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Abstract

We give asymptotics for the level set equation for mean curvature flow on a convex domain

near the point where it attains a maximum. It was shown by Natasa Sesum that solutions are

not necessarily C3, and we recover this result and construct non-smooth solutions which are

C 3. We also construct solutions having prescribed behavior near the maximum. We do this

by analyzing the asymptotics for rescaled mean curvature flow converging to a stationary
sphere.
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Chapter 1

Introduction

Let Q c Rn+1 be a bounded convex domain. Our main object of study is a function t : Q

R satisfying t = 0 on dQ and

JVtidiv Vt -1 (1.1)
( VtJ

in Q. This degenerate elliptic boundary value problem is called the level set equation for

mean curvature flow, or the arrival time equation. The problem (1.1) admits a unique so-

lution t E C2 (Q), and this solution has a single critical point in Q at which it attains a

maximum. Our main results concern the behavior of t near this critical point: we will lin-

earize the equation (1.1) near the critical point and show that, although the equation (1.1) is

degenerate, a solution to the linearized equation provides a good approximation to t. Using

this, we will be able to characterize the asymptotics of t near the critical point, that is, the

first few nonzero terms in its Taylor expansion. The main result is the following theorem.

THEOREM 1.1. Suppose Q c R"+' is a bounded convex domain and t solves the arrival

time problem on Q. Let x0 be the unique critical point of t in K, where t attains its maximum.

Then either Q is a round ball and t = t(x0 ) - Ix - x0 121(2n) or there is an integer k > 2
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and a nonzero homogeneous harmonic polynomial P of degree k such that

t(x) = t(xO) Ix - X01 + Ix - x Ik(k- nP(x - x") + E(x), (1.2)
2?n

where the error term E satisfies E(x) = O(|x - x0 k(kI)/n+-P(x - x0)) as x -+ x0 for

some E > 0. Moreover, if P is a homogeneous harmonic polynomial of degree at least two

then there exists a bounded convex domain in R"n+1 on which the solution to the arrival time

equation satisfies (1.2)for P.

The proof of this theorem involves a detailed study of the convergence and asymptotics

of rescaled mean curvature flows that are small perturbations of the stationary sphere. The

main result about asymptotics of the rescaled mean curvature flow near a sphere is the

following theorem.

THEOREM 1.2 (Asymptotics for rescaled MCF near the stationary sphere). Let S" C Rn+

be the sphere of radius (2n) /2 centered at the origin, and suppose { Ej is a rescaled mean

curvature flow converging to S". Then there is a finction i : S" x [S , oo) --* R with the

property that Z is the normal graph of u over S" for sufficiently large s and there is an

eigenfunction Pfor -A - 1 on the sphere with eigenvalue A > 0 such that

I|eA'u(-, s) - Plck(sn) < Ce-ES (1.3)

for some Ck > 0 depending on k and a constant E > 0 independent of k. The limit finction

P may be prescribed, moreover: for each eigenfirnction P for -A - 1 with eigenvalue

A > 0, there exists a normal graph over S" evolving by rescaled MCF and satisfying (1.3)

as s -+ 0o.

Remark. The same proof implies a similar asymptotic result for a rescaled MCFs con-

verging exponentially to general compact self-shrinker.

In this section, we introduce the mean curvature flow for hypersurfaces in Rn+' and

explain how equation (1.1) arises from the mean curvature flow. We then describe the
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linearization of (1.1) near a critical point, which motivates the main result. In section 1.2,

we explain the strategy behind the proof of Theorem 1.2. In section 1.5, we prove that

Theorem 1.1 follows from Theorem 1.2.

In the subsequent sections we prove the main results on the asymptotics of t near the

critical point.

1.1 Mean curvature flow

A 1-parameter family of smooth immersions X : M" x [0, T) -+ Rn+1 of an n-dimensional

manifold M is a mean curvatureflow if the position vector X satisfies

d
v(X, t) - -X(t) = -H(X, t), (1.4)

dt

where v(X, t) is a unit normal for M, = X(M, t) at the point X and H(X, t) = div Mv(X, t)

is the scalar mean curvature of M, at the point X. Notice that the sign of this equation is

independent of the choice of unit normal.

EXAMPLE 1.3 (Shrinking sphere). One of the simplest and most important examples of

mean curvature flow is a shrinking sphere. If MO = SR is a sphere of radius R centered at

a point xo, then the equation (1.4) becomes an ODE for the radius of a sphere S,,) centered

at x0 , namely, the radius r(t) must satisfy r' = -n/r. The unique nonnegative solution to

this ODE is r(t) = (R2 - 2nt)/ 2 , with R = r(0) the initial radius. Thus the sphere of radius

R shrinks homothetically to a point at time T = R2 /(2n).

Example 1.3 illustrates an important property of mean curvature flow starting from a

compact surface: the evolution becomes singular after a finite amount of time. For a general

closed initial surface, this is implied by the following avoidance principle.

PROPOSITION 1.4 (Avoidance principle for mean curvature flow). Let { M, I and I N, } be

two mean curvature flows in R"+'. If M0 and No are disjoint, then M, and N, are disjoint

for all t.

11



COROLLARY 1.5 (Finite-time singularity formation). If { M, } is a mean curvature flow

starting from a smooth closed surface Mo, then there is afinite time T such that the curvature

of M, becomes infinite as t -> T.

Proof Since Mo is compact, we can find a large sphere SR containing Mo. By the avoidance

principle, M, must not be defined for t larger than the extinction time R2 /(2n) of the sphere.

On the other hand, as long as the curvature of M, is bounded there exists a mean curvature

flow starting from M, and existing for some definite time depending only on the bound for

the curvature by the basic existence theorem, Theorem 1.6. So there must be a time between

t = 0 and t = R2 /(2n) at which the curvature becomes unbounded.

The basic existence theorem for mean curvature flow is the following.

THEOREM 1.6 (Short-time existence and uniqueness for mean curvature flow). Let M be

an n-dimensional smooth embedded closed hypersurface in R". Then there exists E > 0

depending only on an upper bound for the principal curvatures of M and a unique smooth

mean curvature flow { M, },Lo[) starting from Mo = M and defined for t < E.

The idea behind the proof of Theorem 1.6 is that a solution to the mean curvature flow

starting from a smooth hypersurface with bounded curvature must be a normal graph over

the initial surface for a short amount of time. To be precise, let X : M -+* R"+ be an

embedding of M into R"+, with unit normal v. Then we search for a function u: M -* R

such that X(p, t) = X(p) + u(p, t)v(p) satisfies the mean curvature flow equation. Such a

function must exist moreover for any mean curvature flow starting from M. The defining

equation (1.4) then becomes a quasilinear parabolic equation for the scalar function u, and

short time existence and uniqueness then follows from short-time existence and uniqueness

for the scalar PDE on M.

1.1.1 Singularity formation and self-similar solutions

Corollary 1.5 shows that surfaces evolving under the mean curvature flow tend to form

singularities. The study of these singularities makes up the bulk of the literature on mean
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curvature flow. Because our main results concern mean curvature flows which are small

perturbations of shrinking spheres, we will not dwell on more general singularity models.

We will however need some basic ideas in order to understand even solutions to MCF which

are nearly spherical.

The basic method of analyzing singularities is, roughly speaking, to magnify the picture

near the formation of the singularity in such a way that the curvature of the evolving surface

remains bounded. In many cases, there is a specific rate of continuous magnification, that

is, a continuous rescaling of the flow, which causes the evolving surface to converge toward

one of a family of singularity models that are equilibrium points for the rescaled flow. These

singularity models are called self-shrinking surfaces or self-shrinkers, because they shrink

homothetically under the mean curvature flow. One simple example is the sphere, discussed

in Example 1.3.

The self-shrinking solutions to mean curvature flow are characterized by an elliptic

equation relating the position vector and the unit normal, which we derive now. Suppose

X : Z" -+ R1 is a smooth embedding of a hypersurface in Rn+1 that evolves homothet-

ically under the mean curvature flow. This means that there is a function A: [0, T) -- R

with the property that the family of embeddings X(p, t) = A(t)X(p) constitutes a mean cur-

vature flow. Let v be a unit normal defined in a neighborhood of some point X. Then the

defining equation for mean curvature flow gives

A'X -v = - divAY-v =-.div.- V.

By translating the embedding if necessary, we can assume X - v(X) is nonzero, and it

then follows at once that (X - v)~1 div. v is constant on Z, that is, the mean curvature is

everywhere proportional to the normal component X -v of the position vector. If we rescale

Y by a constant c, then this constant value scales by c~ 2 , and we may therefore assume that

it has magnitude 1/2. The sign is determined by whether A2 is decreasing or increasing, in

other words, by whether the homothetically evolving MCF is shrinking or expanding.

Thus for a homothetically shrinking MCF, AA' = -1/2, and for a homothetically ex-
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panding MCF, AA' = 1/2. Solving the ODE gives A(t) = (A(0) 2 - t) 1/ 2 in the first case and

A(t) = (A(0) 2 + t)1/ 2 in the second case. The initial surface satisfies the equation

X V - div. v = 0
2

in case it is shrinking and

+ div. V = 0
2

in case it is expanding.

We have proved the following.

PROPOSITION 1.7 (Characterization of self-shrinkers). The hypersurface Z" c Rn+1 shrinks

homothetically under the mean curvature flow if and only if it can be rescaled to satisfy the

equation

XV- div, v = 0. (1.5)
2

If Y satisfies this equation, then the surfaces M, = (-t)1/ 2 Yfor t <0 form a mean curvature

flow becoming singular at the origin at time t = 0.

A similar statement holds for the self-expanding solutions. Notice in particular that

homothetically shrinking solutions are ancient, that is, they are defined for all backward

time, while homothetically expanding solutions are defined for all forward time. Because

of this feature, expanding solutions do not arise as singularity models for mean curvature

flow. The use of self-shrinkers as singularity models will be explained in the next section.

There are many self-shrinking surfaces, but the embedded mean convex self-shrinking

surfaces are very simple: Huisken proved in [Hui93] that they are precisely the generalized

cylinders Sn-k x Rk c Rn+1.
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1.1.2 Rescaled mean curvature flow

In the preceding section we saw that self-shrinking solutions to the mean curvature flow

shrink down to a point like (T - t)'I 2 , where T is the time at which the singularity occurs.

