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Abstract

Restricted models of quantum computation are mathematical models which describe
quantum computers that have limited access to certain resources. Well-known ex-
amples of such models include the boson sampling model, extended Clifford circuits,
and instantaneous quantum polynomial-time circuits. While unlikely to be universal
for quantum computation, several of these models appear to be able to outperform
classical computers at certain computational tasks, such as sampling from certain
probability distributions. Understanding which of these models are capable of per-
forming such tasks and characterizing the classical simulation complexity of these
models-i.e. how hard it is to simulate these models on a classical computer-are
some of the central questions we address in this thesis.

Our first contribution is a classification of various extended Clifford circuits ac-
cording to their classical simulation complexity. Among these circuits are the conju-
gated Clifford circuits, which we prove cannot be efficiently classically simulated up to
multiplicative or additive error, under certain plausible conjectures in computational
complexity theory. Our second contribution is an estimate of the number of qubits
needed in various restricted quantum computation models in order for them to be able
to demonstrate quantum computational supremacy. Our estimate is obtained by fine-
graining existing hardness results for these restricted models. Our third contribution
is a new alternative proof of the Gottesman-Knill theorem, which states that Clif-
ford circuits can be efficiently simulated by a classical computer. Our proof uses the
sum-over-paths technique and establishes a correspondence between quantum circuits
and a class of exponential sums. Our final contribution is a theorem characterizing
the operations that can be efficiently simulated using a particular rebit simulator.
An application of this result is a generalization of the Gottesman-Knill theorem that
allows for the efficient classical simulation of certain nonlinear operations.

Thesis Supervisor: Peter W. Shor
Title: Morss Professor of Applied Mathematics
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3.1 Classification of the classical simulation complexities of families of Clifford

circuits with different ingredients. P stands for efficiently classically simula-

ble. #P stands for #P-hard. QC stands for QC-hard and PH stands for "if

efficiently classically simulable, then the polynomial hierarchy collapses".

The proofs of JV 1-7 can be found in [143]. Theorems 39-50 are about

cases not found in [143] and are the main results of this chapter. (i)-(xxvii)

are results that follow immediately from these theorems by using the rules

in Chapter 3.5.1. The 11 cases with boxed symbols are the core theorems,

from which all other cases can be deduced using rules which we describe in

Chapter 3.5.1. These include all the main theorems JV 1-7 and Theorems

39-50, except JV1 and JV6, which turn out to be special cases of Theorem

49 and Theorem 39 respectively. . . . . . . . . . . . . . . . . . . . . . 87

4.1 Complete complexity classification of U-CCCs (where U = Rz(O)R2(O))

with respect to weak simulation, as we vary # and 6. The roman numer-

als in parentheses indicate the parts of Lemma 57 that are relevant to the

corresponding box. All U-CCCs are either in PWK (i.e. can be efficiently

simulated in the weak sense) or PH-supreme (i.e. cannot be simulated effi-

ciently in the weak sense, unless the polynomial hierarchy collapses.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . ..118

7.1 Hardness of computing Z1 / 2k(2, f), where k > 0 or k > 1, and f is a

polynomial function with coefficients in Z and domain Z'. Here, 'periodic'

means that f satisfies the periodicity condition (7.3), and 'aperiodic' means

that f does not necessarily satisfy it. The label FP means that Zl/ 2k(d, f)

can be computed in classical polynomial time, and #P-hard means that

there is no efficient classical algorithm to compute ZI/2k(d, f), unless the

widely-believed conjecture FP f #P is false. . . . . . . . . . . . . . . . 203

8.1 Several examples of our definition of simulation. . . . . . . . . . . . . 237
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A. 1 Number of elements in the n-qubit Clifford group IC,/U(1) and the

group of n-qubit operators generated by H, S, CZ, for n = 1, 2,...,6.

The cardinalities of these groups are related by lCn = IC,/U(1)1 =

11(H, S, CZ)nI. The sequence I(H, S, CZ)"I is recorded as sequence

A003956 in the On-Line Encyclopedia of Integer Sequences (OEIS)

[133]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
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Chapter 1

Introduction

1.1 Motivation

Quantum computers, which were first proposed in the 1980s by Manin [164], Feynman

[102], and others, promise to offer significant computational benefits compared to to-

day's classical computers. This promise has been driven by the discovery of quantum

algorithms designed to be run on quantum computers, which can potentially solve

certain problems much faster than the best classical algorithms possible. A famous

example of such a quantum algorithm is due to Shor [205,207], whose eponymous al-

gorithm can solve the factoring problem exponentially faster than the fastest classical

algorithms we know today. Since Shor's discovery, several other quantum algorithms

have been discovered [171]. For a comprehensive catalog of quantum algorithms, we

refer the reader to the Quantum Algorithm Zoo [141], which at the time of writing

contains about 60 quantum algorithms.

While significant progress has been made in the field of quantum algorithms, fast

quantum algorithms alone are obviously not sufficient to provide convincing evidence

that quantum computers would offer benefits compared to their classical counterparts.

Two additional ingredients are needed. The first ingredient is experimental: we need

to build quantum computers that are capable of running these quantum algorithms;

otherwise, any advantage that these quantum algorithms possess cannot be actualized.

The second ingredient is theoretical: we need to prove that the quantum algorithms
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we design indeed provide a speedup (or offer some other advantage) over all possible

classical algorithms for the same problem. While considerable progress has been made

in developing these experimental and theoretical ingredients, the challenges faced

remain large and attempts to address them continue to be active areas of research.

On the experimental front, one of the central challenges is that building a quantum

computer is difficult. On the one hand, in order to use a quantum system as a quantum

computer, we need to isolate it from the outside world. This is because quantum

systems that are not perfectly isolated from the environment undergo decoherence

and lose information to the environment [20,140]. On the other hand, we need to be

able to control the quantum system from the outside to allow inputs to be fed into

the computer, and be able to read out the results of the measurements. This trade-

off between the above requirements presents opposing design challenges to building

quantum computers [189].

On the theoretical front, one of the main challenges is that proofs of compu-

tational hardness are notoriously difficult to establish-consider, for example, the

long-standing P NP problem [4, 70]. We do not have a theoretical proof yet of

any quantum algorithm that can outperform the best classical algorithm for a given

task, in the standard paradigm of polynomial-versus-exponential running time, in a

computational complexity setting. For example, even though Shor's algorithm out-

performs all known classical factoring algorithms, there is no provable guarantee that

future yet-to-be-discovered classical factoring algorithms will not be able to match

the performance of Shor's algorithm. More generally, the question of whether the

complexity classes BPP (the class of problems that can be efficiently solved with a

classical randomized algorithm) and BQP (the class of problems that can be efficiently

solved with a quantum algorithm) are equal remains open. Proving that these two

classes are not equal would be a momentous breakthrough, not only because it would

prove that quantum computers are exponentially more powerful than classical ones,

but also because it would resolve major unsolved problems in classical computational

complexity theory; for example, it would prove the long-standing conjecture that

P / PSPACE [16].
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While a complete solution to the above experimental and theoretical challenges

has yet to be found, progress has been made towards addressing them. On the exper-

imental front, after years of research and development in fabrication and materials,

the first quantum computers that might be able to outperform state-of-the-art clas-

sical computers are now in the pipeline. For example, Google announced last year

that it had built Bristlecone, a 72-qubit quantum computer based on superconduct-

ing circuits [144]. We are now entering a pivotal era in quantum technology, which

has been dubbed the Noisy Intermediate-Scale Quantum (NISQ) era [189]. Here,

"noisy" emphasizes that experimentalists will likely have only imperfect control over

the qubits in the quantum computer, and "intermediate-scale" refers to the size of

near-term quantum computers, which are likely to be able to handle only between 50

and a few hundred qubits.

On the theoretical front, even though a proof of an unconditional separation be-

tween BPP and BQP remains out of reach, it has been possible to prove quantum-

classical separations under additional conditions or assumptions. Popular approaches

include proving separations in the black box model, or proving separations between

restricted quantum computers and restricted classical computers. An example of a

result using the former approach is an oracle separation1 between BQP and BPP [29].

An example of a result using the latter approach is a separation between constant-

depth quantum circuits and constant-depth classical circuits [43]. A third popular

approach is to prove separations based on plausible complexity assumptions. Results

of this type typically involve choosing a widely-believed conjecture C and a task T for

which we can prove the following: (i) T can be performed efficiently on a quantum

computer, (ii) If T can also be performed efficiently on a classical computer, then C

is false. In other words, the plausibility of C gives evidence that quantum computers

outperform classical computers. Examples of such results include theorems showing

that quantum computers are able to efficiently perform sampling tasks that classi-

cal computers cannot, under the assumption that the polynomial hierarchy does not

'More recent results have generalized this to an oracle separation between BQP and MA [226],
and an oracle separation between BQP and PH [193].
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collapse [5, 48,97].

In light of the above experimental and theoretical advances, a question that has

been frequently asked is: when can we expect to observe an empirical demonstration of

a quantum advantage that is strongly supported by plausible theoretical assumptions?

Performing such a demonstration would be a critical milestone in the development

of quantum computers and the first step towards useful quantum computation. It

would show what has come to be called 'quantum supremacy' [188] (or alternatively,

'quantum computational supremacy' [123]), a term which has recently come into

vogue to describe such a demonstration of a quantum advantage, whose goal is to

overturn the Extended Church-Turing Thesis [184, 238] as confidently as possible.

Due to the recent developments of near-term quantum devices, there are expectations

that quantum supremacy could be achieved in the next few years.

The potential imminence of quantum supremacy has sparked interest in under-

standing which quantum computational models are both (i) potentially realizable in

the near term and (ii) capable of solving classically-hard problems. Models satis-

fying (i) are likely to not be capable of arbitrary universal quantum computation,

but instead be limited by restrictions of some kind. We shall use the term restricted

models of quantum computation to refer to quantum computers that have limited

access to certain resources. Some examples of restricted quantum computing models

include extended Clifford circuits [143,148], boson sampling circuits [5] and instan-

taneous quantum polynomial time (IQP) circuits [48]. Because these models are not

likely to require the full power of quantum computation, they are potentially easier

to implement in the laboratory and are therefore conceivably good candidates for

implementation in the near term. The remaining question, then, is whether these

various restricted models also satisfy (ii), i.e. can they solve problems which are hard

for classical computers? If not, can we show that these models can be efficiently

simulated on a classical computer? Studying the classical simulation complexities of

these restricted models-i.e. how hard it is to classically simulate these models-is

one of the central questions we will address in this thesis.

Studying the classical simulation complexities of restricted quantum computing
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models is useful not just in helping us to understand which models might be useful

candidates for demonstrating quantum supremacy; it also yields useful insights on

the relationship between quantum and classical computational power and helps us

understand the origin of quantum speedup (if it exists), the reason why quantum

supremacy could exist in the first place. To see this, suppose that we start with a

restricted model that is efficiently classically simulable. If adding certain ingredients

to the restricted model creates a new model that is hard to simulate classically, then we

could regard those ingredients as an essential 'resource' for quantum computational

power. In this thesis, we will see several examples of how adding ingredients to a

restricted model of quantum computation changes its classical simulation complexity.

In the preceding paragraphs, we gave an overview of some of the main challenges

and advances in the field of quantum computation, and motivated some of the broad

questions that this thesis addresses. In the next section, we will elaborate on some

of these questions, and summarize the main results and contributions of this thesis.

1.2 Organization and summary of results

This thesis is organized as follows. In Chapter 2, we introduce some of the ba-

sic definitions, notation and tools used in quantum computation and computational

complexity theory. We describe various restricted models of quantum computation,

and summarize some of their properties. An example of a restricted model we will

discuss is the class of Clifford circuits, which has important applications in many

subfields of quantum computation. An important result about Clifford circuits is

the Gottesman-Knill Theorem, which states that Clifford circuits can be efficiently

simulated by a classical computer [111].

In Chapter 3, we consider various modifications of Clifford circuits and study

how the classical simulation complexities of the circuits change as the ingredients

in the circuits are modified. Our results reveal a delicate relationship between the

ingredients of the circuits and their classical simulability. In particular, we identify

several instances where modest changes to the ingredients of the circuits lead to large
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changes in their classical simulation complexities. These results shed some light on

the relationship between quantum and classical computational power, and help to

identify resources needed for a quantum computational speedup. This chapter is

based on [148].

In Chapter 4, we introduce the class of conjugated Clifford circuits, which are a

restricted model of quantum computation. These are circuits that can be constructed

from Clifford circuits by conjugating each gate in the Clifford circuit by some fixed

single-qubit unitary operator. We show that this conjugation breaks the Gottesman-

Knill algorithm for simulating Clifford circuits, and that such circuits can give rise

to sampling tasks which cannot be efficiently performed to constant multiplicative

error on a classical computer, assuming a plausible complexity-theoretic conjecture.

Furthermore, by making use of a stronger conjecture, we extend this hardness result

to allow for the more realistic model of constant additive error. This work can be

seen as progress towards classifying the computational power of all restricted quantum

gate sets. This chapter, based on [36], is joint work with Adam Bouland and Joseph

F. Fitzsimons.

In Chapter 5, we turn our focus to other restricted models of quantum computa-

tion, such as instantaneous quantum polynomial time circuits (IQP) [48], depth-one

quantum adiabatic optimization algorithm (QAOA) circuits [97] and boson sampling

circuits [5]. These restricted models have been proposed as potential candidates for

a quantum supremacy demonstration, but one question that has been debated is

how many qubits we need in these circuits before such a demonstration can occur.

Previously, all the existing bounds ruling out classical simulation algorithms have

been asymptotic in nature, and have been too coarse-grained to provide a number-of-

qubits estimate for quantum supremacy. In this chapter, we refine existing hardness

arguments and perform a number-of-qubits calculation by imposing a fine-grained

complexity conjecture. We conclude that IQP circuits with 180 qubits, QAOA cir-

cuits with 360 qubits and boson sampling circuits with 90 photons are large enough

for the task of producing samples from their output distributions up to constant mul-

tiplicative error to be intractable on current technology. This chapter, based on [76],
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is joint work with Alexander M. Dalzell, Aram W. Harrow and Rolando L. La Placa.

In Chapter 6, we consider higher-dimensional analogues of (qubit) Clifford circuits,

namely p-level Clifford circuits. Here, we take p to be an odd prime, and defer the

case of general p to Chapter 7. Such p-level Clifford circuits are called quopit Clifford

circuits. We explore the connection between quopit Clifford circuits and Feynman's

sum-over-paths technique. In particular, we show that the sum-over-paths technique

allows the amplitudes of arbitrary quopit Clifford circuits to be written as a product

of Weil sums with quadratic polynomials, which can be computed efficiently. This

gives an alternative proof of the Gottesman-Knill Theorem for p-level systems, and

is an application of the circuit-polynomial correspondence which relates quantum

circuits to low-degree polynomials [172]. This chapter, based on [150], is joint work

with Mark D. Penney and Robert W. Spekkens.

In Chapter 7, we generalize the results in Chapter 6 to arbitrary d-level Clifford

circuits (called qudit Clifford circuits), where d > 2 is an arbitrary integer, by relat-

ing the amplitudes of these circuits to a class of exponential sums, called periodic,

quadratic, multivariate half Gauss sums. Furthermore, we show that these exponen-

tial sums become #P-hard to compute when we omit either the periodic or quadratic

condition. This gives a new complexity dichotomy theorem, and highlights the role

of periodicity in classical simulation. This chapter, based on [53], is joint work with

Kaifeng Bu.

In Chapter 8, we study the task of using a rebit quantum computer (i.e. one that

uses only real amplitudes) to simulate a qubit quantum computer (i.e. one that uses

complex amplitudes). While it was known since the 1990s that such a simulation

can be carried out efficiently [29], an interesting observation that had been noticed

previously [170] but had not been explored much is that a rebit computer is able to

efficiently simulate not just unitary, but also non-unitary (in fact, nonlinear) operators

on the qubit computer. In this chapter, we give the first complete characterization

of the qubit operators that can be simulated using this approach, by proving that

they belong to a subgroup of the R-linear operators, called the R-unitary operators.

One important application of our results, which ties to the theme of this thesis, is in

29



studying which nonlinear operations on quantum circuits can be efficiently simulated

on a classical computer. In particular, we define a class of operators, called the

R-Clifford operators, and show that circuits composed of these operators can be

efficiently classically simulated. The set of R-Clifford operators is the union of the

Clifford group with some nonlinear operators, and hence, our result enlarges the

scope of the Gottesman-Knill Theorem by extending the efficient classical simulation

algorithm to allow for the simulation of nonlinear operations as well. This chapter,

based on [149], is joint work with Murphy Yuezhen Niu and Theodore J. Yoder.
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Chapter 2

Preliminaries

2.1 Notational guide

In this section, we state some of the notational conventions that we will use throughout

this thesis. The sets of complex, real and natural numbers are denoted by C, R

and N = {0, 1, 2, . .} respectively. The set of integers is denoted by Z and the set

of positive integers is denoted by Z+ = {1, 2, .. .}. For primes p, we write F, =

{ 0, 1, . . ,p - 1} to denote the prime field of order p. For integers n, we write Z" =

{0, 1,.. . , n - 1} to denote the ring of integers modulo n. We denote the imaginary

unit i = -1 and Euler's number e = 2.718... in roman font. The symmetric group

of degree n is denoted by S,. For groups A and B, we write A a B to mean that A

is isomorphic to B.

The Hermitian conjugate of a matrix A is written as At, its transpose is written

as AT, and its trace is written as tr(A). The commutator and anticommutator of

matrices A and B are written as [A, B] = [ A, B] _ = AB-B A and { A, B} = [A, B]+ =

AB + BA respectively. The symbol 0 denotes the Kronecker product. The n-fold

Kronecker product A 0 ... 0 A is abbreviated as A®n. The Kronecker delta function

is denoted by 5g. We use the symbol I to denote the identity matrix; the size of I

should be inferred from context. The set of d x d matrices is denoted by L(d). The

group of d x d unitary matrices is denoted by U(d), and the group of d x d unitary

matrices with determinant 1 is denoted by SU(d).
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The complex conjugation operator is denoted by K. When K acts on vectors or

linear operators, we assume that it acts on them with respect to the computational

basis. For a scalar, vector or matrix A, we sometimes write K(A) = A. The real and

imaginary parts of a scalar, vector or matrix A are defined in terms of K: the real

part of A is given by RA = I(A + K(A)) and the imaginary part of A is given by

QA = (A - K(A)). Hence we could write I = R +i and K = R - iQ. We say that

A is real if RA = A, and that A is imaginary if A = -iA.

For operators A, B, we write A - B if there exists 0 E R such that A = e'0B.

Note that ~ defines an equivalence relation on the set of operators.

2.2 Quantum states, transformations and measure-

ments

We assume some familiarity with quantum computation, but will provide all the

necessary definitions and results. We refer the reader to the textbooks [180,228] for

additional background material.

In quantum mechanics, quantum states are described by density operators (i.e.

positive semidefinite operators with unit trace) on a Hilbert space 71, the set of

which we denote by D(R). Throughout this thesis, we will assume that 'h is finite-

dimensional. When 7 = (Cd)on = Cd o. .. ®C (where d > 2 and n > 1 are integers),

we call the quantum state p an n-qudit state. Here, n is the number of qudits, and d

is the number of levels of each qudit. Special names are given for qudits with certain

values of d. When d = 2, qudits are referred to as qubits, and when d is an odd prime

integer, qudits are referred to as quopits [92]. For most of this thesis (except Chapters

6 and 7), we will take d = 2.

A quantum state p is pure if it has rank one. Equivalently, p is pure if it is an

orthogonal projection onto a one-dimensional subspace, i.e. if p can be written as

an outer product 1b)(01 for some column vector (called a ket) 1') c 71 satisfying

||,112 := (01V)) = 1. Notations like "j )" and "( " are called Dirac notation or bra-
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ket notation, which we will use throughout this thesis. A quantum state is mixed if

it is not pure.

Quantum transformations are described by completely positive and trace preserv-

ing (CPTP) maps, also known as quantum channels. These are functions mapping

density operators to density operators that can be written as E : p H-> >2 EipE4,

where Ti EEi = I. The preceding expression is known as the Kraus representation

or operator-sum representation of the CPTP map [152, 180]. We say that a CPTP

map is unitary if its Kraus representation has a single nonzero term. Equivalently,

a unitary CPTP map is one that can be written as S : p H-> UpUt for some unitary

operator U.

Quantum measurements are described by sets of measurement operators {Mm}

satisfying the completeness relation Z2 MIMm = I. Here, the indices m label the

outcomes of the measurement. Given a state p and measurement operators {Mm}mEA,

the probability of obtaining an outcome m E A when p is measured is determined

by Born's rule: pr(m) = tr(pM -Mm). If the outcome m occurs, the state after

measurement is
MmPMtM

tr(pMtMm)

A quantum measurement {Mm} is a projective measurement if the measurement op-

erators Mm are Hermitian and MMm = 6imMm for all m and 1, where 6 1m denotes

the Kronecker delta. An example of a projective measurement is a computational

basis measurement on a single qubit, which is given by the measurement operators

{j0)(0j, 1)(11}. In this case, the probability of obtaining an outcome k E F2 when

p E D(C 2) is measured is pr(k) = (klplk), and the post-measurement state is Ik)(kI.

While the most general description of a quantum system S undergoing evolution

and measurement involves density operators, CPTP maps and general measurements,

one can show' that S can equivalently be described using only pure states, unitary

1To see this, we note that every mixed state can be viewed as being the reduced state of some
pure state in a larger Hilbert space. Also, every CPTP map on a system A is equivalent to (i)
adding an ancilla B in a well-defined state, (ii) performing a unitary on AB, and (iii) tracing out
the system B [215]. Similarly, any general measurement on a system A is equivalent to (i) adding an
ancilla B in a well-defined state, (ii) performing a unitary on AB, and (iii) performing a projective
measurement on AB.
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Figure 2-1: Example of a quantum circuit, represented as a quantum circuit
diagram. The sequence of gates in the circuit may be written as CY1 3 CX 1 2

CS 2CX 1 2 CS2 3CCZ 2 3H1 H3. We write Gi to mean that the gate G acts on the

ith qubit.

transformations and projective measurements, if one treats S as being part of a larger

system [180]. This process of going from density operators, CPTP maps and general

measurements to pure states, unitary transformations and projective measurements,

respectively, is referred to as "going to the Church of the larger Hilbert Space" [213].

In this church, the evolution laws become simpler. For example, states can be rep-

resented using just kets 14') E N, and unitary transformations can be written as

IV) -+ U 1'), where U is a unitary operator on X. Given a state 4') and a projective

measurement {Mm}, Born's rule states that probability of obtaining an outcome m

is pr(m) = 11Mm 14) 112, and the post-measurement state is Mm 14) /IA/Im IV)) 11. Since

working with the Church of the larger Hilbert Space loses no generality, this is the

perspective we will take for most of this thesis.

2.3 Quantum circuits

Quantum circuits are a model of quantum computation represented by a sequence

of quantum gates and measurements acting on an n-qudit quantum state. Here, a

quantum gate is a unitary operation acting on a constant number of qudits (typically,

between 1 and 3 qudits). Quantum circuits may be represented graphically as quan-

tum circuit diagrams. An example of such a diagram is shown in Figure 2-1. For an

introduction to quantum circuits, we refer the reader to Chapter 4 of [180].

In a quantum circuit diagram, a wire or a register refers to the horizontal line

denoting the passage of a qudit in time. The size of a circuit refers to the number of
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gates in the circuit. The depth of a circuit is the number of time steps in a circuit,

where each time step contains gates acting on disjoint qudits. For a gate G and an

index i, we write Gi to mean that the gate G is applied to the ith qudit (see caption

of Figure 2-1).

2.3.1 Examples of quantum gates

In this thesis, we will make repeated use of several common quantum gates. For

convenience, we will list some of these gates here. Since most of the thesis deals with

n-qubit systems, we will restrict our attention in this chapter to only gates acting on

qubits, and defer any treatment of qudit gates, for d > 2, to Chapters 6 and 7.

Among the most commonly-used gates are the (single-qubit) Pauli matrices, de-

fined as:

1 0 0 1 0 -i 1 0
1=C X = , Y = , Z = . (2.1)

0 1 (1 0 (i 0 (0 -1)

These operators are also sometimes denoted as o = I, a= or = X, a2 = a = Y

and -3 = or, = Z. Note that we have included the 2 x 2 identity operator in the

definition of the Pauli matrices. We will study the Pauli matrices and their n-qubit

generalizations in more detail in Chapter 2.4.

The Pauli operators may be used to define the so-called operation operators: the

rotation operator about an axis t E {x, y, z} with angle 0 E [0, 27) is

Rt(0) = e-iOat/ 2 
- cos(0/2)I - i sin(0/2)at. (2.2)

Note that the Pauli gates are a special case of the rotation operators: at = iRi(7r).

Other commonly-used single-qubit gates are the Hadamard gate H, the phase gate

(also called the '-gate) S = vZ and the i-gate T = VS. The matrix representations
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of these gates are

I,
-1/

1 0)
S =

0 i
T=(

(0
(2.3)

0

e ix/4

It can be shown that every single-qubit gate U can be written in terms of the

rotation operators as follows:

U = elaRz(#)Rx(0)Rz(A), (2.4)

where a, $, 0, A E [0, 27) [180]. For example,

H = iRz(7r/2)R,(7r/2)Rz(7/2),

S = eir/4Rz(7r/2), and T = eix/8Rz(7r/8).

So far, all the gates above are single-qubit gates. One way to construct multiple-

qubit gates is to use the controlled operation: given a gate G, we define the controlled-

G gate to be

CG = 10)(01 _1+ I 1)(1 0 G.

In a circuit diagram, the CG gate is drawn as

where the top register is called the control register, and the bottom one is called the

target register.

The above process can be applied iteratively. For example, the controlled-controlled

G gate is given by

CCG = C(CG) = (100)(001 + 01)(01| + 10)(101) ® I + 11)(11| o G

and is drawn as
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G

More generally, we define, for k > 2, C(k)G = C(C(k- 1 )G), where C(')G = CG.

Examples of commonly-used 2-qubit controlled gates include the controlled-not

gate CX and the controlled-phase gate CZ. These have matrix representations

1

0
CX=

0

0

0

1

0

0

0

0

0

1

0 1

0 0
Cz=

1 0

0 0

0 0

1 0

0 1

0 0

0

0

0

-1

and are drawn as follows:

CX: CZ:

Examples of commonly-used 2-qubit controlled gates are the Toffoli gate CCX and

the controlled-controlled-phase gate CCZ. These are represented by 8 x 8 matrices

and are drawn as follows:

CCX:

Other common multi-qubit gates are the swap gate

SWAP= 1 |xy)(yxl,
x,yEF2

and the Fredkin gate C(SWAP).
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2.3.2 Universality

In this subsection, we will discuss various notions of universality. The strongest sense

of universality of a set of quantum gates (called a gate set) is the following:

Definition 1 ([12]). A gate set g is strictly universal if there exists a constant no - N

such that for all integers n > no, the subgroup generated by 9 is dense in SU(2n).

Recall that SU(2n) is the group of n-qubit unitary matrices with determinant 1

(see Chapter 2.1). Note that Definition 1 does not place any requirements on the

efficiency of generating all the unitaries in SU(2"). To do that, we need the Solovay-

Kitaev Theorem, which is a general technique for converting statements about density

to statements about efficiency:

Theorem 2. (Solovay-Kitaev Theorem [78]) Let g be a finite set of k-qubit gates

that is closed under taking inverses. If g is strictly universal, then for all c > 0,

any k-qubit unitary U can be c-approximated by a finite sequence of gates from g,

where the length of the sequence is O(log 3.97(1/E)). Moreover, the computation of the

description of the sequence of gates approximating U can also be performed efficiently.

Here, we say that a unitary V E-approximates a unitary U if

D(U, V) = IIU - VII = sup II(U - V)) 1 <,
11VII=1

where jj - denotes the operator norm.

An implication of the Solovay-Kitaev Theorem is that one can efficiently change

between strictly universal gate sets. Two well-known examples of strictly universal

gate sets are Kitaev's gate set [145] given by {CS, H} and the Clifford+T gate set

given by {CZ, H, T}. More generally, one gets a universal gate set by appending any

non-Clifford gate to the Clifford group (to be defined in section 2.5) [176,177].

A weaker notion of universality is given by computational universality, which is

defined as follows.
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Definition 3 ([12]). A gate set G is computationally universal if it can be used to

simulate to within e error any quantum circuit that uses n qubits and t gates from a

strictly universal set, with only poly-logarithmic overhead in (n, t, 1/f).

While strict universality implies computational universality, the converse does not

hold. For example, the gate set {Toffoli, H} is computationally universal [12,203] but

not strictly universal. To see that it is not strictly universal, note that the Toffoli and

Hadamard gates are both real matrices, and hence cannot generate a dense subgroup

of SU(2"). To see that it is computationally universal, we use the fact that it can

be used to simulate Kitaev's gate set using the rebit encoding (see Chapter 8 and

Theorem 2 of [12] for more details).

2.4 Pauli group

2.4.1 Properties of the Pauli group

In this section, we define the Pauli group [180] and discuss its properties. Recall the

definition of the single-qubit Pauli matrices in Eq. (2.1).

It is straightforward to verify that the non-identity Pauli matrices o-1, o 2 , Or3 satisfy

the following identities: for i E {1, 2, 3},

O-igj = 6ijI + i 6ijkk, (2.5)

det(Oi) = -1, (2.6)

tr(a-) = 0. (2.7)

where Eijk is the Levi-Civita symbol, and Jij is the Kronecker delta function.

The set of n-qubit Pauli matrices Pn (for integers n > 1) is formed by taking

n-fold tensor products of the single-qubit Pauli matrices:

P = {P1 i o Pn E U(2) i E ,X,YZ} fori 1, ... , n}, (2.8)

where U(k) is the group of k x k unitary matrices.
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We now state a few properties that the n-qubit Pauli matrices satisfy. First, each

of the Pauli matrices is both Hermitian and unitary, i.e. for all P E Pa,

Pt = P, PtP = . (2.9)

Second, the Pauli matrices form an orthogonal basis for the complex vector space of

2' x 2" matrices (with respect to the Hilbert-Schmidt inner product). More precisely,

for all P, Q E P,

tr(Pt Q) = tr(PQ) = 2 P=Q (2.10)
0, otherwise.

Thirdly, any pair of Pauli matrices either commute or anti-commute, i.e. for all

P, Q E Ps, exactly one the following holds:

either [P, Q] = 0 or {P, Q} = 0. (2.11)

In the way it is defined above, the set Pn is not a group. For example, it is not

closed under matrix multiplication: XY = iZ P1. To make it a group, we shall

take the closure of the subset Pn in the unitary group U(2'). To this end, we define

the Pauli group P, to be the subgroup of U(2n) generated by the set Ps, i.e.

Tn = (Pa) = U : Uj E P. Vi}. (2.12)

By Eq. (2.5), multiplying Pauli matrices with other Pauli matrices only produces

multiples of i. Hence, it follows that

Pn = {ikP: k E N, P E P. (2.13)

Now, for many applications, the global phase of the Pauli matrices is irrelevant,

and hence, the following extension of the Pauli group is useful:

'D, = {e'0 P : 0 E R, P E Pnj . (2.14)
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Recall that for matrices U and V, we write U - V if there exists 0 E R such

that U e'0V (see Chapter 2.1). It is easy to see that ~ is an equivalence relation.

Let [U] {V : V - U} denote the equivalence class of matrices that are equivalent

to U. For a set of matrices M, let M/U(1) = {[U] : U E M} denote the set of

equivalence classes formed from the elements of M. When the context is clear, we

might occasionally abuse notation and write [U] as U. Using this notation, the Pauli

group modulo the unitary group U(1) may be written as

Pn/U(1) = {[P] : P E P'}, (2.15)

where the group multiplication is defined by [U]- [V] = [UV]. Note that each element

[Pi 0. . . Pn] is distinct, and hence, the elements of Pn/U(1) can be uniquely labeled

by the elements in P,.

The sets Pn, Pr and Pn/U(i) are all groups, and we will sometimes refer to any

of these groups as the Pauli group. While P, is an uncountably infinite set, the sets

Pn, Pn and Pn/U(1) are all finite, with cardinalities given by

IPn/U(1)I = |PnI = 4", | 4jn+. (2.16)

2.4.2 F2 representation of the Pauli group

In this section, we give an alternative representation of Pauli matrices in terms of

vectors in Fin. Consider the map -: IF 2 Pn/U(1), defined by

- : U =-U = XU1ZU2, (2.17)
U2

where uj = jl Ujn .. , y for 1 = 1 2, and XUIZU2 = XUIIZU21 X@l ... X1ZU2n.

For convenience, we have omitted the brackets when denoting the equivalence class

[c-u] and have simply written it as u. We will use the convention of denoting the

elements of F " by column vectors of length 2n.
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Note that - is bijective, and so its inverse # : a' '-+ u exists. We shall call

U = q(au) the F2 representation of u. Note also that o is a group isomorphism

between the groups

(2.18)

We now show how commutation and anticommutation of Pauli matrices manifest

themselves in the IF2 representation. Let

A =(O
= In

In",

O,
(2.19)

where On is the n x n zero matrix and I is the n x n identity matrix. This allows us

to define the symplectic inner product (-,-) :Fj" x Fj - F 2 as

(U, v) = uT Av. (2.20)

Next, we recall the definition of a symplectic bilinear form:

Definition 4. A symplectic bilinear form on a vector space V over a field F is a

function w : V x V -+ F such that

1. (bilinearity) For all a, b E F and x, y, z E V,

w(ax + by, z) = aw(x, z) + bw(y, z)

and

w(x, ay + bz) = aw(x, y) + bw(x, z).

2. (totally isotropic) w(x, x) = 0 for all x C V.

3. (nondegenerate) If w(x, y) = 0 for all y E V, then x = 0.

The pair (V, w) is called a symplectic vector space.

It is straightforward to check that (-, -) is a symplectic bilinear form on the vector
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space F2, over the field F2 , i.e., (F (-,)) is a symplectic vector space. Since the

underlying field is F2 , the symplectic bilinear form (-,-) is also symmetric2 .

Theorem 5. Let u, V E F ". Then,

[o-" U7"] = 0 <- (u, v) = 0. (2.21)

Proof. Consider

o-uoUv = XU1ZU2X"1ZV2

= (-1)VlU2(_J)liv2XV1Zv2XU1ZU2

= (-1) ("'V)roro-.

(2.22)

(2.23)

(2.24)

Hence,

[-0, UoV] = 0 <=-= (-1)(U'V) = 1 .-- > (u, v) = 0. (2.25)

Remark. By Eq. (2.11), Pauli matrices either commute or anticommute. Since

(u, v) E {0, 1}, the biconditional (2.21) is equivalent to

{- TUV} = 0 <=. (u, v) = 1. (2.26)

Hence, two Pauli matrices commute (anticommute) if and only if the inner product

of their F2 representations vanishes (does not vanish).

2.5 Clifford group

In this section, we introduce the Clifford group, which plays a prominent role in vari-

ous subfields of quantum computation, such as quantum error correction and fault tol-
2Here, we use the fact that any symplectic bilinear form over a field of characteristic 2 is sym-

metric.
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erance [45,112], randomized benchmarking [163], measurement-based quantum com-

putation [51,191, 192] and classical simulation of quantum computation [40,42,81].

The Clifford group also plays an important role in other fields, such as quantum foun-

dations [15,186] and in the construction of optimal packings in Grassmannian spaces

[62,69, 208]. The term 'Clifford group', as used in the quantum computation litera-

ture, dates back to the pioneering works on quantum error correction by Calderbank,

Rains, Shor and Sloane [60, 61, 206]. In [61, 176], the authors trace the usage of the

term to the works of Bolt, Room and Wall [33,34]. Note that the same name has

been used for a different family of groups [66].

The n-qubit Clifford group (for integers n > 1) is defined as

Cn = {U E U(2n) : UPnUt = P}. (2.27)

In other words, the Clifford group C, is the normalizer of the Pauli group P, in the

unitary group, and hence is a group. In particular, it is closed under multiplication

and inverses. The elements of the Clifford group are called Clifford operators.

Let

P* = P\{I} (2.28)

where we have excluded from P, the only element without the negative eigenvalue

-1: unlike P, every element of P* has eigenvalues 1, each with multiplicity 2n1.

Then, the Clifford group can be expressed in terms of the different variants of the

Pauli group: Pn, P./U(1), P. and P*, as the following proposition shows.

Proposition 6.

C= {U E U(2") : UPnUf = Pn} (2.29)

= {U E U(2") : [U] . Pn/U(1)- [Ut] = Pn/U(1)} (2.30)

= {U E 1(2n) : UU C (2.31)

= {U E U(2n) : UP* Ut C p*}. (2.32)
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Proof. We shall prove that Eq. (2.27) C Eq. (2.32). We leave the other cases as an

exercise for the reader. Let U satisfy Eq. (2.27), and let P E P*. Then UPUt E P,

i.e.

UPUf = eOQ,

for some 0 E R and Q E P,. Since UPUt is Hermitian, e'0Q is Hermitian, i.e.

eiOQ = e-ioQt.

Since Q is Hermitian, e2iO = 1, which implies that

eO = 1.

Now, suppose, for the sake of contradiction, that Q = I, then UPUt = I.

(2.33)

(2.34)

(2.35)

This

implies that P = tI, which is a contradiction, since 1 V P*. Hence, Q # I which

implies that UPUt E P,*. C

Now, each element in P,* can be written as a- XulZu2, for some u E Fin\ {O}.

Hence, it follows that

Cn = {U c U(2n) : V E Fjn\ {}, a E F2 , Ev E F "\ {O}

s.t. Uo-uUt = (-1)a"o}. (2.36)

2.5.1 Elements of the Clifford group

We start by listing a few examples of Clifford operators. First, note that since the

Pauli group is closed under multiplication, the Pauli group is a subset of the Clifford

group:

Pn C Cn. (2.37)

Indeed, Eq. (2.24) implies that

a-" : a" -+ (-l)(V)OV,
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where we have used the following notation:

U: P -- Q means UPUt = Q. (2.39)

For example, when n = 1, we get

X : X -+ X

(2.40)

Y : X -o -X

(2.41)

Z: X -t> -X

Z -+ Z. (2.42)

But the Pauli group is not a strict subgroup of the Clifford group. It turns out

that many of the operations we defined in Chapter 2.3 are also Clifford operators.

For example, the following gates are Clifford operations, as can be seen from their

actions on the Pauli group.

H : X -tZ

Y -( 2Y

Z -> X, (2.43)

S : X -Y

Y - -X

(2.44)Z -> Z,
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CX1: X I-0 X

Z®I-Z®I

I Z -Z 0 Z, (2.45)

CY: X 0 I- X 0 Y

Y 0 I ->Y 0 Y

ZoI-ZOI

I0 y X1+Z0 X

I10 Z ->Z 0 Z, (2.46)

C Z: X 0 I1- X 0 Z

Y 0 I -+Y 0 Z

Z0I-Z®I

IoX-ZOX

IoY-ZOY

I0 Z -+ Z, (2.47)

SWAP: X 0 I -1 X

Z®I-Z0I

I0X-X®I

I Y -Y 0 I

I0 z Z 0 I. (2.48)
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Observe that all the Clifford gates stated above can be expressed as products of CZ,

H and S gates, as can be seen from the following identities:

X=HS 2H

Y = iHS 2HS 2

Z = S2

CX12 = H2CZ12H2

CY12 = S1H 2CZ12 H 2CZ12

SWAP 12 = H2 CZ12 H1H2 CZ12 H1H2 CZ12 H2. (2.49)

Hence, X, Y, Z, H, S, CX, CY, CZ, SWAP c (H, S, CZ)"/U(1), where we have used

the following notation: if {g(1), ... , g(s) } is a set of gates, we define (g(l), . .. , g(s))f to

be the set of n-qubit operations that are generated by circuits with gates g(), .. , g(s).

It turns out that we can prove a much stronger result than that stated above. The

ability to express operators as products of H, S and CZ gates applies not just to the

above gates, but to every Clifford gate, as the following theorem states.

Theorem 7. (Theorem 214)

Cn/U(1) = (H, S)/IU(1) n=1

(H, S, CZ)n/U (1) n > 1.

We provide a complete proof of Theorem 7 in Appendix A (see Theorem 214),

where we also explore various characterizations of the Clifford group. A similar proof

of Theorem 7 may also be found in [109] (see Chapters 5.6 and 5.8) and [110] (see

page 3).

From Theorem 7, one can show that the Clifford group is finite. In fact, its

cardinality is given by the following theorem.

Theorem 8. (Theorem 218) Let n > 1. The number of elements in the n-qubit
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ary

a ijk ++-+-

I 123 I X Z XZ
(-) (-) (+)

(23) 132 SHS SHSX SHSZ SHSXZ
( )(+ (+) (-

(12) 213 S SX SZ SXZ

(123) 231 HSZ HSZX HS HSX
(+) (-) (HZ (+)

(132) 312 SH SHX SHZ SHXZ
( -) (-) (+)

(13) 321 H HX HZ HXZ
(- (+H+ -

Table 2.1: A complete list of all 24 elements of the

written as products of H, S, X = HS2H and

permutations a on {1, 2, 3} written in cycle not

single-qubit Clifford group C1/U(1),
Z = S2.

ation and

The
the

rows are indexed by
columns are indexed

by a,-y E {+, -}. The integers ijk E {1,2,3}3, with distinct i, j, k, are defined

by i = a-(1), j = u(2) and k = a(3). The Clifford operator U corresponding to

2, j, k E {1, 2,3} and a, y C {+, -} is the unique U satisfying UXUt = ao- and

UZUt = Wak. The symbol in parenthesis (0), where E {E+, -}, written below the

Clifford operator U is defined by UYUt = uoj. For example, the entry HS with row

index ijk = 231, column index ay = -+ and 0 = - means that U = HS satisfies

UXUt = -0- 2 = -Y, UYUt = --a3 = -Z and UZUt = o-, = X.

Clifford group is

ICn/U(1)l = 2n(n+2) 1(4i - 1).
j=1

(2.50)

For example, when n = 1, the Clifford group has 24 elements. A complete list of

all 24 elements is given in Table 2.1.

49



2.6 Classical and quantum computational complex-

ity theory

In this section, we will provide a summary of the necessary background in compu-

tational complexity theory that is relevant to this thesis. For additional background

material, we refer the reader to [16,212,227].

An alphabet E is a nonempty finite set. The elements of E are called symbols.

Throughout this section and for most of this thesis, we will take E to be the binary

alphabet F2 = {0, 1}. A string w over an alphabet E is a finite sequence of symbols

from E. The number of symbols in w is called its length and is denoted by Iwi. The

set of strings of length n over E is denoted by E". The set of all strings over E is

denoted by E* = UiEN Ei, where * is called the Kleene star.

A language L is a set of strings, i.e. L C E*. We denote the indicator function

of L by L(x), i.e. L(x) = 1 if x E L and L(x) = 0 otherwise. The set ALL =

P({0, 1}*) is the set of all languages, where P(-) is the power set operation. We

will be studying subsets of ALL that arise from placing restrictions on the resources

available to various models of computation. Such subsets of ALL are called complexity

classes. A comprehensive online catalog of complexity classes may be found at the

Complexity Zoo [9], which at the time of writing contains more than 530 classes. An

inclusion diagram summarizing all the known relations between many of these classes

may be found at the website [153]. We present a smaller variant of this diagram in

Figure 2-3, which summarizes all the known relations between the classes involved

in this section. Our diagram is not a strict sub-diagram of [153]; for example, unlike

[153], we include the class coA for each class A that is not known to be symmetric.

A common model of computation is the Turing machine, which is an abstract

machine introduced by Turing [221] that manipulates symbols on an infinite strip of

tape according to a finite set of rules. For a precise definition of a Turing machine,

see [212]. We write the output of a Turing machine M on an input string x as

M(x). A language is decidable if there exists a Turing machine M such that for all

x E {0, 1}*, M(x) = L(x). When this holds, we say that M decides L. Let R be the
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set of decidable languages. Not all languages are decidable (for example, the halting

problem is not decidable [221]); hence, R ; ALL.

2.6.1 P, NP and the polynomial hierarchy

Let t: N -+ N. A language L E TIME(t(n)) if there exist c > 0 and a Turing machine

M that decides L in ct(n) time. One of the most important classes in complexity

theory is the class P (which stands for polynomial-time), which is defined as

P= UTIME(ne). (2.51)
c>1

Informally speaking, P represents the class of efficiently computable languages. Through-

out this thesis, the term efficient is used as shorthand for 'polynomial time'. Not all

decidable languages are in P. For example, by the time-hierarchy theorem [124], the

class of languages that are decidable in exponential time

EXP := U TIM E(2)nc (2.52)
c>0

is decidable and strictly larger than P, i.e. P ; EXP.

A language L is in NP (which stands for nondeterministic polynomial time) if

there exist a polynomial-time Turing machine M and a polynomial q such that for

all x E {0, 11*,

x E L =z ly E {0, 1}P(IXI M(x, y) = 1. (2.53)

Informally, NP is the set of languages for which the answer can be verified in poly-

nomial time. It follows from the definitions that P C NP. One of the most famous

open problems in theoretical computer science is whether this inclusion is strict, i.e.

is P NP? While this problem, called the P = NP problem [4], remains open at the

time of writing, it is widely believed that
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Conjecture 9.

P z4 NP.

A Cook reduction or a polynomial-time Turing reduction from a language A to a

language B is a polynomial-time algorithm that solves A using a polynomial number

of calls to a subroutine for B. We say that a language L is NP-hard if for A E NP,

A reduces to L. We say that L is NP-complete if it is in NP and it is NP-hard. A

famous example of an NP-complete problem is the satisfiability problem, called SAT,

which asks if a Boolean formula is satisfiable [71,160].

For a complexity class C, define

coC = {L: {0, 1}* \L E C}. (2.54)

A class C is called symmetric if C = coC. From Eq. (2.54), it follows that coNP is the

set of languages L for which there exist a polynomial-time Turing machine M and a

polynomial q such that for all x E {0, 1}*,

x C L ==> Vy E {0, 1}P(IxI) M(x, y) = 1. (2.55)

Let k > 1 be an integer. A language L C It if there exist a polynomial-time Turing

machine M and a polynomial q such that for all x E {0, 1} *,

x E L <-> 3u, E {0, 1 }(JxI) Vu2 E {0, 1}q(IxI) . . . Qkuk E {0, 1}(IxJ)

s.t. M(x, U1, ... , uk) = 1.

where Qk = V if k is even and Qk = 3 if k is odd. Define fl = cort, and F- = Hg = P.

It is easy to see that F-1 = NP and n = coNP. The sets F-P and n' are said to belong

to the kth level of the polynomial hierarchy. The union of these levels is the polynomial

hierarchy:

PH=U (z un>= U - Un.
kEN kEN kEN
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PH

NPNPNP coNPNpNP

I >< I
NPNP coNpNP

I >< I
NP coNP

P

Figure 2-2: Hasse diagram representing the poset (X, <), where X comprises PH and
all its levels. We write A < B if the statement that A C B is known to be true at

the time of writing.

The levels of the polynomial hierarchy can also be written in terms of oracle

complexity classes. Let A be a complexity class which is defined in terms of a Turing

machine M, and let L be a language. Define AL to be the complexity class that results

from replacing each instance of M in the definition of A by ML, where ML is the

Turing machine M that has access to an oracle for the language L. This superscript

notation can be extended to a set B of languages by

AB A L

LEB

It can be shown that E2 = NPNP, -P = NPNPNP and so on. Similarly, n, = coNPNP

fl = coNPNP NP and so on (see Chapter 5.5 of [16]). A Hasse diagram showing all

the known subset relations between the polynomial hierarchy and its levels is shown

in Figure 2-2. It remains an open question whether any of the inclusions indicated

in Figure 2-2 is strict, or whether any of the classes in the figure are equal to each

other. We do know, however, that if any two classes in the figure are equal, then the

polynomial hierarchy collapses to the minimum of the levels that the classes belong

to, as the following proposition states.
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Proposition 10. Let k, I E N and Q, e E {l, E }. If (k, 1) # (0, 0) and (Q, k) # (E, ),

then

P =Of ->PH =min(k,l) min(k,l)

In particular,

1. FEP = ZEk+ -- PH= *

2. If k # 0, then (-f = p ==> PH = F-).

Here, we say that the "polynomial hierarchy collapses to the kth level" if PH =Z

i.e. if EP = 37P for all 1 > k. We say that the polynomial hierarchy is infinite or that

it does not collapse if PH , Ep for all k, i.e. if each level of the hierarchy is distinct

(by Proposition 10). Though not proven to be true, it is widely believed that

Conjecture 11. The polynomial hierarchy does not collapse.

Note that Conjecture 11 is a stronger conjecture than Conjecture 9 that P # NP,

because if P = NP, then the polynomial hierarchy collapses to the zeroth level, by

Proposition 10.

2.6.2 Complexity of counting

The class FP, which is the function problem analogue of the class P, is the set of func-

tions f : {0, 1}* -+ {0, 1}* for which there exists a polynomial-time Turing machine

M such that for all x, M(x) = f(x). The class #P, introduced by Valiant [222], is

the set of functions f : {0, 1}* -4 N for which there exist a polynomial p : N -+ N and

a polynomial-time Turing machine M such that for all x E {0, 1}*,

f(x) = {y E {0, 1}P(x) : M(x, y) = 1}

If Conjecture 9 is true, then it follows that FP = #P. We could extend the notion

of completeness to #P problems. Let f, g : {0, 1}* -+ {0, 1}*. We say that g reduces
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to f if g E FPf. A function f : {0, 1}* - {0, 1}* is #P-hard if for all q C #P, q

reduces to f. f is #P-complete if it is both in #P and is #P-hard. An example

of a #P-complete problem is #SAT, which is the problem of counting the number of

satisfying assignments of a Boolean formula. An important result relating the class

#P and the polynomial hierarchy is

Theorem 12. (Toda's Theorem [219])

PH c P#P.

In the above theorem, note that P#P is the set of languages that can be efficiently

decided by a Turing machine with access to a #P oracle.

2.6.3 Space complexity

Next, we turn our attention to space complexity. Let t : N -+ N. Let SPACE(t(n)) be

the set of languages L for which there exists a Turing machine machine M such that

for x E {O, 1} *,

1. x E L l M(x) = 1.

2. M halts on x.

3. M on input x uses at most t(Ixt) tape cells.

The classes PSPACE and EXPSPACE are defined analogously to the time complex-

ity classes P and EXP:

PSPACE U SPACE(nc),
c>0

EXPSPACE U SPACE(2"n).
c>0

The classes PSPACE, EXPSPACE and some of the previously-mentioned classes
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are related as follows:

P C NP C PH C P#P C PSPACE C EXP C EXPSPACE. (2.56)

While it is known that P # EXP and PSPACE # EXPSPACE, the question about

whether any of the other inclusions in Eq. (2.56) are strict remains open. It follows

from Eq. (2.56) that if Conjecture 9 holds, then the following weaker conjecture would

also hold.

Conjecture 13.

P , PSPACE.

2.6.4 Classical randomized complexity

In this subsection, we will study complexity classes that are defined by Turing ma-

chines that have access to classical randomness. We'll be defining several classes using

the following template.

Template 14. A language L is in [ if there exist a polynomial-time Turing machine

M and a polynomial p : N -+ N such that for all x E {o, 1},

(Completeness) x E L => Proi}PxI [M(x,r) = 1] ,

(Soundness) x L =-> PrrE1ol}p1x1 [M( x, r) = ].

The classes BPP (bounded-error probabilistic polynomial time), RP (randomized

polynomial time), coRP and PP (probabilistic polynomial time) are defined by re-

placing the placeholders [ , F and F in Template 14 with those in the Table

2.2.

Note that the constants 2/3 and 1/3 in the definition of BQP are arbitrary. By

the amplification lemma, the class BPP would remain the same if we set to be

> p(n) and 1 to be < q(n), for any p(n) < 1 - 2-nd and q(n) > 2-nd such that

p(n) - q(n) > n-c, where c and d are constants, and n = JxJ is the length of the
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BPP > 2/3 < 1/3

RP > 2/3 = 0

coRP = 1 < 1/3

PP > 1/2 1/2

Table 2.2: Definitions of BPP, RP, coRP and PP, obtained by replacing the place-

holders A, B and C in Template 14 with those in the table.

input. Similarly, the class RP would remain unchanged if we set to be > p(n),
-d

for any n-c < p(n) < 1 - 2- , where c and d are constants. Also, the class coRP

would remain unchanged if we set to be < q(n), for any 2-"d < q(n) <_ 1 - 2~n,

where c and d are constants.

The above bounds suggest that problems in BPP, RP and coRP are tractable; it

is possible to achieve exponentially small errors with just polynomial running time.

For problems in the class PP, however, it is not known how to achieve an exponen-

tially small error with only polynomial running time, and hence, problems in PP are

generally not regarded to be tractable problems. Some of the known relationships

between the various complexity classes mentioned above are

Proposition 15.

1. P C RP C NP C PP and P C coRP C coNP C PP.

2. RP, coRP C BPP C PP.

3. PP C P#P = PPp.

4. [158, 211] BPP C7 np.

At the time of writing, the following problems remain open.

Open problem 16.

1. Is BPP C NP, or is NP C BPP?
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2. Is BPP = P?

3. Is PP C PH, or is PH C PP?

2.6.5 Bounded-error quantum polynomial time

The central complexity class capturing the power of quantum computation is the class

BQP (bounded-error quantum polynomial time), which is the quantum generalization

of the class BPP.

Definition 17. A language L is in BQP if there exist a polynomial-time Turing

machine M and a polynomial p such that for all x E {0, 1},

M(x) = QX

where Qx is a (description of a) quantum circuit over the gate set {H, T, CZ} on

p(lxl) qubits such that

x E L =-> (1|I Q, 0 )P(X) > 2

x L - (11I QiO)P(XI) 2 < 1

A few remarks about Definition 17 are in order. First, we note that the quantity

(1I Q| 10 )P(IXI) 2 is the probability that one obtains an output 1 when the first qubit

of the state produced from acting Qx on 0)'P(IxI) is measured. Because the swap gate

can be produced from the gate set {H, S, CZ}, it is without loss of generality that

we chose the first qubit to be the one to be measured.

Second, we note that the description of the quantum circuit Qx is produced by

a polynomial-time Turing machine. This condition, called uniformity, ensures that

one is not hiding extra power in the definition of BQP. For example, without the

uniformity criterion, one could just define Qx to output 1 if x encodes the string

(M, t), where M is a Turing machine that halts on t, and 0 otherwise. This would

enable Qx to solve the halting problem, which is not decidable. Subsequently, we
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will use the following terminology: a polynomial-time uniformly generated family of

quantum circuits is a set of circuits {Cn} such that a classical Turing machine can

produce a description of Cn on input n in time polynomial in the length of n.

Third, we chose the strictly universal Clifford+T gate set {H, T, CZ} for the

quantum circuit Q_. Such a choice is arbitrary, and due to the Solovay-Kitaev theorem

(see Theorem 2), we are free to choose other universal gate sets as well.

Fourth, the bounds 2/3 and 1/3 are arbitrary. The amplification lemma could be

used to achieve exponentially small errors without changing the definition of BQP.

Fifth, while we defined BQP in terms of the quantum circuit model, it is possible

to arrive at an equivalent definition using other universal models of quantum com-

putation, like the quantum Turing machine [29,82], quantum adiabatic computation

[14,96], quantum walks [67] or quantum cellular automata [175].

Since classical randomness is a special case of quantum randomness, it follows

that

Proposition 18. BPP C BQP.

It remains an open question whether this inclusion is proper:

Open problem 19. Is BPP ; BQP?

This was the open question that we alluded to in Chapter 1.1 of the introduction.

A proof that BQP is strictly larger than BPP would show that there are languages

which quantum computers can solve efficiently but which classical computers cannot.

A plausible candidate for such a language is the (decision version of the) factoring

problem, which is in BQP due to Shor's algorithm [205,207]. Whether the factoring

problem is in BPP is still an open question; if it can be shown that it is not in BPP,

then Open Problem 19 would be solved in the positive.

One of tightest 'natural' upper bounds for BQP by a classical complexity class is

the class PP:

Proposition 20 ([11,77]). BQP C PP.
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The above proposition may be proved using Feynman's sum-over-paths technique

[103] that expresses quantum amplitudes as an exponential sum of polynomial-sized

terms. In Chapters 6 and 7, we will explore applications of this technique to proving

results about the simulability of qudit Clifford circuits.

2.6.6 Postselection

Postselection is the ability to discard all runs of a computation except those that

yield a particular result [2]. This definition includes the case when the result is

an exponentially-unlikely event, and hence, postselection is not a realistic ability to

possess in the real world. Nevertheless, we will show that considering the power

of postselection yields useful results about the power of quantum computers in the

real world. We begin by defining classical and quantum complexity classes that are

equipped with the power of postselection.

A language L is in PostBPP if there exist a pair of polynomial-time Turing ma-

chines A and B and a polynomial p such that for all x E {0, 1}*,

1. Pr Eo i}pxu [B(x, r) = 1] > 0,

2. x E L -- > PrrgoiPrao [A(x,r) = 1|B(x,r) = 1] ; 2

3,
3. x ( L =-> Pr,.regol}Pux[A(x, r) = 1|B(x, r) = 1] j.

Here, the Turing machine B is called the postselector. From the definition, we

see that we consider only the cases when B(x, r) = 1 and discard all other outcomes.

Note that the class PostBPP is equivalent to the class BPPpath defined in [118].

The class PostBQP is the quantum analogue of PostBPP and may be defined as

follows [2,154]: a language L is in PostBQP if there exists a polynomial-time uniformly

generated family {C-}LEjO, of quantum circuits such that for all x E {0, 1}*,

1. Pr[Cx(2) = 1] > 0,

2. x E L -- > Pr[Cx(1) = 1|Cx(2) = 1] > 2
- 3'

3. x L = Pr[Cx(1) = 1Cx(2) = 1] < 1
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Here, C,(k) denotes the output obtained when kth qubit of the state C.10) is mea-

sured. Here, k = 1 is called the output register, and k = 2 is called the postselection

register. Similarly to PostBPP, here we discard all rounds of the computation when

Cx(2) # 1.

Since adding postselection cannot decrease the power of a computational model,

we have

BPP C PostBPP, BQP C PostBQP.

Since postselected classical computation is a special case of postselected quantum

computation,

PostBPP C PostBQP.

Our next proposition relates PostBPP to the polynomial hierarchy.

Proposition 21. ([118])

NP C PostBPP C 57.

coNP C PostBPP C I3.

That is, PostBPP is between the first and third levels of the polynomial hierarchy.

In fact, we could prove something slightly stronger [118]:

PPostBPP c F- n [1. (2.57)

The relationship between PostBPP and the second level of the polynomial hierar-

chy remains an open question. We do know, however, that if PostBPP C 57, then PH

collapses to the third level [118]. Furthermore, it was proved in [31] that there is an

oracle relative to which PostBPP is not contained in X2.

The class PostBPP appears to be much less powerful than PostBQP though, as

Aaronson's theorem suggests:

61



Theorem 22. (Aaronson's Theorem [1,2])

PostBQP = PP.

Hence, by Open Problem 16, the relationship between PostBQP and the polyno-

mial hierarchy remains an open question. Using the above theorems, it follows that

it is implausible that PostBPP = PostBQP:

Corollary 23. If PostBPP = PostBQP, then PH = F3.

Proof. Assume that PostBPP = PostBQP. Then,

PH C

C

C

C

P#P = PPP

pPostBQP

PPostBPP

FP

by Proposition 15 and Theorem 12

by Proposition 22

by assumption

by Eq. (2.57).

El

In other words, if PostBPP = PostBQP, then the polynomial hierarchy collapses to

the third level. We conclude this section by referring the reader to Figure 2-3, which

contains a summary of all the known subset relations between the various complexity

classes that have been discussed so far.

2.7 Notions of classical simulation of quantum com-

putation

A central question in this thesis that we have discussed is whether quantum computers

can be efficiently classically simulated. But what does it mean to 'classically simulate'

a quantum computation? It turns out that the term 'classically simulate' has been

used to refer to a variety of different notions. In this section, we will seek to clarify
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ALL

R

EXPSPACE

EXP

PSPACE

P#P = PPP

PH

PostBQP - PP

BQP

PostBPP

NP coNP

BPP

RP coRP

P

Figure 2-3: Hasse diagram representing the known subset relations (;) between the
various classes introduced in Chapter 2.6.
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the distinctions and relationships between some of these various notions. We begin

with the notion of strong simulation.

Definition 24. A class of quantum circuits Q can be (efficiently) strongly simulated

if there exists a polynomial-time Turing machine M such that if Q E Q is a circuit

on n qubits, I C [n], and y E {0, 1}11, then

M(Q, I, y) = Iy 1 Q Io") 12

We call M a strong simulator of Q, and write Q E PSTR if Q can be efficiently

strongly simulated.

Lemma 25. Let Q be a family of circuits over the gate set {H, S, CZ}. Then the

strong simulation of Q is #P-hard, i.e. if Q E PSTR, then FP = #P.

