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New Progress Towards Three Open Conjectures in Geometric

Analysis

by

Paul Gallagher

Submitted to the Department of Mathematics
on May 3, 2019, in partial fulfillment of the

requirements for the degree of
PhD in Mathematics

Abstract

This thesis, like all of Gaul, is divided into three parts.

In Chapter One, I study minimal surfaces in R' with quadratic area growth. I
give the first partial result towards a conjecture of Meeks and Wolf on asymptotic
behavior of such surfaces at infinity. In particular, I prove that under mild conditions,
these surfaces must have unique tangent cones at infinity.

In Chapter Two, I give new results towards a conjecture of Schoen on minimal
hypersurfaces in R'. I prove that if a stable minimal hypersurface E with weight
given by its Jacobi field has a stable minimal weighted subsurface, then E must be a
hyperplane inside of R'.

Finally, in Chapter Three, I do an in-depth analysis of the nodal set results of
Logonov-Malinnikova. I give explicit bounds for the eigenvalue exponent in terms of
dimension, and make a slight improvement on their methodology.
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Chapter 1

New Results Towards the Schoen

Conjecture

1.1 Introduction

Let -y c R' be a compact curve without boundary.

question:

One could ask the following

Plateau's Problem: Does there exist a compact surface E so that OE = -y and E

has minimal area out of all surfaces Z with &Z = y?

A solution to Plateau's Problem is called a minimal surface. This question was

initially posed by Lagrange in 1760, and began the study of Calculus of Variation.

Minimal surfaces occur in nature as soap films (see Figure 1-1), and Plateau did soap

film experiments to further explore the problem in the mid 1800's. Plateau's problem

in three dimensions was fully resolved in the early 1930's independently by Douglas

and Rado.

Suppose that E -y. Then a necessary condition for E to be area-minimizing is
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Figure 1-1: A half-helicoid created by a soap film

the following. If Et is a smooth variation of E so that aEt = y and Eo = E, then

d
- Area(Et) =0 (1.1)
dtt=o

The above equation seems like a global condition on E, but it can be interpreted

locally. The second fundamental form of E, denoted A, is defined as follows. Let

v, w be vector fields on E, let n be a normal field, and let V be the connection on R

Then

A (v, w) :=(V, w, n)

Miraculously, A turns out to be a symmetric 2-tensor on the tangent space of E. The

mean curvature H of E is defined to be the trace of A.

Equation 1.1 can be show to be equivalent to H = 0 on all of E - which is a

purely local condition. However, this equation implies only that E is a critical point

for area, not that it is a local minimizer. In order for E to be a local minimizer, it is

necessary that the second order derivative of all variations be positive, that is,

d7t 1 (Et n B(p, R)) > 0

9



The condition above is called stability. After a computation, this winds up being

equivalent to the statement that the operator Ar + AI 2 has all negative eigenvalues,

where AE is the Laplacian on E. Note that we are taking the Laplacian to be negative.

This operator is called the Jacobi operator, and solutions to the equation

AZh + A1 2h = 0

are called Jacobi functions. Any stable minimal surface is guaranteed to have a

positive Jacobi function, and if a complete minimal surface has a positive Jacobi

function, it is guaranteed to be stable.

While minimality is a purely local condition, stability is inherantly global - all

minimal surfaces are locally area minimizing, but they might still be unstable on a

large scale.

A commonly studied question in minimal surface theory is the following:

What do complete stable minimal surfaces look like?

The first results towards this question concerned minimal graphs, which are guar-

anteed to be stable, since the vertical vector field provides a positive Jacobi function

when dotted with the unit normal to the surface.

Theorem 1.1.1 (Bernstein [4]). Let E be a minimal graph in R3 . Then E is a plane.

Since this result was the first to give an effective condition under which a minimal

surface was a plane, these types of results are often called Bernstein theorems.

Bernstein's original result relied heavily on complex analysis. A proof via curvature

estimates was presented by Heinz [20].

Bernestein theorems for minimal graphs were totally resolved by a series of results

in the 1960's:

10
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Theorem 1.1.2. In dimension 4 (Fleming /18, De Giorgi /121), 5 (Almgren [3]),

6, 7 and 8 (Simons /35]), all complete minimal graphs are planes. However, starting

in dimension 9, there exist nonplanar minimal graphs (Simons [35], Bomberi, De

Giorgi, Giusti [5])

The general question for the structure of stable minimal hypersurfaces is much

less well understood. The only full results are the following in dimensions 3 and 8.

Theorem 1.1.3 (Fischer-Colbrie-Schoen [171 and doCarmo-Peng [13]). If E is a

complete stable minimal surface in R 3, then E is a plane.

Theorem 1.1.4 (Simons [35]). In R' the minimal cone over S3 x S3 is stable

In addition, the Simons cone is also area minimizing, as proved by Bomberi, De

Giorgi and Giusti [5].

There is virtually nothing known for dimension between 4 and 7. Schoen has

conjectured the following:

Conjecture 1.1.5 (Schoen). If E C R4 is stable and complete, then E is a hyperplane.

We prove two main results towards proving this conjecture. Both effectively put

restrictions on the types of stable minimal hypersurfaces in R4 which are not planes.

The first theorem restricts integrability of |A|.

Theorem 1.1.6. Let E be a stable minimal hypersurface in R 4, and let A2 > A ;> A

be the three eigenvalues of A2 . Suppose that for some c

jA13-E < oo

Then E is a hyperplane.

The second theorem restricts what minimal subsurfaces of E can look like.

11



Theorem 1.1.7. Let E3 be a stable minimal hypersurface in R', and let h be a positive

solution of the Jacobi equation on E, that is, let Ah + |Aj 2h = 0. If there exists a

surface ]2 C E such that I is minimal and stable when weighted by h, then E is a

hyperplane.

12



1.2 Proof of Theorem 1.1.6

Schoen-Simon-Yau proved:

Theorem 1.2.1. /31] For n < 6, there exists p(n) > n such that if a stable minimal

hypersurface E C Rn satisfies | n BRI < CRP, then E is a hyperplane.

Therefore, to prove Schoen's conjecture, it is sufficient to show that any stable

minimal hypersurface has volume growth slower than some polynomial in R. We

will show that we can apply the following result of Carron to get Euclidean volume

growth.

Theorem 1.2.2. /8! Let Mn be a Riemannian manifold, and let Al(x) be the most

negative eigenvalue of Ricm(x) or 0. Suppose that the following three conditions hold:

1. There exists some 6 > 0 such that the operator Am - (n-2)(1+6)A1 is negative.

2. For some c > 0

3. M satisfies a Sobolev inequality.

Then Vol(BR(x)) < CR .

As an aside, Carron's result allows for other assumptions besides integrability of

Ricci, including the existence of a solution h to

AMh - (n - 1)(1+ 6)Ah = 0

such that 1 < h < -y for some constant -y. In the stable minimal surface scenario, this

translates to having a Jacobi function which is bounded away from zero and infinity.

13



Let's begin with a few observations. To start, by the work of Hoffman and Spruck

[21] and Michael and Simon [29], minimal surfaces in R' always satisfy a Sobolev

inequality.

Second, we have that because E is minimal,

Ric, = -A 2

so that the most negative eigenvalue of Ric will be the square of the eigenvalue of A

with the largest magnitude. Our assumption on the integrability of A immediately

grants Carron's condition 2.

Therefore, we will aim to prove that

AE + (1+6)AI

is a negative operator - where we have taken n = 3. Note, that by stability, we

already have that

Let V (1 + 6)A'. If we can show that V < JAl 2 for some 6 > 0, we will be done.

Lemma 1.2.3. If 6 = 1/2, then V < Al2 .

Proof. First note that A2 and A3 must have the same sign, otherwise the inequality

AI ; A- ; A- would be incompatible with minimality.