Put another way, the curvature of a homothetically shrinking surface grows like (T -t)-1/ 2 as

t -- T. In fact, many of the singularities that arise in mean curvature flow exhibit curvature

blow-up at this rate. In order to study these singularities, we magnify the surface near them

at this rate, so that the curvature remains bounded. Under fairly general assumptions the

magnified surfaces actually converge to a self-shrinker. In this section we describe this

rescaling procedure.

Let { M, I be a mean curvature flow that becomes singular at the origin as t -+ T, and

suppose that the curvature of the rescaled surface (T - t)1/ 2 M, remains bounded as t -+ T.

Let s = - log (T - t), and define the rescaled surface ES by ES = e-s/2Mr-el = (T -t)1/ 2M,.

If v is the unit normal for Y,, then its position vector X satisfies the equation

d 1
V . -X =-divS v+-v - X.

ds s 2

Notice in particular that, as expected, E is constant if and only if the position vector satis-

fies the self-shrinker equation (1.5). Self-shrinkers are therefore equilibrium points for this

rescaled flow.

DEFINITION 1.8 (Rescaled mean curvature flow). Let E" be an n-dimensional manifold and

suppose X : E x [0, oo) --+ R" 1 satisfies the equation

d 1
V . -X divS V + -V - X,

ds 2

where v is a unit normal for the embedding. Let ES = X(E, s). The 1-parameter family

{ s Ise[o.) of hypersurfaces is a rescaled mean curvature flow. If { M, I is a mean curvature

flow becoming singular at time T and for which p E MT, then the surfaces E, defined by

- es/ 2 (Mres - p) constitute a corresponding rescaled mean curvature flow.
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In the convex case, the main convergence theorem was obtained by Huisken in [Hui84].

It states the following.

THEOREM 1.9 (Huisken, [Hui84]). Suppose { M, }tr[OT) is a maximally defined mean cur-

vatureflow in R"+1 for which Mo is a closed convex hypersurface. Then M, is convex for

t E [0, T), and M, shrinks down to a point at time T. Moreover, the corresponding rescaled

mean curvature flow { Es} converges to the sphere S" of radius (2n)1/ 2 centered at the origin.

The convergence is exponential in Ck for any k.

1.1.3 The rescaled flow near an equilibrium point: normal graphs over

self-shrinkers

In this subsection, we explain the ideas behind Theorem 1.2. We first explain the idea of a

normal graph and its importance for rescaled MCF near a self-shrinker. Then we explain

how Theorem 1.2 follows from the application of a stable manifold theorem for solutions

to rescaled MCF converging to a shrinker at a certain rate.

Let I" c Rn+1 be a smooth closed self-shrinker with unit normal v, and suppose the

rescaled mean curvature flow {E} }sO converges to Z as s -+ co in C2 . Then for large

enough s, we can express Es as a normal graph over Y:

ES = {x + u(x, s)v(x): x E E}

for some scalar function u : E x [so, oo) -> R. The function u can be characterized as a

solution to a quasilinear parabolic equation of the form

Qsu = Lu + N(u, VU, V 2u) (1.6)

where L is the linear elliptic operator defined by

1 , 1
Lw = Aw- -x -Vw+ IVv|w + -w

2 2
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and the nonlinear error term N has the form

N(u, V11, V 2u) = f (u, Vu) + trace(B(u, Vu)V 2 u), (1.7)

where f and B are smooth and f(0, 0), df(0, 0), and B(O, 0) are zero. For a detailed proof

of this fact, see Section 4.1 of [CMI15].

1.2 Rate of convergence and asymptotics for rescaled MCF

near the sphere using a stable manifold theorem

We now explain how Theorem 1.2 is proved. The strategy involves two steps: (1) char-

acterize the possible exponential rates of convergence of the rescaled MCF (EI} to the

self-shrinker E and the solutions converging at any particular exponential rate, and (2) rule

out the possibility of solutions converging faster than any exponential. In the first step, we

use a general stable manifold theorem, Theorem 1.11 below. The second step is Theorem

1.13.

On the stationary sphere S" of radius (2n)'/ 2 centered at the origin, the linear operator L

simplifies. Because x is proportional to the unit normal on S", the term x -Vw appearing in

L w disappears. Moreover, Vv = (2n)-1/ 2 -I in this case, where JII is projection onto the n-

dimensional tangent space, and so IVvI 2 = n/(2n) = 1/2. Putting everything together gives

L = A + 1 in case E = S". This means the eigenvalues are Ak = k(k + n - 1)/(2n) - 1 and

the eigenfunctions are restrictions of homogeneous harmonic polynomials to the sphere. In

particular. the operator L has trivial kernel in this case. We summarize in a proposition.

PROPOSITION 1.10. If the normal graph of a function u : S" x [so, sI] -+ R evolves by

rescaled mean curvature flow, then u satisfies a quasilinear parabolic equation

oSU = (A + l)u + N(u, Vu, V2u),

17



where the nonlinear error N has the form (1.7).

Let dk be the dimension of the space of eigenfunctions corresponding to eigenvalues

.Ak_ which are strictly smaller than Ak. We prove the following result for solutions

converging to the sphere.

THEOREM 1.11. For any integer r > n/2 + 1 and any integer k > 2, there exists an open

neighborhood B = B(k, r) of the origin in H'(S") with the property that the set of initial

data uo e Bfor which the solution u to the rescaled MCF equation (1.6) exists for all time

s > 0 and converges to zero with exponential rate Ak is a codimension dk submanifold of

B which is invariant for equation (1.6). For such initial data, there exist, for j k with

A1 < 2Ak, eigenfuinctions P E Ej for which the corresponding solution u satisfies

u(y, s) - I e-AjS P.(y) Ce-2 s
j>k Hr(S")

Aj<
2
Ak

for some constant C > 0 and all u- < Ak.

Remark. The proof involves two steps: constructing the invariant manifold and proving

the asymptotics. The construction of the invariant manifold is modeled on the argument of

[Nai88] and [EW87], both of which hew closely to the analogous construction for ODE.

We also prove that the leading eigenfunction Pk to which eAksu(x, s) converges in Hr(Sn)

may be prescribed.

THEOREM 1.12. Suppose k > 2 and let P E Ek be an eigenfunction for the operator

A + 1 on the sphere S" corresponding to the eigenvalue Ak. There exists so > 0 and i : S" x

[so, oo) -+ R which solves the rescaled MCF equation (1.6) and satisfies

IeAksu(y, s) - P(y)IIHr(S,) Ces

for some constants C > 0 and o- > 0 and for all s > so.

18



Remarks. If k > 3 or n = 1 or 2, then we may take o- = Ak+1 in the statement of the

theorem, and if n > 3 and k = 2 we may take any o < 2A2 = 2/n.

The precise asymptotics of the limit, and the prescription of them, are inspired by

[AV97]. In fact, the present investigation came from the author's wish to determine similar

asymptotics in the simpler compact setting.

The proof of Theorem 1.11 actually shows that any solution to rescaled MCF converg-

ing to the sphere lies in one of the invariant manifolds from the statement of the theorem.

Therefore, the only remaining step in the proof of Theorem 1.2 is to rule out the possibility

of solutions converging to the sphere faster than any exponential. This is the role of Theo-

re m 1.13. As we will see, this translates to a unique continuation result for the arrival time.

It rules out solutions converging like e- , for example, and the proof occupies section 4.

THEOREM 1.13 (Ruling out faster-than-exponential convergence). If { , I is a rescaled

mean curvature flow converging to the stationary sphere S" at a rate that is ftster than any

exponential, then Z. = S" for all s.

1.2.1 Asymptotics for rescaled MCF near a general shrinker

The proofs in this thesis are written for the sphere, but they actually apply with little mod-

ification to a general compact self-shrinker. Here we state the results in a more general

context.

THEOREM 1.14 (Stable manifold theorem for solutions converging at a particular rate).

Suppose !." C Rn+1 is a smooth closed self-shrinker, and suppose E is an eigenspace for

-L with eigenvalue A > 0. Let d be the dimension of all eigenspaces corresponding to

eigenvalues smaller than A. Then for r > n/2 + 1 there is a ball B centered at the origin

in Hr(Z) with the property that the set of initial data uo e Bfor which the solution u to the

rescaled MCF equation (1.6) exists for all time s > 0 and converges to zero with exponential

rate A is a codimension d submanifold of B which is invariant fbr equation (1.6). For such

19



initial data, the corresponding solution u to (1.6) satisfies

IIeAsu (y, s) - P(Y)IIHr(X) -Ces

for some E > 0 and some eigenfinction 0 E E. The limit P can be prescribed.

It is also true that a rescaled MCF cannot converge faster than exponentially to a compact

self-shrinker.

THEOREM 1.15. Suppose E" C R"+1 is a smooth closed self-shrinker and { l, is a rescaled

MCF converging to E at a rate that is faster than any exponential. Then E. = E2for all s.

In case E is a closed self-shrinker for which the linear operator L has trivial kernal,

these two theorems imply that any solution to rescaled MCF converging to E must in fact

converge exponentially to the normal graph of some separation of variables solution e-AS

to the linear equation d. w = L w on E. However, when L has a kernel there may be solutions

that do not converge exponentially to E but rather converge at a much slower rate. In this

situation, the analysis becomes more complicated (see, for example, [Schl4]).

1.3 The arrival time

Suppose Q c R"+1 is a smooth bounded domain with mean convex boundary, and let { M,

be a mean curvature flow starting from Mo = dQ. Then for x E near enough to the

boundary, there is a unique time t = t(x) at which x e M,, that is, at which the moving

front arrives at the point x. The function t that assigns this time to a point x E Q is called

the arrival time for mean curvature flow.

The assumption of mean convexity is crucial for this definition, because a mean curva-

ture flow that is not mean convex may touch the same point twice.

As we've stated it, t may not be defined on all of Q. To see the trouble, consider a

mean convex domain for which the mean curvature flow becomes singular before becoming

20



extinct. A simple example is a dumbbell-shaped region in R3 with a very thin neck. If the

neck is thin enough, it will pinch off under the flow before the dumbbells have time to shrink.

The issue now is to define the flow in a natural way past the time when the neck pinches

off. The simple existence theorem for smooth initial data will not suffice in this situation

because at the moment the neck pinches off the evolving surface is not smooth-it has a

singularity at the neck pinch. There are in fact several ways to define the flow past the neck

pinch, and one of them is to use the arrival time. It was precisely this kind of problem that

led to the study of the arrival time function in the first place.