One approach to proving Lemma 25 is to encode the solution of a #P-hard problem

into the amplitudes of a quantum circuit; see [81] for an example of such a proof. We

will give our own proof of Lemma 25 in the form of Theorems 39 and 40, where we

prove that the strong simulation of a non-universal family of circuits is #P-hard. Due

to Lemma 25, we do not expect the strong simulation of universal quantum circuits

to be possible.

Next, we introduce the notion of weak simulation.

Definition 26. A class of quantum circuits Q can be (efficiently) weakly simulated

if there exist a polynomial-time Turing machine M and a polynomial p : N -+ N such

that if Q E Q is a circuit on n qubits, I C [n], and y E {0, 1}I1, then

Pr r p(IQ) [M(Q, I, r) = y] = I (yLj Q 0") |2

We call M a weak simulator of Q, and write Q E PWK if Q can be efficiently weakly

simulated.

In other words, a weak simulation of a quantum circuit Q samples from the output

distribution of Q. Now, suppose that Q is a family of circuits over the gate set
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{H, S, CZ}. If Q E PWK, then it follows from the definitions above that BPP = BQP.

Moreover, it also follows that PostBPP = PostBQP, which implies that the polynomial

hierarchy collapses to the third level, by Corollary 23. Hence, we obtain the following

lemma (which is special case of Corollary 1 of [48]).

Lemma 27. Let Q be a family of quantum circuits over the gate set {H, S, CZ}. If

Q c PWK, then the polynomial hierarchy collapses to the third level.

In fact, this result can be improved to a second-level collapse by using a different

argument from Fujii et al. [104]:

Lemma 28. Let Q be a family of quantum circuits over the gate set {H, S, CZ}. If

Q E PWK, then the polynomial hierarchy collapses to the second level.

We will elaborate on this result in Chapter 5 of this thesis, where we will subject

Lemma 28 to a fine-grained analysis.

The difference between strong and weak simulation is that strong simulation in-

volves calculating probabilities, whereas weak simulation involves sampling from prob-

ability distributions. The following proposition shows that strong simulation implies

weak simulation.

Lemma 29. (Proposition 1 of [217]) Let Q be a family of quantum circuits. Then

Q E PSTR ==> Q E PWK.

In Chapter 3 (see Definitions 36 and 37), we will introduce the notations PSTR(f(n))

and PWK(f(n)), which are generalizations of the notations PSTR and PWK that take

into account the number of qubits being measured.

So far, the notions of classical simulation we introduced are exact and do not take

simulation error into account. But since real physical systems are susceptible to noise,

any realistic notion of simulation should also take error into account. To this end, we

will next discuss approximate notions of simulation.

Let P = {pz}z and Q = {q,}z be (discrete) probability distributions, and let

e > 0. We say that Q is a multiplicative E-approximation of P if for all z,

|Pz - qz < cpz. (2.58)
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We say that Q is an additive E-approximation of P if

I pz - q, I; <. (2.59)

Note that any multiplicative E-approximation is also an additive e/2-approximation,

since summing Eq. (2.58) over all z produces Eq. (2.59).

Definition 30 (multiplicative (additive) error). A weak simulation with multiplica-

tive (additive) error e > 0 of a family of quantum circuits is a classical random-

ized algorithm that samples from a distribution that is a multiplicative (additive)

c-approximation of the output distribution of the circuit.

Note that from an experimental perspective, additive error is the more appropriate

choice, since the fault-tolerance theorem merely guarantees additive closeness between

the ideal and realized output distributions [13].

In [48], it was proved that Lemma 27 still holds if we replace the notion of weak

simulation with weak simulation with multiplicative error. Strengthening Lemma 27

to the case of additive error remains an open question. We will elaborate on these

approximate notions of simulation in Chapter 4.

2.8 Restricted models of quantum computation

As defined in Chapter 1.1, a restricted model of quantum computation is one that

has limited resources available to it. In the quantum circuit model, common ways

of limiting resources include restricting the types of inputs or measurements allowed

or restricting the structure of the circuit. In this section, we will introduce vari-

ous well-known restricted models of quantum computation and discuss some of their

properties.

2.8.1 Clifford circuits

Clifford circuits are quantum circuits whose gates belong to the Clifford group. Recall

from Chapter 2.5 that the Clifford group is generated by the Hadamard, phase and
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controlled-Z gates. We will refer to these generators as basic Clifford gates.

More precisely, a Clifford circuit is a quantum circuit of the following form:

10) -

10)- HSCZ
+measurements

10) -

1. Start with 10) ".

2. Apply a polynomial number of basic Clifford gates H, S, CZ, and intermediate

measurements in the computational basis.

3. Measure a subset of the qubits in the computational basis.

If no intermediate measurements are performed in Step 2, we say that the Clifford

circuit is unitary. The following theorem characterizes the complexity of simulating

Clifford circuits.

Theorem 31. ([81, 111]) Let 0 be the class of Clifford circuits (with intermediate

measurements), and let C C 5 be the class of unitary Clifford circuits. Then,

1. (Gottesman-Knill Theorem-strong version) f E PSTR.

2. (Gottesman-Knill Theorem-weak version) 0 E PWK.

3. If E PSTR, then FP = #P.

By Theorems 29 and 31, unitary Clifford circuits can be efficiently simulated by a

classical computer in both the weak and strong senses. If intermediate measurements

are allowed in the Clifford circuit, then efficient weak simulation is still possible,

though strong simulation becomes #P-hard. In Chapters 3 and 4, we will explore

the interplay between different notions of simulation and the ingredients of a Clifford

circuit.
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2.8.2 Instantaneous quantum polynomial-time circuits

Instantaneous quantum polynomial-time (IQP) circuits were first introduced by Shep-

herd and Bremner in [201,202]. These are circuits whose gates all commute, and hence

are temporally unstructured. They are defined to be circuits of the following form:

0)-

10)

10) -L

1. Start with 10) ".

2. Apply gates which are diagonal in the X basis.

3. Measure a subset of the qubits in the computational basis.

Note that an IQP circuit can alternatively be represented in terms of gates that

are diagonal in the Z basis (i.e. computational basis). In this representation, IQP

circuits take the following form:

10)

10)
diagonal

1. Start with 10)0'.

2. Apply H®n.

3. Apply gates which are diagonal in the Z basis.

4. Apply H@n.
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5. Measure a subset of the qubits in the computational basis.

Because H2 = I, the above two representations of IQP circuits coincide. The next

result characterizes the simulation complexity of IQP circuits.

Theorem 32. (Bremner-Jozsa-Shepherd [48]) Let C be the class of IQP circuits. If

Q E PWK, then the polynomial hierarchy collapses to the third level.

As with Lemma 28, this result may be improved to a second-level collapse. In

Chapter 5, we explore this in greater detail.

2.8.3 Depth-one QAOA circuits

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-

classical variational algorithm introduced by Farhi, Goldstone and Gutmann that is

designed to approximately solve combinatorial optimization problems [94].

The input to the algorithm is a sequence ci,. . . , cm of m clauses on n variables

z = (zi,.. . , za), where each variable zi takes values in {0, 1}. Each of these clauses

c, is a constraint on a subset of variables which is satisfied by some assignments of

bits and unsatisfied by others. For each assignment z E {o, i}n, write

cc,(Z) = 1 if z satisfies c,

0 otherwise.

The objective function of an assignment is the number of satisfied clauses

C : {0, I}n -+0, 1, . .,m}

c(z) = Ca(z).

a=1

The goal of the algorithm is to find a string z* E {0, 1} for which c(z*) is close to

the maximum of c(.), i.e.

c(z*) ~ maxc(z).
Z
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To describe the QAOA, we first introduce some notation. Define

Ca - E
ZE{0,1}"

and let

m

C = Y Ca = )

a=1 zE{0,1}-

The operator C is called the problem Hamiltonian.

For y E [0, 27r), let

U(C, -Y) = e-IC - JJce

where the second equality holds because all Ca's commute.

Define

n

B = X ,
j=1

where Xj is the n-qubit operator that acts as the Pauli-X operator on the jth qubit,

and the identity operator on all other qubits. The operator B is called the mixing

Hamiltonian.

For 0 C [0,7r), define

U(B, /) = e-iB -e-'
j=1

Set p E Z+. Let -= -1. .. p and =1. ., where -y E [0, 27r) and Oi E [0, 7r).

A p-level QAOA circuit corresponding to clauses ci,.. cm and sets of angles 'I
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and 0 is

10)

0) U(C,) U(B, 1) U (C, yp) U(B, p)

0) -- - -

Note that the depth of the above circuit is mp + p. We denote the output of the

circuit by

I3) = U(B, f3)U(C, yp) . . . U(B, # 1)U(C, y1 )H*O10) On.

Let the expectation value of C with respect to the state jI, /) be denoted by

Fp( ,/3 = C I ).

The QAOA proceeds as follows. First, pick a p and start with sets of angles I

and / that make Fp(5, /) as large as possible. Second, use a quantum computer to

produce the state I, /3), and then measure this state in the computational basis to

get a string z, and evaluate C(z). Now, repeat Step 2 with the same angles to get

a good estimate of Fp(', /). Then, use a classical computer to search for optimal

parameters *, I*) to maximize F(, ), i.e.

(H*, *) = arg max Fp(',/).

The performance of the QAOA may be measured by the approximation ratio

_ =J-(Y ,/3*)

maxz c(z)

The QAOA has been applied to several combinatorial optimization problems. For

example, Farhi, Goldstone and Gutmann showed that QAOA at level p = 1 can
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solve the Max-Cut problem on 3-regular graphs with an approximation ratio of 0.692

[94], which is better than random guessing, but still not as good as the best known

classical approximation algorithms for Max-Cut'. Another example where the QAOA

has been applied is the combinatorial problem of bounded occurrence Max E3LIN2.

For this problem, the QAOA briefly held the record for the best approximation ratio

[95], until a more efficient classical algorithm was proposed [21]. Whether the QAOA

is capable of producing better approximation ratios than classical algorithms remains

an open question and is an active area of research.

In this thesis, we are interested in the p = 1 QAOA circuit. Taking 1 = y =r/4,

the p = 1 QAOA circuit becomes

0) H H-f

where

H = e-"i 4 HSH = Hexp(-izZ)H.

The above circuit has almost the same structure as an IQP circuit, except that the

qubits are acted on by H instead of H before measurement. By modifying the proof

of Theorem 32, we get a similar hardness result for p = 1 QAOA circuits.

Theorem 33. (Farhi-Harrow [97]) Let C be the class of p = 1 QAOA circuits. If

3Max-Cut is a combinatorial optimization problem whose goal is to find the maximum cut of a
graph. Its approximate optimization above a minimum ratio r* is known to be NP-hard. It has
been proved that for general graphs, r* > 16/17 ~ 0.941 [125], and for unweighted 3-regular graphs,
r* > 331/332 ~ 0.997 [26]. There is a gap between these hardness results and the best known
approximation ratios by efficient classical algorithms: for general graphs, the Goemans-Williamson
algorithm achieves an approximation ratio of r ~ 0.879 [107], whereas for unweighted 3-regular
graphs, the Halperin-Livnat-Zwick algorithm gives an approximation ratio of r a 0.933 [117]. In
contrast, the p = 1 QAOA algorithm of Farhi, Goldstone and Gutmann gives an approximation
ratio of only 0.692 [94].
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c PWK, then the polynomial hierarchy collapses to the third level.

As with Lemma 28 and Theorem 32, this result may be improved to a second-level

collapse. We will discuss this in greater detail in Chapter 5.

2.8.4 DQC1 circuits

Deterministic quantum computation with one quantum bit (DQC1), introduced by

Knill and Laflamme [146], is a restricted model of quantum computation, where the

input consists of a single clean qubit in the computational basis, and noisy qubits

in the maximally mixed state in all other registers. A polynomial-sized circuit over

a universal gate set is applied to the state, before a single qubit is measured. For

example, a DQC1 circuit over the universal gate set {H, T, CZ} is given by:

10) -

1/2 H, T,CZ

1/2

1. Start with 10)(01 0 (I)n.

2. Apply a polynomial number of gates H, T, CZ.

3. Measure the first qubit in the computational basis.

The following theorem characterizes the classical simulation complexity of DQC1

circuits.

Theorem 34. (Fujii et al. [104]) Let Q be the class of DQC1 circuits. If 6 E PWK,

then the polynomial hierarchy collapses to the second level.

2.8.5 Boson sampling model

In the boson sampling model [5], a system with n photons and m modes is represented

by a superposition ER aR IR), where R = (ri,.... , rm), where ri E N represents the
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number of photons in mode i E {1,. .. , m} and E ri = n.

Passing these photons through a linear optical network composed of beam splitters

and phase shifters, which we call a boson sampling circuit, gives rise to a transfor-

mation on this Hilbert space. Valid transformations are represented by operators of

the form #(U), where U is an m x m unitary and 0 is a fixed (f- -n)-dimensiona1

representation of U(m). The unitary U fully describes the choice of circuit, and any

U can be exactly implemented using only m(m + 1)/2 total beam splitters and phase

shifters [194]. We define O(U) by its matrix elements (RI q(U) IR'), which are related

to the permanent of n x n matrices formed from U. Here, the permanent of an n x n

matrix A is given by the formula

n

Per(A) = Ai,o(i) (2.60)
c-ES' i=1

where Sn is the group of permutations on {1, . ., n}. Then, the matrix elements are

(RI #(U) IR') = Per(U(R,R')) (2.61)
V r1!...rm!r'i..'

where U(R,R') is the n x n matrix formed by taking ri copies of row i and r; copies of

column j from U. As an example, if n = 3, m = 2, R = (2, 1), R' = (1, 2), and

U= (2.62)
xF L-i -1

then

1 i i
1

URIR) = v/2. (2.63)

This sampling task is called BosonSampling since it could be applied to any system

of not only photons but any non-interacting bosons.

The following theorem characterizes the classical simulation complexity of the

boson sampling model.
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Theorem 35. (Aaronson-Arkhipov [5]) Let Q be the class of boson sampling circuits.

If Q E PWK, then the polynomial hierarchy collapses to the third level.

As with Lemma 28, Theorem 32 and Theorem 33, this result may be improved to

a second-level collapse. We will discuss this in greater detail in Chapter 5.
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Chapter 3

Extended Clifford circuits and

their classical simulation

complexities

In this chapter, we study various modifications of Clifford circuits, called extended

Clifford circuits, and study how the classical simulation complexities of these circuits

change as the ingredients in the circuits are modified. We show, under plausible

complexity conjectures, that whether such circuits are efficiently classically simulable

depends delicately on the ingredients of the circuits. The modifications we consider

give us 24 new combinations of ingredients compared to an earlier classification result

by Jozsa and Van den Nest [143], and we give a complete classification of their classical

simulation complexities. Our results provide more examples where seemingly modest

changes to the ingredients of Clifford circuits lead to "large" changes in the classical

simulation complexities of the circuits, and also include new examples of extended

Clifford circuits that exhibit "quantum supremacy", in the sense that it is not possible

to efficiently classically sample from the output distributions of such circuits, unless

the polynomial hierarchy collapses. The results in this chapter are based on [148].
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3.1 Motivation

One of the central results about Clifford circuits is the Gottesman-Knill Theorem

[111] (see Chapter 2.8.1), which states that such circuits can be efficiently simulated

on a classical computer, and hence do not provide a speedup over classical compu-

tation. But this is known to be true only in a restricted setting - whether or not

we can efficiently classically simulate such circuits seems to depend delicately on the

'ingredients' of the circuit, for example, on the types of inputs we allow, whether

or not intermediate measurements are adaptive, the number of output lines, and

even on the precise notion of what it means to classically simulate a circuit. These

cases were considered by Jozsa and Van den Nest [143], who showed that many of

these 'extended' Clifford circuits are in fact not classically simulable under plausible

complexity assumptions.

One of the main motivations for studying extended Clifford circuits is that they

shed light on the relationship between quantum and classical computational power.

Are quantum computers more powerful than their classical counterparts? If so, what

is the precise boundary between their powers? One approach to answering this ques-

tion is to consider restricted models of quantum computation and study their classical

simulation complexities, i.e. how hard it is to classically simulate them. For example,

suppose that we start with a restricted model that is efficiently classically simulable.

If adding certain ingredients to the restricted model creates a new class that is univer-

sal for quantum computation, then we could regard those ingredients as an essential

'resource' for quantum computational power [143]. Extended Clifford circuits, as a

restricted model of quantum computation, are especially well-suited for this approach

as they straddle the boundary between classical and quantum computational power.

One could give many examples where adding a seemingly modest ingredient to an

extended Clifford circuit changes it from being efficiently classically simulable to one

that is likely not.

Understanding how the classical simulation complexities of extended Clifford cir-

cuits change when various ingredients are added is a central goal of this chapter.
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In [143], Jozsa and Van den Nest tabulate the classical simulation complexities of

extended Clifford circuits with 16 different combinations of ingredients. In partic-

ular, they consider the different combinations of ingredients that arise from 4 bi-

nary choices: computational basis inputs vs product state inputs, single-line outputs

vs multiple-line outputs, nonadaptive measurements vs adaptive measurements, and

weak vs strong simulation. They show that the classical simulation complexities of

the extended Clifford circuits are of 4 different types (we use slightly different ter-

minology here): (i) P, which means that the circuits can be efficiently simulated

classically, (ii) QC, which means that the circuits are universal for quantum compu-

tation, (iii) #P, which means that the problem of classically simulating the circuits

is a #P-hard problem, and (iv) PH, which means that if the circuits are efficiently

classically simulable, then the polynomial hierarchy collapses.

In this chapter, we extend the results in [143] in two different ways. First, we study

how the classical simulation complexity changes when we employ a weaker notion of

simulation than strong simulation, which we call STR(n) simulation (short for strong-

n simulation). While strong simulation requires that the joint probability as well as

any marginal probabilities be computed, in STR(n) simulation, we require only that

the joint probability be computed. Note that such a notion seems incomparable with

weak simulation. Second, we study how the classical simulation complexity changes

when we allow for general product measurements (called OUT(PROD)) instead of

just the computational basis measurements (called OUT(BITS)) that were considered

in [143]. With these additional ingredients, the number of different combinations of

ingredients grows to 40. In Table 3.1, we tabulate the classical simulation complexities

of each of these cases.

We now make a few remarks about the extended Clifford circuits labeled in Table

3.1 by PH. These are examples of 'intermediate' or restricted quantum circuit models

which are not believed to be universal for quantum computation (or perhaps even

classical computation), but which exhibit a form of 'quantum supremacy' [123,188],

in the sense that they can sample from distributions that are impossible to sample

from classically, unless the plausible complexity assumption of the polynomial hier-
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archy being infinite is false. In [143], Jozsa and Van den Nest give an example of

such a circuit model: nonadaptive Clifford circuits with product state inputs and

computational basis measurements. In this chapter, we show that the same behavior

holds if we restricted our circuits to having computational basis inputs but allowed

them to have arbitrary single-qubit measurements performed at the end of the circuit

(see Theorem 46).

The rest of this chapter is structured as follows. In Chapter 3.2, we discuss various

extensions of Clifford circuits. In Chapter 3.3, we introduce some basic definitions and

notations and define different notions of classical simulation of quantum computation.

In Chapter 3.4, we summarize our main results in the form of Table 3.1 and discuss

some implications of our results. Our main theorems are Theorems 39-50, whose

proofs are presented in Chapters 3.5.2-3.5.7.

3.2 Preliminary definitions and notations

Recall from Chapter 2.8.1 that a unitary Clifford circuit is one that comprises only

the basic Clifford gates H, S and CZ, and that a Clifford circuit is one that consists

of not just the basic Clifford gates but also single-qubit intermediate measurement

gates in the computational basis.

We consider Clifford computational tasks of the following form:

1. Start with an n-qubit pure input state |0in).

2. Apply to [oin) a Clifford circuit B, which may be expressed as:

B(x1,...,XK) CK(X1,...,XK)MiK(Xl,---,K-1)(K) ...

C2 (Xi, X 2 )Mi 2(X1 )(x 2)C1 (Xi)Mil (Xi)Co, (3.1)

where each Ci(x1,..., xi) is a unitary Clifford circuit and Mi(x) indicates a

measurement on qubit line i with measurement result x. In general, B is taken

to be an adaptive circuit, i.e. the ith unitary Clifford circuit C depends on
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previous measurement results x1 ,.. . , xi. Let N denote the total number of

gates in B. Assume that there are no extraneous qubits, so that n = O(N).

3. Measure all n qubit lines using a projection-valued measure

{| l J -, Y )(#,3 ,...,Y } YI,,..,Yn ,

with measurement outcome Yi... Yn E {0, i}.

In this work, we restrict our attention to product state inputs and product mea-

surements (i.e. arbitrary single-qubit measurements), i.e.

1. Inputs are IV) = Iai) Ia2 ) . .. an), where each jai) G C2 .

2. Measurement directions are ,Y) 1"1) |2) ... ), where each I)3) E

C2

Note that for each i, by completeness, I O')('3I + ) = I. Hence, we need to

just specify {Ifi3)(0i3'} in order to completely specify the product measurement. A

description of the Clifford computational task is thus given by the three-tuple

T = (la) , B, I/)), (3.2)

where Ia) = ai) Ia 2)... Ian) is the initial state, B is the description of the Clifford

circuit, and 13) = |30) |[23) - - -in3) are the measurement directions.

Now, each product state input can be seen as arising from applying a product uni-

tary to the computational basis states, i.e. there exist single-qubit unitary operators

V1, . . . , V such that V 1 ®.. .&V, 1... 0) I 1a). Likewise, every product measurement

operator can be seen as arising from applying a product unitary operator followed by

measuring in the computational basis. More precisely, a measurement in the direction

|11)102 . .. n) is equivalent to the application of a unitary operator Ut 0. . . 0 Ui

followed by a measurement in the computational basis, where the yith (with zero

indexing) column of Ui is given by Ui Iyi) = I i#').
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10) 
B 

U 
-

Figure 3-1: Circuit diagram for the Clifford computational tasks considered in this chapter.

The gates Vi and Uf are arbitrary single qubit unitaries, B is a Clifford circuit, the input

state is the all-zero computational basis state, and the output measurement is performed

in the computational basis.

Hence, the Clifford computational tasks we consider are of the structure shown in

Figure 3-1. They may alternatively be represented by the 3-tuple

T ({V}?_1, B, U}_) (3.3)

We will use the above two descriptions in Eqs. (3.2) and (3.3) of Clifford tasks inter-

changeably, and even allow for mixed descriptions, for example, T = (a) , B, {UI} 1 ).

We'll now write down expressions for the probabilities of outcomes. For a compu-

tational task T = (1a) , B, [3)) and subset I = {i, . . . , i} ; [n], let PT2(yi, ... , y)

be the marginal probability that the outputs yi,,..., yi, are obtained in the lines

i1 ,... is. Define PT(y,... , y) = P[n (y1 ,.. , y) to be the probability of the out-

come y ... y,.

For the adaptive circuit described by Eq. (3.1), if the intermediate measurement

results are X 1 ... XK, then the density operator of the final state is given by

B(x1,. . ., XK) [Pa, (3.4)

where pa, = 1a)(al. We use the notation C[p] to denote the state that is obtained

when we apply C to the density matrix p, i.e. C[p] = CpCf. The probability that the
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result X1 ... X occurs is given by

P(i, .XK) = P(XKIX1, , xK-1)P(XK-1 X1, , XIK-2) . .. P(3X21)P(2X),

where

= tr{xj) (XzIl Cj_1(X1, . .. , Xjl)Mij-1 (X,. . .,Xj-2)(Xj 1) .

(3.5)x C1(X1)MIii(x1)C0[pC]}.

The final output state is then given by

B[pa] = E P(x1,---,xK)B(x1,...,xK)[Pa -

X1 ... XK

Hence, the outcome probabilities are given by

PT (y,. . . , yn) = (! 3y,...,ynIB[Pa]J y1,...,yn),

and the marginal probabilities are given by

PT(yi, .... S PT (Y1, . . , Y.n),
Ykj ... Yk-,

where {ki,.. ., k,- = [n] - I.

We consider the following 3 binary choices of ingredients:

1. Inputs: IN(BITS) vs IN(PROD)

2. Intermediate measurements: NONADAPT vs ADAPT

3. Outputs: OUT(BITS) vs OUT(PROD).

(3.6)

The first two cases have been considered in [143]: IN(BITS) and IN(PROD) refer

to having computational basis inputs and product state inputs respectively, while

NONADAPT and ADAPT refer to nonadaptive and adaptive measurements respec-

83

P(xj 1xi, -- - , xj-1)



tively. Note that in [143], all the output measurements are performed in the compu-

tational basis (call this case OUT(BITS)). In this chapter, we study how the classical

simulation complexity changes when we allow for more general measurements. For

the sake of symmetry with the inputs, we introduce the new ingredient OUT(PROD),

which refers to product measurements, i.e. when the Ui's in Eq. (3.3) are unrestricted.

Note that we allow product measurements only at the output; intermediate measure-

ments are always single-qubit measurements in the computational basis.

These 3 binary choices lead to 23 = 8 different subsets of Clifford computational

tasks. Let v E {(IN(BITS), NONADAPT, OUT(BITS)), (IN(BITS), NONADAPT,

OUT(PROD)), ... } be one of these 8 subsets. We shall denote the subset of Clifford

computational tasks corresponding to v by C,. Note that unlike [143], we do not

include OUT(1) and OUT(MANY) as ingredients in our circuit. Instead, we assume

without loss of generality that all n qubit lines are measured. This is justified by

the principle of implicit measurement, which states that any unterminated quantum

wires at the end of the circuit can be assumed to be measured [180]. The number

of output lines we simulate will be specified by the notion of simulation instead. We

discuss various notions of simulation in the next section.

3.3 Notions of classical simulation

In [143], Jozsa and Van den Nest consider two notions of classical simulation, namely

weak (WK) and strong (STR) simulation. As defined in Chapter 2.7, a weak simulation

involves providing a sample of the output distribution, whereas a strong simulation

involves calculating the joint output probabilities as well as the marginal probabilities.

Neither of these definitions places a restriction on the number of output registers to

be simulated. To take this into account, we shall introduce finer-grained notions of

simulation, namely STR(f(n)) and WK(f(n)) (short for strong-f (n) and weak-f (n))

simulation.

Let f(n) be either the constant function f(n) = 1 or the identity function f(n) = n

(in this chapter, we restrict our attention to these cases, though one might certainly
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STR

W K -_
WK(n) STR(n) STR(1)

WKK(n)

WK(1)

Figure 3-2: Relationships between different notions of classical simulation of Clifford
computational tasks. An arrow from A to B (A -+ B) means that an efficient A-
simulation of a computational task implies that there is an efficient B-simulation for

the same task. The statement WK WK(n) is shorthand for WK -+ WK(n) and
WK(n) -+ WK.

consider other functions f, like f(n) = log(n)).

Definition 36. (STR(f(n))) A STR(f(n)) simulation of a subset of Clifford compu-

tational tasks C, is a deterministic classical algorithm that on input (T, I, y), where

T E C, is a task on n qubits, I = {ii, ... , Zf(n)} C [n] and y'- {y=1, . . . , yif },

outputs p'(T , - - - ,i

Definition 37. (WK(f(n))) A WK(f(n)) simulation of a subset of Clifford com-

putational tasks C, is a randomized classical algorithm that on input (T, I), where

T E C, is a task on n qubits and I {Ji,. .. if(n)} C [n], outputs yi,. .y with

probability PI(yii, ... I , ()

STR and WK simulations are defined in exactly the same way, except that we

place no restrictions on the size of the subset of output lines jI in the simulation.

Note that this agrees with the definitions of strong and weak simulations in Chapter

2.7 and [143].

Let S E {STR(n),STR(1),STR,WK(n),WK(1),WK} be one of the 6 notions of

simulation depicted in Figure 3-2. We define an S-simulation of a subset of Clifford

computational tasks C, to be efficient if the simulation runs in poly(N)-time, where

N is the number of gates in the C,-circuit. Let PS be the set of all tasks C, that have
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an efficient S-simulation.

An immediate observation is that PWK = PWK(n). The forward inclusion holds

by definition, and the backward inclusion holds because we could sample from any

subset I by just sampling from all n lines and ignoring the qubit lines that are

not in I. From their definitions, we also immediately get the following inclusions:

PSTR C PSTR(1), PSTR C PSTR(n) and PWK C PWK(1). How does weak sim-

ulation compare with strong simulation? From Proposition 1 of [217], it follows

that PSTR C PWK and PSTR(1) C PWK(1). Note that the notions PSTR(n) and

PSTR(1) are in general incomparable - the forward inclusion (PSTR(n) C PSTR(1))

does not hold in general because computing a marginal distribution directly from the

joint distribution involves summing an exponential number of terms and cannot be

performed efficiently unless there is some structure in the problem. The backward

inclusion (PSTR(n) D PSTR(1)) does not hold in general because knowing just the

marginal distributions does not allow us to infer the joint distribution. We summarize

the relationships between the different notions of simulation stated above in Figure

3-2.

3.4 Results and discussion

In Chapter 3.2, we introduced 3 binary choices of ingredients. In Chapter 3.3, we

described 5 different notions of classical simulation (see Figure 3-2). This gives a total

of 21 x 5 = 40 different cases, whose classical simulation complexities we classify in

Table 3.1. The entries of the table should be understood as follows: for a subset of

computational tasks C,, and a notion of simulation S,

" P (classically efficiently simulable) means that C, E PS.

" #P (which stands for #P-hard) means that an efficient S-simulation of C, would

give rise to an efficient algorithm for the #P-complete problems.

" QC (which stands for quantum-computing universal) means that C, is universal

for quantum computation.
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Weak Strong

WK(1) WK(n) STR(1) STR(n) STR

IN P P P P

NON- (BITS) (i) (ii) (iii) (iv) (JV4)
ADAPT IN P PH P #P

OUT (PROD) (v) (JV7) (JV1) (Thm39) (JV6)

(BITS) IN p #P
(BITS) (vi) (JV5) (JV2) (Thm4O) (vii)

ADAPT
IN QC QC #P #P #P

(PROD) (JV3) (viii) (ix) (x) (xi)

IN P PH P #P

NON- (BITS) (xii) (Thm46) (xiii) (Thm48) (xiv)

ADAPT IN P PH ] #P #P

OUT (PROD) (xv) (xvi) (Thm49) (xvii) (xviii)

(PROD) IN [P] PH #P #P #P
(BITS) (Thm50) (xix) (xx) (xxi) (xxii)

ADAPT
IN QC QC #P #P #P

I (PROD) (xxiii) (xxiv) (xxv) (xxvi) (xxvii)

Table 3.1: Classification of the classical simulation complexities of families of Clifford

circuits with different ingredients. P stands for efficiently classically simulable. #P stands

for #P-hard. QC stands for QC-hard and PH stands for "if efficiently classically simulable,

then the polynomial hierarchy collapses". The proofs of JV 1-7 can be found in [143].

Theorems 39-50 are about cases not found in [143] and are the main results of this chapter.

(i)-(xxvii) are results that follow immediately from these theorems by using the rules in

Chapter 3.5.1. The 11 cases with boxed symbols are the core theorems, from which all

other cases can be deduced using rules which we describe in Chapter 3.5.1. These include

all the main theorems JV 1-7 and Theorems 39-50, except JV1 and JV6, which turn out

to be special cases of Theorem 49 and Theorem 39 respectively.
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* PH means that an efficient S-simulation of C, would imply a collapse of the

polynomial hierarchy.

Our main results are Theorems 39-50, whose proofs we present in Chapter 3.5.2-

3.5.7. Using the rules in Chapter 3.5.1, these theorems, together with the resultsi JV

1-7 from [143], give a complete classification of the classical simulation complexities

of all the 40 cases.

A few remarks are in order. First, we note that the entries in the last two columns

of Table 3.1 are identical. This means that even though the notions STR(n) and

STR(1) seem to be incomparable, the former is not easier to perform than the latter

for the Clifford computational tasks considered in this chapter. We note that Theo-

rem 39, which generalizes (JV6), implies that being able to compute only the joint

probabilities already suffices in enabling us to solve the #P-hard problems: we do

not require the full power of strong simulation for that.

Second, we note the symmetry between inputs and outputs: for example, the 2nd

and 5th rows of Table 3.1 are identical, i.e. the simulation complexity is the same

whether product unitaries are applied at the beginning or at the end of the circuit.

In particular, for (JV7), the key to collapsing the polynomial hierarchy was that the

magic state 17r/4) = 1/v'2(I0) +ei r/4 11)) together with postselection can simulate the

T = diag(1, ei"/ 4) gate. For Theorem 46, although we did not have magic state inputs

at our disposal, we still managed to get a similar result to (JV7) by showing that the

T gate can be simulated by arbitrary single-qubit measurements with postselection.

Third, we note that Theorem 49 is a generalization of JV1. In fact, a stronger

result can similarly be shown to be true: for any constant b, there exists an efficient

STR(b)-simulation of circuits belonging to OUT(PROD), NONADAPT, IN(PROD).

In [8], Aaronson and Gottesman present algorithms for simulating two separate classes

of extended Clifford circuits: circuits with non-stabilizer initial states, and circuits

with non-stabilizer gates. A consequence of their results is that it is efficient to simu-

late (in the STR(b)-sense) nonadaptive tasks with either of the following ingredients:

1. product state inputs with computational basis measurements (which is the con-

'IJV = Jozsa and Van den Nest [143]
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tent of JVI). 2. computational basis inputs with product measurements (which is

the content of case xiii) - since this is equivalent to applying b single-qubit gates just

before a computational basis measurement. Theorem 49 is slightly more general than

either of these cases. Essentially, it combines the case involving product state inputs

and the case involving product measurements and shows that the new task is still in

PSTR(b).

3.5 Proofs of main theorems

3.5.1 Rules for proving results in Table 3.1

In this section, we show that the entries in Table 3.1 that contain boxed symbols (for

example, PH ) can be used to deduce all the other entries in the table. Therefore,

for a complete proof of the results in the table, it will suffice to prove just Theorems

39-50 as well as JV 1-6 (save JV1 and JV6). This is a straightforward consequence

of a couple of simple rules (cf [143]), which we state explicitly here:

* If the classical simulation of a set of computational tasks A is efficient, then the

classical simulation of any subset of A would also be efficient.

* If the classical simulation of a set of computational tasks A is hard (#P-hard,

QC-hard or PH-collapsing in the sense described above), then the classical sim-

ulation of any superset of A would also be similarly hard.

* The set of computational tasks with IN(BITS) is a subset of the same set of tasks

with IN(PROD). Write this as IN(BITS) C IN(PROD). Similarly, OUT(BITS)

c OUT(PROD), NONADAPT C ADAPT.

* If the strong simulation of a set of tasks is efficient, then so are the STR(1),

STR(n) and WK(n) simulations of that set. If any of the latter three notions

of simulation is efficient, then WK(1)-simulation of that set is also efficient (as

illustrated in Figure 3-2). In the opposite direction, if STR(1) or STR(n) simu-

lation is #P-hard, then so is strong simulation. Similarly, if WK(1) simulation
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is QC-hard, then WK(n)-simulation is also QC-hard.

holds only for strong notions of simulation, and QC-hardness holds only for

weak notions of simulation.

3.5.2 Proof of Theorem 39: Strong(n) simulation of nonadap-

tive Clifford circuits with product inputs and compu-

tational basis outputs

A 3-CNF formula f (i.e. a Boolean formula in conjunctive normal form [212]) with n

variables and N clauses is of the form

f (xi,... , x.) = (all V a12 V a13) A (a21 V a22 V a23) A - - - A (aNI V aN2 V aN3), (3.7)

where each aij E {Xi, . . , x, i, .. . , in}. We assume that every variable x, ... ,,

appears in the formula for f, so that n < 3N, i.e. n = O(N).

We define AbsSAT to be the following problem: Given a 3-CNF formula f

{0, 1} -+ {0, 1}, compute

S(f)= ()f (X)
xE{O,1}n

We shall denote #i(f) = |{xlf(x) = i} for i = 0, 1. Then S(f) = l#O)-#1(f-

Lemma 38. AbsSAT is #P-hard.

Proof. We shall construct a reduction from the #P-complete problem #SAT to AbsSAT.

Given a #SAT-instance O(XI, ... , X), introduce a new variable y and define the

Boolean formula

O(xi, . ... , Xn, Y) = O(zi, .. ., X') V y.

Let A(yo) denote the set of satisfying assignments to a Boolean formula 0. Then

A(O) = {(x,.. ., x, 0)|(xi,. .. , x) c A(4)} U {(xi.... ,,1)|(i,. . , X) E {0, 1}n}.
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Hence, #() = #1(0) + 2n, and #o() = 2n+1 - #1( ) = 2n - # 1(). This gives

S() = |#oQ() - #1(Q)| =| 2" - #1(0) - #1(#) - 2 | = 2#1(0).

Solving the AbsSAT instance q(xi,..., ,x, y) gives S(), from which #1(#) can be

found. Therefore, AbsSAT is #P-hard. El

Theorem 39. Let v = (IN(PROD), NONADAPT, OUT(BITS)). Then the STR(n)-

simulation of C, is #P-hard.

Proof. Assume that there exists an efficient STR(n)-simulation S of C,. We'll use

S to construct an efficient algorithm for AbsSAT: On input f : {0, 1}' -+ {0, 1},

given as a 3-CNF formula with N clauses, where n = O(N), construct a quantum

circuit Qf, consisting of only the basic Clifford gates and T gates, that acts on the

following computational basis states as follows: (See Lemma 52 for the details of such

a construction)

Qf JX,. . . , Xn, 0) IO)A = lxi,. . , xn, f(i,. . . , Xn)) )A.

Let K be the number of T gates in Qf. For the jth T gate (acting on the

ljth line), for j = 1,..., K, introduce an ancilla line aj, and replace the T gate

with the CNOT gate CXaj. Call the resulting circuit A1 . It is straightforward

to check that if each ancilla wire is initialized to the state |7r/4), and measured

at the end of the computation, and if the measurement outcomes are 0... 0, then

the non-ancilla registers of A1 would implement Qf. Hence, ignoring the ancilla

registers, for the above measurement outcomes, we have Af : |.i,..., xiy)0)A F-+

i M.. ., b, ye f(ll. ci,))r)A

Let Mf be the following circuit:
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17/4)

17r/4)

jO) H

10)

10)

10)A

F_7 Ya1

Y1

yn

yn+1

y_1

If we postselect on the outcomes ya ... yaK = ... 0 for the ancilla registers, the

nonancilla registers evolve as follows:

10 ... 01 1)16)A

V_2n+ ' I:x)x

Zx)

(10) - I1))|6)A

(|f r)) - I E f (X)))16)A

-2 (-1) |(X) 'X)
2n1 x,

- (-1)(x)+-Y
2n

xy

(jO) - 11))|6)A

jy) 1) 16)A

Iy) 10) ld)A.

Hence, the conditional probability of obtaining the all-zero string given that the

ancilla measurements also reveal the all-zero string is

2

Pr(O1 ... On+1, OAI .. 0apK) Zn

x
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But the LHS of the above expression is equal to

-'00 00 -Pr(Oal ... OaK7 01 o O 1, OA)
Pr(01 ... On+1,Aa,...aKI Pr(Oal... OaK)

Now, Pr(Oal ... OaK) =K/ 2 K, since each ancilla bit has a probability of 1/2 of being

measured zero.

Simplifying the above expressions, we get

S(-i)f(x) = 2 n+K/2 VPr(Oai .- 0aK7 01... O I A).

But Pr(Oal ... OaK , 01 . . . 0 n 1, 6A) is a joint outcome probability, and hence can

be obtained by running S on (Mf, 00 .. . 0). (The input to S is valid since Mf is a

nonadaptive Clifford circuit with product state inputs.) Hence, the procedure given

is an efficient algorithm for AbsSAT. Since AbsSAT is #P-hard, this implies that C,

is #P-hard as well. l

3.5.3 Proof of Theorem 40: Strong(n) simulation of adaptive

Clifford circuits with computational basis inputs and

outputs

Theorem 40. Let v = (IN(BITS), ADAPT, OUT(BITS)). Then the STR(n)-simulation

of C, is #P-hard.

Proof. Assume that there exists an efficient STR(n)-simulation S of C,. We'll use S

to construct an efficient algorithm M for #SAT, i.e. given as input a 3-CNF formula

f : {0, 1}" -+ {0, 1}, our goal is to find #f = Ex f(x).

M = "On input f : {0, 1}' -+ {0, 1}, given as a 3-CNF formula,

1. Construct a classical circuit Cf consisting of only Toffoli gates that acts on the

following computational basis states as follows: (see Lemma 51 for the details
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of this construction)

Cf(Xi, .. ., X, 1,A) = (X1, .. .X, f(X1,.. ., xn), fA).

2. Simulate Cf with a Clifford circuit from A: replace each Toffoli gate Tbc(x, y, z) =

(x, y, z e xy) acting on lines a, b, c with (CXbc)xMa(x). Call the resulting quan-

tum circuit Af. The circuit Af acts on computational basis states as follows:

Af x1, ... , X7 , 1) 1I)A - X1 ... . , Xn, f(Xi, ... , xn)) I)A.

By applying X gates (expressed as X = HS2H) to the appropriate lines at the

input and output of Af, let A' be the circuit that acts on computational basis

states as follows:

A' lx,... , x., 0) O)A - lxi,... , x-, f(xi,... , x) O)A.

3. Let Gf be the following circuit:

0) -- YE

10)

1O)A

--4

4. Feed (Gf, 00 ... 010) into S to find p = p(o0 ... 01'A), the probability that the

output is 00 ... 010A

5. Output #f = 2 np."

A straightforward calculation shows that the output of Gf on input 100 .. .0)O)A
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is 0, .. . , 0, f(z)) 16 )A if the intermediate measurement results are z = zi... z" Hence,

p p(0 ... 0,1,A) = P(o .. .0,1, OAlz ... zf)p(z... z,)
z

1
(0. .. 01, OA0 . .. 0, f(z), OA) 2

zvo
1 E f (X). (3.8)

x

Hence, the output of M is 2'p = #f. El

3.5.4 Proof of Theorem 46: Weak simulation of nonadaptive

Clifford circuits with computational basis inputs and

product outputs

We follow a proof similar to that given in [48] that shows that if IQP circuits can

be efficiently classically simuated in the weak sense, then the polynomial hierarchy

collapses. Recall that the T gate is given by T = diag(1, ei"'/ 4). We first consider the

following gadget g:

~- - - - - - - ~ - (3.9)

0)
L-----------------------

Lemma 41.

T ) if x = 0

ZT |V)) if x = 1.

Proof. Applying the unitary gates in the circuit to the state |0) 10) gives

I [(T 10)) 10) + (ZT 4')) 1)] .

Hence, we get the desired states when the ancilla wire is measured.
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From the proof of Lemma 41, we note that the measurement outcomes x = 0, 1

occur with an equal probability. Note that if x = 0, then g would have implemented

the T gate.

Lemma 42. Let Q be an arbitrary quantum circuit comprising the basic Clifford

gates and T gates. Let v = (IN(BITS), NONADAPT, OUT(PROD)). Then Q with

postselection can be weakly simulated by C, with postselection.

Proof. We first show how we can simulate the circuit Q using circuits from C, with

postselection. For each T gate in Q, we replace it by the gadget 9 defined above.

If the number of T gates is s, then this procedure produces a new circuit C with

s new lines. Now, note that the new circuit C belongs to the class C, since the

HT gates together with the computational basis measurements implement a product

measurement. Now, if we postselect on outcome 0 for all the measurements in the new

lines, then each gadget 9 would implement the T gate. Hence, C, with postselection

would weakly simulate Q. Now, since we have the resource of postselection, it follows

that Q with postselection can be weakly simulated by C, with postselection. I

We now make the following definition (recall notation in Eq. (3.6): we use similar

notation for conditional probabilities) to capture the power of subsets of Clifford

computational tasks with postselection.

Definition 43. (postC,P) Let C, be a subset of Clifford computational tasks. A

language L E postCP if there exist an error tolerance 0 < e < j and a uniform family

{C,}, of circuits in C, with n +p(n) lines (call these lines 11, ... ,i , al, . .. , a,, where

p = p(n)), where n = 1w! and p is some polynomial, such that

{ai ,...,aNjO .. ) > 0,PC.

fC 111. If a}I.aiaN(100 .0) >I

w 0 L = PC,}~. aN(IO 0 (3.10)

We will use the definition of postBQP given in [48], which allows for multiple

postselected lines. Note that this is equivalent to the definition given in [2] where
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postBQP was introduced, which allows for only single lines. We now show that the

class just defined is equal to postBQP.

Lemma 44. Let v = (IN(BITS), NONADAPT, OUT(PROD)). Then, postCP =

postBQP.

Proof. The forward direction is immediate, since extended Clifford circuits are a

special case of general quantum circuits. To prove the backward direction, let L E

postBQP. Then there exist an error tolerance 0 < c < ' and a uniform family {QW}.2

of quantum circuits consisting of the basic Clifford gates and T gates with n + p(n)

lines (call these lines 11, ... inb,..., bN, where p = p(n)), where n = Jwf and p is

some polynomial, such that

w E L --> p ,.'.'b' 1 (100 ... 0) ;> 1 ,e

{b 1 .

WCL=Jb1,_.,PQ (1100 0

Ill} I {1}I.b 1. bN}1( 0 100 .. .0)> 1-6

By Lemma 42, for each Qw, there exists an extended Clifford circuit C" E C, that,

with postselection, simulates Qm with postselection. If s is the number of T gates

in Q., then C, has n + p(n) + s lines. Postselecting on the last p(n) + s lines, it

follows that the set of circuits {C,} satisfies the definition given for postC,P. Hence,

L E postC, P.

Lemma 45. Let v = (IN(BITS), NONADAPT, OUT(PROD)). If C, c PWK(n),

then postC,P C postBPP.

Proof. Let L e postCP. Then there exist an error tolerance 0 < E < 1 and a uniform

family {Cw}w of circuits in C, with n+p(n) lines (call these lines 11, ... ,i , a,) ... , a,

where p = p(n)), where n = Jw I and p is some polynomial, such that Eq. (3.10) holds.

But C, E PWK(n). Hence, for all circuits Q, E C,, there exists a classical ran-

domized circuit C, with n + p lines such that

{1 ."1,a1.ap}(y) = P 11 .1"~,a ly.)ap .
PQ. ' C.Y Ic (Y)
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For any subsets I, J C [n] of lines, similar relations hold for marginal probabilities

and conditional probabilities: pl (y) ' pt,(y) and pW (yz) = p(yIz). This implies

that
"1"i}Ia".,a(1100 . .. 0) = P li}a'.ap(1O . .. 0),

and hence Q. obey Eq. (3.10). This implies that L E postBPP. Therefore, postCP C

postBPP. r_1

Theorem 46. Let v = (IN(BITS), NONADAPT, OUT(PROD)). If C, E PWK(n),

then PH collapses to the third level.

Proof. By Lemmas 44 and 45, if C, C PWK(n), then postBPP ; postCP = postBQP.

By Corollary 23,

PH C Z-,

i.e. PH collapses to the third level.

3.5.5 Proof of Theorem 48: Strong(n) simulation of nonadap-

tive Clifford circuits with product inputs and compu-

tational basis outputs

Consider the proof of Theorem 39. Note that the circuit Mf is unitary. Hence, an

even stronger result than Theorem 39 is true: if we replaced nonadaptive circuits

with unitary ones (call this UNITARY), the simulation complexity is still #P-hard.

In other words,

Lemma 47. Let v = (IN(PROD), UNITARY, OUT(BITS)). Then the STR(n)-

simulation of C, is #P-hard.

The STR(n)-simulation of C, is equivalent to the following problem:

Input: (T, y), where T = (Ix) , B, Ia)), B is a unitary circuit, x, y E {0, 1}, a =

a1 . . . a and each Jai) E C2 -

Output: PT(y) = 1(al .. .aIB Ix) 2 .
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Now, let p = (IN(BITS), UNITARY, OUT(PROD)), then the STR(n)-simulation

of C, is equivalent to the following problem:

Input: (T', y), where T' = (|ayl ... ay) , Bt, {I2}) , B is a unitary circuit, y E {0, 1}'

and 12 is the 2 x 2 identity gate.

Output: pT'(x) = I(xIBtay1 ... a -)12 = 1(a"' . . .IB~x)1 2 =PT(Y).

Since both problem instances can be transformed easily to each other, and since

both problems involve calculating the same quantity, we conclude that the STR(n)-

simulation of C,, is also #P-hard. If it is #P-hard to simulate this class of unitary

circuits, then it must be #P-hard to simulate the same class but with unitary circuits

replaced by nonadaptive circuits. Therefore, we obtain the following theorem:

Theorem 48. Let v = (IN(BITS), NONADAPT, OUT(PROD)). Then the STR(n)-

simulation of C, is #P-hard.

3.5.6 Proof of Theorem 49: Strong(1) simulation of nonadap-

tive Clifford circuits with product inputs and outputs

Theorem 49. Let v = (IN(PROD), NONADAPT, OUT(PROD)). Then, C, E

PSTR(1).

Proof. We use the following notation: for any single-qubit operator 0, let 01 = 0 0

I. . .01. Given a Clifford computational task T = (jai .. . a,,), B, {U, I,..., I}) E CV,

and a bit i E {0, 1}, we shall describe an algorithm to compute pi := pT}(j). WLOG,

B is a unitary circuit.

Since po + pi = 1, it suffices to be able to calculate po - pi efficiently. By Born's

rule, this is given by

PO - Pi = (a|Bt(UZUt)iB Ia). (3.11)

Since the Pauli matrices {} form a basis for the set of 2 x 2 matrices , we can

write
3

U = Zaio,
i=O
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for some ai E C. Hence,
3

UZUt = E aijcriZ&-.
i,j=O

But crZu- is a Pauli operator. Since the basic Clifford gates map Pauli operators

to Pauli operators,

Bt(auZc-i)1B = -yiP,' .

Putting this into Eq. (3.11), we get an expression for po - pi.

3

Po-Pi = I a . an)
i,j=o

3 n

= aidj,yij HJ (akj k| ak). (3.12)
i,j=o k=1

We now analyze the running time of our algorithm. Computing -yij P 0.

takes 0(n2 )-time. The formula given in Eq. (3.12) involves a sum of 9 terms. Each

term involves computing n expectation values of 2 x 2 matrices. Hence, this step

takes 0(n)-time. Overall, the algorithm runs in 0(n2 ) = O(N2 )-time, where N is

the number of gates in the circuit (which we assumed to contain no extraneous lines).

Hence, C, E PSTR(1).

3.5.7 Proof of Theorem 50: Weak(1) simulation of adaptive

Clifford circuits with computational basis inputs and

product outputs

Theorem 50. Let v = (IN(BITS), ADAPT, OUT(PROD)). Then C, E PWK(1).

Proof. This is a special case of the results in Section VIIC of [8], which showed that an

IN(BITS), NONADAPT, OUT(BITS) circuit containing d non-Clifford gates, where

each gate acts on at most b qubits, can be classically simulated in the WEAK(1) sense

in 0(4 2bdn + n2)-time. In our case, the circuits in C, can be thought of as containing
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exactly one non-Clifford gate on the first wire just before the computational-basis

measurement. Hence, d = b = 1, which implies that the algorithm runs in O(n2)-

time. This concludes the proof that C, E PWK(1).

3.5.8 Constructing circuits for 3-CNF formulas

In the proof of Theorem 39, we used the fact that given a 3-CNF formula f: {0, 1} -+

{ 0, 1}, we can efficiently construct a quantum circuit Af comprising only the basic

Clifford operations and T gates, which acts on the following computational basis

states as follows:

Af Ix) 10) 0)A = IX) If (X)) 0)A, (3.13)

where x E {0, 1}' and -)A is an ancilla register of size O(n).

A similar fact was used in the proof of Theorem 40, namely that given a 3-

CNF formula f : {0, 1} -+ {0, 1}, we can efficiently construct a classical circuit Cf

comprising only Toffoli gates, which acts on the following computational basis states

as follows:

Cf (X, 1, 1A) = (X, f(x), 1A), (3.14)

where x E {0, 1}f and A is an ancilla register of size O(n).

Note that in both circuits Cf and Af, we do not allow for the addition of more

ancilla lines or for the discarding of any bit or qubits. This is because for the notion

of STR(n) simulation, all bit or qubit lines have to be accounted for. Hence, we make

explicit the reference to the ancilla registers A. In this section, we present the details

of the above constructions.

Recall the definition of a 3-CNF formula given in Eq. (3.7). As above, we assume

that every variable X,... , X appears in the formula for f, so that n < 3N, i.e.

n = O(N).
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3.5.9 Constructing Cf

We show that we can implement the function f using Toffoli gates alone. We denote

the action of the Toffoli gate on lines i, j, k with inputs a, b, c by

Tofij ( ... , a, ...,I b, ... , c, ... ) = ( ... , a, ...,7 b, ... , c G a - b, ...)

We use subscripts at the end to indicate a 'marginalizing out' of the values of all

other wires, for example,

Tof 43 (a, b, c, d, e) 2 3 5 = (a, b, c D a - d, d, e) 2 3 5 =(b, ce a -d, e).

Lemma 51. Let f be a 3-CNF formula of the form given by Eq. (3.7) with n variables

and N clauses, where n = O(N). Then there exists a classical circuit Cf consisting

of 0(N) Toffoli gates on n +1+ s(N) lines, for some s(N) = 0(N) (where we do not

allow for the addition of bit lines or the discarding of any bits), such that

Cf Gi,..., zn, 1, 1, ..., 11) = (Xi,., e,f(Xi, ... , n), 1, ...,1 1). (3.15)
s(N) s(N)

Remark. The ancilla bits are initialized to 1 instead of 0. This is because the Toffoli

gate is universal only if we have the ability to prepare the state 1. In particular, if

the inputs were always just 0's, then it would not be possible to create the state 1.

On the other hand, we can prepare 0 from 1 since the target bit of Tof(1, 1, 1) is 0.

Proof. We first show how to compute f on the input (XI,. . . , X1 ) using AND, OR,

NOT, COPY and SWAP gates . Let ki and i be the number of times xi and Ti,

respectively, appear as literals in the formula for f, i.e. EZ(ki + ki) = 3N. By

assumption, every variable x 1, ... , x, appears in the formula for f, so ki + i > 0 for

all i.

For each i, if ki > 0, apply the COPY gate ki - 1 times to xi and the COPY gate

followed by the NOT gate i times to xi. Otherwise, if ki = 0 (i.e. ki > 0), apply the
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NOT gate followed by the COPY gate ki times to xi. This creates the state

(X1 .. ~ . n n 7 7 1 1 - * ni.. ... ,).

ki k, ki -kn

Note that the number of gates that the above procedure involves is

(k - 1) + 2k2 ] + S 2ki < 2 (ki + kj) = 6N.
ki>0 ki=i

Applying the SWAP gate up to 3N times to the above state, we get the state

(3-16)

We now apply the OR and AND gates according to the formula in Eq. (3.7) to get

(all V a12 V a13) A (a21 V a22 V a23 ) A... A (aN1 V aN2 V aN3). This involves a total of

2N OR gates and N - 1 AND gates. Hence, the resulting circuit Bf, whose number

of gates is bounded above by 6N + 3N + 2N + N - 1 = O(N), computes:

Bf (x , . .. , x,,) = f (xi,..., x,).

Note that the maximum width of Bf, which occurs when the state is given by

Eq. (3.16), is 3N.

We now use the fact that the Toffoli gate together with the ability to prepare the

ancilla state 1 is universal for classical computing. In particular, they simulate the

above gates as follows:

,--'X = Tofi23 (1, 1, X)3,

x A y = [Tofi23  Tof453(X, y, 1, 1, 1)]3,

COPY(x) = [Tof123 0 Tof24 3 (X, 1, 1 1)113,

x V y = [Tof 453 0 Tof123 0 Tof453 a Tof342 0 Tof341(x, y, 1, 1, 1)J3,

SWAP(x, y) = [Tof 23 0 Tof32 1 0 Tofi 23(x, 1, y)]13.
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We append ancilla lines initialized to 1 to Bf, and replace all the gates in Bf

by Toffoli gates according to the rules in Eq. (3.17), and apply additional swap gates

(implemented by Toffoli gates) so that the first output of the circuit is f(xi, ... , x").

Note that we do not discard any bits. Each of the replacements increases the number

of ancilla lines by at most 3 and the number of gates by at most 4. Hence, both the

total number of lines a(N) and the number of Toffoli gates in the new circuit B' are

still O(N). The action of B' on the computational basis states is given by:

B'(xi, ... ,x z, 1) = (f(i,. . . ,Xn), j2,. . ,Ja(N)),

where (j 2 ,... , a(N)) are junk bits.

We now make use of the uncomputation trick to reset the junk bits to 1. Since

the Toffoli gates are their own inverse, the inverse of B' is obtained by applying the

gates in B' in the reverse order. Consider the circuit B' that is formed as follows:

first apply B' to (1,..., xn, f). Introduce a new ancilla line, called a, initialized to

0. Next, apply the CNOT gate CXia. Finally, apply B'- 1 to the first a(N) bits to

reset them back to (XI, ... , X, 1). A circuit diagram for the above steps is shown in

Figure 3-3. This gives

B"1(xi, ... , Xn, , 0) = (Xi, . .. , n7 f (X1, . ,z )).

To get the required circuit Cf, we need to perform three more simple steps. First,

the ancilla bit in the last register has to start from 1 instead of 0. This can be achieved

by applying a NOT gate (implemented by the Toffoli gate and ancillas initialized to

1) to 0. Second, the CNOT gate has to be simulated by a Toffoli gate. This may be

achieved by using the fact that

CX(a, b) 12 = Tof12 3(a, 1, b) 13.

Third, the output has to be of the form (3.15). This is obtained by applying swap

gates at the end of the circuit. These steps add at most a constant number of gates
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Figure 3-3: Uncomputation trick, in which the output bits, except for those
in the target register, are reset to their input values. The state evolves as

follows: (x, 1, . . . , 1, 0) --+ (f(X), j2, ... , Ja(N), 0) -+ (f(,2, - , ja(N), f(x)

(X, 1, ... , 1, f(x)), where X = XI .. .Xn

and a constant number of ancilla bits. Hence, the resulting circuit Cf has O(N) gates

acting on O(N) lines.

3.5.10 Constructing Qf

We now show how we can convert Cf to a circuit Qf that involves only the basic

Clifford gates and the T gate.

Lemma 52. Let f be a 3-CNF formula of the form given by Eq. (3.7) with n variables

and N clauses, where n = O(N). Then there exists a quantum circuit Qf consisting

of O(N) basic Clifford gates and T gates on n +1+ s(N) lines (where we do not allow

for the addition of qubit lines or the discarding of any qubits), such that

QJ xi,...,z,0, Os(N) s(N) (3.18)

for some s(N) = O(N).

Proof. Using Lemma 51, we have a circuit Cf comprising O(N) Toffoli gates satisfying

Cf (Xi, ... , X, 1, Is(N)) = (XI, . . ., Xn, f(Xi7 ... I xv), Is(N))
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Using the construction presented in [180], we express each Toffoli gate in terms of

the basic Clifford gates, T and Tt gates, as follows:

H Tt- -Tt-(

Since T' = 1, we replace each Tt gate above by T'. These replacements increase

the number of gates by a constant factor, and hence the total number of gates in the

new circuit is still O(N). Finally, we insert X (expressed as X = HS2 H) gates at the

start and end of the circuit so that the ancilla lines start and terminate in the state

10). This gives us a quantum circuit obeying Eq. (3.18) with O(N) wires and O(N)

gates.

3.6 Concluding remarks

We have demonstrated how the classical simulation complexities of extended Clif-

ford circuits change when various ingredients in the circuits are varied. It would be

interesting to study other ingredients of Clifford circuits as well, e.g., mixed input

states [8], states (as well as transformations and measurements) with positive Wigner

representations [166, 225], and non-commutative extensions like XS-stabilizer states

[179]. Most of these extensions have previously been considered separately, and it

will be fruitful to study the classical simulation complexities of computational tasks

with these different combinations of ingredients.
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Chapter 4

Conjugated Clifford circuits

By the Gottesman-Knill Theorem, the computational power of Clifford circuits is lim-

ited, as they can be efficiently simulated on a classical computer. In this chapter, we

show that in contrast, "conjugated Clifford circuits" (CCCs)-where one additionally

conjugates every qubit by the same one-qubit gate U-can perform hard sampling

tasks. In particular, we fully classify the computational power of CCCs by show-

ing that essentially any non-Clifford conjugating unitary U can give rise to sampling

tasks which cannot be efficiently classically simulated to constant multiplicative er-

ror, unless the polynomial hierarchy collapses. Furthermore, by standard techniques,

this hardness result can be extended to allow for the more realistic model of con-

stant additive error, under a plausible complexity-theoretic conjecture. This work

can be seen as progress towards classifying the computational power of all restricted

quantum gate sets, and is based on joint work with Adam Bouland and Joseph F.

Fitzsimons [36].

