3D, det[I+A] = 1+det[A]+Tr[A]+!Tr[A] 2 - Tr[A 2], to, after some mathematical

manipulation arrive at a system of equations for A 1 and A 2 :

A, = Vdet[Be'*] - A det[dev[Be,*]] (3.15)

3+ Adet[dev[Be'*] - A2 Idev[Be',*]112 - det[Be'*] = 0 (3.16)

Solving for A 1 and A 2 yields the admissible strain state B',P at the end of the step.
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3.2 Hypoelastic-Plastic Model

In general, hypoelastic models differ from hyperelastic models in that the stress is not

obtained from a gradient of a strain energy density function with respect to deformation.

The specific hypoelastic granular continuum model we use was developed by Dunatunga and

Kamrin [14]. To start one again begins with momentum balance and mass balance

Dv
p D = V o+ pb (3.17)

D p
Dp+ pV V = 0 (3.18)
Dt

with all terms similarly defined as in the hyperelastic model. A useful quantity, the spatial

velocity gradient L, is defined as

L = Vv (3.19)

L can be decomposed into a symmetric part (known as the strain rate tensor) and skew part

(known as the spin tensor), D and W respectively, such that

L =D+W (3.20a)

1
D = -(L - L T) (3.20b)

2
1

W = I(L +L T) (3.20c)2

In contrast to the previously described hyperelastic model, here we take additive split of the

strain and strain rate-like terms into an elastic and plastic part. For example,

L = Le+ LP

The elastic and plastic spatial velocity gradients can then be decomposed into spin and

strain rate tensors

L e = De+We

LP = DP + WP

Due to the fact that a hypoelastic-plastic model is used and there is no tracking of the

deformation gradient, an objective rate must be used to update the stress. While many
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exist, the Jaumann rate is used here as suggested by Dunatunga and Kamrin, and is defined

as

a= & - W -+ W (3.21)

With the basic kinematic variables needed now defined, the next step is defining the consti-

tutive model. As stated in the beginning of this section, this is a hypoelastic-plastic model,

and so the elastic constitutive model, plastic yield condition, and plastic flow rule are needed

to close the system. The material is assumed to be isotropic and linearly elastic, and the

stress is assumed to only be a function of elastic strains. In general the stress rate can then

be expressed as a function of the elastic strains contracted with a fourth-order elastic tensor

C, or o= C : D'. With the assumptions of isotropocity and first-order linear elasticity, the

stress rate can then be more specifically defined as

o= 2GDe + Atr(De)I (3.22)

where G is the shear modulus (or second Lam6 constant) and A is the first Lam6 constant.

However, there is an additional condition on the pressure, which is that

P 0, if p < PC (3.23)
(P -- PC), if p pC

In other words, if the density of the granular material falls below a certain level, the con-

tinuum represents a region of grains that is very loosely packed and has no contacts, and

thus cannot support stress. In the physical sense, the grains in this region have entered a

gaseous regime (though with no pressure from collisions with the boundary).

The yield condition is very similar in form to the Drucker-Prager yield condition used in

the hyperelastic update, i.e.

- < p (3.24)

where i is the equivalent shear stress and p is the pressure, again defined as in (3.8) and

(3.9) respectively. A key difference between the previously explained hyperelastic model

and the current hypoelastic model is that the hypoelastic model used by Dunatunga, and

subsequently used here, is the introduction of the p(I) rheology proposed by Jop et al [201.
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The p(I) rheology proposes a characteristic nondimensional number I, defined as

/d 2 p,
I = 1 P (3.25)

which gives a measure of the inertia in a sheared granular system relative to the pressure of

the system. An empirical fit between p and I is given as

{1= P(I) _= 1s + 2 , if I > 0
(3.26)

Ps PS if I - 0

where ps, P2 and Io are material parameters. As suggested by 3.26, Ps is a static friction

coefficient, or the value of friction in the limit that I approaches 0. As I approaches infinity

p approaches p2. Though the existence of an asymptotic P2 is still debated in literature,

it serves as a good approximation for the levels of I reached in the simulations run in this

study. Thus the plastic yield condition utilized here is more exactly stated as

t < p(I)p (3.27)

At plastic yielding, a flow rule must be defined to evolve the plastic strain. A commonly

taken assumption that is also taken here is one of spin-less plastic flow, so that WP = 0 and

LP = DP. Plastic flow codirectionality with the stress deviator and isochoric plastic flow are

also taken as assumptions, leading to an plastic flow rate of

LP = =P I i P(a) a (3.28)
v1/2 ||coll

where jP is the equivalent plastic shear strain rate.

As a final note, there is again the desired behavior of a "no tension" rule, in that granular

media can not support tensile stress states. While this is partly captured by the pressure

dependence on the material density relative to a critical density expressed in 3.23, another

check must be done. In the constitutive update to evolve the stress, if it is determined

that the pressure of the material is negative (i.e. the material wants to contract in on itself

because of volumetric tensile stresses), then the stress is set to 0. Exact implementation

details of the stress update can be found in Dunatunga et al, with the relevant density and
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pressure checks of that update being most relevant for hybridization purposes.

3.3 Material Point Method

In order to discretize and solve the equations defined in the previous sections, an appropriate

method must be chosen. Classically, the finite element method has been the method of

choice for problems involving solid mechanics. As stated before however, a singular granular

system, i.e. flow in an hourglass, has that granular system existing in multiple states at

once: a solid bottom pile, a flowing regime down the top of the pile and at the top flowing

into the hourglass neck, and a gaseous regime as it exits the neck. Using a method like

the finite element to track the deformation of the granular continuum would be nearly

impossible, due to the large amounts of non-affine strain that accumulate in the system

causing mesh inversions. Remeshing, or a method like the Arbitrary-Lagrangian-Eularian

method, could at first glance help resolve this. However the amount of remeshing that needs

to occur would incur both a computational penalty for the remeshing algorithm, but also

an accuracy penalty due to the need to constantly interpolate quantities.

On the other hand, methods used to solve equations in an Eularian frame for fluid

mechanics, like the finite volume method, may then seem appealing. Finite volume however

brings with it its own drawbacks in the context of granular media. Finite volume methods

have trouble modeling purely solid regimes. They also do not inherently track free surfaces

like Lagrangian finite element would. This free surface tracking is crucial in the problems

of interest in granular media study, as the evolution of the free surface, and the interactions

of the free surface with surrounding matter, are what ultimately matter in, for example

studying the effects of a landslide on anything downhill of the flow zone. Breakaway of

granular material from an initial agglomeration of material and the ability to divide that

agglomeration into smaller bodies of granular material are also behaviors that are exhibited

that cannot be easily captured by finite volume.

The ideal method then is Lagrangian, can track free surfaces, can also handle the large

non-affine strains introduced in the liquid and gaseous regimes of granular flow. A class

of methods, called particle methods, aim to solve this niche of problems by tracking the

evolution of the system through particles, instead of with a mesh. Many types of course exist,

including the popular smoothed-particle hydrodynamics (SPH) diffusive element method,
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and the reproducing kernal method (RKPM) [15, 28]. All vary in their exact discretization of

continuum quantities, representation of connectivity between points, and other details. The

continuum discretization method used in this study, known as the Material Point Method

(MPM), is a framework that both provides familiarity with methods like the finite element

method while adding on the abilities desired.

MPM was developed in the mid 1990s by Sulsky et al and has enjoyed much use and

development since [49]. MPM is what is known as a mesh-free method, which as the name

implies, denotes that there is no permanent mesh used to track deformation. This lack of

a permanent mesh of course avoids the mesh deformation issue entirely. As a brief history

aside, MPM is a derivative of the fluid-implicit-particle method (FLIP), which is itself a

derivative of the particle-in-cell (PIC) method, where PIC was developed in the context of

building a method to solve for fluid flow in a Lagrangian frame. Properties of both methods

explicitly arise in MPM, which will be discussed later.

3.3.1 MPM Algorithm Overview
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Figure 3-1: Schematic of a single timestep in MPM.

Figure 3-1 gives a pictorial overview of a step of the MPM algorithm. In MPM, a

continuum body is first discretized (the light red body) via Lagrangian markers (red squares),

known as MPM points, as shown in the first two components of Figure 3-1. Quantities of

interest, like mass, momentum, stress, and any internal variables, are held on these points. It
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should be noted that there is no explicit notion of connectivity stored on the points between

pairs or groups of points, and so no nearest-neighbor search must be conducted, like in SPH

or many other particle methods. A temporary (with an emphasis on the "temporary", as the

introduction of a mesh may seem contradictory to MPM being classified a mesh-free method)

background grid is then introduced as a "computational scratch-pad" . The aforementioned

quantities of interest are then projected onto the background grid with a chosen set of

basis functions. As a note, while there is no strict requirement on the discretization of

the background grid, often a simple Cartesian grid is chosen for convenience. With these

quantities now having a nodal representation on the grid (orange circles at the grid nodes),

a finite element-like update is conducted. The updated nodal quantities are then projected

back onto the MPM points, so that the points are now in an updated state. The background

grid is then destroyed, so that no accumulation of strain occurs. With new point quantities,

the points are then advected from their old positions (dark red shadows) to their new

positions (red markers), completing a timestep of MPM.

3.3.2 MPM Formulation and Discretization

As shown schematically in the previous section, at the beginning of a timestep n, each

MPM point p has stored on it its position x n, velocity vp', mass mpn, velocity gradient

, Cauchy stress a", volume V", and for the hyperelastic case, Bpen and jp . The grid

projection of any point quantity Op onto a node i is done via the operation

Oi = Sipop (3.29)
p

where Sip is the value of the basis function Si at location xp, or Sip = Sizx. Likewise

the grid projection of the gradient of any point quantity Op onto a node i is done via the

operation

Voi =3VSipop (3.30)
p

While one is free to choose from any number of function spaces for the basis functions, two

types are used in this study. The first are classic linear "hat" functions, which in 1D are

defined as

Si(x) = max 0, 1 - (3.31)
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where h is the element length. The gradient is then defined as

V~i~x) = gn(x' x), if 1xi - xJ < h (.2VSi(x) - h (3.32)
0, otherwise

The second class of basis functions used are known as GIMP (Generalized Interpolation

Material Point) basis functions. GIMP basis functions take into account a finite size for

the points (instead of a delta function classically used), and integrate the bases across this

point domain. This extended support for the GIMP basis functions result in smoother grid

crossings and higher order approximations. First order GIMP basis functions (resulting in

2nd order field approximations) were used, with details being found in [2].

The product of these basis functions in additional directions in 2D and 3D then form

the basis in those dimensions. Note that from now on, all basis function values are taken

for the point locations at time n, and so for brevity the superscript n is not included for the

basis functions Sip and gradients VSip.