The crucial observation is that, where it is defined, the arrival time t is characterized

by the fact that it solves a partial differential equation, namely, the level set equation (1.1)

from the introduction. This observation enables us to define t using the equation rather than

using a mean curvature flow, thereby giving us another way to construct and study the mean

curvature flow: once the function t is constructed, the level sets M, = {x: t(x) = r I make

up a mean curvature flow.

As an example of the utility of this approach, one can show that a solution to equation

(1.1) exists on an arbitrary mean convex domain in a certain weak sense. Therefore the

mean curvature flow can be defined on the entire dumbbell shaped region described above,

for instance, and the arrival time gives us a way to extend the flow beyond the neckpinch

singularity. We will not pursue the weak solutions to (1.1) here because our results concern

C2 solutions which satisfy (1.1) exactly away from their critical points.

LEMMA 1.16 (Derivation of the level set equation (1.1)). Let t be the arrival time for a

smooth mean convex mean curvature flow. Away from singularities of the mean curvature

flow, the finction t satisfies the equation

IVt div t -1. (1.8)

Conversely, ifg c Rn+l is a smooth bounded mean convex region and t : Q --+ R satisfies

t = 0 on A2 and (1.8) away from critical points in the interior of Q, then its level sets form
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a mean curvature flow t M,} starting from Mo = oQ.

Proof Let X: M x [0, T) -- Rn+1 be the mean curvature flow. Then t is characterized by

the equation t(X(p, r)) = r. Differentiating both sides in r and using the equation satisfied

by X gives

d
1 = Vt -X = -Vt -vH,

d'r

where v is the unit normal to M, = X(M, t) and H = div M v is the scalar mean curvature.

Now notice that M, is a level set for t, so away from critical points v = Vt/ I Vt 1. Finally,

div ,,(Vu/VuI) = div fli(Vu/IVuI), in other words, v - V,(Vu/IVul) = 0, again because

Vu/IVuI is a unit normal for M,. Combining everything gives the equation for t.

Next, suppose Q is a bounded domain in Rn+1 with smooth mean convex boundary AQ

and suppose t solves (1.8) in Q. For small enough E, define an embedding X : MQ x [0, E] -+

R"+1 by letting X(-, 0) be the identity on aQ and requiring that X(p, t) satisfy the following

ODE:

d 0 Vt(X(p, t))
-X(p,t) =.
dt IVt(X(p, t))12

In other words, X is the flow of (M under vector field Vu/VuI 2. Then X(i, r) is the level

set {x cG Q: t(x) = rI because ort(X(p, -r)) = 1 by computation, and on the other hand

X forms a mean curvature flow because Vt/VtI is a unit normal for the level set of t and

the equation (1.8) says that lVtl-' is the negative mean curvature (the equation says it is the

negative of the divergence of the normal). Thus the level sets of t trace out a mean curvature

flow.

1.3.1 Background on regularity for the arrival time

If 92 is a bounded convex domain, it was proved by Huisken in [Hui84] that the mean curva-

ture flow { M, I starting from JQ contracts smoothly to a single point x0 E 92 at some finite
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time T. Moreover, the translated and rescaled flow (T -,r)- - xO) converges at time

T to the round sphere S" of radius (2n)1/2 centered at the origin. The function t solving (1.1)

for Q therefore has a single critical point x0 inside Q, where t(xo) = T is the maximum for

t. In this case, t is actually C2 on Q and the second derivative V 2 t(xo) of t at this critical

point is a multiple of the identity: didjt = -6,j/n.1

In the case of a general mean-convex domain, the arrival time t is known to be twice

differentiable but not necessarily C2 , see [CMI16], [CMI17], and [CMI18]. In fact, it was

shown in [WhiOO] (Theorem 1.2) and [Whil5] that any tangent flow of a smooth mean

convex mean curvature flow is a generalized cylinder. From this one can figure out what

the Hessian of the arrival time function must be if it exists. The remaining issue was to

show that the Hessian exists, which is equivalent to the problem of uniqueness of tangent

flows. This was solved in [CMI15]. The study of the arrival time is referred to as the level

set method in the mean curvature flow literature, because it gives a means of rigorously

extending mean curvature flow beyond singularities. This point of view was first taken in

a computational context by Osher and Sethian, [OS88], and the theory was then developed

in [CGG91], [ES91], [ES92a], [ES92b], and [ES95]. We will restrict attention to the case

in which the domain of the arrival time function is convex.

In [KS06], Robert Kohn and Sylvia Serfaty proved that the solution to equation (1.1)

on a convex planar domain Q is always C 3 , and they asked whether this is true in higher

dimensions. Natasa Sesum demonstrated in [Ses08] that the answer is negative: if n >

2, there exists a convex domain C R n+1 for which the solution t to (1.1) is not three

times differentiable. To prove this, she analyzed the rate of convergence of a rescaled MCF

(T - r)- 1/2 M", proving the existence of solutions for which this rescaled flow converges to

the sphere like (T - ,)I/".

In a bounded convex domain, Huisken's theorem implies that the arrival time function

has precisely one critical point, where it attains its maximum. Huisken showed in addition

that the arrival time function is C 2 and agrees to second order at the critical point with the
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arrival time for a sphere becoming extinct under MCF at the same time as the boundary of

the domain.

We will now prove some basic facts about the arrival time when it is C 2 .

LE MMA 1.17. If the arrival time t : Q -' R is C2 at a critical point x0 e Q, then D2t(x0 ) =

-fk+l/k, where k+1 is projection onto a k + 1 -dimensional plane through the origin.

Proof Suppose the critical point x0 is at the origin, suppose t(O) = 0, and denote by A the

second derivative D2 t(0). If t is C2 near x = 0, then we can write

1
t(x) = -x - Ax + e(x),

2

where the error term e is C2 near x = 0 and satisfies e(0) = De(O) = D2 e(0) = 0. I will

show that

|A 1
2 trace A - A - A(A ) + IAg 2 = 0 (1.9)

for all C E S". Suppose this is proved. Since A is a symmetric matrix, we can choose

coordinates in which it is diagonalized. Writing A,.. for the eigenvalues, we get

n+I n+l

~A2 71Ai +ZA )0
i=1 j=)

for all Z e S". This is true if and only if for each i we have either Ai = 0 or 1 - A+ Aj = 0.

Thus if A, # 0 we have , Ai = -1, meaning that the nonzero Ai are all equal and satisfy

Ai = -1/k, where k + 1 is the number of nonzero Ai.

It remains to prove (1.9). Multiply the equation (1.1) through by jDtI2 to see that t

satisfies

IDt| 2 At - Dt - D2 tDt + IDt12 = 0.

This is also true at critical points if t is C 2 . If we now insert the Taylor approximation
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Dt = x - A + De into this equation and remember that D 2 t is continuous and IDel = o(lx1)

as x - 0, we see that

lAx|2 trace A - Ax - A(Ax) + |Ax1 2 = o(1x1 2)

as x -+ 0. Therefore, dividing through by 1x1 2 and making lxi -+ 0 gives (1.9) for an

arbitrary direction.

LEMMA 1.18. Suppose 92 is a connected mean convex domain and t: Q -+ R is a C2

solution to the arrival time equation (1.1). If D2 t(xo) = 0 for some x0 e 2, then D 2t

vanishes identically on .

Proof Let Z be the zero set of D2t. Since D 2 t is continuous, Z is relatively closed in K2. We

will show that it is also open by arguing that points not in the interior of Z are not contained

in Z. So let y E Q be a point that is not in the interior of Z. Then there is a sequence of

points x,, E Q with x, - y as n -+ oo and D2 t(xn) # 0. This implies that we can find points

y,, E Q with y,, -> y as n - oo and Dt(y,) # 0. But then

IDtGyn)IDt,-I = At(y") - -tn D 2t(yn) D~n
| Dt(yn)| |Dtty,)|

meaning that the right side cannot possibly converge to zero as n -.> o. It follows that

D 2 (y) # 0, that is, that y 0 Z. Therefore Z consists only of interior points and is open.

Since 92 is connected, Z = K2 and D 2t vanishes identically. 0

COROLLARY 1.19. A C2 solution to the arrival time equation cannot attain a local mini-

mum unless it is constant.

Proof By the first lemma, the second derivative at a critical point of a C2 solution is non-

positive. By the second lemma, the second derivative cannot vanish unless the solution is

constant. Then either the solution is constant or at any critical point there are directions

in which the second derivative is negative definite. In particular, no critical point can be a

minimum for a nonconstant solution. N
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COROLLARY 1.20. A nonnegative global C2 solution t : Rn+1 -> [0, oo) to the arrival time

equation is constant.

Proof Suppose t is not constant and assume inf t = 0. By the preceding corollary, the

infimum cannot be attained on R"+1. Thus if x, are points for which t(x.) -+ 0 as n -+ oo,

then IxnI -+ oo with n. Let M, = {x : t(x) = -r} be the level set of t so that {M,} forms

a mean curvature flow. Then if Rr = minXM I xI/2, the ball of radius R, centered at the

origin is disjoint from M, and R, -+ oo as r -+ 0. By the comparison principle, t(O) >

R2/(2n) for all -r. Thus t is infinite at the origin, a contradiction.

1.4 Linearization of the arrival time equation

In this section, we linearize the arrival time equation (1.1) on a convex domain and explain

why the main results should be expected.

We have already seen that the solution t to the arrival time equation (1.1) on a bounded

convex domain Q c R"+' is C2 on Q with a unique critical point, which we assume to be

the origin. Near the critical point, moreover, we have seen that t agrees to second order with

the arrival time for a shrinking sphere: if T = t(0) = max t, then

t(x) = T - 2 + E(x),
2n

where E is C2 and E(x) = o(1x12 ) as x -+ 0. The error term E satisfies the following

equation on K:

(ln+DE-D2E - +DE -AE -n+DE =0.

Suppose now that E(x) = Q(x) + E, (x) for some function Q that is homogeneous with

degree d > 2 and an error term E, that satisfies E1 (x) = o(Ixld), DEI(x) = o(lxl'd-), and

D2E1 (x) = o(lxId-2) as x -+ 0. Then by equating terms with the same order of vanishing at
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the origin, we find that Q must satisfy the linear equation

Ix1 2AQ - x - D2Qx = 0.

By expressing the Laplacian in polar coordinates, we can easily characterize the homoge-

neous solutions to this equation.

LE MM A 1.21. The homogeneous solutions Q : R"+1 -+ R to the equation

Ix 2 AQ - xD 2 Qx=0 (1.10)

are of thejform Q(x) = Ixjk(k- 1)/n P(x)for a homogeneous harmonic polynomial P of degree

k.