4.1 Overview of results

This chapter considers a new intermediate model of quantum computation which we

call "conjugated Clifford circuits" (CCCs). In this model, we consider the power of

quantum circuits whose gates are (Ut 0 Ut)(CZ)(U 0 U), UtHU and UtSU, where

U is a fixed single-qubit gate. In other words, we consider the power of Clifford
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circuits which are conjugated by an identical one-qubit gate U on each qubit. These

gates manifestly perform a discrete subset of unitaries so this gate set is clearly not

universal.

Although this transformation preserves the non-universality of the Clifford group,

it is unclear if it preserves its computational power. The presence of generic con-

jugating unitaries (even the same U on each qubit, as in this model) breaks the

Gottesman-Knill simulation algorithm [111], as the inputs and outputs of the circuit

are not stabilizer states/measurements. Hence the intermediate states of the circuit

are no longer efficiently representable by the stabilizer formalism. This, combined

with prior results showing hardness for other modified versions of Clifford circuits

[143,148], leads one to suspect that CCCs may not be efficiently classically simulable.

However prior to this work no hardness results were known for this model.

In this work, we confirm this intuition and provide two results in this direction.

First, we provide a complete classification of the power of CCCs according to the

choice of U. We do this by showing that any U which is not efficiently classically

simulable by the Gottesman-Knill theorem suffices to perform hard sampling problems

with CCCs1 . That is, for generic U, CCCs cannot be efficiently classically simulated to

constant multiplicative error by a classical computer unless the polynomial hierarchy

collapses. This result can be seen as progress towards classifying the computational

complexity of restricted gate sets. Indeed, given a non-universal gate set G, a natural

question is to classify the power of G when conjugated by the same one-qubit unitary

U on each qubit, as this transformation preserves non-universality. Our work resolves

this question for one of the most prominent examples of non-universal gate sets,

namely the Clifford group. As few examples of non-universal gate sets are known2,

this closes one of the major gaps in our understanding of intermediate gate sets. Of

course this does not complete the complexity classification of all gate sets, as there is

no known classification of all possible non-universal gate sets. However it does make

1More precisely, we show that any U that cannot be written as a Clifford times a Z-rotation
suffices to perform hard sampling problems with CCCs. See Theorem 58 for the exact statement.

2The only examples to our knowledge are matchgates [142,223], Clifford gates, diagonal gates,
and subsets thereof.
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progress towards this goal.

Second, we show that under an additional complexity-theoretic conjecture, clas-

sical computers cannot efficiently simulate CCCs to constant error in total variation

distance. This is a more experimentally achievable model of error for noisy quantum

computations. The proof of this result uses standard techniques introduced by Aaron-

son and Arkhipov [5], which have also been used in other models [32,49,50,99,165,173].

This second result is interesting for two reasons. First, it means our results may

have relevance to the empirical demonstration of quantum advantage (sometimes re-

ferred to as "quantum supremacy") [7, 32, 188], as our results are robust to noise.

Second, from the perspective of computational complexity, it gives yet another con-

jecture upon which one can base the supremacy of noisy quantum devices. As is the

case with other quantum supremacy proposals [5, 49, 99, 165,173], in order to show

that simulation of CCCs to additive error still collapses the polynomial hierarchy, we

need an additional conjecture stating that the output probabilities of these circuits

are hard to approximate on average. Our conjecture essentially states that for most

Clifford circuits V and most one-qubit unitaries U, it is #P-hard to approximate a

constant fraction of the output probabilities of the CCC UO'V(U')O' to constant

multiplicative error. We prove that this conjecture is true in the worst case - in

fact, for all non-Clifford U, there exists a V such that some outputs are #P-hard

to compute to multiplicative error. However, it remains open to extend this hard-

ness result to the average case, as is the case with other supremacy proposals as well

[5,49,99,165,173]. To the best of our knowledge our conjecture is independent of the

conjectures used to establish other quantum advantage results such as boson sam-

pling [5], Fourier sampling [99] or IQP [49, 50]. Therefore our results can be seen as

establishing an alternative basis for belief in the advantage of noisy quantum devices

over classical computation.

One final motivation for this work is that CCCs might admit a simpler fault-

tolerant implementation than universal quantum computing, which we conjecture to

be the case. It is well-known that many stabilizer error-correcting codes, such as the

5-qubit and 7-qubit codes [84,155, 214], admit transversal Clifford operations [109].
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That is, performing fault-tolerant Clifford operations on the encoded logical qubits

can be done in a very simple manner - by simply performing the corresponding Clif-

ford operation on the physical qubits. This is manifestly fault-tolerant, in that an

error on one physical qubit does not "spread" to more than 1 qubit when applying the

gate. In contrast, performing non-Clifford operations fault-tolerantly on such codes

requires substantially larger (and non-transversal) circuits - and therefore the non-

transversal operations are often the most resource intensive. The challenge in fault-

tolerantly implementing CCCs therefore lies in performing the initial state prepa-

ration and measurement. Initial preparation of non-stabilizer states in these codes

is equivalent to the challenge of producing magic states, which are already known

to boost Clifford circuits to universality using adaptive Clifford circuits [44, 45] (in

contrast our construction would only need non-adaptive Clifford circuits with magic

states). Likewise, measuring in a non-Clifford basis would require performing non-

Clifford one-qubit gates prior to fault-tolerant measurement in the computational

basis. Therefore the state preparation/measurement would be the challenging part

of fault-tolerantly implementing CCCs in codes with transversal Cliffords. It remains

open if there exists a code with transversal conjugated Cliffords3 and easy prepara-

tion and measurement in the required basis. Such a code would not be ruled out by

the Eastin-Knill Theorem [89], which states that the set of transversal gates must be

discrete for all codes which correct arbitrary one qubit errors. Of course this is not the

main motivation for exploring the power of this model - which is primarily to classify

the space between BPP and BQP - but an easier fault-tolerant implementation could

be an unexpected bonus of our results.

4.1.1 Proof techniques

To prove these results, we use several different techniques.

30f course one can always "rotate" a code with transversal Clifford operations to obtain a code
with transversal conjugated Cliffords. If the code previously had logical states 10)4 1 1)L, then by
setting the states 0)'L~ = Ul|0)L and I1)L = U1)L, one obtains a code in which the conjugated
Clifford gates (conjugated by U) are transversal. However having the ability to efficiently fault-
tolerantly prepare 0)L in the old code does not imply the same ability to prepare 10)' in the new
code.
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4.1.1.1 Proof Techniques: classification of exact sampling hardness

To prove exact (or multiplicative) sampling hardness for CCCs for essentially all

non-Clifford U, we use the notion of postselection introduced by Aaronson [2]. As

described in Chapter 2.6.6, postselection is the (non-physical) ability to discard all

runs of the computation which do not achieve some particular outcomes. Our proof

works by showing that postselecting such circuits allows them to perform universal

quantum computation. Hardness then follows from known techniques [2,5,48] (see

Chapter 2.6.6).

One technical subtlety that we face in this proof, which is not present in other

results, is that our postselected gadgets perform operations which are not closed under

inversion. This means that one cannot use the Solovay-Kitaev theorem (see Theorem

2) to change quantum gate sets [78]. This is a necessary step in the proof that

PostBQP = PP [2], which is a key part of the hardness proof (see [37]). Fortunately,

it turns out that we can get away without inverses due to a recent inverse-free Solovay-

Kitaev theorem of Sardharwalla et al. [198], which removes the needs for inverses if

the gate set contains the Paulis. Our result would have been much more difficult to

obtain without this prior result. To our knowledge this is the first application of their

result to structural complexity.

A further difficulty in the classification proof is that the postselection gadgets we

derive do not work for all non-Clifford U. In general, most postselection gadgets give

rise to non-unitary operations, and for technical reasons we need to work with unitary

postselection gadgets to apply the results of [198]. Therefore, we instead use several

different gadgets which cover different portions of the parameter space of U's. Our

initial proof of this fact used a total of seven postselection gadgets found by hand. We

later simplified this to two postselection gadgets by conducting a brute-force search

for suitable gadgets using Christopher Granade and Ben Criger's QuaEC package

[114]. We include this simplified proof in this chapter.

A final difficulty that one often faces with postselected universality proofs is that

one must show that the postselection gadgets boost the original gate set to univer-
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sality. In general this is a nontrivial task; there is no simple test of whether a gate

set is universal, though some sufficient (but not necessary) criteria are known [199].

Prior gate set classification theorems have solved this universality problem using rep-

resentation theory [35,199] or Lie theory [37,181]. However, in our work we are able

to make use of a powerful fact: the Clifford group plus any non-Clifford unitary is

universal. This follows from results of Nebe, Rains and Sloane [176,177,218] classi-

fying the invariants of the Clifford group4 . As a result, our postselected universality

proofs are much simpler than in other gate set classification theorems.

4.1.1.2 Proof techniques: additive error

To prove hardness of simulation to additive error, we follow the techniques of [5,

49, 99,173]. In these works, to show hardness of sampling from some probability

distribution with additive error, one combines three different ingredients. The first is

anti-concentration - showing that for these circuits, the output probabilities in some

large set T are somewhat large. Second, one uses Markov's inequality to argue that,

since the simulation error sums to c, on some other large set of output probabilities

S, the error must be below a constant multiple of the average. If S and T are both

large, they must have some intersection - and on this intersection SnT, the imagined

classical simulation is not only a simulation to additive error, but also to multiplicative

error as well (since the output probability in question is above some minimum).

Therefore a simulation to some amount e of additive error implies a multiplicative

simulation to the output probabilities on a constant fraction of the outputs. The

impossibility of such a simulation is then obtained by assuming that computing these

output probabilities is multiplicatively hard on average. In particular, one assumes

that it is a #P-hard task to compute the output probability on Sn TI/2' -fraction of

the outputs. This leads to a collapse of the polynomial hierarchy by known techniques

[5, 48].

We follow this technique to show hardness of sampling with additive error. In
4However we note that in our proofs we will only use the fact that the Clifford group plus any

non-Clifford element is universal on a qubit. This version of the theorem admits a direct proof using
the representation theory of SU(2).
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our case, the anticoncentration theorem follows from the fact that the Clifford group

is a "2-design" [229, 239] -- i.e. a random Clifford circuit behaves equivalently to a

random unitary up to its second moment - and therefore must anticoncentrate, as a

random unitary does (the fact that unitary designs anticoncentrate was also shown

independently by several groups [119,122,165]. This is similar to the hardness results

for IQP [49] and DQC1 [173], in which the authors also prove their corresponding

anticoncentration theorems. In contrast it is open to prove the anticoncentration

theorem used for Boson Sampling and Fourier Sampling [5,99], though these models

have other complexity-theoretic advantages 5 . Therefore the only assumption needed

is the hardness-on-average assumption. We also show that our hardness assumption

is true for worst-case inputs. This result follows from combining known facts about

BQP with the classification theorem for exact sampling hardness.

4.1.2 Relation to other works on modified Clifford circuits

While we previously discussed the relation of our results to prior work on gate set

classification and sampling problems, here we compare our results to prior work on

Clifford circuits. In Chapter 3, we categorized the computational power of a number

of modified versions of Clifford circuits. The closest related result to the results in

this chapter is the statement in [143] that if the input state to a Clifford circuit is

allowed to be an arbitrary tensor product of one-qubit states, then such circuits cannot

be efficiently classically simulated unless the polynomial hierarchy collapses. Their

hardness result uses states of the form 10 ) n/2Ia) n/2, where 1a) = cos(7r/8) 0) +

i sin(7r/8) 1) is a magic state. They achieve postselected hardness via the use of magic

states to perform T gates, using a well-known construction (see e.g. [45]). So in the

[143] construction there are different input states on different qubits. In contrast, our

result requires the same input state on every qubit - as well as measurement in that

basis at the end of the circuit. This ensures our modified circuit can be interpreted

'For instance, for these models it is known to be #P-hard to exactly compute most output
probabilities of their corresponding circuit. This is a necessary but not sufficient condition for the
supremacy conjectures to be true, which require it to be #P-hard to approximately compute most
output probabilities of their corresponding circuit.
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as the action of a discrete gate set, and therefore our result has relevance for the

classification of the power of non-universal gate sets.

4.2 Conjugated Clifford circuits

Recall that a (unitary) Clifford circuit is a one that consists of the computational

basis state 10)0' being acted on by the basic Clifford gates, before being measured in

the computational basis. We define conjugated Clifford circuits (CCCs) similarly to

Clifford circuits, except that each basic Clifford gate G is replaced by a conjugated

basic Clifford gate (U k)tgU k, where k = 1 when g = H, S and k = 2 when g = CZ.

In other words,

Definition 53. Let U be a single-qubit unitary gate. A U-conjugated Clifford circuit

(U-CCC) on n qubits is defined to be a quantum circuit with the following structure:

1. Start with |0)on.

2. Apply gates from the set {UtHU, UtSU, (Ut 0 Ut)CZ(U O U)}.

3. Measure each qubit in the computational basis.

Because the intermediate U and Ut gates cancel, we may equivalently describe a

U-CCC as follows:

1. Start with |0)On.

2. Apply U®'.

3. Apply gates from the set {H, S, CZ}.

4. Apply (Ut)®n.

5. Measure each qubit in the computational basis.
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4.2.1 Postselection gadgets

Our results involve the use of postselection gadgets to simulate unitary operations.

In this section, we introduce some terminology to describe these gadgets.

Definition 54. Let U be a single-qubit operation. Let k, 1 E Z+ with k > 1. A k-to-i

U-CCC postselection gadget G is a postselected circuit fragment that performs the

following procedure on an l-qubit system:

1. Introduce a set T of (k - 1) ancilla registers in the state |ai ... ak-i), where

a1 ... ak_1 E {o, i}k-.

2. Apply Uo(k-l) to the set T of registers.

3. Apply a k-qubit Clifford operation F to both the system and ancilla.

4. Choose a subset S of (k - 1) registers and apply (Ut)*(k-1) to S.

5. Postselect on the subset S of qubits being in the state |bi . . .bk-1), where

b1 ... bk-i E {o, 1 }k-.

An example of a 4-to-1 U-CCC postselection gadget is the circuit fragment de-

scribed by the following diagram:

(bi|

Jai) (b2|
F

| a2) (b3|

1a3) U

Let G be a U-CCC postselection gadget as described in Definition 54. The action

A(G) (also denoted AG) of G is defined to be the linear operation that it performs,

i.e.

A(G)= AG -b.S HU r U J1i |5...a,),, (4.1)
(iES / (iET
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and the normalized action of G, when it exists, is

AG = (4.2)
(det A) 2

Note that the above normalization is chosen so that det AG = 1

We say that a U-CCC postselection gadget G is unitary if there exist a E C\{0}

and a unitary operator U such that AG = aU. It is straightforward to check that the

following are equivalent conditions for gadget unitarity.

Lemma 55. A U-CCC postselection gadget G is unitary if and only if either one of

the following holds:

1. There exists y> 0 such that AtAG = y1 ,

2. AtG G I, -e. A Gis unitary.

Similarly, we say that a U-CCC postselection gadget G is Clifford if there exist

a E C\{} and a Clifford operator U such that AG = aU. The following lemma gives

a necessary condition for a gadget to be Clifford.

Lemma 56. If G is a Clifford U-CCC postselection gadget, then

AGXAt oc X or AGXAG oc Y or AGXAt oc Z, (4.3)

and

AGZAG oc X or AGZAf oc Y or AGZAt oc Z. (4.4)

Proof. If G is a Clifford U-CCC postselection gadget, then there exist a E C\{O}

and a Clifford operation F such that AG = aF. Since F is Clifford, EXrt is a

Pauli operator. But FXFt / I, otherwise, X - I, which is a contradiction. Hence,

FXFt ~ X or Y or Z, which implies Eq. (4.3). The proof of Eq. (4.4) is similar, with

X replaced with Z. L
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4.3 Weak simulation of CCCs with multiplicative

error

4.3.1 Classification results

In this section, we classify the hardness of weakly simulating U-CCCs as we vary

U. As we shall see, it turns out that the classical simulation complexities of the

U-CCCs associated with this notion of simulation are all of the following two types:

the U-CCCs are either efficiently simulable, or are hard to simulate to constant mul-

tiplicative error unless the polynomial hierarchy collapses. To facilitate exposition,

we will introduce the following terminology to describe these two cases: Let C be a

class of quantum circuits. Following the terminology in [148], we say that C is in

PWK if it is efficiently simulable in the weak sense by a classical computer. We say

that C is PH-supreme (or that it exhibits PH-supremacy) if it satisfies the property

that if C is efficiently simulable in the weak sense by a classical computer to constant

multiplicative error, then the polynomial hierarchy (PH) collapses.

The approach we take to classifying the U-CCCs is to decompose each U into the

form given by Eq. (2.4),

U = eiaRz(#)Rx(O)Rz(A), (4.5)

and study how the classical simulation complexity changes as we vary a, 0, 6 and

A. Two simplifications can immediately be made. First, the outcome probabilities

of the U-CCC are independent of a, since a appears only in a global phase. Sec-

ond, the probabilities are also independent of A. To see this, note that the outcome

probabilities are all of the form:

(bj Rz(-A)®"VRz(A)n 10)12 = I (bl V 0) 2 (4.6)

which is independent of A. In the above expression, b E {0, 1} and

V = Rx(-O) "Rz(-$) "U Rz( ) " Rx(O) n
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22 (E2) C

PWK PWK PH-supreme
2 1 (i, ii) (ii) (iv)

c PWK PH-supreme PH-supreme
2 (i) (iii) (iv)

Table 4.1: Complete complexity classification of U-CCCs (where U = Rz(#)R,(9)) with

respect to weak simulation, as we vary q and 0. The roman numerals in parentheses

indicate the parts of Lemma 57 that are relevant to the corresponding box. All U-CCCs

are either in PWK (i.e. can be efficiently simulated in the weak sense) or PH-supreme (i.e.

cannot be simulated efficiently in the weak sense, unless the polynomial hierarchy collapses.)

for some Clifford circuit I'. The equality follows from the fact that the computational

basis states are eigenstates of R,(A)®n with unit-magnitude eigenvalues.

Hence, to complete the classification, it suffices to just restrict our attention to

the two-parameter family {Rz(#)Rx(9)}O 9 of unitaries. We first prove the following

lemma (see Table 4.1 for a summary):

Lemma 57. Let U = Rz(0)Rx(0), where 4,0 E [0, 27r). Then

* U-CCCs are in PWK, if

(i) 0 E [0, 27r) and 0 E 7rZ, or

(ii) q E rZ and 6 E Z.

" U-CCCs are PH-supreme, if

(iii) q Z Z and 0 E IZodd, or

(iv) 0 7 (Z.

We defer the proof of Lemma 57 to Sections 4.3.2 and 4.3.3. Lemma 57 allows us

to prove our main theorem:
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Theorem 58. Let U be a single-qubit unitary operator. Consider the following two

statements:

(A) U-CCC is in PWK.

(B) There exist a single-qubit Clifford operator F c (S, H) and A E [0, 27r) such

that6

U ~_ R,(A). (4.7)

Then,

1. (B) implies (A).

2. If the polynomial hierarchy is infinite, then (A) implies (B).

In other words, if we assume that the polynomial hierarchy is infinite, then U-

CCCs are PH-supreme if and only if they cannot be written in the form U ~ FR,(A),

where F is a Clifford circuit and Rz(A) is a Z-rotation.

Proof.

1. Since Rz(A) 10) - |0), it follows that for any F, FRz(A)-CCCs have the same

outcome probabilities as F-CCCs. But C-CCCs are efficiently simulable, by the

Gottesman-Knill Theorem, since F E (S, H). Hence, U-CCCs are in PWK.

2. Let U be such that U-CCCs are in PWK. Using the decomposition in Eq. (2.4),

write U = e'0 Rz(#)Rx(9)Rz(A). Since we assumed that the polynomial hierar-

chy is infinite, Lemma 57 implies that

(a) 0 - 7Zr, or

(b) 0 E EZ and E QIZ.

In Case (a), 0 E 27Z or 7rZodd. If 0 c 27Z, then

U ~ Rz(#)R(27Z) ( = I - Rz(0 + y),
6or alternatively, we could restrict the range of A to be in [0, 7r], since any factor of R (7/2) ~ S

can be absorbed into the Clifford operator F.
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which is of the form given by Eq. (4.7). If 7rZdd, then

U ~ Rz(#)R(7Zodd)Rz(-y) ~ Rz(#)XR2(7y) = XRz(-y - #),

which is again of the form given by Eq. (4.7).

In Case (b),

U E e" Rz(7rZ/2)Rx(7rZ/2)R2(y)

= eRia2(7rZ/2) HR (7rZ/2) HR,(y). (4.8)

But the elements of Rz(7rZ/2) are of the form S3, for j E Z, up to a global phase.

Therefore, Rz(7rZ/2)HRz(7rZ/2)H is Clifford, and U is of the form Eq. (4.7).

0

Hence, Theorem 58 tells us that under the assumption that the polynomial hierar-

chy is infinite, U-CCCs can be simulated efficiently (in the weak sense) if and only if

U ~ FRz(A) for some single qubit Clifford operator F, i.e. if U is a Clifford operation

times a Z-rotation.

4.3.2 Proofs of efficient classical simulation

In this section, we prove Cases (i) and (ii) of Lemma 57.

4.3.2.1 Proof of Case (i): # E [0, 27r) and 0 E 7rZ

Theorem 59. Let U = Rz(q)Rx(O). If # E [0, 27r) and 0 E 7rZ, then U-CCCs are in

PWK.

Proof. First, we consider the case where 0 E 27rZ. In this case, U = Rz(#), and the

amplitudes of the U-CCC can be written as

(y| Rz(-#) "FRz(#) "X) ~ (yj F ix)
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for some Clifford operation F and computational basis states fx) and ly). By the

Gottesman-Knill Theorem, these U-CCCs can be efficiently weakly simulated.

Next, we consider the case where 6 E 7rZodd. In this case, U = Rz(#)Rx(7r)

R,(#)X, and the amplitudes of the U-CCC can be written as

(yj Xo Rz(-#)OFR2(#)" "jx) ~ I F I r ) (4.10)

for some Clifford operation F and computational basis states Ix) and Iy), where is

the bitwise negation of z. By the Gottesman-Knill Theorem, these U-CCCs can be

efficiently weakly simulated.

Putting the above results together, we get that U-CCCs are in PWK. E

4.3.2.2 Proof of Case (ii): E Z and 0 E Z

Theorem 60. Let U = R2(#)R2(0). If G E Z and 6 C EZ, then U-CCCs are in

PWK.

Proof. The elements of R(2(Z) are of the form S3, where j E Z, up to a global

phase. Therefore, U = R2(#)R,(O) = R,(#)HR,(6)H is a Clifford operation, and so,

the U-CCCs consist of only Clifford gates. By the Gottesman-Knill Theorem, these

U-CCCs can be be efficiently (weakly) simulated.

4.3.3 Proofs of hardness

In this section, we prove Cases (iii) and (iv) of Lemma 57. Our proof uses postselection

gadgets, similar to the techniques used in [37,48]. One can also prove hardness using

techniques from measurement-based-quantum computing, at least for certain U. We

give such a proof in Chapter 4.7 for the interested reader; we believe this proof

may be more intuitive for those who are familiar with measurement-based quantum

computing.

We start by proving a lemma that will be useful for the proofs of hardness.
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Lemma 61. (Sufficient condition for PH-supremacy) Let U be a single-qubit gate.

If there exists a unitary non-Clifford U-CCC postselection gadget G, then U-CCCs

are PH-supreme.

Proof. Suppose such a gadget G exists. Then, since the Clifford group plus any non-

Clifford gate is universal [176,177,218], the Clifford group plus G must be universal

on a single qubit. Then, by the inverse-free Solovay-Kitaev Theorem of Sardharwalla

et al. [198], using polynomially many gates from the set G, H, S one can compile any

desired one-qubit unitary V to inverse exponential accuracy (since in particular (H, S)

contains the Paulis). In particular, since any three-qubit unitary can be expressed

as a product of a constant number of CZs and one-qubit unitaries, one can compile

any gate in the set {CCZ, controlled-H, all one-qubit gates } to inverse exponential

accuracy with polynomial overheard.

In his proof that PostBQP = PP, Aaronson showed that postselected poly-sized

circuits of the above gates can compute any language in PP [2]. Furthermore, as his

postselection succeeds with inverse exponential probability, compiling these gates to

inverse exponential accuracy is sufficient for performing arbitrary PP computations.

Hence, by using polynomially many gadgets for G, CZ, H and S, one can compile

Aaronson's circuits7 for computing PP to inverse exponential accuracy, and hence

these circuits can compute PP-hard problems. PH-supremacy then follows from the

techniques of [5,48]. Namely, a weak simulation of such circuits with constant mul-

tiplicative error would place PP C BPPNP C A 3 by Stockmeyer counting, and hence

by Toda's theorem this would result in the collapse of PH to the third level. In fact,

by the arguments of Fujii et al. [104], one can collapse PH to the second level as well,

by placing coC=P in SBP, and we refer the interested reader to their work for the

complete argument. E

7More specifically, we compile the circuit given by (Ut)On, then Aaronson's circuit, then U®', as
we need to cancel the U's at the beginning and the Uts at the end in order to perform Aaronson's cir-
cuit which starts and measures in the computational basis. However as the U, Ut are one-qubit gates,
one can cancel them to inverse exponential accuracy using our gates, and hence this construction
suffices.
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4.3.3.1 Proof of Case (iii): 5 ( Z n

Let U = Rz(#)Rx(9). Consider the following U-CCC postselection gadget:

I(#, 0) = Ut (0

10) F_

We now prove some properties about I(0, 9).

Theorem 62.

1. The action of I(0, 0) is

Cos2 0

AI(io)= 2 
-j sin 0 e

i sin 0 e--o22

-sin 2 0

2. I(0, 0) is a unitary gadget if and only if 9 E "'Zodd. When I(0, 9) is unitary,

A , i I i( 1)ke 4 )ZI(4,o)= , -
N/ -i(-1)k eO -1

(4.13)

where k = - 1

3. I(#, 0) is a Clifford gadget if and only if #b E Z and 0 E jZodd.

4. I(0, 9) is a unitary non-Clifford gadget if and only if # Z Z and 9 E Zod.

Proof.

1. By direct calculation.

2. By Eq. (4.12),

/2I cos20e2 I sin(20)e-4

sin2

(4.14)
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(4.11)

(4.12)

and 0 E 'Zod

A' oA to) =



If 0 E 2 Zodd, then A A (,o) = 'I, which implies that I(#, 6) is a unitary

gadget, by Lemma 55. Conversely, assume that I(0, 0) is a unitary gadget.

Suppose that 6 ZZo.dd Then sin(26) 7 0, which implies that A() AI(4,o) 9c 1,

which is a contradiction. Hence, 6 E "Zod.

Next, k= - j implies that 6 = E(2k+1). Since 0 E ?Zodd, it follows that

k E Z . T h e ns 2 = + 1d S i n 0 = . E e ,k Z . Then sin90 = (_l)k, cos 2 0 = 1 and sin 2 61~ Hence,

1
AI(O,o)= ( 2 2

-'(-I) e

Hence, det AI(4,o)

i (_1)ke-i)

-2 (4.15)

- -. Plugging this and Eq. (4.15) into Eq. (4.2) gives

Eq. (4.13).

3. (4-)Let E 11Z and 6 E 'ZoAdd. Write = l and = (2k + 1). Then, by

Eq. (4.13),

AI(O,o) =
,F i3+2k+l

i +2k+31
(4.16)

Now, it is straightforward to check that for all k, 1 E Z, AI(o,o)XAt E

{-X, Z, -Z} and Ai(o,o)ZA ) E {-Y, X, Y, -X}. This shows that AI(4,o)

maps the Pauli group to itself, under conjugation, which implies that A(o,o) is

Clifford.

(->) Assume that I(0, 9) is a Clifford gadget. Suppose that # E (Z or 9 0 !Zdd.

But I(0, 9) is unitary, and hence, 0 E 2 o1.dd. So ' ( Z. By Lemma 56,

AI(o,o)XAlt) X or Y or Z. But, as we compute,

-e-i cos#

-(-1)k sin # J
(4.17)

If AI(+,o)XA (,o) ~' X or Y, then sinj = 0, which is a contradiction, since

# (Z. Hence, AI(4,)XA ~(0) Z, which implies that cos # = 0. But this

also contradicts # 2 1Z. Hence, c E (Z and 0 E Zodd.
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4. Follows from Parts 2 and 3 of Theorem 62.

0l

Theorem 63. Let U = R2(O)Rx(9).

PH-supreme.

Proof. By Theorem 62, when !Z Z and 0 E

If # Z and 9 2 'Zod, then U-CCCs are

22'Zodd, then I(0, 9) is a unitary

non-Clifford U-CCC postselection gadget. Hence, by Lemma 61, U-CCCs are PH-

supreme. l

4.3.3.2 Proof of Case (iv): 9 V 'Z

Let U = Rz(O)Rx(9). Consider the following U-CCC postselection gadget:

(4.18)J(j, 0) =

10) (0

We now prove some properties about J(#, 9).

Theorem 64.

1. The action of J(O, 9) is

1 4_

- - 4

i + coso

0
0

1 +icoso

1 + cos 2 9 StRz(2tan-l(cos)).

2. J(#, 9) is a unitary gadget for all 9, # E [0, 27). The normalized action is

Aj(o,o) ~ StRz(2 tan-' (cos 9)). (4.20)

3. J(#, 9) is a Clifford gadget if and only if 0 E 7Z.

4. J(O, 9) is a unitary non-Clifford gadget if and only if 9 ZZ.
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1. By direct calculation.

2. The determinant of Aj(o,o) is

det Aj(,o) = 1(1 + cos 2 9) # 0

for all 9 and 0. Hence, Aj(0,o) oc S1R,(2tan-1 (cosO)) for all 0 and #, which

implies that J(, 0) is a unitary gadget for all 9 and b.

Hence,

iei StRZ (2tan-1 (cos 9)).

StR,(2tan-l(cos 9)) is Clifford

det Aj(,o)

J(O, 9) is a Clifford gadget

Rz(2tan- 1 (cos 0)) is Clifford

2tan-1 (cos9) E EZ (4.22)

cos 0 E{0, 1, -1}

0 E Z. (4.23)

4. Follows from Parts 2 and 3 of Theorem 64.

where to get Eq. (4.22), we used the fact that R,(#) is a Clifford operation if and

only if EZ.

Theorem 65. Let U = R2(#)R,(9). If 9 1Z, then U-CCCs are PH-supreme.

Proof. By Theorem 64, when 9 EZ, then I(#, 9) is a unitary non-Clifford U-CCC

postselection gadget. Hence, by Lemma 61, U-CCCs are PH-supreme. I
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4.4 Weak simulation of CCCs with additive error

Here, we show how to achieve additive hardness of simulating conjugated Clifford

circuits, under additional hardness assumptions. Specifically, we will show that under

these assumptions, there is no classical randomized algorithm which given a one-qubit

unitary U and a Clifford circuit V, samples the output distribution of V conjugated

by U's up to constant f1 error.

In the following, let V be a Clifford circuit on n qubits, U be a one-qubit unitary

which is not a Z-rotation times a Clifford, and y E {0, 1}" be an n-bit string. Define

Py,U,V = I(YI (Ut)nVUn 0n)12.

In other words py,UV is the probability of outputting the string y when applying

the circuit V conjugated by U's to the all O's state, and then measuring in the

computational basis. Let the corresponding probability distribution on y's given U

and V be denoted D(U, V).

Theorem 66. Assuming that PH is infinite and Conjecture 67, then there is no

classical algorithm which given a one-qubit unitary U and an n-qubit Clifford circuit

V, outputs a probability distribution which is 1/100 close to D(U, V) in total variation

distance.

Conjecture 67. For any U which is not equal to a Z-rotation times a Clifford, it is

#P-hard to approximate a 6/50 fraction of the py,UV over the choice of y, V to within

multiplicative error 1/2 + o(1).

In order to prove this we'll actually prove a more general theorem described below;

the result will then follow from simply setting a = c = 1/5, c = 1/100. One can in

general plug in any values they like subject to the constraints; for instance one can

strengthen the hardness assumption by assuming computing a smaller fraction of

the py,UV is still #P-hard to obtain larger allowable error in the simulation. These

parameters are similar to those appearing in other hardness conjectures, for example

those used for IQP [49].
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Theorem 68. Pick constants 0 < e, a, c < 1 such that (1 - a) 2 /2 - c > 0 and 2" < 1.ac

Then assuming Conjecture 69, given a one-qubit unitary U and an n-qubit Clifford

circuit V, one cannot weakly simulate the distribution D(U, V) with a randomized

classical algorithm with total variation distance error E, unless the polynomial hier-

archy collapses to the third level.

Conjecture 69. For any U which is not equal to a Z-rotation times a Clifford, it is

#P-hard to multiplicatively approximate (1 - a)2 /2 - c fraction of the py,Uy over the

choice of (y, V), up to multiplicative error - + o(1).

Proof of Theorem 68. Suppose by way of contradiction that there exists a classical

poly-time randomized algorithm which given inputs U, V outputs samples from a

distribution D'(U, V) such that 1ID(U, V) - D'(U, V) 1 < c. In particular, let qy,uv

be the probability that D'(U, V) outputs y - i.e. the probability that the simulation

outputs y under inputs U, V.

By our simulation assumption, for all U, V we have that Z, Iqy,uv - py,uvI < 2E.

Therefore by Markov's inequality, given our constant 0 < c < 1, we have that for all

U and V there exists a set S' C {0, 1}' of output strings y of size jS'j/2n > 1 - C,

such that for all y E S',

qy,u,v -py,uy I < 2c
c27

In particular, by averaging over V's, we see that for any U as above, there exists a

set S C {0, 1}' x C. of pairs (y, V) such that for all (y, V) E S, Iqy,uv - Py,uvI < 2E

Furthermore S has measure at least (1 - c) over a uniformly random choice of (y, V).

We now show the following anticoncentration lemma (similar theorems were shown

independently in [119,122,165]):

Lemma 70. For any fixed U and y as above, and for any constant 0 < a < 1, we

have that at least (1-a)2 fraction of the Clifford circuits V have the property that2

a
Py,UV > -

We will prove Lemma 70 shortly. First, we will show why this implies Theorem 68.
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In particular, by averaging Lemma 70 over y's, we see that for any U as above, there

exists a set T c {0, 1}' x C, of pairs (y, V) such that for all (y, V) E T, Py,Uv > >L

22
Furthermore T has measure at least (12"a over a uniformly random choice of (y, V).

Since we assumed that (1 - a) 2/2+(1 - c) > 1, then SnT must be nonempty, and in

particular must contain (1 - a) 2 /2 - c fraction of the pairs (y, V). On this set S nT,

we have that

2c 26 a 2
qyu,v Py,UV + 2 = Py,Uv + -- < 1+ -- Py,UVc2V ac 2n ac

and likewise

qypv > pyuv - 2c= PyV - --- a>1- -> Py,U,V
c2q ac2np- ac

Since 1 - - > 0 (which we guaranteed by assumption), qy,uv is a multiplicative

approximation to py,UV with multiplicative error ! for (y, V) in the set S nT. The

set S n T contains at least (1 - a) 2 /2 - c fraction of the total pairs (y, V).

On the other hand, by Conjecture 69 we have that computing a (1 - a) 2 /2 -

c fraction of the py,uV to this level of multiplicative error is a #P-hard task. So

approximating py,UV to this level of multiplicative error for this fraction of outputs

is both #P-hard, and achievable by our simulation algorithm. This collapses PH to

the third level by known arguments [5,48]. In particular, by applying Stockmeyer's

approximate counting algorithm [216] to py,Uv, one can multiplicatively approximate

qy,u, to multiplicative error ' in FBPPNP for those elements in S n T. But since

qyuv is a -approx to py,uv, this is a A + o(1) multiplicative approximation to py,UV

in S n T. Hence a #P-hard quantity is in FBPPNP. This collapses PH to the third

level by Toda's theorem [219].

To complete our proof of Theorem 68, we will prove Lemma 70.

Proof of Lemma 70. To prove this, we will make use of the fact that the Clifford group

is an exact 2-design8 [229,239]. The fact that the Clifford group is a 2-design means

8The Clifford group is also a 3-design, but we will only need the fact it is a 2-design for our proof.
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that for any polynomial p over the variables {Vij} and their complex conjugates,

which is of degree at most 2 in the Vij's and degree at most 2 in the Vi*'s, we have

that

p(VV*)= p(V, V*)dV,
VEC

where C, denotes the Clifford group and the integral dV is taken over the Haar

measure. In other words, the expectation values of low-degree polynomials in the

entries of the matrices are exactly identical to the expectation values over the Haar

measure.

In particular, note that pyUV is a degree-1 polynomial in the entries of V and their

complex conjugates, and py'Uv is a degree-2 polynomial in these variables. Therefore,

since the Clifford group is an exact 2-design, we have that for any y and U,

P y, V =f pyuv dV = 1

and

p P y = p dV = 22n2-11 2

where the values of these integrals over the Haar measure are well known - see for

instance Appendix D of [121].

Following [49], we now invoke the Paley-Zygmund inequality, which states that:

Proposition 71. Given a parameter 0 < a < 1, and a non-negative random variable

p of finite variance, we have

Pr[p > aE[p]] (1 - a)2 E[p] 2 /E[p 2].

Applying this inequality to the random variable pypV over the choice of the Clif-

ford circuit V, we have that

Pry [py'u'v I (1 - a) 2 22n ( a)2 1 - 22n (1 - a) 2

r2 2-2- 1 2-2n+1 - 2
22n_-1
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which implies the claim.

This completes the proof of Theorem 68. LI

4.5 Evidence in favor of hardness conjecture

In Chapter 4.4, we saw that by assuming an average case hardness conjecture (namely

Conjecture 69), we could show that a weak simulation of CCCs to additive error would

collapse the polynomial hierarchy. A natural question is: what evidence do we have

that Conjecture 69 is true?

In this section, we show that the worst-case version of Conjecture 69 is true. In

fact, we show that for any U # CRz(O) for a Clifford C, there exist a Clifford circuit

V and an output y such that computing py,UV is #P-hard to constant multiplicative

error. Therefore certainly some output probabilities of CCCs are #P-hard to com-

pute. Conjecture 69 is merely conjecturing further that computing a large fraction of

such output probabilities is just as hard.

Theorem 72 (Worst-case version of Conjecture 69). For any U which is not equal

to a Z-rotation times a Clifford, there exist a Clifford circuit V and string y E {O, 1}

such that it is #P-hard to multiplicatively approximate a py,UV to multiplicative error

1/2 - o(1).

Proof. This follows from combining the ideas from the proof of Lemma 57 with pre-

viously known facts about BQP. In particular, we will use the following facts:

1. There exists a uniform family of poly-size BQP9 circuits Cx where x E {O, 1}

using a gate set with algebraic entries such that computing I(o" I C ") 12 to

multiplicative error 1/2 is #P-hard [49].

2. For any poly-sized quantum circuit C over a gate set with algebraic entries, any

non-zero output probability has magnitude at least inverse exponential [154].

9Even IQP suffices here [49].
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3. As shown in the proof of Theorem 58, for any U which is not a Clifford gate

times a Z rotation, there is a postselection gadget G which performs a unitary

but non-Clifford one-qubit operation. Furthermore all ancilla qubits in G begin

in the state 10).

From these facts, we can now prove the theorem. Let p = I (0"|Cxl0n) 12. By

Fact 2, the circuit Cx from Fact 1 either has p = 0 or p > 2 -0(nc) for some constant

c. Now suppose we compile the circuit Cx from Fact 1 using Clifford gates plus the

postselection gadget G - call this new circuit with postselection C'. By Sardhar-

walla et al. [198] we can compile this circuit with accuracy E = 2-0(n')-100 with only

polynomial overhead.

Let f E {0, I}k be the string of postselection bits of the circuit C' (which without

loss of generality are the last bits of the circuit), and let a is the probability that all

postselections succeed. Note a is a known and easily calculated quantity, since each

postselection gadget is unitary so succeeds with a known constant probability.

Let p' = I K0nfeC'j0n+k) 12 /a. Then we have that:

* If p = 0 then p' < 2-0(n)-100.

* If p - 0 then p - 20(n")100 < p1 < p + 20(n")100. Since p > 20(n"), this is a

multiplicative approximation to p with error 2-100.

Now suppose that one can compute I K"nC'EJn+k) 2 to multiplicative error y to

be chosen shortly. Then immediately one can compute p' = I (on"C' 0 n+k 2/a to the

same amount of multiplicative error - call this estimate p". By the above argument,

if p = 0 then p" < 2-0(c100(1 + -y). On the other hand if p > 0 then p' > 2

so p" > 2-0(nc)(1 - 'y). So long as -y is chosen such that 2-100(1 + y) < (1 - y) these

two cases can be distinguished - which holds in particular if -Y ~ 1/2.

Therefore, if p" < 2-0(n") then we can infer that p = 0. If p" > 2-(n")(1-f), then

p > 0 so p" is a -y approximation to p' and hence a -+2- 100 +y2- 10 0 approximation to

p. In either case we have computed a -y+2- 100 +-y2 1 00 approximation to p. Therefore,

if -y = 1/2 - 2-99, then we have computed a 1/2-multiplicative approximation to p,
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which is #P-hard by Fact 1. Therefore, computing the probability that the CCC

corresponding to C' outputs 10f) to multiplicative error 1/2 - 2-"9 is #P-hard. One

can similarly improve this hardness to 1/2 - o(1).

Given that the worst-case version of Conjecture 69 is true, a natural question to

ask is how difficult it would be to prove the average-case conjecture. To do so would

in particular prove quantum advantage over classical computation with realistic error,

and merely assuming the polynomial hierarchy is infinite. In some ways this would be

stronger evidence for quantum advantage over classical computation than Shor's fac-

toring algorithm, as there are no known negative complexity-theoretic consequences

if factoring is contained in P.

Unfortunately, recent work has shown that proving Conjecture 69 would be a

difficult task. Specifically, Aaronson and Chen [7] demonstrated an oracle relative to

which PH is infinite, but classical computers can efficiently weakly simulate quantum

devices to constant additive error. Therefore, any proof which establishes quantum

advantage with additive error under the assumption that PH is infinite must be non-

relativizing. In particular this implies any proof of Conjecture 69 would require

non-relativizing techniques - in other words it could not remain true if one allows for

classical oracle class in the circuit. This same barrier holds for proving the similar

average-case hardness conjectures to show advantage for Boson Sampling, IQP, DQC1,

or Fourier sampling. Therefore any proof of Conjecture 69 would require facts specific

to the Clifford group. We leave this as an open problem. We also note that it remains

open to prove the average-case exact version of Conjecture 69 - i.e. whether it is

hard to exactly compute a large fraction of Py,Uc. We believe this may be a more

tractable problem to approach than Conjecture 69. However this remains open, as

is the analogous average-case exact conjecture corresponding to IQP. We note the

corresponding average-case exact conjecture for Boson Sampling and Fourier sampling

are known to be true [5,99], though these models are not known to anticoncentrate.
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4.6 CCCs and other notions of simulation

For completeness, in this section we summarize the simulability of U-CCCs when U

is not a Clifford rotation times a Z rotation. There are various notions of classical

simulation at play here. The results of this chapter so far have focused of notions

of approximate weak simulation. A weak simulation of a family of quantum circuits

is a classical randomized algorithm that samples from the same distribution as the

output distribution of the circuit. On the other hand, a strong simulation of a family

of quantum circuits is a classical algorithm that computes not only the joint probabil-

ities, but also any marginal probabilities of the outcomes of the measurements in the

circuit. Following [148], we can further refine these definitions according to the num-

ber of qubits being measured: a strong(1) simulation computes the marginal output

probabilities on individual qubits, and a strong(n) simulation computes the proba-

bility of output strings y E {, 1}. Similarly, a weak(1) simulation samples from the

marginal output probabilities on individual qubits, and a weak(n) simulation samples

from P(Yi, ... , yn). A weak+ simulation samples from the same distribution on all n

output qubits up to constant additive error. Our previous results have shown that

efficient weak(n) simulations (Theorem 58), weak+ simulations (Theorem 68), and

strong(n) simulations (Theorem 72) of CCCs are implausible. However it is natural

to ask if it is possible to simulate single output probabilities of CCCs. It turns out

the answer to this question is yes. This follows immediately from Theorem 5 of [148],

which showed more generally that Clifford circuits with product inputs or measure-

ments have an efficient strong(1) and weak(1) simulation. Therefore this completes

the complexity classification of the simulability of such circuits. We note that IQP has

identical properties in this regard. This emphasizes that the difficulty in simulating

CCCs (or IQP circuits) comes from the difficulty of simulating all of the marginal

probability distributions contained in the output distribution, where the marginal is

taken over a large number of output bits. The probabilities of computing individual

output bits of either model are easy for classical computation. This is summarized in

Figure 4-1.
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strong (assuming PH
is infinite)

hard

weak strong(n) ... -

conjectured

weak -- hard

strong(1) '-

easy

weak(1)

Figure 4-1: Relationships between different notions of classical simulation and summary of

the hardness of simulating CCCs. An arrow from A to B (A -+ B) means that an efficient

A-simulation of a computational task implies that there is an efficient B-simulation for the

same task. Note also that an weak(n) simulation exists if and only if a weak simulation

exists. For a proof of these relationships, see Chapter 3.3. The two curves indicate the

boundary between efficiencies of simulation of U-CCCs, where U is not a Clifford operation

times a Z rotation. "Hard" means that an efficient simulation of U-CCCs is not possible,

unless PH collapses. "Conjectured hard" means that an efficient simulation of U-CCCs is

not possible, if we assume Conjecture 69. "Easy" means that an efficient simulation of

U-CCCs exists. Note that when U is a Clifford operation times a Z rotation, all the above

notions become easy.
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4.7 Measurement-based quantum computing proof

of multiplicative hardness for CCCs for certain

U's

In this section, we will prove the following theorem using techniques from measurement-

based quantum computing (MBQC).

Theorem 73. CCCs with U = Rz(O)H cannot be efficiently weakly classically sim-

ulated to multiplicative error 1/2 unless the polynomial hierarchy collapses, for any

0 which is not an integer multiple of ir/4.

This is a weaker version of Lemma 57. We include it for pedagogical reasons, as

it provides a different way of understanding the main theorem using MBQC tech-

niques, and it includes a more detailed walkthrough of the hardness construction.

Furthermore, it does not rely on the theorem that the Clifford group plus any non-

Clifford element is universal; instead one can directly prove postselected universality

by finding a qubit rotation by an irrational multiple of T.

As in the proof of Lemma 57, we will first show that CCCs can perform univer-

sal quantum computation (i.e., the class BQP) under postselection. This first step

will make extensive use of ideas from Measurement-Based Quantum Computation

[51]. Next, we will show that these circuits can furthermore perform PostBQP un-

der postselection. This extension requires the inverse-free Solovay-Kitaev theorem of

Sardharwalla et al. [198].

Theorem 74. Postselected CCCs can be used to simulate universal quantum com-

putation under the choice of U = Rz(O)H, and for any choice of 0 other than integer

multiples of 7r/4.

Proof. We will first describe the proof without reference to Measurement Based Quan-

tum Computing (MBQC) so as to be understood by the broadest possible audience.

We will then summarize the proof in MBQC language for those familiar with the

area.
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Our proof will make use of four gadgets to show that under postselection, we

can perform arbitrary 1-qubit gates in this model. For the first gadget, consider the

following quantum circuit:

') H --A (0 (4.24)

10) HI')

Here the notation (01 denotes that we postselect that measurement outcome on ob-

taining the state 10), and the two-qubit gate is controlled-Z. This gadget performs

teleportation [113]. One can easily calculate that 40) = H IV) - in other words, this

gadget performs the H gate [48,113]. Likewise, if one postselects the first outcome to

be 1), then the gate performed is XH. By chaining these gadgets together, one can

perform any product of these operations. For instance, the following circuit performs

HXH:

|0) HH ,-|(0|

10) IV)

The correctness follows from the fact that the order in which quantum measurements

are taken is irrelevant. By stringing together n of these, we can perform n gates from

the set {H, XH}. These generate a finite set of one-qubit gates which contain the

Paulis.

Now clearly circuits composed of these gadgets do not have the form of conjugated

Clifford circuits with U = Rz(O)H. But we can easily correct this by inserting Rz(O)'s

at the beginning of each line, and Rz(-O)'s at the end of each line.

14') Rz(6) Rz(-0) H -| (O| (4.25)

|0) H Rz() Rz(-) |4")

Clearly, this is equivalent to our original gadget at the Z rotations commute through

and cancel. Now the gadget has the property that
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" Every input line begins with Rz(O), and every output line ends with Rz(-O).

" Every ancillary input begins with 10) then applies Rz(9)H.

" Every ancillary output applies HRz(-O) and measures in the computational

basis.

" All gates in between are Clifford.

When composing such gadgets, the Rz(-9) at the end of each output line cancels

with the Rz(9) at the beginning of each input line. Hence composing gadgets with the

above properties will always form a CCC. For instance our prior circuit performing

HXH becomes

|K) Rz(0) Rz(-) H 4 (1

0) H-Rz(0) Rz(-0) H (0

|0) vRz() Rz(-6) 4")

Thus, by simply replacing our input state 4') with the state H 10), and our output

state with a Hadamard followed by measurement, this postselected circuit would be

simulating the circuit which starts in the state H 10), applies HXH, then applies H

and measures. Furthermore, this state will have the form of a CCC. More generally,

by stringing n such gadgets together to form a CCC, clearly one can simulate any

one-qubit quantum circuit where the initial state is H 10), one performs n gates from

the set {H, XH}, and then applies H and measures.

This allows us to simulate one-qubit gates from the set {H, XH} with postselected

CCC circuits. However, such gates are not universal for a single qubit. In order to

show postselected CCCs can perform universal quantum computation, we will need

to find a way to simulate all single qubit gates. To do so, we will consider adding

features to our gadget. So far the Clifford part of our CCCs are all commuting; let's

consider adding a non-commuting one-qubit gate X to make a new gadget:
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) Rz() X Rz(-6) H,,H(01 (4.26)

0)z')

By commuting the Rz(6) rightwards on both lines, and noting that

-Rz(O) X Rz(-6)-

is equivalent to

-- Rz(20)X

we can see this performs the same quantum operation as

I0) Rz(26) X H (0

10) H

which since HX = ZH, is equivalent to

4') Rz(26) H (4.27)

10) H I")

By direct computation, gadget (4.26) (which is equivalent to gadget (4.27)) performs

the operation HRz(29). Let us call this gate Go(9). Likewise, if one postselects on

11), one obtains the gate G1 (6) = XHRz(26). (This gadget is well-known in MBQC;

see below).

Therefore, by applying our gadgets (4.25) and (4.26), we can create postselected

CCCs to simulate the evolution of a one-qubit circuit which evolves by gates in the

set {H, XH, Go(O), G1(9)}. Intuitively, as long as the choice of 0 is not pathological,

these gates will generate all one-qubit gates. Therefore we have all one-qubit gates

at our disposal via these gadgets. We will prove this statement rigorously in Lemma

77, which we defer to Chapter 4.7. In fact, we show that as long as 9 is not set to

kwr/4 for some integer k, then the set of one qubit gates generated by these gadgets
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is universal on a qubit. Thus postselected CCC's (where 0 # kwr/4) can simulate

arbitrary one-qubit operations.

To prove that postselected CCC's can perform universal quantum computation,

we need to show how to perform an entangling two qubit gate. We can then appeal

to the result of Brylinski & Brylinski [52] and Bremner et al. [47] that any entan-

gling two-qubit gate, plus the set of all-one-qubit gates, is universal for quantum

computation. But performing entangling two-qubit gates is trivial in our setup, since

the Clifford group (and the conjugated Clifford group) contains entangling two-qubit

gates. For example, we can easily perform the controlled-Z gate between qubits with

the following gadget:

Rz(6) Rz(--9) (4.28)

-- Rz(0) Rz(-0)-

This gadget clearly has the correct form, and hence composes with the gadgets

(4.25) and (4.26) to form universal quantum circuits. This shows how to simulate

BQP with postselected CCCs.

We can now recast this proof in the language of measurement-based quantum

computing. Our result essentially follows from that fact that measuring graph states

in the bases HRz(20) and H, combined with postselection, is universal for quantum

computing. More formally, let E be series of controlled-Z operations that create a

graph state out of HO" 10)0" (we will specify the cluster state later). Let U = Rz(O)H

for some 6 to be specified later. Then consider creating the CCC for the Clifford circuit

C = XSE, where the notation XS denotes that we apply an X gate to some subset

S ; [n] of the qubits. We have that

H nRz(-0)®nXSERz(0)n H "o0)On = H nRz(-0)® XsRz(0)® EHon I|0)®

= H o (XRz(20))s EH o0) O

= H®n (XRz(26))s cluster)

= ((ZHRz(20))s 9 Hg) cluster),
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where the first equality follows from the fact that Rz and E commute as they are

both diagonal in the Z basis, the second follows from the fact that on the lines

without an X the Rz(0) and the Rz(-0) cancel, and on the lines with an X we have

Rz(-O)XRz(O) = XRz(20), the third follows from the fact that E is constructed

such that EH' "0)0' -=cluster), and the fourth from the fact that HX = ZH. Now

since we're measuring in the Z basis at the end of the circuit, the last row of Z's can

be ignored, so the circuit is equivalent to:

((HRz(20))s 0 H3) cluster).

Now we simply need to show that measurement based quantum computation with

postselection on such a state is universal for quantum computing. In other words,

we need to show that if we can construct a cluster state and measure some qubits

in the H basis and others in the HRz(20) basis, and postselect on the outcomes,

then we can perform universal quantum computation. It was previously known to be

universal for MBQC if different O's occur on each qubit [511. In our setup we do not

have this flexibility, but we instead have the additional ability to postselect.

Universality of this model follows from the fact that by preparing an appropriate

cluster state (using the standard trick to perform 1-qubit gates with MBQC), this

gives us the ability to apply the one-qubit gate HRz(20) using postselection. Likewise,

postselecting on 11) performs the operation XHRz(20). As discussed previously, by

Lemma 77, as long as 0 is not set to kwr/4 for some integer k, this is a universal gate

set on a qubit. The addition of entangling two-qubit operations on the cluster state

(namely, controlled-Z) boosts this model to universality. L

We have now shown that postselected CCCs can perform BQP under postselection.

We now extend this to show they can perform PostBQP = PP under postselection.

This requires using the inverse-free Solovay-Kitaev algorithm of [198]. From this, the

hardness result follows via known techniques [5,48].

Theorem 75. Postselected CCCs with U = Rz(0)H can decide any language in

PostBQP = PP, for any choice of 0 other than integer multiples of 7r/4.

141



Proof. To prove this, we will apply Aaronson's result that Postselected BQP circuits,

denoted PostBQP, can decide any language in PP. Aaronson's proof works by show-

ing that a particular universal quantum gate set - namely the gate set G consisting

of Toffoli, controlled-Hadamard, and one qubit gates - can decide PP under postse-

lection.

We previously showed that our postselected CCCs can perform a different univer-

sal quantum gate G' consisting of controlled-Z, HRz(29), XHRz(20), H and XH.

Therefore, in order to show that postselected CCCs can compute PP, we need to show

how to simulate Aaronson's gate set G using our gate set G'.

One difficulty is that we must be extremely accurate in our simulation of these

gates. This is because postselected quantum circuits may postselect on exponentially

tiny events. Therefore, in order to simulate Aaronson's postselected circuits for PP,

we will need to simulate each gate to inverse exponential accuracy.

Normally in quantum computing this simulation is handled by the Solovay-Kitaev

Theorem, which roughly states that any universal gate set can simulate any other

universal gate set to error c with only polylog(1/e) overhead. Therefore with polyno-

mial overhead, one can obtain inverse exponential accuracy in the simulation. This

is why the choice of gate set is irrelevant in the definition of PostBQP. One catch,

however, is that the Solovay-Kitaev theorem requires that the gate set is closed under

inversion, i.e. for any gate g E G, we have g- 1 E G as well. This is an essential

part of the construction of this theorem (which makes use of group commutators).

It is an open problem to remove this requirement [78,154]. As a corollary, it is open

whether or not the class PostBQP can still compute all languages in PP if the gate

set used is not closed under inversion. It is possible the class could be weaker with

non-inversion-closed gate sets.

Unfortunately, the gate set G' we have at our disposal is not closed under inver-

sion. Furthermore, since we obtained the gates using postselection gadgets, it is not

clear how to generate the inverses of the gadgets, as postselection is a non-reversible

operation. Therefore we cannot appeal to the Solovay-Kitaev theorem to show we

can compute languages in PP.
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Fortunately, however, even though our gate set does not have inverses, it does

have a special property - namely, our set of one qubit gates contains the Pauli group.

It turns out that recently, [198] proved a Solovay-Kitaev theorem for any set of one

qubit gates containing the Paulis, but which is not necessarily closed under inversion.

Therefore, by this result, even though our gate set is not closed under inversion,

we can still apply any one-qubit gate to inverse exponential accuracy with merely

polynomial overhead. So we can apply arbitrary one-qubit gates.

It turns out this is sufficient to apply gates from Aaronson's gate set G consisting

of Toffoli, controlled-H and one qubit gates with inverse exponential accuracy. To

see this, first not that it is well-known one can construct controlled-V operations for

arbitrary one-qubit gates V using a finite circuit of controlled-NOT and one-qubit

gates - see [180] for details. Furthermore, it is possible to construct Toffoli using a

finite circuit of one qubit gates and controlled-V operations [180]. This, together with

the fact that controlled-NOT is equal to controlled-Z conjugated by Hadamard on

one qubit, shows that each gate in G has an exact decomposition as a finite number

of controlled-Z gates and one-qubit gates. Hence, using controlled-Z gates and one-

qubit gates compiled to exponential accuracy, one can obtain circuits from G with

inverse exponential accuracy. Thus, our gate set G' can efficiently simulate gates from

G, and hence our postselected CCCs can compute all languages in PostBQP = PP as

well. E

From this, the hardness result follows via known techniques [5, 48].

Corollary 76. Conjugated Clifford circuits cannot be weakly simulated classically

to multiplicative error unless the polynomial hierarchy collapses to the third level, for

the choice of U = Rz(6)H for any 0 which is not an integer multiple of 7r/4.

To complete our proof, we merely need to show the following lemma:

Lemma 77. So long as 0 is not an integer multiple of 7r/4, then the gates HRz(20)

and XHRz(20) are universal on a qubit. Furthermore, so long as 0 is not an integer

multiple of 7r/4, then at least one of these gates is a rotation of the Bloch sphere by

an irrational multiple of 7r.
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Proof. For convenience of notation, define Go = -iHRz(2) and G1 = -XHRz(20).

We will actually begin by proving something stronger: namely, that as long as 0 is

not an integer multiple of r/4, then one of the rotations Go and G, is by an irrational

multiple of 7r.

We will prove this by contradiction. Suppose that both Go and G1 are rotations

by rational multiples of 7r, call their rotation angles 0 and 01, respectively. By direct

computation, first eigenvalue of Go is given by

1

1 (-2 sin(6) - i/6 + 2 cos(20) .

Since this must be equal to e iko/ 2 , and by considering the real part of this equation,

we have that

cos(oo/2) = - sin(O) (4.29)

By an identical argument, for gate G1 we have that

cos(0 1/2) - cos(O) (4.30)

Squaring these terms and summing them, we obtain that

1
cos2 (Oo/2) + cos 2 (01/2) =-

2

Or, applying the fact COS 2 t = 1+cos 2' and simplifying, one can see this is equivalent

to

cos(#o) + cos(0 1) + cos(0) = 0.

Since we are assuming by way of contradiction that Go, G1 are of finite order, we

are assuming that q 0, #1 are rational multiples of 7r. Previously, Crosby [73] and

Wlodarski [235] classified all possible solutions to the equation cos(ai) + cos(a2) +

cos(a3 ) where each ac are rational multiples of 7r. The four possible solution families

to this equation (assuming without loss of generality that 0 < a : 5r) are [235]

* {#, 7r - ,3,r/2} where 0 < < -F
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9 {, -6, -h6} where 0 < 6 'r

0 7r 37r 27r
l 5 5 3 J

Since we have that one of our three angles is 0, the latter two cases are imme-

diately ruled out, and we must have that the angles {#o, q1 } are either {7r/2, 7r} or

{27/3, 27/3}. One can easily see that the first solution corresponds to 0 = k7/2 for

an integer k, and the second solution corresponds to 0 = kwr/4 for an odd integer k.

Therefore, so long as 0 is not an integer multiple of 7r/4, we have a contradiction,

as there are no further solutions to these equations where the #i are rational multiples

of 7r. So if 0 is set to any value other than k7/4 for an integer k, we have that at

least one of the gates Go and G1 is a rotation by an irrational multiple of 7r.