After applying some algebra to the desired statement, we find that we need only

prove JA? 2 A| + A2. Using minimality, we have that A = -A 2 - A3 . Substituting,

we find that we need

j(A2 +2A 2A 3 A 2) < A2 +A 2

and thus

A 2A 3 < (6- 1) 2

14



However, when we plug in 6 = 1/2, this simply becomes the AMGM inequality, which

completes our proof.
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1.3 Proof of Theorem 1.1.7

This theorem and its proof are inspired by Schoen and Yau's full proof of the Positive

Mass Theorem in all dimensions in [341. Their original proof of the Positive Mass

Theorem in [321 and [331 relied on the regularity theory for minimal hypersurfaces

which only gave the result in dimensions less than 7. However, in [34], by using

clever weights derived from positive solutions of the Jacobi equation, they were able

to extend their proof to all dimensions. We use a similar approach here.

Let Azh + |A12 h = 0 and h > 0. Use h = eo as a weight on E. Then we have the

weighted Ricci Rico and Perelman scalar Ro curvatures given by:

Rico = Ricz -V20

Ro =Rr - 2AO- IV0bl 2

However, note that AO = -JAI 2 - V01 2 , and so

Ro = |A1 2 + jV012

We therefore expect E with the weight h to behave like a 3-manifold with positive

scalar curvature.

Let p 2 c V be a weighted stable minimal surface with respect to the weight h,

and let A be its unweighted second fundamental form as a submanifold of E. By

Espinar [16] we have the following:

Lemma 1.3.1. (Main Lemma in /16!) With F and E as above, and for V) E CO (F)

w(V -K )2 2

where

V = R 2+ | |2I' I 12

16



Note that by our formula for RO we have that

V =I(A 12 + 1A 12) + 3IvOI2
2 8

We will also use the following result of Espinar:

Theorem 1.3.2. (4.3 in [16]) Suppose that ]F2 C E3 is a weighted stable minimal

surface where Ro + {|V0| 2 > 0. Then F is conformal to either C or C\O. In the

second case, F must be totally geodesic, and R4 + 1jV0$1 2 = 0 along IF.

Since RO > 0 in our setting, the above holds. Note that in both the C and C\0

cases, r must be parabolic. In particular, this means that there is a sequence of

Uk E CS (F) such that the following holds:

* uk 1 on Bk(p).

0 fr 2 -+ 0.

We will use these uk as our test functions in Equation 1.3.1. Taking limits, the

right hand side goes to zero, and the left hand side will approach { fr(V-K).However,

in order to get something useful, we will need that V > Kr.

Lemma 1.3.3. With Kr the Gaussian curvature of IF, we have Kr < !(IA1 2 + JA1 2).

Proof. Let E1 , E2 E TF be an orthonormal frame near p, let E3 be perpendicular to

F c E, and let E4 be perpendicular to E. Then applying the Gauss Equation twice,

we get

1~~~ 1 2 -vAIIA 2 - 2Kr = RE22 22 -- 12

An A2- A1 2 + A11A22- A1 2

< A11 A 22 + AA 2 2

17



However, it's an easy algebra fact to see that A1 1 A 2 2 < JAJ 2/2 and the same fact with

A. El

Combining the above lemma with Equation 1.3.1, we get that V - Kr = 0 every-

where. Therefore, all inequalities in the above lemma must be sharp, and IV#I = 0

along F. In particular, the equalities A1 1 A 2 2 = A 12/2 and AiA 2 2 =A 1A 2 /2 will only

be true if All = A 22, A, = A 22 and all other terms are zero. Thus, F2 is totally

umbilic inside of E3.

However, note that the weighted mean curvature of F is HO = H + (N, Vq), and

since V = 0, F is actually minimal in Y, and so the trace of A is zero. Combining

this with F being totally umbilic, we have that F is totally geodesic in E. Similarly,

since Al = A 22 and all other terms are zero, and since E is minimal, we have that A

is also identically zero along F. Thus, F is a 2-plane, and E is totally geodesic along

F. The next lemma will give our result.

Lemma 1.3.4. Suppose that E" c R"' is a smooth minimal hypersurface which has

A = 0 along a n - 2 plane. Then E is flat.

Proof. First note that since E and A are both real analytic, if we can show that A is

zero to all orders at a point, it must be zero everywhere.

By the Gauss equation, all sectional curvatures of E along F must be zero. Com-

bining this with the Codazzi equations, this implies that the tensors VkA are all

totally symmetric along r. We will prove VkA = 0 along r by induction on k.

First, since A 0 on F, we have our base case. Suppose VkA = 0 along F. Then

because of our choice of the orthonormal frame Ej, we have that

ViVk A = 0

if i = 1 or i = 2. Since Vk'+A is fully symmetric, if any subscripts are equal to 1

or 2, that term must be zero. So, the only one that could be nonzero is the term

18
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that has all 3's as subscripts. However, because of minimality, we can replace A 33 by

-All - A 2 2, which will then make the term zero.

Therefore, A and all its derivatives are zero along I and so A must be identically

zero, so E must be flat. E

19



Chapter 2

Tangent Cones at Infinity for

Minimal Surfaces in R3

2.1 Introduction

Let E be an embedded minimal surface in R. One of the fundamental properties of

minimal surfaces is the following:

Theorem 2.1.1 (Monotonicity). /9] Let r > s. Then

A(En Br)
r2

_ A(nB) __

S2

IxN >

frnBr\B,

Note that if we define the area density as

A(l n Br)
0(r) . r2

then the monotonicity formula implies that 0 is nondecreasing. If

lim 6(r) = 0(oo) = k < oo,
r--+00

20



Figure 2-1: Catenoid (from http://www.indiana.edu/ minimal)

we say that E has quadratic area growth, or the area growth of k planes.

For surfaces with the growth of 2 planes, there are two canonical examples: the

catenoid (Fig 2-1), and Scherk's singly periodic surfaces, which occur in a one pa-

rameter family (Fig 2-2 and Fig 2-3), where the parameter is the angle betwee the

two leaves. As the angle goes to zero, the Scherk surfaces approach a catenoid on

compact sets after an appropriate rescaling. In 2005, Meeks and Wolf proved the

following theorem:

Theorem 2.1.2. /28] Suppose that E is an embedded minimal surface in R 3 which

has infinite symmetry group and e(oo) < 3. Then E is either a catenoid or a Scherk

example.

Meeks has conjectured that the symmetry condition in the above may be removed:

Conjecture 2.1.3. [27] Let E be an embedded minimal surface in R3 with area growth

of 2 planes. Then E is either a catenoid or a Scherk example.

However, an initial difficulty with the above is that it is not yet known that a

minimal surface with quadratic growth even needs to be asymptotic to a catenoid or

a Scherk example. By the compactness results from Geometric Measure Theory, it is

known that if E is an embedded minimal surface with quadratic area growth, then

for any sequence ri -+ oc, there exists a subsequence pi such that E/pi n B1 converges

21



Figure 2-2: Scherk Singly Periodic (from http://www.indiana.edu/ minimal)

to a minimal cone C in the varifold topology. Such a cone C is called a tangent cone

at infinity. A priori, there may be many tangent cones at infinity.

This leads to the following conjecture, also due to Meeks:

Conjecture 2.1.4. [27! Let E be an embedded minimal surface in R' with quadratic

area growth. Then E has a unique tangent cone at infinity.

In the case of finite genus, this had already been resolved by Collin [11, who

proved that any minimal surface with finite genus and quadratic area growth must

be asymptotic to a single multiplicity k plane. In particular, when combined with a

result of Schoen [30], this resolves Meeks' full conjecture in the case of finite genus -

that is, the only minimal surface with the area growth of two planes and finite genus

is the catenoid.