Proof Suppose Q is homogeneous of degree d. Then on the unit sphere S" we get

0 = |xI2AQ - x - D2Qx = AsnQ + nOrQ = AsnQ + ndQ.

This means that Q is an eigenfunction for the Laplacian on S" with eigenvalue nd. Therefore

d = k(k + n - 1)/n for some integer k > 0, and Q = rdP(x/r) = rd-kP(X) - rk(k- 1 )nP(x)

for some homogeneous harmonic polynomial P of degree k.

Remark. The equation (1.10) is the linearization of the nonlinear arrival time equation

at the special solution tB(x) = -X1 2 /(2n), which is the arrival time for a round sphere

becoming extinct at the origin at time zero under mean curvature flow. In other words, if

we suppose that t, = tB+EE solves the arrival time equation (1.1) and collect the terms that

are linear in E, then the result is equation (1.10) for the error E. This means that E satisfies

this equation up to an error that is order E2 provided there are uniform C 2 bounds on the

family of solutions t, Thus if t is a solution to the arrival time equation which deviates very

little from tB, then we expect the error t - tB to approximately satisfy equation (1.10). On

the other hand, every solution t to the arrival time equation with convex level sets is very
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close to tB near its maximum, and this is why we expect the behavior of the error t - tB to

approximate a solution to (1.10) near the maximum. This is exactly what we have shown

above, and we now record the precise result in a proposition. This idea means that another

route to proving our main result, Theorem 1.1, might be to derive uniform C2 bounds for

the arrival time equation on a convex domain and thereby regulate the behavior of solutions

near the critical point.

PROPOSITION 1.22. Suppose t is a solution to the arrival time equation (1.1) on the bounded

convex domain Q. If

Ix\2t(x) = T - + Q(x) + E(x),
2n

where Q is homogeneous of degree d > 2 and E1 (x), IxIDE1 (x), and Ix1 2 D 2 E,(x) are

o(Ixj ) as x -> 0, then there exists an integer k > 2 and a homogeneous harmonic polyno-

mial P of degree k such that

Q(x) = |xik(k-1)/nP(X).

If the assumptions of Proposition 1.22 were met in all cases, then Theorem 1.1 would

be already verified. In order to prove that t actually admits an asymptotic expansion of this

form, we relate the arrival time to a normal graph over the sphere that is evolving under the

rescaled mean curvature flow. The form of Q actually falls naturally out of the asymptotics

for this normal graph.

1.5 Relating convergence of rescaled MCF to asymptotics

for the arrival time

Suppose t is the arrival time for a bounded convex mean curvature flow { M,} becoming

singular at the origin in Rn+1, and let t(0) = 0. Thus t is C2 near the origin and agrees
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to second order there with the function -1x1 2 /(2n), which is the arrival time for a round

sphere becoming singular at the origin at time zero. Let { , } be the rescaled mean curvature

flow corresponding to { M, }: 1, = es/2MTe. = (-t)-1/2M, where s = -log (-t). (See

definition 1.8.)

Denote by S" the sphere of radius (2n)1/ 2 centered at the origin in R" 1 . Its outer unit

normal at a point y e S" is y/(2n)'/ 2 . For large enough s, we may express the surface Is as

a normal graph over S":

s= y + u(y, s)(2n)1/2 y E S"

If we now unwind the rescaling procedure and set r = -es, we see that the point x defined

by

x=( 1/ (2n)l/2

lies in the surface M = {x : t(x) = r1. Therefore, we obtain an implicit equation relating

the arrival time t to the graph function t, which we summarize in a lemma.

LEMMA 1.23. If t is the arrival time for a convex MCF { M, } becoming extinct at the origin

at time t = 0, and the corresponding rescaled MCF { Is } is the normal graph of a finction

u : S" x [0, oo) -R over the stationary sphere S", then

t(x) = . (IX.2
((2n)'/2 + u((2n)1/2x/Ix1, log (-t(x))))2

This implicit equation allows us to relate the asymptotics of t near x = 0 to the asymp-

totics of u as s -+ oo. We will use the asymptotics from Theorem 1.14 on the asymptotics

for rescaled MCFs in order to obtain asymptotics for t through the implicit equation (1.11).

LEMMA 1.24. Suppose the normal graph of u : S" x [0, oo) -+ R over S' evolves by rescaled
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MCF and suppose u satisfies

sup Ieisu(y, s) - P(y)j I Ce-s
yesn

as s -+ oo,for some C, A > 0 and a very small E > 0 and some function P : S" -+ R. Then

the corresponding arrival time satisfies

(2n)1/2 X

1X I
+ O(ixi2A+2+2E)

as x -+ 0.

Proof Using the preceding lemma, we get

I xt(x) =
2n

+ u + O(x1 2u2)
(2n)

3/ 2

as x - 0. From the asymptotics for u and the relationship s = - log (-t) we can write

u = (-t)AP(1 + e),

where e = O((-t)E) as t -+ 0. Combining everything gives

t = Ix +
2n

1x12
(2n)/ (-t)A P + O(Ix| 2(-t) 2 + IxI 2(-t)A+")

(2n)3/2
(1.12)

Since t -+ 0 with x, we see from this equation that t = -x1 2 /2n + O(Ix|2+2A) as x -+ 0.

Consequently, (-t)A = Ix1 2
-/(2n)A + O(x2+21). Inserting this asymptotic into the right side

of equation (1. 12) and simplifying then gives

IX1 2 + PO2+2A x2+2+E)

t = + P + O(|x|22+
2n (2n)3/2+A

if E is small enough, which completes the proof of the lemma.
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Chapter 2

Construction of the invariant manifolds

In this section, we adapt the argument of [Nai88], which is a general stable manifold theorem

for geometric evolution equations, to our situation in order to construct invariant manifolds

of solutions which converge with prescribed exponential rate. We now briefly summarize

the main result of [Nai88] and explain how our results differ: Let M be a closed Rieman-

nian manifold of dimension n and let L be an elliptic differential operator on M which is

symmetric in the L 2(M) inner product and which has discrete spectrum accumulating only

at +oo (in particular the operator is assumed to be bounded below). Suppose N = N(u)

is a nonlinear function defined on H'--(M) for an integer r > n/2 + 1 which satisfies

N(O) = 0 and a bound of the form we prove in Lemma 2.5. In this situation, Naito proves

the following:

THEOREM 2.1 (Naito, [Nai88]). There exists a ball B centered at the origin in Hr+(M)

in which the nonlinear evolution equation

(Su = Lu + N(u)

has an invariant stable manifold offinite codimension.

The codimension is equal to the codimension of the space on which L is negative definite

(the index of L plus the dimension of the kernel). Naito's argument is modeled on Epstein
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& Weinstein's earlier proof of a stable manifold theorem for mean curvature flow in the

plane, [EW87], and both of these arguments follow closely the proof of the stable manifold

theorem for ODE.'

Theorem 2.1 already almost implies part of the conclusion of Theorem 1.11, though it

does not include the precise rate of convergence and does not describe the asymptotics of

the limit. Using the notation of Theorem 1.11 from the preceding subsection and assuming

k > 2, one would like, in our situation, to replace a solution u(x, s) of (1.6) with e4ksu(x, s)

and to replace the linear term A + 1 on the right side of (1.6) with L = A + 1 + Ak and then

to apply Naito's theorem. The main issue then is that the nonlinear term will depend on the

time parameter s, but this is easy to overcome in this context because the time-dependent

nonlinear term satisfies a bound that is uniform in s.

Notice that, assuming this argument is carried out successfully, the stable manifold one

obtains in this case from Theorem 2.1 is the set of solutions for which eAksu(s) -+ 0, and it

will have the codimension of all eigenspaces corresponding to eigenvalues A, with j k (the

index plus nullity of A + 1 + A). If we want precisely the solutions for which s t-+ eAksu(x, s)

is bounded, that is, precisely the solutions for which u converges to 0 exponentially at rate

Ak as s -> oo, we must instead apply Theorem 2.1 to e(Ak-E)Su(x, s) and L = A + 1 +

Ak - E for sufficiently small E. The ultimate conclusion of this analysis is that there exists

a codimension dk invariant submanifold for the equation (1.6) with the property that any

solution in this invariant submanifold converges to zero at exponential rate Ak - E for all

E > 0. In particular, this argument does not prove that eksu(s) is bounded in H'+'(M),

though this can be proved (and we prove it below in Section ) using the fact that u converges

to zero in every Sobolev space Hr(Sn).2 Thus the fact that u converges to zero in Sobolev

'For a treatment of the stable manifold theorem in the finite-dimensional ODE context, see, e.g., [Hal09],
111.6.

2The assertion is not true for a general nonlinear term, as is already apparent in the finite-dimensional ODE
case, for essentially the same reason that a center manifold need not be stable. Consider for example the ODE

X
x = EX- __g x|log lxi

on R. For small initial data, the solution converges to zero like te-" as t - oo. If the nonlinear term is
O(1x Ia") for some a > 0 as x -+ 0 this cannot happen.
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spaces of all orders does imply that the rate of convergence is better than shown in [Nai88] or

[EW87]. 3 The same argument improves the rate of convergence in Naito's general theorem

under the additional assumption that the solution converges to zero in Sobolev spaces of

every order.

Rather than apply the conclusion of Theorem 2.1 in this way, we prefer to adapt the

argument to our situation. This is done in this section (Section 2). Section 2.1 collects

some bounds required for the construction in Section 2.3, and both sections follow closely

arguments of [Nai88] and [EW87]. We also include, for the convenience of the reader, a

proof that a quasilinear nonlinear term N of second order does satisfy the bound required

by Naito's hypotheses in [Nai88] and Theorem 2.1. This occupies Section 2.2

In Section 3, we establish the rest of Theorem 1.11, namely, the precise rate of conver-

gence and the asymptotics. This part does not overlap with [Nai88] or [EW87]. We also

show that the asymptotics can be prescribed as in Theorem 1.12. Analysis of the asymp-

totics requires a closer look at the construction of the stable invariant manifold in the first

place, and this is part of the reason we prefer to argue directly in the proof of Theorem 1.11

rather than attempt to apply the conclusion of Theorem 2.1 to our situation.

2.1 Linear estimates

Throughout, we write (v, wv) for the L 2 (S") inner product:

(v, w) = j vw.

