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Abstract

We consider the walking droplet (or 'walker') system discovered in 2005 by Yves
Couder and coworkers. We investigate experimentally and theoretically the behaviour
of this hydrodynamic pilot-wave system in both closed and open geometries. First,
we consider the dynamics and statistics of walkers confined to corrals. In the ellip-
tical corral, we demonstrate that by introducing a submerged topographical defect,
one can create statistical projection effects analogous to the quantum mirage effect
arising in quantum corrals. We also report a link between the droplet's statistics
and the mean wave field. In the circular corral, we investigate a parameter regime
marked by periodic and weakly aperiodic orbits, then characterise the emergence and
breakdown of double quantisation, reminiscent of that arising for walker motion in
a harmonic potential. In the chaotic regime, we test the theoretical result of Durey
et al. relating the walker statistics to the mean wave-field. We also rationalise the
striking similarity between this mean wave-field and the circular corral's dominant
azimuthally-symmetric Faraday mode. Our corral studies underscore the compatibly
of the notion of quantum eigenstates and particle trajectories in closed geometries.
We proceed by exploring a new hydrodynamic quantum analogue of the Friedel os-
cillations arising when a walker interacts with a submerged circular well, which acts
as a localised region of high excitability. In so doing, we report the first successful
realisation of an open hydrodynamic quantum analogue. We conclude by comparing
the hydrodynamic systems to their quantum counterparts. Our work illustrates how,
in the closed and open settings considered herein, a pilot-wave dynamics of the form
envisaged by de Broglie may lead naturally to emergent statistics similar in form to
those predicted by standard quantum mechanics.
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A-1 Examples of quantum eigenmodes of the two-dimensional circular box.

The modes are identified by the their associated quantum numbers

n7 r, Ino and listed in order of increasing energy levels, as defined in eq.

(2.9), left to right and top to bottom. . . . . . . . . . . . . . . . . . . 106

A-2 (a) STM topographic image of the electron sea density in and around a

quantum corral made up of 48 Fe atoms in a ring assembled on Cu(111)

surface. Notice the eigenstate pattern inside the corral. The diameter

of the ring is 142.6 A and the ring encloses a defect-free region of the

surface 125]. (Copyright 1993 by AAAS) Elliptical electron resonators

built using Co atoms to corral two-dimensional electrons on Cu(111).

(b-c) Topographic measurements of the standing wave patterns in the

electron sea. (d-e) Differential conductance maps acquired simultane-

ously [87]. (Copyright 2000 by Nature Research) . . . . . . . . . . . . 107

A-3 (a) STM topographic 130 A x 130 A image of an electron sea density

in the vicinity of an Fe adatom on the Cu( 111) surface. The concen-

tric rings, called Friedel oscillations, around the impurity are stand-

ing waves generated by the scattering of the surface state electrons

by the Fe adatom [251. (Copyright 1993 by AAAS) (b) STM topo-

graphic 500 A x 500 A image of an electron sea density at the Cu(111)

surface. Three mono-atomic steps are visible along with - 50 point

defects. Spatial oscillations, Fridel oscillations, with a wavelength of

~ 15 A are apparent near the steps and in the vicinity of impurities

[26]. (Copyright 1993 by Nature Research) . . . . . . . . . . . . . . . 108
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A-4 (a) Theoretical computations of Friedel oscillations arising in a two

dimensional electron gas due to a localised impurity. Notice the half

Fermi wavelength characterising both modulations. (b) dI/dV images

of the Friedel oscillation around a point scatterer in a 67 nm x 67 nm

area as a function of energy (bias voltage). Notice the different wave-

lengths of the oscillations. (c) The experimentally obtained oscillations

in (b) compared to the theoretical two-dimensional electron gas from

(a)) [77]. (Copyright 2001 by American Physical Society) . . . . . . . 109

A-5 Schematic of the experimental set-up. a, Oblique view of a droplet and

its pilot wave exploring an elliptical corral. b,c, Cross-section of the

topologically homogeneous elliptical corral (b) and the elliptical corral

with a submerged circular well of depth H = 4.5 mm and diameter

D = 5.5mm (c). The liquid depth in the corral and in the wave

damper is h = 1.70 mm and h, = 0.05 mm, respectively. d,e, Location

of the circular well corresponding to the results presented in the left

and right columns of Fig. A-9. The length of the semi-major axis and

eccentricity of the ellipse are a = 14.25 mm and e = /1 - -2/a2= 0.5,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A-6 Droplet statistics in an elliptical corral. a,b, Top views illustrating the

complex instantaneous wave field excited by the drop's motion along

the yellow dashed trajectory. c, Chaotic droplet trajectory, coloured

according to the instantaneous speed, for increasing time intervals. d,

Emergent pattern after 3.5 h. e, Histogram of the walker's position

(90 x 90 bins). f, Local average speed (contour plot) and velocity

(arrows) for the data shown in d. The absolute average speed is <

u > 8.68 mm s-'. Here, f = 72 Hz, _Y/'YF = 0.998 and d = 0.79 0.01

mm, for which the most unstable Faraday wave mode is the (1, 5) mode

illustrated in Fig. A-7c,d. . . . . . . . . . . . . . . . . . . . . . . . . . 111
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A-7 Mean pilot-wave field. a, Mean pilot-wave field obtained by averaging

the instantaneous waves, such as those shown in Fig. A-6a,b, over

30 min. Note that at the prescribed acceleration (-Y < iF), no waves

would exist in the absence of the drop. b, Superposition of the analyt-

ical gradient maps presented in d and f, showing good agreement with

the mean wave pattern (a) and so the walker's statistical response ( A-

6e,f). c,e, Faraday waves observed at threshold -y = 7F with f = 72 Hz

(c) and 70 Hz (e). d,f, The patterns in c and e are well approximated

by the two analytical eigenfunctions in d and f, respectively, which cor-

respond to solutions of the Helmholtz equation in an elliptical domain

with Dirichlet boundary conditions. In d and f, right, the eigenmodes

are depicted in bright colours, while the greyscale figures show the mag-

nitude of their spatial gradients, with white corresponding to zeros in

slope (extrema or saddle points) and black corresponding to extrema

in slope. This depiction allows for a direct comparison between the

analytical modes and experimental visualisation of the waves [34]. . . 112

A-8 Fundamental modes of the elliptical corral transiently excited by the

walker. On rare occasions when the walker's trajectory coincides with

one of the crests or troughs of the fundamental Faraday modes for an

extended period, a pilot-wave form resembling the corral's fundamental

Faraday modes may briefly appear. a,b, The (4,4) Faraday mode

dominant at 70 Hz emerges in the bath. c,d, The (1, 5) Faraday mode

dominant at 72 Hz becomes apparent. The yellow dotted line illustrates

the droplet's trajectory. Here, i/F = 0.998 and f = 72 Hz. . . . . . 113
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A-9 Resonant projection effects. a-f, Walker's histogram (a,b), average

speed (colour map) and average velocity (arrows) (c,d) and mean wave

field (e,f), arising when a submerged circular well is placed at the mid-

point of the upper semi-minor axis (left column) or the left focus (right

column). The well's diameter and depth are D = 5.5 mm and H = 4.5

mm, respectively, and its specific locations are indicated in e and f.