Now what remains to be shown is that the gates Go and G, are universal in the

general case. This can be shown easily by the classification of continuous subgroups of

SU(2). The continuous subgroups of SU(2) are U(1) (corresponding to all rotations

about one axis), U(1) x Z2 (corresponding to all rotations about an axis a, plus a

rotation by 7 through another axis perpendicular to a), and SU(2). By our prior

result we know that either Go or G1 generates all rotations about its axis of rotation

on the Bloch sphere. Therefore, if we can show that neither Go nor G, are rotations

by angle 7r we are done, as these then must generate all of SU(2). However this

follows immediately from Eqs. (4.29) and (4.30), since these equations imply that we

can have either 0 = ir or #1 = 7r only when 0 is a rational multiple of r/2. Hence, as

long as 0 is not a rational multiple of ir/4, neither Go nor G1 is a rotation by ir, and

furthermore one is a rotation by an irrational multiple of 7r. These gates generate a

continuous group which is neither U(1) nor U(1) x Z2, and therefore by the above

observation these generate all of SU(2).
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4.8 Open Problems

Our work leaves open a number of problems.

" What is the computational complexity of commuting CCCs? In other words,

can the gate set CZ, S conjugated by a one-qubit gate U ever give rise to

quantum advantage? Note that this does not follow from Bremner, Jozsa

and Shepherd's results [48], as their hardness proof uses the gate set CZ, T

or CCZ, CZ, Z conjugated by one-qubit gates. If this is true, it would say that

the "intersection" of CCCs and IQP remains computationally hard. One can

also consider the computational power of arbitrary fragments of the Clifford

group, which were classified in [115]. Perhaps by studying such fragments of

the Clifford group one could achieve hardness with lower depth circuits (see

additional question below).

" We showed that Clifford circuits conjugated by tensor-product unitaries are

difficult to simulate classically. A natural extension of this question is: suppose

your gate set consists of all two-qubit Clifford gates, conjugated by a unitary U

which is not a tensor product of the same one-qubit gate. Can one show that all

such circuits are difficult to simulate classically (say exactly)? Such a theorem

could be a useful step towards classifying the power of all two-qubit gate sets.

" Generic Clifford circuits have a depth which is linear in the number of qubits [8].

In particular the lowest-depth decomposition for a generic Clifford circuit over

n qubits to date has depth 14n - 4 [168]. Such depth will be difficult to achieve

in near-term quantum devices without error-correction. As a result, others

have considered quantum supremacy experiments with lower-depth circuits. For

instance, Bremner, Shepherd and Montanaro showed advantage for a restricted

version of IQP circuits with depth O(log n) [50] with long-range gates (which

becomes depth O(ni1 /2 log n) if one uses SWAP gates to simulate long-range

gates using local operations on a square lattice). We leave open the problem of

determining if quantum advantage can be achieved with CCCs of lower depth
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(say O(nl/ 2 ) or 0(n'/3 )) with local gates only.

* In order to establish quantum supremacy for CCCs, we conjectured that it is

#P-hard to approximate a large fraction of the output probabilities of randomly

chosen CCCs (Conjecture 69 ). Is it also #P-hard to exactly compute that

large of a fraction of the output probabilities? This is a necessary but not

sufficient condition for Conjecture 69 to be true, and we believe it may be a

more approachable problem.
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Chapter 5

How many qubits to reach

quantum supremacy?

In the last few chapters, we described several restricted models of quantum compu-

tation that are potential candidates for a quantum supremacy demonstration. All

the arguments that we have described for quantum supremacy require some sort of

computational assumption related to the limitations of classical computation. One

common assumption that we have used is that the polynomial hierarchy does not col-

lapse, which leads to the conclusion that any classical simulation of certain families

of quantum circuits requires time scaling worse than any polynomial in the size of the

circuits. However, one limitation of this approach is that the asymptotic nature of

this conclusion prevents us from calculating exactly how many qubits these quantum

circuits must have for their classical simulation to be intractable on modern classical

supercomputers.

The goal of this chapter is to refine the above-mentioned quantum supremacy argu-

ments and perform a number-of-qubits calculation by imposing fine-grained versions

of the non-collapse assumption. The first version, called poly3-NSETH(a), states

that 2'a time steps are required by any non-deterministic algorithm that, given a

degree-3 polynomial f on n variables over the field F2, accepts if f is not a balanced

function. The second version, called per-int-NSETH(b) states that 2 b, time steps are

required by any non-deterministic algorithm that, given an n x n integer matrix A
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accepts if the permanent of A is nonzero. Naive, brute-force algorithms rule out ei-

ther assumption when a, b > 1. Additionally, a non-trivial algorithm by Lokshtanov,

Paturi, Tamaki, Williams and Yu [162] rules out poly3-NSETH(a) for a > 0.9965.

While improvements to their analysis might yield a better bound, we argue that a

completely different approach would likely need to be developed to rule out a = 1/2.

Taking a = 1/2 and b = 0.999 (b = 1 is ruled out by subexponential improvements

over brute force), we conclude that Instantaneous Quantum Polynomial-Time (IQP)

circuits with 180 qubits, Quantum Approximate Optimization Algorithm (QAOA)

circuits with 360 qubits and boson sampling circuits (i.e. linear optical networks)

with 90 photons are large enough for the task of producing samples from their output

distributions up to constant multiplicative error to be intractable on current technol-

ogy. This chapter is based on joint work with Alexander Dalzell, Aram Harrow and

Rolando L. La Placa [76].

5.1 Motivation and outline of results

Quantum (computational) supremacy (QCS) is the goal of carrying out a compu-

tational task on a quantum computer that cannot be performed by any classical

computer [188]. Ingredients of this include choosing an appropriate task, building a

quantum device that can perform it, ideally verifying that it was done correctly, and

finally using arguments from complexity theory to support the claim that no classical

computer can do the same [123]. Recent advances indicate that the experimental

ingredient might be available in the next several years, but the choice of task, its

verification, and its complexity-theoretic justification remain important open theo-

retical research questions. In particular, based on the current status of complexity

theory, establishing limitations on classical computing for the purpose of assessing

how close we are to demonstrating QCS requires making conjectures, and thus we are

presented with a range of choices. If we make stronger conjectures then we can use a

smaller and more restricted quantum computer while ruling out the existence of more

powerful classical simulation algorithms. Weaker conjectures, on the other hand, are
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more defensible and can be based on more widely studied mathematical principles.

A leading example of a strong conjecture is the Quantum Threshold Assumption

(QUATH) proposed by Aaronson and Chen [7], which states that there is no efficient

(i.e. polynomial-time) classical algorithm that takes as input a description of a ran-

dom quantum circuit C, and decides whether I (0 I C I0) 2 is greater or less than the

median of all I (0I C I0) 12 values, with success probability at least 1 + Q(!) over

the choice of C. This conjecture gives one of the strongest possible statements about

the hardness of simulating quantum circuits that is not already ruled out by known

simulations.

A weaker conjecture is the statement that the polynomial hierarchy (PH) does

not collapse (see Conjecture 11). Under this assumption, it has been shown that

there cannot exist an efficient classical algorithm to produce samples from the output

distribution of certain families of quantum circuits [5,6,27,36,37, 48, 97, 104,119,143,

148, 174, 217], up to constant multiplicative error. The three families we focus on

in this chapter are Instantaneous Quantum Polynomial-time (IQP) circuits [48,201],

Quantum Approximate Optimization Algorithm (QAOA) circuits [94,97], and boson

sampling circuits (i.e. linear optical networks) [5], all of which are among those whose

simulation is hard (see Chapter 2.8). Indeed, a key selling point for work in QCS

is that it could be based not on the conjectured hardness of a particular quantum

circuit family or even quantum mechanics in general, but instead on highly plausible,

purely classical computational conjectures, such as the non-collapse of the PH.

However, the non-collapse of the PH is in a sense too weak of a conjecture to be

practically useful. The conjecture rules out polynomial-time simulation algorithms

for these families of circuits, but does not describe a concrete superpolynomial lower

bound. Thus, assuming only the non-collapse of the PH would be consistent with

a simulation of an n-qubit quantum system running in time n() for an arbitrarily

slowly growing function f(n), say log log log log(n). A stronger conjecture might lead

to a requirement that simulation algorithms be exponential time, meaning that there

is some constant c for which its runtime is > 2C". Even this, though, is not strong

enough; it remains possible that the constant c is sufficiently small that we cannot
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rule out a scenario where highly parallelized state-of-the-art classical supercomputers,

which operate at as many as 1017 floating-point operations per second, are able to

simulate any circuit that might be experimentally built in the near-term. For example,

Neville et al. [178], as well as Clifford and Clifford [68] recently developed classical

algorithms that produce samples from the output of boson sampling circuits, the

former of which has been shown to simulate n = 30 photons on a standard laptop

in just half an hour, contradicting the belief of many that 20 to 30 photons are

sufficient to demonstrate a definitive quantum advantage over classical computation.

A stronger conjecture that restricts the value of the exponential factor c, a so-called

"fine-grained" conjecture, is needed to move forward on assessing the viability of QCS

protocols. The framework of fine-grained complexity has gathered much interest in its

own right in the last decade (see [234] for a survey), yielding unexpected connections

between the fine-grained runtime of solutions to different problems.

In this chapter, we examine existing QCS arguments for IQP, QAOA, and boson

sampling circuits from a fine-grained perspective. While many previous arguments

[5,48,97] center on the counting complexity class PP, which can be related to quantum

circuits via postselection [2], the fine-graining process runs more smoothly when we

use the counting class coC=P instead. The class coC-P is the set of languages for which

there exists an efficient classical probabilistic algorithm that accepts with probability

exactly 1/2 only on inputs not in the language. It can be related to quantum circuits

via non-determinism: coC=P = NQP [100], where NQP, a quantum analogue of NP, is

the class of languages for which there exists an efficient quantum circuit that has non-

zero acceptance probability only on inputs in the language. Moreover, this equality

still holds when we restrict NQP to quantum computations with IQP, QAOA, or boson

sampling circuits. Additionally, it is known that if coC. P were to be equal to NP, the

PH would collapse to the second level [100,220]. Thus, by making the assumption that

there is a problem in coC=P that does not admit a non-deterministic polynomial-time

solution, i.e. coC=P gt NP, we conclude that there does not exist a classical simulation

algorithm that samples from the output distribution of IQP or QAOA circuits up to

constant multiplicative error, for this would imply NP = NQP = coC=P, contradicting
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the assumption.

To make a fine-grained version of this statement, we pick a specific coCP-complete

problem related to the number of zeros of degree-3 polynomials over the field F2, which

we call poly3-NONBALANCED and we assume that poly3-NONBALANCED does not have

a non-deterministic algorithm running in fewer than T(n) time steps for an explicit

function T(n). We choose T(n) = 2an-1 for a fixed constant a and call this conjec-

ture the degree-3 polynomial Non-deterministic Strong Exponential Time Hypothesis

(poly3-NSETH(a)). It is clear that poly3-NSETH(a) is false when a > 1 due to

the brute-force deterministic counting algorithm that iterates through each of the 2n

possible inputs to the function f. However, a non-trivial algorithm by Lokshtanov,

Paturi, Tamaki, Williams and Yu (LPTWY) [162] gives a better-than-brute-force, de-

terministic algorithm for counting zeros to systems of degree-k polynomial that rules

out poly3-NSETH(a) whenever a > 0.9965. This constant may be improvable while

keeping the same basic method but, as we discuss in Chapter 5.5, we expect any such

improvements to be small. Refuting poly3-NSETH(a) for values of a substantially

below 1 would require the development of novel techniques.

Assuming poly3-NSETH(a), we derive a fine-grained lower bound on the runtime

for any classical simulation algorithm for QAOA and IQP circuits with n qubits. In

essence, what we show is that a classical simulation algorithm that beats our lower

bounds could be used as a subroutine to break poly3-NSETH(a). Then, we repeat

the process for boson sampling circuits with n photons by replacing poly3-NSETH(a)

with a similar conjecture we call per-int-NSETH(b) involving the permanent of n x n

integer-valued matrices. In this case, however, there is no known algorithm that can

rule out any values of b when b < 1. Accordingly, the lower bound we derive on the

simulation time of boson sampling circuits when we take b = 0.999 is essentially tight,

matching the runtime of the naive simulation algorithm up to factors logarithmic in

the total runtime. Very recently, a similar approach was applied to obtain lower

bounds on the difficulty of computing output probabilities of quantum circuits based

on the SETH conjecture [128]. Our work has the disadvantage of using a less well-

studied and possibly stronger conjecture (poly3-NSETH(a)) but the advantage of
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ruling out classical algorithms for sampling, i.e. for the same tasks performed by the

quantum computer.

Our lower bound leads us to conclude that classically simulating general IQP cir-

cuits with 90/a qubits, QAOA circuits with 180/a qubits, or boson sampling circuits

with 90/b photons would require one century for today's fastest supercomputers,

which we consider to be a good measure of intractability. We believe values for a

and b leading to plausible conjectures are a = 1/2, which is substantially below best

known better-than-brute-force algorithms, and b = 0.999, which is roughly equivalent

to asserting that the best-known brute force algorithm is optimal up to subexponen-

tial factors. The relative factor of two in the number of qubits for QAOA circuits

comes from a need for ancilla qubits in constructing a QAOA circuit to solve the

poly3-NONBALANCED problem. However, these circuits must have 104 to 10 7 gates for

these bounds to apply. By comparison, factoring a 1024-bit integer, which is suf-

ficiently beyond the capabilities of today's classical computers running best known

algorithms, has been estimated to require more than 2000 qubits and on the order of

10" gates using Shor's algorithm [195].

5.2 Background

5.2.1 Counting complexity and quantum supremacy

The computational assumptions underlying our work and many previous QCS results

utilize a relationship between quantum circuits and counting complexity classes that

is not seen to exist for classical computation. To understand this relationship, we

quickly review several definitions and key results.

Let n > 1, and f : {0, 1} -+ {0, 1} be a Boolean function. The gap of f is defined

to be

gap(f) = ( ). (5.1)
XE10,1}"
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Note that the number of zeros of f may be written in terms of the gap, as follows:

|{x E {O, 1}: f(x) = O}|= 1(2" + gap(f)). (5.2)

Various complexity classes may be defined in terms of the gap. The class #P that

we introduced in Chapter 2.6 may be defined to be the class of functions f : {0, 1}* -+

N for which there exist a polynomial p and a polynomial-time Turing machine M such

that for all x E {o, 1} *,

f(x) = f{y E {0, i}P(X) : M(x, y) = }

= (2P("l) + gap(M(x,-)))
2

(5.3)

Thus, #P consists of functions that count the number of zeros of a polynomial-time

computable Boolean function.

Similarly, the class PP may be defined in terms of the gap: a language L is in PP

if and only if there exist a polynomial p and a polynomial-time Turing machine Al

such that for all x E {o, 1}*,

x E L I-T |{y E {0, 1} P(Ix) : M(x, y) = 0}1

< {y E {O, 1}P(IxI) : M(x,y) = 1}

(5.4)

The class NP may be defined similarly, but where

x E L c-+ |{y E {0, I}?(x) : M(X,y) = 1}I # 0

(5.5)

and the class coCP, where

x c L I-f |{y E {0, 1}P(IxI : M(x, y) = O}|

# {y E {0, i}P(IxI : M(x, y) = 1}
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->gap(M(x, .)) # = (5.6)

By interpreting M as a probabilistic algorithm and y as the random string of bits

used by M, we can redefine NP, PP, and coC=P as the classes of languages for which

there exists a polynomial-time Turing machine M whose acceptance probability on

input x is non-zero, at least 1/2, and not equal to 1/2, respectively, only when x is

in the language.

Of these classes, only NP is known to be part of the polynomial hierarchy (PH)

(see Figure 2-3). Furthermore, the other three classes, #P, PP, and coC=P, which

we refer to as counting classes, are known to be hard: Toda's theorem [219] tells us

that a #P or PP oracle is sufficient to solve any problem in the PH in polynomial

time, and other work by Toda and Ogiwara [220] shows that there is a randomized

reduction from any problem in the PH to a coC=P problem. Stated another way, if

PP or coC=P were to be contained in a level of the PH, the PH would necessarily

collapse, meaning that the entire PH would be contained within one of its levels. For

example, if P = NP, then the entire PH would be equal to P, its zeroth level. The

assumption that the PH does not collapse is thus a stronger version of the statement

P # NP, and it is widely believed for similar reasons.

Furthermore, these counting classes can be connected to quantum circuits. As we

described in Chapter 2.6.6, Aaronson showed that PP = PostBQP [2] (see Theorem

22), where PostBQP is the set of problems solvable by quantum circuits that have

the (unphysical) power to choose, or postselect the value of measurement outcomes

that normally would be probabilistic. By contrast, classical circuits endowed with

this same power form the class PostBPP which is known to lie in the third level of

the PH [118].

The story is similar for coC-P. It was shown that coC=P = NQP [100], where NQP

is the quantum generalization of the class NP, defined to be the set of languages L

for which there exists a polynomial-time uniformly generated family of circuits {CX }
such that for all strings x, x is the language L if and only if the quantum circuit C,

has a non-zero acceptance probability. This can also be thought of as PostBQP with
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one-sided error. If there existed an efficient classical algorithm to produce samples

from the output distribution of quantum circuits up to constant multiplicative error,

then NP would be equal to NQP, and therefore to coC=P, leading to the collapse of

the PH (to the second level [100]).

5.2.2 Degree-3 polynomials and the problem

poly3-NONBALANCED

The three models (IQP, QAOA and boson sampling) that we will use in this chapter

are especially amenable to our analysis due to their natural connection to specific

counting problems.

The specific counting problem we will use for our analysis of IQP and QAOA is

called poly3-NONBALANCED. The input to the problem is a polynomial over the field

F2 in n variables with degree at most 3 and no constant term. Since the only non-zero

element in F2 is 1, every term in the polynomial has coefficient 1. One example could

be f(z) = zi + z2 + z1 z2 + ziz2z3 . Evaluating f for a given string z to determine

whether f(z) = 0 or f(z) = 1 can be done efficiently, but since there are 2' possible

strings z, the brute-force method takes exponential time to count the number of

strings z for which f(z) = 0, or equivalently, to compute gap(f) where gap is given

by Eq. (5.1). LPTWY [162] gave a deterministic algorithm for computing the gap of

degree-3 polynomials in time scaling slightly better than brute force, but it still has

exponential time - poly(n)2 09965n.

The question posed by poly3-NONBALANCED is whether gap(f) # 0, that is,

whether f has the same number of 0 and 1 outputs. Thus, poly3-NONBALANCED

is in the class coCP.

The problem poly3-NONBALANCED is a natural problem to work with because there

is an elegant correspondence between degree-3 polynomials and IQP circuits involving

Pauli Z gates, controlled-Z (CZ) gates, and controlled-controlled-Z (CCZ) gates
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10) H Z

0) HZ

|0)

Figure 5-1: IQP circuit Cf corresponding to the degree-3 polynomial f(z) = zi +

z2 + z 1z 2 + z1 z2 z3 . The unitary U1 implemented by the circuit has the property that

(01 Uf 10) = gap(f)/2n where in this case n = 3.

[172]. Specifically, if f is degree 3 then let

U= (1)f() Iz)(zl (5.7)
zEFn

and let U1 = H®"UH". We can implement an IQP circuit Cf that evaluates to Uf as

follows: if the term zi appears in f, then within the diagonal portion of Cf we perform

the gate Z on qubit i; if the term zizj appears, we perform the CZ gate between qubits

i and j; and if the term ZiZjZk appears, we perform the CCZ gate between the three

qubits. For example, for the polynomial f(z) = zI + z2 + z 1 z2 + ziz2z3, the circuit Cf

is shown in Figure 5-1.

The crucial property of this correspondence is that (01 U1 06) - pf , where 10)

is shorthand for the starting 0)® state. This is easily seen by noting that the initial

set of H gates generates the equal superposition state JB) = Z J-'lx) /v2 so

(01 Uf1 0j) = (BI U1 JB) where Uf is implemented by the internal diagonal portion of

Cf. Since Uf applies a (-1) phase to states Iz) for which f(z) = 1,

2U -1 2n - 1 2n -1

(01 U 0) = -1) (x) (yS) /2 = (-1)f(x)/ 2" = gap(f)/2".
y=O x=0 x=0

Thus, gap(f) can be computed by calculating the amplitude of the |0) state produced

by the circuit. If we define acceptance to occur when 10) is measured, then the circuit

Cf has non-zero acceptance probability only when gap(f) = 0. This illustrates an

explicit NQP algorithm for poly3-NONBALANCED, which was guaranteed to exist since

NQP = coC_ P.
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Also crucial to note is that poly3-NONBALANCED is complete for the class coC=P.

This is shown by adapting Montanaro's proof [172] that computing gap(f) for a

degree-3 polynomial f over ]F 2 is #P-complete. In that proof, Montanaro reduces from

the problem of computing gap(g) for an arbitrary boolean function g, which is #P-

complete by definition. Since whether gap(g) = 0 is coCP-complete by definition,

and the reduction has gap(g) = 0 if and only if gap(f) # 0, this also shows that

poly3-NONBALANCED is coC=P-complete. One immediate consequence of this fact is

that NIQP, the class NQP restricted to quantum circuits of the IQP type, is equal to

coC=P (and hence NQP), since the circuit Cf is an NIQP solution to a coC=P-complete

problem.

5.2.3 The permanent and the problem per-int-NONZERO

In close analogy to the correspondence between degree-3 polynomials and IQP circuits

composed of Z, CZ, and CCZ gates, there is a correspondence between matrix

permanents and boson sampling circuits.

We have already seen in the definition of the linear optical model that any am-

plitude in a boson sampling circuit on n photons can be recast as the permanent of

an n x n matrix, but the converse is also true: the permanent of any n x n matrix

can be encoded into the amplitude of a boson sampling circuit on n photons, up to a

known constant of proportionality.

To see how this works, given an n x n complex matrix A, we will construct a

2n x 2n unitary matrix UA whose upper-left n x n block is equal to cA for some

c > 0. If we take R = R' = (1n, 0") (i.e. 1 repeated n times, followed by 0 repeated n

times), then we will have Per(UA(R,R')) = cn Per(A). Thus Per(A) is proportional to

a particular boson sampling amplitude with c an easily computable proportionality

constant.

We can choose c to be < |A -1, where jAfl is the largest singular value of A. (Note

that if we want the proportionality to hold uniformly across some class of A, we should

choose c to satisfy c||A|| < 1 for all A in this class.) Then {cA, vI - c2AtA} are

Kraus operators for a valid quantum operation, where I,, is the n x n identity matrix,
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and
cA

Inc2At A 
(5.8)

is an isometry. We can extend this isometry to the following unitary.

cA D
UA =f (5.9)

UA= I-c 2 AtA - cAtDJ

where D = (In + c2 A(In - c2AtA)-At)- 1/2 , which is well-defined since the argument

of the inverse square root is positive definite and Hermitian. Thus the permanent of

an arbitrary n x n matrix can be encoded into a boson sampling circuit with n photons

and 2n modes.

The matrix permanent is playing the role for boson sampling circuits that the gap

of degree-three polynomials played for IQP circuits with Z, CZ, and CCZ gates;

thus, it is natural to use the computational problem of determining if the permanent

of an integer-valued matrix is not equal to 0, which we call per-int-NONZERO, in

place of poly3-NONBALANCED.

In fact, per-int-NONZERO and poly3-NONBALANCED have several similarities. For

example, like computing the number of zeros of a degree-3 polynomial, computing the

permanent of an integer-valued matrix is #P-complete, a fact famously first demon-

strated by Valiant [222], and later reproved by Aaronson [3] using the linear optical

framework. This completeness extends to per-int-NONZERO, which we show in Chap-

ter 5.4 is coCP-complete by reduction from poly3-NONBALANCED.

Additionally, for both problems, the best known algorithm is exponential and

has runtime close to to or equaling 2'. While poly3-NONBALANCED can be solved

in poly(n)2 0-9965" time, the best known algorithm for computing the permanent [30]

requires 2 n-( n/log log(n)) deterministic time, which is only a subexponential im-

provement over the naive algorithm that utilizes Ryser's formula for the permanent

[197] and requires at least n2" basic arithmetic operations. Using Ryser's formula

is an improvement over the O(n!) time steps implied by Eq. (2.60), but its scaling
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is reminiscent of that required to solve a #P problem by brute force. In principle

it is possible that a faster algorithm exists for per--int-NONZERO, where we do not

care about the actual value of the permanent, only whether it is nonzero, but such

methods are only known in special cases, such as nonnegative matrices.

Crucially, our construction shows that boson sampling circuits can solve per-int-

NONZERO in non-deterministic polynomial time, since given A we have shown how to

construct a circuit corresponding to unitary UA with acceptance probability that is

non-zero only when Per(A) is non-zero. This shows that NBosonP, the linear optical

analogue of NIQP, is equal to coC-P and by extension, to NQP.

5.3 Lower Bounds

5.3.1 For IQP Circuits

In the previous section, we described how to construct an n-qubit IQP circuit Cf

corresponding to a degree-3 polynomial f over n variables such that the acceptance

probability of Cf is non-zero if and only if gap(f) # 0. The number of terms in f,
and hence the number of internal diagonal gates in Cf is at most

gi(n) = (n3 + 5n)/6. (5.10)

Now, suppose we had a classical algorithm that, for any q, produces samples from

the output distribution of any IQP circuit with q qubits and gl(q) internal gates,

up to some multiplicative error constant, in s1 (q) time steps for some function si.

Throughout, we will assume all classical algorithms run in the Word RAM model of

computation.

Using this algorithm to simulate the IQP circuit Cf generates a non-deterministic

classical algorithm for poly3-NONBALANCED running in s1 (n) time steps. That is, the

classical probabilistic algorithm that results from this simulation accepts on at least

one computational path only if the function f is not balanced.

Now, we impose a fine-grained version of the non-collapse assumption, which we

161



motivate later in the section.

Conjecture 78. (poly3-NSETH(a)) Any non-deterministic classical algorithm (in

the Word RAM model of computation) that solves poly3-NONBALANCED requires in

the worst case 2 an-1 time steps, where n denotes the number of variables in the

poly3-NONBALANCED instance.

In the Word RAM model with word size w, memory is infinite and basic arithmetic

operations on words of length w take one time step. For concreteness, we assume that

w = log 2(N) where N is the length of the input encoding the degree-3 polynomial

(N = O(g(n) log2(n))). This way the words can index the locations where the input

data is stored. The Word RAM model has previously been used for fine-grained

analyses [234] and aims to represent how a real computer operates as faithfully as

possible.

Our conjecture immediately yields a lower bound on the simulation function si:

s1 (n) ;> 24-1 (5.11)

This lower bound result relies on poly3-NSETH(a), which we have not yet mo-

tivated. In particular, for our qubit calculations we will take the specific value of

a = 1/2. This value is comfortably below the best known limit a < 0.9965 from

[162], whose algorithm is reproduced in Chapter 5.5. In Chapter 5.3.4, we attempt

to provide additional motivation for poly3-NSETH(1/2) by showing its consistency

with other fine-grained conjectures.

To our knowledge, the best known upper bound on s 1 (n) comes from the the naive

poly(n)2" simulation algorithm that updates each of the 2" amplitudes describing the

state vector after each gate is performed, so this lower bound is not tight.

5.3.2 For QAOA circuits

To perform the same analysis for QAOA circuits, we will turn the IQP circuit Cf

into a QAOA circuit. The modifications required are straightforward. We set p, the
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number of rounds of QAOA computation, equal to 1, and both rotation angles -y and

3 to x/4. The first layer of Hadamard gates in Cf is already built into the QAOA

framework. To implement the Z, CZ, and CCZ gates we write Z = exp(-i47| 1)(1|),

CZ = exp(-i4-y 11)(111), and CCZ = exp(-i4y I111)(1111) and build our constraint

Hamiltonian C accordingly: for each Z gate we add four copies of the constraint that

is satisfied only when the bit acted upon is 1; for each CZ gate we add four copies of

the constraint that is satisfied when both bits involved are 1; and for each CCZ gate

we add four copies of the constraint that is satisfied when all three bits involved are

1. Now, the operation exp(-iyC) has exactly the effect of all the Z, CZ, and CCZ

gates combined.

The final step is to implement the final column of H gates, which is not built into

the QAOA framework. First we write H = H itH, where

H =- [exp i-X) = exp(-ifX). (5.12)
V2 -i I1( 4

And since Ht = Hexp(-i!Z)H, we can replace the H gate on each qubit with

exp(-i-y2 I0)(OI)HH. Thus, the first part of this expression can be performed by

adding two copies of the 10)(01 constraint to C. As described in [97], the H gate can

be implemented by introducing an ancilla qubit and eight new constraints between

the original qubit and the ancilla. The original qubit is measured and if outcome 10)

is obtained, the state of the ancilla is H applied to the input state on the original

qubit. Thus we have teleported the H gate onto the ancilla qubit within the QAOA

framework. This is described in full in [97], and we reproduce the gadget in Figure

5-2.

After replacing each H gate with the gadget from Figure 5-2, every qubit begins

with an H gate, is acted upon by exp(-iyC), and ends with a H gate, which is

implemented by the exp(-i3B) step of the QAOA framework. Thus, the resulting

circuit is a QAOA circuit.

We had to introduce one ancilla per qubit in Cf, so our QAOA circuit has 2n
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0) H Hkb )
Q

kb) ft (01

Figure 5-2: Gadget that uses an ancilla qubit to implement the H gate within the
QAOA framework. Here the gate Q is the diagonal two-qubit gate diag(1, i, 1, -1)
which can be written as exp(-iz(6101)(011 + 2 11)(111)). Thus, it can be imple-
mented by adding 8 constraints to the constraint Hamiltonian C. The H gate is
implemented by applying the Hamiltonian B with / = r/4.

qubits, instead of just n. However, it is still true that (01 Vf 10) oc gap(f), where Vf is

now the unitary implemented by this new QAOA circuit and 10) is the state 10)2n.

Hence the acceptance probability is non-zero if and only if f is not balanced.

The circuit requires 4 constraints per term in the polynomial f, and an additional

10 constraints per qubit for the Hadamard gates at the end of the computation (2

from introducing ft and 8 from the gadget in Figure 5-2). This yields at most

92(n) = (2n3 + 40n)/3 (5.13)

constraints.

As in the IQP case, we suppose a classical simulation algorithm produces samples

from the output distribution of QAOA circuits with q qubits and 92(q) constraints,

up to multiplicative error constant, in time s2 (q). Then, under the same conjecture

poly3-NSETH(a), we have

s2(2n) > 2"" (5.14)

which simplifies to

s2(n) > 2 a-'. (5.15)

The exponentiality of this lower bound is weaker by a factor of two in comparison

to the lower bound for IQP circuits in Eq. (5.11), due to the fact that one ancilla

was introduced per variable to turn the circuit Cf into a QAOA circuit. However,

the best known upper bound for QAOA simulation is the naive poly(n)2n brute-force

algorithm, as was the case for IQP circuits. This indicates that one might be able to
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eliminate the factor of two by replacing poly3-NONBALANCED with another problem.

Such a problem should be solvable by a QAOA circuit but not by non-deterministic

algorithms running much faster than brute force. We leave this for future work.

5.3.3 For boson sampling circuits

The story for boson sampling circuits is nearly identical, except using a conjecture

related to the problem per-int-NONZERO instead of poly3-NONBALANCED.

Given an integer-valued n x n matrix A, we showed in the previous section how to

construct a boson sampling circuit with n photons, described by unitary UA, that has

non-zero acceptance probability only when Per(A) # 0. This circuit has 2n modes,

and hence requires at most

g3 (n) = 2n2 + n (5.16)

circuit elements, that is beam splitters and phase shifters.

Paralleling our IQP and QAOA analysis, we suppose we have a classical algorithm

that produces samples from the output distribution of a boson sampling circuit with

q photons and g 3 (q) total beam splitters and phase shifters, up to some multiplicative

error constant, in s3(q) time steps for some function 83.

Using this algorithm to simulate the boson sampling circuit described by UA gener-

ates a non-deterministic algorithm for per-int-NONZERO running in s3 (n) time steps.

We replace Conjecture poly3-NSETH(a) with the version for per-int-NONZERO

Conjecture 79. [per-int-NSETH(b)] Any non-deterministic classical algorithm (in

the Word RAM model of computation) that solves per-int-NONZERO requires in the

worst case 2b" time steps, where n is the number of rows in the per-int-NONZERO

instance.

Unlike poly3-NSETH(a), as far as we are aware there is no known better-than-

brute force algorithm ruling out the conjecture for any value b < 1. The algorithm in

[30], which is better-than-brute-force by subexponential factors rules out b = 1.
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This conjecture implies a lower bound on the simulation function

s3 (n) > 2b"-1 (5.17)

Producing samples from the output of boson sampling circuits naively requires

one to compute the permanent for many of the amplitudes. However, in the case of

a binary output, where acceptance is defined to correspond to exactly one photon

configuration, only one permanent need be calculated - the one associated with

the accepting configuration. Thus the asymptotic scaling of this lower bound when

b = 1 - 6 is essentially tight with naive simulation methods as 6 -+ 0, since Ryser's

formula can be used to evaluate the permanent and simulate a boson sampling circuit

in O(n2') time steps.

5.3.4 Evidence for conjectures

Whereas previous quantum supremacy arguments only ruled out simulation algo-

rithms with polynomial runtime, our analysis also rules out some algorithms with

exponential runtime. These conclusions come at the expense of imposing stronger,

fine-grained conjectures, but such assumptions are necessary for extracting the fine-

grained lower bounds we seek.

Thus, our conjectures are necessarily less plausible than the statement that the

PH does not collapse, and definitively proving our conjectures is impossible without

simultaneously settling major open problems in complexity theory. However, we

can give evidence for these conjectures by thinking about how one might try to refute

them, and showing how they fit into the landscape of previously proposed fine-grained

conjectures.

We start with poly3-NSETH(a) and discuss why certain techniques for refuting it

cannot work, how current techniques fall short of refuting it for values of a significantly

lower than 1, and why we should expect that completely different techniques would

be needed to produce algorithms that rule out a < 1/2. Then, we discuss how poly3-

NSETH(a) fits in consistently with other results in fine-grained complexity theory.
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Finally, we discuss how per-int-NSETH(b) is similar and different in these regards.

The conjecture poly3-NSETH(a) asserts that determining whether a boolean func-

tion is balanced takes non-deterministic exponential time, where that boolean func-

tion takes the form of a degree-3 polynomial. It is worth noting that we can prove

this conjecture with a = 1 for boolean functions in the black box setting, where the

non-deterministic algorithm can only interact with the boolean function by querying

its value on certain inputs.

Theorem 80. Let f : {0, 1}' -* {0, 1} be a boolean function. A non-deterministic

algorithm with black-box access to f that accepts if and only if I{x : f(x) = O} I

2n-1, that is, if and only if f is not balanced, must make at least 2n-1 + 1 queries to

f. Moreover, this bound is optimal.

Proof. First we prove the lower bound on the number of queries. Suppose Al is a

non-deterministic algorithm with black-box access to f that accepts whenever f is

not balanced. Let fo be a Boolean function that is not balanced; thus, at least one

computation path of M accepts if f = fo. Choose one such path and let S C {0, 1}" be

the set of queries made by M on this computation path. Suppose for contradiction

that Sj < 2"1. Since at most half the possible inputs are in S, it is possible to

construct another Boolean function fi that is balanced and agrees with fo on the

set S. Since fo and fi agree on S, the computation that accepted when f = fo will

proceed identically and accept when f = fi. Thus Al accepts when f = fi, which is

balanced, yielding a contradiction. We conclude that |SI > 2 n-1 + 1.

We can see that it is possible for M to achieve this bound as follows: M non-

deterministically chooses 2n-1+1 of the 2" possible inputs to f and queries f on these

inputs. If all of the queries yield the same value, it accepts. Otherwise, it rejects. If

f is balanced, M will reject no matter which set of queries it makes, whereas if f is

not balanced, there is at least one set of 2n-1 + 1 inputs on which f takes the same

value and M will accept, so the algorithm succeeds. El

Theorem 80 shows that the poly3-NSETH(1) conjecture cannot be disproved using

an algorithm that simply evaluates the degree-3 polynomial f for different inputs.
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Indeed, the algorithm by LPTWY [162] exploits the fact that the Boolean functions

are degree-3 polynomials in order to refute poly3-NSETH(a) for a > 0.9965. Refuting

poly3-NSETH(a) for even smaller values of a would require more techniques that

further utilize the structure associated with the poly3-NONBALANCED problem.

In fact, the algorithm in [162] is substantially more general than what is neces-

sary for our purposes; their deterministic algorithm counts the number of solutions

to a system of m degree-k polynomial equations over finite field Fq. The problem

poly3-NONBALANCED is concerned only with the case where m = 1, k = 3, q = 2, and

all that matters is whether the number of zeros is equal to half the possible inputs.

For this special case, the algorithm is considerably simpler, and we reproduce it in

Chapter 5.5. The basic technique is as follows: we fix some fraction (1 - 6) of the

n variables and call R the number of zeros of f consistent with those fixed values.

We can compute in time 0(20-15n+O.856n) a representation of R as a polynomial with

integer coefficients over the (1 - 6)n fixed variables. Then, (even though R has an

exponential number of monomials in its representation) it is noted that one can eval-

uate R for all 2(1-)n possible inputs in total time O(2(16)n), as long as 6 < 0.0035.

By evaluating and summing R on all of its inputs, we compute the total number of

zeros, and the total runtime is 0(2(1-6)n), which is better than brute force when we

choose 6 positive.

Note that this algorithm is deterministic, and giving it the power of non-determinism

can only make it faster. However, by inspection of the algorithm from [162], we see no

clear way for non-determinism to be directly utilized to further accelerate the algo-

rithm. This is consistent with the finding in Theorem 80 that asymptotically speaking

the best non-deterministic algorithms are no faster than the best deterministic algo-

rithms for the NONBALANCED problem in the black-box setting. However, it is worth

mentioning that a gap between best-known deterministic and non-deterministic algo-

rithms has been observed for certain NP-hard problems, for example in [236], where

the problem of determining the unsatisfiability of a system of m degree-2 polynomi-

als in n variables over F2 is shown to be possible in 0(2 n/2) non-deterministic time,

an improvement over best-known O(2 0-8 765,) deterministic solution from LPTWY
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[162]. Additionally, when randomness is added to non-determinism yielding what

is known as a Merlin-Arthur protocol, the unsatisfiahility of boolean circuits in n

variables has been shown to require only 0(2 n/2) time, an improvement over the

best-known deterministic 0(2n). These results cast some doubt on the assump-

tion that non-determinism is a useless resource for solving poly3-NONBALANCED or

per-int-NONZERO. On the other hand, unsatisfiability is an inherently different and

easier problem than those we consider since unsatisfiability is hard for NP but not for

the entire PH.

Additionally, we mention that the authors of LPTWY [162] were concerned pri-

marily with showing that better-than-brute-force algorithms were possible, perhaps

leaving room for optimization of their constants. In our reproduction of their algo-

rithm when m = 1, k = 3, and q = 2 in Chapter 5.5, we have followed their analysis

and optimized the constants where possible yielding a slightly better runtime than

what is stated explicitly in their paper.

The conclusion is that techniques exist to rule out poly3-NSETH(1) but not for

values of a much lower than 1, even after some attempt at optimization. Moreover,

we now provide evidence that drastically different techniques would need to be used if

one wished to rule out poly3-NSETH(1/2); that is, ruling out poly3-NSETH(a) when

a < 1/2 could not be done by making only slight modifications or improvements

using the same approach from [162]. Our reasoning stems from the tradeoff between

the two contributions to the runtime of the algorithm: first, the computation of the

polynomial representation for R and second the evaluation of R for all 2 (-6) possible

inputs. When 6 is smaller than 0.0035, the second contribution dominates for a total

runtime 0(2 (1-6)). However, if this step were to be improved to allow for 6 to exceed

1/2, the first contribution to the runtime would begin to dominate for a total runtime

of O(20-15n+0.85sn) > O(2n/2). In other words, if we try to fix fewer than half of

the variables, computing the representation of R (which involves cycling through the

2 6n strings of unfixed variables) will necessarily take longer than evaluating R and

ultimately it will be impossible to produce an algorithm with runtime below 2n/2

through this method. While this is no proof, it increases the plausibility of poly3-
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NSETH(1/2).

Next we discuss how poly3-NSETH(a) contrasts with previously proposed fine-

grained conjectures. Well-known conjectures include the Exponential Time Hypothe-

sis (ETH), which claims that there exists some c such that no 0(2c") time algorithm

for k-SAT exists, and the Strong Exponential-Time Hypothesis (SETH) [59,132], which

states that for any c one can choose k large enough such that there is no 0(2(1-)n)

algorithm for k-SAT. In other words, SETH states that no algorithm for k-SAT does

substantially better than the naive brute-force algorithm when k is unbounded.

There is substantial evidence for ETH and SETH, even beyond the fact that

decades of research on the SAT problem have failed to refute them. For instance,

SETH implies fine-grained lower bounds on problems in P that match long-established

upper bounds. One example is the orthogonal vectors (OV) problem, which asks if a

set of n vectors has a pair that is orthogonal. There is a brute-force 0(n2) solution

to OV, but 0(n2-E) is impossible for any c > 0 assuming SETH [231, 232]. Thus,

SETH being true would provide a satisfying rationale for why attempts to find faster

algorithms for problems like OV have failed. On the other hand, the refutation of

SETH would imply the existence of novel circuit lower bounds [138].

There are yet more fine-grained conjectures: replacing the problem k-SAT with

#k-SAT yields #ETH and #SETH, the counting versions of ETH and SETH. These

hypotheses have interesting consequences of their own; for example, #ETH implies

that computing the permanent cannot be done in subexponential time [80]. Addi-

tionally, if k-TAUT is the question of whether a k-DNF formula is satisfied by all its

inputs (which is coNP-complete), then the statement that no 0(2(1E-)) algorithm

exists for k-TAUT with unbounded k is called the Non-deterministic Strong Exponen-

tial Time Hypothesis (NSETH) [63]. Like SETH, NSETH's refutation would imply

circuit lower bounds [63,138]. Additionally, NSETH is consistent with unconditional

lower bounds that have been established in proof complexity [23, 190].

The conjecture poly3-NSETH(a) is similar to NSETH in that it asserts the non-

existence of non-deterministic algorithms for a problem that is hard for coNP (indeed,

poly3-NONBALANCED is hard for the whole PH), and it is similar to #SETH in that it
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considers a counting problem. It is different from all of these conjectures because it is

not based on satisfiability forMulas, but rather on degree-3 polynomials over the field

F2 , a problem that has been far less studied. Additionally, poly3-NSETH(a) goes

beyond previous conjectures to assert not only that algorithms require 0(2") time,

but that they actually require at least 2a1" time steps. It is not conventional to

worry about constant prefactors as we have in this analysis, but doing so is necessary

to perform practical runtime estimates. On this front, our analysis is robust in the

sense that if poly3-NSETH(a) or per-int-NSETH(b) were to fail by only a constant

prefactor, the number of additional qubits we would estimate would increase only

logarithmically in that constant.

We are unable to show that poly3-NSETH(a) is formally implied by any of the

previously introduced conjectures. However, assuming ETH, we can prove that the

deterministic version of poly3-NSETH(a) holds for at least some a, i.e. that there

does not exist a deterministic O(2") time algorithms for poly3-NONBALANCED.

Theorem 81. Assuming ETH, there exists a constant a such that every deterministic

algorithm that solves poly3-NONBALANCED requires O(2"f) time.

Proof. Suppose for contradiction that no such constant existed; thus for any a there is

an algorithm for poly3-NONBALANCED running in less than O(2"f) time. We give a re-

duction from k-SAT to poly3-NONBALANCED showing that this leads to a contradiction

with ETH.

The reduction is similar to that from [172] showing that counting the number

of zeros of a degree-3 polynomial is #P-complete. Given a k-SAT instance # with n

variables and m clauses, we can use the sparsification lemma to assume that m is 0(n)

[80, 132]. Then we introduce one additional variable Xn+1 and examine the formula

' = xn+1(1 - 0). Note that 0 is satisfiable if and only if #' is not balanced. There is

a quantum circuit C made up only of 0(m) CCZ and 0(m) Hadamard gates, that

computes the value of #'(z) into an auxiliary register for any input z on the first n + 1

qubits. The circuit also requires 0(m) ancilla qubits that begin and end in the 10)

state. As described in [172], the circuit can be associated with a degree-3 polynomial
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f - the H gates are replaced by gadgets similar to that in Figure 5-2, introducing

more ancilla qubits but turning the circuit into an IQP circuit - that has O(n + m)

variables, such that gap(f) = gap(#'). Thus, given any constant c, we can choose

a small enough such that a O(2 a") time algorithm for determining whether f is not

balanced implies a O(2c) algorithm for k-SAT. Since we assumed the existence of the

former, ETH is contradicted, proving the claim. L

A variant of this claim shows that, like computing the permanent, computing the

number of zeros to a degree-3 polynomial over F2 cannot be done in subexponential

time, assuming #ETH. This observation provides a link between poly3-NSETH(a)

and per-int-NSETH(b).

In comparison to poly3-NSETH(a), per-int-NSETH(b) has advantages and dis-

advantages. There is no analogous black-box argument we can make for per-int-

NSETH(b). On the other hand, there is no known non-trivial algorithm that rules

out the conjecture for any b < 1, making it possible that solving per-int-NONZERO

with Ryser's formula is essentially optimal. The possible optimality of Ryser's formula

is also bolstered by work in [139], where it is unconditionally proven that a monotone

circuit requires n(2n 1 - 1) multiplications to compute the permanent, essentially

matching the complexity of Ryser's formula. This was recently extended to show

similar lower bounds on monotone circuits that estimate output amplitudes of quan-

tum circuits [128], Of course, per-int-NSETH(1 - 6) for vanishing 6 goes further and

asserts that computation via Ryser's formula is optimal even with the power of non-

determinism. Thus our conjecture formalizes the statement that non-determinism

cannot significantly speed up computing whether the permanent is nonzero.

5.3.5 Number of qubits to achieve quantum supremacy

We can use the lower bounds on the runtime of a hypothetical classical simulation

algorithm for IQP, QAOA, and boson sampling circuits in Eqs. (5.11), (5.15), and

(5.17) to estimate the minimum number of qubits required for classical simulation of

these circuit models to be intractable.
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The fastest supercomputers today can perform at 1017 FLOPs (floating-point op-

erations per second). Usinr mur lnwer bounds, we can determine the number of

qubits/photons q such that the lower bound on sj(q) is equal to 1017.60-60-24-365-100,

the maximum number of floating-point operations today's supercomputers can per-

form in one century, for i = 1, 2, 3. For IQP circuits it is 90/a qubits (from Eq. (5.11)),

for QAOA circuits it is 180/a qubits (from Eq. (5.15)), and for boson sampling cir-

cuits it is 90/b photons (from Eq. (5.17)). We take a = 1/2 and b = 0.999, and

these estimates become 180 qubits for IQP circuits, 360 qubits for QAOA circuits,

and 90 photons for boson sampling circuits. For these values of a, b, the number of

circuit elements needed or the lower bound to apply is g1(180) = 972,000 gates for

IQP circuits, 92 (180) = 3,890,000 constraints for QAOA circuits, and 93(90) = 16,300

beam splitters and phase shifters for boson sampling circuits.

Thus, assuming one operation in the Word RAM model of computation corre-

sponds to one floating-point operation on a supercomputer, and assuming our con-

jectures poly3-NSETH(1/2) and per-int-NSETH(0.999), we conclude that classically

simulating circuits of the sizes quoted above would take at least a century on modern

classical technology, a timespan we take to be sufficiently intractable.

If, additionally, we assume that the runtime of the classical simulation algorithm

grows linearly with the number of circuit elements (like, for example, the naive simu-

lation algorithm that updates the state vector after each gate), then we can make

a similar statement for circuits with many fewer gates. The cost of this reduc-

tion in gates is only a few additional qubits, due to the exponential scaling of the

lower bound. We can estimate the number of qubits required by finding q such that

si (q)/g (q) = 1017 .60-60-24-365, the maximum number of supercomputer operations

in one year, for i = 1, 2, 3. We conclude that an IQP circuit with 206 qubits and 100

gates, a QAOA circuit with 433 qubits and 100 constraints, and a boson sampling

circuit with 97 photons and 100 linear optical elements each would require at least

one century - one year per element in the circuit - to be simulated using a classical

1A list of the fastest supercomputers is maintained at https://www.top500.org/statistics/
list/
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simulation algorithm of this type running on state-of-the-art supercomputers.

The relative factor of two in the estimate for QAOA circuits is a direct consequence

of the fact that one ancilla qubit was introduced per variable in order to implement the

H gates at the end of the IQP circuit Cf within the QAOA framework. This illustrates

how our estimate relies on finding a natural problem for these restricted models of

quantum circuits and an efficient way to solve that problem within the model. Indeed,

an earlier iteration of this estimate based on the satisfiability problem instead of the

degree-3 polynomial problem or matrix permanent required many ancilla qubits and

led to a qubit estimate above 10,000.

5.4 Reduction from poly3-NONBALANCED to

per-int-NONZERO

Valiant famously showed that computing the permanent of an integer matrix is #P-

hard by reduction from #3SAT [222]. A concise reproduction of this proof can be

found in [16]. The main idea for our reduction is the same, the only change being in

the details of the clause and variable gadgets we use for the construction.

There is a bijective correspondence between n x n matrices and directed graphs

with n vertices, where the entry Aj of a matrix A corresponds to the edge weight

from vertex i to vertex j in the associated graph GA. A cycle cover of GA is a subset

of the edges of GA forming some number of cycles in which each vertex appears in

exactly one cycle. The weight of a cycle cover is the product of the weights of all

the edges traversed by one of the cycles. From the definition of the permanent in

Eq. (2.60), we can see that the sum of the weights of all the cycle covers of GA is

given by Per(A).

It will be straightforward to convert the reduction from #3SAT to computing the

permanent into a reduction from poly3-NONBALANCED to per-int-NONZERO since

degree-3 polynomials and 3-CNF formulas have a common structure in the sense

that both involve n variables where groups of three variables appear together in
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terms/clauses.

Suppose we are given a degree-3 pCyumiai j wit vai s an IV- " s.

build a corresponding graph Gf by including one term gadget for each of the m terms

and one variable gadget for each of the n variables, and then connecting them in a

certain way. These gadgets are shown in Figure 5-3 and Figure 5-4. If a term of f has

fewer than three variables, we can repeat one of the variables that appears in that

term (e.g. X1 X 2 = XiX2x 2), and thereby assume that each term has three variables.

Each term gadget has three dotted edges corresponding to the three variables that

appear in that term. A variable that appears t times will have t dotted edges in its

variable gadget. Thus, each dotted variable edge from some node u to node u' has a

corresponding dotted edge from node v to node v' in a term gadget associated with

a term in which that variable appears. Each such pair of dotted edges indicates that

the nodes u, a', v and v' should be connected using the XOR gadget shown in Figure

5-5. Thus, the dotted edges are not part of the final graph. The XOR gadget has the

effect of ensuring that any cycle cover of the graph uses one of the two dotted edges

but not both. The effective weight of an edge connected to an XOR gadget is 4.

Every cycle cover of Gf corresponds to some setting of the variables zi, ... , z,. If

the cycle cover traverses the solid lines at the top of the variable gadget associated with

variable zj, then the corresponding setting has zj = 1. In this case, the cycle cover

cannot also traverse the dotted lines at the bottom of the z, variable gadget. Thus,

due to the XOR gadget, the cycle cover must traverse the dotted lines corresponding

to z3 in each term gadget associated with a term in which z3 appears.

On the other hand, if the cycle cover uses the dotted lines in the zj gadget instead

of the solid lines at the top, this corresponds to z3 = 0, and the cycle cover cannot

also traverse the edges corresponding to zj in the term gadgets associated with terms

in which zj appears.

When all three dotted edges of a term gadget are traversed, this corresponds to

all three variables in the term being set to 1. There is only one way to cycle cover the

term gadget in this case, and it has a weight of -1, excluding the factors of 4 that

come from the dotted edges in the XOR gadget. Meanwhile, if at least one dotted

175



V

4| 4

I e ~

1 %

2

V

4

Figure 5-3: Gadget for each term in the degree-3 polynomial f. Unlabeled edges are

assumed to have weight 1. The three dashed lines are connected via the XOR gadget

to the dashed lines in the variable gadgets for the variables that appear in the term,

as exemplified by the labeling of vertices v and v' in the context of Figure 5-5. If all

three variables are true, the term gadget will contribute a cycle cover factor of -1,

excluding the factors of 4 from dotted edges. If at least one variable is false, the term

will contribute a cycle cover factor of 1.

4 4

Figure 5-4: Gadget for each variable in the degree-3 polynomial f. The number of

dashed lines is equal to the number of terms in which the variable appears, so this

example is for a variable that appears in four terms. The dashed lines are connected

to the dashed lines in the term gadget in which that variable appears via the XOR

gadget, as exemplified by the labeling of vertices u and u' in the context of Figure

5-5.
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Figure 5-5: XOR gadget that connects dotted lines from node u to u' in the variable

gadget with dotted lines from node v to V' in the term gadget. The effect of the XOR

gadget is that any cycle cover must use either the edge from u to u' or the edge from

V to v', but not both. Each XOR gadget contributes a factor of 4 to the weight of

the cycle cover.

edge in the term gadget is not traversed, the total weight of all cycle covers will

contribute a factor of 1, again excluding the factors of 4. Thus, each assignment z for

which f(z) = 0 corresponds to cycle covers that satisfy an even number of terms, with

total weight 43m since exactly 3m XOR gadgets are involved. Each assignment for

which f(z) = 1 corresponds to cycle covers that satisfy an odd number of terms, with

total weight -43m. Thus, the total cycle cover weight of Gf, and by extension the

permanent of the integer-valued matrix corresponding to Gf is non-zero if and only if

gap(f) # 0. The number of vertices in Gf is a polynomial in the number of variables

of f, so this completes the reduction from poly3-NONBALANCED to per-int-NONZERO.

Since poly3-NONBALANCED is coC=P-complete, per-int-NONZERO is coC=P-complete

as well.
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5.5 Better-than-brute-force solution to

poly3-NONBALANCED

LPTWY [162] gave a better-than-brute-force randomized algorithm that determines

whether a system of m degree-k polynomial equations over finite field Fq has a solution

(i.e. a setting of the variables that makes all m polynomials equal to 0). They

also derandomized this procedure to create a better-than-brute-force deterministic

algorithm that counts the number of solutions to a system of m degree-k polynomial

equations over finite field Fq. Applying their deterministic algorithm for the special

case m = 1, k = 3, q = 2 (for which it is considerably simpler) yields a deterministic

solution for poly3-NONBALANCED. We give a simple reproduction of their algorithm

in this case below.

Theorem 82. There is a deterministic algorithm for poly3-NONBALANCED running in

time poly(n)2(-)n where 6 = 0.0035.

Proof. The algorithm beats brute force by finding a clever way to efficiently represent

the number of zeros of a degree-3 polynomial with n variables when (1 - 6)n of the

variables have been fixed. Then, by summing the number of zeros associated with the

2(1-6)n possible settings of these variables, the algorithm computes the total number

of zeros in poly(n)2(1 -)" time, which is better than brute-force poly(n)2 .

First we describe the algorithm. The input is the degree-3 polynomial f, which

has n variables. In the following we have x E {0, 1}, and we let y be the first (1 -6)n

bits of x and a be the last 6n bits of x. Following the notation from [162], we define

Qj(y, a) = 1 - (1 - f (x)) I + - )f(x). (5.18)
j=0

In [24], it is shown that if f(x) - 0 mod 2, then Qj(y, a) = 0 mod 2' and if

f(x) = 1 mod 2, then Q,(y, a) -1 mod 21. We define

R,(y) = EO (y, a) (5.19)
aE10,1}6n
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and observe that R,(y) gives the number of settings x (mod 2') for which f(x) = 1

and the first (1 - 6)n bits of x are y.

The algorithm operates by enumerating all values of y, computing R1(y) when

1 = 6n (which is large enough so that the number of settings for which f(x) = 1 will

never exceed 21 for a given value of y), and summing all the results. This gives the

total number of inputs x for which f(x) = 1. The algorithm rejects if this number is

2n-1, and otherwise accepts.

There are two contributions to the runtime. The first is the computation of a

representation of RS,(y) as a sum of monomials in (1 - 6)n variables of y with integer

coefficients. Each monomial has degree at most 66n - 3. The number of possible

monomials with coefficient 1 over a variables with degree at most b is

M(a, b) = (a b (1 + a/b)b(1 + b/a)a (5.20)
(b

and, from Eq. (5.18), it is apparent that Qn(y, a) can be computed by a polynomially

long sequence of sums or products of a pair of polynomials, where a product always

includes either the polynomial (1- f(x)) or f (x), which have degree only 3. Thus each

step in the sequence takes time at most poly(n)M((1 - 6)n, 66n - 3). For a certain

value of a, a polynomial number of such steps required to create a representation of

Qb,.(y, a) and then R8 n is the sum over 26n such representations (one for each setting

of a). Thus the total time is also bounded by poly(n)26"M((1 - 6)n, 66n - 3).

The second contribution to the runtime is the evaluation of this polynomial for all

points y, given its representation computed as described. It is shown in Lemma 2.3

of [162] that this evaluation can be performed in time poly(n)2(1 6)', so long as the

representation of R3n has fewer than 2 0.15(1-J)n monomials. This is satisfied as long

as

M((1 - 6)n, 66n - 3) < 20 15(1)n, (5.21)

which, using Eq. (5.20), can be seen to occur whenever 6 < 0.0035. This is an

improvement on the general formula in [162], which when evaluated for k = 3 and
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q = 2 yields a bound of 6 < 0.00061.

Assuming 6 satisfies this bound, the total runtime is the sum of the two contri-

butions, poly(n)23"M((1 - 6)n, 66n - 3) + poly(n)2( 13 )'. The first term is smaller

than poly(n)2(0-8 51+O. 15)n, so the second term dominates, and the total runtime is

poly(n)2(-)", proving the theorem. E

Consider ways in which the runtime could be improved. Suppose the evaluation

time were to be improved such that the polynomial R&, could be evaluated in time

poly(n)2(1-6 ) even when 6 > 0.5. With no further changes to the algorithm, the

first contribution to the runtime stemming from the time required to compute the

representation of R3b would now dominate and the runtime would still exceed 20.5n.

Moreover, as long as R, is expressed as a sum over 2 6" terms as in Eq. (5.19), it is hard

to see how any current techniques would allow this representation to be computed in

less than 20 -5 time when 6 > 0.5.

Stated another way, this method of beating brute force by enumerating over only

a fraction (1- 6)n of the variables and evaluating the number of solutions when those

variables have been fixed in 2 (1-6)n time will surely break down when 6 > 0.5 because

there will be more variables not fixed than fixed, and the preparation of the efficient

representation of the number of zeros will become the slowest step.

5.6 Concluding remarks

Previous quantum supremacy arguments proved that polynomial-time simulation al-

gorithms for certain kinds of quantum circuits would imply unexpected algorithms

for classical counting problems within the polynomial-time hierarchy. We have taken

this further by showing that even somewhat mild improvements over exponential-

time best-known simulation algorithms would imply non-trivial and unexpected al-

gorithms for specific counting problems in certain cases. Thus, by conjecturing that

these non-trivial classical counting algorithms cannot exist, we obtain lower bounds

on the runtime of the simulation algorithms. In the case of boson sampling circuits,

these lower bounds are essentially asymptotically tight when the strongest form of
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our conjecture is imposed.

The two versions of the conjecture that we introduce, poly3-NSETH(a) and per-

int-NSETH(b), are fine-grained manifestations of the assumption that the PH does

not collapse. While unproven, the non-collapse conjecture is extremely plausible;

its refutation would entail many unexpected ramifications in complexity theory. This

contrasts with the assumption that factoring has no efficient classical algorithm, which

would also entail hardness of simulation but is less plausible because the consequences

of its refutation on our current understanding of complexity theory would be minimal.

Of course, the fine-grained nature of poly3-NSETH(a) and per-int-NSETH(b) makes

them less plausible than the non-collapse of the PH, but they are in line with current

knowledge and beliefs in fine-grained complexity theory when a < 1/2 and b < 1.

The main motivation for imposing these fine-grained conjectures was to make

an estimate of how large quantum circuits must be to rule out practical classical

simulation on state-of-the-art classical computers. Our estimate relies on poly3-

NSETH(1/2) and per-int-NSETH(0.999), but it is somewhat robust to failure of these

conjectures in the sense that if they fail in favor of mildly weaker versions, our es-

timate will increase only slightly. For example, replacing these conjectures with the

slightly weaker poly3-NSETH(1/2d) and per-int-NSETH(1/d) increases the qubit es-

timate by only a factor of d, and replacing 2--1 time steps with 2'- 1 /d time steps

in either conjecture (i.e. c c {a, b}) increases the estimate by only log 2 (d) qubits.

Our qubit estimates of fewer than 200 qubits for IQP circuits, fewer than 400

qubits for QAOA circuits, and fewer than 100 photons for boson sampling circuits

are beyond current experimental capabilities but potentially within reach in the near

future. Additionally, our estimate for boson sampling circuits is consistent with re-

cently improved simulation algorithms [68,178] that can simulate circuits with up to

as many as 50 photons but would quickly become intractable for higher numbers of

photons.