In this paper, we prove that Meeks' Conjecture 1.4 holds true under additional

22



Figure 2-3: Non-orthogonal Scherk (from http://www.indiana.edu/ minimal)

23



assumptions:

Theorem 2.1.5. Let E be an embedded minimal surface with the area growth of k

planes. Suppose that there exists a < 1 such that for all R sufficiently large, there

exists a line 1 R

E n BR n {d(x, IR) > R0 }

is a union of at least 2k disks Ei and such that OEi is homotopically nontrivial in

D(BR n {d(x, lR) > Ra}). Then E has a unique tangent cone at infinity.

This leads to the following:

Theorem 2.1.6. Let E be an embedded minimal surface with quadratic area growth.

Let

Cc, {X + x2 < R}2a

Then if for some Ro, Y\(Bm U Cc,) is a union of 2k topological disks Ei each with

finitely many boundary components, then E has a unique tangent cone at infinity.

Note that the corollary substitutes the homotopy requirement from the theorem

for the existence of a single line around which we can base our sublinearly growing

set. To the author's knowledge, these two theorems are the first progress towards

proving Meeks' conjecture.

2.1.1 Summary of Proofs

Both of the above theorems are proved by first showing a lower area bound for the area

of E inside large balls. This, combined with the upper area bound coming from the

monotonicity formula and quadratic area growth, along with a projection argument

due to Brian White, leads to uniqueness of tangent cones.

Both theorems prove their lower area bound by working on each leaf of E sep-

arately. The lower area bound used in Theorem 2.1.5 is rather straightforward to

24



prove using the homotopy requirement. However, bounding the area from below in

Theorem 2.1.6 is slightly more detailed, and relies on arguments made in the proof

of Lemma 2.2.1, as well as a case by case analysis of the possible shapes of the leaves

of E.

25



2.2 Proof of Theorem 2.1.5

The proof of this begins with the following:

Lemma 2.2.1 (Lower Area Bound). Suppose that E satisfies the conditions of The-

orem 2.1.5. Then for some C = C(E)

Area(BR n E) > kwrR2 - CR+ 1 .

Proof. We will work on each leaf E separately, and the lemma will come from adding

the area of all the leaves together.

First note that BR n {d(x, lR) > R'} TR is a rotationally symmetric solid torus

and (since Ej is a disk), OE is contractible in TR. However, since TR is rotationally

symmetric, the smallest spanning disk for any such curve has area at least that of

a vertical cross section C. Any such vertical cross section consists of a half-circle of

radius R minus a strip of length 2R and width CR0 . Thus, we have

A(Ej) A(C)> R2 - CR+1
2

Remark 2.2.2. Note that Lemma 2.2.1 implies that there are in fact exactly 2k disks

in the statement of Theorem 2.1.5.

We make a definition:

Definition 2.2.3. The error at scale r of a minimal surfaces with area growth of k

planes is defined as
Area(fl nBr )

e(r)= 7rk - 2
r2

Thus, Lemma 2.2.1 is equivalent to the statement:
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e(r) < Cr'-' (2.1)

We now apply an argument of Brian White [36] to prove uniqueness of the tangent

cone.

Lemma 2.2.4. Let E satisfy the following: -]RO, a < 1 such that for RO < r < oc,

e(r) < Cr'~" (2.2)

Then E has a unique tangent cone at infinity.

Proof. Define F(z) = z/JzJ. Then note that A(F(E n (B,\Bs))) is equal to the area

of the projection of E n (Br\B,)) onto the unit sphere. We will bound this area. We

have:

A(F(E n (Br\Bs))) =
fznBr\Bs xNId

< Lnx\ N 12 d-
. rEnBr\Bs .1

1/2 I 1/2

IX1
2

By the monotonicity formula, 2.1.1 and the fact that the area density of E is uniformly

bounded by k, we can bound the term inside the first bracket:

xN 2 d< A(E n Br) A(E n B.)
EfnBr\Bs 4 r2 82

A(EnB)< k7r - 2 e(s)

For the term in the second bracket, we have

I~ lS 2dE <
fr nB,\B, I1

1
-dE < A(Bn E)s-2
82ffnBr\Bs

27



Thus, we get that

A(F(E n (Br\Bs))) e(s)1 /2 (s-2 A(Br n E)) 11 2

Now, by equation (2.2), along with the fact that A(B, n E) < k7rr2 , we have that this

is bounded by

1/2

(r-2A(Br n < C (

Pick s and r such that s < r < 2s. Then

A(F(E, n(Br\Bs))) < Cs(a-1)/ 2

We then sum the above bound to see

n
A(F(E n (B2nr\Br))) = A( F (E n (B 2 kr\B 2 k-1r)))

k=1
n

< CJ (2 kr(a-1)/2

k=1

r(1-a)/ 2 1 -2(1-a)/2

C
-K

1

As r -+ oc, this term goes to zero. Thus, the area of the projection of E\Br approaches

zero as r gets large, which means that the tangent cone must be unique.

28

Cs(a-l)/2 -2



2.3 Proof of Theorem 2.1.6

For the reader's convenience, we restate the assumptions: that there exists a, Ro such

that if

C' = {xi + R2 }

and E\(BR. U Ca is a union of 2k disks Ej, each with finitely many boundary compo-

nents.

Note that the closure of E, in R3 must be conformally equivalent to U2 with

finitely many boundary points removed. Take a neighborhood N of one of these

missing boundary points which does not come close to any other missing boundary

points. Then N C E has exactly one boundary component. There are two options

for the shape of ON.

1. The function X31aN is unbounded in both directions.

2. x 3 |IN is bounded in one direction.

Note that x 3 cannot be bounded in both directions, as then ON would be compact,

which it is not.

We temporarily assume that Option 1 occurs (see Figure 2-4). Let -y be the portion

of ON which is not on the boundary of C, U BRo. Note that we can take Ro to be

large enough so that OBRo is arbitrarily close to the missing point of 09 2, and thus

in particular, -y c BRo. Redefine N to be N n BR0 , and let R >> Ro.

Lemma 2.3.1. OBR n N has a component which starts at the X3 -+ +oo side of

ON 0 OC0 and ends at the x3 -+ -o side.

Proof. Suppose not. Then every component of OBR 0 N starts and ends on the

same side of the missing point. In particular, there are an even number of points

on each side. Consider moving along OC0 towards the missing point. Each point of
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S-00

Figure 2-4: N and Ej for Option 1 (conformal picture)

o9BR N n &C, represents a change from radius smaller than R to radius larger than

R. However, since the radius started at Ro < R, there cannot be an even number of

these points. E

The above lemma implies that some component of N n BR n C, will satisfy the

homotopy conditions of Theorem 2.1.5. This implies that it is possible to prove the

Lower Area Bound lemma for this component, and in particular, the area must be

asymptotic to wrR2/2.

The following lemma will complete our proof:

Lemma 2.3.2. Under our assumptions, Option 2 is not possible.

Proof. Suppose that Option 2 occurs. WLOG, let X31,N be bounded below by 0,

and let (x 1 , x 2 , 0) E &N be the point at which that minimum is achieved. Let p =

(x2 + x2)1/ 2 . Let C be a catenoid where the radius of the center geodesic is strictly

larger than 2p. Then by a simple application of the maximum principle, N must

intersect C. In particular, this implies that infBR X3 IN < 0 o + log R.

Now, consider a sequence of Ri such that E n Bpj converges to a tangent cone at
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infinity. By compactness, R71 N n &BR, must either converge to a union of geodesics

on B1 or must disappear at infinity. However, due to the discussion of the previous

paragraph, N cannot disappear at infinty, and so must converge to a nontrivial union

of geodesics Fj, possibly with endpoints at the north or south poles. We aim to show

that these Fj are all great circles.