The experimental parameters are as in Fig. A-6. When the well is

off focus (a), the resonance of the fundamental modes is notably ob-

structed: the histogram only shows traces of the statistical signature

observed within a homogeneous corral (Fig. A-6e). Conversely, when

the well is at the focus (b), the resonance of the (4, 4) mode is drasti-

cally enhanced, leading to a radical change in the walker's statistical

behaviour, now characterised by high-density vertical bands projected

towards the empty focus. This resonant effect is also evident in the

corresponding average speed and average velocity maps (c,d), which

show the emergence of substantially stronger mean velocities when the

well is at the focus. In e and f, the mean pilot-wave field is shown

averaged over 30 min, showing reinforced horizontal (e) and vertical

(f) bands with respect to Fig. A-7a due to the effects of the well. g,h,

Faraday waves observed at threshold _y = 7YF with f = 72 Hz when a

submerged well is placed as in e and f. In both cases, the well induces

waves markedly different from those observed at the same f with ho-

mogeneous topography (Fig. A-7c). Specifically, the well at the focus

enhances the (4, 4) mode observed at 70 Hz in the absence of the well

(F ig. A -7e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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A-10 Experimental setup [651. (a) Cross-sectional view of the circular cor-

ral filled with silicon oil. (b) Faraday wave pattern obtained for the

circular corral driven at f = 80 Hz and y = 1 .011F. Examples of

the walker trajectory (of duration ~ 8 s) and instantaneous waveform

at (c) 'Y/>F = 0.91 and (d) /PYjF = 0.99. The corresponding mean

waveform (obtained over ~ 60 s) at (e) y/yF= 0.91 and (f) 0.99,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A-11 Fundamental trajectories in a circular corral of diameter D = 20.2

mm. (a) Small circle at Y/'F = 0.88. (b) Deformed circle at 'Y/'YF =

0.91 (c) Large circle at y/-y = 0.92. (d) Large wobbling circle at

_Y/7F = 0.93. (e) Oval and lemniscate embedded within a complex

trajectory at T/'}F = 0.935. (f) Trefoil at 'Y/7F = 0.94. (g) Papillon at

y/yF = 0.95. (h) Erratic motion punctuated by intermittent trapping

at y/YF = 0.98. Wave-induced trapping locations correspond to the

deep blue portions of the trajectories. The fundamental trajectories are

colour-coded according to instantaneous speed. The grey trajectories

represent 5 minute long series. AF = 4.75 mm indicates the Faraday

w avelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A-12 Time series of radial orbit and angular momentum, colour-coded ac-

cording to instantaneous drop speed, over one orbital period for (a,b)

a lemniscate, (c,d) a trefoil, and (e,f) a papillon. The trajectories

analysed are those highlighted in figures A-lle,f,g. . . . . . . . . . . . 117
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A-13 The double quantisation of angular momentum and orbital radius ev-

ident in the circular corral. The axes are the non-dimensional mean

angular momentum, L, and the non-dimensional mean radius, R. Each

grey circle represents a separate sub-trajectory. Fundamental trajec-

tories are colour coded to correspond to those shown in figure A-11.

The black crosses are the centroids found via K-means clustering [36].

The data has been symmetrised with respect to L, = 0. The dashed

grid has the same spacing as the one used by Perrard et al. [104, 103].

(a) In the intermediate memory regime (-y/7F 0.87 - 0.95), the in-

dividual clusters are representative of the stable trajectories identified

in figure A-11. (b) In the high memory regime ('Y/-YF = 0-98 - 0-99),

where trajectories are similar to that in figure A-11h, the scarcity of

clusters with L, / 0 indicates the dissolution of the double quanti-

sation apparent at lower memory. The blue circles denote walkers in

trapped states. . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . 118

A-14 Walker radial position time series (left column) and associated power

spectra (right column) at different memories. The black circles high-

light the frequency peaks. (a) - (b) Y/yF = 0.93, corresponding to

the large wobbling circular trajectory shown in figure A-11c. (c) -

(d) -y/1F = 0.95, corresponding to the trajectory shown in figure A-

11f. (e) - (f) '}/ThF = 0.98, corresponding to the trajectory shown in

figure A -11h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A-15 Time series of (a) orbital radius and (b) angular momentum illustrat-

ing chaotic switching between fundamental orbits at 1/yF- 0.95. The

green shaded area corresponds to a papillon, the blue to a lemniscate,

and the orange to a trefoil. . . . . . . . . . . . . . . . . . . . . . . . . 120
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A-16 Walker dynamics in the vicinity of a circular well. (a) Oblique view of

a walking drop self-propelling above a submerged circular well (dashed

line). Supplementary Movie 1. (b) Top view of the experimental

setup. A submerged well of diameter D = 13 0.1 mm is located

at the centre of a circular liquid bath vibrated vertically at frequency

f = 70 Hz and maximum acceleration -y/-yF = 0.990 0.002. The

corner geometry serves to automatically redirect the walker towards

the well. (c) Schematic cross section. The submerged well of depth

H = 6.2 0.03 mm is located at the bottom of a relatively shallow

liquid layer of depth h = 1.6 0.03 mm. (d) Walker trajectories with

Y/YF = 0.990, drop radius R 0.39 + 0.01 mm and free-walking speed

vo = 0.039. The arrows denote the direction of motion and trajectories

are colour-coded according to speed. A total of 449 trajectories were

collected. (e) Experimental trajectories coloured according to their

impact parameter yi. These trajectories are obtained by rotating those

shown in d-iv until the drop's initial motion is parallel to the x-axis. a

then denotes the scattering angle at which the walker exits the well. (f)

Simulated trajectories with uniformly-distributed impact parameters yi

for a drop with vo = 0.024 at -y/YF = 0.990. (g) Scattering angle versus

impact parameters yi for experimental (yellow dots) and simulated

(solid lines) trajectories with walkers of different size (speed) at 7/-yF =

0.990. The dotted magenta line corresponds to the same drop as the

blue solid line but at a lower memory, y/ThF = 0.970. Space is non-

dimensionalised by the Faraday wavelength Xo = AF in the shallow

region and speed by Vo = XO/TF, where TF = 2/f is the Faraday period. 121
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A-17 Spiral trajectory and effective force. (a) Unique spiral resulting from

suitable rotation of the trajectories shown in Fig. A-16f. Only walk-

ers trapped by the well are considered. (b) Dependence of the radial

coordinate r (solid and dotted lines) on the azimuthal angle 0 for the

longest spirals achieved with walkers of different size (speed), as previ-

ously shown in Fig. A-16g. The nearly linear relation between r and 0

demonstrates that the incoming drop trajectory is well approximated

by an Archimedean spiral. The dashed blue line shows the normalised

instantaneous speed v/vo corresponding to the drop with vo = 0.024

at y/YF= 0.990 (solid blue line). (c) Comparison between the drop

trajectory (dashed line) and the Archimedean spiral (solid) obtained

with the fit shown in b for vo = 0.024 at -y/YF = 0-990- (d) Experi-

mental dependence of walker trajectories at y/-yF = 0.990 on depth h

illustrates heightened trapping states at small h. The red-shaded area

corresponds to the extent of the well. The drop size is the same as in

Fig. A -16d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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A-18 Emergent statistical behaviour. Top view illustrating the experimental

(a) incoming, and (b) outgoing drop trajectories coloured according

to speed v. Trajectories are obtained by splitting those shown in Fig.