Algorithm 2 OverallMPMAlgorithm

1: projectPointMasses
2: projectPointMomentum

3: if HypoelasticModel then
4: updateVolume

5: computeHypoelasticCauchyStress

6: else if HyperelasticModel then
7: updateVolumetricStrain

8: computeHyperelasticCauchyStress

9: end if
10: projectForces

11: updateNodalMomentum

12: resolveNodalPlaneCollision

13: updateNodalVelocityAndAcceleration

14: updatePointVelocityGradient

15: if HyperelasticModel then

16: elasticPrediction

17: plasticCorrection

18: end if
19: updatePointVelocities

20: updatePointPositions

21: resolvePointPlaneCollision

22: clearGridData

To begin, the point masses and momenta are projected onto the nodes via the operations
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previously described.

mi = S>PM3 ", (maV)" = S2P(mVP)n (3.33)
P P

For the hypoelastic model, the point volumes and stresses are then updated. The volume

update is described by

V n+1 V Vexp(AtrL") (3.34)

The stress update is then calculated with the constitutive law described in Section 3.2, and

the exact numerical implementation can be found in Dunantunga and Kamrin [14]. In the

hyperelastic case, the volumetric strain J and stress are also updated here, as described in

3.1. The external forces bi' and internal forces fn" (internal forces being derived from the

divergence of the just-calculated Cauchy stress) are then projected to the grid.

b" SPMnbpn, fn" = -Vo,. VSP, (3.35)
P P

Now, the nodes contain both the current momentum and current forces. The change in

nodal momentum is then given by

(mv)g = Fn" = by + fi (3.36)

The time integration of the nodal momentums can then be done a number of ways, but here

a simple forward euler is used, which produces

(mv)n+1 = (mv)? + At(bn + ff) (3.37)

Nodal interactions with boundaries are then taken into account. In the current code, two

types of boundaries are supported: "sticky" rigid planes and "sliding" rigid planes. The

algorithm for this interaction check loops through all grid nodes i, and checks to see if any

mass has been projected to the node. If so, then the code loops through all defined planes,

calculating the distance of the grid point to the given plane, to check for a nodal collision

with the plane. If there is a collision found, then the relative velocity of the point to the

plane is calculated. For a "sliding" boundary, the normal relative momentum is set to zero
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(allowing movement in the tangential velocity, and hence the "sliding"), while in the "sticky"

boundary case the entire nodal momentum (m)"+l is set to 0.

Next, the new nodal velocities and accelerations are calculated as

v7+ 1 = (mV)i+ 1 /m (3.38)

(mV)n+1 - (mV)nmn+1 v 1 - (3.39)
a, (3.39)m

The new nodal velocities are used to calculate the new velocity gradients L n+ 1 on the pointsp
with

L - 0 VSzP (3.40)

In the hyperlastic model, the elastic prediction and plastic correction steps are then con-

ducted, as explained in 3.1.

The next step, the update of the point velocity, is one that deserves extra attention.

Two quantities are temporarily introduced, the PIC velocity vpic and the point acceleration

a , defined as

pic= SiPv+l (3.41)

ap=ZSip an~1  (3.42)

From this it can be seen that there are two possible avenues to update the point velocity to

vn+1. One, called the PIC update (so-called because this is the point velocity update that the

PIC method used), directly uses the vpic velocity as the new point velocity, so VPn+1= Vpic.

This means that the point velocities are directly interpolated from the background grid

velocities, and thus the velocity field is constrained by the basis functions. The other, called

the FLIP update (again so-called because FLIP uses this as its velocity update), instead

uses the nodal accelerations to construct a point acceleration. The FLIP velocity, Vflip is

then obtained by

Vfli, = Vn + Atap (3.43)

With this construction, the velocities live in a higher order vector space, allowing for higher

order kinematic modes. The macroscopic result of these two updates is that, often, flows

with PIC updates have a high degree of dissipation and do not conserve angular momentum.
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Physically realistic voritical flow and oscillations either do not appear or are quickly damped.

This dissipative quality however means that PIC schemes are often stable. On the other

hand, FLIP updated flows more often preserve those vortical effects and oscillations and

better conserve angular momentum. This though means that instabilities can form and will

not be damped out.

A strategy that is used to obtain some middle ground between the two strategies is to

simply take a linear combination of the two updates. This is expressed functionally as

n+ (1 - a)vic + avflip (3.44)

where a is a parameter used to tune how much one wants a PIC vs a FLIP update. A

large a value is often used, as better angular momentum conservation is usually desired over

better numerical stability, though a small portion of PIC velocity still helps with stability.

In this study, a was set to between 0.95 and 1.0 for all simulations.

The points are then advected via

Xn1= Xn+ At ~3S~v~ (3.45)

Another collision check is conducted on the advected position of the points. This collision

check is very similar to the nodal check, wherein all of the points are looped over, a check

for collision against any rigid planes is done, and the normal relative velocity is set to 0

for sliding planes and the entire velocity is set to 0 for sticky planes. Finally, the nodal

quantities on the grid are all set to 0, effectively resetting the grid state.

3.3.3 Relevant Notes on MPM

As alluded to with the "FEM-like solve", MPM can be interpreted as a finite element method

with a single point quadrature integration rule, where the quadrature points are the MPM

points. Both start from a weak form formulation and are discretized into points/elements,

with interpolation conducted under some basis. However in MPM, there is no strict notion

of connectivity. Instead, communication of points is done through the projection of the

point quantities to the nodes.

In the original MPM formulation described by Sulsky, the extent of the points are de-
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scribed via 6(x) functions, and so only project to the grid nodes of the element that the point

is currently in. If two points project to the same grid node, then connectivity is in effect

established between the points. This then implies that if two points start out "connected",

or are at most in directly adjacent cells, and then become separated by a completely empty

element, they lose connectivity, completely separating the two points. While this can be

useful in some applications to capture fracture, such as in the modeling of snow breakage in

graphics usage, it should be stated that this in fact numerical error [471. While schemes that

integrate a point across a finite extent, such as GIMP, ameliorate this problem somewhat,

this is not a complete fix. Thus while MPM avoids having grid cell inversions and other

issues inherent in a lagrangian mesh, a sort of numerical fracture becomes the byproduct.

Numerical fracture is not the only issue that can arise however. In a somewhat less

catastrophic error, the fact that the MPM points are effectively quadrature points, and

they are allowed to advect from cell to cell, means that integration errors can occur. For

example, a simulation can begin with the same number of MPM points per cell for all cells

representing the body, exactly integrating those elements. Over time however, the volumes

that the MPM points represent deform and change in size, and the points themselves move.

This can mean that if at a certain timestep, a cell contains much fewer points than the

simulation started with, that portion of the body can be under-integrated. On the other

hand, a cell may have a large concentration of points, with the volumes that the points

represent actually overlapping; over-integration of that portion of the domain then results.

Techniques exist to address these points. To better track the deformation of the volume

that the MPM point represents in order to help with over and under integration, the pre-

viously mentioned GIMP as well as the Convected Particle Domain Interpolation (CPDI)

technique can be used. CPDI, as its name implies, convects and keeps track of the represen-

tation of the MPM point volume, so that the area over which one integrates changes with

MPM deformation [381.

Resampling can also help to avoid over or under integration, keeping the MPM point

relatively constant. A resampling algorithm was developed by Yue et al in the context of

using MPM for foam modeling, where very large deformations occur that can result in under

integration [55]. This technique, called Avoid a Void, is used in the current study both for

the MPM simulations as well as the basis for a component of hybridization later discussed.
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Chapter 4

Hybridization

The previous two chapters described two very different modeling paradigms, both with their

strengths and weaknesses. As mentioned in the introduction, the goal is to be able to utilize

the strengths of both to offset their weaknesses in order to create a versatile method that can

handle phenomena that span many magnitudes of length scales and all phases of granular

matter. Namely, the goal is to utilize the accuracy of the discrete element method where it is

needed, while in all other regions, using the continuum method to solve a simple continuum

model with much fewer degrees of freedom than a full discrete simulation. The method to

achieve this is subsequently explained.

4.1 Hybridization Overview

Figure 4-1 gives a visual representation of a hybrid simulation of a collapsing pile of grains.

On the exterior are discrete grains, modeled by DEM. On the interior is a region of contin-

uum, utilizing MPM. A regime where both DEM and continuum overlap each other, what is

deemed the "Reconciliation Zone" or "Hybrid Zone" (both are used interchangeably), then

connects the two modeling regimes.

From this schematic there are a couple of things of note. A single MPM simulation is

used to solve for the pure continuum region, as well as the continuum portion of the hybrid

zone. The continuum region has only a single piece of information that delineates the pure

continuum from the hybrid continuum: a weight field w,(x) that has a value of 1 in the

pure continuum and a value between 0 and 1 in the hybrid regime. Likewise, a single DEM

simulation is used to advance the state of the discrete grains in the pure discrete region as
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Continuum Hybrid Discrete

Figure 4-1: Diagram of a hybrid simulation.

well as the discrete portion of the hybrid zone. Again, a weight field wd(x) delineates the

pure discrete and hybrid regimes, with a value of 1 in the pure discrete region and a value

between 0 and 1 in the hybrid region.

At a very high level the hybrid scheme can be described thusly. At the beginning of a

hybrid timestep, the domain is decomposed into pure continuum, pure discrete, and hybrid

regions. The determination of which region is represented with which model is conducted

by what is termed the "oracle", which will be later explained. If the oracle determines that

a region described by the continuum model needs greater accuracy, then a process called

"enrichment" converts the continuum representation to a discrete representation. On the

other hand, if the oracle determines that a discrete region no longer needs to be resolved

to that level, then a process called "homogenization" converts that discrete representation

into a continuum representation. A step of MPM for what regions are now continuum and

a step of DEM for regions that are now discrete are then taken, with no communication

between the two regimes other than the weightage split previously described, resulting in

intermediary quantities of state. These steps will be referred to as "unconstrained" steps, as

they are unconstrained of any coupling between the two distinct systems. A coupling step

then acts to kinematically constrain the two partitioned systems in the hybrid zones. These

updated quantities are communicated back to the DEM and MPM solvers, which results in
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the end of timestep quantities for the entire simulation.

The hybrid scheme can be split into three main components. The first is the nature of

the split of the continuum and discrete representations in the hybrid zone. The second is the

coupling of those two split regions such that they end the step kinematically constrained.

The third is the domain decomposition, and the processes of homogenization and enrichment.

4.2 Reconciliation Zone Splitting

p (x) w (x, t) p (x) (1 - w (x, t)) p (x)

Figure 4-2: Blurred Density: (Left) The reference domain Q of an object with density p(x).
Mass density is colored in blue. (Right) A partition of unity of the density mediated by a
weight function w(x, t).