It is worth comparing our approach with using a fine-grained version of the con-

jecture that PP gt F_, which is the complexity theoretic conjecture proposed in

Aaronson-Arkhipov [5]. To understand the range of possible fine-grained conjectures,
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we might start with oracle bounds, analogous to our Theorem 80. Known oracle

lower bounds for the majority function show only that E3 circuits that compute the

majority of an oracle function (the oracle analogue of PP) need size Q( 2n/5). This

would correspond to taking a or b equal to 1/5 which would increase the number of

qubits required for quantum supremacy by a factor of 2.5 or 5 respectively. The proof

is also more complex, involving the switching lemma [75]. Thus our approach based

on coC_ P instead of PP yields both a much simpler proof and a tighter bound.

A significant shortcoming in our analysis is that it only rules out simulation al-

gorithms with multiplicative error (or with minor modification, exponentially small

additive error), and not algorithms with 0(1) additive error. Experimental noise

in real quantum systems without fault tolerance is likely to be large enough that

most realistic devices could not achieve the noise rates for which our bounds apply.

While some previous quantum supremacy arguments have ruled out polynomial-time

simulation algorithms with additive error by imposing additional conjectures, it is

unclear how to extend this to the exponential-time fine-grained setting while making

a defensible conjecture.

Additionally, while the conjectures poly3-NSETH(a) and per-int-NSETH(b) are

consistent with other fine-grained conjectures like SETH, NSETH, and #SETH, it is

an open question whether it is possible to prove a concrete relationship with one of

these conjectures.

Finally, we conclude by noting that our analysis would likely be applicable to

many other classes of quantum circuits whose efficient classical simulation entails the

collapse of the PH, including DQC1 circuits (see Chapter 2.8.4) [104], various kinds of

extended Clifford circuits that were discussed in Chapter 3 [143,148], and conjugated

Clifford circuits that were discussed in Chapter 4 [36].
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Chapter 6

Computing quopit Clifford circuit

amplitudes by the sum-over-paths

technique

By the Gottesman-Knill Theorem [111], the outcome probabilities of Clifford circuits

can be computed efficiently. In this chapter, we present an alternative proof of this

result for quopit Clifford circuits (i.e., Clifford circuits on collections of p-level systems,

where p is an odd prime) using Feynman's sum-over-paths technique [103], which

allows the amplitudes of arbitrary quantum circuits to be expressed in terms of a

weighted sum over computational paths. For a general quantum circuit, the sum over

paths contains an exponential number of terms, and no efficient classical algorithm

is known that can compute the sum. For quopit Clifford circuits, however, we show

that the sum over paths takes a special form: it can be expressed as a product

of Weil sums with quadratic polynomials, which can be computed efficiently. This

provides a method for computing the outcome probabilities and amplitudes of such

circuits efficiently, and is an application of the circuit-polynomial correspondence

which relates quantum circuits to low-degree polynomials. This chapter is based on

joint work with Mark D. Penney and Robert W. Spekkens [150].
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6.1 Motivation and outline of results

The original proof of the Gottesman-Knill Theorem makes use of the stabilizer for-

mulation of quantum mechanics, in which the state of the system at each time step is

represented not by the amplitudes of the state vector, but by a set of Pauli operators

which stabilize it [109]. Using this approach, the problem of computing the outcome

probabilities of Clifford circuits can be reduced to computing inner products between

stabilizer states [8]. The latter can be done efficiently using the stabilizer formalism,

and hence the outcome probabilities can be computed efficiently.

Besides the stabilizer formalism, other techniques have been used to compute the

outcome probabilities of Clifford circuits efficiently (for some examples, see [79,81,143,

224]). In this chapter, we present a different method from these that is explicitly based

upon Feynman's sum-over-paths technique [77,103,186]. We restrict our attention to

Clifford circuits acting on collections of quopits, i.e., p-level systems where p is an odd

prime [92], and defer the treatment of general d-level systems to Chapter 7. In this

approach, the amplitudes of quantum circuits are expressed in terms of a weighted

sum over computational paths.

For general quantum circuits, such a sum over paths involves an exponential

number of terms, and no efficient algorithm exists to compute this sum, unless #P-

complete problems can also be solved efficiently. However, building on the work of

Dawson et al. [77], we show that for quopit Clifford circuits, the sum over paths takes

a special form: it can be expressed as a product of Weil sums [230] with quadratic

polynomials. The problem of evaluating Weil sums explicitly is in general difficult,

but for Weil sums with quadratic polynomials, the sum can be computed efficiently.

This gives an efficient algorithm to compute amplitudes of quopit Clifford circuits,

and therefore gives an alternative proof of the Gottesman-Knill Theorem for quopits.

The sum-over-paths technique has previously been used to answer computational

complexity questions about the power of quantum computation. For example, by

considering quantum circuits comprising only gates from the universal gate set of

Toffoli and Hadamard gates, Dawson et al. provide a simple proof of the complexity-
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theoretic result that BQP C PP (first proved by [11]), one of the tightest 'natural'

upper bounds for BQP [77]. Dawson et al. then ask what other universal gate sets

are amenable to the sum-over-paths approach. An extension of this question, that we

address in this chapter, is to ask not just about universal gate sets, but also about

gate sets corresponding to restricted models of quantum computation.

Another example is the class of linear algebraic quantum circuits (which are closely

related to Clifford circuits) studied by Bacon et al. [19], who noted that the sum-over-

paths technique introduced by Dawson et al. implied that the computation of outcome

probabilities in such circuits (assuming all registers are measured) can be reduced to

the computation of Weil sums for quadratic polynomials, implying efficient classical

simulation of such circuits. When specialized to the case of quopits, however, the

group of unitaries implementable in a linear algebraic quantum circuit is a proper

subgroup of those implementable by a quopit Clifford circuit because the generating

gate set does not include the phase gate (R in Eq. (6.1), which corresponds to a phase

space squeezing operation). In this respect, our result generalizes theirs. Furthermore,

we here provide an explicit expression for not just the outcome probabilities, as Bacon

et al. do, but the amplitudes as well.

The sum-over-paths technique makes explicit a correspondence between quantum

circuits and low-degree polynomials, known as the circuit-polynomial correspondence

[172]. This correspondence can be exploited in two different directions. In the first

direction, using quantum circuit concepts, it enables one to prove classical results

about polynomials. For example, the Gottesman-Knill Theorem, which is a theorem

about quantum circuits, can be used to provide an efficient algorithm to compute the

gap of degree-2 polynomials over F2 [172]. In the second direction, known classical

results about polynomials can be used to provide algorithms for simulating classes

of quantum circuits. Our result, in which we use classical results about degree-2

polynomials to simulate quopit Clifford circuits, provides an example of the second

direction. Note that while the polynomials in [77] and [172] are over F2, our results

about quopit systems involve polynomials over the field Fp where p is an odd prime.

The rest of the chapter is structured as follows. In Chapter 6.2, we introduce the
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relevant definitions and notations and describe the problem of interest. In Chapter

6.3, we review the sum-over-paths technique and show how to construct sum-over-

paths expressions for quopit Clifford circuits. In Chapter 6.4, we show how the sum-

over-paths expression can be computed classically in polynomial time. In Chapter 6.5,

we show how our results can be used to show that unitary operations implemented

by quopit Clifford circuits are necessarily balanced.

6.2 Preliminary definitions and notation

In this chapter, p will always denote an odd prime. We shall work over the finite field

Fp of characteristic p, which is the set of integers modulo p. The set of n x n matrices

over F, is denoted by M (F), and the group of invertible n x n matrices over Fp is

denoted by GL,,(F).

We confine our attention to quopit systems, i.e., p-level quantum systems where p

is an odd prime. A quopit Clifford circuit acting on quopit systems is defined to be any

circuit consisting of only the following gates, called quopit Clifford gates: the Fourier

gate F, the phase gate R and the sum gate E, which are the p-level generalizations,

respectively, of the Hadamard, phase and CX gates of qubit Clifford circuits defined

in Chapter 2.3. They are defined as follows:

1
F x (st)sXtI,

s,tEF,

R E X(t(t - 1)2--1)|It)(t,
tEF,

S Is, s+t)(s,tI, (6.1)
s,tEFP

where X(a) _ exp(27ria/p), and 2-1 = (p + 1)/2 is the inverse of 2 modulo p. For the

sum gate, we write Eab to indicate that a and b are the control and target registers

respectively, i.e. Eab = Es,tEy, Is)(sIa | S + t)(tb.

For a given circuit, let n denote the number of registers (i.e. number of quopits),

and N denote the number of gates. We make the following additional assumptions

186



about the circuit (for an example, see the circuit diagram in Figure 6-1):

" The inputs to the circuit are computational basis states 1a), where a E Fg.

" Measurements are performed only at the end of the circuit, i.e., there are no

intermediate measurements, and all quopits are measured at the end of the

circuit. Also, measurements are performed in the computational basis. Hence,

the possible measurement outcomes lie in the set Fn. A measurement outcome

of b c Fn is associated with the computational basis vector 1b).

* There are no extraneous quopits, i.e. every quopit is acted on by at least one

gate, so that n = O(N).

The problem we are interested in, which we call P, is the following: given a quopit

Clifford circuit acting on the input state |a), where a C Fn, compute the probability

amplitude associated with the outcome b E Fn. Formally, P may be stated as follows:

Given a description of a quopit Clifford circuit that implements the unitary U, as

well as strings a,b e F>, compute (b|Uja).

Note that a description of a quopit Clifford circuit C is a specification of the gates in

C as well as the registers on which they act.

If C were allowed to be a general quantum circuit with gates chosen from some

universal discrete gate set, then the problem P would be #P-hard. But for the quopit

Clifford circuits C that we consider, P can be solved in polynomial-time. We now

describe a proof of this result that is based on the sum-over-paths formulation of

quopit Clifford circuits.
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6.3 Constructing sum-over-paths expressions for

quopit Clifford circuits

In this section, we review the sum-over-paths technique applied to quopit Clifford

circuits that was introduced in Section III of Ref. [186]. Without loss of generality,

we assume that each register of the Clifford circuit terminates in a Fourier gate just

before it is measured (we shall refer to circuits with this property as standard-form

quopit Clifford circuits). If this were not the case, for each register that does not

terminate in a Fourier gate, we could pad the circuit by inserting 4 Fourier gates

before the measurement is performed, since F4 = I. The Fourier gates that appear

just before a measurement shall be called terminal Fourier gates. All other Fourier

gates will be called non-terminal.

For a quopit Clifford circuit C with input labeled by a = a, ... an E F"n and

measurement outcome labeled by b = bi ... bn E IF", we shall label wires of C at

every time step to create a labeled circuit as follows (See Figures 6-1 and 6-2 for an

example):

1. Label the input wires by a,. . . , an.

2. Going from left to right of the circuit diagram for C, label the wires at each

subsequent time step as follows:

(a) For each phase gate R and identity gate I (i.e. when we have a bare wire),

if the label at the input is s, then we label the output by s.

(b) For each sum gate E, if the labels at the inputs are (s, t), then label the

outputs by (s, s + t). Here the first element in the pair is the control

register, and the second element in the pair is the target register.

(c) For the lth non-terminal Fourier gate F, we introduce an auxiliary variable

xi, and regardless of the input to the Fourier gate, we label the output by

Xl.

3. Label the output wires by bl, . .. ,b,
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a,) -J-- - b

E12

Figure 6-1: Example of a quopit Clifford circuit. As explained in the text, we can assume
without loss of generality that each register ends in a Fourier gate.

a2 X E12 al+xl al+xl b

a3 a3 X2 23 al+xl+x2 b3

Figure 6-2: Labeled circuit corresponding to the circuit in Figure 6-1. The phase polyno-
mial is read off to be S(Xi, x2, X3) = a2x1 + a3x2 + a1x3 + X3 b1 + b2 (ai + x1) + b3 (a1 + x1 +

X2) + 2-1a,(al - 1).

We shall associate each quopit Clifford circuit with a polynomial over F,, which

is called the phase polynomial [106]. The variables in the phase polynomial are the

auxiliary variables x = (x 1 , ... , xa), where a is the number of non-terminal Fourier

gates in the circuit. For each gate G in the circuit, let in(G) and out(G) be the input

and output labels of that gate in the labeled circuit. The phase polynomial associated

with a quopit Clifford circuit is the polynomial S over Fp defined by (see Figure 6-2

for an example):

S(x) = in(F)out(F)
Fourier gates F

+ 2-1in(R)(in(R) - 1). (6.2)
phase gates R

The theorem relating the circuit amplitudes and the phase polynomial, which

appears as Theorem 3 in [186], is the following:

Theorem 83. Let C be a standard-form quopit Clifford circuit on n registers that
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implements the Clifford operation U. Let a be the number of non-terminal Fourier

gates and let S(x) be the phase polynomial associated with C. Then,

1
(blUla) = pxn / 2 1I X(S(x)). (6.3)

xEF-P

6.4 Evaluating the sum over paths

Using Theorem 83, the problem P is reduced to evaluating the sum in Eq. (6.3). In

this section, we describe how this sum may be evaluated.

First, we note that S(x) is a degree-2 polynomial in the variables x = (x 1,... , XC)

as well as the variables a,,... , an, bi,. . . , b,. This is due to the fact that S(x) is a

sum of terms which are at most quadratic, since the input and output labels of each

gate are linear in the variables xi, ai and bi. Hence, we can write S(x) as

a a

S(x) =xTEx + nTx + ( = E E1xix + E ixi + , (6.4)
i,j=1 i=1

where E E Ma(Fp) can be chosen to be symmetric, 71 E F' and ( E F,. Note that

while q and ( are dependent on a and b, E is independent of (a, b), because otherwise

S(x) as a polynomial in xi, ai and bi would have a degree that exceeds 2.

Substituting Eq. (6.4) into Eq. (6.3) gives

(blU a) = X(xTeX + r;T x). (6.5)

The above sum can be evaluated using the following two steps.

6.4.1 Step 1: Diagonalizing E

In the first step, we diagonalize the matrix 0, by making use of the following theorem:

Theorem 84. There is a polynomial-time algorithm T that when given a symmetric

matrix E E Ma(Fp) outputs an invertible matrix L E GL,(Fp) such that L TL is

diagonal.
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Proof. The proof is essentialy an algorithmic implementation of the standard proof

that any quadratic form over a field that is not of characteristic 2 is diagonalizable

(see Propositions 6.20 and 6.21 of [161]). We present a polynomial-time algorithm in

Chapter 6.4.4.

By making use of Theorem 84, and the change of variables p = LTr7 and x = Ly,

we can rewrite xTex + r7Tx = yTAy + pTy, where A = LTeL is a diagonal matrix.

By this change of variables, the sum in Eq. (6.5) becomes

S x~x ~+rTx) = S Ary 2 +pIlyi)
xEF y,...,yacEFp i=1

=] 5 x (A y2 + piyi),
i=1 yiEFp

where the A2 are the diagonal entries of A, and the pi are the components of p. We

see from Eq. (6.6) that one needs only to compute the (much simpler) sums over a

single variable. Such sums are called Weil sums [161], and we will show in the next

step how to compute them.

6.4.2 Step 2: Using the exponential sum formula

The second step makes use of the following theorem about exponential sums (see

Theorem 5.33 of [161]):

Theorem 85. The sum

(6.6)

can be explicitly

E x (Ay 2 + Py)
yEFP

evaluated as follows:

1. If A = p = 0, then it equals p.

2. If A = 0 and p = 0, then it equals 0.
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3. If A # 0, then it equals

i ( -) ( 4-'A- 2 _ P, (6.7)
P

where ( is the Legendre symbol and E(p) = 0 if p is congruent to 1 mod 4 and

E(p) = 1 otherwise. The inverses are modular multiplicative inverses modulo p.

If we partition the indices i E {1,... , a} into the following sets

X = {i E {1, ... , a}Ai 0},

Y = {iEf{1 ... , a}|A= 0, pi 0},

Z = {i E {1,...,}|A = 0,pi 0#},

then by using the exponential sum formula in Theorem 85 to evaluate the sums in

Eq. (6.6), we obtain

x(~2) A
(bIUa) = p(n+a)/ 2 i7X(4

(jEY (11k ) / _

p-(n+r-a)/
260 1,ire(p) (HiEX Ai

x X ( -4-EA- 1P , (6.8)

where r = JXj is the rank of E, i.e. the number of nonzero diagonal entries in A.

Note that we used the multiplicative property of the Legendre symbol: (riEx -i

X , and the fact that when IZI = 0, XI + JY = a. Here, _,,y is the Kronecker

delta.

Now, the Legendre symbol ( takes values in the set {-1, 0, 1} and vanishes

only when a -- 0 mod p. Since Ai , 0 for i C X, by definition, we get the following
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simple expression for the outcome probabilities:

|(b|Uja)|12 -= 60 I -zi.(6.9)
IVJL~iI-pn+r-ce

6.4.3 Running time

We now analyze the running time of the above procedure. The evaluation of the

matrix element (bi U a) involved four main steps: First, given a decomposition of

U in terms of quopit Clifford gates, we employed the labeling procedure described

in Chapter 6.3 to label the Clifford circuit. Second, from the labeled circuit, we

computed the phase polynomial S(x) defined by Eq. (6.2). Third, we used Theorem

84 to diagonalize S(x), and fourth, we used the exponential sum formula in Theorem

85 to calculate the matrix element in Eq. (6.8).

Steps 1, 2, and 4 take time that is linear in the size of the circuit. Step 3 involves

matrix diagonalization which can be carried out in polynomial time, as we show in

Chapter 6.4.4. Hence, the algorithm that we give here to compute (b| U a) runs in

polynomial time.

6.4.4 Proof of Theorem 84

We shall describe a polynomial-time algorithm T that, when given a symmetric matrix

3 E Ma(Fp), outputs an invertible matrix L E GL,(Fp) such that LT'3L is diagonal.

As we assumed in the main text, p denotes an odd prime. The proof is essentialy an

algorithmic implementation of Propositions 6.20 and 6.21 of [161].

We use the following notation in the proof: The matrix direct sum is denoted by

A e B = diag(A, B). The n x n identity matrix is denoted by f[n. The Kronecker

delta is denoted by 623. The components of a matrix A E M,,(Fp) are denoted by

Aij, with the indices taking values i, j = 1,...,n. Likewise, the components of a

vector v E IF" are denoted by vi, with i = 1,. .. ,. The inverse a- is defined top

be the multiplicative inverse modulo p of a E F, i.e. the unique b E F for which

ab 1 (modp).
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We first describe a subroutine, termed Algorithm 1, that we will need to call

repeatedly.

Proof of correctness: We shall prove that Algorithm 1 works as described. If

A = 0, then (P, a, B) = (I, 0, 0), which satisfies Eq. (6.10), as required. Hence, for

the rest of the proof, we shall assume that A # 0.

We first claim that cTAc = a. Indeed, in the YES case in Line 5, cTAc =

Ekl AkI 6 4 6 l = Ari = a, and in the NO case in Line 8, we have Asi = 0 for all i.

Hence, cTAc = Zkl AM (ik + 6Jjk) (6i + Ji ) = Aij + Aji = 2Ajj = a. Note that in both

cases, a # 0. Hence a- 1 exists.

Next, consider the quadratic form f corresponding to the matrix A:

f(t1 ,...,tn) = E Ai3t it = tTAt.
ii

(6.16)

Define

(6.17)f'(Yi, - , Yn) = f(Cy) = EAi (Cy) (Cy)j.
ij

By expanding Eq. (6.17), and using Eq. (6.11), Eq. (6.12) and Eq. (6.13), we obtain

= a (y, (6.18))2+ a-1 b by+ g(y2, -, yn).
1>1

Consider the matrix D defined in Eq. (6.14). It is easy to see that its inverse has

components given by

D-1 = baY1
64,5

i = 1, j # 1

otherwise.

Let x = D-'y. Then x1 = yi + a- 1 E1>1 bly and xi = yi, for all i > 1. Hence,

' .(6.20)
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Algorithm 1 Subroutine for Algorithm T

Input: a symmetric matrix A E Mn(Fp), where n c Z+.

Output: a 3-tuple (P, a, B), where P E GL,(Fp), a E IFp and B E M,_ 1(Fp) is a
symmetric matrix, such that

PT AP = a D B.

if A = 0 then
output (I', 0, 0).

else let a E IFp\{0} and c c Fpn\{0} be defined as follows:
Check if there exists i such that Aii / 0.
if YES then

Let I = min{ilAii # 0}.
Set a = AM1 , cj = 6,3 for j = 1, ... , n.

else NO
Let (I, J) = min{(i, j)IAij ? 0}. (where the minim
respect to some lexicographic ordering)
Set a=2Arj, Ck= 6 1k+SJk fork= 1,...,n.

1:
2:
3:
4:

5:
6:
7:

8:
9:

10:

11:
12:

(6.10)

um is taken with

E GLn(Fp) defined by:

j 1 Al

j / 1,i < A/>

j f1,i>MA.

(6.11)

forij=1,...,n.
13: Compute

bi = ZcjAjjCj,
2J

for 1 = 1,...
14: Define

(6.12)

In.

1'__
g(y2 , ...,yn)= k (\ZAijCikCil YkYl - a-

k>1,1>1 \ij /

15: Construct the matrix D c GLn(Fp) defined by

Di= {-bja~1 i = 1,j I
o6ij otherwise.

i>1
) (6.13)

(6.14)
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16: Compute the coefficient matrix B E M_.1 (1F) of the quadratic form g using

Bj3 = 2- [g(ei + ej) - g(ej) - g(ej)] , (6.15)

where ej is the ith unit vector.
17: Compute P = CD E GL,(IF).
18: Output (P, a, B).

Now the LHS of Eq. (6.20) is equal to

f'(y) = f'(Dx) = f(CDx) = f(Px) = xTPTAPx, (6.21)

and the RHS of Eq. (6.20) is equal to

axi + g(x2, . . ., Xn) = ax, + Bi i =xT(a e B)x, (6.22)
i,j=1

where we used the fact that B is the coefficient matrix of g.

Equating Eq. (6.21) and Eq. (6.22) then gives xTPTAPx = xT(a e B)x. Since this

holds for all x, we obtain

PTAP = a ED B. (6.23)

We are now ready to describe the algorithm T:

Algorithm 2 Algorithm T for matrix diagonalization

Input: a symmetric matrix e E M((Fp), where a > 1.

Output: an invertible matrix L E GL,(Fp) such that LTOL is diagonal.
1: if a = 1 then
2: Output L = fI E Al(F).
3: else Set E) = 1.
4: for k=a,a- 1, ... ,2 do
5: Run Algorithm 1 on 0 k to get output (Pk, ak, 0 k-1).
6: for s = 1, ... a do
7: Set P. = feD @ Ps.
8: Output L = Papa_1 . .. 2 .

Proof of correctness: If a = 1, then E is already diagonal. Hence, setting L = f to
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be the identity matrix gives the diagonal matrix LTOL = E. Otherwise, we note that

for the FOR loop with variable k in Line 4 of Algorithm 2, the output of Algorithm

1 on 0 k is the 3-tuple (Pk, ak, k_1) that satisfies

Pkk Pk = ak C 0 k-1. (6.24)

Now it is straightforward to show by induction that

,,... P_1 PI0aPaP_1 ... P_, = aa D a.-1 D ... G a_, 0 - (6.25)

for all s = 0, 1, ... ,a - 2.

Hence, by using s = a - 2 and E), =), we get

p T... Pa-1PE PP, 1 ... P2 =a. E aa-1 G... G a 2 @ 01. (6.26)

Since each 5 is invertible, their product L = PeaPa_1 ... P2 is also invertible. There-

fore, writing a, = 01 E IFP, we get that

L TOL = diag(a0 , . . ., a2 , ai) (6.27)

is a diagonal matrix.

It is straightforward to see that Algorithm 2 runs in polynomial time in the size

of the matrix a.

6.5 Balancedness of quopit Clifford circuits

Quopit Clifford gates have the property that their nonzero matrix elements relative

to the computation basis have the same absolute value. A gate with this property

(and the matrix representing it) is called balanced [77,186].

Definition 86. A gate G acting on n qudits represented by a unitary UG is balanced

if there is a constant c E R>o and functions f : (Zd)' x (Zd)' -* R and g : (Zd)' x
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(Zd)' -+ (Zd) such that for all a, b E (Zd )n,

(bi UG a) = ceif(ab)60,g(a,b)- (6.28)

As noted in [186], only if all gates in a circuit are balanced can one use the sum-

over-paths technique to evaluate its functionality. We shall refer to the number c

as the weight of the gate G. By convention, whenever the basis is not specified, it

is assumed that the balanced property is defined with respect to the computational

basis. Hence, the Fourier, phase and sum gates defined in Eq. (6.1) are balanced with

weights p-1/ 2, 1 and 1 respectively.

Unitary operations implemented by circuits consisting of balanced gates are not

balanced in general. For example, consider a circuit consisting of the Hadamard gate

H and the gate V, given by

1 (e~i -eO
V=

V' e-io eiO

It is straightforward to check that both H and V are balanced and unitary. The

product VH, however, is

V H = i sin(0) cos(O)

cos(i ) -i sin(O)

which is not balanced in general. For example, when 0 = r/6, the entries of VH have

absolute values 1/2 and vI/2.

For quopit Clifford circuits, however, unitary operations implemented by quopit

Clifford gates are always balanced. This is a direct consequence of Eq. (6.9). To see

this, recall that E (defined in Eq. (6.4)) is independent of (a, b). Hence, r = rank(E)

is independent of (a, b), which implies that the nonzero terms of |(bjUja)j, which

are equal to p-(n+r-a)/2, are independent of (a, b). This result is summarized in the

following theorem:

Theorem 87. Let U be a unitary operation on n quopits that is implemented by
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a standard-form Clifford circuit C with a non-terminal Fourier gates, and phase

polynomial S(x). Let r be the rank of the coefficient matrix of the quadratic form

corresponding to the degree-2 terms in S(x). Then U is a balanced matrix with

weight p-(n+r-a)/ 2 .
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Chapter 7

Classical simulation of quantum

circuits by half Gauss sums

In this chapter, we give an efficient classical algorithm to evaluate a certain class of

exponential sums1 , namely the periodic, quadratic, multivariate half Gauss sums. We

show that these exponential sums become #P-hard to compute when we omit either

the periodic or quadratic condition. We apply our results about these exponential

sums to the classical simulation of quantum circuits, and give an alternative proof of

the Gottesman-Knill theorem for qudit Clifford circuits, where d > 2 is an arbitrary

integer.

Our work improves on prior results in a number of ways. First, while the results

of [172] and Chapter 6 are restricted to qubit and quopit systems, respectively, our

results hold for all d-level systems. In doing so, we address a limitation of the approach

used in Chapter 6, where the proof of the Gottesman-Knill theorem works only for d-

level systems, where d is restricted to be an odd prime. Second, while previous works

on tractable exponential sums are based on Gauss sums [57,150,161], ours are based

on half Gauss sums, which are generalization of Gauss sums. Consequently, we find

'Exponential sums have been extensively studied in number theory [127] and have a rich history
that dates back to the time of Gauss [105]. Besides their applications in quantum computation, they
have found numerous applications in communication theory [185], graph theory [108], coding theory
[131,210], cryptography [209, 210], algorithms [210] and many other areas of applied mathematics.
We refer the reader to [151] for a summary of various applications of exponential sums.
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a larger class of tractable exponential sums compared to previous works. Third, we

generalize the existing definition of affine signatures [57] to arbitrary dimensions, and

use our results about half Gauss sums to show that the Holant problem for the set of

affine signatures is tractable. Fourth, we demonstrate the importance of a periodicity

condition, which has not been previously explored, to the classical simulation of

quantum circuits. This chapter is based on joint work with Kaifeng Bu [53].

7.1 Outline of results

The complexity of evaluating the exponential sum

Z(d, f) = 3 ", "''"), (7.1)
Xl,.XnCZd

where d, n E Z+ are positive integers, Wa = exp(27ri/d) is a dth root of unit, and

f (X,.. . , Xn) is a polynomial with integer coefficients, has been studied in previous

works. In particular, it was proved that Z(d, f) can be evaluated in poly(n) time when

f is a quadratic polynomial. This was first proved for the case when d is a prime

number [161], before being generalized to the case when d is an arbitrary positive

integer [57]. On the other hand, when f is a polynomial of degree > 3, the problem

of evaluating such exponential sums was proved to be #P-hard [57,90].

In this chapter, we consider the following generalization of the above exponential

sum:

Zi/ 2(d, f) =(X l,. ',n. (7.2)
Xl2--,XnZd

Here, d is a square root of wd (i.e. 2 = Wd) that additionally satisfies d2 = 1.

Unlike Z(d, f), the sum Zi/ 2(d, f) may not be evaluable in poly(n) time even when

f is a quadratic polynomial-the properties of the coefficients of the quadratic poly-

nomial f are crucial to determining the efficiency of evaluating Zi/ 2(d, f). Assuming

plausible complexity assumptions, we prove that a necessary and sufficient condition
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Table 7.1: Hardness of computing Z1/2k(2, f), where k > 0 or k > 1, and f is a polynomial
function with coefficients in Z and domain Z'. Here, 'periodic' means that f satisfies the
periodicity condition (7.3), and 'aperiodic' means that f does not necessarily satisfy it.
The label FP means that Z1 /2k(d, f) can be computed in classical polynomial time, and

#P-hard means that there is no efficient classical algorithm to compute Zi/2k(d, f), unless
the widely-believed conjecture FP # #P is false.

to guarantee the efficiency of evaluating Z1/2(d, f) for quadratic polynomials f is a

periodicity condition, which states that

f(x1,..,xn) f (xi(mod d),...,xz(mod d)) (73)

for all variables x1,... ,,x, E Z. More precisely, we prove that for quadratic polyno-

mials f satisfying the periodicity condition, Z1/ 2 (d, f) can be evaluated in poly(n)

time, and that without the periodicity condition, there is no efficient algorithm to

evaluate Zi/2 unless the widely-believed assumption that FP 4 #P is false. This is

summarized by our main theorem:

Theorem 88. (Restatement of Theorem 94 and results in Chapter 7.4.2) Let f E

Z[xi,... , xn] be a quadratic polynomial over n variables X1 ,. .. , x, satisfying the

periodicity condition. Then Zi/2(d, f) can be computed in polynomial time. If either

the quadratic or periodic condition is omitted, then (d, f) - Z112(d, f) is #P-hard

to compute.

We consider the case d = 2, and study the complexities of evaluating more general

exponential sums, namely those of the form:

Zk/ 2k (2, f) y w Xithn) (7.4)

where k > 0 is an integer and f is a polynomial with ni variables. Our classification
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results are summarized in Table 7.1.

Next, we apply Theorem 88 to the classical simulation of Clifford circuits. In

particular, we show that the output probabilities of Clifford circuits can be expressed

in terms of half Gauss sums:

Theorem 89. (Simplified version of Theorem 100) Let C be an m-qudit Clifford

circuit. Let a E Z' and b E Z. Then the probability of obtaining the outcome b

when the first k qudits of C 1a) are measured is given by

P(bla) := I| (bl k C Ja)a | 2 = 1Z2(d, #), (7.5)

where I E Z and # is a quadratic polynomial that satisfies the periodicity condition

(7.3). Moreover, I and # can be computed efficiently.

Since half Gauss sums can be computed efficiently, Theorem 89 implies that there

is an efficient strong simulation of Clifford circuits. This gives an alternative proof

(that does not make use of stabilizer techniques) of the Gottesman-Knill Theorem

[111].

7.2 Half Gauss sums

7.2.1 Univariate case

Given two nonzero integers a, d with d > 0 and gcd(a, d) = 1, the Gauss sum 2 [156]

is defined as:

G(a, d)= Z a,
2  (7.6)

XE7Zd

where wd = exp(27i/d) is a root of unity. It has been proved that the Gauss sum

G(a, d) can be computed in polynomial time in log a and log d [156. Several useful

properties of Gauss sum G(a, d) have been provided in Chapter 7.6.2.
2 also referred to as the "univariate quadratic homogeneous Gauss sum". See Chapter 7.6.1.
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In this section, we define a generalization of the Gauss sum, called the half Gauss

sum3 : given two nonzero integers a, d with d > 0 and gcd(a, d) = 1, let

G1/2(a, d) = S a2(.

XE7Zd

Here, d is a chosen square root of Wd such that (d = 1 This condition is chosen

so that the summation over the ring Zd is well-defined, i.e. if x = y (mod d), then

(ax 2 
- a . Note that such a condition on (d has also been used in the investigation

of reflection positivity in parafermion algebra to ensure that the twisted product is

well-defined [134, 135].

For d = 1, Gi/2 (a, 1) = 1, which is trivial. So it remains to deal with the non-

trivial case d > 2. d can be chosen to be W2d when d is even. Here, we choose

d = -W2d = WdI+1)/ 2 if d is odd and (d = W2d if d is even.

We will now present properties of the half Gauss sum.

Proposition 90. The half Gauss sum satisfies the following properties:

1. If d is odd, then

G112 (a, d) = G(a(d + 1)/2, d). (7.8)

2. If d is even, then

Gi/2 (a, d) = G112 (a(Ni + bN2), b)GI/ 2 (aN2 , c), (7.9)

where d = bc, gcd(b, c) = 1, 21b, and N1 and N2 are integers satisfying Nic +

N2b = 1.

Proof.

3 also referred to as the "univariate quadratic homogeneous half Gauss sum". See Chapter 7.6.1.
Also, note that our definition of "half Gauss sum" differs from that used in [28].
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1. If d is odd, gcd((d + 1)/2, d) = 1 and gcd(a, d) = 1. Thus, we have gcd(a(d +

1)/2, d) = 1. Therefore, we have

Gl/2(a, d) = S x2 
XeZd

Z d+1 2Wd 2= G(a(d + 1)/2, d).
XeZd

2. If d is even, then a must be odd, as gcd(a, d) = 1. Hence,

G112(a, d) = 5ax2 aX2

XEZd XEZd

Moreover, d can be decomposed as d = bc, with gcd(b, c) = 1. Since d is even,

one of b and c has to be divisible by 2. Without loss of generality, we assume

that 2|b. Hence, c - 1 (mod 2). Since gcd(b, c) = 1, there exist two integers N

and N2 such that Nic+ N2b = 1. According to the Chinese remainder theorem,

there exists an isomorphism d - 7Zb x Z,, X '-4 (y, z) with x = y (mod b) and

x - z (mod c). In fact, we can choose the map x = N2bz + Nicy, which can

also be written as

x = y + N2b(z - y) = z + Nic(y - z).

Thus,

ax2  
aNx

2  
aN2 x

2

W2d W 2 b W 2 c

Moreover,

aN1 x 2  aN1 [y 2 +2bN 2 (z-y)+N22b 2 (y-z) 2] aNy2

2 b 2 b 2b

where the last equality comes from the fact that 21b, and

aN2 x 2  
_ aN2 [z

2 +2Nic(y-z)+N c
2
(y-z) 2

w2c 2c a2NIc(y-z)2

-WaN 2 z2 WaN2 N? 2 (y-z)
2

w2c w 2 c
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aN2 z
2 aN2 N2c2 (y 2 +z 2 )

= w2c 2c

Since W,2 = (-l)' = -1 and N1 is odd as N2b + Nj~c =1, we have

aN2 x 2  
aN2 z 2 (_ 1 )aN2 (y2 +z 2 )W2c 2c "

bi ax= aN1y
2 cN2z

2 ( _)aN2y
2

(--W 2c)aN2z
2 (_)aN2y

2

- aN2z
2 ( 1 )aN2y

2

a(Nl+bN2)y
2 aN2 Z2

12 b C

a(Nj+bN2)y
2 aN2 Z

Since c(Ni + bN2) + b(1 - c)N2 = 1, we have gcd(Ni + bN2, b) = 1. Thus,

gcd(a(Ni + bN2), b) = 1. Besides, gcd(aN2 , c) = 1. Therefore, we find that

G 112(a, d) Z (a(N1+bN2)y
2 aN2 z2

y(EZb,ZCZC

G/ 2 (a(Ni + bN2), b)Gi/2 (aN2 , c).

Now, any even number d can always be decomposed into d = 2"c, where m > 1

and c is odd. It is straightforward to see that

Gi/2 (a, d) = GI1 2(a(Ni + 2m N2), 2m )G1 /2(aN2, c),

where N22"+Nic = 1. As c is odd, it can be rewritten as a Gauss sum by Proposition

90. So we need only to evaluate the half Gauss sum for d = 2 m, i.e., G112 (a, 2').

Proposition 91. If m > 3, then

G1/ 2 (a, 2") = 2Gi/ 2(a, 2m-2). (7.10)
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Moreover,

GI/ 2 (a, 2) = 1+ i,

G112(a, 22) = 2w.

Proof. First, G112(a, 2) and G112(a, 22) can be obtained by direct calculation.

Second, for m > 3,

G11 2(a, 2") Lax2
=xe[2+1

xE[2m-]

- 2+ I + a~x +a2
2- 2]

xE[2m-1]

- ~2 1 [1 +(--1)x]
xE[2m-1]

- I
yG=[2m- 2 ]

=2 S 4y
YE[2m- 2

]

= 2G,/ 2(a, 2M-2 ).

Based on the above properties of the half Gauss sum G11 2(-, -) and the fact that the

Gauss sum G(-, -) can be calculated in poly(log a, log d)-time, we obtain the following

corollary:

Corollary 92. Given two nonzero integers a, d with d > 0 and gcd(a, d) = 1, the

half Gauss sum can be calculated in poly(log a, log d) time.

Note that we chose = W2d for all even numbers d. However, d could also have

been chosen to be -W2d for all even numbers d. This case is similar to the case

= W2d, and we include a discussion of this in Chapter 7.6.3.
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a(2y)2 [1+ (-1)2y]

a2S:
y~z[2m- 2 1
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7.2.2 Multivariate case

In this section, we consider a generalization of the Gauss sum (7.6) to the multivariate

case:

Z(d, f) =(xf'"") (7.13)
... ,XnEZd

where each xi is summed over the finite ring Z, and f(xi,... x) is a quadratic

polynomial with integer coefficients. The multivariate quadratic Gauss sum (7.13)

has been proved to be evaluable in polynomial time [57].

Next, we consider an analogous multivariate generalization of the half Gauss sum:

Zi/ 2(d, f) = ( X ",), (7.14)

X1,--,XnEZd

where f(x 1 , ..., xn) = ZZjE[n] cijexiXj + ZE[n] OiXi + 'YO is a quadratic polynomial

with integer coefficients. Unlike Z(d, f), the half Gauss sum Zl/ 2(d, f) may not be

efficiently evaluable even for quadratic polynomials. It turns out that the existence of

an efficient algorithm depends on a periodicity condition that we will now describe.

We say that a polynomial f satisfies the periodicity condition4 if

f(xi,.,Xn) = f(xi(mod d),..,xn(mod d)) (7.16)

for all variables X1 , ..., Xn E Z. This periodicity condition can also be regarded as the

well-definedness condition of Z1/ 2 on Z . If d is an odd number, then d = -W2d, i.e,

di = 1, which implies that the periodicity condition can always be satisfied for odd

d. However, the periodicity condition may not always be satisfied in the case of even

d.

Proposition 93. Let d be even, and let f(xi,... , X1 ) = ZijE[n] aijXiXj+ZE[] /Xi+

4More generally, we say that a function g : Z' -+ C is periodic with period d if

f(o,-- -,Xn) =g(xi(mod d),a vra (mod d)) (7.15)

for all variables X 1, . . ,n E Z.
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-Yo, be a quadratic polynomial. Then, f satisfies the periodicity condition if and only

if the cross terms aij (i < j) and linear terms #i are all even.

Proof. It is easy to verify that the quadratic polynomial f satisfies the periodicity

condition if all the cross terms aij (i < j) and linear terms 3i are even.

In the other direction, if f satisfies the periodicity condition, then (x''~") =

f(x 1 (mod d),...,xn(mod d)) for any X 1 , ... , Xd E Z. Thus, for any i,

aii+1ixi _= aii(xj+d)2+Oj(xj+d)
Q I

for any xi E Z by choosing xj = 0 if j # i. Besides, d satisfies the conditions 2d = 1

and Q2 = 1. Thus, Q"' = (--1)i = 1, which implies that /3j is even. Due to the

arbitrary choice of i, all linear terms #3 are even. Besides, for any fixed i and j with

i < j, we can choose Xk = 0 for any k $ i, j. This gives

+ 3ixi 3jxj ai (xi +d (xi d)xj +Oi (xi +d) +O33 xj

for any xi, xj E Z. This implies that aij is even. Since i, j were arbitrarily chosen, all

the cross terms aij are even. l

The periodicity condition of the polynomial f plays an important role in the

efficient evaluation of the exponential sum Z1/ 2. We denote the set of quadratic

polynomials satisfying the periodic condition by F2". For any quadratic polynomial

f satisfying this periodicity condition, the exponential sum Z1/ 2(d, f) can be evaluated

in polynomial time given the description of f.

Theorem 94. If f E F2c is a quadratic polynomial satisfying the periodicity con-

dition, then Z1/ 2 (d, f) can be evaluated in polynomial time.

Proof. Consider the expression

f3 o.]ijxixj +Z1 xi+ ,
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with the cross term aij (i < j) and linear term 3i being even. We may assume that

-yo = 0, as it only contributes an additive constant term to Z1/ 2 (d, f).

Case (i): All diagonal terms aii are even. In this case, Zi/ 2(d, f) = Z(d, f/2), which

can be evaluated in polynomial time [57].

Case (ii): There exists at least one diagonal term agi that is odd.

Case (iia): d is odd. Then, d = d+1)/2. Thus, Z112(d, f) Z(d, 'f f), which can

be evaluated in polynomial time [57].

Case (iib): d = 2m. Then, d = W2d. Since there exists at least one diagonal term aii

that is odd, we assume that all is odd without loss of generality. Since a11 is odd,

it is invertible in Z2d with 2d = 2m+1. We can rewrite the quadratic polynomial f to

separate the term involving x1 :

f (xi, ... , x) = an[4i + XIfii, X 2 , .. . , Xn)] + f2(i, X 2 , ... , )

where -1 denotes that there is no x1 in the polynomial. Here, fi is a linear function

over n - 1 variables {X2, .. . , X,} with

fi(zi, x2 , . . . , x2 ) = a3 a aijzx + a-1f 1 ,
j>2

and f2 is a quadratic polynomial with even cross terms and linear terms over n - 1

variables {X 2 , ... , Xn}.

Since the cross terms and linear terms are even,

fi= 2f,= 2 ( La

j :2

S1j xi a 12-2
22

f=a1 (X1 + f')2 + f',

where f' is a quadratic polynomial with even cross terms and linear terms over n - 1
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variables {X2, . .. , xo}. Therefore,

Ctli(X I+fD)2 +f, -el(I+ )
Z1/2(d, f) =d E f 77+ +I

X1 ,...,XnEZd X2.XnEZd XIEZd

= Zi/2 (d, f')G/2(0111, d),

where the last equality comes from the fact that the summation over X1 E Zd is

independent of the value of fl. This reduces the evaluation of ZI/2(d, f) to Zi/2(d, f')

where f' is a quadratic polynomial over n - 1 variables with even cross terms and

linear terms. We can repeat this step until all the diagonal terms are even, which

then reduces to Case (i).

Case (iic): d = 2m c with c being odd and c > 3. Then, d = W2d. Since there exists

at least one diagonal term aii that is odd, then without loss of generality, the first t

diagonal terms aci (1 < i < t) are odd and the other diagonal terms aii (i > t + 1)

are even.

Now, we can rewrite f as follows

t

i=1

where the coefficients of the quadratic form fi are all even. Hence, f = i x +2f',

with f' = fi/2.

Since gcd(2m , c) = 1, there exist two integers N and N2 such that N22 m +Nic = 1.

Adopting a process similar to that used in the proof of Proposition 90, we find, using

the Chinese remainder theorem, that there exists an isomorphism Zd --+ Z 2 m X Zc,

Xi -+ (y , zi) with xi = yj (mod 2 ') and xi - zi (mod c). Thus, we have

Zi/ 2 (d, f)

~d Wd

2 , ..- IXnEZd

Ft (Ni+2mN2)y 2 Ert=N2z2 N1 f'(yi,...,yn)wN2fI(z,

y1,...,ynEZ 2m Z1,... Z c
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- 1(Nl+2mN2)y? Nif'(y,...,y.) =1 N2Z? N2 f((zl,..,z,)

Y1,---ynEZ 2m zi,...,znE7Zc

1 
Z=.(N+2mN2)v (N1+2'"N2)f'(y1,---,yn)

y1,.,Yn EZ 2m

x >=1N2z? N2 f j(zi,..,z,)
zl,---,ZnEZc

= ZI/2 (2m , (Ni + 2mN2)f)Z1 / 2 (c, N2 f),

where the second last equality comes from the fact that w' = 1. This reduces the

computation of ZI/ 2 (d, f) to Case (iia) and Case (iib). LI

Above, we have shown the existence of efficient algorithms to evaluate half Gauss

sums with quadratic polynomials that satisfy the periodicity condition. We note,

however, that if we omit either the periodicty or quadratic conidtions, then these sums

become hard to compute (assuming some complexity conjecture). We will return to

a discussion of this in Chapter 7.4.

Finally, we note here that there is a nice relationship between half Gauss sums

Zi/2 (d, f) and the number of zeros of functions of the form f(x) - k (mod d) or

(mod 2d). We explore this further in Chapter 7.6.4.

7.3 m-qudit Clifford circuits

In this section, we apply our results on the half Gauss sum to Clifford circuits. Let

d > 2 be an integer. The m-qudit Clifford group is the set of operations (called Clifford

operations) on m qudits that are generated by the following gates: X, Y, Z, F, G, CZ

[98,135-137].

Here, X, Y and Z are the d-level Pauli matrices defined by

X 1k) = Ik + 1), Y 1k) = l2 k -1), Zlk)- =d 1k), (7.17)
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F is the Fourier gate defined by

1d-1 k
F k) = WZ l), (7.18)

G is the Gaussian gate defined by

G1k) = k2 k) , (7.19)

and CZ is the controlled-Z gate defined by

CZ ki, k2) = w1kk2 ki, k2 ). (7.20)

It is straightforward to check that the gates (7.17)-(7.20) satisfy the following

algebraic relations [135,136]:

Xd = yd Zd = F 4 = G 2d = (FG)3qd- 1 = I

XYX-lY = YZY- 1Z = ZXZ- 1X- 1 = Wd,

XYZ =d, FXF' = Z, GXG =Y-',

where

qd - = - d .
q=0

From the above identities, it is easy to see that the X and Y gates can be expressed in

terms of the other gates, and so the following gate set suffices to generate the Clifford

group: C = {Z, G, F, CZ}. An m-qudit Clifford circuit is a circuit with m registers

and whose gates are all Clifford operations. We shall assume that the Clifford circuit

is unitary, i.e. there are no intermediate measurements in the circuit.

Without loss of generality, we will assume that (i) each register of the Clifford

circuit C begins with an F gate and ends with an Ft gate, and that (ii) the internal

circuit (i.e. the full circuit minus the first and last layers) consists of only gates in C.
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In other words, C is of the form

C = (Ft)"mC'Fm, (7.21)

where the internal circuit C' comprises only gates in C. This loses no generality

because any Clifford circuit can be transformed into a circuit of the above form, first,

by inserting 4 F gates at the start of each register and the pair FtF at the end of

each register, and second, by compiling the internal circuit using only gates in C.

For each m-qudit Clifford circuit, we adopt the following labeling scheme: divide

each horizontal wire of the internal part of C into segments, with each segment

corresponding to a portion of the wire which is either between 2 F gates, or between

an F gate and an Ft gate. It is easy to verify that the total number of segments is

given by n = h - m, where h is the total number of F or Ft gates (including those

in the first and last layers) in C. Label the segments x, . .. , x".

We will also use the following terminology. The leftmost labels on each register are

called inceptive indices. The rightmost labels on each register are called terminal in-

dices. All other indices are called internal indices. For a set of indices I = {i,. . . ,is

we use x, to denote the tuple (xi, ... , x,).

Definition 95. Let C be a Clifford circuit with labels {xi,... , xz}. The phase

polynomial of C is the polynomial

(722Sc(xi, ... , xn) = 2 X i + x j, (7.22)
yEF iEI, geg jeI,

where IF is the set of internal F, Z, CZ gates, and g is the set of G gates in C.

We now show that if C is a Clifford circuit, then its phase polynomial Sc is a

quadratic polynomial that satisfies the periodicity condition.

Proposition 96. If C is a Clifford circuit, then sc E 'F .

Proof. Since each gate in C is incident on at most 2 segments, the degree of the

polynomial is at most 2. The only terms which can have odd coefficients are terms of
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the form x?. Hence, the remaining terms, which are all either linear and cross terms,

have even coefficients, which implies that Sc E Fc. E

The reverse direction is also true: for every polynomial S C TFj., there exists a

Clifford circuit C such that S = Sc, as the following proposition shows:

Proposition 97. Let A be the class of Clifford circuits. The function

-+ PC'.

C -*Sc

(7.23)

(7.24)

is surjective.

Proof. Let

512 Z jxixjA-Z+ 2EP

i.e. aij is even for i < j and fi is even for all i. Construct the circuit C =

(Ft)®nC'FOn, where C' is defined as follows:

1. for each i E [n], apply the gate G aii times.

2. for each i < j E [n], apply the gate CZ aij/2 times.

3. for each i E [n], apply the gate Z O3 /2 times.

Then,

Sc = S aiix +2 (
iE[n] i<jE[n]

i 

+ e] 2X)

which implies that E) is surjective. L

We now show that the amplitudes of Clifford circuits can be expressed in terms

of half Gauss sums.

Theorem 98. Let C = (Ft)®mC'F*m be an m-qubit Clifford circuit with h F or Ft

gates and n = h - m labels x1, . ., xn. Then,

(0| " r C 10) "11m = 1 E .Sd 'X'-'n)

V l X1 ..., n EZd

- Z/ 2 (d, Sc).
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Proof. Apply the sum-over-paths technique [77,150] to the Clifford circuit C.

Theorem 98 can be easily generalized to also allow us to compute amplitudes with

arbitrary input or output computational basis states:

Proposition 99. Let C = (Ft)"mC'Fm be an m-qudit Clifford circuit with h F or

Ft gates and n = h - m labels xl,..., xn. Let a, b E Zm. Then,

(bj Ca)= Z1/ 2 (d, SC + 2a -x 1 + 2b-xF), (7.26)

where I and J are the inceptive and terminal indices (written in order) of C respec-

tively.

Proof. We start by writing

(bi (Ft)e"'C'Fm a) = (0"' (Xt)b(Ft)®mC'Fm "Xa 0")

=0"j (Ft)sm(Zt)bC'ZaF m 10").

Note that C* = (Ft)®m(Zt)bC'Za F", is itself a Clifford circuit,

apply Theorem 98 to it:

and we could

1
(b| Cfa) = ZI/2(d, SC-)

vd h

where

Sc*(xl,...,x,,)=Sc(x,...,x.)+ 2a-x,+2b-xF-

l

A corollary of the above result is that we can express the probabilities of outcomes

of qudit Clifford circuits in terms of half Gauss sums even when only a subset of

registers is measured. This was previously shown to hold for quopit Clifford circuits

[167], i.e., qudit Clifford circuits, where d is an odd prime.
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Theorem 100. Let C = (Ft)OmC'Ft m be an m-qudit Clifford circuit with h F or

Ft gates and n = h - m labels XI,... , Xn. Assume that C' contains at least one F

gate on each register. Let I be the inceptive indices, J be the internal indices, F be

the first k terminal indices, and E be the last m - k terminal indices. Let a E Z'

and b E Zk. Then the probability

P(bla) = 11 (bl. C lIa)a..m2 1 (7.27)

of obtaining the outcome b when the first k qudits of C 1a) are measured is given by

1
P(bla) dn+k / 2 (d, #), (7.28)

where

( yi, XIF, YF, XJ, YJ, E) S(XXjXFWE)- Sc(yI, yJ, YF, WE)

+2a - (x' - y') + 2b - (XF - YF)- (7.29)

Proof.

P(bja) = (bilk U Ia..m 112

I (bij C 1a)12

/
3

EZd
1 2

- S -Z 1 2 (d, Sc +F 2a - x1 + 2(b, /3) - (xF, XE)

I Sc(x)-Sc(y)+2a-(xI-yi)+2b-(xF-YF) )'(E-E)

x,yeZ' OEZm-k

1 E~ EEE (I,I,F,F,J,J,E)

=d ZXFYFE xjyj WEEZ(

dn IcZ1/2(d, q5.(7.30)
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where in the fifth line, we used the property that

S 3
(XE-YE) = din-kX, (7.31)

Since half Gauss sums can be computed efficiently, the above proof gives an alter-

native proof of the Gottesman-Knill Theorem [111] for all qudit Clifford circuits:

Corollary 101. (Gottesman-Knill Theorem-strong version) Qudit Clifford circuits

acting on computational basis input states can be efficiently simulated (in the strong

sense [81]) by a classical computer.

Since strong simulation implies weak simulation [217], Corollary 101 implies that

there is an efficient classical algorithm that samples from the output distributions of

qudit Clifford circuits.

7.4 Hardness results and complexity dichotomy the-

orems

In this section, we show that extending the definition of the (polynomial) Gauss sum

in various ways leads to intractable exponential sums. See Table 7.1 for a summary

of our results.

7.4.1 Degree-3 polynomials

We consider circuits that are over the Clifford+CCZ gate set, where CCZ is the

controlled-controlled-Z gate defined by

CCZ Xi, Xj, Xk) = i'jik jXi, X), Xk) . (7.32)

For simplicity, we consider circuits of the form (Ft)®nDFn |0)0", where D is a

diagonal circuit consisting of gates {Z, G, CZ, CCZ}. By the sum-over-paths tech-
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nique, it is straightforward to show that the amplitudes of such circuits are of the

form

(01" (Ft )®"DFn "0)** = '."), (7.33)
X1,---,XnEZd

where f is degree-3 polynomial.

We first consider the case when d is odd. Applying each gate in D j times, where

j E {0, ... , d - 1}, we obtain

(O| n (Ft )0fDi F®o "o)0 1 =f(xi .x)
Xl,.XnC

7
Zd

By Eq. (7.60), we have

d-1

#{f k (mod d)} = d"-1 
5 j-ki (olon (Ft)® DJF n |o)®. (7.34)
j=0

Thus, we have reduced the problem of counting the number of zeros of degree-

3 polynomials to the problem of computing the amplitudes of quantum circuits

(0I®o (Ft)nDiF*n I0)on (this follows from the fact that the Fourier transformation

can be carried out in O(d2)-time, which is independent of n). Therefore, if the out-

put of quantum circuits with the form (010' (Ft)®nDF@ J0)®" can be computed in

poly(n) time, then the number of zeros for degree-3 polynomial can also be evaluated

in polynomial time. Similar arguments also hold when d is even (to see this, note

that we can repeat the gates in D 1, ... , 2d - 1 times and use Eq. (7.59)).

7.4.2 Without the periodicity condition

In this section, we show, under plausible complexity assumptions, that in order for

the exponential sum Z1/ 2 (d, f) to be tractable, we need the periodicity condition to
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hold. To see this, we consider the case d = 2:

Z1/2(2, f) = E if(XX)
X1IXnEZ2

where

f (zi, . .. , Xn)= aij Xi Xj + 'YO (7.35)
i jE[n]

is a quadratic polynomial with integer (not necessarily even) coefficients aij. Note

that X2 = xi for all xi E Z2 , and so there's no need for an additional linear term

EZijxj in f.

Now, consider the strictly universal 5 gate set g = {H, Z, CS}, where CS =

diag(1, 1, 1, i) is the controlled-phase gate, which satisfies CS xi, xj) = ixixj IXi, x).

By the sum-over-paths technique [77], if Ug is the unitary implemented by a circuit

over the gate set g, then

(01 Ug 10) c Zi/ 2 (2, f), (7.36)

where f is of the form Eq. (7.35).

We now show that Eq. (7.36) is hard to compute. Let g be a degree-3 polynomial

over Z2. Then by the circuit-polynomial correspondence [172], there exists a uni-

tary U implemented by a circuit C over the gate set {H, Z, CZ, CCZ} that satisfies

(0| U 10) oc gap(g).

Now, construct a circuit Cg that is equivalent to C, but which consists of only

gates in g. To achieve this, we replace all the CZ and CCZ gates in C by circuit

gadgets comprising only H and CS gates. This may be achieved by making use of

the following circuit identity (which follows from Lemma 6.1 of [22]):

(7.37)

S St S

5Note that Z is not needed for universality, since {H, CS} is already universal (see [145] or
Theorem 1 of [12])
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as well as the following identities:

CZ = (CS) 2 ,

C(St) = (CS)3,

CX12 = K2CZ12H2 ,

which allow us to express CCZ and CZ completely in terms of H and CS.

If we denote the unitary implemented by Cg by Ug, then

gap(g) c (01 U 0) = (01 Ug 10) Oc Z1/ 2 (2, f), (7.38)

with proportionality constants that can be computed efficiently.

But since g is a degree-3 polynomial, gap(g) is #P-hard to compute (see Theorem

1 of [90]). Hence, it follows that ZI/ 2(2, f) is also #P-hard to compute.

7.4.3 Other incomplete Gauss sums

In this section, we restrict our attention to d = 2, and consider incomplete Gauss

sums of the form:

Zi/2k (2, f) = ( ',..'") (7.39)
x1--,XnEZ 2

with k > 2. For k = 2, the exponential sum

x1--,XnEZ 2

where f is unrestricted, corresponds to the universal gate set {H, T, CZ}. Hence,

computing such sums is #P-hard. However, for quadratic polynomials f satisfying

the periodicity condition, we can reduce the evaluation of Z1 /4(2, f) to the evaluation

of Z1/ 2 (2, f'), for some quadratic polynomial f' satisfying the periodicity condition.

This implies that Zl/ 4 (2, f) can be evaluated in poly(n) time. More generally, for

any k > 2, if f is a quadratic polynomial satisfying the periodicity condition, the
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incomplete Gauss sum Zl/ 2k (2, f) can be reduced to ZI/2(2, f').

Lemma 102. Let d = 2, and let f = > a1< jxixj + E2 3ixi be a quadratic polyno-

mial. Then f satisfies the periodicity condition

f(x1,---,x.) f((ximod 2),...,(xamod 2)) (7.40)

if and only if 2 k-1I Z 2klaij (ii j) and 2k 10i. Thus, Z+2 (2, f) = Zl/2(2, f/ 2 k--),

where f/ 2k- satisfies the periodicity condition for U2 = -1.

Proof. It is easy to verify that the quadratic polynomial f satisfies the periodicity

condition if 2|ai2, 4|aij (i < j) and 4[3 i.

For any i,

aiix2+0ix~j a(xi+2)2 +31(xi+2)

2 k+1 2 k+1

for any xi E Z, which implies that 2k- aeii and 2 k 1/3 ,

Moreover, for any fixed i and j with i < j, we can choose Xk 0 for any k # i, j
to get

aiix?+ ckiix +ijxixj+3ixi+,3jxj = ii(xi+2) 2+aix2 +aij(xi+2)xj+ i(xi+2)+Ojx

2k+12 
U 2 k+1

for any xi, xj E Z. This implies that 2k laij. Since i, j were arbitrarily chosen, it

follows that all cross terms aii satisfy 2 k Ie-.

7.4.4 Complexity dichotomy theorems

In 1979, Valiant introduced the complexity class #P to characterize the computational

complexity of solving counting problems [222], and ever since then, this has been a

subject of much research.

Among the many important results arising from this research are the complexity

dichotomy theorems, which have attracted considerable attention [54, 55, 58, 72, 87,
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88,108]. These theorems roughly state that for certain classes of counting problems,

each problem in the class is either efficiently computable or #P-hard. (See [56] for

an overview.)

These dichotomy theorems have applications in the study of exponential sums. An

example of such a theorem was provided by [57], which proved that computing Gauss

sums Z(d, f) can be performed efficiently when deg(f) < 2 and is #P-hard when

deg(f) > 3. Note that the polynomials considered by [57] all satisfy the periodicity

condition. Hence, if we combine the #P-hardness result with Theorem 94, we arrive

at a new dichotomy theorem: if deg(f) < 2, then the exponential sum Zl/ 2(d, f) is

computable in polynomial time. Otherwise, if deg(f) > 3, then computing Zi/2 (d, f)
is #P-hard.

Furthermore, for the class of aperiodic exponential sums, our results imply another

new complexity dichotomy theorem: if deg(f) < 1, then the exponential sum Zi/2 is

computable in polynomial time; otherwise, if deg(f) > 2, then computing Zi/ 2(d, f)
is #P-hard. For a summary of these results, see Table 7.1.