A-16d at the point nearest to the centre of the well (dashed line). Con-

centric speed modulations appear in the outgoing phase. (c) Faraday

waves observed above the well at threshold -y = 'YF- Note the spa-

tial correspondence between the Faraday wave extrema and the speed

modulations observed in the outgoing trajectories shown in b. (d, e)

Incoming (top) and outgoing (bottom) speed-coloured trajectories cor-

responding to the slowest walker in Fig. A-16g, as presented in Fig.

A-16f. White and red arrows identify the outermost trajectories cross-

ing the well. (f, g) Dependence of the normalised speed v on radius

r for incoming (top) and outgoing (bottom) walkers of different size

(speed). The grey area denotes the well's extent. (h, i) Histogram of

the drop's radial position corresponding to the data shown in f and

g. The bin size is AF/13. The histograms have been normalised by

their respective height at r/AF= 2, corresponding to the first speed

minimum outside the well observed in e. (j, k) Two-dimensional his-

tograms (normalised by the histogram height at the centre of the well)

resulting from the experimental b, and simulated e outgoing trajecto-

ries, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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A-19 Wave-mediated interaction. (a) Experimental and (b) simulated walker

wave field qat different stages during its interaction with a submerged

well (solid circle). Snapshots illustrate the walker (i) approaching the

well in straight-line motion, (ii) spiralling inwards, (iii) exciting lo-

calised large-amplitude waves as it crosses the well, (iv,v) exiting

the well along a straight trajectory. (c) Well-induced wave pertur-

bation ( = T - i (normalised by the instantaneous maximum wave

amplitudeqmax = max Iq) obtained by subtracting from the wave field

q shown in b the computed wave field i of a drop following the same

trajectory in the absence of the well. A sliding beam-like wave mode

emerges as the drop spirals inwards (ii). Conversely the drop crosses

a spatially fixed wave mode entered at the well in the outgoing trajec-

tory (iv), giving rise to the wavelike statistics evident in Fig. A-18.

(d-f) 3D visualisation of the well-induced wave perturbation as the

drop spirals inwards, crosses the well and exits in straight-line motion,

respectively. Solid lines illustrate the time series of the perturbation at

the drop position. The simulated walker corresponds to '/7yF = 0.990,

VO = 0.024 and yi/AF = 6 . . . . . . . . . . . . . . . . . . . . . . .. 124

A-20 The experimental set-up, showing the cross-sectional view of the corral

filled with silicon oil and indicating the dotted-pattern beneath it used

for free-surface synthetic Schlieren. . . . . . . . . . . . . . . . . . . . 125
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A-21 Fundamental trajectories with their associated mean wave fields in a

circular corral of diameter D = 20.2 mm. Top row represents the

droplet's trajectories colour coded by speed. The grey trajectories

represent 5 minute long series. Middle row illustrates the mean wave

fields using the grey-scale image technique used by [1141. Bottom row

represents the associated mean wave fields obtained using the free-

surface synthetic Schlieren, [91]. (a,fk) Small circle at 'Y/YF = 0-88-

(b,g,1) Large circle at 1/'F = 0.92. (c,h,m) Lemniscate embedded

within a complex trajectory at ,Y/yYF = 0.935. (d,in) Trefoil at /'YIF =

0.94. (e,j,o) Papillon at y/-yF= 0.95. The trajectories coloured in red

and their associated mean wave fields were recorded over one orbital

period. AF= 4.75 mm indicates the Faraday wavelength. . . . . . . . 125

A-22 Experimentally obtained Faraday waves modes for a circular corral of

diameter D = 28.5 mm, driven at 65 Hz with a h = 1.00 t 0.03 mm.

b h = 0.50 0.03 mm. c h = 0.05 + 0.03 mm. d The (3,6) mode given

by equation (6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A-23 Experimentally obtained Faraday waves modes for a circular corral of
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b h = 0.50 0.03 mm. c h = 0.05 t 0.03 mm. d The (6,0) mode given

by equation (6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A-24 Comparison between the azimuthally symmetric (6, 0) Dirichlet and

Neumann modes and the Faraday wave mode obtained for the circular

corral of diameter D = 28.5 mm, driven at 70 Hz with h = 0.05 t 0.03

mm, h = 0.50 0.03 mm, and h = 1.00 t 0.03 mm. . . . . . . . . . . 127

A-25 Instantaneous wave field when the droplet is exploring the circular

corral of diameter D = 28.5 mm, vibrated vertically at f = 70 Hz. a

An arbitrary selected instantaneous wave field. Overlaid in white is an

example of the walker trajectory (of duration ~ 10 s). b The weights

of the five most dominant modes present in the reconstruction of an

arbitrary selected instantaneous wave field. . . . . . . . . . . . . . . . 128
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A-26 Azimuthally symmetric instantaneous wave field when the droplet is

exploring the circular corral of diameter D = 28.5 mm, vibrated ver-

tically at f = 70 Hz. a Instantaneous wave field displaying the dom-

inantly described by one azimuthally symmetric mode. Overlaid in

white is an example of the walker trajectory (of duration ~1 s). b

The weights of the five most prominent modes present in the recon-

struction of the mean wave field . . . . . . . . . . . . . . . . . . . . . 129

A-27 Non-azimuthally symmetric instantaneous wave field when the droplet

is exploring the circular corral of diameter D = 28.5 mm, vibrated

vertically at f = 70 Hz. a Instantaneous wave field displaying the

dominantly described by one non-azimuthally symmetric mode. Over-

laid in white is an example of the walker trajectory (of duration ~ 1

s). b The weights of the five most prominent modes present in the

reconstruction of the mean wave field . . . . . . . . . . . . . . . . . . 129

A-28 Distribution of the mode decomposition weights for the instantaneous

wave fields and mean wave field, shown in blue and red, respectively.

The modes are ordered by increasing eigenvalue, An, and labeled as

(n, m). The weights are normalised with respect to that of the dom-

inant mode. No significant modes were present outside the (1, 10) -

(3, 9) range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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A-29 The mean wave field is computed over increasing periods of time a 5

minutes, b 15 minutes, c 25 minutes, d 30 minutes. The difference

between the mean wave field obtained after 30 minutes and after e

5 minutes, f 15 minutes, g 25 minutes. The differences between the

converged mean wave field in d and the mean wave fields in a, b,
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Chapter 1

Introduction

And it is entirely possible that future generations will look back, from the vantage

point of a more sophisticated theory, and wonder how we could have been so gullible.

- David J. Griffiths [56]

More than a decade ago, Yves Couder and co-workers [23, 107] discovered that small

liquid droplets can walk on the surface of a vibrating liquid bath, accompanied by

their Faraday wave fields [43]. Owing to its quantum-like behaviour arising in a va-

riety of different settings and its relation to the double-solution pilot-wave theory of

de Broglie [31, 32], this walking droplet system has received considerable recent at-

tention and has given rise to the field of hydrodynamic quantum analogues [14]. One

goal of hydrodynamic pilot-wave theory is to answer the thought-provoking question

posed by Bush et al. [15]: Might deterministic chaotic pilot-wave dynamics underlie

quantum statistics?