Let L be the linear operator A + 1 on the sphere S", and let F be the subspace of H'(S")

3Cf. Proposition 5.2 of [Nai88], where the author establishes convergence to zero with exponential rate a
for any a smaller than the first positive eigenvalue of the linear operator, and Remark 3, page 136 of [EW87],
where the same claim is made.
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defined by

00

k =@E

j=k

with E as before the eigenspace for L corresponding to the jth eigenvalue A = j(j + n -

1)/(2n) -1. From now on, we fix an integer k > 2 so that L is negative definite and bounded

above on F, satisfying (Lv, v) 5 -A l2(sn) for v c Fk.

For v e Fk, we may define the H6 (S") norm for integer e > 0 by

This norm is equivalent to the usual He norm.

LEMMA 2.2. If s i'+ v(s) is a continuously differentiable path in F n Hr+ 1 (Sn), then for

any E > 0 and any integer r > 1,

1 d 1 2 1()12Lus 1 212IIV(s)| r(Sn) + (1 - E)I(S)I r+(Sn) , - L)V(s)IIi,._sn). (2.1)

Proof Write f = (a, - L)v for brevity. Use Cauchy-Schwarz to get, for any E > 0,

((-L)'v, f) E((-L)r+Iv, v) + ((-L)r-I
4E

Rearranging and substituting f = (d, - L)v on the left gives

((-L)rv, ( I -(1 - E)L)v) -((-L)r-f, _ f rI
4E 4E

and because Q!IV|t2r/2 = ((-L)rv, Qv) and ((-L)r+lv, v) = IVIIrI this is equivalent to

the conclusion of the lemma.

COROLLARY 2.3. If u(s) e Fk for all s > 0, then for any o with 0 < o < Ak and any
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integer r > 1,

2crs UkS/ 112 < (I - L12v(k )12a1 rId(e2Us|jv(s)||2,r(sn) iIV(O)II2ir(Sn) + 2(A ) 2ur Ir-.(S) dr.

Proof. Notice that the left side of (2.1) can be bounded below for v E Fkusing 1v(s)11 2

Ak|IIV(s)I2r. The result is

d 1V(s)I2Hr(sn) + 2(1 - E)Ak S)11r+(sn - L)s2r-1(n)-

This is equivalent to the statement of the corollary with o = (1 - E)Ak because the left side

can be written

d 11 (s)112 r + 2(1 - E)Ak (S) 1- e 2
(

1
-E)AkS d 2(1-E)Ak r

and we can multiply through by e
2 (-E)Aks and integrate.

COROLLARY 2.4. In the situation of the lemma, if r > 1 is an integer and 11V(sj)I|Hr(S") -+ 0

for some sequence si increasing to infinity, then

0 IfV(s),f+s() ds < II L(O)IsI Hr(Sn) + II(, - L) v(s)IHr-l(Sn) ds.

2.2 Nonlinear estimate

The nonlinear term N: R x F(TS") x F(T*S" 9 TS") -+ R (here F(TS") is the space of

sections of the tangent bundle. for instance) appearing in the rescaled mean curvature flow

equation (1.6) over the sphere has the form

N(u, Vu, V 2 u) = f(u, Vu) + trace(B(u, Vu)V 2 u) (2.2)
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where f : R x F(TS") -+ R is smooth with f(0, 0) = 0 and Df(0, 0) = 0, and where

B: : x F(TS") -+ F(T*S" 9 TS") is smooth and satisfies B(O, 0) = 0.'

In this section, we prove the following Sobolev estimate for a nonlinear term N of this

form. We abbreviate N(u, Vu, V 2 u) by N(u).

LEMMA 2.5. Let r be an integer with r > n/2 + 1, let N be smooth function of the form

(2.2), and let R > 0 be fixed. There exists a constant C depending on N and R and r with

the property that all v, w E C,(S") with IIVIIHr(Sf), I IWIIHr(Sn) R satisfy

|IN(v) - N(W)IHr-(SI) 5 C (i|VIjj'r+1(Sn)IIV - WIIHr(sn) + IIWIIHr(Sn)IIV - WIIHr+1(Sn))

For the proof of Lemma 2.5, we need a Sobolev product lemma which is standard. In

this simple case (s an integer) it can be proved using H6lder's inequality and the Sobolev

imbedding theorems.

LEMM A 2.6. Suppose M = M" is a closed Riemannian manifold of dimension n, and

s , s, and s satisfy si : s and s1 + s 2  s + d/2. Then there is a constant C depending on

s and the Sobolev constant for M such that

IIVWIIHs(M) H C1VIsH II M)11 HS2(fM)

for all v, w E C'(M).

We now indicate the proof of Lemma 2.5, demonstrating the bound on the f term of N.

The other term is similar so we omit the details. For clarity, let us now work in a coordinate

chart (it makes no difference in the analysis). Thus let u1 = 8 ju be the components of the

gradient Vu. Under the preceding assumptions, we can express f as

n

f(u, Vu) = g0(u, Vu)u 2 + :g(u, Vu)u
j= 1

4 See [CM115], Appendix A, for a proof of this fact.
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for some smooth functions gj. In particular,

f(u, Vu) - f(v, Vv) = go(u, Vu)(u - v)(u + v) + (go(u, Vu) - go(v, Vv))v 2

n

+ I g1(u, Vu)(uj - Uj)(Uj + v1) + (gg (u, Vu) - gj(v, Vv))vU.

j=1 
j

Now suppose that u and v are in Hr(Sn), where r > n/2+ 1. There is a continuous imbedding

Hr(S") C-+ CI(S"), and so the C1 norms of u and v are controlled by the Hr norms. In this

situation, if we assume that IUH,, IIVIIHr R, we can deduce that the functions gj(u, Vu)

satisfy

11g(u, VU)IIH- < C(1 + 1IuI6+0)

for any integer e > 0, where C is a constant that depends on the function gj and on R.

(The proof is by induction, and we use the fact that the domain S" has finite volume.) In

particular, gj(u, Viu) and gj(v, Vv) are in H'-1, and since r - 1 > n/2 we may apply the

Sobolev product theorem (with r -1 = s = s= s,) to terms like gj (u, Vu)(uj - vj)(uj + V1 ).

To deal with the terms (gj(u, Vii) - gj(v, Vv))v2 , we write

gj(u, V i) - gj(v, V v) = j g(u + t(v - u), Vu + tV(v - u)) dt (v - u)

n+1 I
+ a2g(u + t(v - u), Vu + tV(v - u)) dt (vi - u).

i=2 I

The functions Jo agg(u + t(v - it), Va + tV(v - u)) dt are in Hr 1 for the same reason that

gj(u, Vit) is, and so we may apply the Sobolev product theorem to these terms as well.
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Combining everything, we get a bound

n

tlf(u, Vz) - f(v, VV)IH,_L Il(U - v)(u + V)IHr-I + C 1I(uii - u )(uj + Vj)I 1 r-I
j=l

n

+ CII(u - V)(V2 + jVVI 2)|11H- + C j(uj - V)(V2 + IVVI 2)jIHl
j=1

where the constant C depends on f and R and r. We can now apply the Sobolev product

theorem to the right side to obtain

If (u, Vu) - f(v, VV)IIH, 1  ClU + VIIHrIU - VV1l1H + CII VII rill' - VIIHr-

Since IIVIIHr _< R by assumption this is bounded by Cllu - VIIH,(IIUIIHr + IIVIIHr).

2.3 Constructing the invariant manifolds: contraction ar-

gument

Let El : Hr(S",) -- Fkbe orthogonal projection onto Fk. This orthogonal projection oper-

ator is the same for all r because of the way we have defined H'.

Now fix an integer r > 1. Define X,., to be the Banach space of paths v = v(s): R ->

Hr+ (S") for which the norm I I- defined by

1/2

ds )IIu'I,., = (I IIV(S)I12r n> + sup e'sJIv(s)IIHr(sn)
s>O

We define an operator T for (u(s), uo) E X,, x Fk by requiring that the path T(s) =
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T(v; uo)(s) solve the equation

(as - L)T(s) = N(v(s)) (2.3)

T(O) =u - f e-L( - fk)N(v(r)) dr.

The integral in the second equation makes sense pointwise because 1 - nk projects on a

finite-dimensional invariant subspace for L. We will see moreover that for N satisfying our

requirements it is convergent and defines an element of H' for v E X,,, with Ak-1 < a < Ak.

Notice that if v is a fixed point for T(-; ito), then v solves the nonlinear evolution equa-

tion (1.6). If this fixed point lies in the space X,,, then by definition it converges to zero

exponentially. We will show that for small enough uO E F and for Akl < a < Ak, the

mapping T(-; ii) has precisely one fixed point v in a small ball centered at the origin in

X,.. This fixed point depends smoothly in H' on the parameter u0 , and the initial datum

of the corresponding evolution is v(O). The orthogonal projection of v(O) onto Fk is just uO,

and it follows easily that the space of initial data in a small ball of H' centered at 0 which

converges to zero exponentially with rate between Ak, and Ak is a graph over Fk. The size

of the ball in H' on which this is true depends on the exponential rate U E (Ak-I, Ak), but

since the solution converges to zero and therefore enters every ball centered at zero it is in

fact true that the exponential rate of convergence to zero is automatically better than a for

any a < Ak.

The main result of this section is the following theorem.

THEOREM 2.7. If r > n/2 + I and Ak-1 <a < Ak and if u0 E Fk with |IUOI|nr sufficiently

sinall, then T(-; uo) maps a small ball centered at the origin in Xr,, into itself and satisfies

|IT(v, uta) - T(w, u)|,r., < C (|V||r,a + I\w||r,,) ||v - WI|,, (2.4)

fbr some constant C = C(r, a, k) depending on r, -, and k.
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COROLLARY 2.8. The mapping T is a contraction mapping of a small ball centered at the

origin in X,, into itself Consequently, it has a unique fixed point in this ball.

Proof of Theorem 2.3. We first prove the bound (2.4) on a small ball, and then we show

that if this ball is small enough it is mapped into itself by T. If v and w are in Xr,, and

u0 E EF, then the difference D(s) = T(v; uo)(s) - T(w; uo)(s) is continuously differentiable

and satisfies the equation

(19 - L)D(s) = N(v(s)) - N(w(s)) (2.5)

D(O) = - j e-Lr(i - 1k) (N(v(r)) - N(w(r))) dr.

To bound D, we break it up into components using the orthogonal projection Hk: Hr - Fk.