Let p be a nonsmooth point on UP3 . Then there must exist a neighborhood S

of p such that IAI restricted to S n R7iN is unbounded as i --+ oc. However, since

N is a minimal disk with quadratic area growth bounds, JAI (x) must be bounded by

C/d(x), where d(x) is the distance of x from the boundary of N.

Suppose that our nonsmooth p is not equal to the south pole. Then we can choose

our neighborhood S of p to stay away from the x3 axis, so we will have that JAI < C

uniformly on S n R7iN. Suppose that p is equal to the south pole. Then by the

assumption of Option 2, DN is only contained in the region X 3 ;> 0. So, we can

choose S = B1 2 (p), and this implies the same uniform JAI bound.

Therefore, there will be no nonsmooth points of UP3, which implies that Fj consists

of a single great circle passing through the north pole.

In particular, this implies that there are some c(Ri) -+ 0 such that the area of

R7iN n B1 is greater than 7r - c(Ri), where c -+0 as Ri - oc. Thus, we have at

least 2k components of E\C0 , each of which has area growth at least 7RR2/2 by the

discussion of Option 1. However, since the global area growth is k7rR2 , no component

can have growth 7rR2.
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2.4 Future Directions

2.4.1 Expanding on Current Work

There are several potential extensions of the work above. Theorem 2.1.5 and Corollary

2.1.6 effectively assume that all tangent cones of E are unions of planes with a common

axis. It is likely not significantly more difficult to show that the same result holds in

the case when the one-dimensional singular set is more complicated, as long as away

from a sublinearly growing neighborhood, E is a union of disks. That is, we have the

following as another potential step towards the resolution of Meeks' Conjecture:

Conjecture 2.4.1. Let E have the area growth of k planes, and suppose that there

exists a uniform a < 1 such that for each R > RO >> 1, the following is true: There

exist line segments Li(R), 1 < i < m(R) < M such that outside of an a-sublinearly

growing neighborhood of ULi(R), E n BR is a union of disks. Then E has a unique

tangent cone at infinity.

There are likely other simple conditions which can be put on E to force Lemma

2.2.1 to hold.

However, it may be possible to prove theorems approaching Conjecture 1.4 without

factoring through some kind of lower area bound.

2.4.2 Dealing with Higher Multiplicity

Many of the problems in uniqueness for tangent cones stem from the fact that higher

multiplicity tangent cones exist. Very little is known about this situation in gen-

eral. The multiplicity one case is simplified by the Allard Regularity Theorem, a

consequence of which we state here:

Theorem 2.4.2. [2J There exists e such that if En- 1 is a minimal surface in B1 C R'

with 0(1) < 1 + e, then E is smooth and JAl < c(c) inside B112 .
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However, such an estimate is obviously not true if multiplicity is large. For exam-

ple, a rescaled catenoid has curvature blowing up at a point, and a properly rescaled

sequence of Scherk surfaces will have curvature blowing up along a line while ap-

proaching a multiplicity 2 plane. This is not even the worst case scenario. By the

sphere doubling work of Kapouleas and McGrath ([221 and [231), there exists a se-

quence of minimal surfaces E2 C B1 C R 3 which approach the plane x 3 = 0 with

multiplicity 2, but if p is any point on the plane X 3 = 0, and c > 0, then

sup JAI -oo asi -+oc
B(p,c)nEi

Note - the results of Kapouleas and McGrath concern the convergence of a se-

quence of minimal surfaces in S 3 to an equatorial S2 with multiplicity 2. In their

examples, the curvature must do one of the following two things (up to a subse-

quence):

1. AI -+ 0 away from a set with finite W1 measure

2. |AI - oc everywhere.

Therefore, I believe the following conjecture to be true:

Conjecture 2.4.3. Let Ei be a sequence of minimal surfaces in B1 C R3 which

approach a multiplicity k plane. Let Fo be a Lipschitz set of finite N 1 measure, and

suppose that for all c > 0

lim sup JA = 0
(B1\(B1/2UN,,(1PO))nri

Then after taking a subsequence Ej, there exists a Lipschitz set F of finite N 1 measure

such that for all e,

limsup JAI'= 0
(B1 \N, (r))ny-i
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That is to say, as long as the E, converge smoothly away from a set of curves

outside Bi/2 , they will also converge smoothly away from a set of curves inside B 1 / 2 .
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Chapter 3

Explicit Constants for the

Logunov-Malinnikova Method

3.1 Introduction

Let (N, g) be a compact Riemannian manifold without boundary, and let # be an

eigenfunction of the laplacian on N, that is:

ANOq -A

where A > 0. We define the nodal set

Z(O) := {x E N|4(x) = 0}

A simple example of this is the following. Let N = S'. Then A = 2, and the

eigenfunctions of A are just sin(nx) and cos(nx) with eigenvalues n 2. Both sin(nx)

and cos(nx) have exactly n zeros on S1.

In two dimensions the nodal set can be visualized by Chladni plates (see Figure
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Figure 3-1: A Chladni Plate showing the nodal set of a square - Smithsonian

3-1). Developed by Ernst Chladni in the late 1700's, they are generally made of

metal or stiff wood, suspended at a single point, and then made to vibrate, either

by an external speaker playing a pure frequency, or by using a bow along an edge.

Sand is then sprinkled over the top of the plate. As the plate vibrates, the sand will

accumulate along the lines where the vibration is lowest, which are exactly the nodal

sets of the plate at that frequency. As the frequency increases, the nodal set becomes

larger.

In [37], Yau conjectured that the following statment about the zero set of # should

hold:

Conjecture 3.1.1 (Yau). With # and A as above,

C-h1/2 < W-(Z()) < CA1/2

where C = C (N, g).
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This conjecture has a rich history. For real analytic manifolds with real analytic

metrics, the full conjecture was proven by Donnelly and Fefferman in 1988

Theorem 3.1.2 (Donnelly-Fefferman [141). If (N, g) E C ', then

C 1 A 1/ 2 < Z() CA1'/2

An initial upper bound for any manifold and metric was achieved by Robert Hardt

and Leon Simon in 1989.

Theorem 3.1.3 (Hardt-Simon [19]). With # and A as above,

Z (#) < cAcv"

For surfaces, the following was already known, with the full lower bound above

proved by Brilning [6], and the upper bound achieved by Donnelly and Fefferman

[15].

Theorem 3.1.4.

C 1A1/2 < Z() < CA 3/ 4

Colding and Minicozzi proved another lower bound with dimension-dependent

exponent:

Theorem 3.1.5 (CM [101).

Z(#) ;> CA

The lower bound was achieved in full generality by Logunov and Malinnikova in

[25]. In [24] they also proved an upper bound of the form

74n-1({x l(x) = 0}) < CAa

where a is some function of dimension only. The result of Logunov and Malinnikova
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in Equation 3.1 is the first estimate that works for C' manifolds that is polynomial

in A.

In this chapter, we refine their technique, fill in missing proofs of lemmas from

Euclidean geometry, and in so doing, achieve an almost explicit formula for a in terms

of dimension.
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3.2 Preliminaries

We utilize the standard trick of turning Laplace eigenfunctions into harmonic func-

tions.

If A# = -A#, then we let u be a function defined on M = N x R, and define

u(x, t) = (X)e

where x C N and t E R. Then u will be harmonic on the product manifold M, and

here on out we will mostly work with zero sets of u in M and relate it back to N at

the very end.

Let u be a harmonic function on M, fix a base point 0, and define

H(r) =JaB(O,r)

for r smaller than the injectivity radius of M.

Definition 3.2.1. The frequency function of a harmonic function is defined as

rH'(r)
2H(r)

For harmonic functions in Rn, the frequency is monotone, and constant for har-

monic polynomials. In general, the frequency is almost monotone, see [26].