In the walking droplet system, the quantum-like aspects emerge as the bath's vi-

brational acceleration -y approaches the Faraday threshold YF, the critical value above

which the fluid bath spontaneously destabilises into a field of standing subharmonic

waves with wavelength AF provided by the standard water-wave dispersion relation

[70, 88]. Hence, when the bath's oscillatory motion has frequency f, the Faraday

waves oscillate at frequency f/2. The key control parameter in the walker system,

henceforth referred to as 'memory' and defined as -y/7F, provides a measure of the
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vicinity of the vibrational acceleration to the Faraday threshold and so determines

the longevity of the waves excited by the bouncing drop at each impact [39]. The

memory time, or the characteristic decay time of the Faraday waves, is given by

TM = Td/(1 - /kYF), where Td ~ 4/(47'v) is the wave decay time in the absence of

vibrational forcing and v is the liquid's kinematic viscosity [93, 14]. The memory pa-

rameter is a key ingredient to the dynamics of the walking droplets, as it prescribes the

extent to which the droplet's past motion will affect its future. The system memory

renders the system non-Markovian, an example of hereditary mechanics [11, 129, 72].

Hydrodynamic quantum analogues can be categorised according to whether they

are closed or open [15]. Closed systems are those in which the droplet's motion is

constrained, either by borders or confining potentials, to a domain of size D such

that TM > Tc, where T, - D/v is the droplet's crossing time and v its characteristic

speed. The drop is thus continuously navigating its monochromatic wave field [114,

81, 241. A number of robust hydrodynamic quantum analogues have been drawn from

closed systems and are reviewed at length by Bush et al. [14, 16, 15]. These include

orbital quantisation and Zeeman splitting in a rotating frame [49, 38, 62, 100, 102],

double quantisation in angular momentum and orbital radius for motion in harmonic

potentials [104, 103, 36, 81], as well as quantum-like statistics in circular corrals [65].

In all such closed systems, the physical picture is one of the droplet riding a wave-

field (or effective potential) of its own making. Quantisation arises naturally from

the fact that this wave field is effectively monochromatic, a feature ensured by the

resonance between the bouncing drop and its pilot-wave. The walker system has

some limitations as a quantum analog in open systems; in particular, the studies of

walker diffraction from single and double slits show behaviour that is neither quantum

mechanical nor purely classical [21, 3, 108]. We proceed by providing a brief overview

of the relevant closed hydrodynamic quantum analogues.

The discovery of orbital quantisation of walkers in a rotating frame represented a

pivotal early triumph. It was the first robust macroscopic realisation of phenomena

previously thought to belong exclusively to the quantum realm. Fort et al. [49]

demonstrated that, at low memory, the orbital radius of the walker varies continuously
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with the rotation rate, as expected for a classical system. However, in the intermediate

memory regime, they observed discrete bands of allowed orbital radii, with spacing

between the adjacent bands being approximately equal to AF/2. The quantisation

was rationalised in terms of the walker's interaction with its own previously generated

wave fields. As the speed of the droplet remained approximately constant along

each of its circular trajectories, it lead to an orbital angular momentum quantisation

evoking the Bohr-Sommerfeld quantisation of electron orbits within an atom [19].

Harris et al. [62] built upon this work by providing a more thorough character-

isation of the emergence of orbital quantisation in a rotating frame with increasing

memory. They reported similar results to Fort et al. [49] for the low and intermediate

memory regimes, finding in addition that the quantised orbits do not all appear at

a single memory value. Specifically the number of quantised orbits increases with

memory, with each orbit only being stable within a finite memory range. In the high-

memory regime, they found that the circular orbits destabilise into wobbling orbits

with stationary centres, which can drift and leap if the memory is further increased.

For very high-memories, the droplet's trajectory is rendered more complex, being

characterised by erratic switching between arcs corresponding to unstable circular

orbits. The experimental observations of Fort et al. [49] and Harris et al. [62] have

since been rationalised through the theoretical works of Oza et al. [100, 102], who

also predicted the existence of even more exotic orbital states, only some of which

have been observed in the laboratory.

A richer orbital quantisation arises for walker motion in a simple harmonic po-

tential. Perrard et al. [104, 103] performed experiments with ferro-fluid suspended

within a walking droplet and subjected this walker to a vertical magnetic field with a

radial gradient, leading to an effective confining harmonic potential. They reported

the existence of periodic and quasi-periodic trajectories, in the low and intermediate

memory regime, respectively. This lead to the emergence of a double quantisation in

orbital radius and angular momentum, demonstrating a classical analog of that aris-

ing in quantum mechanics. In the high memory limit, the authors observed chaotic

motion and erratic switching between unstable partial orbits, similar to that reported
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by Harris et al. [62] in the rotating frame.

A number of theoretical investigations have since explored walker motion in a

simple harmonic potential. Labousse et al. [821 analysed the stability of the circu-

lar orbits arising at low memory and rationalised the corresponding quantisation of

orbital radius. Durey et al. [36] created a robust method of analysing the droplet's

trajectory as a build-up of stable sub-trajectories, allowing them to prove that the

double quantisation occurs even in the high memory regime. Kurianski et al. [81] fur-

ther explored numerically the walker dynamics and uncovered a number of periodic,

quasi-periodic, and chaotic trajectories not yet observed experimentally. They also

demonstrated that the system being closed is a requirement for double quantisation

in the simple harmonic potential.

Quantum corrals are two-dimensional structures built atom by atom on an atom-

ically clean metallic surface using a scanning tunnelling microscope (STM) [40, 471.

These formations confine electrons in the surface states of noble metals which lead to

standing wave patterns in the electron density inside the quantum corral [47]. Crom-

mie et al. [25] built the first corrals using iron atoms on a copper surface and imaged

the standing patterns of the electron density inside them. The standard theoretical

descriptions of the quantum corral will be reviewed in chapter 2. Of specific interest

to our study is the quantum mirage, a geometrical resonance effect whereby placing

a magnetic impurity at one focus of an elliptical corral induces an influence with

comparable strength at both foci.

A successful analogy has been drawn between the droplets walking in confined

geometries and electrons in quantum corrals [25]. Harris et al. [65] found that in

the high memory limit, a coherent wavelike statistical behaviour, reminiscent of that

of electrons in quantum corrals, emerges from the chaotic underlying dynamics of

walkers in circular corrals. The modulation patterns observed in the particle loca-

tion histogram and associated speed map resembled the dominant Faraday mode of

the cavity. The study suggests that particle trajectories are not inconsistent with

quantum-like statistics in corrals. Despite several attempts, [121, 52, 53], a conclu-

sive theoretical demonstration of this robust statistical behaviour remains a challenge.
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We will contribute to this discussion in chapters 3 and 6, when we revisit the hydro-

dynamic corrals and present the hydrodynamic analog of the quantum mirage.

Early investigations have also hinted at orbital quantisation in circular corrals.

Harris et al. [65] found that at low and intermediate memories, walking droplets

in the circular corral display periodic and quasi-periodic orbits reminiscent of those

arising in the simple harmonic oscillator [104, 103]. In chapter 4 we will extend the

work of Harris et al. through investigating experimentally the influence of memory

on the dynamics of a walker in a circular corral.

While the similar form of the drop histogram and the Faraday wave mode of the

circular corrals was noted by Harris et al. [65], until recently the mathematical link

between the statistical behaviour and pilot-wave field of the walking droplet was not

clear. Durey et al. [37] proved that for open walker systems, the mean wave field

created by a walking droplet is equal to the convolution between the wave field of a

stationary bouncing droplet and the position histogram of the droplet. A numerical

investigation of the result of Durey et al. was undertaken by Tambasco and Bush

[124] for a walker trajectory confined by a Bessel-like potential. They observed a good

agreement between the numerically computed mean wave field and the convolution

wave field, finding that the convergence time of one to the other is on the order of

~ 34 TM. Convergence to the statistically steady state took substantially longer

~ 300 TM. In chapter 6 we will present the first experimental test of Durey et al.'s

convolution result for the hydrodynamic circular corral, and deduce the associated

convergence times.