The bound on the component (1 - H)D(s) is simple, so we take care of that first. The more

interesting bound is on flD(s), and for this we make use of Corollaries 2.4 and 2.3, which

apply because IkD(s) e Fk for all s > 0 (this is why we break D into components in the

first place).

We now show how (1 - Il)D(s) is controlled in X,,. First, 1 - -k projects onto a

finite-dimensional subspace of Hr, and (1 - Ll)D(s) can be expressed as an integral

(1 - flk)D(s) = eLs(1 - Hk)D(O) + eL(s-r) (i - Hk) (N(v(,r)) - N(w(-r))) dr

=- j e-) (1 - Hk) (N(v(r)) - N(w(r))) dr,

where the second line is obtained from the first by substituting the expression for D(0) and

simplifying. For r > s, the operator eL(s-r) has norm eAk-1('-') on range(1 - fi). Because

the range is finite-dimensional, and all norms on it are equivalent, we may write

11(1 - k)D(s)IIH(Sn) C eAkI-I(-S)1l - nk) (N(v(r)) - N(w(r))) IIHrl(Sn) dr

C co elk1-s) N(u(r)) - N(w(r)) Hl-I s ) dr
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where C is a constant that depends on k and r. Now we just use the nonlinear estimate

Lemma 2.5 to bound the right side and obtain

11(l - nk)D(s)IiIyr C eAk-I(l-S) (II rV(l Iri IIv(r) - W(r)IHr + IIW(r)IHr I V(T) - W(r)IliHr) dr.

Finally, assuming AkI < a < Ak, we bound the right side by the || -|r, norm straightfor-

wardly as follows (using the first summand for an example):

eAksI(uS) 11 V( - wi) -- V(-) - W(T) 1.Hrddr

5 sup ear(r-S) IV(r) - W('r)IIHr ekl(sIv() I I H, d-r
00 1/2

e-s rv - W-r, (J e
2(a-kI )r d )

e 1v - WIlr611 r 1/2(U- Ak-I)

The passage from the first to the second line is just Cauchy-Schwarz. All told, we obtain

els||(1 - Ik)D(s)IIHr C(IIra + IUW'trAII - W1-rpa (2.6)

where C depends on k and a.

Since the H' and Hr+' norms are equivalent on the range of 1 - Hk, we see from the

bound (2.6) that

1|(1 - Hk)D(s)l|Hr. : e- sC(||II,, + IIWI,,)IIV - wi|r,,'

and since e-'s is square-integrable over [0, oo) for a > 0 we obtain

II( l -U f)D(s}jI|rI ds - (IUlr -IIr~)I - r
0/

(2.7)
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Combining (2.6) and (2.7) gives the desired bound

1(1 - Hk)D||r,, C(IVII,, + I|W|,,)IIV - W||,a,

with C depending on k and a and r.

Let us now bound IIHkD(s)lr,,. Notice that fkD(O) = 0, so that Corollary 2.3 implies

Ak

2 (Ak - a)

-
2 ('k - a)

e2aloiF k [N(v(r)) - N(w(r))] 11r2(s dr

0 )

To pass from the first line to the second we just use the fact that Hk does not increase the

Hr-I norm. Inserting the bilinear estimate for N into this we bound the integral as

J e2 IIN(v(r)) - N(w(r))|I,'_, dr

< C e2Dr (IIL)r)I i I V(r) - w(r)II r + IIW( rI,1V(r) - W( ,). ,,i) dr,

from which, using the definition of IL - we straightforwardly obtain

j e"|IN(v(r )) - N(w(r))|I , dr < C (IIvII2

Combining this with the Hr estimate for D(O) we get

+ |w|12 |Iv - w112r, ) r,a-

+ + IIWI Iiv- W112

By Corollary 2.4 and an analogous use of the nonlinear estimate, we similarly obtain

jc HkD(s) I r, ds < |IN(u(s)) - N(w(s))" r-i ds < C (IIVI1I + IIWI2) l - W |11 .

This completes the bound on I IfkD(s)l,.,.
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Combining all of these estimates gives us the final bound:

IIDII,., |(1 - rlk)D||,., + IIf'kD||r,a < C ( k 1/2 (IIVIIr,, + 1 IWIr,,) 11V - WIlr,.

This proves (2.4).

Now let us show that T maps a small ball centered at the origin in Xr,, into itself. Let

U(s) = eLsu0 be the solution to the linear homogeneous equation (Q, - L)U = 0 with initial

data U(0) = uO. First, taking w = 0 in (2.4) shows, since T(0; uo) = U by the definition

(2.3) of T, that

|IT(v;uo) -U||,., CU|VI,.

Therefore if 0 < 6 < 1/C and IIUlIr,, < 6 - C6 2, then |IT(v;uO)Ir,, < 6 whenever

11Vl r,, < 6. That is, T(.; uo) maps the ball of radius 3 centered at zero in Xr, into itself.

We need only to show now that IIUllr,, can be controlled by IIUOIIHr(Sn). But this follows

immediately from the estimates of Corollaries 2.3 and 2.4 since U(s) e Fk for all s > 0. 0
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Chapter 3

Asymptotics of the limit

In the preceding section, we constructed, for each k > 2, a codimension dk invariant sub-

manifold for equation (1.6) consisting of solutions which converge to zero with exponential

rate a- for every c- < Ak. In this section, we show that any such solution must actually

converge to zero with exponential rate Ak, and we show also that any such solution is ap-

proximated well by a solution to the linear equation.

The first result is the following.

PROPOSITION 3.1. Suppose k > 2 is an integer and u : S" x [sO, 00) -+ R is a solution to

(1.6) which satisfies

sup e'"1u(s)Hr+2(sn) < 00
skso-

for all a- < ). Then

sup e4ksIIu(s)I|nr(s,) < 00
sso

and in fact there exists P E Ek such that

u(y, s) = ekSP(y) + 0 (e-2AkS + e-Ak+1S)
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in Hr(S") as s -+ oo.

We now prove a lemma, showing that the first hypothesis of Proposition 3.1 is met

automatically for all solutions of (1.6) satisfying

sup e'sIIu(s)IIHr(sn) < 00
s~so

for all o- < Ak. Notice that Proposition 3.1 requires this condition to hold for the Hr+2 (Sn)

norm, and not just the Hr(S") norm. We show that it always holds in the Hr+2 (Sn) norm if

it holds in the Hr(Sn) norm.

LEMMA 3.2. Suppose u : S' x [so, oo) -> R is a solution to (1.6) converging to zero in

L 2 (S") as s -> oo. Then either u is identically zero or

IIU(s)IIHr+I(Sn)
sup <00o
s so IIU(s)IIHr(Sn)

for every integer r > 0.

Proof The crucial feature of rescaled mean curvature flow making this work is that a so-

lution u to (1.6) converging to zero in L 2 (S") also converges to zero in H r(Sn) for every

r > 0. This follows from Huisken's result, [Hui84] (see Remark (i) after Theorem 1.1), that

convergence of a convex mean curvature flow to the sphere is exponential in Ck for any k.

The rest of the proof uses generalities about the equation (1.6) satisfied by u.

Since u converges to zero in Hr(Sf) for every r, it lies in one of the invariant manifolds

of Theorem 1.11, as proved in the preceding section. Moreover, u cannot converge to zero

faster than any exponential unless it is identically zero, as proved in [Stri8] (see Theorem

2.2). Therefore, if u is not identically zero, there is a largest integer k = k(r) > 2, depending

on r, with the property that

sup e""sIu(s)Ir(sn) < 00
s>so
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for all a < Ak. Since - IIHr+I (s) 11 - IIHr(Sn, the integer k(r) does not increase with r. This

means that eventually k(r) is constant in r, that is, there exists some ro such that k(r) = k(r0 )

for r > ro.

Then for r > r0 we can apply Proposition 3.1 to conclude that

sup eAksllu(s)|Hr(sn) < 00,
s~so

where k = k(r) = k(r0 ), and that there exists P e Ek with the property that IeAksu(s) -

PIIHr(sf) < Ce" for some a > 0.

Now P must be nonzero, otherwise eosIIu(s)I IHr(s) would be bounded for all a < Ak,,,

and k would not be the largest integer with this property. (It now follows that k = k(r) is

the same for all r > 0 and not just all sufficiently large r.)

This is enough to conclude that |II(s)IIHr+I(sn/IIU(S)IIHr(sn) is bounded in s for any r,

since

i1(s)1 Hr+I(sn) e-AkS Hr+1(Sn) + Ce-(Ak+U)s

\U(S)11Hr(Sn)f eAks I1PIIHr(Sn) - C2e-(Ak+C)s

for some constants C 1, C,, a > 0, and for s sufficiently large the expression on the right is

bounded. N

The proof of Proposition 3.1, to which we now turn, will be the consequence of a series

of three lemmas in which we bound the projections of u(s) onto Fk+I = 0 j>k+1 Ei, onto

E, and onto F = <k Ej, with E, as always the eigenspace for A + 1 corresponding to

Ai.

We begin by bounding the projection onto Fk+l.

LEMMA 3.3. Under the hypotheses of Proposition 3.1,

|Ilk+lu(s)Iur(sn) - O(e-Ak+1S + e-2as)
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as s -+ oo,]or any a- < Ak.

Proof Notice that

d d
IIHk+uII(S)IIIIr dIHk+1lI(s)g,,r = d IIflk+lU(S)112r/2

ds ds

= (Ilk+1u(s), Lu(s))Hr + (Hk+ut(s), N(U(s)))H,

< -41 IIk+Iln I(S)||2, + 111-k+Iu(s)|Hr|N(u(s))II Hr-

Thus if < k+1, we gaet

- (eps |He-ik+U(s)Ilyr) < et'sJ|N (u(s))JJg,. (3.1)
ds

On the other hand

11|N (uts))|JHr :! HUSJJJ+IJ()J~ +2 :! Ce-a (3.2)

for any a- < A' (the constant may depend on a-). The first inequality is the nonlinear estimate

Lemma 2.5 and the second follows from the hypothesis of Proposition 3.1.