In order to understand the split of the system in the hybrid zone, we introduce a more

general system. We start with a body defined over some domain Q, with a density field

p(x). In the hybrid scheme, the domain is decomposed into two different domains according

to a weight function that is defined over time and space, w(x, t) with a range between 0 and

1. The weight function w allows us to decompose any field defined on the body into a linear

combination of two separate fields. Taking the density as an example:

p(x) = w(x, t)p(x) + (1 - w(x, t))p(x) (4.1)

To further separate and define the subsystems, let qi and v1 define the position and velocity

respectively of the first system and q2 and v 2 be the counterparts for the second system.

If we impose the constraint that qi = q2, then, along with the weight field, we can recover

the original system. If we further impose that the initial conditions of both systems are

identical, such that qi(t = 0) = q2 (t = 0), then we can define the velocity constraint

c(x, t) = v1(x, t) - v2 (x, t) = 0.

In order to derive the equations of motion for this decomposed system subject to the
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velocity constraint c(bmx, t), we formulate the problem in the context of Lagrangian me-

chanics, using Hamilton's Variational Principle [27]. From this point one, the time and space

dependence on the quantities of interest are excluded for brevity. We introduce the kinetic

energy T and potential energy U of the decomposed system, defined as

T =- pwv1v 1 dV + - p(l - w)V 2 v 2dV,2 J 2 L (4.2)

U = j pwe[q1]dV + p(l - w)e[q2]dV,

for potential energy per unit mass e. We then introduce the constraint C defined by

C= j T(v1 -v 2 ) dV (4.3)

where A (x, t) is a Lagrange multiplier field. With the Lagrangian L = T - U + C, we

apply the calculus of variations to obtain the Euler-Lagrange equations for the decomposed

system:

wpal dV =pw6e dV - A dV

Force coupling force

(1 - w)pa2 dV = - (I - w) p6e dV + ,dV 4

Force coupling force
Volume 2

under the kinematic constraint that v1 = v 2 . The Lagrange multiplier can conveniently be

interpreted as a coupling force that acts equally and oppositely on both systems, in order

to obtain a matching velocity field in both systems. Summing the equations for the two

systems recovers the original system, displaying a partition of unity for the decomposition.

We now replace these two abstract systems with a discrete particle system and a con-

tinuum system. We require the stress in the continuum domain to be compatible with

the homogenized frictional forces in the discrete domain. This homogenization is realizable

through the so-called Christoffersen formula [61, which relates the continuum stress to the

discrete frictional contact forces via:

I N

07ij = (f d + fq d '), (4.5)
a Econtact s
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where cbj is the (ij) component of the stress tensor, V is the volume about which one is

homogenizing the stress, N is the number of contacts in that volume, f' is the ith component

of the contact force vector at the ath contact, and d' is the ith component of the vector

connecting the centroids of the two grains in contact.

4.3 Coupling Constraints

With the integrated equations of motion derived from the Euler-Lagrange equations, we can

derive the position and velocity updates for the separate continuum and discrete systems in

the hybrid zone, where the Lagrange multiplier acts to correct the two system updates to

kinematically agree with each other. The continuum nature of the continuum portion of the

simulation allows us to define a velocity field everywhere in the pure continuum and hybrid

portions of the domain. The kinematic constraint therefore enforces that at every discrete

particle location, the discrete particle velocity is identical to the interpolated continuum

velocity field at that location, enforcing the constraint in an averaged continuum sense 131.

Letting the reconciliation zone be defined on a domain QR, and letting Ak represent the

constraint force on the kth discrete particle, the pth material point moves as

d
qp= VP,

d d
d (wpMvp) = d (wpMpv*) S - 5 FpkAk, (4.6)

kEQR kEQR

unconstrained step constrained step

while the kth discrete particle moves as

d
-qk Vk,

d (4.7)d -( Wk)MkVk) =d(l- Wk)MkVk) +AXk d-(.7
dt dtdt

unconstrained step constrained step

where V* and v* are the predictions from continuum and discrete simulations respectively

before coupling forces are added, and Fpk are material-point to discrete-particle interpola-

tion coefficients, defined by the same basis functions used in the pure continuum region to

interpolate the point properties to the grid.
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4.3.1 Hybrid Coupling Discretization

The hybrid coupling algorithm in the context of the complete simulation routine is now

discussed. In order to integrate in time, we choose an explicit scheme for all components:

the discrete method, the continuum method, and the hybrid coupling. While the usual sta-

bility tradeoff is made in using an explicit scheme over an implicit scheme, we note that the

simplification in the system of equations that results is, for now, worth the computational

cost. The scheme can therefore be interpreted as a predictor-corrector scheme, where the

DEM and MPM algorithms produce predictor quantities, and the hybrid coupling produces

a corrector, applied at the end of the step. As an aside we also note that having consistent

schemes across all simulations is important for coupling accuracy. Previous attempts were

made to couple a contact dynamics method to the explicit MPM method used to advance

the continuum. Because contact dynamics is implicit, the scheme produces a result that is

consistent with the constraints defined only in the pure discrete system. Applying a correc-

tor step to the the resulting quantities essentially throws away these constraint. Contact

dynamics also assumes completely rigid particles, which does not match the finite elasticity

of the constitutive law used for the continuum. The macroscopic phenomenological effects

of these discrepancies was that discrete particles slowly drifted through static hybrid zones.

Thus using the explicit schemes previously described, the hybrid coupling occurs as

follows. First, an unconstrained step is taken by the discrete method, producing discrete

predictor momentum Mdv* and forces fd. The predictor position is discarded. An un-

constrained MPM step is then taken up to and including the updateNodalMomentum step

of Algorithm 2, resulting resulting in continuum predictor momentum Mc* and forces fc*
defined on the grid. The hybrid weight field in the hybrid zone w is incorporated into the

DEM by multiplying the spring constants k, and kt by 1 - w and the mass of each particle

by 1 - w, when solving for the forces on each grain at the Force Update step of Algorithm

1. In the continuum, the stress and mass are weighted by w, which appear any time the

mass or stresses are projected to and from the grid. The predictor quantities form the RHS

of a system of equations for the corrected coupled system, which in matrix form is defined
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as:

Wci [ v1n+1 We(Mcv* +hfc*)

0 WdMd rd Vn+1 = Wd(Mdv* +hf*) (4.8)

pF iT -- 'V
O Jd 0 A 0

where W, and Wd are diagonal matrices that contain the mass weights for the continuum

and discrete systems and A are the Lagrange multipliers. Solving the linear system gives the

corrected continuum and discrete velocities vn+ 1 and V'+1 . Fd and Pc are defined such that

FTjd - F7v produces the residual relative velocity of discrete bodies within the background

velocity field defined by the material point grid. Thus rd is the identity matrix, while each

column of F contains the combination of weights, obtained from the MPM basis functions,

that reconstruct a DEM grain's mass. We use as arguments for the basis functions X" and

X , the positions of the material points and discrete bodies respectively at the beginning of

the unconstratined steps.

With the corrected constrained velocities for both systems, we communicate this infor-

mation back to the DEM and MPM algorithm. The discrete grains are advected according

to the corrected velocity + completing a discrete timestep. In the MPM simulation, we

overwrite the * momentuma on the nodes obtained after the updateNodalMomentum step,

and proceed with the rest of the MPM algorithm. With these separate systems evolved, the

hybrid step is complete.

4.3.2 Nodal Coupling

When implemented, the coupling method presented works, and was used as a proof of

concept on a number of toy problems. However, a linear system solve is usually a bottleneck

in numerical methods, and this proved to be true here as well. Despite the fact that the

linear solve is only on the relatively small hybrid portion of a simulation domain, the coupling

matrix still proved to be large in absolute terms. The usual suite of solutions were tried,

such as using iterative solvers and parallelizing the matrix solve, but ultimately the hybrid

system solve time was constrained by this large matrix.

To address this issue and greatly simplify the system, we move to coupling the discrete

system in an element-averaged sense, similar to the continuum system. In essence, we treat

the discrete grains like material points, and apply the projection operator defined by (3.29)
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to get nodal representations of the discrete mass and momentum on a grid that is colocated

to the MPM grid. In the context of 4.8, F, and rd both reduce to identity. We then

constrain these nodal discrete and nodal continuum momenta. What results is a system of

equations on each hybrid node:

WcMcvCn+ 1 + A - WcMc*, (4.9)

WdMdv'+1 - A WdMdv*, (4.10)

Substituting v'+1 for Vn+ 1 in Eq. (4.9), adding Eq. (4.9) and Eq. (4.10), and solving for

Vn+1, we find that:d

vjn+ 1 = vn+' (WCMC + WdMf-1 (WMcv* + WdMdv*). (4.12)

The constrained velocities can now be interpreted as an inelastic impact between two par-

ticles in one dimension at each hybrid grid node. An important quality of this approach is

that the hybrid nodes uncouple, with the solution at each grid node being independent of

the other grid nodes. Because only a single equation is being solved at each coupled node,

this coupling method is very quick, and can also be trivially parallelized. We also avoid

numerical issues such as having to solve an ill-conditioned matrix.

These new corrector momenta are treated in the same way as before in the MPM system,

overwriting the * momenta values and the MPM algorithm is advanced as usual. For the

discrete representation, the corrector nodal quantities are projected back to the discrete

grains in the exact same way as the MPM, described in the updatePointVelocities step.

This though carries with it the choice of a PIC or FLIP update, and we choose the Oz

parameter to be the same as that for the MPM method. In practice, we always use this grid

version of the coupling scheme because of its numerous advantages.
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(A) (B) (C) (D)

Figure 4-3: Initialization of a hybrid simulation: (A) We begin with a collection of DEM

grains. (B) We next locate a level set corresponding to a given low density, here denoted as

a black line. (C) Across the domain, we compute the distance to the density threshold, indi-

cated by lines in lighter shades of red as the distance increases. (D) We select a user-tunable

distance to the density level-set that serves as the center of the hybrid "reconciliation" zone.

We denote this critical distance as a solid black line. (E) We extend the hybrid zone along

the distance field by a given half-width in each direction, indicated by dotted lines. This

hybrid reconciliation zone between the dotted lines defines a zone where the DEM system

will be coupled to the continuum system. We homogenize the velocity and stress for use

in step (G). (F) We delete all discrete grains that fall within the inner boundary of the

reconciliation zone. (G) We run the "avoid-a-void" algorithm of Yue et al. [551 from the

outer boundary in to populate the region with material points. The material point states

are determined using the homogenized velocity and stress computed in step (E).

4.4 Domain Decomposition

4.4.1 Oracle

Now that we have defined the coupling in the hybrid zone, we have fully defined the equations

of motion in all regions of the domain and can integrate those regions in time and space.