7.5 Tractable signatures in Holant problems

In this section, we will apply our results about half Gauss sums to an important

framework called the Holant framework, which we will now describe. Let F be a set

of functions, where each element f E F : Z' - C. A signature grid Q = (G, F) is

a tuple, where G = (V, E) is a hypergraph and each v E F is assigned a function

f, E F with arity equal to the number of hyperedges incident on it. A Zd assignment

a for every e E E gives an evaluation f, fv(UjE(v)), where E(v) denotes the set of

edges incident on v. Given an input instance Q, we are interested in computing

HolantQ= Z fJfv(OIE(v))- (7.41)

o-:E-+Zd V

Affine signatures over Z2 and Z3 were defined in [58,233]. In this section, we give

a definition of affine signatures over Zd, for d > 2:
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1. Affine signature over Zd: Let f be a signature of arity n with inputs x1, ... , x"

over the domain Zd. We say that f is affine if it has the following form

AXA=0g(1,X) (7.42)

d2

where A C C, d is a chosen square root of Wd = exp(27i/d) satisfying Q = 1,

A is a matrix over Zd, x is a 0-1 indicator function such that XAXo = 1 if and

only if A7 = 0, and g(x1 , ... , x,,) E Z[x... , Xn] is a quadratic polynomial with

even cross terms and linear terms. Let A be the set of all affine signatures. It

is straightforward to check that A is closed under multiplication.

2. Degenerate function on n variables: Let

D { 2o[fi(0), fi(1), ... , fi(d - 1)]1fi(j) E C} (7.43)

be the set of functions that can be expressed as a tensor product of unary

functions.

3. The set : Let P be the set of functions that can be written as the composition

of unary functions with the binary equality relation =2, where =2(i, j) is equal

to 1 for i = j and is equal to 0 otherwise.

Theorem 103. Given a class of functions F, if F C A or F C P, Holant(F) is

computable in polynomial time.

Proof. (1) If F C P, then following [58], we can group the variables into connected

components if these variables are connected by the binary equality relation =2. In

any connected component, let us start with a variable with a value in Zd, and follow

any edges labeled by the binary equality relation. There is at most one extension of

this assignment, i.e., each variable in this connected component must take the same

value as the value that was taken at the beginning. Then we can easily compute the

value of the Holant by simply multiplying all the values. There are at most d values,

as we have d choices at the starting edge.
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(2) If F C A, then the method in [58] may not work, as Gaussian elimination may

not be applicable for general Zd. To get around this, we consider the inner product

representation of the Holant problem Holant(.F), which can be written as

Holant(F) = (0e (GHZel)(Ov |fv)), (7.44)

where |GHZe) denotes the GHZ state on (Cd)®Iel, where JeI denotes the number of

vertices incident on the edge e. For example, if Iel = 1, 2, 3, then GHZe is I+) =

d-LI 1i), JBell) = EZ-e lIii) and JGHZ) = Ed-1" Iiii), respectively.

Since fv E A,

I fv) =XAZ=Ot"v('1'---'Xk)|zXi, ..., i X ) , (7.45)I1,--,= dvX1

X17..X-kEZd

where gv is a quadratic polynomial with even cross and linear terms, and k denotes the

arity of f,. If we omit the term XAY=O in the above expression, then the remaining

expression is just a stabilizer state, which we denote as |STAB) . Now, consider

$_1 A1 ,ixi+ A,k+1 = 0 (mod d) that is given by the first line of A'= 0. We can add

an ancilla qudit with (01 H(CX)AiXA1,k+1 0) with control qudit being j E 1, . .. , k.

Then, Ifv) can be written as

If) = (0Imv (CX)AiXAkk+1 ISTAB) v0) mv , (7.46)
i~j

where mv is the number of rows in Av. Therefore,

Holant(F) = (®e (GHZe l)(O® (0I mv)(®ri, (CX)AijXAk,+1 ISTAB)v 10)®mv),

which is just a product of two stabilizer states. It can be computed in polynomial

time by the Gottesman-Knill theorem [111]. 11

While Theorem 103 addresses the question about which functions lead to tractable

Holant problems, we leave open the question about which functions lead to intractable

Holant problems. More specifically, can we prove that for any class of functions F
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not in P or A, the problem Holant(F) is #P-hard?

7.6 Appendix for Chapter 7

7.6.1 Exponential sum terminology

In this section, we summarize some of the terminology used in this chapter. An

exponential sum is a sum of the form

Zef(X), (7.47)

where A C V is a finite set, V is an arbitrary set, and f : V -+ C is a complex-valued

function.

The exponential sums used in this chapter are all incomplete Gauss sums6 , which

are sums of the form

Z1 (d, b, f) = f(1 '-xn) (7.48)
Xlf-,lnEZd

where d, n, b E Z+ satisfy d < b and f is a polynomial with integer coefficients.

Two special cases of incomplete Gauss sums are the Gauss sum, defined as

Z(d, f) = Z=Z(d, d, f) = Wf(x1---"). (7.49)
Xl ,.-,XnEZd

and the half Gauss sum, defined as

Z1/ 2 (d, f)= "- (7.50)

XlXn-,XnCZd

With this terminology, note that Gauss sums are a special case of half Gauss sums,

which are in turn a special case of incomplete Gauss sums.

When f is quadratic, Z(d, f) and Zl/ 2(d, f) reduce to the (multivariate) quadratic

Gauss sum (7.13) and (multivariate) quadratic half-Gauss sum (7.14) respectively.

'Here, we generalized the definition of "incomplete Gauss sums" used in [93,159] to the multi-
variate case.
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When n = 1 and f is a homogeneous quadratic polynomial (i.e. f(x) = ax2 ), the sums

Z(d, f) and ZI 2 (d, f) reduce to the univariate quadratic homogeneous Gauss sum

(7.6) (which is usually just referred to as a Gauss sum [156]) and univariate quadratic

homogeneous half-Gauss sum (7.7) respectively. Note that univariate quadratic Gauss

sums are also called Weil sums [161] (see also Chapter 6).

7.6.2 Properties of Gauss sum

In this section, we state some basic properties of the Gauss sum G(-, -) [156]. Given

two nonzero integers a, d with d > 0 and gcd(a, d) = 1,

G(a, d) = Z ax.

XEZd

The Gauss sum satisfies the following properties:

(1) If d is odd, then

G(a, d) = (a) G(1, d), (7.51)

where (2) is the Jacobi symbol. Moreover,

G(1, d) = T9,v d, 
d 1 (mod 4)

d 3 (mod 4).

(2) If d = 2k, then for k > 4,

G(a, 2k) = 2G(a, 2 k-1).

(3) If d = bc with gcd(b, c) = 1, then

G(a, bc) = G(ab, c)G(ac, b).
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7.6.3 Half Gauss sum for d -W2d with even d

In Chapter 7.2.1, we took d = W2d when d is even. Note that in this case, d could

also have been chosen to be W2d. Here, we consider the case d = W2d for even

numbers d. To distinguish these two cases, we define Gi/ 2 (a, d)+ for d = W2d and

G112 (a, d)_ for d --W2d for even d. First, we discuss the properties of G112 (a, d).

Lemma 104. If d is even, then

G112(a, d)_ = G112(a(Ni + bN2), b) Gi/2(aN2, c), (7.55)

where d = bc, gcd(b, c) = 1, 21b and integers Ni and N2 satisfy Nic + N2b = 1.

Proof. Following the approach in the proof of Proposition 90, we get

ax 2  
1 )ax

2 
WaNx

2 aN2 x 2

dW 2b W2c _l)ay2WaNy
2 aN2 z2  aN2y

2

= (-W 2 b)a(N1+bN2)y
2 aN2z 2

= a(N1+bN2)y
2 aN 2z2

Gi/ 2(a, 2m)_ = 2G 1/2 (a, 2m-2)+.

Gl/2(a, 2m)_ = (-W2m+l)"x2

xE[2m]

[(-W2 m +i)ax2 + (Wml)~+'')
xE[2m-1]

E - 2m+1 ) ax2
x E[2m-11

I1 + 2m+1 a2x+a22m-

(-1)22 +1 [1 + (-1)X]
xE[2m-l]
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Proof. For r ;> 3,
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2( w y) [I+ (-1)2yl
yE[2--

2 ]

ye[2mn- 2 ]

4ay 2  
= j 2 " ay

2

W2 m+ 2-1
YE[2m- 2 1

- 2Gi/2(a, 2m~2)+

7.6.4 Relationship between half Gauss sums and zeros of a

polynomial

In this section, we show that there is a nice relationship between half Gauss sums

Z112(d, f) and the number of zeros of functions of the form f(x) - k (mod d) or

(mod 2d). If d is even, then d = W2d and 2d = 1, which means that the exponential

sum Zl/ 2(d, f) can be rewritten as

2d-1

Z112(d, f) = j #{f
j=0

- j (mod 2d)},

where # {f = j (mod 2d)} denotes the number of solutions (x..., x,) C Z2 such

that f (Xi, ... , X) = j (mod 2d). Thus,

2d-1

Zi/ 2(d, kf) = 3 i# {f j (mod 2d)}.
j=0

By taking the inverse Fourier transformation, we obtain

2d-1

# {f j (mod 2d)} = d -kiZ1 1 2 (d, kf).
k=0

d+1

Similarly, if d is odd, then d = W d 2 and

(7.58)

(7.59)

(7.60)
1-

#{f = j (mod d)} = d -kj Zl/ 2 (d, kf).
k=O
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Thus, the problem of evaluating Z1/2(d, f) is equivalent to the problem of counting

the number of solutions of the equations f - k (mod 2d) (or f - k (mod d)), up to

an inverse Fourier transformation.
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Chapter 8

Quantum simulation from the

bottom up: the case of rebits

Typically, quantum mechanics is thought of as a linear theory with unitary evolu-

tion governed by the Schrbdinger equation. While this is technically true and useful

for a physicist, with regards to computation it is an unfortunately narrow point of

view. Just as a classical computer can simulate highly nonlinear functions of classical

states, so too can the more general quantum computer simulate nonlinear evolutions

of quantum states. In this chapter, we detail one particular simulation of nonlinearity

on a quantum computer, showing how the entire class of R-unitary evolutions (on

n qubits) can be simulated using a unitary, real-amplitude quantum computer (con-

sisting of n + 1 qubits in total). These operators can be represented as the sum of a

linear and antilinear operator, and add an intriguing new set of nonlinear quantum

gates to the toolbox of the quantum algorithm designer.

An important application of our results, which ties to the theme of this thesis, is in

studying which nonlinear operations on quantum circuits can be efficiently classically

simulated. We define a class of operators, called the R-Clifford operators, and show

that circuits composed of these operators can be efficiently classically simulated.

This perspective of using the physical operators that we have to simulate non-

physical ones that we do not is what we call bottom-up simulation, and we give

some examples of its broader implications. This chapter is based on joint work with
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Murphy Yuezhen Niu and Theodore J. Yoder [149].

8.1 Introduction

Simulation is a ubiquitous task in the modern world with diverse uses from fun-

damental research (e.g. particle physics simulations in the LHC) to entertainment

(e.g. virtual reality headsets). Computers are often associated with simulation due

to their wide ranging capabilities as (finite instances of) universal Turing machines.

Like classical computers, universal quantum computers are expected to be powerful

simulators offering potentially even greater efficiency for some very important quan-

tum tasks, such as chemistry [17,18,157] and fermionic simulations [41,46]. Moreover,

the notion of simulation is not limited to a correspondence between especially dis-

parate systems - for instance, quantum error-correcting codes can be said to simulate

a handful of encoded qubits with many physical ones.

Yet, it is quite common for a simulator P to be developed in terms of end-goals,

that is, for the purpose of modeling specific operators OL on the simulated system L

that are deemed interesting. Such a design, which we call top-down, reveals the set

of operators Op on P that are necessary to simulate OL- However, with access to a

universal simulator, like a quantum computer, it may be more relevant to start from

the bottom with operators we can definitely perform on P, and ask what operators

on L can be simulated. In contrast to the top-down simulation, this bottom-up

simulation by definition takes full advantage of the capability of the simulator.

In this chapter, we provide a fleshed-out example of a bottom-up simulation,

a nonlinear n-qubit quantum computer being simulated by a linear, real-amplitude

quantum computer. The simulator consists of n + 1 rebits, which mathematically

means that its states are normalized vectors restricted to Rn+' and it has the ability to

perform orthogonal linear operators. Although the top-down version of this simulation

has been noted many times in the past beginning with Bennett et. al. [25], the bottom-

up viewpoint, while less often considered (with just a brief mention in McKague,

Mosca, and Gisin [170] and some special-case use in [64,83]), reveals exciting new
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phenomena. In particular, the (n + 1)-rebit computer is able to efficiently simulate,

not just unitary, but also non-unitary (indeed nonlinear) operators on the n-qubit

computer. Thus, a major takeaway is that nonlinearity can be simulated by linear

1
systems on a larger space

We completely characterize the operators that can be simulated using this bottom-

up approach to rebit simulation. It happens that the simulable operators are a sub-

group of the so-called R-linear operators, which we call R-unitary. We give universal

gate sets for the R-unitaries, which we note can be constructed from just partial

antiunitary operators, i.e. those that act unitarily on some subspace of the n-qubit

Hilbert space and antiunitarily on the rest. Furthermore, the (orthogonal) Clifford hi-

erarchy [113] on rebits maps to a Clifford hierarchy, dubbed the R-Clifford hierarchy,

contained within the R-unitaries. In the spirit of the Gottesman-Knill theorem [111],

we show that the second level of the R-Clifford hierarchy, which is strictly larger than

the Clifford group, is classically efficiently simulable. We also explore the efficiency

of our rebit simulation for general R-unitary circuits.

A good reason to consider bottom-up simulation of quantum computers is for

algorithm design. Our results show that when designing a quantum algorithm using

the circuit model, the designer has at their disposal not just unitary operators, but also

the set of R-unitary operators. Examples of this utility are the quantum simulation

of the Majorana equation [64] and measurement of entanglement monotones [83].

It is important to note, however, that while the rebit simulator can model non-

linear operators, this simulation does not allow us to exceed the power of quantum

computers. After all, a rebit simulator is just a special case of a quantum circuit.

This conclusion that non-linear operators can be simulated by quantum computers

does not contradict the results of [10], since the R-linear operators are not among

the non-linear operators described in [10] that imply polynomial-time solutions for

NP-complete and #P-complete problems. We expect of course that generalizations of

our result exist, and more exotic operators (though still not those of the type found

'At this point, an interested reader may refer to Chapter 8.8.1, where we present a simple example
of such a simulation.
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in [10]) will become simulable when more rebits (as a function of n) are included in

the simulator.

8.1.1 Two kinds of simulation

Here we offer a definition of simulation that suits our needs, but also applies to most

other uses of the term. A list of examples is provided in Table 8.1.

A simulation is a tuple (L, P, P, O(.)) where L and P are sets of states of the logical

(the simulated) and the physical (the simulator) state spaces. The map P : L -+ P

serves to relate the two. Because the simulator should be faithful to the simulated

space, we require that P is injective - i.e. P(a) = P(b) implies a = b. But we do not

require it to be surjective - in general, Range(P) C P and there is a partial inverse

L : Range(P) -+ L.

The final element O(.) of the tuple specifies either the operators we want to simulate

- i.e. O(.) = OL : L -+ L corresponding to a top-down simulation - or the operators

the simulator can support - i.e. O(.) = Op : Range(P) -+ Range(P) corresponding

to a bottom-up simulation. Once one set of operators (either OL or Op) is specified,

the other can be determined by using the established maps P and L.

As an example, the Gottesman-Knill theorem [111] provides a method for classical

computers to simulate a limited, non-universal, n-qubit quantum computer. To be

exact, the quantum computer is only allowed to perform Clifford gates that act on at

most two qubits at a time (e.g. the gate set {H, S, CX} is sufficient) and single-qubit

Pauli measurements, which make up the set of operators OL. Furthermore, L is the

set of stabilizer states (which is closed under the aforementioned operators OL) and

P is the set of n x (2n + 1) binary matrices. A stabilizer state |') of n-qubits is

special because there are n independent and mutually commuting Pauli operators pi,

i = 1, 2,..., n so that pi IV) = 4'). Since each such n-qubit Pauli can be specified

using 2n + 1 bits (the last bit is to track a t sign), these bit strings form the rows of

a full rank matrix in P. This describes the map P.

Gottesman-Knill as described is a top-down simulation - the goal is to simulate

the Clifford gates OL. Indeed, the simulator can achieve this efficiently, since each
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Task Simulated Simulator Mapping P operators OL
space L space P

Hamiltonian n qubits 2D qubit lat- CMP map [74] All Hamiltoni-
Sim. [74] tice ans

Fermionic M Fermi Q qubits Bravyi-Kitaev 2-body Hamil-
Sim. [46] modes [46] tonian
Gottesman- Stabilizer Binary matri- Heisenberg Stabilizer op-
Knill [111] states ces repr. erators
Quantum k qubits n qubits, n > Encoder Universal gate
codes [109] k set
Compiling n qubits n qubits + m [ ) + [) o All unitaries3

[78] ancillas MO)M"
Rebits [170] n qubits n + 1 rebits Eq. (8.1) R-unitaries

Table 8.1: Several examples of our definition of simulation.

operator in Op (i.e. a classical manipulation of the binary matrices in P) that corre-

sponds to an operator in OL takes constant time. Yet, important insights come from

the bottom-up viewpoint. For instance, the classical simulation can exactly (and effi-

ciently) calculate the entire probability distribution that the quantum computer can

only sample from! The classical simulation is actually more powerful than the Clifford

quantum computer it was designed to simulate2 . As this example demonstrates, it is

in this bottom-up manner that unexpected phenomena can occur in simulations. For

another example, see Chapter 8.8.2 where we show that Gottesman-Knill can also

simulate complex conjugation of stabilizer states.

2There are actually several variants of efficiently-simulable Clifford circuits - see [143] and [148].
To be concrete, pick the variant in which the Clifford circuit is nonadaptive, the input is in the
computational basis, and the objective is so-called strong simulation, i.e. to calculate the probability
a bit string y is observed when measuring any subset of output qubits. Theorem 4 in [143] shows as
a corollary of Gottesman-Knill that this particular strong simulation task is efficient on a classical
computer. Furthermore, as shown in Proposition 1 of [217], the ability to strongly simulate a class of
circuits implies the ability to classically efficiently sample from it. So, indeed the classical simulation
is strictly more powerful than the quantum computation in this case.

3 Compiling looks like a rather trivial simulation until considered from the bottom-up perspective.
The nontriviality is that the simulator has a set of operators Op that is much smaller than OL. For
instance, Op is often finite.
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8.1.2 Simulation using rebits

The task we focus on in this chapter is the simulation of n qubits using n + 1 rebits.

In particular, we make use of the single-ancilla rebit encoding of qubits [170]. Using

the definition of simulation given in Section 8.1.1, our rebit simulation is a tuple

(L, P, P, 0), where L is the set of n-qubit states, P is the set of (n + 1)-rebit states,

and the encoding map P : L - P takes n-qubit states to (n + 1)-rebit states as

follows:

P: 1) i-R 10) 9 0)a + QK1) 11)a, (8.1)

where subscripts a indicate the "ancilla" rebit, and R and Q take the real and imag-

inary parts, respectively. The inverse of P is (as we show later) the decoding map

1C: 14) H- ((01+ i (1I)a10) . (8.2)

Handed only an unknown n-qubit state, the encoding operator P is nonlinear and thus

unphysical. However, n-qubit states with only real amplitudes can be encoded simply

by appending an ancilla 10) to the register. Since quantum algorithms (i.e. those

solving problems in BQP [29]) start on the all-zeroes state 10)(", the inability to start

a rebit simulation from an arbitrary, unknown state is not a problem for this standard

computational model.4

Our primary task is to study rebit simulations corresponding to different sets

0 of operators. Our main results concern bottom-up simulation using rebits (i.e.

simulations corresponding to sets 0 = Op), though to draw a contrast, we include a

discussion of top-down simulation using rebits (where we choose 0 = OL) in Section

8.4.1.

4Indeed, a similar situation is forced upon error-correcting stabilizer codes, for which only certain
states (e.g. stabilizer states and maybe certain magic states depending on the code) are able to be
fault-tolerantly prepared.
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8.1.2.1 Bottom-up simulation using rebits

We now introduce some terminology for sets of operators that will be useful for

describing the bottom-up simulation using rebits. Rather than specify Op or OL

directly, we specify instead a physically motivated set of operators 0 that we can

actually implement on n + 1 qubits in the lab. In general, however, these operators

o do not map P to P, i.e. rebits to rebits. Thus, we need to restrict the simulator to

operators Op that do. To do this, take Op = 0 n Rn+1 g 0, where R+1 is the set

of real linear operators on n + 1 qubits. Correspondingly, there is a set of operators

OL that behave the same way on the n-qubit states in L that operators in Op behave

on P: i.e. A E OL if and only if there is B E Op such that A IV) = L(BP(IV4))) for

all |') E L. With a convenient abuse of notation, we denote this set OL = L(Op).

These are the operators on L being simulated.

We use the following language to describe these sets 0, Op, and OL (see also

Figure 8-1). If 0 is the set of S operators5 (for example, the unitary operators), then

we call Op the set of real S operators (denoted 0') on P, and OL the set of R-S

operators (denoted RO) on L. For example, if 0 = Un+1 is the set of (n + 1)-qubit

unitary operators, then Op = Un'+1 is the set of (n + 1)-rebit real unitary operators

(also called orthogonal operators) and OL = RU is the set of n-qubit R-unitary

operators.6

8.1.3 Our results

In this chapter, we study the rebit simulation from a bottom-up perspective. Thus,

one important task which we undertake is to determine, for various sets of S operators,

what the corresponding set R-S is. In the case of unitaries, we can then proceed to find

universal gate sets for the R-unitaries. We are led naturally to consider the efficiency

of simulating these gate sets, and for specific subgroups (the R-Clifford subgroup) we

can even find efficient classical simulations.

's is a placeholder for the word used to describe operators in the set 0. For example, S could
stand for the word 'unitary' or 'linear'.

6Note that R-unitary (which we pronounce as 'R unitary') should not be confused with real
unitary, which means real and unitary. The same goes for R-linear, R-Pauli, etc.
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0

R(-) ()~+

RO-- OR

Figure 8-1: Commutative diagram illustrating the relationships between the sets 0,
RO and OR.

In this subsection, we aim to highlight these results with a self-contained, albeit

brief, presentation. References are provided to theorems and proofs in the main text

(i.e. the following sections) where the details can be perused. See Figure 8-2 for a

summary of the various sets of operators considered in this chapter.

8.1.3.1 Characterization of various rebit simulators

First, we find R-S for the following subsets S: (1) linear operators, (2) unitary opera-

tors, (3) Pauli operators, (4) operators in the kth level of the Clifford hierarchy. The

following theorem summarizes our results.

Theorem 106. Let F be an operator on n qubits.

1. (Theorem 122) F is R-linear if and only if there exist complex linear operators

A and B such that F can be written as

F = A + BK, (8.3)

where K denotes the complex conjugation operator, K: 0b) 0 R ) - iQ I*).

2. (Theorem 127) F is R-unitary if and only if F = A + BK is R-linear and A and

B are complex linear operators satisfying the 'unitarity' constraints

AtA + BTB3 = I
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R-linear

R-unitary

antilinear linear partial R-Clifford
antiunitary hierarchy

real
linear antiunitary unitary

linear

Clifford
orthogonal . R-Clifford

hierarchy

real
Clifford : R-Pauli

hierarchy

Clifford

real Pauli
Clifford

real Pauli

Figure 8-2: Diagram illustrating the relationships between different classes of opera-

tors considered in this chapter. A line from A to B (where A is higher than B) means

that A is a proper superset of B. The ellipses represent the infinite towers of classes

corresponding to different levels of the respective Clifford hierarchies.
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AtB+BT=0. (8.4)

3. (Theorem 167) F is R-Pauli if and only if it can be written as

F = PK, (8.5)

where P = icpi 0 ... 0 p,, is a Pauli operator (where c E {0, 1, 2, 3} and pj E

{I, X, Y, Z}), and b E (0, 1}.

4. (Theorem 170) F is in the kth level of the R-Clifford hierarchy RCk if and only

if F(RC1 )Ft C RCk_ 1 , where RC1 is the set of R-Paulis.

The reader might recognize that, in operator theory and linear algebra 7, the term

R-linear is also used to describe a map f : V -+ V', where V and V' are complex

vector spaces, that satisfies

f(ax + by) = af(x) + bf (y) (8.6)

for all x, y E V and a, b C R. It turns out8 that this definition is equivalent to that in

Part 1 of Theorem 106 (see Theorem 122). It may not be surprising that R-linearity

turns out to be the defining characteristic of the simulated system; after all, the

encoding map P defined in Eq. (8.1) is blatantly R-linear in the linear algebraic sense

of Eq. (8.6). More detail on the linear algebraic definition of R-linearity is included

for reference in Appendices 8.8.3 and 8.8.4.

The R-unitary operators (part 2 of Theorem 106) are of special importance. Since

they can be simulated by (real) unitary operators acting on rebits, they correspond

to the set of operators that can be simulated by physical systems using the rebit

encoding. This is an example of bottom-up simulation: we start with the set of

operators that we can perform on rebits (i.e. real unitary operators) and derive the

7See, for example, [91, 129, 130. Note that our definition of R-linearity coincides with their
definition of real linearity.

8 More accurately, we chose the terminology so that the two definitions of R-linearity coincide.
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set of operators (i.e. R-unitaries) that we can simulate on qubits. The rest of our

results will concern various properties of the R-unitary operators.

8.1.3.2 R-unitaries as products of partial antiunitaries

Our second result concerns the class of partial antiunitary operators, which are a

subset (but not a subgroup) of the R-unitary operators. In [170], McKague, Mosca,

and Gisin note that partial antiunitaries - described as operators "which act only on

a subspace" - as well as products of partial antiunitaries, can be simulated using the

rebit encoding. However, a precise definition of partial antiunitarity was not provided

in [170]. In this chapter, we propose the following definition:

Definition 107. Let S C R be a subspace of a complex (finite-dimensional) vector

space N. An operator r on N is a partial antiunitary operator with respect to S if

(i) F is additive, i.e. F(< + 4) = 17() + 17(o) for all '4, # E N.

(ii) F is unitary on S', i.e. (F1(4), r(#)) = (0, 0) for all V), # E S'.

(iii) F is antiunitary on S, i.e. (f1(), 17(#)) = (#, 0) for all ', 4 E S.

(iv) (17(), 17(0)) = 0 for all 4' E S,4 E S .

Perhaps surprisingly, this definition leads to the following relation between partial

antiunitaries and R-unitaries.

Theorem 108. (Theorem 163) For any R-unitary operator F, there exists an integer

0 < k < (n + 1)2n(2' - 1)/2 and partial antiunitary operators F1,..., rk-1, 1 k such

that F = FkFk_1 ... 01.

Theorem 108 tells us that in order to simulate an R-unitary, it suffices to just sim-

ulate sequences of partial antiunitary operators. Indeed, we can find universal gate

sets for the R-linear operators that consist of only finitely many partial antiunitary

gates. Some of the simplest are presented here in terms of the partial antiunitaries
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CKi (a single-qubit gate on qubit i) and CCKij (a two-qubit gate on qubits i, j) de-

fined by (i.e. they conjugate only the amplitudes of basis states in which the "control"

qubits are 1)

CKi : (ax + ibm) Ix) - (ax + ib) Ix) + (ax - ibx) ix) (8.7)
xE{0,1} XE{0,1} xE{O,1}

xi=0 x =1

CCKij : (ax + ibx) Ix) ' ( (ax + ib)|Ix)+ (ax - ibx) Ix) (8.8)
xG{0,1} xE{0,1}n xE{0,1}n

xixj=o xixj=1

as well as the unitary operators controlled-controlled-Z (CCZ), global phase G(9) 4) =

e 0 IV)), and Hadamard gate H.

Theorem 109. (Proposition 160) The gate sets

{H, CCK, G(7/4)} and {H, CCZ, CK, G(7r/4)}

are able to approximately9 simulate any R-unitary operator.

8.1.3.3 Computational complexity and a generalization of the Gottesman-

Knill Theorem

Third, we explore the efficiency of the rebit encoding with regards to universal gate

sets for the top-down and bottom-up simulations.

Theorem 110. Let C be a depth-d circuit on n qubits.

1. (Theorem 164) If C is a unitary circuit consisting of gates from {H, T, CNOT},

then C (applied to lO)®n) can be simulated using either an orthogonal circuit

of depth at most dn on n + 1 rebits or an orthogonal circuit of depth at most

d on 2n rebits.

9We have a specific notion of approximation in mind. In principle, any metric on P (the simulator
space) implies a metric on L (the simulated space), and likewise metrics can be defined for operators

on those spaces, even if those operators on L are nonlinear. To make an operator norm on R-linears
for instance, one instead evaluates the operator norm of their simulations. See the definitions at the
end of Section 8.2.2.1 for more rigor on the R-linear operator norm.
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2. (Theorem 166) If C is an R-unitary circuit consisting of gates from

{H, CCZ, CK, G(7r/4)},

then C (applied to 10)0') can be simulated using either an orthogonal circuit

of depth at most dn on n + 1 rebits or an orthogonal circuit of depth at most

d0log 2 n1 on 2n rebits.

Further exploration of the R-Clifford circuits reveals an efficient classical simula-

tion, enlarging the scope of the Gottesman-Knill simulation.

Theorem 111. If C is an R-Clifford circuit on n qubits, then there is an efficient

classical algorithm to sample from C 10)" in time O(n2), when the output qubits of

the circuit are measured in the computational basis.

The R-Clifford circuits are a strictly larger set of operators than the Clifford circuits.

For instance, CK is an R-Clifford gate that is not even linear, much less Clifford.

8.1.4 Related work

The use of rebits in quantum computation dates back to the 1990s, where it was

shown that real amplitudes (or even rational amplitudes [11]) suffice for universal

quantum computation [29]. This was first proven in the quantum Turing machine

model [29], before direct proofs of this result for the quantum circuit model were found

[12,39, 145,196,203]. These circuit-model proofs all involve proving the existence of

computationally universal gate sets that consist of only gates with real coefficients.

A simple example of such a gate set is the set containing Toffoli and Hadamard gates

[12, 203].

Besides the single-ancilla rebit encoding, other rebit encodings have been pro-

posed. An example is the subsystem-division-respecting encoding introduced by [170].

Unlike the single-ancilla encoding, local operators remain local under this encoding.

As noted in [169], an implication of this result is that no experiment can distinguish
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between quantum mechanics with real amplitudes and quantum mechanics with com-

plex amplitudes, unless one makes assumptions about the dimensions of systems.

Rebits have also been studied in relation to several different topics in quantum

information theory. For example, it was shown that states and measurements on

a real Hilbert space are sufficient for the maximal violation of Bell inequalities [170,

183]. Another example is in computational complexity theory: as we discussed above,

choosing to use rebits instead of qubits does not change the power of BQP. It was

shown in [169] that such a choice also does not change the power of many other

quantum complexity classes, like QMA, QCMA or QIP(k).

Finally, we note that the techniques used in analyzing rebit circuits are closely

related to that used in analyzing quaternionic circuits. It can be shown, for example,

that quaternionic quantum circuits are no more powerful than complex quantum

circuits [101], just as complex quantum circuits are no more powerful than real ones.

8.1.5 Notation

We denote the set of (complex) linear operators on 7t(C) by L,, and the set of real

linear operators by R,, i.e.

Rn={F E L : Fz = 0}. (8.9)

The group of unitary operators on W,(C) is denoted by Un = {U E L, : UtU =

I}. The group of orthogonal operators is denoted by T, = {T E U, : QT = 0}.

Technically, while it is clear that L, and Un cannot act on the rebit space W,(R) (due

to failing closure), it is possible for the operators in R, and Tn to act on either -,(C)

or 71,,(R) (i.e. on qubits or rebits). We generally let context sort this ambiguity out,

and moreover, because all these operators can be represented as matrices independent

of the vector spaces on which they act, this subtlety should not be an issue.

For operators A, B, we write A ~ B if there exists 0 E R such that A = e'0 B (see

Chapter 2).
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8.2 Quantum circuits with rebits

We start by introducing the rebit encoding and decoding maps for quantum circuits.

A quantum circuit is in general described in terms of its states, operators and mea-

surements. We will now describe each of these separately.

8.2.1 Rebit encoding and decoding of states

We restrict our attention to pure states. Note that we do not lose any generality with

this restriction since any mixed state can be purified to a pure state by adding ancilla

qubits [180].

Definition 112. The rebit encoding of a quantum state 'IP) E hn(C) is the state

P(Ob)) E n+ 1 (R) defined by

P(O)) = R ) o0)a + Q 1) 0 j1)a. (8.10)

Here, the real and imaginary parts (denoted by R and a respectively) of 10) are

defined with respect to the computational basis.

Following the terminology in Section 8.1.2, the space of qubits W,(C) may be

thought of as the logical space L and the space of rebits 7n+-(R) may be thought of

as the physical space P that encodes states in nP(C) through the map P.

Explicitly, if

Si n,...,.{,1})

then

il,...,in E{ 0,1}n+1

where we have used the notation i..,-,nO = R(Oil,...1 . in) and i,. 1  = ... (inin).

The normalization condition .. , 1 2= 1 becomes

.. , ,j = 1 (8.11)
il ... i.,jE{0,1}+1
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in the encoded space. For example, when n = 1 and each entry of the state 10) is

written in terms of its real and imaginary parts, 'P(.) acts on 4') as follows:

P : (a + ib)10) + (c + id)11) H a 100) + b 101) + c l10) + d 111). (8.12)

Incidentally, this discussion shows that P preserves the 12 norm.

Proposition 113. Denote the 12 norm for 10) E 7-(C) as |) )| = I(k)12. Then

1114) 11 = IP(l4))ll for all 14) E UN(C).

Next, we show that the map P is invertible and that its inverse : 71n+i(R) +

Wn-(C) is given by

f2: 1P) + ((01+ i (1l)a 10) . (8.13)

We refer to L(10)) as the rebit decoding of the rebit state 1$).

Proposition 114. The maps P and L defined in Eq. (8.10) and Eq. (8.13) are inverses

of each other.

Proof. For all 14) and 10),

L o P 1') = ((01 + i (1I)a(R 10) 0 IO)a + a 1) 0 |1)) =R 1) + iQ 1') = 1b)

and

P o L |q) = P((Ola 10) + i (1| 10))

= (01a 0) 310)a + (lla |#) 9 11)a

= (j0)(IO + 1)(11)a 1#)

= q).

Hence, C o P = I and P o1 = I. LI1

We noted in Section 8.1.3.1 that P is R-linear. Here we also note that L is linear.

We collect these observations in the following proposition.
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Proposition 115. P is R-linear on -4(C) and L is linear on N+1(R). That is, for

all I1VI) , 1V2) C WN,(C) and all a, b R,

P(a IV),) + b kb2)) = aP(Ki1)) + bP(I02)), (8.14)

and for all 1) ,12) E W,+ 1( R) and ac, E R,

L(a q101 ) + 0|12)) = ce(1k)) + fL(f# 2 )). (8.15)

8.2.2 Rebit encoding and decoding of operators

Having defined how states are encoded, we now proceed to describe how operators on

qubits are encoded. Let F : W7((C) -+ ?-(C) be any operator on the set of n-qubit

states. We define the rebit encoding of F to be the map P(F) : N+ 1((R) - W,+1(R)

given by

(8.16)

Note that we have used the same symbol P to denote the rebit encoding of both

states and operators.

Let W : 7Ht+ 1(R) W, ,+1(R) be any operator on the set of (n + 1)-rebit states.

We define the rebit decoding of W to be the map C(W) : Wn (C) - 71, (C) given by

(8.17)

The above definitions are chosen so that the rebit encoding P of operators and the

rebit decoding 1 of operators are inverses of each other.

It is easily established that P and 1 for operators are group homomorphisms.

Proposition 116. For all IF1, F 2 : W-4(C) - +4(C), we have P(F 1P 2) = P(F1 )P(F 2).

Likewise, for all W1, W2 : 'Nf+ 1 (R) -+ RN+ 1 (R), we have C(WV 2) = C(W1) L(W2 ).

Proof. We just prove the first statement here; the second is just as simple an appli-
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cation of the definitions. For all 1k) E 'Ha(C),

P(F 1 )P(F2) 1) = P(1F1)P(F 22()))

= P(L(P(F2L(|4)))))

= P(FF2 LC(l#)))

= P(F1F2)q5).

using Proposition 114 in the second-to-last step. L

The definitions also imply that the encodings of states and operators behave naturally

together, and likewise for decodings of the two,

P(F)P(1)) = P(J 1#)), (8.18)

L(W)L(|i))= L(W 1,0)). (8.19)

These relations are also easily checked. Similarly to the case of states, the rebit

encoding and decodings of operators have the same linearity properties.

Proposition 117. P (for operators) is R-linear on L, and L (for operators) is linear

on Rn+1. That is, for all F1 , F2 E L, and all a, b ER,

P(aFi + bE2 ) = aP(F1 ) + bW(F2 ), (8.20)

and for all W1, W2 E R,+ 1 and all a, / C R,

L(aW1 + /W 2) = aL(WI) + OL(W2). (8.21)

The proof, left to the reader, is a straightforward application of the definitions. We

remark that the above treatment can also be extended in a similar way to superopera-

tors, i.e. operators acting on operators. Such a generalization is used in, for example,

Proposition 181.

The treatment so far deals with general operators. Since quantum mechanics is
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a linear (in fact, unitary) theory, we shall henceforth restrict our attention to only

those operators on rebits which are linear, and adopt the terminology described in

Section 8.1.2.1 to describe various subsets of the linear transformations.

Let O, L, be any subset of linear operators on W, (C). We are interested in

the following two classes:

1. ORK= O

2. ROn = L(On+l)

which correspond respectively to the real S and R-S sets defined in Section 8.1.2.1.

In general, the sets On need not have additional structure. In this chapter though,

many of the sets O that we consider are also groups. When this is the case, since

R, is a subgroup of Ln and the intersection of subgroups is a subgroup, the set OR

is also a subgroup of Ln. Since L is a group homomorphism (Proposition 116), and

group homomorphisms preserve subgroups, we get the following result:

Proposition 118. Let On C L,, be any subset of linear operators on 7n-(C). If O

is a (proper) subgroup of Ln, then ROn is a (proper) subgroup of RL".

In Sections 8.2.2.1 and 8.2.2.2, we prove parts 1 and 2 of Theorem 106, thereby

characterizing the sets OR and ROn, when (i) O, = Ln is the set of linear operators,

and when (ii) O = U, is the set of unitary operators. We defer the proof of the rest

of Theorem 106 to Section 8.6 where the R-Clifford hierarchy is discussed.

8.2.2.1 R-linear operators

Consider the set L, of linear operators. In this section, we characterize the sets

(i) L' (the real linear operators) and (ii) RL, (the R-linear operators). Part (i) is

straightforward, since LR = Ln n Rn = Rn is the set of real linear operators. Part (ii)

is more involved. To begin, we prove the following lemma.

Lemma 119. Let W: Rt+ 1 (R) -+ 7-t 1 (R) be a real linear operator. Then

L(W) = tra[W(Ia - iXaZa)]) + ('tra[W(Za + iXa)]) K. (8.22)
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Proof. We consider the evolution of an arbitrary state 10) under L(W) = C o W o :

w

L4 [((OL + i (1la)W 1O)a R + ((Ola + i (1Ia)W 11)a ] 4') . (8.23)

= ((Ola +i(lla)W 0)a R + ((Ola +i|a)W 11)a D

1
= ( + 1 ((01a +i(1|a)

1
= [((Ola W 1O) + i (11 W |)-i (0 Wi) (1 W1))I2 a '0a W 1a + (1a W 1a1

+((OMa W 10)a + i (11a W I0)a + ' (01a W 11)a - (11a W I1)a)K]
1

= {tra[W(|0)(0 + i10)(11 - i1l)(0 + 1)(1)a]I
2

+tra[WV(0 + i10)(11 + i11)01 - 11)(1I)a]K}

= ( tra[W(Ia - iXaZa)] ) + tra[W(Za + iXa)]) K.

The above proposition shows that the R-linear operators can always be written

in the form A + BK. It happens the converse is also true: any operator of the form

A + BK is an R-linear operator, as the following lemma proves.

Lemma 120. Let A, B : 'H, (C) -+ N(C) be complex linear operators. Then,

P(A+BK) = RA®I+A®XZ+ RB®Z+B®X, (8.25)

which is a real linear operator.

Proof. We consider the evolution of an arbitrary state 1<) under P(A + BK) =

Pao(A+BK)oL. Writing A+BK = C R+DQ, where C = A+B and D = i(A-B),
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W |1)a (I- K)

(8.24)

F1

|@) R|@|0),+ @|)|1)

W 1O)a R 10) + W | 1)a' 10)



we get

k#) 4L
A+BK

74

(0|a' -1|) + 0 1a'(1|0-|)

C (Oa ) + D(1|a 1k)

(RC (0a - q3) + RD (1|a - 10)) 0 10)a (8.26)

+(QSC (01a' -0) + QD (11a - 10)) 0 11)a

= (RC 00)(01+ C o1)(01 + RD 0)(11+ GD 1)(11|).

(8.27)

Hence,

P(A + BK) = R(A+B)0|0)(0|+QV(A+B)Oj1)(0|

+R(i(A - B)) ® 10)(11 + Qv(i(A - B)) ® 11)(11

= RAO (10)(01 + 1)(1)+RB® (10)(01 - 11)(11)

+QA ® (11)(0| - 10)(1|) + ! B 0 (|1)(01+ 10)(1|)

= RA&I+A&XZ+RBoZ+aBoX.

Note that Eq. (8.25) is a generalization of Eq. (9) of [101]. Indeed, when B = 0, we

obtain an expression for the rebit encoding P of the linear operator A in terms of its

real and imaginary parts10 :

-P(A) = RA 0 I + VA ® XZ. (8.29)

Lemmas 119 and 120 tell us that an operator F is R-linear if and only if it can be

written in the form F = A+BK, where A and B are complex linear operators. It turns

out that operators of the form A +.BK have the following alternative characterization

(see Chapter 8.8.3):

'0 See Chapter 8.8.5 for equivalent expressions of P(A).
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Theorem 121. Let V and V' be complex vector spaces, and f V -+ V' be a

function on V. Then, there exist linear maps A and B such that f = A + BK if and

only if

f (ax + by) = af(x) + bf (y) (8.30)

for all a,b E R and x,y E V.

Proof. See Theorem 178 of Chapter 8.8.3. L

Hence, we obtain the following equivalent notions of R-linearity.

Theorem 122. Let F : 7-(C) -+ W-(C) be a n-qubit operator. Then the following

three statements are equivalent.

1. F E RLn, i.e. P is R-linear.

2. There exist complex linear operators A and B such that P = A + BK.

3. F(a IV) + b 10)) = aF(10)) + bF(10)) for all a, b E R and 10), ) 1 (C).

Before moving on, we address the notion of an operator norm for R-linear opera-

tors. We start by recalling the operator norm for linear operators.

Definition 123. For F E Ln, the operator norm, denoted |f||7 is defined as

|FHI| = inf{ > 0: IF [) 11 <; 'El1) 11, V L) E 7n(C)}. (8.31)

Equivalently, this is the largest singular value of F. Recall f4|) is the 12 norm from

Proposition 113.

For R-linear operators, we advocate a norm built from the norm for linear opera-

tors and the encoding map P.

Definition 124. For F E RL,, let I||IH = I|P(F)II be the operator norm.

This norm satisfies the triangle inequality due to the R-linearity of P from Propo-

sition 117. To justify using the same notation in Definitions 123 and 124, we do

have to check that they coincide when F E L,. We verify this in Proposition 186
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in Chapter 8.8.6. With the operator norm on R-linears, we also gain the ability to

define E-approximations, and we follow [203] in the inclusion of an ancilla system.

Definition 125. For ii > n, we say F E RLf e-approximates F E RLn with ancilla

b) E ~-Hhn(C) if

(4' F |@) - Fit = ||P((4'I F 4)) - P(F)ii < E, (8.32)

where the R-linearity of P (Proposition 117) justifies the equality.

8.2.2.2 R-unitary operators

Consider the set U, of unitary operators on n-qubits. Then U : U n R, -

T, is the set of real unitary (i.e. orthogonal) operators. To find necessary and

sufficient conditions for a operator to be R-unitary, we compute the image of the set

of orthogonal operators under L:

Theorem 126. Let A+BK E RL, be an R-linear operator. Then P(A+BK) ETC g

if and only if

AtA+B T B-I

AtB+B T A=0. (8.33)

Proof. P(A+ BK) RAoI +AoXZ+ RB0Z+B0 X is orthogonal if and

only if

I I = (RA®I+aA&XZ+RBOZ+a B0X)T

(RAoI+ AoXZ+ RB0Z+B X)

= (RAT RA + aAT A + RBT RB + aB T B) 01

+(RA T B - aAT RB - RBT A + aBT RA) 9 X

+(RATA - -A TBRA-RBTB + aBTB) 0 XZ

+(RAT RB + AT QB + RB T RA +!aBT A) & Z
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= (R(AfA) + R(BtB)) 0 +1 ((AtB) - I(BtA)) O X

+(9(AtA) - a(BfB)) 0 XZ + (R(AtB) + R(BtA)) 0 Z (8.34)

which holds if and only if

R(A tA) + R(BtB) = I (8.35)

Q(AtB) - a(BfA) = 0 (8.36)

a(AtA) - a(BtB) = 0 (8.37)

,R(AtB) + R(BtA) = 0 (8.38)

which holds if and only if

AtA+BT&=I

AtB+B TA=0. (8.39)

In Chapter 8.8.4 (see Proposition 183), we show that an R-linear operator satisfies

Eq. (8.33) if and only if it is a unitary element of the R-linear group with respect to

the dagger operator t defined by

(A + BK)t = At + BT K. (8.40)

This, together with Theorem 126, implies the following theorem.

Theorem 127. Let A + BK E RL, be an R-linear operator. Then A + BK is

R-unitary if and only if A + BK is a unitary element with respect to the t operator

defined by Eq. (8.40).

Since the unitary operators are a proper subgroup of the linear operators, Proposi-

tion 118 implies that the R-unitaries are a proper subgroup of the R-linear operators.

In particular, there exist R-linear operators, like I + K, which are not R-unitary.
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Note that since Eqs. (8.33) are not scale invariant, any R-unitary F gives rise to a

family of non-R-unitary elements cr, for c E C, HCI $ 1.

We note that in the proof of Theorem 126, we used the property that a matrix W

is orthogonal if and only if WTW = I. But this is equivalent to the condition that

WWT = I. In Chapter 8.8.7, we present an alternative formulation of Theorem 126

that uses the latter criterion for orthogonality.

Finally, we notice that the group of R-unitary operators has a center Z(RU,) =

{ I} = RZ(U,) in contrast to the center of the unitary group Z(U.) = {e'I : q E

R}, consisting of all global phases. Since arbitrary global phases do not commute

with the rest of the R-unitary group, we might expect to actually observe them.

After setting up a framework for encoding and decoding measurements in the next

section, we show how such a measurement of the global phase works in Section 8.2.4.

8.2.3 Rebit encoding and decoding of measurements

The final circuit ingredient is measurement. Recall that measurements of quantum

systems may be described by a collection of measurement operators {Mm} satisfying

[180]

MtA/m = I, (8.41)

where the probability that the result m occurs when a state L4') is measured is given

by

||Mm IV)) 12. (8.42)

Let { Mm } be a collection of measurement operators on N 1 (R). We assume that

each Mm is real, i.e. 9Mm = 0. Let {Fm} be a collection of operators on W,(C).

We say that a {Fm} is a rebit decoding of {Mm}, or that {Mm} is a rebit encoding of

{Fm}, if for all |#) E -((R), we have

|IFm 1) 112 =AMm 10) 112. (8.43)

The collection {Fm} can hence be thought of a set of "R-measurement operators" on
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the space WY(C). The probability that the result m occurs when a state |$) E 7t(C)

is measured is given by

HFm 1,) 112. (8.44)

Our next proposition relates {Mm} to a rebit decoding of it.

Proposition 128. {L(Mm)} is a rebit decoding of {Mm}.

Proof. This follows from noting that

IIL(MAm)L #) 112 = IIL(Mmk1))11 2 = 1Mm| 1#) 112. (8.45)

It turns out that C(Mm) also obeys the completeness relation given in Eq. (8.41):

Proposition 129. Let Fn =(Afm). Then,

Z FF_ - I.
n

Proof. To prove this, consider

ZF Fm
M

= ZL(Mm)tI(Mm)

- ZI(Mm)L(Mm), by Proposition 181

(L MmMm

= I(I) =I. (8.46)

LI

We now give a top-down example. How is a computational basis measurement

on qubits simulated using the rebit encoding? The following proposition tells us that

this may be done by simply performing a computational basis measurement on the

first n rebits in the encoded circuit, and discarding the ancilla rebit.
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Proposition 130. The rebit encoding of the computational basis measurement de-

scribed by measurement operators {m)(mI}, is given by {m)(ml 0 Ia}m.

Proof. Substituting W = lm)(m| 0 Ia into Eq. (8.22) and using the fact that the Pauli

matrices X, Y and Z are traceless, we obtain

L(m)(mI 0 Ia) = Im)(mI. (8.47)

Using Proposition 128 completes the proof. Alternatively, we may verify directly that

II(Im)(mr 0 Ia)p(kb)) 12
=MM |0(m - I)(R 10) 0 IO)a + QV 10) 0 1)W)|12

I I (m I R ) IO)a + (ml 9 1) 1)a 11

=Kml R I)2 + (ml 9|)2

I( R IV) + i (ml IV)) 12

I (m1 ) 12

(|m)(m) k) H2.

We now consider the following bottom-up example. What does it mean to measure

the ancilla qubit in the computational basis? The following proposition reveals that

this corresponds to measuring the eigenvalue of the complex conjugation operator K,

thereby projecting an n-qubit quantum state to its real or imaginary part.

Proposition 131. The rebit decoding of the set of measurement operators {(I +

Za)/2, (I - Za)/2} = {0)(Ola, 11)(11a} is {(I + K)/2, (I - K)/2} = {R, Q}.

Proof. By Eq. (8.22),

1(Za) = tra[Za(Ia - iXaZa)]) + ('tra[Za(Za + iXa)]) K = K, (8.48)

since the Pauli matrices X, Y and Z are all traceless. Using Proposition 128 completes

the proof. L
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8.2.4 Bottom-up tomography

Given a pure n +1 rebit state 1#), we sketch a procedure to find the amplitudes up to

a global +1 sign using only orthogonal operators and single-rebit measurements in the

computational basis. This is the natural form of tomography on the simulation space

P and translates through the decoding map L to a tomographic procedure on n-qubit

states that makes use of R-unitary operators, computational basis measurements, and

projection onto the eigenspaces of complex conjugation K.

Theorem 132. An n-rebit density matrix is determined exactly by measurement of

the (4" + 2')/2 observables

9= {pz=pi Op2  ... -pn : p E {I, X,Y, Z},p= P}. (8.49)

Moreover, any given p E ( can be measured using single-rebit computational basis

measurements, along with H and CZ gates.

Proof. Let p = 1#) (#1 be the real density matrix corresponding to |#), a generic

n-rebit state. Then, because p = p = pT there is a decomposition

p = E app (8.50)
pEO

for some real coefficients ap E R. Since tr(p) = 1 and all p -# 10' satisfy tr(p) = 0,

we have ar1 ® = 2-n. Evidently then, learning the values of ap = tr(pp) by repeatedly

measuring the observable p effectively learns p. Given p, 1#) is determined up to a

sign +1.

The size of ( can be calculated by noticing that any p E ( must have an even

number of Ys in its tensor product due to the reality condition p = p. Thus,

101 = 3 + 3f-2 ()+ 3-4(2) + ... + 3n-2Ln/22 n/ (4n +2 2)/2. (8.51)

Notice that this is strictly greater than the number of rebit measurements that mea-

sure a subset of rebits each in the X-basis and another disjoint subset each in the
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HA-
(a) (b)

(c)

Figure 8-3: The proof of 2-locality of rebit tomography using H, CZ, and single-

rebit computational basis measurements. (a) Measuring Z, (b) Measuring X, and (c)

Measuring Y 0 Y.

Z-basis - there are 3" such measurements, corresponding to observables in

0' = {Pi 0p 2 0... 0 Pn : p3 E {I, X, Z}}. (8.52)

Since j0' = 3 < (4" + 2n)/2 = 101 for all n > 1, there is no way to satisfy

tomographic locality [120] in rebit tomography. That is, there is no way to completely

learn a rebit state 1#) using only single-rebit orthogonal gates and computational basis

measurements. We must therefore use at least a two-rebit gate, and it turns out this

(in particular, the CZ gate) is sufficient, as we show next. Therefore, real quantum

mechanics satisfies a slightly looser axiom of tomographic 2-locality.

To show tomographic 2-locality, we need only show how observables in 0 can be

measured using the gates H and CZ and single-rebit measurements in the compu-

tational basis (i.e. measurements of Z on a single rebit). Since any element of 0 is

made up of a tensor product of X, Z, and Y 0 Y, we need only show how to measure

these using the components given. The circuits in Fig. 8-3 demonstrate this. L

Because Theorem 132 allows us to learn an (n+1)-rebit state j#) up to a sign, we

can also determine 4V) = L(1#)) up to a sign, including the (typically unobservable)

global phase of 1'). Mapped to the simulated space, the operators used for rebit

tomography in the proof of Theorem 132 become R-unitaries and measurements of

observables Z and K (using the encoding and decoding of measurements results in

Section 8.2.3).
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8.3 Partial antiunitarity

In the previous section, we characterized the set of operators that a bottom-up rebit

simulation can simulate as the R-unitary operators. In this section, we pay special

attention to a subset of the R-unitaries that we call partial antiunitary. These opera-

tors are mathematically an interpolation between unitary and antiunitary operators,

which are each special cases. Partial antiunitaries, as we show in the Section 8.5, are

also sufficient to densely generate the entire group of R-unitaries. We find it conve-

nient to start by defining the partial complex conjugation operator, which is partial

antiunitary itself and is central to the study of the entire set of partial antiunitaries.

8.3.1 Partial complex conjugation

Let L C {0, 1}' be a language. We define the partial complex conjugation operator

with respect to L to be KL :-tn(C) -- -t(C), where

KL: li) - Z(xkb) x) + ZK-x) x) (8.53)
x L xEL

This generalizes the notion of complex conjugation. Indeed, when L ={O, 1}, we

get KL = K. Note that the identity operator I is another special case of KL: when

L = 0, we obtain KL = I. Two other examples of KL that will be important in

this chapter are the controlled complex conjugation operator CK and the controlled-

controlled complex conjugation operator CCK, which are defined as follows: The

CK operator on the jth register, denoted CKj, is the partial complex conjugation

operator with L = {x E {0, 1}?l|X = 1}, i.e.,

CKj : 10) Z (io)Ix) + Z (Olx) x), (8.54)
x:xj=O x:xj=1

and the CCK operator on the ith and jth registers, where i # j, denoted CCKij is

the partial complex conjugation operator with L = {x E {O, 1}"JX, = Xj = 1} = {x E

262



{0, 1}"|xixj = 1}, i.e.,

CCKi : IV)) E (xlV))Ix)
x:xixj=0

+ E (o |x)x) .
x:xixj=1

(8.55)

We can also express KL in terms of orthogonal projections (see Chapter 8.8.8).

By denoting

H(L) = span{Jx) : x E L},

'IL projH(L) Z xi,
xEL

HI'(L) = span{jx) : x V L},

eL = proJHji(L) = |x)(x|,
x L

(8.56)

(8.57)

we may express KL as follows:

Proposition 133.

(8.58)

Proof. First, we note that since 1IL is a matrix with only real entries, KiL = 'ILK.

Now,

(OL + KHL) ) = I x) (x )
x L

+ K Ix) (xlo)
xEL

- E(x ) Ix) + ZKwx) Ix) = KL 10),
xCL xEL

which completes the proof.

Its image under P is given by

Theorem 134.

P(KL) = OL 0Ia +L 9 Za.

Proof. By using Eq. (8.25),

P(KL) -L 0a +LJE L 0 XaZa + JrL 0 Za +QIL 0 Xa

= L 0Ia + HL 0 Za.
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KL =L+KIL=eL+ILK.

(8-59)

(8.60)

(8.61)



0

Remark 135. An immediate consequence of Eq. (8.60) is that KL is not just R-linear

but also R-unitary, as the RHS of Eq. (8.60) is orthogonal.

8.3.2 Partial antiunitary operators

Let W be a complex vector space with inner product (-, -). A unitary operator on N

is a function f : N -+ N for which

(f(x), f (y)) = (x, y), for all x, y E N.

An antiunitary operator on V is a function g : N --+ N for which

(g(x), g(y)) = (y, X), for all x, y E N.

Note that a consequence of these definitions is that unitary operators are linear and

antiunitary operators are antilinear".

We shall now generalize the above definitions of unitarity and antiunitarity. Let

C N be a subspace of N. Let f, g : N -+ N be operators on N. We say that f is

unitary on 3 if

(f (), f (y)) = (x, y),

We say that g is antiunitary on E if

(g(x),g(y)) = (y, X),

for all x, y E .

for all x, y E E.

"1Let N be a complex vector space. A function R -* W is an antilinear operator if

f(ax + by) = af(x) + bf(y)

for all x, y C N and a, b C C. To show that unitarity implies linearity, consider the expression

If (ax + by) - af(x) - bf(y)II = (f(ax + by) - af(x) - bf(y), f(ax + by) - af (x) - bf(y))

and show that it is equal to zero. By definition of a norm, this implies that f(ax+by) = af (x)+bf(y).
The proof that antiunitarity implies antilinearity proceeds similarly.
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Hence, a unitary (antiunitary) operator is one that is unitary (antiunitary) on N. We

may now define a partial antiunitary operator1 2 as follows:

Definition 136. Let E C N be a subspace of a complex (finite-dimensional) vector

space N. An operator F on N is a partial antiunitary operator with respect to B if

(i) F is additive, i.e. F(o + o) = F(4) + F(#) for all 4, # E N.

(ii) F is unitary on EL, i.e. (F(V)), F(#)) = (4, #) for all 4, 0 G B'.

(iii) F is antiunitary on E, i.e. (F(4), F(#)) = (0, 4) for all 4, # E E.

(iv) (F(), F()) = 0 for all 0 E B and 0 B'.

The partial antiunitary operators include unitary and antiunitary operators as

special cases: a unitary operator on N is a partial antiunitary operator with respect

to {O}, and an antiunitary operator on N is a partial antiunitary operator with respect

to N.

The above definition of partial antiunitarity could also be phrased in terms of

orthogonal projections:

Proposition 137. An operator F on N is a partial antiunitary operator with respect

to a subspace B C N if and only if for all 4, # E N,

(i') F(4' + #) = F (o) + F (o).

(ii') (Fe4, FOq) = (0, 60).

(iii') (FF4', Frio) = (HO, H).

(iv') (f i4, Fre) = 0.

where L = proj= and E = proj .
12The term partial antiunitary appears on Page 2 of [170], where it was used as an example of an

operator that can be simulated by the rebit encoding. However, an exact definition was not given
in [170]. Also, [170] does not address whether the rebit encoding allows for the simulation of more
than just products of partial antiunitaries. In this chapter, we give a precise definition of partial
antiunitarity and address the above question.
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Proof. Equivalence holds since 4 = 80 and 0 = 0# for all 4, # E 3', and 4 = rl4'

and 0 = HO for all V), # E E. l

We will now give a third characterization of partial antiunitary operators.

Theorem 138. An operator F on N is a partial antiunitary operator with respect

to a subspace 3 C H if and only if for all #, # E N,

(FO , F) = (00 ,q0) + (H#, H), (8.62)

where rl = proj= and E = proj .

Proof.

( -= ) Assume that F is a parital antiunitary with respect to E. Let 4, E N. Then

we could write / = H4 + 804 and 0 = H# + 6#. This implies that

= (F(14+ 04'), F(# + Eq#))

= (P114' + Fe4', Fllqs + Feqs), by additivity

- (FP4, FrF) + (I'freqs) + (P4e, Fr1) + KFeo, ie4)

- (4, 114') + 0 + 0 + (04', 80), by Proposition 137 (ii'), (iii'), (iv')

= (0, 0) + (110, r14).

( --=) Assume that Eq. (8.62) holds.

(i') We first show that Eq. (8.62) implies that F is additive. Consider the

expression

I|F(O + #) - F() - F(O) 12

= (F(+ 0) - F() - F(#), F( + ) - F() -F())

= (r(4'+qs),vf(4'+qs)) + (F(4'), F(4)) + (F(#'), F(#))

+[-(F(4 + #), F(4)) - (F(4 + o), F(#)) + (F(4), F(#)) + c.c.]

= (0(4 + 4), 0(4' + 0)) + (0(), (4')) + (0(#), 0(#))

266

(Ip4, F#)



+[-K(?(k + #), 0(() - ( ( #), ()) + (E(O), 0(0)) + c.c.]

+ (E) ++ H)

= (E)(0 + 0) - E)(0) - E)(0)1 ), (0 + 0) - E)(0) - E)(0)) + (E) ++ rl)

= 0,

where c.c. stands for complex conjugate, and where the last line follows

because both H and E are linear. By the properties of a norm, F(V) +#) =

F()+ F().