Lemma 3.2.2. For any e > 0, there exists RO(M, g, e, 0) such that

(ri) < 0(r2)(1 + e)

for r1 < r2 < Ro

This begins a common theme throughout the work of Logunov and Malinnikova
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- before doing anything, we must zoom in on our point of interest until our metric

looks nearly Euclidean. The amount that we initially zoom in will be irrelevant to

the final exponent a in Equation 3.1, so we will do it as much as we please.

Similar to 3.2.2, we will decrease Ro enough so that in normal coordinates in

B(O, RO), we can treat Am as a uniformly elliptic operator in R', and so that if d is

Euclidean distance in these coordinates, and d9 is distance in the metric,

1-< <1() ) + C
d(x, y)

This will allow us to pretend like we are living inside some large compact domain in

R". Again, this step will have no effect on our a.

Rather than working with the frequency function #, we choose instead to use the

following L' version:

Definition 3.2.3. For a ball B C R7, the doubling index of B, notated N(B), is

given so that

2 N(B) _ Sup 2 B ul

supB lu

If B = B(p,r) a ball centered at p with radius r, then N(p,r) := N(B).

The proof of the following lemma can be found in [24]. We will use it unchanged.

Lemma 3.2.4 (Quantitative Doubling). For any E C (0, 1) there exist C and Ro such

that the following holds: If t > 2 and B(p,tp) C B(O, Ro), then

tN(p,p)(1-E)-C <SUPB(p,tp) I <tN(p,tp)(1+c)+C(31

SupB(p,p )7u-

In addition, if N(p, p) > No (M, g, c, 0), then both bounds are improved, i.e.

N(p,p)(1-E) <SupB(p,tp) u N(p,p)(1+)
-supB(p~p) u
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Note that if we just take the exponents, we get that as long as N(p, p) > No,

N(p, p)(1 - e) < N(p, tp)(1 + )

The equation above implies that the doubling index, N, satisfies the same monotonic-

ity properties as the frequency, 3.

Here we see a second important assumption. Just as at points we will need to

assume that all radii are smaller than some initial radius RO, we also need to assume

that the doubling index of our function u is greater than some initial No. Again,

increasing this No will have no effect on our final value for a, so we will try to push

as much uncertainty into No and RO throughout the course of this proof. Therefore,

RO will continue to shrink, and No will continue to increase.

We will also need the following technical lemma which will allow us to bound the

doubling index at one point by the doubling index at another point at a smaller scale.

Lemma 3.2.5 (Lemma 7.4 of [24]). As long as RO is small enough and No is large

enough, if p1, p2 e B(0, RO), and d(p1, p 2) < p < Ro,

99
N(p 2, 1000p) > N(pi, p)

100

Proof. First, note that there exist C, J depending on nothing so that the following

containments hold:

Cp Cp 6
B(p2 , (1 - 6)) C B(pi, -(1 - -

2 2 10

B(pi, Cp(1 - -)) C B(p 2 , Cp)10

In particular, choosing 6 =1/100 and C =1000 will be sufficient for our purposes.
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Now, we apply Equations 3.2, 3.2, as well as the above containments to get:

( > SUPB(P 2,CP) lU

supB(P2,Cp( 1-J)/ 2 lu

suPB(p 1,Cp(1-5/10) lul
SUPB(pi,Cp(1-6/10)/2) lul

> 2 N(p1,Cp(1-5/10)/2)(1-E)

>2N(pi,p)(1-c)2

Thus, we have:

N(p2, Cp)(1 + 6)(1 + E) > N(pi, p)(1 - C)2

Substituing 6 = 1/100 and choosing c small enough, we get our desired result.
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3.3 The Simplex Lemmas

The following lemma will allow us to increase the scale at which we are analyzing

frequency by combining information coming from many different points.

Lemma 3.3.1 (Euclidean Geometry Lemma). Let S be a simplex in R" with diameter

1 and scale invariant width greater than a. Then there exist c1 > 0, K > 2/a

depending only on a and dimension n such that

B(po, K(1+ ci)) C Un+B(pi, K)

Furthermore, we can let
a2  2V'n2

c1=5 andK=
504 a

Proof. We begin by finding the worst possible simplex for a fixed diameter and scale

invariant width. Let So(e) be the simplex with the following vertices:

1+ e
A = (0, -, 0,1, 0, - , 0) and p,+ = (1, ,1)

n

We will show that So is the worst simplex for this lemma, and then compute explicit

constants for So.

First note that the width is always achieved by a pair of planes such that every

point is contained in exactly one plane. So, potentially one plane could contain k

points, and the other plane will contain n + 1 - k points. We start with the scenario

where k = 1, and show later that this will be the worst case scenario.

Let F be the face of S opposite pi. Let Z2(K) be the point at distance K from all

pj except pi on the non-S side of F, and let Hi be the plane containing Zi parallel to

Fi. Without loss of generality, let the diameter be achieved by d(pi,p 2), and let the

width be achieved by d(pn+, Fn+1 ). Then, reorient the simplex so that pi, - , pn lie

in Rn-1, and so that Pn+1 has positive nth coordinate.
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Now, as long as K is large enough, mini d(po, Zi(K)) = d(po, Z.+1(K)). Let

p = d(po, Z +1(K)), so that B(po, p) C UB(pi, K). Let L be the line perpendicular to

F+1 passing through Z,+1 (K). Note that L is the set of points which are equidistant

from Pi ... p". If pn+i is placed (preserving the nth coordinate) so that po does not

lie on L, then p will be strictly greater than if Pn+1 is placed to make po lie on L.

Therefore, the worst case simplex with pi, --- , pn fixed will have Pn+1 placed to make

po lie on L.

Now, in order to find the worst possible simplex, we need to find the arrangement

of points pi, - - - ,pn in R'-1 so that the x, coordinate of Zn+1 is as small as possible

when compared with the diameter of the simplex. This is obviously going to happen

when all pi are equidistant from each other. This completes the proof that So is the

worst possible simplex for this lemma.

Now, we compute with So. So has diameter v/2, and scale invariant width equal

to w = EV/I/v/2. The barycenter of So is located at

PO = +(I= + 1+6, -(-,-., 1)
(n (n + 1)n)

and the line L described above is just the line where all coordinates are equal to each

other.

Suppose that Zn+1(K) = (-b, ... , -b). Then by scaling,

Kv 2 d(Z,+ 1(K), (1, 0,-- , 0)

=[(1 + b)2 + (n - 1)b2] 1/= (1 + 2b + nb 2)1/

and

pv 2 = d(Z.+(K), po)

= v/n -(1 + )+ b
(n n + I
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We need p > K, and then ci < p/K - 1. Substituing our expressions for p and

K and simplifying, we get

n +
b > and so

2c

KV> n+1 n(n+1) 1/2
S402

We will choose Kv/2 = 8,3/2. Therefore, solving for b, we get
E

b = -- (I - n(1 - 64 3 )1/2 _
n (

and so substituting this into the equation for p, we get

1 + C1 < K I (1 + ((1 - n) 2 + 64n4)
K -8 n2 (1 +n)+

Taking the expansion around c = 0, we find that we need

11+'ci < 1+ + 2 + h.o.t.
128n4(n + 1)

so that we can take
e2

iOn3

Now, we use the fact that c = V2/w/v/n to get our stated formulae for K and c1 .