When the adatoms that make up the border of quantum corrals are placed in

isolation on the surface of a metal, they produce modulations in the nearby electron

sea. These wave-like patterns are the so-called Friedel oscillations [51] imaged by

Crommie et al. [25] and Kanisawa et al. [77]. The quantum mechanical description

of this phenomena, based on scattering theory, is reviewed in chapter 2. In chapter

5, we study the interaction of a walker with a submerged circular well, thus exploring

a hydrodynamic analogue of Friedel oscillations, the first successful hydrodynamic

quantum analogue in an open geometry.
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In this thesis, we present a comparative study of the quantum corral [25, 27, 87,

47, 94], Friedel oscillations from an impurity [51, 25, 77], and their hydrodynamic

analogues. We begin in chapter 2 with a broad discussion of classical and quantum

mechanics, and a review of the standard quantum treatments of quantum corrals and

Friedel oscillations. Chapter 3 focuses on the statistical projection effects in hydro-

dynamic elliptical corrals, the results of which are published in Statistical projection

effects in a hydrodynamic pilot-wave system, P. J. Sdenz, T. Cristea-Platon and J.

W. M. Bush, Nature Physics, 2017 [114]. The double quantisation of the fundamen-

tal trajectories in circular corrals, as well as the emergence of chaos, is described

in chapter 4, the results of which are published in Walking Droplets in a Circular

Corral: Quantisation and Chaos, T. Cristea-Platon, P. J. Sdenz and J. W. M. Bush,

Chaos, 2018 [24]. The hydrodynamic analogue of Friedel oscillations from a localised

topographic impurity is presented in chapter 5, and soon to be submitted as Localized

hydrodynamic pilot-wave statistics around a defect, P. J. Sdenz, T. Cristea-Platon

and J. W. M. Bush [115]. In chapter 6 we revisit the circular corral, providing an

experimental test of the theoretical link between the mean wave field and the droplet

position histogram developed by Durey et al. [371 and elucidating the origins of the

emergent statistics. Finally, in chapter 7 we draw conclusions and discuss future

research directions suggested by this work.
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Chapter 2

Classical, Pilot-Wave and Quantum

Mechanics

In this chapter we summarise the key distinguishing features between classical and

quantum mechanics as well as pilot-wave theories that now arise in both the classical

and quantum realms. We provide an overview of a number of the most prevalent

interpretations of quantum mechanics. Finally, we will review in turn the particle-in-

a-box description of electrons in quantum corrals and the scattering theory used to

model both Friedel oscillations and quantum corrals.

2.1 Classical physics

People build their notions of reality on the basis of their interactions with the natural

world. The subject of classical physics typically represents an umbrella for classical

mechanics (be it either the Newtonian, Lagrangian or Hamiltonian formalisms) [55],

classical electrodynamics (as laid out by Maxwell) [75], and classical thermodynamics

(initially defined by Kelvin) [118]. These theories share the characteristic of being

deterministic and until the advent of quantum mechanics many believed that classical

physics was a complete theory, able to describe all the observable phenomena around

us. With the formulation of the special and general theory of relativity, bizarre

effects such as length contraction, time dilation, and the loss of simultaneity seemed
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to contradict our classical intuition [130]. Nevertheless, upon closer inspection it lead

to even better agreement between classical theory and experimental data, for example,

through explaining the anomalous precession rate of the perihelion of Mercury's orbit

[120].

Planetary motion was historically central to both general relativity and the devel-

opment of another aspect of classical physics. Around 1890, Henri Poincar6 discov-

ered that for the motion of three gravitationally-interacting bodies, some trajectories

are neither periodic, divergent, nor approaching a fixed point [106]. This dynamical

behaviour would be known as chaotic motion.

2.1.1 Chaos

Chaos theory focuses on deterministic dynamical systems whose behaviour can in

principle be predicted from evolution equations, for example, Newton's laws of mo-

tions. However, chaotic systems are highly sensitive to initial conditions and have

constrained solutions, which places practical limits on predictability [122]. Thus, an

arbitrarily small change, or perturbation, of a chaotic system may lead to significantly

different future behaviour. The result, commonly known as the butterfly effect [84], is

characterised mathematically by an exponential divergence with time of two nearby

points in phase space at a rate given by the Lyapunov exponent [122].

Jacques Hadamard studied one of the first examples of chaotic billiards, specifi-

cally the chaotic motion of a free particle gliding frictionlessly on a surface of constant

negative curvature [59]. He showed that they all diverge exponentially from one an-

other, with a positive Lyapunov exponent. Although the foundations of chaos theory

were laid out more than a century ago, its implications have only become widely

recognised in the last 50 years [119]. In the early 1960's, Edward Lorenz was working

on weather prediction models. He discovered that small changes in initial conditions

could lead to divergent predictions in the long-term outcome, an effect amplified

by the limited working precision of early computers. A famous quote attributed to

Lorenz eloquently summarises chaos theory: When the present determines the future,

but the approximate present does not approximately determine the future.
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2.1.2 Pilot-wave hydrodynamics

Pilot-wave hydrodynamics describes the dynamics of walking droplets. The trajectory

equation for the walker's horizontal motion was derived by Moldnek and Bush [93]:

mxd + Dxd = --mgVr(Xd, t) (2.1)

where Xd is the walker position and r/(Xd, t) is the amplitude of its pilot-wave field. The

droplet experiences a drag term proportional to its speed and an instantaneous force

prescribed by the local gradient of the instantaneous wave field beneath it, Vr(Xd, t).

The system variables are defined in table 2.1. As the droplets considered in the

present thesis are resonant walkers, bouncing in synchrony with their accompanying

Faraday wave field, the amplitude of the wave field can be written as a discrete sum

of circularly symmetric standing waves centred at each impact's location:

Lt/TFJ

T1/(Xd, t) = 1: A Jo (kF IX (t) - Xd (nTF) 1) e(t-nTF)/(TF~e (22
n=-oo

Oza et al. [1011 approximated this sum as an integral and so obtained an integro-

differential equation for the horizontal trajectory of a free walking droplet:

T(Xd,t) = -J (kF Xd(t) - X()1 (Xd(t) - Xd(S)) e(t-s)/(TFMe)ds (2.3)

This approximation is valid when the timescale of vertical motion TF is much

smaller than the timescale of horizontal motion TH F/ Jkd . From equations (2.2)

or (2.3), it is apparent that the instantaneous force on the droplet depends on both

the particle's previous path and the system 'memory', Me = Td/ (TF (1 - -Y/ YF)), a

measure of the extent to which the past affects its future. Owing to the influence of its

wave field, the future of a droplet is affected by both its present and its past, rendering

the walking droplet system non-Markovian, an example of hereditary mechanics [129].