The next component of the hybrid algorithm then is determining how the entire domain

is decomposed into those different regions. The mechanism that does this is deemed the

"oracle"; given the current state of the simulation, the oracle tells us what regions are safe

to be modeled via continuum and which regions need the higher resolution discrete model.

The oracle itself opens up a deeper field of inquiry, as it essentially asks what properties in

a granular flow are most important in capturing the different behaviors of that flow.

As a first pass, we consider a number of scenarios where simple continuum laws cannot

accurately capture behaviors of interest. Grain-scale level behaviors, such as breaking off of

individual grains from a pile, cannot be well captured by a continuum model. Geometries

and flows where finite-size effects in general are important are difficult to capture, such
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as the jamming of a silo due to arch formation near the silo orifice [4, 16, 33, 40]. Areas

with high-strain rates, resulting in very non-affine motion, are also difficult to capture in

continuum [13, 21, 25]. Free surface flows, and the interaction of multiple granular bodies

at their respective free surfaces, are also difficult to model with continuum models, with the

possible need to define contact models.

A convenient proxy that tends to delineate when these processes are or are not occurring

is the granular packing fraction. For example, at the free surface of a granular body, the

packing fraction goes to 0. BreakaWay particles also have a low packing fraction, where a

representative volume will only capture a few grains. Our current oracle therefore takes as

its input measurements of the packing fraction.

At the beginning of a hybrid update, the packing fraction of the pure discrete system

is calculated via the use of a background grid. We take the grid divisions to be an integer

multiple of the MPM and hybrid grids. Any elements in the packing fraction grid that are

co-located with a hybrid or MPM zone defined on the hybrid grid are marked as having a

packing fraction of 1. The elements corresponding to pure discrete zones are calculated via

area or volume intersections of the grains with the grid element they are in. From this 1

field we can construct an packing field isocontour corresponding to a user-adjustable critical

packing, 4c. 0o, another user-adjustable parameter, is the distance away from the 1 contour

deemed safe for the continuum model. Finally, the reconciliation zone half-width, rh, is used

in conjunction with the other parameters to establish the zone types. Elements are hybrid

if the distance of that element to the isocountour 1b is #o - rh 41 (x) < #o - rh. Zones

are marked continuum if (Id(x) > 0 - rh and discrete if '1 d(x) < 0 + rh.

4.4.2 Homogenization and Enrichment

With the domain decomposition machinery defined, the final step in fully defining the hybrid

scheme is to determine how to convert between the various representations. It should be

noted that we do not allow conversions from pure discrete regions to pure continuum regions

and vice versa, forcing them to transition through a hybrid regime. This results in a smoother

transition in time between the two representations and also ensures that there is always a

hybrid zone between pure discrete and pure continuum elements. If a simulation starts with

only discrete grains, then we run the following scheme twice, first transitioning the interior

to a hybrid representation, then again, converting the interior hybrid zones to continuum.
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We therefore must account for four different types of zone conversions: hybrid to discrete,

hybrid to continuum, discrete to hybrid, and continuum to hybrid. For the hybrid to discrete

conversion, any material points in the element are deleted and the discrete grains are kept

unmodified (other than their weight function w). Similarly, in the hybrid to continuum

conversion, any discrete grains are deleted and the continuum weights are changed but are

otherwise left alone. The conversions to hybrid zones are a little more involved, as creation

is more difficult than deletion. In going from discrete to hybrid, material points must be

introduced in manner such that the now weighted discrete grains and new weighted material

points sum to be consistent with the pure discrete system. The must occur for new grains in

converting from continuum to hybrid zones. In order to introduce new points and grains to

new hybrid zones, we utilize the "Avoid a Void" (AA) sampling algorithm developed by Yue

et al in the context of improved MPM point sampling [55]. AA utilizes Poisson-disk sampling

to generate the location of new points in a random but spatially uniform manner, helping

to ensure that the position of the MPM points (which are also the continuum quadrature

points) are visually well distributed but also result in satisfactory integration.

Therefore, to convert from discrete to hybrid zones, new MPM points are injected at

locations determined from AA. To initialize the properties of the points, we homogenize the

discrete grain properties. A new background grid is introduced, co-located with the hybrid

grid. We utilize the MPM basis functions to project the mass and momentum of the discrete

grains to the nodes of this grid, and obtain nodal velocities from those quantities. We then

use the basis functions again to interpolate this grid velocity at the location of the new

MPM points, and assign those velocities to those points. We also homogenize the stress of

the discrete grains with the Christoffersen formula, and project those stresses to the nodes.

Again we interpolate this field to get the MPM point stresses. We then determine the strain

field by utilizing the constitutive law. For the hyperelastic model, we obtain B6 by utilizing

the fact that dev[f6 ] = dev[o] and B = dev[B ]+ tI, and we solve for t with det[ 6 ] = 1.

To introduce discrete grains, we introduce grains with a radius determined from a given

distribution, and again pick new locations according to the AA algorithm. Here, there is

the additional constraint that new grains must not overlap other grains. It should be noted

that this is not entirely symmetric with the homogenization process; in homogenization we

determine a continuum stress field from a discrete force network but in enrichment we do

not establish a force network from a continuum stress field. This is because the latter is an
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ill-posed problem, and would require a possible optimization process to determine. We note

that this is a future area of work, and justify the current lack of force network formation

by the observation that in practice, the discrete grains quickly form appropriate contact

networks in the hybrid zone and these transients do not seem to affect the overall dynamics

of the problem at a noticeable level. The initial velocity of new discrete grains is computed

by averaging the velocity of surrounding discrete grains and material points within a radius

of 6 (mean) grain diameters, with an exponential falloff. This window width is slightly above

the minimal size that recovers continuum-like quantities in a "granular volume element" [37].

4.4.3 Optimized Zone Decomposition

The 3D generalization of Figure 4-3 can be visualized as a spheroid of discrete grains, with the

interior volume replaced by continuum. Visually, one only sees the exterior grains. However

in practice, one does not need even this many grains visible or needed as free surface. Take

for example sand in a sandbox. The oracle in that situation would take away the material in

the middle of the box, but leave the grains on the free surface and all sides touching the box.

What is only really needed is the grains at the free surface, for any possible objects that fall

into or interact with the sand. We therefore introduce a layered hybridization, where only a

single surface is discrete grains, and the rest of the surfaces and interior are all continuum.

This results in a further reduction in the discrete grain count, pushing possible speedup

gains higher. We apply this approach to the bunny toss, excavator, bunny drill, and tire

examples in Chapter 5.
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Chapter 5

Results

To benchmark the hybrid technique we employ the method on a number of model prob-

lems. In all of the following simulations we use a weight of uniform weight of 0.5 for both

the discrete and continuum components in the hybrid zones. Unless otherwise stated, the

simulations utilized an MPM cell width to DEM grain diameter ratio of 2:1. We also utilize

the hyperelastic formulation to model the continuum regions in all simulations.

Simulation
Silo, DEM
Silo, Hybrid
Toss, DEM
Toss, Hybrid
Drill, DEM
Drill, Hybrid
Tires, DEM
Tires, Hybrid

DEM
0.41
0.25
0.620
0.164
1.84
0.125
3.60
0.54

Cost Hybrid Cost
N/A
0.03
N/A
0.193
N/A
0.145

N/A
0.51

Total Cost
0.41
0.28
0.620
0.357
1.84
0.27
3.60
1.05

Speedup
N/A
1.47x
N/A
1.74x
N/A
6.82x
N/A
3.43x

DEM Grains
100,000
78,538
120,000
28,289
360,000
42,933
588,320
114,35

Table 5.1: Simulation performance. Timings of our hybrid approach compared to a purely
discrete approach for different scenarios. All reported costs have units of average seconds per
time step. The hybrid cost includes both the cost of MPM time evolution and the coupling
solves. We take a constant DEM time step of dt = 10-6 and a constant MPM time step of
dt = 10-5. We gathered all performance statistics on an Intel 3.5 GHz Core i7-4770K with
a single thread.

5.1 Granular Column Collapse

In Fig. 5-1, we simulate a collapsing column with pure DEM and with our hybrid approach.

Note the correspondence between the shapes of both piles. Further observe that our hybrid
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hi
Discrete grains

Continuum regime

Figure 5-1: Granular column: A collapsing column simulated with DEM (top) and with our

hybrid approach (bottom). Observe the nice agreement in the final profile with our hybrid

approach and the purely DEM approach.

method captures detailed "fly away" effects - individual grains separate from the overall bulk

and roll away at the front of the collapse, a visually important effect that would be difficult

to capture with a purely continuum model.

Encouraged by the agreement between the pure DEM approach and our hybrid approach,

we validated our hybrid model against the power-law scaling of the run-out distance 3d =

df - di reported in the literature, where df is the distance from the left wall (for a unilateral

collapse like our study, or from the column center for a bilateral collapse) to the center of

mass of the foremost grain that is connected to the main collection of grains, and di is the

initial column width (for a unilateral collapse, or the initial half-width for a bilateral one),

as in Fig. 5-1. Granular run-out in a column follows a power law scaling as a function of the

initial aspect ratio AR = hi/di in both experimental [29, 11 and numerical [46, 26, 30, 141

tests, where hi is the initial height of the column. Running a series of run-out simulations

over a range of aspect ratios, we corroborate the previously reported power law scaling.

Below a critical aspect ratio, we observe a linear run-out distance as a function of aspect

ratio. Above this threshold, we observe a second power law scaling.

As evident in Fig. 5-2, a pure discrete simulation captures the expected runout profile.

Encouragingly, our hybrid method captures a similar runout profile, with a clear turnover

point. In the aforementioned experimental study by Lube, experiments showed that for AR

< 1.8, the runout profile could be described by a simple linear relation: 6d/dj = a(AR).

Lube found a = 1.2 while our simulation data fits best with with a = 1.45. In regimes

with AR > 2.8, the runout distance was best described with a power law of the form

6d/dj = /3(AR)7. Lube observed a best-fit with / = 1.9 and -y = 0.67. In comparison, our

data fits best with 3 = 2.05 and -y = 0.67. We thus obtain a good quantitative match to

experimental results.

Extending to 3D, we also obtain a good qualitative matchup of the collapse in motion.
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Figure 5-2: Runout of a 2D granular column: Nondimensionalized runout distance, 3d/di =

(df - di)/di, vs aspect ratio, AR = hi/di. Like DEM, our hybrid technique captures the

two distinct regimes that Lube [29] observed in experiments. We perform a linear fit in the

low-AR regime, and a power-law fit in the high-AR regime.