Let's return to the cases where k is not equal to 1, so that if 1 and 12 are

the planes that achieve the width, then H, contains k > 1 points and 12 contains

n + 1 - k > k points. Then by arguing as above, the worst case scenario will again

happen when the barycenter of the full simplex lines up with the barycenter of the sub-

simplices contained in r12. Thus, we get to reduce dimension, and since our constants

will get worse as dimension increases, the worst case scenario is when k = 1. El

Lemma 3.3.2 (The Simplex Lemma). Let S be a simplex in Rn with diameter 1 and

scale invariant width greater than a. Let Bi be balls centered at the vertices pi of S
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with radii less than or equal to K. Then there exist c,(a, n) and C.(a, n) such that if

N(Bj) > N for all i, then N(po,C8 ) > N -(1 + c).

Furthermore, we can take

20n4  a2
Cs::= and c 8, aa2  300n4 log(an 2)1

Proof. Throughout the following, c1 (a, n) and K(a, n) are as in the Euclidean Geom-

etry Lemma. Note that by almost monotonicity of the doubling index, we can set the

radii of all balls to be equal to K, possibly by increasing No.

Let M = supUB. Jul. Then, by the ball containment implied by the above Eu-

clidean Geometry Lemma, Jul < M in B(xo, K(1 + ci)). Let t > 2 and c > 0 be

parameters to be specified later. Suppose that Jul = M somewhere in Bi, and assume

that 3.2 holds on Bi. Then,

sup Jul > MtN(1-E)
B(pi,Kt)

We use the following fact: if 6 = 1/(Kt), then

B(pi, Kt) C B(po, Kt(1 + 6))

Let N be the doubling index for B(po, Kt(1 + 6)). Eventually, we will take C

Kt(1 + 6). Suppose that Equation 3.1 holds for the pair of balls B(po, Kt(1 +6) and

B(po, K(1 + cl)), that is, t(1 + 6) > 2(1 + c1) and both are contained in B(O, RO).

Then, by Equations 3.1 and 3.2,

t(1 6) (1+E)+C
S I > tN(1-E) (33)
1 + ci _J

Now, choose t so that 6 = c1/2, that is, choose t = 2, so thatKcj

t(1 +6) < t1-C
1+c ~,
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Solving for c2, and substituting our chosen values for t as well as the formulae for c1

and K, we see that we can take

a 2

C2 = 50n4llog(an2)-

Then choose E(c2 ) = c2/6 > 0 so that

> 1 + 2c.
(I + e)1-C2)

(3.4)

Simplifying Equation 3.3 using these inequalities, we get that

N>N 1C1
(+ C)(1 -C2)

where C1 = C1(a, M, g).

Therefore, since N > No and by Equation 3.4,

N > N(1 + c) + (cNo - C1 )

Now, take No > C1/E so that

N > N(1+ c).

Retracing our steps, and aligning our constants to those in the Euclidean Geometry

Lemma, we find that we can take

C2  C1

6 241log(a) I
a2

300n4l log(an2 )I

This is our c in the Simplex Lemma statement. Second, we have

2 c1  20n4

Kt(1 6)=-(1 + -)< 2c1 2 a

which we take to be our C.

47

LI



There is one more lemma we will need in order to apply the Simplex Lemma to

general sets with positive width.

Lemma 3.3.3 (Simplex Embedding). Let X be a convex body with diameter d, and

let F be a subset with positive width. Define iT(F) = lwidth(F) as the relative width

of F in X. Then there exists a constant a(@ii(F), n) = i(F)2-n and a simplex S c F

such that w(S) > a and diam(S) > a -d.

Proof. We will construct a sequence of simplices Si where Si is an (i - 1)-simplex,

and Si C Si+1. First, take 2 points pi and P2 that achieve the diameter of F. We

will let S2 be the segment formed by these two points. To create Si+1 from Si, we

will add on a point taken from F which is as far as possible from the i - 1 plane that

contains Si.

Let's look at some properties of our new simplex. First note that due to the way

we chose our points, if we take the hyperplane H defined by any n points, then the

distance of the final point to this plane must be at least width(F)/2. Lets call the

minimum distance from a single point to the plane generated by the other points the

1-width widthi(S), and in general if we have two planes, onen of which contains

k points, the minimimum distance between them will be the k-width widthk(S).

Therefore, if we can prove that

width(S) > c(n)widthi(s)

we will be done with this lemma.

Let H 1 and H2 be the two planes that achieve our width, and let H, contain k

points pi, ,P. First note the following. Since the final width of S is positive, then

H, and H 2 must be fully skew, that is to say, if we move H, to intersect 112, they

will intersect at exactly one point, and have exactly one direction which is mutually

normal. Therefore, if we translate everything so that 12 contains zero, and quotient

R' by 112, we will not'lose any of the dimension of 11, and the width of S will be
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achieved by the distance of H1 to the origin.

Our strategy for proving Equation 3.3 will essentially do this process in reverse,

starting with one point, and all other points quotiented down to 0, and successively

splitting points of S away from the points quotiented to zero. At each step, we will

have a bound on how far the width can decrease in terms of the previous width.

Let pi be the point that acheives width1 (S). Without loss of generality, suppose

that pi E H 1. Quotient out by the plane that contains all the other points besides

pi, so that we have just a line with a point pi, and the 1-width of S is the distance

from pi to 0. Now, break off another point P2 E H1. At this stage, we have three

points in R 2, Pi, P2, and pothers the last of which contains the projection of all the

other vertices in S. w1 is equal to the distance between pi and the line containing

P2 and Pothers. Let's make sure that we've chosen P2 so as to minimize the possible

distance from Pother, to the line containing pi and P2-

Let's note a few things about the 2D geometry of these three points. These will

generalize to the higher dimensional case, but we will only do all details in this 2D

case.

1. The distance from P2 to Pothers must be at least the distance from pi to Pothers,

otherwise P2 would have been the point that achieves the width.

2. The worst case scenario occurs when P2 and Pothers are on the same side of the

perpendicular dropped from pi.

See Figure 3-2 for a picture.

Now, if we call w 2 the distance from Pothers to the line connecting pi and P2, we

see that even in the worst case scenario we still have that w 2 > w1 /2. Continuing in

this fashion, we get that wi > wi_ 1/2, and so

Wi
width(S) Wk>2-1

49



Figure 3-2: 2D case of Lemma 3.3.3

Therefore, returning to the intial formulation of the Lemma, we can say that

a(Gii(F), n) =i(F)

50

I



3.4 Propogation of Smallness

In order to understand dimension dependence for propogation of smallness for elliptic

PDE, we must revisit the work of Alessandrini, Rondi, Rosset and Vessella in Theorem

1.7 of [1] as used by Logunov and Malinnikova. Looking through their work, one

discovers that a precise formula for r relies heavily on every constant in the Schauder

estimates - which goes beyond the scope of this thesis. We choose instead to black-

box the formula for r7 and leave that little bag of self-loathing for another enterprising

Minicozzi student.

Theorem 3.4.1. Let Q be a cube with side length r. There exists 71 depending only

on dimension such that if |u| < c and |Vul c/r on some face F of Q, then on Q/2,

u| < 0n.
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3.5 Hyperplane Lemma

The doubling index of a cube Q is defined as follows:

N(Q) sup N(x, r) (3.5)
xEQ,r<diam(Q)

This allows frequency to be monotone non-decreasing by containment.

The following lemma should be interpreted as the following statement: If a cube

Q has doubling index 2N, then at least one small subcube has doubling index smaller

than N, though Logunov's statement of the lemma uses the contrapositive of this.

Lemma 3.5.1. Let Q be a cube [-1, 1]' C Rn. Divide Q into (2A + 1)n subcubes qi

with side length 2/(2A + 1). Consider the subcubes qj,O which intersect the plane x, =

0. Suppose that for each qj,O, there exists pi E qi,o and ri < diam(qi,o) = 2fli/(2A + 1)

such that N(pi, ri) > N. Then, there exists AO(n) and No such that if A > AO and

N > No, then N(Q) > 2N.