In order to predict the system's future, one must know both its present and its
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Dimensional variables Definition

m drop mass

RD drop radius

fluid kinematic viscosity

fluid surface tension

p fluid density

Pa air dynamic viscosity

Pa air density

f forcing frequency

forcing acceleration

7F Faraday instability threshold

g gravitational acceleration

TF = 2/f Faraday period

Td decay time of waves without forcing

kF = 27/AF Faraday wavenumber, wavelength

OD mean phase of wave during contact

D 0.17mg PD + 67rvaRD ( + drag coefficient
1.5795v mgkcofien
A = TF k TF sin < amplitude of wave force

F = .595 m mTF sin 4D wave force coefficient
27rTF 300r~pgf

Table 2.1: The variables in the trajectory equations (2.1), (2.2), and (2.3).

past. Chaotic dynamics in hereditary systems is a relatively new subject [72] and

our hydrodynamic pilot-wave studies are expected to significantly contribute to its

development [15].

A number of walker experiments have demonstrated how non-locality can be mis-

inferred from local hereditary mechanics. For example, Harris et al. 160] investigated

the interaction between a walking droplet and a submerged pillar. They inferred

that a lift-type force was applied to the walker by the pillar, demonstrating that

pilot-wave-mediated local forces can give rise to apparent action at a distance.
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2.2 Quantum physics

The description of nature at the smallest scales, such as the electrons of an atom,

is provided through the peculiar laws of quantum mechanics. One such law, which

is as central to quantum mechanics as Newton's second law of motion to classical

mechanics, is the Schr6dinger equation (2.4) [116].

ih aT(r, t) = V2 + V(rt) I(r,t) (2.4)
at I 2mI

where h is the reduced Planck constant, t is time, r is the position vector, m is the

mass of the particle, and V is the external potential. T represents the wave function, a

mathematical description of a state of an isolated quantum system thought to encode

all the statistical information of the system. The wave function, also called the state

function, is a complex-valued probability amplitude that prescribes the probabilities

for all the possible results of a measurement made on the system. In other words,

this definition implies that if T defines a fair coin that has been flipped and is about

to land, T only contains the information that there is a 50 - 50 chance of obtaining

heads or tails, but not the actual result of the coin flip. The Born rule [12] expresses

that the probability density of finding the particle at a given point is proportional to

the square of the magnitude of the particle's wave function at that point; if i0 is the

wave function of the particle, then its probability density function is given by |1 2 .

Notably, the linear Schr6dinger equation provides no description of particle paths.

The semi-classical approach to quantum mechanics, founded on the Bohr-Sommerfeld

quantisation condition [19], remained largely dormant until Gutzwiller developed the

theory of periodic orbits [581. He demonstrated that the quantum particle statistics

occurring in confining geometries, such as quantum corrals, could be understood as

emerging from localised wave packets moving along a superposition of classical bil-

liard trajectories [791. The periodic trajectories naturally lead to a dynamical time

scale [112], Tr - D/vo, corresponding to successive wall reflections of a localised wave

packet of average speed vo, propagating in a domain of size D. The dispersion of the

initially localised wave packet with momentum uncertainty 6p = m6v over the area
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of the confining geometry, gives rise to a second time scale [112], -r, ~ D/6v, after

which the typical quantum statistics emerge. In chapter 6, we will investigate the

periodic, weakly aperiodic and chaotic trajectories in the hydrodynamic corral and

characterise the analogous timescales.

2.2.1 Quantum treatment of a particle in a circular corral

Consider an electron placed in a circular corral. This particle is initially well localised,

but with time would explore the confining geometry and its wave function would be

time-dependent, obeying (2.4). In fact, the initial purpose of the quantum corral, a

physical realisation of a quantum box, was to explore precisely this evolution [47].

Early experimental investigations used stadium-shaped quantum corrals [25, 27, 28,

68, 69J, however, the wave patterns observed were always time-independent, a result

mainly attributed to leakage of electrons through the corral's walls [47].

We review here the standard, time-independent, quantum mechanical description

of a particle inside a circular domain, whose walls act as an infinitely tall potential.

The circular geometry is most relevant to our work on the hydrodynamic corral. For

a circular well, we consider a potential

0 if r < L
V(r, 6) = (2.5)

oc otherwise

We seek a statistically steady state, hence (2.4) reduces to:

[ hV2 + V(r) I(r) = ET(r) (2.6)
2mI

where E is the energy of the particle. Outside the confining region, 4(r, 0) = 0.

Inside, (2.6) requires that

_2 (a 2@ ia 1 2'2
+ + = EV (2.7)

2m Or2  r O r2 00 2

The boundary condition to be satisfied is 0 (L, 0) = 0, for 0 E [0, 27r). The
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normalisation condition requires that fL fL ?@(r 9)2 rdrd = 1. Hence, the possible

wave functions of our system are

OPonr(r, 0) = 1 Jin 1 (kinoinr) in00 (2.8)
|/7 1Jn0l+1 (kIno In,)j

h2k 2
En6 ,nr - m (2.9)

2m

where n,nr is the stationary state with quantum numbers no E Z and nr E N*,

with associated energy Eno,, and r, 0 are the radial and azimuthal coordinates,

respectively. JinI is the Bessel function of the first kind of order Inol and kinen, is

the n,-th positive root of Jin divided by L. Notice an infinite set of modes with

the lowest energy, corresponding to no = 0 and n, = 1, and referred to as the

ground state. Furthermore, no plays the role of the quantised angular momentum of

the particle and this sheds light on the physical intuition behind its allowed values.

The particle can travel clockwise or counter-clockwise around the cavity, with the

magnitude of angular momentum given by half the number of azimuthal nodes of the

wave function. However, one cannot determine the sign of no by inspection of (2.8)

alone since, in this equation, the sign only appears in the phase term. Examples of

various eigenmodes given by (2.8) are shown in figure A-1.

The closest approximation to domains with infinitely tall walls arise in micro-

scopic structures known as quantum corrals. These are created by placing a series

of identical imperfections, such as adatoms, on the surface of a conductor arranged

to form a closed geometry, such as a circle (see figure A-2a [25]) or an ellipse (see

figure A-2b-e [87]). The surface electrons inside this enclosure are largely confined or

corraled, and their particle statistics display visually striking standing wave patterns.

In the particle-in-a-box framework of quantum corrals, (2.6) is solved using Dirichlet

boundary conditions to obtain a complete set of energy-dependent eigenstates for the

electrons. The electron energies are assumed to follow a Gaussian distribution centred

on the system's Fermi energy. Finally, one computes a weighted sum over a subset of

eigenstates, typically those with energies within two-to-three Gaussian widths of the
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Fermi energy, yielding the total eigenstate of the system. The normalised weights used

in the aforementioned sum, are Gaussian-distributed values for the specific eigenstate

energy [94]; however, their exact values are not specified by the theory and hence have

to be calculated by fitting data from experiments. The incompleteness of the linear

Schr6dinger equation in describing quantum corral experiments is readily apparent.

Quantum corrals typically have ~ 30 particles within their confining walls. As the

electrons do not interact, the single-particle analysis developed thus far is appropri-

ate. Notably, in the hydrodynamic analogues described in chapters 3-6, the droplets

do interact; consequently, we limit our experimental investigation to single particle

systems, which are not yet experimentally feasible in quantum mechanics [47].