Inserting (3.2) into (3.1) and integrating shows that e;"IIflk+Iu(s)IIH, is bounded pro-

vided i < Ak 1 and p < 22k. This is the same as the conclusion of the lemma. U

Next we bound the projection onto F.k'

LE MMA 3.4. In the situation of Proposition 3.1,

11(1 - Hk)(S)IIHr(Sn) - O(e 2 s

as s -* oo, for any a- < Ak.
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Proof Reasoning as in the proof of Lemma 3.3, we obtain

d
-d1(1 )- U (S)AIIr(Sn) >ds

-Akl II(1 - k)U(S)IIH(Sn) - CIINJN(u(s))I|H,

-A_ 11 1 - lk)U(S)IHr(S") - Ce- 2as

for any a < Ak. In other words,

d (e Ak-Is|11 - H)u(s)IIH,) > -Ce4k1 2 a)s.
ds

Integrating this gives, for s < t and u > Akl/2 ,

e Akl' 11 - H ,U(t)I e > e_ si( k )U(S)IHr _ (Ak-1-)s

Se Ak-I S ( 110 - k)U(s)I|Hr ~ -2as )

Now make t -+ oo. Because AkI < Ak, the hypothesis of Proposition 3.1 tells us that the

left side converges to zero. Consequently the right side must be non-positive, or, in other

words,

1(1 - )U(s)IHr Ce-27s

for all s > 0 and any a < Ak. As far as we know, C depends on a of course. U

Finally, we turn to the projection onto Ek. Write gk = rk - k+,I for the projection of

H' onto Ek.

LEMMA 3.5. Under the hypotheses of Proposition 3.1 and assuming s < t,

\\e Akt'zu(t) - e Ak'zku(s)I|Hr(S,) < Ce's

for any a < Ak.
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Proof First,

d eAkS lrk(s) = eAkSrk N (u(s))
ds

since LipU - -Lkrku. Now we integrate this (the equation is in a finite dimensional vector

space, namely, the range of rk) and use the triangle inequality to obtain

||eAk z' kiu(t) - eAkSzk1(s)|H = ASsdkN (u(r))dr
JsH

< eAkSjIxrkN(u(,r))I\ur d-r

<C ise (k- dr

for s < t and any a < Ak. This implies the lemma. U

An immediate corollary of Lemma 3.5 is that eAksxru(s) converges in H norm expo-

nentially fast. The limit of course must be an element of Ek, that is, an eigenfunction P of

A + 1 with eigenvalue A.

Altogether, Lemmas 3.3, 3.4, and 3.5 imply that

u(y, s) = e-AkSP(y) + 0 (e-Ak+S + e 2us)

in Hr(S") as s -+ oo, for any a < Ak. In particular, Iu(s)JI, 5 Ce-AkS for some C > 0,

and this fact can be used to improve the asymptotics and take u = Ak in Lemmas 3.4 and

3.5 (but not Lemma 3.3) as follows. The appearance of a came through H' bounds on the

nonlinear term N(u(s)) used in the proofs of Lemmas 3.3, 3.4, and 3.5: We could only say,

based on the hypotheses of Proposition 3.1, that IIN(u(s))IHr Ce- 2as for any a < Ak

and for some C > 0 depending on a. But now that we know IIU(S)IIHr (hence I|u(s)IH|4I

and IIU(S)IIH,.2 by standard parabolic estimates using the fact that it is a solution to (1.6))

is actually O(e-AKS), we can say that N(u(s)) = O(e-2Aks) and then obtain improvements on

the error in Lemmas 3.4 and 3.5.
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A close look at the proof of Lemma 3.3 reveals that the same method does not work

there and we are stuck with the appearance of a in the conclusion. Of course it does not

matter so long as 2 Ak > Ak+I which is the case for most k.

We summarize these observations in a corollary, which states a more precise version of

Proposition 3.1.

COROLLARY 3.6. Under the hypotheses of Proposition 3.1:

(a) The projection Hk+I U onto the sum Fk+1 of eigenspaces corresponding to eigenvalues

Ai with j > k satisfies

IIk+1U(S)IIHr(Sn) C (e-Ak+Is + -as

for any a < Ak and some C > 0 (depending on a) and all s so.

(b) The projection (1-lk)u onto the sum F' ofeigenspaces corresponding to eigenvalues

Ai with j < k satisfies

11(1 - Hk)U(s)IHr(sn) Ce-2 k

for some C > 0 and all s > so.

(c) The projection .u konto the eigenspace Ek corresponding to the eigenvalue Aj satisfies

||e4kSfku(s) - PIIH(S") < Ce ks

for some P E Ek and some C > 0 and all s > so.

We now obtain more precise asymptotics.
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LEMMA 3.7. Suppose u satisfies the hypotheses of Proposition 3.1, and suppose j k and

Aj < 2A. Then there exists P in the eigenspace E corresponding to A such that

||e Aijs u(s) - PIIHr(Sn) < Ce(Aj-2Ak)s

for all s > so.

Proof We argue as in Lemma 3.5, using

e Ajx u(s) = eA js rN(u(s))

to obtain

lie A'jrju(t) - eAsrjsu(s)IIH) C eAjr|JN(u(,r))IIHr dr < C e (Aj
2 Ak)r dr.

The right side is O(e (Ark)S) independent of t provided that A < 2Ak and this gives the

conclusion of the lemma. N

From Lemma 3.7 we obtain higher order asymptotics in certain cases (when k is large).

COROLLARY 3.8. Let u satisfy the hypotheses of Proposition 3.1. Then for j > k such that

Aj < 2A, there exists Pe E such that

u(y, s) = e-AJs P(y) + O(e-2,s
j~k

Aj<2Ak

for any a < Ak.

3.1 Prescribing the first-order asymptotics

In this section we prove Theorem 1.12. Given a E Fksufficiently small in H for r > n/2+

1, we constructed in Section 2.3 a unique solution u(s; a) to (1.6) satisfying Hku(O; a) = a
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and converging to zero with exponential rate A4. In the preceding subsection we showed

that

P(a) = lim e4ksu(s; a)
s-00

exists and is an element of the eigenspace E, corresponding to Ak. Here we will study the

map a - P(a). We will show that the image of this map contains a small ball centered

at the origin in Ek. This is enough to conclude that every P e E, is attained as the limit

e ksu(s) of some solution u to (1.6), because we can always replace u with ii(s) = u(s - so)

for s > so thereby scaling the limit by a factor eAkSO.

Actually, we do not even need to look at arbitrary a E Fk to obtain surjectivity: we may

even restrict attention to a e Ek. The precise result is the following:

PROPOSITION 3.9. There exists 6 > 0 such that if b e Ek satisfies lib|ir < 6, there exists

a G Ek with P(a) = b.

Proof Let us first recall the norm II - Ir, from Section 2.3:

00 1/2

IIVI|rd = Iv(s)I"I ds + sup e's 11V(S)1,..10 s>0

It follows from Theorem 2.7 that if - < Ak and a E Fk is sufficiently small in Hr, then

I1u(s; a) - eLsalird Clju(-; a)r11 2

for some constant C > 0 depending only on Ia IHr. By making a smaller if necessary, we

may moreover assume that 11u(-; a)I1r, < 1/(2C) so that we get the bound

||u'||,, 2||e sa||,, < 4||a|| Hr (3.3

The last inequality is just an H' estimate for the homogeneous linear equation. Thus we

can bound 11U1,., by a constant times |Ia|IHr for any a < Ak, provided that |Ia1IIr is small
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enough.

We now make use of the representation

eA kSu(s; a) = e (A+L)sa

+ e(Ak+L)(s-t)e)krl kN(u(t; a)) dt - e(k+L)(s-t)eAkt(1 - Jk)N(u(t; a)) dt,

which is valid for u because eAksu(s; a) is bounded. By taking the H' norm of both sides

and applying the triangle inequality we deduce

eAksu(s) - e(ik+L)sa H ektIN(u(t))|Hr dt < C eAktlutlHr+l1 IIU )IIHr+2 dt.

where in the last inequality we've used the nonlinear bound |IN(U)IIHr < IIUjwHi IIUIIIHr 2

from Lemma 2.5. Now, the right side can be bounded by IIuI1|+ 2,3Ak/ 4 for example, as fol-

lows:

J e Ak'ut I I r+ U t ut)JI,t < f+ (e 34tt) H+ e-Ak12 dt<-spe3k4 HM01+2 -
0 k (t>0 )

If we now assume that a is sufficiently small in H'+2 rather than in Hr and employ the

bound (3.3) (with r + 2 instead of r) we obtain

e;ksu(s) - e(A+L)sa <41_ 11Hr+2

On the left side we let s -+ 00. If rka is the projection of a onto the eigenspace Ek, the result

is

|IP(a) - k aHr+2 = I -P(a> kHr H411a1r+2 *

k

The first inequality is just the definition of Hr norm on the eigenspace Ek.

To finish the argument, we restrict attention to a E Ek. For such a we have fka = a

and the foregoing estimate reduces to IIP(a) - all CIIaI 2 for all sufficiently small a in Ek
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(the norm is unimportant because Ek is finite-dimensional). This is enough to prove that

the image of P contains a small ball in Ek centered at the origin.

Indeed, we run a standard contraction argument as in one direction of the proof of the

inverse function theorem: if b e Ek, we want to solve the fixed point equation a = b -

(P(a) - a). If 6 < 1/(2C) and 0 < Ilbil 8 - C6 2, then the map F defined by F(a) =

b - (P(a) - a) sends the closed ball Ilail 8 to itself. Indeed if I|all < 6 then

|IF(a)l| = l|b - (P(a) - a)lI |lb|l + IIP(a) - all 3 - C6 2 + C62 = 3.

On the other hand, F depends continuously on a (this follows from the proof of Theorem

2.7) and so, being a continuous mapping of a closed ball into itself, it must have a fixed

point a, that is, a solution to P(a) = b. M
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Chapter 4

A unique continuation property

In this section we prove a unique continuation property for the level set equation. Let Q

be a mean-convex domain in R"+1. When Q = B,(xo) is the ball of radius r centered at the

point xO in R"+', the solution tB to the level set equation (1.1) is

Ix.orI22 (4.1)
2n 2n

and the corresponding mean curvature flow is a family of homothetically shrinking spheres.

The main result is that a solution to the level set equation (1.1) on a mean-convex domain Q

that attains its maximum at x0 and agrees to infinite order at the point xO with the solution tB

to the level set equation for a ball centered at x0 must actually coincide with tB everywhere.

THEOREM 4.1. Suppose 92 c Rn+1 is a mean-convex domain and t: Q -+l R solves (1.1)

and attains its maximum T at the point xO E=- Q. If

|x - x0 12
t(x) = T - +O (Ix xoIN) (4.2)

2n

as x -> xO, for every integer N > 2, then t(x) = T - Ix - x0 12 /(2n) and Q = B(2 fnT)12(xo)

is the ball of radius (2nT)'/2 centered at xO.