Figure 5-3: 3D column collapse: a column collapse simulated with DEM (left) and with our

hybrid method (right) at the same snapshots in time.
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Fig. 5-3 shows the motion of a discrete and a hybrid column collapse. Again note the grains

at the edge of the runout, which the hybrid technique is able to capture.

5.2 Silo Discharge

In Fig. 5-4, we simulate a silo that discharges grains using a purely discrete approach and

our hybrid approach. With our approach, the oracle identifies the interior of the initial mass

of grains as a continuum. As grains exit the silo and the continuum region falls towards the

orifice, our method automatically converts the continuum material to discrete material. As

grains form a pile on the ground, our method detects the formation of the sufficiently dense

portions of the pile and automatically converts discrete grains to continuum material points

in this area.

0

I0

t =0 t= 0.67

Figure 5-4: Silo discharge: A silo
our hybrid method (right).
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grains with a discrete method (left) and with

The hybrid 2D hourglass has a slightly faster flow rate than the discrete only counter-

part. We believe that the ability to control the coordination number for newly sampled

DEM particles would reconcile these flow rates. Generating packings given constraints is an

interesting avenue of future work.
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Figure 5-5: 3D silo discharge simulated with our hybrid approach: Left is a full view of the
discharging grains while right is a cutaway view.

We also simulate a hybrid silo discharge in 3D (Fig. 5-5). The hybrid approach is able

to model ballistic motion and collisions after grains flowing from the silo enter a "gaseous"

state. This ability to model contact is crucial for capturing the asymmetrical shape of the

column, as well as the ballistic bounces when grains impact the container and the pile, both

of which are observed in real-life hourglasses.

e=0.5

MPM

Figure 5-6: Silo discharge (3D large orifice, r 1.8): Top: with 0 restitution, the flow looks

uniform. Middle: with e = 0.5, the flow appears more energetic, with multiple fly away
grains. The pure MPM version of this simulation (bottom) has a less energetic flow and
fails to simulate grains bouncing away from the bulk.
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MPM fails at simulating fly away grains, as the Particle-in-Cell method handles collisions

by homogenizing each Lagrangian particle's velocity onto a background Eulerian grid and

then transferring back. This series of operations results in an effectively inelastic collision

among Lagrangian particles, i.e. with restitution coefficient e = 0. Note that this inelastic

nature is independent of the particle-grid transfer scheme, i.e. PIC, FLIP, or APIC.

In contrast, our hybrid approach handles the full range of restitution coefficients from

0 to 1, due to the fact that we handle these collisions via DEM. In Fig. 5-6, we show a

comparison between e = 0 and e = 0.5. Note that the MPM counterpart is simulated with

sticky boundary conditions on the bottom. Notice that when e = 0, the hybrid approach

results in the expected behavior of less energetic-appearing grains. It fails to capture the

detailed bouncing effects and has a more uniform shape and flow profile.

Figure 5-7: Silo discharge (small orifice, r = 0.2): A silo discharges grains with a discrete

method (left), our hybrid method (middle), and a continuum method (right). Both the

discrete and hybrid approach capture size-dependent clogging effects, and all flow from the

orifice halts. The continuum simulation, in contrast, flows nonphysically.

Another advantage of our hybrid approach over a purely continuum method is the ability to

frictionally jam due to so-called finite size effects. In Fig. 5-7, we simulate a silo discharge

with a small orifice width using a purely DEM algorithm, our hybrid algorithm, and a

purely continuum algorithm. Note that we use an MPM cell width to DEM mean grain

diameter ratio of 1:1 to more accurately couple the hybrid region near the orifice. Our

hybrid simulation, like the purely DEM simulation, jams with the small orifice width, as

expected. On the contrary the continuum, regardless of the grid resolution, fails to capture

these finite size effects. Extra non-local modeling is needed 1231.

5.3 Penetrometer Insertion

Similar to Yan et al. [54] and Wellmann and Wriggers [531, we perform a hybrid simulation

of a penetrometer insertion into a bed of grains (Fig. 5-8). These simulations are difficult
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Figure 5-8: Penetrometer insertion: We insert a penetrometer into a bed of grains with

our hybrid algorithm (first four frames). As the penetrometer enters the bed, our hybrid

oracle identifies the region around the tip as requiring a discrete treatment and enriches

the simulation domain in this area. As the simulation progresses, the continuum region

eventually experiences a topology change and splits in two. Examining an overlay of a

hybrid simulation (purple) on a purely discrete simulation (peach), we find the resulting

profiles to be in almost perfect agreement (rightmost frame).

to perform directly with standard continuum methods owing to the massive plastic shape

changes observed around the penetrometer tip. Unlike previous works, we do not specify

the region to be treated with DEM a-priori. Instead, as the penetrometer advances into the

bed of grains, our hybrid method is able to enrich the region surrounding the penetrometer,

ensuring that it always interacts with the bed through discrete grains. As the penetrometer

is fully inserted into the bed, the original single continuum region is split in two. Our hybrid

approach gracefully treats this topological change with no extra machinery.

5.4 Bunny Toss

e=O

e=05

Figure 5-9: The bunny crashes into a container of gumballs with different coefficients of

restitution using our hybrid method.
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We initialize a bunny with non-zero translational and angular velocity and simulate the

resulting collision with a packing of gumballs. This high-speed bunny produces a splash

upon impact with the gumballs before coming to rest. In Fig. 5-9, the top simulation has

zero restitution, while the bottom simulation has restitution of e = 0.5. The larger coefficient

of restitution leads to a simulation with a more dynamic splash.

While DEM uses 120,000 grains to simulate this scene, our hybrid approach only uses an

average of 28,289 grains. In total, taking into account of the cost of MPM and the coupling

computation (where again the MPM cell width is 2 x the mean grain diameter), our method

is 1.74x faster than DEM (Table 5.1).

5.5 Excavator

Figure 5-10: We script an excavator to scoop gumballs out of a container.

In Fig. 5-10, we script an excavator to scoop gumballs from the same container as the

bunny toss. Our hybrid oracle robustly handles topology changes in the simulation domain

induced by the excavator. Although not visible, as the excavator enters the granular pile,

the continuum elements directly below the top DEM and hybrid layers are enriched to DEM

grains. As the excavator digs in and rotates through the pile, it only interacts with DEM

grains. material, it only As we employ the same granular packing as the bunny toss in this

test, we obtain a comparable speedup to that example.
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5.6 Bunny Drill

Figure 5-11: Four rigid bunnies are scripted to rapidly rotate about the vertical axis while
simultaneously moving into and out of a packing of 360,000 grains. The bunnies inject a
large amount of energy into the system, causing significant displacement of grains in the
interior while also producing an energetic splash near the free surface. From left to right we
show: a cutaway view of initial conditions for a hybrid simulation, a cutaway frame from
when the bunnies have penetrated the surface, a top down view of the same frame, and a
cutaway view of purely discrete simulation at the same frame.

We aggressively insert and remove four scripted bunnies from a pile of 360,000 grains

(Fig. 5-11). While initially only the top surface is represented as discrete grains, our method

is able to dynamically enrich the interior around the bunnies in response to their motion.

Our hybrid method obtains a similar visual result compared to the pure DEM simulation,

yet it uses 88% fewer discrete grains and is thus 6.82x faster (See Table 5.1).

The bunny drill provides a key example of when the hybrid method is useful. While

visually the only grains seen from the observer are the grains at the top of the container,

the behavior of those flyaway grains are directly impacted by the physics of the granular

layer underneath. By still solving for physics while the bunnies are not visible we enhance

the final result, while still retaining a speedup over a pure discrete simulation that would

capture similar visible granular dynamics. Also much like the excavator example, as the

bunnies move through the interior of the domain, they are constantly kept in contact with

discrete grains, so that any momentum transfers occur at bunny-DEM interfaces. This does

away with the need to introduce continuum contact laws. Another advantage of the hybrid

technique is thus shown: while we use the DEM to simplify the need to derive complicated

constitutive laws in the continuum, we also use the DEM to simplify contact laws with rigid

bodies.
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5.7 Tires on Gravel Road

Figure 5-12: Simulations of tires traversing a bed of gravel. Left: A render of the initial
condition (boundary condition not shown), with a tire poised to race across the bed of
grains. Notice the layered hybridization employed here. Center: Tires with different angular
velocities but equal densities. Left to right the tires rotate at 1000 rad/s, 100 rad/s, and 10
rad/s. The 1000 rad/s tire produces a large granular splash while the 10 rad/s tire produces
almost no splash. Right: Tires of different densities, but with the same angular velocities.
Left to right the tires have 5x, 2x, and 1x the density of gravel. As the tires traverse the
system, the larger density tires sink into the gravel.

On a slightly less whimsical note and to test our method on a more real world example,

we simulate off-road tires traversing a gravel road. The tires are given a constant angular

velocity around each of their axes, but are otherwise dynamically simulated. The hybrid

method is able to capture multiple effects such as large splashes when fast rotating wheels

collide with the grains, as well as tires sinking into the pile of grains due to a large density

difference. While simulating this scene with a pure discrete method requires 822,956 grains,

our hybrid approach allows us to simulate only a thin layer of discrete grains and the

remainder is continuum (Fig. 5-12 (a)). Here, the MPM cell width is 1.75x the mean grain

diameter. On average, the hybrid approach is 3.43x faster than a purely discrete method

(Table 5.1).

Again, as the tires dig through the domain, DEM grains are constantly being enriched,

so that the entires only interact with those grains. The enrichment also provides a source

for grains that are splayed back behind the tire.
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5.8 Spinning Drum

t = 0 t = 0.167 t = 0.333 t = 0.5 t = 0.667

Figure 5-13: Spinning drum: We rotate a drum filled halfway with grains using DEM (top

row) and using our hybrid algorithm (bottom row). As the system evolves, observe that the

shape of the free surface obtained with our hybrid method agrees with that of the purely

discrete method.

Continuing the theme of more practical applications, we simulate the flow of grains in a

spinning drum. An understanding of drum geometries is important in industrial applications

(e.g. mills, tumblers) and in the study of free-surface flows [161. To assess whether our

algorithm is suitable for these geometries, we fill a drum with grains to half its area, and

impose a rotation to the drum with a constant angular velocity.

With a pure DEM simulation, we observe nearly rigid grains near the base of the drum,

a steadily increasing flow towards the interior of the granular assembly, and loosely packed

grains near the free surface. As the transient phase subsides, we observe the characteristic

free-surface shape. Our pure DEM simulation thus matches physical experiment and other

numerical simulation, providing a baseline of comparison.