In particular, we can choose

A 0 = 32l/r

Proof. Let B = B(0, 1), and let M supB Jul. Note that we have the following

sequence of containments for every pi E B(1, 1/16) as long as AO > 100,/Vi:

2 qj,O c B(pi, ) C B(p, ) C B(1,1/8)
2A + 1 32

Now, we apply these containments and reformulate Equation 3.2 as

sup JuIB(x,p) t-N(X,p)(1-E) sup u
B(x,tp)

and choose
4/N _2A +1 1

p =4 - t= 2A 1and E = -
2A + 1' 128in' 2
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to get the following:

sup Jul K- sup Jul 128,j/ni N/2

B(pi,1) (A+1

Let's try and get a bound on c. Taking the log of the righthand most inequality and

solving for c, we find that

< log(2A + 1) - log(128vy)
2 log(A)

If we make A > 1282n, then the term involving dimension can be absorbed into the

log(2A + 1) term, so it is sufficient to take

C < log(2A + 1)
- 4log(A)

However, since log(2A + 1)/ log(A) > 1, we can let c = 1/4.

Now, we use the standard elliptic gradient estimate to say

sup Vul < C(n)A sup Jul < C(n)AMe-Nlog(A)/ 4 < Me-c1(n)Nlog(A)

qi,o 2qj,o

Again, let's put bounds on c1(n). We need

log(C) + log(A) - log(A) N
4

< - c(n)N log(A)

Note that if we take N to be sufficiently large, both the log(C) and the log(A) terms

can be absorbed into the term involving N, and so we can take c 1(n) to be any number

less than 1/4. We choose to let ci = 1/8.

Note that we have now proven that both Ju| and JVul are smaller than e-Nlog(A)/8

Let q be a cube with side length 1 with a face F centered at 0 on the hyper-

plane x, = 0. Note that because of our choice of side length, we have the following
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2qi,o
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containments:

B(O, c q c B(, 1/8)

Let v = u/M, so that SUPq JvJ < 1. Let c = -Nlog(A)/16. Then we have both

|vJ < c and fVvJ < 2Ac

so v satisfies the conditions to apply propogation of smallness. Thus,

sup vli < 0 and so suplul < Me- 7N log(A)/16

q

where 71 is as in Section 3.4. Thus, if p is the center of q,

sup Jul < Me--1Nlog(A)/16
B(p, 4

However, B(O, 1/8) C B(p, 1/2), and so

sup > M
B(p,1/2)

Combining these two facts, we have that

SupB(p,1/2) ul

supB(p, 1)
> N og(A)/16

Let N = N(p, 1/2) so that, in particular, N(Q) > N. Then by Equation 3.1 with

t = 32j/ , we have
supB(p,1/2) ul

supB(p, 641/9
(32V/n) +

If we choose No > 2C, then this right hand side becomes less than (32v/N)2N. Com-

bining these last two inequalities, we have

(32v 5)29 > ,qNlog(A)/16
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If we want N > 2N, it is sufficient to pick A > 32 64n32e 1 /l,

The following lemma will wind up being used in its contrapositive, but is easier

to state this direction.

Lemma 3.5.2. Let Q = [-1, 1]' such that N(Q) < 2N and N > No. For any

e > 0, there exists A 1 (n, c) such that the following is true. Divide Q into A" subcubes

each with side length 1/A1 , and let qio be those subcubes that intersect the hyperplane

xn = 0. Then the proportion of subcubes where N(qj,o) > N is less than e - and so

the number of subcubes where that holds is less than eA n.

We can choose

A1 (n, c) = (yn-'e l /) 1 logEl (-nye1/
1

where -y is independent of n.

Please Note: this constant is terrible. Therefore, we will refrain from writing

out every single constant throughout the rest of the chapter in terms of explicit n

dependence. Instead, we will make sure to use only constants whose n dependence

we have already computed.

Proof. We are going to apply Lemma 3.5.1 k times, each time on smaller subcubes.

We will start by dividing Q into (2AO + 1) subcubes, and then continue dividing

each of those subcubes into (2Ao + 1)n, applying Lemma 3.5.1 each time to restrict

the number of subcubes at each level which can have large doubling index.

In particular, suppose that after the kth subdivision (so now there are a total of

(2Ao + 1)kn subcubes) we have Mk total subcubes qk,o with N(qk,o) > N. Applying

Lemma 3.5.1 to each one of these, we see that each qk,o has at most (2Ao + 1)n-1 - 1

subsubcubes that line up with x= 0 with doubling larger than N.

Mk+1 M k((2Ao + 1)n-1 - 1)
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so that

Mk < ((2Ao + 1)n1 - ) (2AO + 1)(-l) -( - 1 )
(2Ao + 1)n-I

We need to find a k such that Mk < (2AO + I)k(n-1), and then A 1 = (2AO + I)k. So,

choosing k so that this is true, and substituting the formula for A 0 , we get our value

for A 1 . L

3.5.1 Comments on Dimension Dependence

Note that there are essentially 3 places where n dependence appears in the formula

for A1 .

1. The exponent q in propogation of smallness has dependence on n through the

constants in the elliptic Schauder estimates and coming from the geometry of

an n-cube.

2. The nr' in the formula for AO comes from the fact that in order to fit a cube

inside a ball, the radius of the ball has to be Vnr times the diameter of the cube.

3. Even if we could remove the n dependence from r7 and A 0 , there would still

be an n dependence of the form A due to the fact that we have to apply

Lemma 3.5.1 A'-' times.
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3.6 Bounding number of cubes with large doubling

index

This is Theorem 5.1 from Logunov - as we have done up to this point, we carefully

trace the dimension dependence.

Theorem 3.6.1. There exist constants c(n) and A(n), and No(M, g) such that if

Q = [-1, 1], and we partition Q into An subcubes q, then the number of subcubes such

that N(q) > max(N(Q)/(1 + c), No) is smaller than !A

In addition,

1
A = A 1(2-n-1 , n)8 log(Al) and c -c,(2-"A--1, n)2

where c, is from the Simplex Lemma, and A1 is from Lemma 3.5.2.

Proof. Just as we proved Lemma 3.5.2 via multiple applications of 3.5.1, so we will

prove this theorem by applying 3.5.2 many times at many scales.

Fix some e to be chosen later, and choose A1 (n, c) as in Lemma 3.5.2. Subdivide

Q into An subcubes j times, so that we now have Af" subcubes q each with diameter

on the order of A /n. Choose some q and subdivide it again into qi. We will say

that qj is bad if N(qi) > N(Q)/(1 + c). We want to bound the number of bad cubes

qj contained in q.

Once we prove the following lemma, it will be simple to complete the proof of

Theorem 3.6.1

Lemma 3.6.2. If c = 2-n-1, then the number of.bad qj C q is less than 'A'-'

Proof. Let F be the set of points p E q such that for some r < diam(qj), N(p, r) >

N(Q)/(1 + c). Note that every bad qi contains a point form F. As in Lemma 3.3.3,
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we let iw(F) be the relative width of F in q. Let S be the simplex guaranteed by

Lemma 3.3.3 (Simplex Embedding).

Suppose that i@(F) > 1/A 1 . Then

w(S) > 1/(2"A1 ) and diam(S) > diam(q)/(2"A1 )

Since the vertices Pk of S are contained in F, we have rk such that

rk < diam(q) < diam(S)2'A1 and N(pk, rk) > N(Q)/(1 + c)

Note that 2'A1 , while rather large, is still less than K from Lemma 3.3.1 when we

take a = 1/(2 A1 ). Therefore, we can apply Lemma 3.3.2, the Simplex Lemma, in

order to get

N(po, Cs(a, n)diam(S))> (1 cs(a, n))N(Q)
I + C

If Cs(a, n)diam(S) < diam(Q), and c < cs(a, n), then this will be a contradiction.