(ii')

( r08, FOq) (E2 b, (E20) + (j1O, H0E) = (0O, 00).

(iii')

(FF14, F170) = (E3H4, E17L0) + (H 2o, H24') fl, ).

(iv')

(FF4', F0b) = (0)114, E2)2) + (U&3, f120) = 0.

Note that we used the facts that yj2 - [1 2 = 0 and 611 = HO = 0.

Note that we could have defined a notion of partial unitarity analogously. It would

then follow that an operator F is a partial unitary with respect to E if and only if F is

a partial antiunitary with respect to EL, since (71)I = 3 for finite-dimensional vector

spaces. Since we could easily relate the two notions, we will (somewhat arbitrarily)

choose to phrase all subsequent results in terms of partial antiunitaries.

We now give an example of a partial antiunitary operator that is neither unitary

nor antiunitary in general:

Proposition 139. KL is a partial antiunitary operator with respect to H(L).

Proof. We shall make use of Theorem 138. Then,

(KLO, KLq$) = (((L + KrHL)O, (EL + KHL)b), by Eq. (8.58)
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= (eLV), eL) + (KHLI, OL) +(ELN, KiLq) + (KlL, KrILN).

But (KHL4, OL ) = (IILKL, O) - (fLKO, eLO) = (ILKO', llL 0 LO) = 0,

where we used the identities ILK = KiL, IIL = LHL and ILOL = 0, as well as the

definition of the adjoint. Likewise, (0 L4 , KILO) = 0. Finally, (KllLO, KIL)

K((L, LL)) , L). Hence, (KLV, KLO) = (OL, OL) + (IL, IIL4'),

which means that KL is a partial antiunitary operator with respect to H(L). L

Next, we show that multiplying a partial antiunitary with respect to H(L) with

KL produces a unitary operator.

Proposition 140. Let F be a partial antiunitary (on N) with respect to H(L). Then

FKL is a unitary operator on N.

Proof. Assume that F is a partial antiunitary with respect to H(L). Then for all

', NE N,

(FKL9, FKLO$ = OLKL4, ELKL)) + KLKLO, FJLKLO)

(L(E)L +ILK)', EL(EL + ILK/))

+(FIL( 0 L + rILK)$, IlL(EL + fILK)()

= (ELO, OLO5 ( 7 LKO, HLK4').

But the latter term in the sum is equal to (ILKO, IlLKV)) = (KIL5, KHLV)

K(iL$, JILV))) = (1L, HLJ). Hence,

(FKLO, FKLO) = L75L, OL5) + (HLO, RLq)

= (ELV75, OLO) + (OL7s, IILO) + (ILO, OLO) (ILO, ilL$)

= (OLO + uLO, OL+L) = ( )-

Since this holds for all q, 0 E N, FKL is unitary. 0

While the product" of two partial antiunitary operators may not be partial an-
13We define the product of two partial antiunitary operators A and B to be their composition,
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tiunitary (we show this later in Theorem 148), the product of a partial antiunitary

operator with either a unitary or antiunitary operator is always partial antiunitary,

as the following theorem shows.

Theorem 141. Let E C be a subspace of a complex vector space W. Let U be a

unitary operator on H and V be an antiunitary operator on H. Then the following

statements are equivalent.14

(I) F is a partial antiunitary with respect to E.

(II) FU is a partial antiunitary with respect to Ut(3).

(III) UF is a partial antiunitary with respect to E.

(IV) FV is a partial antiunitary with respect to (Vt(3))I.

(V) VF is a partial antiunitary with respect to E'.

Proof. We first show that if U is either unitary or antiunitary, then

proj=U = UprojUt(=). (8.63)

To see this, let {taj)}' 1 be a basis for E. Then {Ut Jaj)}_ 1 is a basis for Ut(E).

Hence, by Proposition 188 in Chapter 8.8.8,

proj=U = 3|ai)(ailU

= UZUtija)(aijU
i=1

= Uproj Ut().

Now, (I) holds if and only if for all V), # E H,

(P', F7) = (proja 4', proj= 4)) + (projs#, proj=V').

i.e. AB:= A o B.
"Here, we use Ut(B) to denote the set {Ut& G E}.

(8.64)
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Since

(*) e-> (FU4,FU#) = (proja U4,,proj= Uq))+(proj=U,proj U)

= (UprojUt( )V), UprojUt(= )O)

+(UprojUt ;-), Uproj Ut (=)

= (projUt(=) _,, proj t (E)1 ) + (projt (=)N , proj Ut(=) 4 )).

Therefore, (I) is equivalent to (II).

Since (UF4, UFq) = (VP#, Vro) = (ro, F#), (I) is equivalent to (III) and (V),

by using Eq. (8.64).

Finally, since

Eq. (8.64) - (FV,, FVO) = (proj=-LV , proj=-LV#) + (proj=V#, proj=V4)

(Vprojvt(= )4,, Vprojvt(=. )#)

+ (Vprojvt(=), Vproj vt (=)4 )

= (projVt(=)_#, projvt(=)L V)

+ (projvt (=) 4', proj Vt (E))

(I) is equivalent to (IV).

We now use Theorem 141 to prove the following corollary.

Corollary 142. Let E be a subspace of the n-qubit Hilbert space '-t(C). If F is a

partial antiunitary with respect to E, then there exist a language L C {0, 1}n, with

ILI = dim(=), and a unitary operator U mapping H(L) to E, such that FU is a partial

antiunitary with respect to H(L).

Proof. We are given that H(L) = Ut(E). By (I) =- (II) of Theorem 141, FU is a

partial antiunitary with respect to Ut(E) = H(L) since F is a partial antiunitary with

respect to E. LI

We are now ready to combine the result above from Corollary 142 with Proposi-

tion 140 to show that any partial antiunitary operator can be written as a product
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of KL with unitary operators.

Theorem 143. Let E be a subspace of the n-qubit Hilbert space 7-t(C). If F is a

partial antiunitary operator with respect to E, then there exist a language L C {O, 1}",

with ILI = dimE, and unitary operators U and V, with V mapping 7 to H(L), such

that

F =UKLV. (8-65)

Proof. By Corollary 142, F being a partial antiunitary with respect to E implies that

FVt is a partial antiunitary with respect to V(:) = H(L). By Proposition 140,

rVtKL = U for some unitary U. Since KL is its own inverse, this implies that

F = UKLV, which completes the proof of the theorem. L

Theorem 143 tells us that if we wanted to simulate any arbitrary partial antiuni-

tary operator, it would suffice to just use products of unitary operators and partial

complex conjugation. Next, we show in the next two theorems that partial antiunitary

operators are a special case of R-linear operators, and that not every R-linear oper-

ator is partial antiunitary. In fact, the partial antiunitaries, unlike the R-unitaries,

are not a subgroup of the R-linear operators.

Theorem 144. If F is a partial antiunitary operator, then it is R-unitary.

Proof. By Theorem 143, we could write F = UKLV, where L C {0, 1}' and U and

V are unitaries. By Remark 135, KL is R-unitary. Since the R-unitaries are closed

under multiplication, F = UKLV is also R-unitary.

Our characterizations of partial antiunitary operators thus far (Definition 136,

Proposition 137, and Theorem 138) all involve universal quantifiers and do not provide

us with an algorithm to decide if a given R-linear operator is partial antiunitary. In

the following theorem - our fourth characterization of partial antiunitary operators -

we give necessary and sufficient conditions, which can be checked efficiently, that A

and B must satisfy, in order for F = A + BK to be partial antiunitary.
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Theorem 145. An operator F on W- is a partial antiunitary operator with respect

to a subspace CE C7 if and only if F = A + BK for complex operators A and B

satisfying

AtB = 0 (8.66)

AtA = E (8.67)

BtB = fI (8.68)

where E = proja and 1 = proj=.

Proof. We first prove the forward direction. Let F be a partial antiunitary operator

with respect to E. Then by Theorem 143, there exist unitaries U and V, and a

language L satisfying V(-) = H(L) such that

F= UKLV

U( 0 L+ULK)V

= (UELV)+(UJLv)K

A+BK, (8.69)

where A = UELV and B = UHLV-

Next, we check that the conditions Eq. (8.66)-(8.68) are satisfied.

AtB = (UELV)t(uuLV)

= VteLLLf7

= 0. (8.70)

AtA = (UeLV)t(UOLv)

- VtELV

=. (8.71)
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BtB = (UHLV)t(Ur7LV)

= VTI7ILV

= VtIILV

= fl. (8.72)

where we used the following identities that follow from Eq. (8.63):

OLV = projHI[(L)V = Vprojvt(H(L)) = Vprojg = VO. (8.73)

and

rJLV = projH(L)V =Vprojt(H(L)) = Vproj, = VII. (8.74)

We now prove the backward direction. Let F = A + BK, with A and B satisfying

Eq. (8.66)-(8.68). Let and 0 be arbitrary. Then,

(FO, FO) ((A + BK)O, (A + BK)O)

= (AV), AO) + ( AO, BO) + (BV), AO) + (B4, Bb)

= (V, AfA#) + (4', AtB) + (N, BtAO) + (4', BtB)

= (,0) + 0 + 0 + (,v )

= (07, 0#) + (H#, 14). (8.75)

Theorem 145 gives us an efficient algorithm (in terms of the dimensions of the ma-

trices A and B) for deciding if a given R-linear operator A+ BK is partial antiunitary.

We simply need to compute the matrices si = AtB, s2 = AtA and s3 = BtB, and

check that s = 0, s2 =s = st (which is the definition of an orthogonal projection)

and s3 = 1 - S2 (since e + H = I). The theorem also gives us the following corollary.

Corollary 146. Let F = A + BK be R-unitary. Then F is partial antiunitary with

respect to a subspace . if and only if
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AtA =e and AtB = 0, (8.76)

where E = proj=.

Proof. The forward direction follows immediately from Eq. (8.66) and Eq. (8.67).

Next, we prove the backward direction. Assume that Eq. (8.76) holds. Then, Eq.

(8.66) and Eq. (8.67) are immediately satisfied. Since F is R-unitary,

AtA + BT B = I. (8.77)

Hence,

BtB = (BTB) = I - AtA = I - 0 = H. (8.78)

We conclude this section by proving some closure properties of the set of partial

antiunitaries. First, we show that the partial antiunitaries are closed under inverses

(i.e. under t).

Theorem 147. If F is partial antiunitary, then Ft is also partial antiunitary.

Proof. If F is partial antiunitary, then by Theorem 143, there exist a language L

and unitaries U and V such that F = UKLV. Hence, Ft = VtKLUt. Since partial

antiunitaries are closed under multiplication by unitaries (by Theorem 141), Ft is

partial antiunitary.15  E

Next, we show that the partial antiunitaries are not closed under multiplication.

As a consequence, they are not a subgroup of the R-unitaries, i.e. there exist R-

unitary operators that are not partial antiunitary.

151f I, is partial antiunitary with respect to 7 and F t is partial antiunitary with respect to E,
one may wonder about the relation between E and E. Since, by Theorem 145, proj=1 = AtA and
projEI = AAt, it is clear that at the very least dim= = dimE, and thus these spaces are related by
a unitary. To actually find the unitary, perform the polar decomposition of A = UP into a unitary
U and positive semi-definite P. Then proj=x = P2 and projEi = Uproj= Ut.
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Theorem 148. There exist partial antiunitaries F and A such that FA is not partial

antiunitary.

Proof. On a single-qubit, let K1 be the partial complex conjugation operator with

respect to the language L = {1} (equivalently, K1 = CK1 is the controlled complex

conjugation operator on the first (and only) register) and consider single-qubit op-

erators F = K1H and A = SHK1. These are both partial antiunitary by Theorem

141. Their product, however, is

1
FA =K1HSHK =

1 e i/4

v/_ ( 1

k

0)

k0

e i'/4

e- i7r/4

16where k is the complex conjugation operator

Hence, FA = A + BK, where

1A = Ie i"/4

V2_

1

0

0
-I,

1
B = eir/4

V2_

from which it follows that

1
AfA = 1I

2'
AtB = -Y f 0,

2

which does not satisfy Eq. (8.76). Hence, FA is not partial antiunitary.1 7

16 1n this proof, we represented R-linear operators by matrices. Note that the elements of these
matrices are themselves R-linear operators, and do not belong to a field. We discuss matrix repre-
sentations of R-linear operators further in Chapter 8.8.9.

17Alternatively, we can show more generally that any Q = (c d ) is not partial antiunitary when
either a and b are both nonzero or c and d are both nonzero. This is because setting Q = A + BK
and calculating At B = (0 ) ( ) =( U ) # (88) in contradiction with Theorem 145 and in
particular Eq. (8.66).
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8.4 Simulating partial antiunitary operators

In the previous section, we studied various properties of the set of partial antiunitary

operators. In this section, we consider examples of these operators and study their

rebit simulation. We do this in two parts. First, we consider partial antiunitaries

which are also unitary. This is in line with the top-down approach taken by the initial

use of rebit simulation [25], where it is shown that real-amplitude quantum computers

are just as powerful as those with complex amplitudes. Second, we consider partial

antiunitaries which are neither unitary nor linear - operators for which a bottom-up

simulation is necessary.

8.4.1 Rebit simulation of unitaries: top-down perspective

We study the rebit encoding of unitary operators from a circuit point of view. The

encoding function P : U, -+ T,+i is a group homomorphism (see Proposition 116),

and hence P(UV) = P(U)P(V) for all unitary operators U, V E U,. This means that

if U is a unitary operator that is implemented by a circuit C consisting of unitary

gates G1,..., Gk, then P(U) is an orthogonal operator that can be implemented by

the circuit P(C), where P(C) is the circuit formed from C by replacing each gate Gi

in C with P(Gi).

We make use of the following conventions. Let G be a gate contained in an n-qubit

circuit. We write Gi...,i, to mean that G acts on registers ii, ... , is E {1, ... , n}. The

encoded gate P(G) is now a gate in an (n + 1)-rebit circuit. We will continue to

use the labels 1, ... , n to denote the first n registers, and will use the subscript a to

denote the last (ancilla) register.

We will now give examples of various common gates Gi and their rebit encodings

P(Gi).

Proposition 149. Under the encoding P(.), the gates below transform as follows

(1) Xi aXi

(2) Yi Xi -Xa - Zi - Za Y -Ya
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(3) Zi i-* Zi

(4) Hi - Hi

(5) Si CXia CZia = Ha CZia -Ha - CZia

(6) T F- CHia CZia

(7) CXi F- CXij

(8) CZij i-+ CZj

(9) CSi F- CCXija -CCZija = Ha - CCZija Ha -CCZija

(10) CCZijk CCZijk

(11) Y(O) :=cos(0/2)I - isin(0/2)Y F- Y(O)>

(12) eiO/ 2 Z(0): ei01/2 (cos(0/2)I - i sin(0/2)Z ) H- CY(20)ia

Proof. Gates G in (1), (3), (4), (7), (8), (10), and (11) have only real entries, and

hence they map to themselves under P.

(8.29).

For the other cases, we make use of Eq.

" For (2), Yi = iXiZi F- (XZ)i 0 (XZ)a = XzXaZzZa.

* For (5), Si = |0)(01 + ill)(11 - 10)(01i 0 Ia + 11)(11i 0 XaZa = C(XZ)ia =

CX7aCZza = HaCZiaHaCZia.

* For (6), T = |0)(01 + e r/ 4j1)(11 = 10)(0| + |f1)(1| + -ill)(1| F-+ (|0)(01 +

1)(I) 0 -[a + 11)(11i 0 XaZa 4 |0)(01i 0 la + 11)(11i 0 (I + XZ)a =

C( (I+XZ))ia= C(HZ)ia =CHiaCZia.

* For (9), CS = 10)(01i 0 I + 1)(11i 0 Sj = (100)(001 + |01)(01I + I10)(10 +

i|11)(11l)ij (100)(001+101)(01+10)(10|)ij0Ia+|11)(11lij0XaZ = CC(XZ)ija =

CCXijaCCZija =HaCCZija HaCCZija-

* For (12), ei/ 2Z(O), = 10) (01i + e'| 1) (1Ii - (10) (01 + cos(9) 1) (1I)i 0 'a -

isin(O) |1) (11i &Ya = |0) (Oi OIa + 11) (11i 0 (cos()Ia -isin()Ya) = CY(20)ia.
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0

In quantum mechanics, the global phase of a quantum state does not play any

physical role. Therefore, two unitary operators U1 and U2 that differ by a global

phase (i.e. U1 = e'"U2 for some 0 E R) are physically equivalent. How does this

equivalence manifest in the rebit encoding? To start answering this question, we first

define G(O) = e"I to be the global phase operator with angle 6. Since G(O) is unitary,

we could find its image under the rebit encoding P(-). As we shall now see, the image

(cos 0 - sin0
of G(O) under P is the rotation matrix R(O) = acting on the ancilla

sin0 cos0
register.

Proposition 150. P: G(O) H- R(0).

Proof. We compute the action of P on G(9).

1 0 0 -1
P :G(O) =(cos 0+ isin G)I (cos 0)I @ + (sin 0)I -1(

(0 1 a1 0)a

cos 0 - sin 0
= I® I zR(O)a.

sin0 cos 0

Since the encoding of the global phase operator is restricted to the ancilla, it

follows that measurements on the other n rebits will not give information about the

global phase. By Proposition 130 these are exactly the measurements of rebits in

P that correspond to qubit measurements in the simulated space L. On the other

hand, measurements on the ancilla can yield information about the global phase of

the simulated state, as we described in Section 8.2.4.
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8.4.2 Rebit simulation of non-unitaries: bottom-up perspec-

tive

We now give examples of the rebit simulation of various partial antiunitaries that are

not unitary (and not linear). As noted earlier, these are therefore operators for which

a bottom-up simulation is necessary. We then discuss the partial complex conjugation

operator KL for an arbitrary language L C {0, 1}' and make a connection between

the complexity of deciding L and the complexity of simulating KL.

As before, we use the indices i, j, k to refer to any of the first n registers, and a

to refer to the ancilla register. Given that we are allowed to perform any orthogonal

gate from T,+, on the n +1 rebits in the simulator, to find non-unitary simulations we

can just try various orthogonal gates and see if any decode to non-unitary operators

on the n qubit system being simulated. But notice, if an orthogonal gate T C T,

does not act on the ancilla register, its image under L is itself, since L(T 0 Ia) = T.

Hence, any gate not in 'P(U,) must necessarily act nontrivially on the ath register.

For instance,

Proposition 151. Under the rebit decoding L(-), the gates below transform as fol-

lows

(1) Ha HG(E)K

(II) Za+ K

(III) CZia F- CKi

(IV) CCZja H- CCKjg

(V) ChZc1,C2, . ,ch,a a ChK1,C 2 ,. Ch

Proof. Note that (II) was proved in Eq. (8.48). So next, we prove (I): First, note that

cosE -sin 1 0
H=- = ( ss=R -cZ(

v12 1 -1 sin z cos 1 0 -1 4
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which implies that

L(Ha) = L (R Za) = L (R (i))L(Za) = G K.

where we used the fact that L is a homomorphism for the second equality, and Eq.

(150) and Eq. (8.48) for the third equality.

For (III), we make use of Eq. (8.17). By denoting 4'xo = RJi/ and V).1 = Q O, we get

L CZia
xa

VixaIxa))

= : (-Z1)ia"xa
\ xa

Ixa))

= L E IX) (wXo 10) + (-1)xi4,1

S Ix) (OXO + i(-) 21,i)
X2

|1))

S ( xo + ixi)IX) + E ('OXo- ioxi) Ix)
x x =O x:x2=1

= 5I XE)+ E OI X)
X x2=O

= CK

x2:2=1

bxI) .)

Hence, C(CZia) = CKi. For (IV) and (V) the arguments are analogous and straight-

forward. 11

8.4.2.1 Simulation of the partial complex conjugation operator

Next, we consider the partial complex conjugation operator KL defined in Eq. (8.53),

where L C {0, 1}' is some language. We start by expressing the image of KL under

P (characterized, for example, in Theorem 134) in terms of the indicator function of

the language L.
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Proposition 152. Let L C {o, 1}'. Then,

p(KL) = S E (_l)aL(x)Ixa)(xal,

xE{0,1} aE{O,1}

where L(x) is the indicator function of L.

Proof. We make use of Theorem 134.

P(KL) L 0 I+HL Z

E x)(x & E a)(al + Ix)(xl 0 (-1)a La)(al
x L aE{O,1} xEL aG{O,1}

(-1)aL(x)1xa)(xal.
xE{O,1} aE{O,1}

(8.83)

(8.84)

We now show that if L C {0, 1}" is decidable by some quantum circuit CL, then

we can construct a quantum circuit that implements the operator P(KL). Here, we

say that CL decides L if when given input Ix), CL outputs IL(x)). More precisely,

taking into account all ancilla registers, the action of CL may be described by

CL IX)1,..., a = IL(x)), J(X))2 . (8.85)

where j(x) are junk bits.

Proposition 153. Let L C {O, 1}". Let CL = (CL)1,...,n,a be a quantum circuit that

acts on basis states according to Eq. (8.85). Then

P(KL)l,...,n,a (a (C) 1 ,...,n,aCZla(CL)1,...,n,a 10'0 (8.86)

Proof. Starting with the input state 1#) = Exa bxa Ixa) na and appending an
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ancilla register a initialized to 10), the system evolves as follows:

S 4xa Ixa)1 . na |O)a
xa x

xa

/)xa IL(x)), Ii())2,...,n,a 1a)a

,xa (-I)aL(x) jL(x)), Ij(x)) 2 ,. . 4 1aXa

Eoxa(-)"Lx I X) 1 a) 10)a.
xa

(01a (CL)1,...n,aCZa(CL)1,...,n,a tO)a (S Oxa Ixa) E 5 4 xa ()aL(x) X) 1 n a
xa

= P(KL) 1: Oxa Ixa) ,

(8.87)

(8.88)
xa

where the last line follows from Eq. (8.83). Therefore, Eq. (8.86) is true since the

above equality holds for all 1q). D

So far, our discussion has dealt with the case where n is fixed. We now consider

the case where n is allowed to grow arbitrarily.

Corollary 154. Let L c P. Then {P(KL)1,.n,a}n can be implemented by a uniform

family of polynomial-sized quantum circuits {Qn}n that comprise only orthogonal

gates.

Proof. L E P means that there exists a uniform family of polynomial-sized classi-

cal circuits {Cn},, where each Cn comprises only reversible gates, say Toffoli gates

and NOT gates, such that Cn(x, 0) = (L(x), j(x)). Let On be a quantum circuit

formed from Cn by replacing each classical gate by its quantum counterpart so that

Cn lx)1 .  |0)a = IL(x))1 tj(x))2 ,.  We then construct the circuit

(CL)1,...,n,aCZ1a(CL)1,...,n,a-

By Proposition 153, the circuit Qn - (CL)1,..,n,aCZla(CL)1,...n,a, after discarding
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ancilla rebits, implements P(KL). Furthermore, since C, is polynomial-sized, C

and hence Q, are also polynomial-sized. Finally, both the quantum Toffoli gate

and the quantum NOT gate (i.e. the X gate) are orthogonal gates. Hence, the set

{P(KL)1,...,n,a}n has the desired properties. 1

Corollary 155. Let L E P. Then {(KL)1.n,a n can be implemented by a uniform

family of polynomial-sized R-unitary quantum circuits {Qn} that comprise only

CCZ, H gates and exactly one CK gate.

Proof. The circuit Qn constructed in the proof of Corollary 154 is

(..... )1,...,n,aCZa(CL)1,...,n,a,

and it implements the operator P(KL). By applying the rebit decoding operator L

to this, we find that

KL = L(0L)1,...,n,a1(CZla)12(OL),...,n,a = L(CL)I,...,n,aCK1(OL)1,...,n,a,

where we used the fact that the circuits OL and its inverse are unchanged by the

unencoding (this holds since they do not act on the ancilla register). Now, the Toffoli

and X gate can be simulated by H and CCZ. Hence, {Qn}, can be simulated by

only the gates CCZ and H and a single CK gate. D

Let us now specialize Eq. (8.86) to the controlled-controlled complex conjugation

operator CCK, which is a special case of KL. While we know from Proposition (151)

that CCK can be simulated using one CCZ gate, the following equivalent simulation

makes use of the previous discussion and shows that the ancilla need only be operated

on by a single two-qubit gate.

Proposition 156.

P(CCKij) = (00 CCXijaCZaaCCXia O)a. (8.89)

Proof. We shall use the construction of the circuit described in Proposition 153, with
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a few modifications to the labels. Recall that CCK corresponds to the language

L = {x : xjxj = 1}, i.e. L(x) = L(xix). Note that the circuit CL = CCXij maps

|x)1 .  O )a - xixj) 1 x)s., = jL(x)), x) 1. , which is of the form given in Eq.

(8.85), except that the labels 1 and a are switched. Hence, by replacing the labels la

in the CZ gate in Eq. (8.86) with aa, we obtain Eq. (8.89). 0

8.5 Universal gate sets for R-unitaries

In Section 8.4, we found several examples of nonunitary operators, like K, CK and

CCK, that can be simulated by orthogonal quantum circuits via the rebit encoding.

The goal of this section is to find universal sets of gates for the R-unitaries. We first

introduce some definitions.

Definition 157. Let g1 and G2 be two gate sets18 . We say that G2 exactly simulates 91

if for all G c g1 , there exists a circuit C formed using gates in 92 and ancilla registers

(that can be initialized to any computational basis state) such that (aI G b) = (aI C Ib)
for all vectors a, b. We say that g 2 approximately simulates gi if any gate in 91 can be

approximated in the operator norm (e.g. Definition 124) to within arbitrary accuracy

by a sequence of gates from g 2.

Write Gi G2 if g 2 exactly simulates g,; and 91 < 92 if 92 approximately

simulates g. If 91 < 92 and 92 < 91, i.e. if the gate sets exactly simulate each

other, we write Gi G2, and say that 9i are 92 are exact-simulation equivalent to

each other. If G1 G 92 and 92 < 91, i.e. if the gate sets approximately simulate

each other, we write 91 ' G2, and say that g, are 92 are approximate-simulation

equivalent to each other. Note that exact-simulation equivalence is a special case of

approximate-simulation equivalence, and that approximate-simulation is equivalent

to strict universality defined in [12]. Note also that < is a transitive relation, i.e. if

Gi 92 and 92 G3, then g < G3. If either one or both of the first two < signs in

the previous sentence is changed to <, then!91 < G3.

18gate set here refers to a set of gates, which may be either finite or infinite.
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For a gate set 9 = {gi, ... , }, we say that gi, . . . , g. generate 0 if 0 is the set

of all operators that can be written as circuits using gates from g. We emphasize

that we choose to specify generators gj independently from their support, which can

be chosen arbitrarily. That is, we view each gj as a gate that may act on any set of

qubits in the circuit. We denote the generated set as 0 = (9) = (gi, .. . , g,).

Examples of gate sets that approximately simulate the special unitary group on

n qubits SU(2") include the Clifford+T set {H, CZ, T} [38], and Kitaev's gate set

{H, CS} [145] (also, see Theorem 1 of [12]). An example of gate set that approxi-

mately simulates the orthogonal operators T is {CCX, H} (Theorem 3.2 of [203]).

Since CCZijk = HkCCXijkHk, it follows that CCZ and H can simulate CCX.

Hence, {CCZ, H} is also capable of approximately simulating T.

Other orthogonal gate sets, or even single gates, can simulate all the unitaries U,

via the rebit encoding. Rudolph and Grover [196] provide an example: the controlled-

Y rotation CY(O) for any 0 that is an irrational multiple of 7 (e.g. 0 = r/e). More

specifically, CY can be approximated to any desired accuracy by some power of

CY(0) and is orthogonal, so it can be applied in the rebit encoding without the

ancilla. Single-qubit unitaries can be compiled (to any accuracy) from CY(0) using

parts (11) and (12) of Proposition 149.

Our main interest in this section is simulating RU, using the rebit encoding. We

now show that the set G defined by

G := {H, CCZ, CCK, G(E)K} (8.90)

can approximately simulate RU,.

Theorem 158. G approximately simulates RUB.

Proof. Theorem 3.2 of [203] shows that {CCX, H} approximately simulates T+1

Hence, the image of this set under L (which is bijective) gives an approximate sim-

ulation for RU,. There are four cases corresponding to the gates acting on different

sets of wires that we need to consider, namely, (i) CCZ gate acting on three num-

bered registers, (ii) H gate acting on a numbered register, (iii) CCZ gate acting on 2
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numbered registers and the ancilla register, (iv) H gate acting on the ancilla register.

Prom Propositions 149 and 151, the corresponding gates under C are as follows:

CCZijk

Hi

CCZija

Ha

SCCZijk

- Hi

SCCKzj

SG(z) K.

(8.91)

(8.92)

(8.93)

(8.94)

Hence, the set G = {H, CCZ, CCK, G(2)K} approximately simulates RU,. El

Since the gates in G are contained in RUs, Theorem 158 tells us that G a RU".

We now give some more examples1 9 of exact and approximate simulation with the

goal of using these relations to find other universal gates sets starting from G.

Lemma 159.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

CCX < { H, CCZ}

K < CK < CCK

CS < {G(E), CCK}

{H,,Z HCS} < {H, G(E), CCK}

CCK < {CCZ, H, CK}

If L E P, then KL <j {H, CCZ, CK} ;< {H, CCK, G()}.

(8.95)

(8.96)

(8.97)

(8.98)

(8.99)

(8.100)

Proof. To show that G, < G2 or G, < G2 , it suffices to

be approximately simulated by a circuit consisting of

the fact that

show that each gate in G, can

gates in G2. (i) follows from

CCX 3.k = HkCCZzjkHk. (8.101)

' 9 Whenever a gate set consists of exactly one gate, we drop the curly braces and denote the set
by the element it contains. For example, if G is a gate such that {G} is exactly simulated by a gate
set 9, we write G < 9 rather than {G} 9.
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(ii) follows from the facts that

K =(1| bCKb|l)b, CKi = (IbCCKib|1)b. (8.102)

For (iii), taking L on both sides of Item 9 of Proposition 149 gives:

CSj = L(Ha -CCZija -Ha -CCZija) = G(1) -K -CCKij -G(Q) -K -CCKij. (8.103)

Hence, CS < {G(E), K, CCK}. But K < CCK from Eq. (8.96). Hence, CS <

{G(E), CCK}.

For (iv), {H, CS} can approximately simulate any unitary [145] including {H, CCZ}.

Hence, {H, CCZ} ,< {H, CS}. Combining this result with Eq. (8.97) produces (iii).

For (v), by taking L on both sides of Eq. (8.89), we obtain

CCKij = L(KOK{| CCXijaC ZaaCCXija I O) (8.104)

= (0|, CCXjaCK CCXjj |0),' (8.105)

Hence CCK < {CCX, CK}. By combining this result with Eq. (8.95), we get Eq.

(8.99).

For (vi), we use Corollary 155, which says that if L E P, then KL can be implemented

by a uniform family of polynomial-sized quantum circuits that comprise only CCZ,

H gates and exactly one CK gate. Hence, KL ,< {H, CCZ, CK}. By using Eq. (8.96)

and Eq. (8.98), {H, CCZ, CK} ,< {H, CCK, G()}.

Using Lemma 159, we now give examples of various finite gate sets which are

approximate-simulation equivalent to G and therefore also to RU,. We start with

finite gate sets.

Proposition 160. The following finite gates sets are all exact-simulation equiv-

alent or approximate-simulation equivalent to one another. Hence, they are all

approximate-simulation equivalent to RU,.

(i) {H, CCZ, CCK, G(Z)K, K}

287



(ii) {H, CCZ, CCK, K, G()}}

(iii) {HCCZ, CCK, G(E)}

(iv) {H, CS, CCK, G(j)}

(v) {H, CCK, G(E)}

(vi) {H, CCZ, CK, G(i)}.

Proof.

* (i) = (ii): Clearly, G(E)K < {K, G(Z)}, so

G(E) < {G(E)K, K}, so (ii) < (i).

S(ii) = (iii): Since K < CCK, by Eq. (8.96), so

(),so (iii) < (ii).

(i) (ii). Also, G(E) = G(E)K -K,

(ii) < (iii). Conversely, (iii) C

* (iii) - (iv) 2 (v): By Eq. (8.98), {H, CCZ} ,< {H, G(E), CCK}. Hence, (iii) <

(iv). By Eq. (8.97), CS < {G(l), CCK}, so (iv) < (v). But (v) C (iii), so (v)

< (iii).

* (v) 2 (vi): By Eq. (8.99), CCK < {CCZ, H, CK}, so (v) < (vi). By Eq. (8.98),

{H, CCZ} ,< {H, G(E), CCK}, and by Eq. (8.96), CK K CCK, so (vi) < (v).

We can also find various infinite gate sets which that are approximate-simulation

equivalent to RU,.

Proposition 161. The following infinite gates sets are approximate-simulation equiv-

alent to RU.

(vii) {H, G(E)} U {KL : L C P}

(viii) {H, CS, GU)} U {KL : L C P}

(ix) all the above gate sets in this list as well as in Proposition 160 with G(Q)

replaced by {G(0) : 0 E [0, 27r)}.
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Proof. We'll continue the numbering from Proposition 160.

* (vii) _ (v): By Eq. (8.100), KL < {H, CCK, G(1)}. Hence, (vii) ,< (v). Also,

(v) C (vii), so (v) < (vii).

* (vii) = (viii): (vii) C (viii), so (vii) < (viii). Using CS < {G(i), CCK} (from

Eq. (8.97)) and CCK < KL, we get (viii) (vii).

* We first show that LHS := RU,, RHS := {H, CCZ, CCK, K} U {G(O) : 6 E

[0, 27)}. Since G(r) E {G(O) :0 E [0, 27)},

LHS = RUn {H, CCZ, CCK, K, G(-)} RHS.

Conversely, the gates in RHS are all either unitary or are K or CCK. By

Proposition 151, these are all images of orthogonal matrices under L. Hence,

RHS < LHS, which completes the proof of LHS a RHS. Next, notice that

the set RHS is identical to the set (ii) in Proposition 160, except that G(E) is

replaced by G(O). Hence, making this replacement in all the above proofs, we

get (ix).

Finally, we give a set of operators that exactly simulates RU". Denote the set of

operators which can be expressed as a product of partial antiunitary operators by

(partial antiunitaries) := (V : V is a partial antiunitary operator)

{W: 7 partial antiunitaries W1,... , Wk

such that W = W . .. Wk}. (8.106)

We show that the set in Eq. (8.106) is exact-simulation equivalent to the R-unitary

operators RUn. That is, any operator F E RUn can be written as the product

WkWk- . .. W1 of some partial antiunitaries Wj. Indeed, we can even take Wj E RU,

as well, implying we need no extra ancilla qubits. Since the R-unitaries are the image
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of the orthogonal operators under the decoding map L, it is useful to have a lemma

relating to the compiling of orthogonal operators.

Lemma 162. Let W E T,, be an n-qubit orthogonal operator. Then W can be

written as the product of single-qubit orthogonal operators and multiply-controlled

Z operators ChZ on the same n-qubits.

Proof. The proof is essentially the realization that the compilation scheme for uni-

taries in Chapter 4 of [180] works for compiling orthogonal gates into products of the

claimed orthogonal gates as well. We complete the proof in Chapter 8.8.10. l

Theorem 163.

RU, = (partial antiunitaries). (8.107)

Proof.

(<) This direction follows from the compiling lemma, Lemma 162. Let F E RU, and

P(F) = W E T+1 . Then the lemma provides us with a sequence of orthogonal

gates V1 E T+1 such that VkVk_1 ... V1 = W. Thus, L(Vk)L(Vk_1) ... L(V) =

U. Since V1 is orthogonal, if it is not supported on the rebit ancilla then

L(V) = V. If the ancilla is in its support there are two cases: either (1) V1 is

a ChZ gate and so L(W) is a ChK gate or (2) V is a single-qubit orthogonal

gate and so L(Wj) is a global phase gate. Therefore, F = L(Vk)L(Vk_1) .. ..L(V1 )

is indeed a sequence of unitaries alternating with partial complex conjugation

operators, i.e.

F = UkIKLk, Ukl KL V_ 1 Uk'-2 ... U1KL1 U0 . (8.108)

Since Uj and KL, are both partial antiunitary for all j, we have found a product

of partial antiunitaries making F.

( ) This direction follows from Theorem 144, which says that all partial antiu-

nitaries are R-unitary. Products of partial antiunitaries, like those found in

(partial antiunitaries), must also be R-unitary because it is a group.
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To conclude this section, we discuss how efficient the rebit encoding is for sim-

ulating (1) an arbitrary unitary circuit (top-down simulation) and (2) an arbitrary

R-unitary circuit (bottom-up simulation). In the top-down case, we consider the uni-

versal gate set {H, T, CX} [180]. In the bottom-up case, using Proposition 160, we

focus on the universal gate set {H, CCZ, CK, G(7r/4)} because it is relatively simple.

Similar analyses could be done with any other universal sets of gates.

Let us start with the top-down case. Say we have a depth-d circuit consisting of

gates from {H, T, CX} on n-qubits. What is the depth and width of a rebit circuit

required to simulate it? We provide two approaches trading off depth and width.

Theorem 164. Let C be an n-qubit, depth-d unitary circuit using gates from the

Clifford+T gate set {H, T, CX}. Then C (applied to 10)0') can be simulated (i.e. we

can make P(C 0)0')) using either

1. an orthogonal circuit of depth at most dn on n + 1 rebits, or

2. an orthogonal circuit of depth at most d on 2n rebits.

Proof. To show the first statement, we proceed using the P mappings of the gates

{H, T, CX} from Proposition 149. Since T gates that happen in parallel (at most n

at once) must access the ancilla simultaneously, we get a depth blowup by a factor of

n of the orthogonal circuit over the unitary circuit it is simulating.

The following rebit encoding was used in [170] to make rebit simulations local.

Here we use it to prove the second statement, removing the depth blowup of the first

statement at the cost of using more rebits. The idea is quite simple: encode the

ancilla rebit so that some logical Pauli operator (in this case, logical Y) is accessible

n times in parallel. The obvious code for this is the classical redundancy code. Let

10) , 11) be the encoded 10) and 1). These should be +-1-eigenstates of the stabilizers

Y9Y91 for all j = 1, 2,. .. , n - 1 and the t1-eigenstates of the encoded Z operator

Z = Z 1 Z 2 . . . Z,. Working it out, the states are

|0) = 1 (-1) x)/2 _1)(IxI-1)/2 x) . (8.109)
22n-1 2n1

xE {o,1} E {0,1}

jxj even IxI odd
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where JxI is the Hamming weight of the string x, i.e. the number of I's in x. From

Proposition 149, the simulation of T for any i = 1, 2,. ., n is

1 1 1
CHiaCZia = (I + Zi) + (I - iYa). (8.110)

2 2 r2

Since encoded Y is Y = Ya for any qubit ai in the encoded ancilla, we can modify

the simulation of T to

1 1 1
CHiaCZia = (I + Zi) + (I - Zi) 1( - iYai). (8.111)

2 2 v2

With this modification, the simulations of T and T for i f j are orthogonal operators

with disjoint support and can be performed in parallel. l

Next we discuss efficiency of the rebit bottom-up simulation in the same manner,

i.e. we are concerned with the simulation of an R-unitary circuit on n qubits with

depth d. The notion of depth is not immediately obvious for circuits constructed from

the gates {H, CCZ, CK, G(7r/4)}, but we can use the following definition. This gives

us a well-defined notion of depth that leads to a theorem similar to Theorem 164.

Definition 165. An n-qubit, depth-i R-unitary circuit consists of gates Gi, i =

1, 2, . . , s such that [G2, Gj] = 0 (i.e. all gates mutually commute) and all q E

{1, 2,..., n} is in the support of exactly one gate Gi. A depth-d R-unitary circuit

equals the product of d depth-i R-unitary circuits.

Gates {H, CCZ, CK, G(7/4)} have supports of sizes 1, 3, 1, 0 respectively, and, when

all supports are disjoint, only CK and G(w/4) do not commute. Definition 165

generalizes the notion of circuit depth from the unitary to the R-unitary case, because

two unitary gates having disjoint support implies that they commute.

We have the following theorem.

Theorem 166. Let C be an n-qubit, depth-d R-unitary circuit using gates from

{H, CCZ, CK, G(7r/4)}. Then C (applied to 10)3') can be simulated (i.e. we can

make P(C 0)®")) using either
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1. a circuit of depth at most dn on n + 1 rebits

2. or a circuit of depth at most d[log 2 n] on 2n rebits.

Proof. The first part follows the same reasoning as the proof of the first part of

Theorem 164. In this case, the 1-qubit CK gates are the problem. At most n CK

can occur in parallel, but to simulate each we need access to the ancilla (CKj is

simulated by CZia by Proposition 151).

The second part also follows similar reasoning to that of Theorem 164. We encode

the rebit in a redundancy code, although this time one in which the encoded Z

operator is accessible in parallel. The code states are simply the redundancy states

10) = 0)® , 1I) = |1)0n. (8.112)

With this, the encoded Z is Z = Zai for any qubit in the ancilla ai and encoded Y

is Y XaiXa2 ... Xan-iYa. Thus, CKj and CK gates (for i - j) can be simulated

in parallel. However, G(7/4) requires depth [log 2 n] to simulate: decode the states

(i.e. 10) -+ 10) " and |I) -+ 1) )0n1 by [log n] timesteps of CX gates), apply a

Y-rotation to the first qubit, and re-encode.

8.6 The R-Clifford hierarchy

An intriguing consequence of rebit simulation is an extension of the standard Clifford

hierarchy of unitary operators into the more general R-unitaries. At the second level

of this R-Clifford hierarchy, we obtain an extension of the famous Gottesman-Knill

theorem, allowing us to efficiently classically simulate R-linear quantum circuits of a

restricted class that is analogous to but larger than the standard Clifford circuits.

We begin by defining the Clifford hierarchy and the R-Clifford hierarchy. The

standard Pauli group (on n-qubits) is

Cn(1) = {e"(pi 0 p2 0 -.. Op) : pj E {I, X, YZ}, a E R}. (8.113)
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An analogous Pauli group incorporating complex conjugation may be defined as

C (1) = {ic(p1 0 p2 ( ... 0 pn)K : pG E {I, X, Y, Z}, c E {0, 1, 2,3}, b E {0, 1}},

(8.114)

which we, for now, call simply the primed Paulis. Shortly, we show the primed Paulis

are actually the R-Paulis.

Notice that the two definitions have different global phases - in the case of Cn(1)

the phase is arbitrary, while for C (1) it is restricted to powers of i. This is intentional

and should be expected, because the rebit encoding tracks global phases. Note that

the definition of the Pauli group in Eq. (8.113) differs from that defined in [180]:

Gn(1) = {ic(P1 OP2 0 -.. - -Pn) : pj E {I, X, Y, Z}, c E {0,1, 2, 3}}. (8.115)

We define the Pauli group differently simply to ease some of the arguments below

(specifically, Lemma 174). Allowing arbitrary phases via definition C,.(1) is also more

consistent with operators in higher levels of the hierarchy having arbitrary phases as

well.

Now, we appeal to the discussion of bottom-up simulation in Section 8.1.2.1,

taking the Paulis C,(1) as the set of operators S. The real Paulis on n rebits is

the set of orthogonal Paulis CnR(1) = C,(l) n R. = Cn(1) n T., and the R-Paulis

are RCn(1) = L(Cn(1)). The following theorem shows the primed Paulis are the R-

Paulis, thus establishing the Pauli-like description, Eq. (8.114), of the set of R-Paulis

as appropriate.

Theorem 167. L(Cn+1 (1)) := RCn(1) = C4,(1).

Proof. First, note that p E Cn+1(1) is orthogonal if and only if p contains an even

number of Pauli Ys and a real phase (i.e. eia from Eq. (8.113) is +1) or p contains

an odd number of Pauli Ys and an imaginary phase ( i). Since L is a homomor-

phism, we need only consider its action on a basis set of orthogonal Paulis, namely

{Xi, iYi, Zi, Xa, iYa, Za} where i = 1, 2,..., n indicates a data qubit and a indicates

294



the rebit ancilla. We find

L(Xi) = Xi, (8.116)

L (iYi) = iYi, (8.117)

L (Zi) = Zi, (8.118)

L(Xa) = iK, (8.119)

L(iYa) = -il, (8.120)

L(Za) = K, (8.121)

all of which are elements of C',(1). This shows L(CR+1) C C'(1). However, the

reverse direction, L(Cn+ 1(1)) 2 C'(1) follows from Eqs. (8.116-8.121) as well. Let

p = icXYZYKb E C' (1), where X for X E {0, 1} means 0_ XX and likewise for

Z". Then,

p = L(X)L(ZZ)L(iYa)cL(Za) = L(X1Z"(iYa)cZab). (8.122)

Since X1Z'(iYa)CZa is an orthogonal Pauli, this proves C'(1) C L(Cn+1(1)). D

The R-Paulis are a group just as the standard Paulis are.

Corollary 168. RCn(1) is a group for all n.

Proof. Follows from Proposition 118.

The upper levels of the standard Clifford hierarchy are defined recursively

Cn(k) = {U E Un: UCn(1)Ut C Cn(k - 1)}. (8.123)

Note that the first level is the Pauli group and the second level is the Clifford group.

In Chapter 8.8.11, we show how using Pauli sets with different allowed global phases

(e.g. Gn(1) instead of Cn(1)) leads to the same Clifford hierarchy for k > 2.

We would like a similar recursion to Eq. (8.123) to hold for the R-Clifford hierarchy.

Thus, we proceed similarly to the Pauli case above and define the primed Clifford
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hierarchy as

C' (k) = U c- R L : U (C' (1)) U1 C- C' (k - 1)} (8.124)

Our goal now is to show that the primed Clifford hierarchy is equivalent to the

R-Clifford hierarchy. That is, C'(k) is exactly RCn(k) := L(Cn(k) n Tn). Because

R-unitaries are mapped to orthogonal operators in the physical rebit encoding, we

find it natural to define the orthogonal Clifford hierarchy

Dn(1) = Cn(1) n Tn, (8.125)

Dn(k) = {U E Tn : UDn(1)UT C Dn(k - 1)}. (8.126)

Then, it is worth noting the following definition of the orthogonal hierarchy as the

real Cliffords.

Lemma 169. Dn(k) = Ca(k) n T, := C'(k) for all k.

Proof. The second equality is a definition of notation. To prove the first, we proceed

inductively, with k = 1 already satisfying the claim by definition. Let U E Cn(k)n T,.

Then UDn(1)UT C UCn(1)UT C Cn(k - 1) and UDn(1)UT C T, implying that

UDn(1)UT C Cn(k - 1) n Tn = Dn(k - 1) and thus, U E Dn(k) by definition.

In the other direction, let U E Dn(k). We notice that for all p E Cn(1), there

exists a phase e-ia such that e-iap c C,(1) n Tn = Dn(1). This is because p =

ei"XZZ implies ppT = ei2aI. Thus, UDn(1)UT C Dn(k - 1) = Cn(k - 1) n Tn implies

UCn(1)UT C Cn(k - 1). So U E Cn(k) by definition, and thus U E Cn(k) n Tn. 0

Now we are in a position to prove that the primed hierarchy is indeed the R-

Clifford hierarchy.

Theorem 170. L (CR+ 1(k)) :RCn(k) = C' (k) for all k.

Proof. The k = 1 case is proven in Theorem 167. For the rest, we proceed inductively.

Let U E C+ 1(k). Then U(Cn+1(1))UT - C+1 (k - 1). Taking L of both sides, we

get

L(U)Cn'(1)L(U)t = L(U)L(Cn+1(1))L(U)t (8.127)
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= (UCR+ 1(1)U T ) C - 1)) = C (k - 1)

using the inductive hypothesis. Thus, L(U) E C'(k), showing L(Cn+1 (k)) C C' (k).

For the other direction, let U E C' (k). Then,

U(CnR+1(1))U = UC' (1)U C C' (k - 1) = i(CnR+ 1(k - 1)). (8.129)

Taking P of both sides, we find P(U)Cn+1(1)P(U)T C C+1 (k - 1), which implies

P(U) E C'+1 (k). Thus, U E L(CR+1 (k)) and showing C'(k) C L(CR+I(k)). LI

There are some corollaries of Theorem 170. For instance, just as standard Cliffords

form a group, so do the R-Cliffords.

Corollary 171. RC,(2) is a group.

Proof. Follows from Proposition 118. L]

While the group G,(1) defined in Eq. (8.115) is a subgroup of C' (1) = RC,(1), the

groups Cn(1) and RC,(1) are incomparable:

Proposition 172. C,(1) g RC,(1) and RC,(1) g C7,(1).

Proof. The first noninclusion follows from the fact that the operator ei,,/ 4J is in C,(1)

but not in RC, (1). The second noninclusion follows from the fact that K is in RC" (1)

but not in C,(1). l

Furthermore, the groups C,,(2) and RC, (2) are also incomparable:

Proposition 173. Cn(2) g RCn(2) and RC,(2) 9 Cn(2).

Proof. The first noninclusion follows from the fact that the operator eir/sI is in Cn(2)

but not in RCn(2). To see the latter, note that eO"/OKe-ix/8 - eiwr/ 4K 0 RCn(1). The

second noninclusion follows from the fact that K is in RCn(2) but not in Cn(2). El

However, Propositions 172 and 173 notwithstanding, it turns out that if we dis-

regard global phases, then the groups Cn(k) and RCn(k) (for k = 1, 2) are no longer
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incomparable. More precisely, for at least the first two levels, the R-Clifford hierarchy

RCa(k) is strictly larger than the standard hierarchy Ca(k). A lemma regarding some

structure of the standard Pauli and Clifford groups helps us show this.

Lemma 174. {UUT : U C Cn(2)} = {p: p = pT E Cn(1)} g C"(1).

Proof. That any symmetric Pauli p = pT E C'(1) can be written as UUT for some

U E C,(2) is not hard to see. Let p = eiaXEZ' with - -Z= 0, enforcing the symmetry

of p. Let Jx = {j : = 1- = 1}, Ji, = {j = = 1}, J = {j : - = Z = 1}.

Since JJyj is even, we can partition it into two equal sized subsets J1 and j with a

one-to-one mapping - : j-+ J . Let

U = eia/ 2 ( CXi,) ( H ) ( j Sk . (8.130)
(i c-JV jEJ1UjY kCJxUJyUJ,

One can now calculate that

UUT = ei" ( CXj(j) ) 1 H) (iZ) ( Hj
(i EJy jEJxUJy kcJxuJyuJz (jcJxuJy

(iE Jy

= e i ( CXia (iX (J1 Zk (i CXu(i)
(i EJl (j EJxU Jy k E Jy2 UJz (i E J

= e (iX (Q Zk
(jEJxUJy kEJyuJz

= eiaXiZF = p. (8.131)

For the other direction, we need UUT E C,(1) for any U E C,(2), but it suffices 20

20Here, we show that if VpVt = p for all p E C,(1), then V E C,(1). Indeed, since the Paulis form
a basis, we may write V = Eq, aqq for complex coefficients aq, where P,' {Pi p2 0 .- -p :
pj ( {I, X, Y, Z}} is the set of Pauli operators without global phases. Let p E C"(1) be supported
on one qubit (i.e. p = Xj, Y, Zi for qubit i). Then VpVt = p implies that exactly half of the
coefficients aq are zero (e.g. in the case of +, all aq such that {p, q} = 0 are zero). Repeating for all
qubits i and all Xi, Y, Zi, all but one coefficient are zeroed, thus implying V E C, (1).
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to show that for all p C C,(1), (UUT)p(UUT)t = p where the choice of sign may

depend on p. In fact, it suffices to show that

(UUT)p(UUT)t = ap (8.132)

for any complex number a. This is because, squaring both sides and using the fact

that p2 - I for all p E C,(1), we get (UUT)p2(UUT) -- p2 - a2p 2 , implying a - 1.

We now prove Eq. (8.132). Notice that for any q E C,(1),

q ~ q. (8.133)

Also, notice that since C,(2) is closed under taking inverses, Ut E C,(2), which implies

that UtpU C Cn(1).

Hence,

(UUT)p(UUT)t = UUTpUUt

UUTpUUT, by applying Eq. (8.133) to p C C,(1).

= U (Ut PU) Ut

U(UtpU)Ut, by applying Eq. (8.133) to UtpU E

= p.

We write A 2 B if for all a E A, there exists a E R such that eiaa c B.

Proposition 175. Gn(1) U G,(1)K = RC,(1), C,(1) C RCn(1), and Cn(2) G RCa(2).

Proof. The first and second statements follow easily from definitions Eqs. (8.113),

(8.114), and (8.115). It remains to prove the third inclusion. Let U E Cn(2). Then

by Lemma 174, UUT is Pauli, i.e.

UUT = eiOXxZz (8.135)
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for some # E R and X, Z' C {0, 1}'. To complete the proof, it suffices to find some

a E R such that eiaU E RCn(2). To this end, we choose a = -0/2, and show that

U' := e-i3 / 2U E RCn(2).

Let = icXiZ'K c RCn(1) be arbitrary. If b = 0, then

U'(U't = e-i/ 2U(icXZ)eip/2Uf

= U (icXiZ Ut

C Gn(1) C RCn(1), (8.136)

where, since U E C,(2) is Clifford and ( = iCX'Z" E Gn(1), Theorem 194 in Chap-

ter 8.8.11 shows U(Ut E Pn. If b = 1, then

U'(U't e-/ 2U(iXIZ-K)e /2Ut

- e-ioU(icX!ZDUT K

= e-WU(icXYZjUt(UUT )K

- e~*U(icXFZ) UteiXZZK

U (icXXZj Ut XXZZK

C Gn(1)K C RCn(1) (8.137)

where the last line follows because U (icXiZ") Ut E G, (1) and XEZ C Gn (1). Since

Gn(1) is closed under multiplication, the expression in the second-to-last line of Eq.

(8.137) is of the form Eq. (8.114). LI

A final corollary of Theorem 170 corollary is a Gottesman-Knill-esque efficient

classical simulation of RCn(2) circuits and a generating set for them.

Corollary 176. Let U E RCa(2) be an n-qubit R-linear operator. Then U can

be constructed from O(n2 ) gates from {H, S, K, CX, CK}. Moreover, a classical

computer can sample from U 10 )0f in time O(n2 ).

Proof. The first statement can be proved by compiling V = 'P(U) E CR, (2) using

gates from the orthogonal Clifford group {H, Z, CX}. That this is possible with the

300



requisite number of gates follows the same Clifford compiling argument from [180

(see their Theorem 10.6).

The first step is to argue that {H, Z} generate all single-qubit orthogonal Cliffords.

A single-qubit orthogonal Clifford is uniquely specified up to a phase (which for

orthogonal operators is just 1) by its action on the Paulis {X, iY, Z}. However,

since det(X) = det(Z) = -1 and det(iY) = 1, orthogonal Cliffords must map {X, Z}

to {tX, Z} and {iY} to { iY}. That appropriate sequences of H and Z can

achieve all these mappings can be checked directly by enumeration. Moreover, the

phase 1 can be provided by (HZ)4 = -I.

The second part of the proof is inductive on the number of rebits n + 1. There

are O(n) recursive steps, each using O(n) gates from our gate set {H, Z, CX}. Say

VX1 VT = g and VZ1 VT = h for g, h E C!+ (1). There are simplifications that can be

made without loss of generality, however. First, we note that g and h anticommute,

which means that on some qubit j, the Paulis there locally anticommute. We can

apply a SWAP P between qubits 1 and j (which can be constructed from three CX

gates), so that we get V'X 1V'T = Pi 0 g' and V'Z 1 V'T = P2 0 h' with P1, P2 E C1(1),

g', h' E Cn(1), {p1, P2} = 0, [g', h'] = 0, and instead compile V' = PV. Second, by

applying H before or after V', we can switch the roles of X1 and Z1 and change Pi, P2-

The final result is that, without loss of generality, we have two cases to consider: either

VX 1VT = X & g, VZ1VT = Z 9 h (8.138)

or

VX1 VT = (iY) 0 g, VZ1 VT =Z h (8.139)

where in both cases g, h E Cn(1) and [g, h] = 0.

We claim the circuit in Fig. 8-4 implements these two cases and does so using the

allowed gates {H, Z, CX}. The controlled n-qubit orthogonal Paulis (e.g. controlled-

g from qubit c to qubits t1 , t2 , ... , tn) can be implemented by a depth at most 2n

circuit of CX and CZ = (I 0 H)CX(I 0 H) gates. If g = 01 0 g2 0 . . . gn where

each gYj E {X, iY Z}, then performing controlled-gj from qubit c to tj for all j (in
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V h 9

Figure 8-4: Compiling an orthogonal Clifford circuit on n qubits. The top line
represents 1 qubit while the bottom represents n - 1 qubits.

any order; they commute) implements controlled-g. Controlled-X and controlled-Z

operators are simply CX and CZ, while controlled-iY is CX followed by CZ. Finally,

the circuit in Fig. 8-4 guarantees the correct behavior of V on the first qubit and thus

V is an n qubit orthogonal Clifford, which can be compiled using the same process.

The recursion continues until the base case of 1-qubit, discussed earlier.

Given the described compilation, CHP simulation [8] of the orthogonal Clifford

circuit for V in the rebit encoding suffices to simulate the R-Clifford U, and does so

in time 0(n2)

8.7 Discussion and open questions

Our bottom-up simulation paradigm provides a unified framework for realizing any

arbitrary antiunitary or partial antiunitary transformations which are otherwise non-

physical and cannot be simulated directly. The rebit simulation can be applied to

measurements of a large variety of quantum mechanical properties as well as the detec-

tion and simulation of exotic phases of matters. These applications all require either

antiunitary or partial antiunitary transformations that are unphysical for quantum

mechanical systems.

For example, evaluating the entanglement of an arbitrary partition of a generic

quantum system usually takes 0(2N) measurements for an N-qubit system [126]. To

avoid such a resource overhead, entanglement monotones such as concurrence [237]

and 3-tangle [86] are proposed to provide convex and monotonic measures that do

not increase under local operations and classical communication. However, both the

concurrence and 3-tangle are defined by the expectation values of an antiunitary op-

erator which cannot be directly measured. To directly measure these entanglement
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monotones, an extra qubit is needed to simulate the complex conjugation on the orig-

inal system [83]. Our result on partial antiunitary simulation thus further generalizes

such approaches to larger systems where the concurrence of only a subsystem can be

measured.

As another example, time-reversal symmetry and particle-hole symmetry are two

important ingredients for defining either bosonic or fermionic symmetry protected

topological phases [65,116]. The system symmetry is defined by the invariance of the

system Hamiltonian H under the conjugation of the corresponding antiunitary tran-

formation U, for either the time-reversal or particle-hole symmetry as: UeHUt = H.

Partial-time-reversal and partial-particle-hole symmetries corresponding to the invari-

ance under partial antiunitary transformations are also used for constructing nonlo-

cal order parameters in detecting fermionic symmetry protected topological phases

in (1+1) dimension [2041. Detection of these symmetry protected topological phases

is exceedingly hard since these symmetry operators are non-physical and cannot be

directly measured. Being able to simulate both antiunitary and partial antiunitary

transformation with our rebit encoding can potentially simplify the detection proce-

dure for topological phases proposed in [187].

Our results add new tools to the existing dictionary of quantum simulation gad-

gets using qubits. The Majorana equation [64], for example, is one candidate for

describing the dynamics of neutrino or other particles outside the standard model.

Simulating the Majorana equation in quantum systems necessitates the application

of the complex conjugation of the wave function, which is readily available in our

bottom-up rebit simulation.

We conclude this section by listing a few directions that an extension of this

project might take.

Mixed states. Our treatment in this chapter has been restricted to just pure states,

unitary transformations and projective measurements. This suffices since, we could

always "go to the Church of the Larger Hilbert Space" by considering mixed states

as being part of a larger system described by a pure state (see Chapter 2.2). Never-
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theless, describing quantum systems using the smaller Hilbert Space has also proven

to be fruitful, as it allows for the study of noisy quantum systems without any refer-

ence to a fictitious external system. Our bottom-up approach to rebits might benefit

from such an approach. What is the rebit generalization of completely positive and

trace preserving maps? Can they be described in terms of some generalized Kraus

operators?

Quaternions. In this chapter, we studied the relationship between computing using

real and complex amplitudes. But the real numbers and complex numbers are just

the two base levels of the Cayley-Dickson construction [200]. The next level of the

construction are the quaternions, which was studied in the context of computation

by [101]. It would be interesting to apply the techniques from our chapter to study

computing based on quaternions (or even other levels of the Cayley-Dickson construc-

tion) from a bottom-up perspective.