Thus comparing the purely discrete results to those from our hybrid algorithm (Fig. 5-

13), we find the profiles to be in good agreement throughout the simulation. Because

our hybrid algorithm treats regions near surfaces with discrete grains, we do not require

any additional machinery to handle the drum boundary condition beyond that from the

discrete simulation. Again, we demonstrate the advantage of the hybrid algorithm in treating

interactions with boundaries and rigid objects. Like the discrete simulation, our hybrid

algorithm is also able to capture free flight fly away grains near the top of the domain.
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5.9 Speedup Study

Ag

Figure 5-14: Periodic chute flow: We set a granular packing at an angle 9 with periodic

boundary conditions to simulate flow down a chute.

We seek to quantify the speedup we are able to obtain from the hybrid method over a

pure discrete simulation. In order to do this, we use the geometry, seen in Fig. 5-16. Grains

are initialized in a column and are then tilted at an angle 0 relative to the horizontal, with

gravity applied. We then apply periodic boundary conditions, causing a continual flow of

grains down-slope. Three factors are adjusted: the initial total number of grains Ni before

hybridization, the fraction of DEM left after the hybridization F, and the hybrid grid size

(identical to the MPM grid size here) H. A parametric sweep over these variables allows for

the construction of a phase plot, which shows for a given Ni, when a pure discrete simulation

with Ni grains is faster or slower than a hybrid simulation initialized with Ni grains but

with different F and H. Note that the geometry is kept fixed for all simulations, so that

increasing or decreasing Ni means decreasing or increasing the average grain diameter.

Ni ranges from 1,000 grains up to 156,000 grains, F ranges from 0.07 to 0.89, and H

ranges from 0.0025 to 0.000625. Cell width to mean grain diameter ratios thus range from

19:1 to 0.4:1. Fig. 5-15 displays phase plots over different values of H. As H decreases, more

elements are hybridized, and so computational costs associated with hybridization increase.

However, even for the most refined grid, a speedup can still be obtained with a reasonable

F for a simulation requiring 40,000 grains or more. It can be seen from Fig. 5-15 that

a speedup on the order of 12 x can be obtained. While it may seem that increasing the

resolution (thus decreasing H) results in a decay of the maximum speedup obtained, one

can exploit a characteristic of a smaller H: with smaller H, a smaller F can be obtained.
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Figure 5-15: Phase plots: Phase plots for H = 0.0025 (top left), H 0.00125 (top right),
H = 0.00083 (bottom left), and H = 0.000625 (bottom right). Red denotes regimes where

our hybrid scheme is faster while blue denotes regimes where DEM is faster.

Looking at the relationship between H and F from a different perspective, an analysis

of the speedup for layered hybridization in 2D can be conducted from the geometry of

the problem. Letting CD be the computational cost of a discrete grain, CE the cost of

enrichment for a hybrid cell, Cc the cost for a continuum element, and A the effective total

number of grains (average number of grains per cell multiplied with the number of cells

containing grains), we obtain the following expression for the total time TH for a complete

hybrid iteration and total time TC for a pure discrete simulation:

TH = CEhN2 +CD(ND + NH)N + CC(hN - ND)N,
hN2  

(5.1)

Tc = CDA.

A reduction ratio RA can then be defined between the computational time of a hybrid

simulation and an equivalent discrete simulation of A grains:
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TH _ CEhN 2  CD(ND+NH)N CC(hN-ND)N
R A= - = 52TC CDA hN CDA

Minimizing RA results in the largest speedup, and we can find the optimal N giving the

largest speed up as:

N CDA 1/3(53

(h2 (CE + C))

The key insight is that if N is chosen in the manner shown above in relation to A, then

as A -+ oo, RA -- 0, which means that increasing speedups can be had for increasing grain

numbers. This is an extremely useful property, and serves to highlight the potential of our

hybrid method to tackle problems bridging micro/mesoscale causes to macroscale effects.

For the layered hybridization method in 3D described in Section 4.4.3, we obtain the

best speedups if N scales with A according to N oc A1/ 4 . Then as A -+ oo, RA -+ 0.

It is important to note that N scales with A in the power of 1/4 (1/3 in 2D), not 1/3

(1/2 in 2D). An intuitive explanation is that if we refine both the discrete and continuum

elements equally (this corresponds to setting N oc A1/ 3 (N oc A1/ 2 in 2D)) while keeping

the discrete layer thickness to a minimum, then the discrete computation time will scale

as N 2 (N in 2D) whereas the continuum will scale as N3 (N 2 in 2D), so eventually the

continuum computation time will dominate, and we will hit a bound. However, if we refine

them differently and maintain a balance between the two (i.e., setting N oc A1/ 4 in 3D and

N oc A1/ 3 in 2D), then the acceleration continues.

5.10 Core Scaling

It should be noted that while the hybrid technique itself is able to push the domain sizes we

are able to simulate, the ability to run in parallel is also crucial for even larger problems.

Therefore we require an analysis of how well the code scales with core count.

To study how well our code parallelizes, we conducted a test with the bunny drill example.

We ran both a pure DEM and a hybrid simulation of the bunny drill with varying core counts.

For each core count, we ran each simulation for two hours of wall clock time and measured

the number of completed time steps.
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Figure 5-16: Periodic chute flow: We set a granular packing at an angle 0 with periodic
boundary conditions to simulate flow down a chute.

As evident from Figure 5-16, both DEM and our hybrid method do parallelize, albeit

with sub-linear scaling. We note that at the time of this test, many routines in the code were

not fully parallelized, and a complete refactoring with parallelization in mind would greatly

improve scaling. For example, a domain decomposition algorithm across all components of

the hybrid solve would result in much closer to linear scaling.
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Chapter 6

Enrichment and Homogenization

Improvements

The Results section showed that, for the problems run, the implementation of the hybrid

method seems adequate to capture bulk behavior, like the end shape of a pile of collapsed

grains. This however is interesting, as the previously described scheme includes a somewhat

straightforward solution to ill-posed problems. The most ill-posed portion of the hybrid

technique is the enrichment step, as a given continuum state can be represented by an

infinite set of discrete element grain arrangements.

The solution applied to the enrichment problem, Avoid a Void, simply adds grains to all

hybrid elements. There is no other information used to inform where Avoid a Void should

place grains (as the Poisson Disk Sampling is random by nature), how many grains to add,

or what kind of connectivity with other grains should be had. In the examples shown in

the Results section, this is seemingly enough, as there are actually a relatively low number

of conversions from discrete to continuum and continuum to discrete representations. For

example, in the column collapse case, the core of the columns remain relatively steady, and

conversions only occur around the exterior of the columns. Once the pile has collapsed,

the pile remains steady and leading to no further conversions. In the wheels driving over

gravel example, there are also a lack of conversions, as those conversions only occur for the

elements directly under the wheel; once the wheel has driven past a set of elements, the

granular bulk remains steady and the representations of the grains do not change.

The funnel flow example however indicates where the simple uninformed Avoid a Void
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scheme for enrichment can begin to break down. As can be seen in Figure 5-4, the top half

of the funnel starts with both the pure discrete and hybrid funnels at the same volume.

However after some of the grains have flowed from the top half of the funnel to the bottom

half, it can be clearly seen that the hybrid funnel flows at a different rate than the discrete

grains. A key difference between the funnel flow geometry and the other previously discussed

examples is that in the funnel flow, there is a continuous change from continuum to discrete

grains at the top, and discrete to continuum grains at the bottom. The result is that the

deficiencies of the enrichment and homogenization schemes are exposed.

6.1 Volume Change and Mass Conservation

Every hybrid update step, the Avoid a Void scheme attempts to pack in grains in the hybrid

elements. Because it does so in an uninformed matter however, this can lead to mass and

volume loss or gain. For example, if the discrete grains in a hybrid cell have a large enough

packing fraction 4 where the element remains hybrid, but below random close packing "RCP,

the previously described enrichment scheme has a chance to pack in additional points. If

that relatively low packing fraction is an accurate representation of the granular system at

that element, then there may be mass introduced. If that hybrid element then is converted

into a pure discrete element, permanent volume gain is then introduced into the system.

On the other hand, mass can also be permanently lost in the system. If for a given

hybrid element, the discrete grains have a packing fraction 4 < lactuai based off of mass

and volume that needs to be converted from a continuum representation, then the idea is

that the Avoid a Void algorithm will eventually fill that missing space. However, Poisson

Disk Sampling (PDS) has a limit and will not be able to reach (PRCP. If PactuaI "RCP

or worse, if 'actual > '
1 RCP because the underlying discrete structure is crystalline, PDS

will not be able to pack that space to the desired P. In some geometries and flows, this

may not be a problem, as, if the conversions happen at a slow rate compared to the hybrid

update frequency, then the grains in an underpacked hybrid cell may rearrange to allow for

PDK to pack in the enough grains. The column collapse and wheel examples for example,

fall under this category. The funnel flow however has a continual flux of continuum into the

hybrid zone which must be enriched. Mass loss occurs because the continuum to enrichment

mass flux is larger than the source of discrete hybrid mass that the enrichment scheme can
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provide. The resulting lack of discrete particles then leads to volume loss.

(a) (b) (c)

Figure 6-1: Evolution of a hybrid flow down a chute showing mass loss. (a) Initial state. (b)

After 0.5s of flow. (c) After Is of flow.

As an extreme example, take the example of a flow down a chute with periodic boundary

conditions. In this system, gravity is angled relative to the bottom boundary, driving contin-

uous flow through the system. On the left side, discrete grains continuously enter a hybrid

zone, where continuum points are in turn generated. As they move left to right through the

system, the discrete points are deleted as they enter the pure continuum zone and contin-

uum points gain full weightage. The points then enter the hybrid zone on the right, where

discrete grains are generated. Finally the continuum points exit into the discrete zone where

they are deleted, and the discrete grains gain full weightage. With the current scheme, mass

and volume are continuously lost. Eventually the pile of flowing grains reduces to a point

where there is insufficient height to support a continuum or hybrid region according to the

oracle, resulting in a pure discrete system.

There are thus two main problems that must be addressed: mass conservation and vol-

ume change tracking. These two problems however must be resolved in the discrete represen-

tation and continuum representation in different ways. Mass conservation for the continuum

representation (converting mass from discrete grains to continuum) is fairly simple, as the

continuum nature allows for mass addition or subtraction in whatever increments desired.

Mass in the continuum can thus be tracked exactly over time. Volume change though must

be conducted in a manner consistent with that mass change, and this must be addressed.

For the discrete representation, mass conservation and volume change are completely

coupled, as the density of the particles remains constant throughout the simulation. Mass
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conservation is more difficult to achieve in the discrete case, as mass conservation becomes

a packing problem as previously described. Mass and volume in the discrete case also come

in discrete units of a single grain at a time. This means that mass conservation cannot be

exactly achieved in the discrete representation. The homogenization of a grain of radius

ra can be offset by the enrichment of a grain of radius rb, but mass will only be exactly

conserved if ra = rb. For a monodisperse system this will of course always be true, but all

the simulations run in this study have some polydispersity, making that condition almost

never true. Thus mass conservation can only be achieved in a time-averaged sense for the

discrete particle representation.