While the electron density patterns observed in the quantum corrals are time-

independent, it is useful for our discussions of hydrodynamic corrals in chapters 3

and 6 to illustrate the simplest conceptual image of time-dependent quantum me-

chanics in a circular box. Consider a particle whose quantum state, XI, represents the

equal superposition of two distinct solutions to (2.8), ?1 and 42, respectively, with

associated energies given by (2.9), E1 = hwi and E2 = hw 2, respectively. The time

dependent state function of the particle, T(t), is then obtained by solving (2.4)

V_-iElt v_____E~
T(t) = e h 1 + e h 42 (2.10)

2 2

We see that the particle's state oscillates with time between the two fundamental

eigenstates. Similar oscillations occur throughout quantum mechanics and are char-

acteristic of the so-called two-level Hamiltonian systems. Examples include spin pre-

cessions in magnetic fields [19] and qubits, the building blocks of quantum computing

[99]. More generally, multi-level Hamiltonian systems are those characterises by a

broad spectrum of eigenstates, such as lasers, with the mathematical formulation

extending naturally from (2.10).
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2.2.2 Friedel oscillations

We proceed by reviewing the quantum mechanical description of electrons interacting

with localised impurities. Assume that an atom or impurity is placed on the surface

of a conductor. The two-dimensional electron gas (2DEG) nearby will respond to its

presence by a redistribution of charge. We model this electron sea as an ideal ground-

state Fermi gas, with Fermi-momentum hkFermi, and assume that the impurity is

electrically charged and can be modelled by a localised potential.

Friedel oscillations 1511 are described in terms of standing waves formed from the

interference between incoming and backscattered electron waves. They have been

observed to arise around single impurities (see figure A-3a) [26, 77], from steps on

a material's surface (see figure A-3b) [26, 66] as well as from a discrete arrange-

ment of multiple impurities (see figure A-2) [25, 68, 28, 471. Figure A-3b illustrates

many of the features of this quantum landscape, including a fundamental wavelength

~ AFermi/2, corresponding to half the Fermi wavelength. The following discussion

will assume for simplicity that the system has a temperature of OK, such that there

are no states with wavenumber greater than kFermi and the number density of states

is constant across the allowed wave-numbers. Since p = hk, this is equivalent to

assuming a maximum particle momentum. To investigate the occurrence of Friedel

oscillations, let us consider a geometry relevant to the hydrodynamic quantum ana-

logues presented in chapter 5.

Suppose that at the origin, there is an infinitely tall barrier. The potential of this

system is

oc if r = 0
V (r, 0) = (2.11)

0 otherwise

Away from the origin, (2.6) yields

h 2 )+ 1O + - =2) E7 (2.12)
2m (Or2 r Or r2 002

This equation can be solved via separation of variables. The azimuthal part of
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the wave function is given by einoO, where no is once again the azimuthal quantum

number. The radial part of wave function is a linear combination of solutions to

the ordinary Bessel equation, i.e. the regular Bessel Jn,(kr) and irregular Neumann

Nno(kr) functions, where k is the wavenumber of the solution. These represent the

free solutions of the system in the absence of the scattering impurity. To account

for the perturbation induced by the infinitely tall barrier at the origin, we look for

a radial solution that is regular at r = 0 with asymptotic form similar to the free

solution away from the impurity [98]:

2 n riF- 7r~ 2.3
Jn,(kr) -+ cos kr - 224]

2 no7r 7r (.3

Nn,(kr) + sin kr -- (2.14)
'grkr 2 4/

The solution to our system is a linear combination of the above two asymptotes,

multiplied by einoO,

1 no7 fl7r 71 io
Ok(r, 0) = Ar sin (kr - - + eio (.5rkr6= -s 2 (2.15)

where A is the normalisation constant and r7 the scattering phase shift [1]. This solu-

tion is appropriate for kFermir >> 1, which is valid in most experimental settings of

relevance to us since the typical impurity size is comparable to the Fermi wavelength,

AFermi [48]. For symmetry, we require no = 0.

The electron sea density is given by the sum (or integral) over the probability

distribution of all states below the Fermi energy:

kFermi

n(r,0) = S |$(r,0) 2 = | k(r,0)2 kdk (2.16)
k 0

2 kFermi 

7

n(r) = A2  sin (kr - 4 + - kdk (2.17)

2 cos(2kFermir + 6) + 2kFermir - Cos (2.18)
n(r) = A (4r2
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Hence the Friedel oscillation term in the electron density is

6n (r) ccos(2kFermir + 77) (2.19)
r2

We note that the oscillations are sinusoidal, with wavelength half of the Fermi wave-

length, and that they decay with the inverse of the distance squared (see figure A-4a).

Friedel oscillations also provide an alternative framework for treating the quan-

tum corral. Specifically, the quantum corral can be understood in terms of either a

particle-in-a-box system [25, 94], as seen in section 2.2.1, or as an array of interfering

Friedel oscillators [47]. The former interpretation has the advantage of being a more

intuitive model, based on cavity wave mode superposition; however, it has limitations

in that the walls are not infinitely tall, so that electrons can leak out of the corral.

The latter provides a more quantitatively accurate explanation and has extensions to

even semi-closed geometries, such as arc-segment barriers. Nevertheless, the mathe-

matical machinery of this formulation employs scattering theory and can obfuscate

understanding. We note that both the particle-in-a-box and the scattering descrip-

tions treat the particles as waves and their fundamental approaches are similar given

that standing wave patterns can be decomposed into incoming and outgoing waves.

In the scattering picture of quantum corrals, electrons in the conduction band are

free to move along the surface of the metal, and form the two-dimensional electron

gas. For each adatom in the corral's wall, one solves (2.6) with a periodic potential

modelling the atomic lattice of the substrate and a localised potential modelling

the impurity [47], and proceeds to compute the associated Friedel oscillations. The

collective interference of each adatom's Friedel oscillation leads to the typical standing

wave pattern inside the corral (see figure A-2a). In chapter 6, we will discuss a new

mechanism for the emergent statistics occurring in hydrodynamic corrals, inspired by

insights from our study of the analogue Friedel system.
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2.3 Quantum Interpretations

While Newton's laws of motion describe the deterministic dynamics of a macroscopic

system, the Schr6dinger equation describes the statistical behaviour of a microscopic

system. What might underlie these statistics is a point of ongoing debate among

physicists. The various philosophical viewpoints, espoused across the physics com-

munity, on how quantum mechanics corresponds to reality are referred to as the

interpretations of quantum mechanics. We now outline the most prevalent. The

Copenhagen interpretation renounces many of the general properties of a particle,

including fundamental notions such as particle trajectory, in favour of a purely prob-

abilistic depiction [56]. The insistence on the completeness of quantum mechanics in

its purely statistical description of microscopic systems was lampooned by Einstein

and Schr6dinger in the form of Schr6dinger's cat [41, 117].

Such is the philosophical extravagance of the Copenhagen interpretation that it

has invited a proliferation of even more extravagant interpretations. While a Copen-

hagenist chooses to disregard particle trajectories, a subscriber to the Many-Worlds

interpretation [42] prefers to violate energy conservation. According to the Many-

Worlds interpretation, the act of observation causes the Universe to bifurcate into

copies of itself, the only difference being the result of the observation. Even more

bizarre and occult are the Consciousness Cause collapse [131] or the Many-Minds

interpretations [2]. The Consciousness Cause collapse is similar to the Copenhagen

interpretation, however it assumes that human consciousness is the cause of the wave

function collapse. The Many-Minds interpretation represents a variant on the Many-

worlds interpretation, the distinction being that it is the observer's mind that branches

off with every probabilistic measurement performed.