Compiling. We showed (Theorem 163) that an arbitrary R-unitary F can always

be written as products of partial antiunitaries and further noted that these products

always take the form of an alternating sequence UNKLNUN-1KLN- ... UiKL 1 Uo of

unitaries Uj and partial complex conjugations KL, over languages Lj. But given F

and desired accuracy c, how efficient is it to determine the length of the sequence

required to approximate F to within operator norm c and also the specific unitaries

and languages? In principle, applying Solovay-Kitaev [78] in the simulator space P

provides an algorithm and upper bounds, but it is well-known even in unitary compi-

lation that Solovay-Kitaev is not optimal. The exact question c = 0 is also interesting

and leads to the definition of a minimum N for which exact compilation of F (call it

e.g. the "conjugation depth" of F) is possible. For instance, the conjugation depth of

any unitary is zero, the partial antiunitaries have conjugation depth one by definition,

and Theorem 148 shows that some R-unitaries have conjugation depth at least two.

Ideally, the conjugation depth of F might be determined from some simple property

of F.
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Clifford hierarchy. In our discussion of the Clifford hierarchy, we have focused

on the first two levels of the hierarchy. For example, in Proposition 175, we showed

that, up to a global phase, the R-Clifford hierarchy (for the first two levels) is bigger

than the standard Clifford hierarchy. Does an analogous result hold for higher levels

of the hierarchy? Next, we see from the definitions in Eq. (8.113) and Eq. (8.114) that

to get from C,(1) to RCn(1), we need to append the K gate to the list of generators

of the Pauli group. Also, we see from Corollary 176 that to get from C"(2) to RC,(2),

we need to append both the K and CK gate to the list of generators of the Clifford

group. Can the kth level (for k > 2) of the R-Clifford hierarchy be obtained by

appending gates to the corresponding level of the standard Clifford hierarchy?

8.8 Appendix for Chapter 8

8.8.1 A simple motivating example

In this section, we present a simple motivating example to illustrate how nonunitary

transformations can be simulated using the rebit encoding. Consider a general one-

qubit state with complex amplitudes:

4,) = (a + ib)10) + (c + id) 11),

where a, b, c, d E R. The single-ancilla rebit encoding is performed by introducing an

additional register and encoding the state 4') as

4") = a 100) + b101) + c 10) + d111).

To illustrate some nonlinear transformations that we can simulate using this rebit

encoding, suppose we perfom Z on the second qubit, getting the state

Jx') = a 00) - b101) + c 110) - d11),
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which evidently is the rebit encoding of the complex conjugation of 4'),

(a - ib)IO) + (c - id)11).

Thus, via the rebit encoding, we have simulated the antiunitary complex conjugation

operation K :') -+ R 4') - iQ| 14). Now, consider a more complicated example in

which we perform a controlled-Z operation on 10") to get the state

10') = a00) + b101) + c 10) - d 111).

We observe that |#') is the rebit encoding of the state

1) = (a + ib)10) + (c - id)11).

Hence, we have shown how to simulate the nonlinear transformation

(a + ib) 10) + (c + id)|1) - (a + ib)10) + (c - id) 11)

using the rebit encoding. This transformation is an example of what we call a partial

antiunitary operator.

8.8.2 Complex conjugation as a Gottesman-Knill simulation

In the introduction, we discussed how viewing Gottesman-Knill as a bottom-up sim-

ulation implies that a more "advanced" Clifford quantum computer equipped with

Pauli measurements that report entire probability distributions instead of just sam-

ples from them can be efficiently classically simulated as well. Here we expand on

this bottom-up viewpoint, by showing that Gottesman-Knill also gives an efficient

classical simulation of circuits consisting of Clifford gates and complex conjugation.

Gottesman-Knill is a bottom-up simulation (L, P, P, Op) where L is the set of
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rank one density matrices

L p = 4') (1 : -3p E C,(1) s.t. p = 71 -(i + pj)}, (8.140)
j=1

with Cn(1) the Pauli group on n qubits (see Eq. (8.113)). The physical space P is

P = {S : S C Cn(1); S = n; e"-1 E (S) -> e1" = 1} (8.141)

where (S) for a set of Paulis S is the group generated by S. A Pauli p = pi 0 P2 0

... 0 pn on n qubits can be specified by 2n + 1 classical bits [8]. All Paulis p c S E P

must have this form (i.e. with global phase such that p2 = I) by the final condition

on S in Eq. (8.141).

We next describe the map P. Starting with a stabilizer state p = |0)(KI, identify

n linearly independent Paulis pi such that pi 4') = 1'). These exist because p can be

written as in Eq. (8.140). Set P(p) = {pi : i = 1, 2, ... , n}.

The bottom-up view stresses that we should define the set of operators Op that

the simulator is capable of implementing. In this case, the most general operator the

simulator can perform is any function f : P - P. If we wanted to, we could also

restrict to those functions f that are efficiently computable (say, in polynomial time

in n). Regardless, we do not have a characterization of L(Op) for either of these

choices of Op. Our immediate goal is to show that complex conjugation (of density

matrices) Kdm :0)(V) -+ I - i!4I )(O I is an element of C(O) (for either choice

of Op) and thus that Gottesman-Knill simulation is intriguingly more powerful than

typically imagined.

Proposition 177. Kdm is efficiently classically simulable by the Gottesman-Knill

Theorem.

Proof. Suppose S represents a density matrix I4)(4'. Let #Y(q) = |{pi = Y : i =

1, 2, . n} for a Pauli q = eqi 0 q2  --- qn and

S /= {(-1)#(p : p E S}. (8.142)
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We claim S' = P (Kdm (L') (V|)). To show this, write 1) (4' = ]- 41 j(I + p3 )

where pj E S for all j. Then Kdm(ki) (01) = iyij 1 1(I + (-1)#(Pj)pj). Thus,

(-1)#Y(Pi)pj E P(Km(4') (0/j)) for all j, which exactly matches the composition of

S'.

8.8.3 R-inear operators

In this section, we consider operators of the form A+BK, where A and B are complex

linear operators. Our first result is a proof of Theorem 121 (restated here as Theorem

178):

Theorem 178. ([130]) Let V and V' be complex vector spaces, and f V -+ V' be

a function on V. Then, there exist linear maps A and B such that f = A + BK if

and only if

f (ax + by) = af (x) + bf (y) (8.143)

for all a, b E R and x, y E V.

Proof. The forward direction holds since (A + BK)(ax + by) = a(A + BK)x + b(A +

BK)y for all x, y C V and a, b E R. To prove the backward direction, assume that f
satisfies Eq. (8.143). Let z E V. Let the standard basis of V be {ej}j. Hence, we can

write z = z3ej for some zj E C. Then,

f(z) = f zjej

= f (Rz3 + ixszJ)e)

S Rzj f(ej) + 3zj f(iej), by R-linearity

= -Zi + f f (e) + Z -Zf(ie)2 2i
j

(f (e) - if (ie))zj + (f (e) + if(ie))I;
2 2

= >Ajzj >3B3Kz,
j j
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= (A + BK)z

where A is the (complex-valued) matrix whose jth column is Aj = -(f(ei) - if(iej)),

and B is the matrix whose jth column is Bj = j(f(ej) +if(iej)). Hence, f = A+BK,

where A and B are (complex) linear maps on V. E

As pointed out in Section 8.1.3.1, in linear algebra, the term R-linear is used to

describe a map satisfying Eq. (8.143). Our terminology in this chapter was chosen so

that the two definitions of R-linearity coincide.

We conclude this section with a few remarks about R-linear operators satisfying

Eq. (8.143). First, note that linear operators and antilinear operators are both special

cases of R-linear operators. (A linear operator g V -a V is one that satisfies

g(ax + by) = ag(x) + bg(y) for all a, b E C and x, y E V, and an antilinear operator

h is one that satisfies h(ax + by) = ah(x) + bh(y) for all a, b E C and x, y E V.)

Second, note that when A and B are complex linear operators, the operator A

is linear while the operator BK is antilinear. Hence, Theorem 178 implies that any

R-linear operator can be written as a sum of a linear operator and an antilinear

operator.

8.8.4 The ring of R-linear operators: algebraic properties

In Section 8.8.3, we showed that every R-linear operator on 7L(C) can be written as

A + BK, where A and B are linear operators on W,(C). In this section, we show

that the set of R-linear operators RL, forms a ring with identity2 1 , with addition +

given by

(A + BK) + (C + DK) = (A + C) + (B + D)K (8.145)

and multiplication * given by

(A + BK) * (C + DK) = (AC + BD) + (AD + BC)K. (8.146)

2 1For an introduction to ring theory, see [85], for example.

309

(8.144)



Proposition 179. Let n E Z+. Then (RLn, +, *) is a ring with identity. The

multiplicative identity is I + OK.

Proof. It is straightforward to check that RLn satisfies the properties of a ring with

identity (see Chapter 7 of [85]). l

It is easy to check that (RL, +, *) is neither a division ring nor a commutative

ring, and hence is not a field. Note that the multiplication in Eq. (8.146) was defined

so that for any vector v E Wn(C),

((A + BK) * (C + DK))v = (A + BK)((C + DK)v). (8.147)

More generally, the set of vectors in 7n (C) forms a module over RLa, as the

following proposition states.

Proposition 180. The set 7-((C) is a left module over the ring (RLn,+,*), with
0

the addition on Wn(R) being the usual addition of functions, and the module action

o of RLn on 71(C) given by

(A + BK) o v := (A + BK)v = Av + BV>.

Proof. It is straightforward to check that the above satisfies the properties of a left

module (see Chapter 10 of [85]).

It is useful to equip the ring (RLn,+,*) with the operator t defined as follows:

(A + BK)t = At + BT K. (8.148)

We now show that the t (super)operator is the image of the transpose map (-)T

under the rebit decoding. More precisely, let S be an operator on L Define (8)

to be the unique operator 8 such that

8(A + BK) = L(S(P(A + BK))).
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It then follows that

Proposition 181. L = (-)t.

Proof.

A+BK = (RA+iaA)+(RB+iB)K

RADI +ADXZ+RB9Z + B9X

'R AT I +AT DZX+RBTgZ + BT SX

= RA T 1+ a(-A T) OXZ+RB T OZ+aB TOX

-÷ (RAT - iDAT) + (RB T + iaBT )K

= At + BTK =(A + BK)t. (8.149)

Hence, L((_) T ) = (-)t .

It is straightforward to check that the operator t is an involutive antiautomor-

phism22 Hence, we obtain the following proposition.

Proposition 182. The ring (RLa,+,*) together with the operator t defined in Eq.

(8.148) is a t-ring.

Note that the involutive antiautomorphism t generalizes the definition of the ad-

joint of linear operators. Indeed, when B = 0 in Eq. (8.148), we recover At =

(A + OK)t = At. We may now generalize the notion of unitarity to t-rings with

identity. Let R be a t-ring with identity 1. We say that U C R is a unitary element

with respect to t if

UtU = 1. (8.150)

Applying the above definition to the t-ring (RL, +,*), we get that an element A +

BK E RL, is a unitary element if and only if

(A + BK)t * (A + BK) =1. (8.151)

2 2Let R be a ring, and let * R -+ R. R together with * is a *-ring if for all x, y E R, (i) (x*)* = x,
(ii) (x + y)* x* + y*, (iii) (xy)* y*x*. The map * is called an involutive antiautomorphism.
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The group of unitary elements are called RU in the main text, as a result of Theo-

rem 127 showing that they are the simulated operators of a real unitary rebit simu-

lator.

We now give an equivalent condition for the unitarity of R-linear operators.

Proposition 183. An element A + BK E RL, is a unitary element with respect to

t if and only if

AtA + BT B=I,

AtB + BT A = .1

Proof. An element A+BK E RL, is a unitary element if and only if I = (A+BK)t*

(A + BK) = (At + BTK) * (A + BK) = (AtA + BTB) + (AtB + BTA)K if and only

if AtA + BTB3 = I, AtB+ BT A 0. LI

8.8.5 Equivalent expressions for the rebit encoding of a linear

operator

From Eq. (8.29), we find that the rebit encoding of a linear operator is given by

-P(A) = RA 0 I + aA 0 XZ. In this section, we derive alternative expressions for

Eq. (8.29).

Proposition 184. The rebit encoding of a linear operator A is equal to

P(A) = A &®1)(01 + A I®1)(I = (A ® I)(I 10)(0 + A T 0 o)()), (8.153)

where 1()(01 = !(I + Y) and Io)(ol = (I - Y) are the orthogonal projectors onto

the +1 and -1 eigenspaces of the Pauli matrix Y, respectively.

Proof. Substituting into Eq. (8.29) the identities RA = 1/2(A + A), U = 1/(2i)(A -

A) and XZ = -iY, we obtain

P(A) = [(A+ A)I-(A- A)Y]
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Y)+ A (I +Y)] ,

which is equal to A 1®)(&I + A to)(oI. E

In particular, if A = U is unitary,

p(U) = (U 0 I) (I & j)(®|+ U T U ® o)(o). (8.154)

To compare with the rebit simulation of linear operators in [12], we calculate the

action of P on states written in the computational basis as follows:

Proposition 185.

P(A): Z'i yIj) [(Ojo RA - V1alA) i)]0) + [(io A + V/) I RA)|i)]|1).
ii i

(8.155)

Proof.

P(A): [7 'iJ>ij) = j [ 2[(RA 1i)) j) + (aA Ii)) 0 XZ j)]. (8.156)
ii ii

But XZ j) = (-1)i 11 - j). Plugging this into Eq. (8.156) and expanding out the j

index, we obtain Eq. (8.155). El

By setting 4gyi = 6jjor in Eq. (8.155), we obtain

P(A) i) 10)

P(A) i) 1)

= (WA Ii))10) + (GA i)) 1),

= -(aA Ii)) 0) + (,RA Ii)) 1)

which is equivalent to Definition 1 of [12].

8.8.6 Equivalence of norm definitions

In this section, we provide a proof that on L, the operator norm for R-linear operators

coincides with that for linear operators.
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Proposition 186. Let A E L, be a linear operator on n-qubits. Then |JAlj as defined

by Definitions 123 and 124 are the same.

Proof. For clarity, denote IIA Ii as the operator norm for linear operators from Defi-

nition 123 and IIAIIr as the operator norm for R-linear operators from Definition 124.

Because |jAil1 is the largest singular value of A and I|AlI, is the largest singular value

of P(A), we need only show these coincide. Say A = UDV for unitaries U, V E U,

and diagonal matrix D so that sing(A) = {Di, Vi} are the singular values of A and

h|AIl1 = max{JAI : A E sing(A)}. Now, P(A) = P(U)P(D)P(V), and the singular

value decomposition of P(D) is easily calculated using Proposition 184,

P(D) = D) 0 1) ( 1 + D ® o) (o = (I ®SH)(® & 10) (01 + D ® 11) (11)(I® HSI).

(8.159)

Thus, sing(P(A)) = sing(P(A)) = sing(A) U sing(A). Finally, flAJll = flP(A)ji =

max{ JAI : A E sing(P(A))} = ||Af. l

8.8.7 Alternative formulation of Theorem 126

In Theorem 126, we showed that for an R-linear operator A + BK, the operator

P(A + BK) is orthogonal if and only if AtA + BTB3 = I and AtB + BT A 0.

We now find an equivalent condition for orthogonality.

Theorem 187. Let A+BK be an R-linear operator. Then P(A+BK) is orthogonal

if and only if

AAt + BBt= ,

ABT + BAT =0. (8.160)

In the proof of Theorem 126, we used the property that a matrix W is orthogonal

if and only if WTW = I. But this is equivalent to the condition that WWT =

I. Repeating the proof of Theorem 126 using this condition yields Eq. (8.160).

An alternative approach, which we use here, is to directly show that Eq. (8.33) is

equivalent to Eq. (8.160).
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Proof.

AtA+BTB=I, AtB+BT A=o

> I = (AtA + BT) + (AtB + BT A)K

= (At +BTK)*(A+BK)

+ I=(A+BK)*(At+BTK)

= (AAt + BBt) + (BAT + ABT )K

< AAt + BBt = I, ABT + BAT = 0, (8.161)

where we used the star product * defined in Eq. (8.146), and the fact that left inverses

are equal to right inverses in a ring (See Chapter 8.8.4). 1

8.8.8 On orthogonal projections

In this section, we recall some definitions about orthogonal projections. Let H C N

be a subspace of a vector space N. The orthogonal complement of H is the set

H' {u E RI(v, u) = 0 Vv E H}. For finite-dimensional vector spaces, (Hl)'L H.

and H and HI are complementary subspaces, i.e. H n Hl = {0} and H e = 71,

where G denotes direct sum. Moreover, for any v E N, there exist a unique a El

and a unique b E H' such that v = a + b. The map v - a is called the orthogonal

projection onto H, and we shall denote it by projH(-). It then follows that the map

v - b is equal to projH (-). Two immediate consequences are that projH+proja = I

and that proj ao projf = proj aL oprojH = 0. It is also easy to verify that orthogonal

projections are linear operators that are idempotent and hermitian, i.e. projff--

proj2 = proj t

An alternate characterization of orthogonal projections is as follows:

Proposition 188. Let H C R be a subspace of a vector space 7. Let {ai)}s 1 be

an orthonormal basis for S. Then P is an orthogonal projection onto H if and only if

8

P= Z ai)(ail. (8.162)
=1
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Note that Proposition 188 implies that the formula in Eq. (8.162) is in fact inde-

pendent of the basis chosen for H, i.e. if {jaj)};' 1 and {bj)}[_ 1 are two bases for H,

then E'=, jaj)(ajj = EZ'= Ib)(bs|.

8.8.9 Matrix representation of R-linear operators

In this section, we develop a matrix notation for the R-linear operators. We define

the matrix representation of an R-linear operator A + BK to be the matrix [A + BK]

whose (p, v)th element is the column vector Ap' E C2. Each of these elements

(A) can be seen as belonging to the ring R { . a, b E C}, where addition
Bl'al b

is defined by

a C a + c

b d b + d

and multiplication is defined by

a c ac + bd

b d ad + b)

We shall sometimes also denote the column vector belonging to R by a + bk,
(b)

where k is treated as a formal symbol (for example, see its use in the proof of Theorem

148). With this definition, the set of matrices [A + BK] forms a matrix ring under

the usual23 rules of matrix addition and matrix multiplication.

Note that the matrix representation of an R-linear operator is unique, as the

following theorem, which expresses the matrix representation of an R-linear operator

F in terms of F, shows

21 Unlike usual matrix multiplication, the elements of the matrix belong to a ring, while the
elements in the column vector representation of a vector belong to a field that is different from the
ring. For a more rigorous treatment, we should treat the vector space C" as a unital left R-module
[85].
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Theorem 189. Let F be an R-linear operator. Then its matrix elements are given

by24

F = I (F(e) - i1(iev) |IF(ev) + iF(ie,))T (8.163)

where eP is the pth basis vector defined by e,(v) = 6A,.

Proof. Since F is an R-linear operator, we can write F = A + BK, where A and B

are both linear operators.

1

21

1

2

(F(e,) - iF(ie,) F(e,) + iF(ie,))T '

(Kep, F(e.) - if(iev)), (e,, F(e,) + iF(iev))T

((e, F(ev)) -i (e, r(ie,)), (e,, F(ev)) +i (e, r(iev)))T

(0) (1) (0) (1)

where for a = 0, 1,

(a) = (eL F(?Oe 1 ))

= (ej, (A+BK)(iaev))

= (ep, iPA(e.) + (-1)ai0 B(e,))

= i(Ait + (-1)cBy,).

Hence, (0) - i(1) = 2Avv and (0) + i(1) = 2B, .

So,

RHS
I

= (2A V 2B P )T

2
APV

B ),IV
=(A +BK)j,, = Fpv.

LI

24 The notation (AIB) refers to the augmented matrix formed from the matrices A and B.
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Note that when F is linear, the expression in Eq. (8.163) reduces to the following

familiar expression.

= (F(e)+F(ey)
2

jF(e.) - F(eL))T el

= (F(e,)10)Te

= ((e , F(ev)), 0)T

= (e/, F(ev)) + OK

= (e,,, F(e,)).

We will now illustrate the use of Theorem 189 in an example.

Example 190. Let F : C 2 -+ C 2 be an R-linear operator. Then

a\
F:I

/3]
2Ra +

3

2/3)

if and only if the matrix representation of F is

1+k 2k

3)

Proof. The backward direction follows from matrix multiplication

2 a

0

2Ra + 2/

33J

To obtain the forward direction, we make use of Theorem 189:

1[(2)

2 o

0 2

0 0

T

0

0
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3) 1\/3)

(1

0

a

0) a 1

3) ( 0
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= ( 0 e (8.165)
1 0

and

- -T

1 2 -2i 2 ) (-2i) e (8.166)
2 3 3i 3 3i

0 3(=)eg. (8.167)
2 0

10 0 3
Hence, Foo = =1+KF 1 0 = () 0,Foi= () 2K andF1 1 = =,3.

10 2 0

8.8.10 Proof of Lemma 162

Here we sketch the proof of Lemma 162 following Chapter 4.5 of [180]. The first thing

to note is that an orthogonal gate W on an d-dimensional system (i.e. represented as

a d x d matrix) can be broken down into a product of at most d(d - 1)/2 "two-level"

orthogonal gates. A two-level orthogonal gate V is one with non-zero off-diagonal

entries in at most two rows and the corresponding two columns.

To show this, we write W = (wij) with matrix elements wij for i, j E {1, 2, ... , d}.

We note that for any i, j with i > j, we can find a two-level orthogonal gate V such

that (VW)ij = 0. This is done by choosing V such that Vab= 0 except for (letting

Vjj = wjjlNij, Vji = wig|Nij (8.168)

Vi = wijlNij, V = -wjj|Nij (8.169)

and V = 1 whenever a ' {i, J}. One can check V is orthogonal and it is clearly
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two-level. Calculating the (i, j) element of VW we get

(VW)ji = S VihWh = ViWi + ViWj = (-wjjwij + WijWjj)Nij = 0. (8.170)
h

Incidentally, the (j, j) element of VW is unity

(VW)jj = S VihWhi = ViWij + VjjW/j = (wji + wjj)/Nii = 1. (8.171)
h

Meanwhile, other elements in column j are unchanged, (VW)aj = Waj for a 1 {i, j}.
Also, if Wib = Wjb 0 for b <j <2*, then (VW)ab = Wab for any a as well.

Repeating this reduction with two-level orthogonal gates V, V2, .. , V ,-1 we can

zero all off-diagonal elements in the first column of VdlVd-2. .. VW. Since this

product is still orthogonal, all off-diagonal elements of the first row are also zeroed.

Now the same process can be repeated on the remaining block matrix in rows and

columns 2 through d, and so on until only a 2 x 2 block in the lower right remains.

The inverse of this remaining matrix is two-level. In summary, we obtain two-level

orthogonals V such that

VkVkI1... V1W = I (8.172)

and thus W = VT V2 T... VkT is a product of two-level orthogonals. Also, k is at most

(d - 1) + (d - 2) + - -- + 1 = d(d - 1)/2.

In the remainder of the proof we need to write two-level orthogonals as a product

of ChZ gates and arbitrary single-qubit orthogonal gates. We note that ChX (which

equals ChZ up to Hadamards, which are orthogonal, on the target) can swap two

n-qubit basis states Ix) and ly) when they differ in at most one place. Let x3 j yj = 1

but xi D yj = 0 for i # j. Then, letting C be the C-IX gate with target j and

controls on all the remaining n - 1 qubits, we find

X-"i C 0XI-2 : IX) 4 1y) (8.173)

y) (-) :X) (8.174)
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Figure 8-5: The circuit, built from only orthogonal gates, implementing a Cn 1 V

gate with two controls (the top two qubits), corresponding to n = 3. Further controls

are added in the natural way, extending the CZ and CCX gates to include the new

qubits as controls too.

lz Iz ) , z z , y. (8.175)

Say we have a two-level orthogonal V acting non-trivially on Ixi) and JX 2). On those

two states V applies an orthogonal operator, call it V. First, we can swap lxi) with

other basis states in sequence Y1, Y2, ... , Ym, where subsequent states differ in at most

one bit, so that ym differs in one bit, bit j, from X 2. Now, applying C'-19 with target

j and controls the remaining n - 1 qubits and reversing the swaps from the first step,

we implement the two-level orthogonal gate V.

The last step is breaking down C"1 ? into ChX gates and single-qubit rotations.

Since V is orthogonal and single-qubit, we can write without loss of generality

V=cos 0 - i sin Y. (8.176)

Define R = cos(9/2) - i sin(O/2)Y, such that RRt = I and RXRtX = R2 = V. The

circuit in Fig. 8-5 implements C'"V.

Finally, we note that this entire process breaks an arbitrary n-qubit orthogonal

gate into at most (n+1)2"-1 (2n -1) CZ gates, giving an upper bound on the number

of KL gates that may need to be part of the R-linear compilation in Eq. (8.108).

8.8.11 Pauli sets with different allowed phases

Our definition of the standard Pauli group Cn(1) in Eq. (8.113) differs from the Pauli

group Gn(1) in Eq. (8.115) in terms of the allowed phases of the Pauli operators: while

the Pauli operators in Cn(1) are allowed to have arbitrary phases, those in Gn(1) have

321



phases which are constrained to be powers of i. In this section, we show that choosing

different allowed phases has little effect on the definition of higher levels of the Clifford

hierarchy.

We start by introducing some definitions. Let

P = {IXYZ} ={pip 2 0 ... Op :pj E {I,X,YZ} for allj E 1,2, ... n,

(8.177)

denote the set of Pauli operators without any phases.

Definition 191. Let Q C R. The first level of the Q-Clifford hierarchy (called the

Q-Pauli set) is

Cn(1; Q) = {e'p : p E Pn, a E Q}. (8.178)

For k > 2, the kth level of the Q-Clifford hierarchy is

Cn(k; Q) = {U c U : UC,(1; Q)U C Cn(k - 1; Q)}. (8.179)

Note that Eq. (8.178) generalizes the Pauli groups discussed above: C,(1) =

Cn(1; R) and Gn(1) = Cn(1; !Z). Also, P, = C,(1; 27r). Note that C"(1; Q) is in

general not a group, and hence we refer to it as a Pauli set and not a Pauli group.

An immediate consequence of the definition of the Q-Clifford hierarchy is that it

is closed under multiplication by global phases:

Theorem 192. Let k > 2. If 0 c R and V E Cn(k; Q), then e'9 V E Cn(k; Q).

For k > 2, how does the set Cn(k; Q) depend on Q? In the rest of this section, we

will show that as long as Q is nonempty and wr-periodic (to be defined next), the set

Cn(k; Q) is in fact independent of Q and is equal to the standard Clifford hierarchy

Cn (k).

Definition 193. A subset Q C R is r-periodic if for all a E Q,

a E > a + 7r E Q. (8.180)
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Note that while the subsets R and . are r-periodic, the subset 27Z is not.2

Theorem 194. Let Q1 , Q2 C R ~ be nonempty w-periodic sets. Then for all k > 2,

Cn(k; Q1) = C,(k; Q 2 ). (8.181)

Proof. To prove Eq. (8.181), it suffices to prove that for all k> 2

Cn(k; 1) 9 Cn(k;Q2), (8.182)

since, by symmetry, interchanging the roles of Q1 and Q 2 will give the opposite inclu-

sion. We shall proceed by induction on k.

We start with the base case k = 2. Let V E Cn(2; Q1 ). Then

VCn(1; Q1)Vt C Cn(1; Q1 ). (8.183)

Our goal is to show that

VCn(1; Q2)Vt C Cn (1; Q2). (8.184)

To this end, pick an arbitrary element eiap E Cn(1; Q2 ), where a c Q2 and p E Pn.

Since Q1 is nonempty, there exists # E Q 1 such that e'p E Cn(1; Q1). By Eq. (8.183),

there exist 7 E Q1 and q E P, such that

V(e'1 3p)Vt -ei-, (8.185)

which implies that

eO--?)V pVt = q. (8.186)

Taking squares on both sides, and using the property that p2 2= 1, we get

e 2 -y) = 1, (8.187)
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which implies that

ei-

Substituting this into Eq. (8.185), we get

VpV

Therefore,

V (e'"p)Vt

where in the last step, we used the r-periodicity of Q 2 to obtain the inclusion a+ w E

Q2-

Since e'ap E C,(1; Q2) was chosen arbitrarily, we obtain Eq. (8.184), which shows

that V E C,(2; Q 2 ). Hence, C,(2; Q 1) C C,.(2; Q2)

Next, we prove the inductive step. Assume that Eq. (8.182) holds for k. Let

V c C,(k + 1; QI). Pick an arbitrary element eiap E Cn(1; Q2 ), where a E Q2 and

p E P. As above, there exists 3 G Q, such that e'op E Cn(1; Q1 ). Then,

V(eiop)Vt ei(a-)V(ep)Vt

Ee'(a 3Cn(k; Q1)

= C,(k;Q Q), by Theorem 192

C C,(k; Q 2), by induction hypothesis.

Hence, V c Cn(k +1; Q 2 ). This implies that C,(k + 1; Q 1) C C,(k + 1; Q2), which

completes the proof.

Corollary 195. Let Q C R be a nonempty wr-periodic set. Then for all k > 2,

Cn(k; Q) = Cn(k) = G,(k), (8.192)
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(8.188)

t = q.- (8.189)

= + q

= e iq or eia+r)q

E Cn (1; Q 2), (8-190)

(8.191)

= ei'.3



i.e. C((k; Q) is independent of Q.

Proof Since Cn(1) = C,(1; R) and G,(1) = Ca(1; EZ), and R and ZZ are both

nonempty and 7r-periodic, Corollary 195 follows directly from Theorem 194. El
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Appendix A

Characterizations of the Clifford

group

In this appendix, we will describe various characterizations of the Clifford group that

are useful in this thesis. The results here may be compared with the results in Chapter

8, where a rebit analogue of the Clifford group is developed. One of the main results

we will prove here is that the Clifford group is generated by the H, S and CZ gates.

Our proof of this statement follows an argument similar to the inductive argument

given by Gottesman (for example, see page 13 of [110] and sections 5.6 and 5.8 of

[109]). This appendix is an elaboration of some of the results stated in Section 2.5.1.

We begin with an axiomatic characterization of a group that we denote by C4. We

will show later (Corollary 215) that C is isomorphic to the Clifford group C/U(1).

Definition 196. Let j, be the set of functions f :J51 - P, satisfying

1. Unitality: f (I) = I.

2. (Anti-)commutation preserving: for all p, q E

[p, q] = 0 -=:1 [V W, f (q)] = 0.

3. Homogeneity: for all p E T, and k E N, f(ikp) = ikf(p).

4. Multiplicativity: for all p, q E T., f (pq) = f (p)f (q).
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5. Hermiticity: for all p E P*,, f(p)t = f(p).

where [A, B] = AB + BA is the anticommutator/commutator.

First, we show that if U is a Clifford operation, then the map P i-* UPUt is in

en.

Proposition 197. Let U E Cn. Then U(-)Ut E en.

Proof. It is straightforward to check that U(-)Ut satisfies the properties listed in

Definition 196:

1. Unitality: UIUt = UUt = I.

2. (Anti-)commutation preserving: Let [p, q] = 0. Then, [UpUt, UqUt] =

U[p, q] Ut = 0.

3. Homogeneity: U(ikp)Ut = ikUpUf.

4. Multiplicativity: U(pq)Ut = UpUtUqUt.

5. Hermiticity: (UpUt)t = UpUt.

Next, we give an alternative characterization of j, in terms of the action of its

elements on the Pauli operators Xi and Zi.

Proposition 198. Let f : )7 --+ P. Then f E j, if and only if

(A) f (ikX, Zi .. . X Zn) = ikf(X1)ulf(Z1)v1.

and ui, vi E F2.

(B) [f (Xi), f(Xj)] = [f (Zi), f (Zj)] = 0 for all ij.

[f(Xi), f(Zj)] = 0 for all i j.

{f(Xi), f (Zi)} = 0 for all i.

(C) f(Xi)t = f(Xi) and f(Zi)t = f(Zi) for all i.

.. f(Xn) U f(Zn)"n for all k E N
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Proof.

(<-) Let f satisfy (A), (B) and (C). We'll show that f satisfies properties (1)-(5) of

Definition 196.

1. Taking k = ui = v 1 = ... =u v, = 0 in (A) gives f(I)=I.

2. Let

ikXuZv = ikXu1Zv1 ... XunZn E Pn

and

q =iiXxZz = i'X1Zi1 ... XnXZc C Pn.

Assume that [p, q]+ = 0. Then, by Eqs. 2.21 and 2.26, (-1)U-z+x-v -F1,

which implies that

[f(p), f(q)]. = [f(ikXuZ ... X Z), f((ilXx1ZZ1 ... Xx Zzn)]

= [ikf (X )ul f (ZI)v, . . . f (Xn)U f (Zn)
t .

ilf (X 1 )" f(Z 1 )zl ... f(Xn)Xn f (Zn)z"]+

= (-1)x-v+u-z 1]f (X1 )xlf (Z1 )z1 . . . f (Xn)X f (Zn)Zn

, by (B)

Then,

f(ip) = f(il . ikXut1Z1 ... Xn Z"")

Sil+k f (XI)" f (Z ) .. . f (X )U" f (Zn) vf

= if (p).

4. Let p = ikXul Zvi ... X,"Z," and q = ilX1Zii ... X Then,

f(pq) = ik+l(_ )XlVi+...+xnvnf( 1+x1)f(Zi+z1) .. . f (X+.xn)f(Zon+zn)

= ik+l(_ )X1V1+...+Xnon f(X)ui+xi f(Z 1 )v1+zi . . . f (X)Un+xnf(Zn)Vn+zn
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3. Let p = ikX11Zv1

X f (XI)" Uf (Zi)VI ... f (Xn) n f (Zn)" v



- f(p)f(q).

5. Let p E P*,. Then p = P ... n), where Pi) E {i'iVZ X'iZVi :u, vi E F2 }-

Then,

f(p)t = f (iV+ . +UnVn XU1ZV1 . .. Xn"-Zn)t

= [iuvl+..+UnVnf (X)Ul f(Z1 )Vl ... f (Xn)Unf (Zn)Vn]t

= (-i)uv1+...+UnVn f(Zn)vf(Xn)Un ... f(Z1)V" f(X)Ul

n

= iiv1... rlo (_ wgivi f(Zi)Vi f(XX)i
i=1

But (-1)uvf(Z)vf(X)u = f(X)uf(Z)v, by (B). Hence,

f(p)t = ii1V+...+Unn f(X)ul f (Z)V . . . f (Xn)Un f (Zn)Vn

= f (ijlVI+...+UnVn XU1 Z . . X Zn"

=f(p).

(=4) Assume that f satisfies (1)-(5) of Definition 196.

(A), (B) and (C).

1. Let f E C. Then,

We'll show that f satisfies

XnuZn) = ikf(Xu1)f(Zv1) . .. f(X.")f(Z"")

by homogeneity and multiplicativity. Now, by unitality,

f(XfI() = I,

If(Xi),

ui = 0

ui = 1

= f(Xi)ui.
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Likewise, f (Ziv') = f (Zi)vi. Hence,

f(ikXu1Z1 .. . Xn""Zv") = ik f(XI)u f(Zl)1 ... f (Xn)Un f(Zn)Vn.

2. By the (anti-)commutation preserving property,

Vi, J, [Xi, Xi] = 0 -- If (Xi),I f (XA ] 0.

Vi, j, [ZilZ = 0 [f (Zi), f (Z)= 0.

Vi f j, [Xi, Zi] = 0 - [f (Xi), f (Z)] 0.

Vi, {Xi, Zi} = - {f (Xi), f (ZI)} = 0.

3. Since Xj, Zi C P*, it follows from Hermiticity that f(Xi) t = f(Xi) and

f(Zi)t = f(Zi).

1:

An implication of Proposition 198 is that the functions f E G. are comlpletely

determined by the images of Xi and Zi under f.

Proposition 199. Let f E C,. Then for all P c P*, there exist a E F2 and Q c P*

such that f (P) = (-1)aQ.

Proof. Let f E Cn, and P E P*. Since the range of f is in P, f(P) = ibQ for some

b E Z4 and Q E P,. By Hermiticity, f(P)t = f(P), and hence

(-i)bQt - ibQ.

Since Qt = Q is Hermitian, it follows that (-I)b = 1, which implies that ib = 1. So,

f(P) E {+Q}. But Q = I (otherwise, f(P) = I, which implies that P commutes

with all the elements of P,*, which is a contradiction). Hence, there exist a C F2 and

ElQ E P* such that f(P) = (-1)'Q.

Taking P = Xj, Zi in Proposition 199 gives the following corollary.
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Corollary 200. Let f E j,. Then, f(Xi) = (-1)aA(i) and f(Zi) = (-1)bB() for

some a, b C F2 and A(), B(') E P*, i.e. f(Xi), f(Zi) E P*.

Next, we prove some lemmas that would be useful for finding sets of generators

for en.

Lemma 201. Let U E en and s, t E In. Let

P -4 U(XsZtPZtXs).

Then,
V(Xi) = (-1)1iU(X ),

V(Zi) = (-1)siU(Z ).

Proof. By straightforward calculation,

V(X ) = U(X8 ZtXiZtX8 )

=U(X (- 1)* i XX )

=U((-1)tiXi)

= (-1)iU (Xi) by homogeneity.

V(Z) = U(XsZtZ2ZtXS)

=U(XZiXS)

-( ljsiu (Zi) by homogeneity.

Lemma 202. Let A, B be matrices over C. If A0B = I, then there exists a E C\{O}

332

Similarly,

0



such that

A =aI,

B =!I.a

(A.1)

(A.2)

Proof. The condition A & B = I is equivalent to the equations

ajjB = I, Vi (A.3)

(A.4)aijB = 0, Vi 4 j

From Eq. (A.3), B # 0. By Eq. (A.4), a j = 0 for all i # j. Hence,

an1B = a22B = ... = annB.

Since B # 0,

all = a 2 2  - -an n : a.

Hence, A = al. By Eq. (A.3), aB I, which implies that

B = '-I.a

Next, we show that the operators U(-)Ut and V(-)Vt are equal if and only if

U ~ V, i.e. U and V differ by a global phase.

Lemma 203. Let U, V E U(2'). Then,

U ~ V <> UPUt = VpVt VP C P*. (A.5)

Proof.
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(->) If U - V, then U = e'OV for some 0 E R. Hence,

UPU = (eiOV)P(eOV)t = VPyt.

(+-) Assume that UPUt = VPVt for all P E P*. Then,

vec(UPUt) = vec(VPVt) for all P E P*

where vec u)(v I-+ I u) v) is vectorization operation that transforms matrices

to column vectors. Applying the identity vec(ABC) = (A 0 CT)vec(B) (see

Eq. 1.132 of [228]) to Eq. (A.6) gives

(U ® U)vec(P) = (V 0 V)vec(P) for all P E P,*.

Also, since U an V are unitary, UIUt = VIVt, which implies that

(U ® U)vec(I) = (V ® V)vec(I).

Combining Eqs. (A.7) and (A.8) gives

(U ® U)vec(P) = (V &V)vec(P) for all P E P,,.

Now, {vec(P) : P C P,} forms a basis for L(2n). Hence,

U& U= V oV,

which implies that

UVt o UVt =I.
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By Lemma 202, there exists a c C\{0} such that

UVt = al,

which implies that

- 1

a

Hence, Ia1 2 = 1, i.e. a = e-il for some 0 E R. Hence, UVt = ei'0 , which implies

that U = eOV, i.e. U ~ V.

Next, we show that if U is generated by a circuit of H, S and CZ gates, then

U(-)Ut is a subset of Cd.

Proposition 204. {U(.)Ut: Pn -> VnJU E (H, S, CZ)"} C en.

Proof. By Eqs. (2.43), (2.44) and (2.47), H, S, CZ E C,. Since C is a group, it is

closed under multiplication. Also, it is easy to check that C, is closed under taking

tensor products. Hence,

(H, S, CZ)n C en. (A.13)

Let

Hence, there exists V E (H, S, CZ)' such that V(.)Vt = U(.)Ut. By Eq. (A.13),

V C Cn. By Proposition 197, V(.)Vt E (n. Hence, U(-)Ut = V(.)Vt C en. E

A.l The single-qubit case

In the next few results (Lemmas 205-208), we will study the n = 1 case, and find a

generating set for C1 .
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Lemma 205. Let f E C1. Then there exist a, c E F2 and distinct i, j, k E {1, 2,3}

such that

f(X) =()",,

f(Y) = 1) o-y

f(Z) = (-1)cu-,

b= 0b~f

(A.14)

(A.15)

(A.16)

if i(-1)a+co.,Uk = I

if i(-1)a+c _ kUj .
(A.17)

Proof. By Proposition 199,

f (X) =(-1) -,

f (Y) = -

f (Z) =(-1)"og,

(A.18)

(A.19)

(A.20)

for some a, b, c E F2 and 9-, G-j, 9k E P*. Since X, Y, Z mutually anticommute with

each other, by the anticommutation-preserving property of C a, o- %, -- mutually

anticommute with each other. Hence, i, j, k E {1, 2, 3} must be distinct. Now,

(-1)u- - f(Y)

= f(iXZ)

= if(X)f(Z) by homogeneity and multiplicativity

= i(-1)a. (_ 1)cOk

= i(-1)a+cOrk

Hence,

(-I)bI = i(--)a+c, .

336

where



which implies that

b 0 if i(-1)acoiUkuj = -' (A.21)
1 if i(-1)'+cUO.,kj _=f

Let S3 = {(ij, k) E {1, 2, 3}3 : i,j, k distinct} be the symmetric group of degree

3. In the proof of the next lemma, we will make use of cycle decomposition notation

(see Chapter 1.3 of [85]). In this notation, the elements of S3 are 1, (12), (13), (23) =

(12)(13)(12), (123) = (13)(12), (132) = (12)(13). Here, the cycle (ao, ai,..., as-,)

refers to the permutation that sends ai to a (mod s), for i E Z,.

Lemma 206. Let (i, j, k) E S 3. Then there exist U E (H, S) and a, b, c e F 2 such

that

UXUt (_jaa.

UYUt = (-1)b(-j,

UZUt = (-1)c(o-.

Remark. The idea behind the proof is that H swaps X and Z, and S swaps X and

Y. Since any permutation is a product of swaps, any permutation can be achieved

by products of S and H. This may be written more formally as follows.

Proof. We use the fact that S3 = ((12), (13)), i.e. for all w E S3, w = H i gi for some

gi E {(12), (23)}. Set U(12) = S and S(13) = H and

U := Ulgi = J7U
i

We claim that UUkU, E { c-(k)}. To see this, note that when z = (12),

Uu0-1 U = SXSt = Y = -2 = -(1),

UwO-2U= SySt =-X = -1 = -O-w(2),

Uo- 3 Ut = SZSt = Z = O 3 = O-w(3),
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and when z = (13),

Umu1 Ut = HXH = Z = -3 = U (1),

U,,-2Ut = HYH = -Y = -O-2 = -O-w(2),

Umo-3Ut = HZH = x = o 1 = O-z(3).

Finally, when z = g, . .. g,

Uo-kUt = Ugi...gOrkUt11 g

Ugi . . . Ug,_j(U,-kU t )Ut Utg1

U9 ... Ug,_j( ogs(k))U 1 .U

= Ugi ... (to7gs-ig(k)) . . .U

{I gr2...g (k)}

where the vertical ellipsis describes an inductive process, in which we replace

Ug-U (Ugs-U_.,...gs(k))U I8-

with og-_...g,(k), for u = 0,1,... , s - 1.

This completes the proof of the claim UUkU E { O-(k)}, and also the lemma.

LEI

Lemma 207. Let (zj k) E S3 and a, c E IF2. Then there exists U E (H, S) such that

UXUt - (-1)a,

UZUt - (-1)c(T.

(A.22)

(A.23)

Remark. Note that the this implies that UYUt = (-1)boj, where b is given by

Eq. (A.17).
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Proof. Let (i, j, k) c S 3. By Lemma 206, there exist V E (H, S) C C1 and e, f E F2

such that

VXVf = (-1)eo-,

VZVt = (-1)fo-k.

Set U = VXf+cZe+a. By Eq. (2.49), X, Z C (H, S), and hence U E (H, S) C C1. By

Lemma 201,

UXUt = (-1)e+aVXVt =(-1)ao-,

UZUt (_i)f+cVXVt =(-1)"o-

FL1

Lemma 208.

C1 = {U(-)Ut: T1 --+ 'P1U c (H,S)}.

Proof. The backward inclusion (D) was proved in Proposition 204. Hence, it remains

to prove the forward inclusion (C). Let f : 1 - T1 E C1 . By Lemma 205, there

exist a, c E IF2 and (i, j, k) E S3 such that

f(X) = (-1)"a-7,

f (Z) = (-1)co-k.

By Lemma 207, there exists U E (H, S) such that

UXUt = (-1)"o-2,

UZUt = (-1)o-k.

(A.24)

(A.25)

Hence, f(X) = UXUt and f(Z) = UZUt. By Proposition 198, f is completely
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determined by f(X) and f(Y). Indeed, for all jkXuZv E P1,

f (ikXuZv) = ikf(X)uf (Z)v

= ik(UXUt)u(UZUt)v

= U(ikXuZv)Ut.

Hence, f(-) = U(-)Ut for some U E (H, S). El

A.2 The multi-qubit case

Next, we consider the n > 1 case, and generalize Lemma 208 to find a generating set

for en.

Lemma 209. Let n > 1. Assume that p, q E P, anticommute.

U E (SWAP, H, S)n and p', q' E P-,i, where [p', q'] = 0, such that

U: p - X Op',

q Z 0 q'.

Proof. Write p = p(l) & ... 0 p(") and q = q() 0 ... q(n).

Then there exist

Since {p, q} = 0, there

exists i such that p(') 4 q('). (To see this, suppose that p(') = q(') for all i. Then, p =

q == [p, q] = 0 ==-> {p, q} f 0 since the Paulis either commute or anticommute,

which is a contradiction.)

Let

Xli
SWAPij,

i =1,

i#/1.

Then,

XliPXli1 PP2 *..r .* -

XiiqXi = q1 q2 ... q( g) _ q(-) 3 q1.
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By Lemma 207, there exists V E (H, S) such that

V1X 1 V=t i,
(pi)

V1Z1V 1 = q1 n

Hence, W1 =< VE (H, S) satisfies

W1q10W| = Z1 .

Set U =Wjx1 E (SWAP, H, S)'. Then

Uput = WixiipxiWI

= VVI (pW & p')Wt

= X (gp'

UqUt = WTx1lqxf W|

W1(q() 9 q1 Wt

=Z q'.

Now,

{p, q} = 0 == {UpUt, UqUt } = 0

-=> 0 {X O p',Z O q'}

= XZ p' q' ZXo q'p'

= XZ & (p'q' -q'p')

-> q'p' = p'q'

- [p',q'] = 0.
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Before we proceed, we will prove two useful identities regarding controlled-Pauli

operators.

Lemma 210. Let P E P1 and a-, a- E P,. Then,

CP12 : X1 -XP2,

and

Ca"2 : U- -+> Z( "') a.

(A.26)

(A.27)

Proof. It is easy to verify for P = I, X, Y, Z that Eq. (A.26) holds. Next, Eq. (A.27)

may be shown to hold, by direct calculation:

Ca'2 : o' -> C7"2 UCo"2

= ()(0I + 11)(Olau)(I & o-V)(IO)(OII + I1)(0&o-)

0)(olo- + 11)(0aUVU

= 0)(oV + 11)(0(1)(U'V)C-V

= (10)(+ 1(- 1) ("'"|11)()| 1 (9 -0

= Z(uv) 3 0v.

Next, we will introduce some notation. For P, Q E Pn-1, define

By Eq. (2.49), U[P, Q] E (H, S, CZ)".

Lemma 211. Let n > 1. Let P, Q E Pn_ satisfy [P, Q] = 0. Then U = U[P, Q]
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satisfies

U: X1 -X 0 P,

Z- Z 0 Q.

Proof. Write P = p(2) ... g p(n) and Q = Q( 2) 0 ... 0 Q(n), where P() Q(i) E 'P

for all i = 2, . . . , n. Then, writing Eq. (A.28) as a product of 4 operators

U[P, Q] = H, CQ1 k)
4 k=1

-H,-
2

3

n

kp(k)1 k

k1

and using Lemma 210, Z1 and X1 evolve as follows:

1
Z1 -i Z1

2
-+ X1

- X1Q j

XI X1 P 2)

... Q(n)

n

_2t Z1 p . P(n)

1 2 ... n

1 X ... P(n)

- Xl+(p,q) D p,

where p and q are defined by Oq =Q and & = P. Now, [P, Q] =0 =>

Hence,

U: X 1 - X P,

Z1 - Z Q.
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Lemma 212. Let n > 1. Let WAE Cn. Assume that

W : X1 X (2 P,

Z1 e Z®@Q,

for some P, Q E Pn_1. Then for all i = 2,... , n, there exist R(i), S(') E Pn_1 such

that

(a) for all i = 2,. . ., n,

U[P, Q]t : V(Xi) - I R(R),

WV(Zi) - I® SM,

and

(i) [R(), R()] = [S('), S()] = 0 for all i, j =2, , n,

(ii) [R('), S()] = 0 for all i z j C {2,. . . ,

(iii) {R(), S('}= 0 for all i E {2, .. ,

(b) if V E Ca 1 satisfies

V: Xi F+ R('+l) fori= 1,...,n- 1,

for i = 1, ... , n - 1,

U[P, Q] {(I 0 V)(.)} U[P, Q]t : Xi - W(Xi)

Z, W(Zz)

for i =1,. . ,n -1

for i= 1, ... ,n -1.

Proof Write U = U[P, Q].

(a) For all i > 1, Xi and Zi commute with X1 and Z1, and hence, by the commu-

tation preserving property of in, W(Xi) and W(Zj) commute with V(X1 ) =
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(A.30)



X 0 P and W(Z,) = Z 0 Q. This implies that U(W(Xi))U and Ut(W(Xi))U

commute with Ut (X 0 P)U = X1 and Ut (Z 0 Q)U = Zi.

Since the only single-qubit Pauli operator that commutes with both X and Z is

the identity operator, Ut(W(X,))U and Ut(W(Xi))U must act as the identity

on the first qubit, i.e. for i = 2,. .. , n,

Ut (W(Xi))U = I 0 R(),

Uf (W(Zi))U = Io S( ,

for some R('), S(WC -P,_1 .

(i) For all i,j, [W(Xi), W(Xj)1 = [W(Zi), W(Z)] = 0. This implies [I 0

R(', I R(i)] = [I 0 S(M, I S( )] = 0, from which it follows that

[,R('), RGj)] =[S(', SUj)] = 0.

(ii) For all i $ j, [}V(Xi), IN(Zj)] = 0. This implies [I 0 R(), I 0 (a = 0,

from which it follows that

[R('), SU)] = 0.

(iii) For all i, [W(Xi), WIV(Zi)] = 0. This implies [I 0 R('), I 0 S)] = 0, from

which it follows that

[R('), S( ] = 0.

(b) Assume that V satisfies Eq. (A.29). Then for i = 2,. . . , n, applying I 0 V and

then U[P, Q] gives
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Zi imp Ii Sha E-+ W(Zi),

Z1 F- Z1 F- Z 0 Q = W (Zi),

which implies that Eq. (A.30) is satisfied.

F-1

We now generalize Lemma 208 to the case of general n.

Theorem 213. For all integers n > 1,

Cn = {U(-)Uf : -n -+ -PnJU E (H, ,C)}

where (H, S, CZ)1 = (H, S).

Proof. The backward inclusion (D) was proved in Proposition 204. Hence, it remains

to prove the forward inclusion (C). We will proceed by induction. The base case

n = 1 is provided by Lemma 208.

Induction hypothesis: Assume that the theorem holds for n - 1, i.e.

Cn_1 C- {.U(-U t : -Pn_1 -- Pn_1 IU (E (H, S, CZ)"}

We want to show that it holds for n. Let F E C . By Proposition 199, for all

i = 1,..., n, there exist ti, si E IF 2 and A, B( E P, such that

.F(Xi) = (-1)' A"),

.F(Zi) = (-1)siB(.

Let W(-) = F(XSZ(-)ZtXS). Then by Lemma 201,

n(Xi) = (-t)'.F(Xj) A(')

R(Zi) = (-t)siYF(Zi) =B(.
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Since X1 and Z anticommute, F(X1 ) and F(Z1 ) anticommute, which implies

that A(M and B(M anticommute. By Lemma 209, there exist G C (SWAP, H, S)' and

P, Q E Pn-l, where [P, Q] = 0, such that

G : A(')- X (9 P,

B(1)- Z Q.

Let W(-) = G'(-)Gt. Then,

W: X, jA(1 -X > P,

Z1 G ( Z Q.

By Lemma 212, for all i = 2, ... , n, there exist R( , S(W c Pn_1 such that

U[P, Q]t : W(Xi) -+ I® RC,

WV(Zi) -+ I SO,

and

(i) [R('), R(i)] = [S('), SO)] = 0 for all i, j = 2, . . . ,

(ii) [R('), S()] 0 for all i # j E {2, ... ,n,

(iii) {R('), SCM} = 0 for all i E {2, .. . , n}.

Let V: P -- > Rn_1 be defined by: Vk E N, 'i, vi E F2 ,

V(ikX1Z"1 ... Xn- Z"-)= ikv(X1 )Ulv(z1 )v1 . . .V(Xn_1)"U-1V(z._1) V-1

with

V : Xi F- R(+ for i= 1,... , n -1,

for i= 1,..., n -1.
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This may be verified easily by checking that

properties (A)-(C) of Proposition 198.

By the induction hypothesis,

V E C _1 C {V(-)Vt : pn-i -+ n_1 IV E (H, S, CZ)"-1 }.

Hence, there exists V E (H, S, CZ)"- 1 such that V = V(-)Vt.

Since V E in- 1 and V satisfies Eq. (A.31), it follows from Lemma 212(b) that

U [P, Q] (10 V) : Xi -> WYV(Xi) Vi = 1, . .. ,n,

Z -> W(Zz) Vi = 1, ... , n.

Define f = Gt
3

U[P, Q](I 0 V) XsZt.

21

Then, f acts on Xi and Zi as follows:

I
f : X- (-1) iXj

2

--- (-1)t 1W(Xi)

3 (-1) 2i?(Xi) = (-1) ti2(XsZtXiZXs) - F(X

Zi -o (-i)iZi

2
-+> (-1) 'W(Zi)

- (-1)siN(Zi) = (-1)Si(XsZtZiZtXs) = F(Zi).

Since the action of f is completely determined by the images of Xi and Zi under

f, .F(-) = f(.)ft. Hence,

F C {U(-)Ut : , -+- PTIU E (H, S, CZ)"},

which completes the inductive step.

Theorem 214 ([109, 110]). (H, S, CZ)n/U(1) = Cn/U(1), for n ; 1.

Proof.
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(C) By Eqs. (2.43), (2.44) and (2.47), Hi, Si, CZ G Cn. Since C,, is closed under

multiplication, tensor products and global phase,

(H, S, CZ)/U( ) m Cn/ U (1).

(D>) Let [U] Ez Cn/U(1). Hence, U = el"V for some V E C,,. So, U(-)Ut = V(-)Vt E

in, which implies that U(.)Ut = W(-)Wt for some W C (H,S,CZ) . By

Lemma 203, U ~ W, which implies that [U] E (H, S, CZ)n/U(1).

Note that the above propositions give the following characterizations of the group

Cn.

in = {U(-)Ut : Pn -+ Pn'U E Cn}

= {U(-)Ut :'n -+ Pn[U] E Cn/U(1)}

= {U(.)Ut :N -+ In [U] E (H. S, CZ)"/U(1)}.

(A.32)

(A.33)

(A.34)

Next, we show that the group in is isomorphic to the Clifford group Cn/U(1).

Corollary 215. n ~ Cn/U(1).

Proof. It is easy to check that the map

Cn/U(1) + Cn

[U] U(-)U

is an isomorphism. l

A.3 Enumerating the Clifford group

In this section, we will count, for each integer n > 1, the number of elements in the

n-qubit Clifford group.
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Lemma 216. The number of elements in the single-qubit Clifford group is

ICi = IC1/U(1)1 = 24.

Proof. Consider the map

4 : C1 -+ F 2 x F2 x S3

f '-4 (a, c, (i, j, k)),

where a, c E F 2 and (i, J, k) E S3 are determined by

f(X) = 1) -,

f(Z) = (-1)cUk.

. First, we show that 4 is injective.

(a, c, i, j, k) = (a', c', i', k'), where

f (X) =(-)a,

f (X) = 1)o-,,

Let f and g satisfy 4(f) = 4(g).

g(X) = (-)'of

g(X) = (-1)"' -,.

Hence, f(X) = g(X) and f(X) = g(Z). By Proposition 198, f = g, and hence

4 is injective.

Next, we show that 4 is surjective. Let (a, c, (i, j, k)) E F 2 x F2 x S3 . By Lemma

207, there exists U E (H, S) such that

UXUt = (-1)",

UZUt = (_i)cOk.

But (H, S) C C 1. Hence, U E C1 ==- U(-)Ut EE Ci == (U(.)Uf) =

(a, c, (i, j, k)). Therefore, 4 is surjective.

350

(A.35)

Then



Since is a bijection, C 1 /U(1)i = |F2 x F2 x S31 = 2 x 2 x 3! = 24.

A complete list of all 24 elements of the Clifford group C 1/U(1) is given in Table

2.1, where we index the elements of the Clifford group by a = (-1)', y = (-1)c and

(i, j, k) E 33, where a, c, i, j, k are given by &(f) = (a, c, (i, j, k)) that was defined in

Eq. (A.35).

Next, we consider the case when n > 2.

Lemma 217. For all n > 2,

Proof. We follow the proof given in [1821. Let f E en. By Proposition 198, f
is completely determined by f(X1 ), f (Z1 ), f (X2 ), f(Z 2 ),... , f(Xn), f(Zn). Consider

the last pair f(Xn), f(Z,). f(X,) can take any value in P* and hence, the number

of choices for f(Xn) is

#X tP* 21P,*,l = 2(4' - 1).

f(Zn) can take any value in P]* that anticommutes with f(X,), and hence, the

number of choices for f(Zn) is

#z = number of matrices in P*, that anticommute with f(X,)

= number of matrices in Pn that anticommute with f(Xn)

(since 1 commute with f(Xn))

= Itrj, since half of the matrices in P anticommute with f(Xn).

=Pn| = 4.

The number of choices for f(X1 ), f(ZI),..., f(Xn- 1), f(Zn_ 1) is =# _ =I_ 11.
Hence,

n I = " #,-
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= 2 - 4"(4" - l)IC, 1I.

Theorem 218. Let n > 1. The number of elements in the n-qubit Clifford group is

Cn/U(1)I = |inI = 2n(n+2) 7J(4i - 1).
j=1

(A.36)

Proof. By applying Lemma 217 recursively,

-4j(4i
I6fI= (j:2

- 1)) |il.

But from Lemma 216, |iI = 24 2 - 41(41 - 1). Hence,

n

4 2 -4(4 - 1)
j=1

n

= 2n4 j -4=11(4i - 1)
j= 1

n

2 n 4(n+11)
j=1

= 2n(n+2) fJ(4i - 1).
j= 1

Note that 1 < H (4i - 1) < ]l_ 4i = 2n(n+l). Hence,

2 n2 +2n < cij < 2 2n2 +3n.

Hence, IC I = 2 e(n2 ), i.e. the Clifford group grows exponentially with n.

ponential growth of the Clifford group means that it quickly becomes infeasible to

perform algorithms that involve writing down all the elements of the Clifford group.

For example, if one wanted to sample uniformly from the Clifford group, it would be
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n j64j = JCn/U(1)j (H, S, CZ)n I
1 24 192
2 11520 92160
3 9.289728 x 107  7.4317824 x 108

4 1.21286688768 x 1013 9.70293510144 x 1013
5 2.54108226784591872 x 1019 2.032865814276734976 x 1020

6 8.52437556169034724016128 x 1026 6.819500449352277792129024 x 1027

Table A. 1: Number of elements in the n-qubit Clifford group ICn/U(1) and the group

of n-qubit operators generated by H, S, CZ, for n 1, 2, ... , 6. The cardinalities

of these groups are related by CJnI = JCn/U(1)j = I(H, S, CZ)"I. The sequence

(H, S, CZ)"| is recorded as sequence A003956 in the On-Line Encyclopedia of Integer

Sequences (OEIS) [133].

impractical to write down all elements of the group and then pick randomly from the

list; for such a task, it is possible to perform much better [147].

The first four values of IC.I = ICn/U(1)1, for n > 1, are 24, 11520, 92897280 and

12128668876800 (see Table A.1). As noted in [182], these values are a factor of 8

smaller that the numbers quoted in [61,133]. This reason for the difference is that

the 'Clifford group' considered in these references refers to (H, S, CZ)" instead of

C,/U(1). A factor of 8 arises because

(HS) 3 - eiT/41.

and so every equivalence class [U] E Cn/U(1) contains 8 Clifford operators that differ

by a global phase: [U] = {eik'T/ 4 U : k E Z8}. Hence,

(H, S, CZ)" I= 81ICn = 2 n2 +2n+3 J7( 4 i _ 1)
j=1

The first four values of I(H, S, CZ)n , for n > 1, are 192, 92160, 743178240 and

97029351014400 (see Table A.1).
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