6.1.1 Mass Ledger

1 2 3 4 5

123 4_________

Figure 6-2: Mass fluxes in a hybrid system.

In order to conserve mass and inform the enrichment scheme on how much mass must be

converted from one representation to another, all of the relevant mass fluxes must be kept

track of. Take as an example the simple hybrid system shown in Figure 6-2. Again, a simple

50/50 weight split in the hybrid system is shown both for simplicity and to reflect the weight

function used in the current study. At the nh hybrid update, the marked DEM grain has

radius rd, density Pd, and weight w' = 1, resulting in a mass m' = md = wnPd7rr2. At

the nn+l hybrid update, the discrete grain d has moved into the neighboring hybrid element

(Element 1). Now, wn+ 1 = 0.5, resulting in a mass mn+1 = 1/2mn. The mass difference

Amd = 1/2md is mass that must be represented by continuum in order to maintain a
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partition of unity for the total mass that entered, md. There is thus a deficit of continuum

mass in Element 2 that must be added, through addition of mass to the currently existing

MPM points, addition of a new MPM point with that deficit, or some combination of both.

Moving attention to the marked MPM point, the MPM point p at the nth hybrid update

is in the hybrid zone and has weight w' = 0.5 and mass mi wmP =-0. 5m. At the next

hybrid update its weight changes to 1, resulting in a mass of m-+1 = mP and a resulting

continuum mass excess in Element 3 of 0.5mP.

From these cases it can be seen there are multiple ways that discrete and continuum

mass can accrue deficits or excesses depending on weight changes as they move between

different zone types. These excesses or deficits are logged in a mass ledger, which informs the

enrichment and homogenization schemes on how much mass of which type of representation

is required. It should be noted that while there must always be at least one hybrid zone

between a pure discrete and pure continuum zone, we still account for the rare chance that

a grain in a pure discrete zone at hybrid update step n advects to a pure continuum zone

by hybrid step n + 1 due to geometry and hybrid update frequency.

This case is not treated any differently to the previously described cases. While the

discrete point is deleted from the system for being in a pure continuum zone, this can be

interpreted as simply a weight change from wd = 1 to Wd = 0. This results in a continuum

mass deficit of md in the element that the grain was deleted from. The same could of course

occur for an MPM point entering a pure discrete region, resulting in a discrete mass deficit.

This analysis so far has assumed a fixed domain decomposition, where all element types

remain fixed over time. This however does not need to be the case, as the framework of

mass deficits or excesses as a result of weight changes can generalize to a system where DEM

grains and MPM points advect through elements with different representations, as well as

the representations themselves changing from timestep to timestep. For the mass ledger, all

that needs to be known is the type of zone that the grain or point was in at the previous

hybrid update, and what type of zone it is currently in. If the zone type was the same for

the starting element at the previous update as the current element at the current update,

then no change to the ledger needs to be made. If the zone types are different, then the

mass difference due to the weight change is then marked in the ledger.
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6.1.2 Mass Ledger Implementation

In order to keep track of mass deficits or excesses, two ledgers are introduced, which, in im-

plementation, are simple vectors: the dem deficit and continuum deficit. Each vector

stores the eponymous mass deficit on each element in the simulation. To establish conven-

tion, mass deficits are positive and excesses are negative. Assuming an MPM point starting

with a mass mp and a DEM grain with mass md, the ledger changes can be summarized as:

Representation Start Zone End Zone Ledger Deficit

DEM Grain Discrete Discrete N/A N/A

Continuum mpmdeficit +md

Hybrid mpm deficit +0. 5md

Hybrid Discrete mpmdeficit -0. 5md

Continuum mpm_ deficit +0. 5md

Hybrid N/A N/A

MPM Point Continuum Discrete dem deficit +mP

Continuum N/A N/A

Hybrid demdeficit +0.5mp

Hybrid Discrete demdeficit +0.5mp

Continuum dem deficit -0.5mp

Hybrid N/A N/A

Table 6.1: Mass ledger contributions.

The mass ledgers for a hybrid update are calculated near the beginning of the hybrid

update: after the level set calculation and after the oracle has determined the zone types

based on those calculations, but before the enrichment and homogenization steps. The

ledgers are updated every hybrid update, so that there is a running list of mass deficits.

This thus enables a way to prevent mass gain and tackle mass loss. If an element has a

negative deficit due to, for example, introducing a grain with a slightly larger radius than

was needed, then the ledger can inform the enrichment scheme to not introduce any more

DEM grains in that cell. On the other hand, if there is a positive deficit, then if at a given

hybrid update the packing scheme is unable to introduce enough grains, then there is a

chance in future updates that the grains have reached a configuration to allow for further
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grain introduction. Implementation wise, only elements that have a positive deficit are

marked for enrichment.

6.2 Packing Schemes

Practically speaking, the mass ledger mostly addresses mass gain problems, as it stops

enrichment in those elements. In elements that have a deficit, the enrichment scheme will

continuously try to input grains and points, but this is not any different than the previously

used scheme which tried to pack grains for all hybrid elements at every hybrid update.

The problem remains that for certain geometries and flow profiles, the Avoid a Void's PDS

scheme, which is random in nature, was unable to introduce DEM grains at a high enough

packing fraction at a rate equal to or greater than the continuum mass flux into a hybrid cell.

A new packing scheme is needed. The following section summarizes the different packing

strategies that were attempted and discusses their characteristics.

In order to evaluate the effectiveness of new packing schemes, the inclined plane geometry

shown in Figure 6-1 is used as a case study. The hyperelastic model was used to obtain

the result shown in Figure 6-1 for demonstration purposes; a switch is now made to the

hypoelastic model, as it includes the p(I) relation that captures the correct velocity profile

in an inclined chute flow, minimizing the role of the constitutive law in the mass loss issue.

6.2.1 Random Packing

Before any new packing methodologies are introduced however, it should be noted that the

random scheme has a parameter numTrials which controls the number of attempts the code

makes to introduce a new point. For all of the simulations shown in the Results section,

this was set to 20, mostly as a compromise between speed and accuracy for the geometries

that we. The first logical attempt at a solution to the packing problem is then to simply

increase the number of attempts, trading the time lost in increasing the number of attempts

for better packing.

While increasing numTrials does help slow down the mass loss rate, the mass loss rate

does reach a limit as a function of numTrials. At first pass this may seem counterintuitive,

as in the limit of infinite trials a dense configuration should be sampled. However, this is not

true do the fact that the random packing scheme is a greedy scheme. If the random scheme
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picks a point center with a random radius that has no collisions with any other point in the

enriched element, then that point will be considered valid and added to the existing points.

This limits the possible areas that new grains can now enter, as can be seen in Figure 6-3.

(a) (b) (c)

Figure 6-3: Non-optimal enrichment. (a) Element that needs additional discrete grains. (b)

Optimal packing that reaches desired packing fraction. (c) Actual sub-optimal placement of

grain that prevents other grains (light blue) from being injected.

6.2.2 Grid Packing

Enrichment can occur often, depending on the geometry of the problem. Because of this,

speed is still a requirement of any practical packing scheme. Thus, while less informed

greedy schemes may not provide adequete packing, they do potentially show a much larger

speed advantage over other schemes. Packing in general is a problem that shows up in many

contexts, and solutions do exist that show the ability to attain very high packing fractions

that still avoid crystalline packings . However these solutions are currently avoided, due to

their computational expense. For example, some class of solutions solve a constrained mini-

mization problem, maximizing packing fraction while constrained to limited or no overlaps.

Introducing an optimization solve is potentially too slow for the current application. On the

other hand there are a class of solutions that essentially inject grains at random in a system

and substep a discrete element method to attain a viable configuration. Again, solving a sub

discrete element problem with multiple timesteps needed to achieve an equilibrium state is

too expensive.

Therefore, a more guided greedy method is desired. From Figure 6-1 it can be seen that as

the grains flow from left to right, space intuitively opens up upstream of the hybrid elements.

The next solution attempted utilized this fact, prioritizing grain injection attempts to the
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downstream-most available spaces in the element, to promote closer packing to the currently

existing grains. To do this, the area of an enriched hybrid element was discretized into a grid.

The nodes of the grid represent possible injection points. As a note, this presents a parameter

that must be tuned: the discretization distance between nodes. Smaller discretizations can

lead to less space between injected points, but also increases the number of attempts that

must be made.

Figure 6-4: Grid enrichment scheme.

The scheme would then attempt to inject grains, starting from the downstream side. The

downstream direction was determined by checking the surrounding elements of the element

currently being enriched; if a continuum element neighbors the hybrid element, then the

downstream element side is the side opposite of the shared element side. If a discrete

element is adjacent to the enriched element, then that face is taken as the downstream side.

If only hybrid elements surround the current element, then a direction is picked at random.

6.2.3 Circle Sweep

While the grid scheme was an improvement over the initial random packing, it proved to

still be unable to provide a discrete mass source that offset the continuum mass flux into

a hybrid cell. The goal of the scheme was to increase the chances of introducing points

closer to the existing points; this was achieved, but not to the desired level. To address this

deficiency, the next scheme, deemed here the "circle sweep" scheme, strictly forced at least
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one point of tangency for any injected grain to the other grains in the cell.

(a) (b)

(c) (d)
Figure 6-5: Circle sweep scheme. (a) Initialize with seed grain (light blue). (b) Sweep
around seed grain. (c) Move to the next seed in the queue. (d) Sweep around new seed
grain.

In order to discuss the scheme, take as an example a pure continuum element that at the

current hybrid update is now a hybrid cell, and must be enriched. To initialize the scheme, a

grain is injected at a random location within the element and is given an index number i of

1. This index number is added to a queue of indices called the seedqueue. The angular

arc of 27r around this grain is then discretized into n angular divisions. Grains injections

are then attempted at all of these angular divisions at a distance equal to the sum of the

radius of the seed grain ri and the new grain rew, assuring that any new grain has at least

one point of tangency to other grains in the element. A new valid grain is given an index

number of 1 plus the index number of the grain at the rear of the queue, which itself is then

enqueued. Once injection attempts have been made at all of the possible angles around the

seed grain, the index of the seed grain is dequeued. The next grain in the seedqueue

then becomes the seed grain, and the process is continued. The scheme then stops once the

queue is empty.

In hybrid elements with DEM grains already present, the circle sweep algorithm begins

by enqueueing all of those grains in the seedqueue, instead of injecting a grain at ran-

dom to initialize the queue. The algorithm then continues as stated, working through the
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seedqueue. Again, this scheme introduces a tunable parameter n, which controls the

number of injection attempts made around every seed grain.