However, since

diam(S) < diam(q) < diam(Q)
A31

However, by our formulas, A3 is orders of magnitude larger than C, (a, n), and so

as long as we have subdivided at least 3 times, that is, j > 2, we must have that

@(F) < 1/A 1

This means that there exists a hyperplane P such that all of F is contained within

a dA neighborhood of P. Take a new cube q such that its center is contained

in P In q and so that the diameter of ~ is 20n/A = 1= 09diam(q). In particular,

this implies that q c q. We will be applying Lemma 3.5.2 to q. Divide q into A'

subcubes. Let i,o be the subcubes that intersect P. Then because of the scales we

have chosen, every bad qj is fully covered by at most 2n 1 4,. Thus, we have the
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following inequality:

#{bad 6,o} < 2"-l#{bad qi}

Now suppose that #{bad qi} > !An- . Then

#{bad ,o} > 2-nA -1

Choose c = 2 -1. Then by Lemma 3.5.2, and since the number of bad 6,o is larger

than eAn 1 , we must have that N(q') > 2N(Q)/(1 + c). Since c is stupid small, there

will be a ) E q such that
3
2

However, )5 is not necessarily contained in Q, so this is not yet a contradiction.

We will apply Lemma 3.2.5 to get a lower bound on doubling index for some point

inside of Q. Pick p E Q so that d(p,p) < diam(q~). Then applying Lemma 3.2.5 to

these two points with p = diam(q-) ~/ T/A 1 gives that

4
3

Since diam(qi) is much smaller than diam(Q)/1000, this is the contradiction we need.

This completes the proof of Lemma 3.6.2 l

Now it is straightforward to prove Theorem 3.6.1. As in the proof of Lemma 3.5.2,

let Kj be the number of bad subcubes after we do j subdivisions. By Lemma 3.6.2,

and as long as j > 2, we have

K 2 A K
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and so, letting A = Aj

Kj < K 2 A 2)(n- 1)22- K2An-1A 2 (n- 1 )22-

So, we need only show that

12 /
K2 A (l 2 2j 1/2

for a sufficiently large choice of j. However, note that K2 is at most A 2 (in the case

when every subcube after 2 divisions is bad). Therefore, after some algebra, we find

that it is sufficient to take j = 8log(A1 ). El
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3.7 Upper Bounds on the Nodal Set

Theorem 3.7.1. Let u be harmonic on M, and let 0 e M. Then there exist

RO(M, g,O) and C(M, g,O) such that if Q is a cube contained in B(0, R0 ), then

there exists a1 = a1(n)

Rn-1({u =0} fn Q) < Cdiam(Q)n-lNu1(Q)

where

a, (n) log(4A(n))
log(1 + c(n))

Proof. We follow Logunov [24]. Define

N"-1(u =O} n Q)
F(N) := sup (Q)nQ

diam(Q)n-l

where the supremum is taken over all harmonic functions u with Nu(Q) < N. Note

that F is nondecreasing in N. Then the estimate we need to prove is that

F(N) < CN"1

We say that N is bad if

F(N) > 4AF(N/(1 + c))

Logunov shows

Theorem 3.6.1.

that the set of bad N is bounded above by some No(M, g) by using

We use this fact to get an explicit formula for a1 .

Let N > No. Then there exists k > 0 such that

NO(1 + c)k+l > N > No(1 + c)k
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and so

F(N) < F(No(1 + c)k+ 1 ) (4A)k+1F(N0 )

Now, by 3.7,

k < log(N) - log(No)
log(1 + c)

and so

log(N)-log(NO)
F(N) < 4A log(1+c) +1F(N0 )

C(M, g, O)N Iog (+C)

Now, we use the trick described in the first section to extend this to eigenfunctions.

Theorem 3.7.2. Let IAN + AO = 0. Then there exists a C(N, g) such that

71df-l({q$ 0}) < CA'

where a = a1 /2.

Proof. We let u be defined on M = N x R as

u(x, t) = O(x)e

so that u is harmonic on M.

By Donnelly-Fefferman 114], we have that

sup |#1 < 2CV A sup 101
B(p,2r) B(p,r)
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as long as r is small enough. Note that this also implies that

Nu (p, r) < CA 1/2

as long as p c N x {O} and r is small enough. Thus, we can apply Theorem 3.7.1 to

say that

Wn-1 ({u = o} n B(p, r)) CA" /2

However, since the nodal set of u is just equal to {5= 0} x R, we get that

-1R n-({# = 0} n B(p, r)) < CAa1/ 2

By covering N with balls of radius r, we get our desired result. E

To finish, let's trace through our proofs and compute the formula for a in terms

of n. For A, we have that

log(A) =8 log(A1(2-" , n)2

[ (n + 1)L[ynel /,]n] 2

~Cn -"en/77

At this stage, it is unclear which of nri' and en/, is larger.

Computing log(1 + c) is slightly easier.

log(1 + c) ~ (2---)

~C4 -n-1n -4

Combining these two, we see that the dominant term comes from the log(A) portion,

so, by increasing -y if needed, we have that

a = Cn"e2n/i
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where C and -y are independent of n.
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3.8 Thoughts on Improvement

Logunov and Malinnikova's methods worked perfectly to prove the lower bound in

Yau's conjecture. I do not believe that they can be extended to a full proof of the

conjectured upper bound. However, I do believe that they can be refined to prove

the following:

Conjecture 3.8.1. Let q solve AN$ + AO = 0. Then for all c > 0 there exists a

CE = C(M, g, c) such that

71 n-({ = 0}) < CeA 1 2+f

First, note that in order to prove the full upper bound, we would need to show

that a, = 1 from Theorem 3.7.1. This would require three steps.

1. Remove the 4.

2. Make A = 1

3. Make c = 0

To resolve the first problem, we can simply make No larger, and bring the coefficient

of A as close to 1 as we like.

Resolving the second and third problems are much more difficult. Let's start with

discussing a process by which we can begin to make A smaller. Many of the factors

of n come from having to do a sequence of containments of the form

qcBcQ

where q and Q are cubes, and B is a ball. This process is guaranteed to bump up the
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scale by at least xnj. But, if we could find a tile T of Rn so that the containment

tcBcT

only increases the diameter by a factor of p independent of dimension, then we could

remove at least a portion of the dimension dependence from A. Fortunately, by work

of Butler, such a tile exists:

Theorem 3.8.2. /7] There exists tiles Tn on Rn so that if

tnc BcT

then the ratio diam(Tn)/diam(tn) can be made to approach 2 as n -+ oo.

In particular, this theorem can probably be used to remove all dimension depen-

dence from AO except for the dependence coming from the elliptic theory.

Note that Lemma 3.5.1 could potentially be improved. Recall, that lemma es-

sentially said that if Q has doubling equal to 2N, then along the center hyperplane,

there is at least one smaller cube with doubling less than N. I conjecture the following

stronger version:

Conjecture 3.8.3. Let N(Q) = 2N. Let Ni = 2N - 2-N. Then for a subset

v C {0, - - - , E (n)} with size Q(n), for each i G v, there exists at least one cube q so

that N(q) E [Ni_1,Ni).

A theorem of this form might allow an improvement in the proof of Lemma 3.5.2

- in particular, it could remove the necessity of applying Lemma 3.5.1 many many

times.

In order to remove the n dependence from the simplex lemmas, we would need to

possibly use a shape E other than a simplex, and a different measure h for distance

from a plane, so that the following version of Lemma 3.3.3 is true:
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If F is a set with positive h distance from a plane, then there exists a E C F with

the same h distance from the same plane.

We would also need a reformulation of 3.3.2.

Let E have h distance a from a plane, then there exists a point p, and constants

c(a) and C(a) so that the result of Lemma 3.3.2 holds.
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