'A different and more complicated parabolic unique continuation property for self-shrinkers was recently
proved by Jacob Bernstein in [Ber17].
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Remarks.

1. Let 92 be a mean-convex domain and suppose t : Q -+ R satisfies (1.1). We already

mentioned that t is twice differentiable on its domain (this was proved in [CMI16]). 2 The

Hessian of t at a critical point x0 is then

V t(xO) = k+1k

where k is an integer between 1 and n and k+1 is a projection onto a k + 1 dimensional

hyperplane through x0 . See [CMI18]. The hypothesis of Theorem 4.1 implies that k = n. In

this case t is actually C2 in a neighborhood of the maximum, and the corresponding mean

curvature flow becomes extinct at x0 in such a way that the rescaled mean curvature flow

converges to a round sphere. In particular, the isolated point { x0 } is a connected component

of the level set {x : t(x) = T }, and nearby level sets are convex. Because a mean curvature

flow cannot coincide with a sphere at any time unless it is a shrinking sphere, it is therefore

sufficient to prove Theorem 4.1 in case Q is a convex domain.

2. The hypothesis (4.2) for a fixed N > 2 likely implies (for a solution to (1.1)) that t is

CN-I near x0. This is known in case N = 3 (Theorem 6.1 of [Hui93]) and in case N = 4

(Corollary 5.1 of [Ses08]). This fact is not required for our result, however, and we do not

investigate it here. Of course, Theorem 4.1 implies that t is analytic if it satisfies (4.2) for

all N.

4.1 Proof of Theorem 4.1

To prove Theorem 4.1, we relate the asymptotic behavior of t near its maximum to the

behavior of the corresponding mean curvature flow near its singularity. We show that the

hypothesis (4.2) for all N > 2 implies that the rescaled mean curvature flow converges to a

21t was shown in [WhiOO] (Theorem 1.2) and [Whil 11 that any tangent flow of a smooth mean convex
mean curvature flow is a generalized cylinder. From this one can figure out what the Hessian of the arrival
time function must be if it exists. The remaining issue was to show that the Hessian exists, which is equivalent
to the problem of uniqueness of tangent flows. This was solved in [CMI15].
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stationary round sphere at a rate that is faster than any exponential, and then that this cannot

happen unless the rescaled flow is identically equal to the stationary sphere. As mentioned

in the remarks following the theorem, it is sufficient to prove Theorem 4.1 in case Q is a

convex domain, and we restrict attention to this case from here on.

The following lemma converts Theorem 4.1 to a problem about functions u satisfying

this parabolic equation: if t is a solution to the level set equation satisfying the assumption

(4.2) for all N, then the corresponding solution to rescaled MCF converges to S" faster than

any exponential. The problem is then reduced to showing that this cannot happen unless

the rescaled MCF is identically S".

Note we may assume by translating everything that x0 = 0. Thus we state the lemma

for the case when the mean curvature flow becomes extinct at the origin.

LE MMA 4.2. Suppose Q C R"1 is a convex domain and t : C2 -+ R solves (1. 1) and attains

its maximum T at the origin. Suppose

t(x) = T - I2+ 0 |x|) (4.
2n

as x -* 0,for every integer N > 2. Thenfor any integer k > 0, the rescaled MCF {, } that

t defines converges to S" in the Sobolev space Hk faster than any exponential.

Proof We use the following fact: if ({,} = {x + u(x, s)n(x): x E Sn } is a rescaled MCF

converging as s -- oo to the sphere in L 2 , that is, for which u converges to zero in L2 (S,),

then u is bounded in Hk(Sn) for every k > 1 (actually u converges exponentially in Hk).

On account of the interpolation inequalities

this reduces the proof of the lemma to showing that the function u converges to zero faster

than any exponential in L2 (S").

Now we show that (4.3) holding for all N implies that u(s) converges to zero faster than
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any exponential in L (S"), hence in L 2 (Sn).

First observe: if (4.3) holds for some N, then

Ix12 = (2n)(T - t(x)) + 0 ((T - t(x))N/2)

as T - t -+ 0, for the same N. Next, use this to write

(T - t(x))- 2 x = (|x1 2 /(2n) + 0 ((T - t(x))N) -1/ 2 X

= (2n)" 2 x + ((T - t(x))N/2 x

|xI |x12 |xI

= (2n)1/ 2 X +
lxi

o ((T - t(x))N/2-1)

This says exactly that if s = - log (T - r) and

{y + u(y, s)n(y): y E S" I = = {(T - r)~12x : t(x) = r

is the rescaled MCF defined by t (it will be a graph over S" for r sufficiently close to T),

then

ju(y, s)l = 0 ((T - r)N/
2 -1) - 0 (e(N/2-I)s)

as s -- oo. Therefore if (4.3) holds for all N, then i converges to zero faster than any expo-

nential in L (S"). Since S" has finite volume, u converges to zero faster than any exponential

in L 2 (S") as well. U

Having established Lemma 4.2, Theorem 4.1 is a consequence of the following theorem.

THEOREM 4.3. Let r > n/2 + 1 be an integer. Suppose E = {y + u(y, s)n(y) : y E S"

s > 0, is a rescaled MCF and suppose that it converges to Sn in Hr(S"I) faster than any
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exponential in the sense that

lim e" IIu(., S)IHr'(Sn) = 0

for all o > 0. Then u is identically zero and 1. = S" for all s.

The equation satisfied by u in order for the normal graph E = { y+u(y, s)n(y) : y e S' I

to evolve by rescaled MCF can be written in the form

asu = Au + i + N(u, Vu, V 2U) (4.4)

where A is the Laplacian on S" and N is a nonlinear term of the form

N(u, VU, V2 [) = f(u, Vu) + trace(B(u, Vu)V 2U), (4.5)

where f and B are smooth, B(O, 0) = f(0, 0) = df(0, 0) = 0. In other words, N vanishes

up to quadratic error at zero.

The important feature of this equation is that the linear operator Qs - A - 1 gives a good

approximation to the nonlinear operator in (4.4): in a Sobolev space H'(S") of high enough

order r, a function u the normal graph of which evolves by rescaled MCF satisfies

11(S - A - l)UIIHr(sn) ClUIIHr+(Sn)IUIH+2(Sn).

This bound is what implies that if u converges to zero as s -> +oo, it must do so at an

exponential rate (unless it is identically zero). It follows immediately from Lemma 2.5.

Using Lemma 2.5, we now prove Theorem 4.3.

Proof of Theorem 4.3. Throughout the proof, we abbreviate the H'(S") norm 11 ' IHr(s1) by

11 - ||r we abbreviate a(-, t) by u(t), and we abbreviate the nonlinear error N(u, Vu, V2 U)

by N(a). Let A1 < A2 < ... be the eigenvalues of the operator -A - 1, and denote by '1 k

orthogonal projection onto the direct sum of eigenspaces corresponding to Ai with j > k.
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We will prove that a solution u satisfying (4.4) obeys, for each positive integer k and

each so > 0, the inequality

eAk(S-SO)||U(S)|Ir II'kU(sO)I1r + e Ak(t-sO)||N(u(t))||, dt.
Jso

Lemma 2.5 implies that there is a constant C depending on N with the property that

||N (u)||,. :! C |u||,11||u||,2 r+ C-<|\ C1|u||,||u||,1 .

The last inequality follows from Cauchy-Schwarz and integration by parts for example.

It then follows that

e Ak(s-so)||u(s)|Ir Ijlu(SOIL, + C eAk(t -SO) u(t)I,0t u(tIr+4 dt

l ||U u(so)I, + C sup e Ak's0 u(t),) 
(t>so ) SO

IU(t)r+4 dt.

Taking the supremum over s > s0 on the left side then gives

sup e Ak('-SO)||u(t)|i, 1 - C IIU(t)||r+4 dt I|Uku(SOIIr

for all k. Because convergence to the sphere is necessarily exponential in Ck for every k,

the H'+(S") norm 11U(t)r+ is integrable (as are all other Hs-norms), and therefore we can

choose so so large that

C f IU(t)1,+ 4dt < 1/2.

Moreover, we choose so to be the least nonnegative number for which (4.7) holds. For this

so we obtain

sup e Ak('-SO) 11tt)\r 2 || kU(SO)Ir
t>so
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for all positive integers k, and since the right side vanishes in the limit k -+ cc and the left

side is non-decreasing in k it follows that IIu(t)I, = 0 for t > so.

Now we show that so = 0. Since li|(t)1, = 0 for t > so, we also have IU(t)I, 4. = 0 for

t > so. Consequently,

00CfIS I IU(t)I11r+4 dt = 0.

If so > 0, then it cannot possibly be the smallest positive number for which (4.7) holds, and

we arrive at a contradiction. Thus u is in fact identically zero for all s > 0.

Therefore it is enough to prove (4.6). Write L = A + 1 for brevity. We will briefly

explain how the assumption that u converges to zero faster than any exponential leads to the

following representation formula:

S

e Ak(S-S) u(s) = e(Ak+L)(s-so) ku(so) + 'SO e(Ak+L)(s-t)e A(t-so)VIkN(u(t)) dt

- e(Ak+L)(s-t)e Ak(ts0)( - k)N(u(t)) dt,

Notice that Ak + L is non-positive definite on the range of 1k and positive definite on the

range of I - k. Thus (4.6) follows by simply taking the H' norm of both sides and applying

the triangle inequality repeatedly to the right side.

The representation can be derived from the variation of constants formula

u(s,) = eL(s1-)u(s) + eL(s N(u(t)) dt,

where s, > s, in the following way.3 Apply the projection I - rk to both sides of the

variation of constants formula. Apply e-L(s-), which is a bounded operator on the finite-

3This is a standard trick in the construction of invariant manifolds for ODE.
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dimensional image of 1 - H, to both sides and rearrange to obtain

(1 - flk)U(S) = e-L(s, -s)(l - 171 - s e L(s-t) I k N(u(t)) dt.

Since e-L(si-s) is bounded by eAkI(sI-s) on the image of 1 - Hk, we can send s1 -+ oo and

by our assumption that u vanishes more rapidly than any exponential, the term e-L(sj-s)(1 -

fl)u(sI) converges to zero. The integral, meanwhile, is absolutely convergent. Thus we

obtain

(1 - flk)u(s) = - eL(s-t) flk)N(u(t)) dt,

for any k. Substituting this equation into the variation of constants formula (with si replaced

by s and s replaced by so) gives the representation described above. 0
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