6.2.4 Two Point Tangent

The circle sweep scheme represents an improvement over the grid scheme, but again, for

the chute flow geometry was not enough to offset the continual continuum mass flux into

the hybrid elements. The final scheme attempted, called the "two-point-tangent" (TPT)

scheme, as its name suggests, enforces two points of tangency for any new injected points.

(a) (b)

(c) (d)
Figure 6-6: Two Point Tangent Scheme. (a) Initialize with seed grain (light blue) and

partner grain (green). (b) Inject new points at locations that are tangent to seed grain and

partner grain. (c) Move to the next partner grain in the queue. (d) Inject any possible

grains between the seed and new partner grains.

In order to initialize the TPT scheme for a newly enriched element, a grain is injected

at random and added to the same seedqueue data structure as the circle sweep scheme.

The angular region around the grain is again discretized and grain injections are attempted

at these angles. The divergence point between TPT and the circle sweep scheme occurs

when a valid grain is found and added to the seedqueue. Instead of continuing injection

attempts at the other remaining possible angles, the scheme stops, and uses these two grains
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as the starting point of the scheme, with the first designated as the seed grain and the second

as the partner grain. With these two tangent grains of radius ra and rb, a new grain with

radius r, can be injected that is tangent to both of the first two. Given the center points

of the grains a and b and their radii, and the radius of the new grain r,, an analytical

formula can be derived for the two possible center points of the new grain c that maintains

tangency with a and b. Injection attempts are then made at these two locations, and any

valid attempts are added to the simulation and to the seedqueue. The partner grain then

moves through the queue (without a dequeue operation), with any possible injection points

between the seed and partner grains injected. Once the partner grain has gone through the

entire queue, the seed grain is dequeued and moves to the next grain in the queue.

6.2.5 Packing Scheme Results
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Figure 6-7: Comparison of Normalized Mass vs Time for different packing techniques.

Figure 6-7 shows the normalized mass (mass of the DEM + MPM normalized by the

initial total mass) over time for the different packing schemes, in the chute flow geome-

try shown in Figure 6-1. The random packing scheme performs worse than the others as

expected. The grid scheme has periods of performing worse and better than the random

packing scheme, but it is clear that it still loses mass at an unacceptable rate.

As stated before, what is desired is a greedy scheme that places new grains in a manner

that optimizes future possible grain placement opportunities. One path towards that is

packing new grains as closely as possible to existing grains, leaving void space in the regions
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upstream of the existing grains. The circle sweep, which enforces at least one point of

tangency, achieves this and is clearly more capable at preserving mass than the random and

grid schemes. The two point tangent scheme, which enforces an even closer placement to

the existing grain, achieves an even better conservation rate. In fact at first, it is able to

exceed the required packing fraction, though eventually loses mass as well. It should be

noted however that the mass loss rate is still slower than the circle sweep scheme.

6.3 DEM to MPM Constitutive Response

- ~w-

Figure 6-8: DEM grain moving into continuum (left to right), and a need for a constitutive
response from the MPM (right).

The new packing schemes show promise, but are not enough to alleviate the mass loss.

The reason for this can be explained in Figure 6-8. When a DEM grain from a hybrid element

moves into a continuum element (or from a discrete element to a hybrid element), the lost

mass of that DEM grain is redistributed to the MPM points. However, this increase in mass

must be accompanied by a corresponding increase in volume to ensure that the density of the

material does not increase without bound. What this should mean is a volumetric expansion

of the material, or equivalently a pressure increase to expand the material. In reference to

the chute flow as seen in Figure 6-1, DEM that ends up moving into the pure continuum

does not result in a corresponding continuum pressure, resulting in a lack of strength in the

continuum. This lack of strength in the continuum further results in an unrealistic flux of

DEM grains entering the continuum zone from the top, meaning that the packing schemes
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must keep up with continuum mass coming from fluxes from the left and top combined,

which is not possible.

We must thus take the pressure calculation in the continuum into account. The Jaum-

mann constitutive update referenced in the explanation of the Hypoelastic-Plastic model

takes its pressure as simply -}tr(or), which does not see the mass jump. The volume up-

date also does not respond to the mass jump, only being a function of L. In a pure continuum

simulation this does not pose a problem, as mass is kept constant for a given MPM point.

However with the hybrid scheme and the introduction of homogenization, sudden jumps in

mass occur regularly, which is an issue that must be tackled.

6.3.1 Pressure Update

In the continuum constitutive update, we could replace the pressure calculation with an

equation of state, like the one shown in Equation 3.23. However, this poses a problem.

Because the homogenization process and the mass ledger only convert DEM mass to MPM

mass when a DEM point crosses from one element type to a different element type, the mass

jumps are step functions.

To illustrate the severity of this issue, if in a given simulation the DEM grain number

to MPM point number ratio is 10 to 5 in an average hybrid element, a hybrid DEM grain

moving into a continuum element would result in a 5% increase in density for the MPM

points in that continuum element. This 5% change is then multiplied by the bulk modulus

K, which is on the order of MPa to GPa, resulting in an extremely large pressure response.

This rise in pressure occurs over a single timestep, resulting in the pressure impulse being

tied to the timestep chosen for the simulation.

There thus needs to be a way to introduce a constitutive response to the mass increase,

but in a way that is smoothed over time to prevent large impulses in the system. A proposed

mechanism to do this is to introduce a rate law for the pressure:

# Klog - (6.1)

# is a term that controls the rate at which one reaches the desired pressure. In the limit

that 3 approaches infinity, we recover the instant pressure update previously described. The

rate law allows us to smooth the pressure over time, with 3 a tuning parameter that allows
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us to achieve a reasonable pressure response without introducing large pressure impulses.

Numerically we solve (6.1) with a simple forward euler integration.
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Figure 6-9: Normalized Mass vs Time with pressure update for different values of 3.

Figure 6-9 shows the effects of different values of 3 on mass conservation. The random

scheme is shown for reference, and the rest of the simulations for all values of 3 used the two

point tangent packing scheme. 3 = 0 corresponds to no pressure update and only the two

point tangent scheme being active. As can be seen, introducing a pressure response, with

the correct 3 value, is enough to preserve mass. Thus, with the combined machinery of the

mass ledger, more efficient packing schemes, and an update scheme for the pressure, we are

able to conserve mass in a system that requires constant homogenization and enrichment.

6.3.2 Mix PIC-FLIP Update

While the pressure update is a necessary component to introduce a constitutive response to

the mass transfer to the continuum, we can also work to sidestep the matter entirely. At

first glance, it may seem counter to the hybrid constraint that DEM grains in the hybrid

cells adjacent to the continuum cells move into the continuum, when the MPM points in

those hybrid cells do not. The reason for this is that the constraint is a cell-averaged one,

resulting in the DEM homogenized element velocity being constrained to match the MPM

homogenized element velocity. However, the DEM grains are able to move in ways that

exist in the nullspace of the projection to and back from the grid. The velocity transfer back

to the grains also uses a mostly FLIP update, matching the MPM grid-to-point velocity
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update; this means that the accelerations, and not the overall movement of the grains, are

tied to the projection basis functions. Thus an individual grain moving downwards into

the continuum region may be offset by the upwards movement of another grain, with the

projected velocity field not noticing these movements.

To better constrain the DEM grains, we come back to the fact that we have a choice in

how we derive the grain velocity from the grid. A complete PIC update is too dissipative and

is thus not ideal, however it is clear that a complete or close-to-complete FLIP update allows

for undesired individual grain movement, resulting in DEM grains entering the continuum.

We thus choose to decompose the velocity update into a grain velocity component that is

tangential to the hybrid level set, and a component that is normal to that level set:

Vn+1 = Vn + Vt (6.2)

n+1 en (6.3)Vn =Vd *e(63

n+1Vt = Vd et (6.4)

where et and en are the tangential and normal unit vectors with respect to the level set. To

slow DEM movement into the hybrid zone caused by free DEM movement (as opposed to

DEM movement into the continuum caused by bulk motion of the combined representations),

we apply a PIC update in the normal direction and a FLIP update in the tangential direction,

so that

Vn = Vpic * en (6.5)

vt = Vf lip et (6.6)

Figure 6-10 displays the effects of the new mixed velocity update. With #3 = 0, the

mixed update greatly slows the number of DEM grains entering the continuum from the top,

allowing for the packing scheme to equal the flux entering from the left of the simulation

and the small flux from the top, as opposed to both the left and top of the continuum zone.

The lack of pressure update however does mean that there is a slow rate of mass loss, due

to the inability to match the slow drip of DEM from the top of the continuum zone. The

mixed formulation, along with Q = 1 is able to match the mass gain of the 3 = 3 and pure

FLIP update, showing that only a small pressure response is needed to combat the small
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Figure 6-10: Normalized Mass vs Time with mixed PIC-FLIP update and pressure update

for different values of /.

flux of grains crossing into the top of the continuum zone.

We therefore have another tool we can use to preserve mass. A combination of all of the

previously discussed techniques leads to the ability to tackle problems other than those that

were discussed in the Results section. Simulations with periodic domains, like the chute

flow test case or annular shear flow, will especially benefit from these techniques. Work

continues on tuning and optimizing these techniques, which will open the door to a wide

range of geometries inaccessible with the simpler techniques used before.
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Chapter 7

Conclusions and Future Work

In this study we have presented a technique that is able to couple two different methods,

the discrete element method and the material point method, that are suited for different

length scales, via a hybrid zone. A coupling scheme is presented that decomposes the mass

and stress of the hybrid domain into a weighted discrete mass and stress and a weighted

continuum mass and stress. The constraint that forces the two different representations to

be kinematically identical in the hybrid zone is also presented.

We have additionally demonstrated methods to convert between the two representations

that preserve mass (in a time-averaged sense) and momentum. The sum of all of this

machinery is that the current method is able to obtain a significant speedup over the pure

discrete method, while still solving for the mechanics occurring in the areas not represented

by discrete grains. Qualitative and quantitative matches are seen between the hybrid method

and experimental literature.

The results obtained so far indicate that there is promise to this technique. However,

there is still much left to explore and improve. For instance, the oracle is an area rife

for improvement. Properties besides packing fraction, such as strain rate or strain rate

gradients, could be used to identify phenomena like shear bands, and enrich those bands

before they form in the continuum. As briefly alluded to, enrichment could capture stress

fields via the initialization of force chains. Additional behavior, such as cohesion, could also

be added. The application of the hybrid technique to other contexts could also be explored,

such as bridging the multiscale gap between cells and tissue-level mechanics in biological

systems. The potential is clear, and we will move forward in exploring these new ideas.
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