Fortunately, there has been a recent shift towards more sensible interpretations,

for which the present thesis provides further support. Many graduate level quantum

mechanics courses have begun to focus on the Ensemble Interpretation. This inter-

pretation describes the evolution of the wave function obeying the linear Schr6dinger

equation as that of a statistical average of similarly prepared states [6]. While the En-
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semble interpretation does not deny the existence of a quantum dynamics underlying

quantum statistics, it provides no insight into what that dynamics might be. Notably,

all attempts to formulate a realist quantum dynamics have taken a pilot-wave form,

in which a particle is guided by a wave.

2.3.1 Bohmian mechanics

A deterministic interpretation of quantum mechanics that attempted to restore tra-

jectories to quantum particles was proposed by Bohm [9, 10]. Typically referred to

as Bohmian mechanics, it asserts that quantum particles, such as electrons, obey

Newtonian-like laws of motion and move in response to a pilot-wave field satisfying

Schr6dinger's equation (2.4). The theory represents a reformulation of quantum me-

chanics, a mix of dynamics and statistics, whereby the dynamics are driven by the

statistics. We here provide a brief overview of the theory with a view to later distin-

guishing it from the pilot-wave dynamics proposed by de Broglie in the 1920's [311

and suggested by the walker system.

We introduce the Madelung transformation [85, 86] of the wave function:

I(r, t) = Reis/h (2.20)

where R(r, t) and S(r, t) are real amplitude and phase functions, respectively. Insert-

ing (2.20) into (2.4), we obtain the two coupled equations

aS (VS) 2  h2 V 2 R
-+ + V = 0 (2.21)at 2m 2m R

aR2  (R 2VS _

at V - i) 0, (2.22)at M

that represent a hydrodynamic formulation of quantum mechanics. The latter equa-

tion can be seen as the continuity equation for the probability distribution, R2 =,12,

associated with the system, while the former is an energetic equation. First, we will
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make some associations pertinent to the terms in (2.21). In time-dependent quantum

mechanics, the location with maximal probability of finding a particle may vary with

time. This flow of probability (or the probability flux) is written as

j(r, t) = h (F*Vv - T * (2.23)
2mi

In classical mechanics the flow of probability would represent a particle moving

from one position to another. Bohmian mechanics equates the quantum velocity of

probability with the particle velocity:

v(r, t) - - VS (2.24)
R2  m

Notably, the quantum potential [73],

h2 7 2 R
Q(r, t) = __(2.25)2m R

is the only term in eq.(2.21) containing h. By taking the gradient of (2.22) and

combining it with (2.24) and (2.25), one obtains an equation similar to Newton's

second law of motion [9].

d
- (mv) -V (V + Q) (2.26)
dt

where
d 0-d + V -V (2.27)
dt at

is the Lagrangian derivative. The quantum potential, Q, is central to Bohm's theory

as it is the source of non-locality: it represents a potential acting at all times on

the particle and spanning all space. At a fundamental level, it is what makes a

particle behave quantum-like. Note that the quantum potential plays a peculiar role

in Bohmian mechanics: it is defined in terms of the system's statistics (through R),

but has a dynamical influence on the particle. We will revisit the quantum potential

in chapter 6, where we discuss its similarities to the mean wave field of walkers in the
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hydrodynamic corral.

Einstein criticised Bohm's theory on the grounds that it predicts that no parti-

cle motion occurs in a closed geometry, such as a corral, if the system is described

by a single eigenstate [73]. We highlight this shortcoming by considering the time-

dependent wave-function of such a system, TI(x, t), the solution to the Schrddinger

equation (2.4):

I(x, t) = 7(x)eiEt/h (2.28)

where 4'(x) is the single eigenstate and E its associated energy. Comparing (2.28)

with (2.20), one obtains S = E. As VS = 0, (2.24) implies that v(r, t) = 0 and that

the particle remains motionless at its initial position.

Recent studies of Bohmian dynamics in circular corrals have assumed the presence

of multiple eigenstates, hence a multi-level governing Hamiltonian, [30]. While chaotic

trajectories were reported, no associated converged statistics were reported. A more

general criticism of Bohmian mechanics is that it does not provide a mechanism for

wave generation. Moreover, Bohmian mechanics is effectively kinematic: the Bohmian

particle rides its pilot-wave without altering it.

2.3.2 de Broglie's double-solution pilot-wave theory

A much richer and less contrived portrayal of quantum particle dynamics is de

Broglie's original formulation of pilot-wave theory [31], as was formulated in the

1920's in an attempt to reconcile quantum mechanics and relativity. De Broglie envi-

sioned a particle with an internal oscillation at the Compton frequency, Wc = mc2/h.

This particle vibration, or zitterbewegung, is characteristic of an exchange between

rest-mass energy and wave energy as suggested by the de Broglie-Einstein relation,

mc2 = hWc [14].

The culmination of de Broglie's work was his double-solution pilot-wave theory,

which requires two distinct waves: the statistical wave of standard quantum mechan-
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ics, 0, and the pilot wave, u. A crucial aspect of the theory stressed by de Broglie

is the "harmony of phases" or resonance between the particle's vibration and its pilot

wave [32]. De Broglie defined the pilot wave, u(x, t), as a solution to the Klein-Gordon

equation (2.29) [19]:
1082 m2c2

U + 2u = 0 (2.29)
c2 at2  h

and

u(x, t) = Aeis(xt)/h (2.30)

where A is a normalisation constant, and S(x, t) is a real function determining the

phase of the wave. Substituting eq. (2.30) into eq. (2.29) yields the coupled equations

1 0 2 S
_+ V2S =0 (2.31)

C2 at2

1 (aS2 2
2 ( ) - (VS)2  m 2c (2.32)

A solution to eq. (2.31) that leads to a monochromatic pilot wave in the particle's

frame of reference with de Broglie wavelength, AdB = 27r/k, is

S(x, t) = h(k -x - wt) (2.33)

Eq. (2.32) can be rearranged as

c2  = 1 - 2C (2.34)
\S/0t (aS/0t)2

The relativistic de Broglie-Einstein relation [32] for a particle of rest-mass m

moving with constant speed v expresses the particle's energy as

E = hw = mc2 1 - v2 /c 2 (2.35)
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Using eq. 2.35 and OS/t = -hw, eq. 2.34 becomes

C2 (VS 2 =1 _ h2w 2 (1 - v 2 /c 2 )
2 S=at) - (2.36)

from which "the guidance formula", that governs the particle motion [32], is obtained:

V= -c2VS (2.37)

The relativistic momentum is defined as p = mv/V/1 - v 2/c 2 , and by substituting

eq. 2.33 into eq. 2.37 we obtain the particle's associated momentum p = hk. Thus

the particle rides the wave field along a line of constant phase and has a constant

speed. The physical picture of a particle riding its pilot-wave along a line of constant

phase is clearly evident in the strobed videos of walking drops [61].

An important difference arises between de Broglie's pilot-wave theory and Bohmian

mechanics. The former contains two waves: the statistical wave, V), predicted by

quantum mechanics and a pilot-wave, u, centred on the particle. This contrasts with

the Bohmian formulation, where the statistical wave coincides with the pilot-wave.

As we will demonstrate throughout the present thesis, the walking droplet system

captures all the critical aspects of de Broglie's mechanics and suggests the shortcom-

ings of Bohmian mechanics. Specifically, it contains particle vibration in the form of

vertical bouncing and the droplet walks via a resonant interaction with its associated

monochromatic wave. Furthermore, there are two wave fields, a pilot-wave centred

on the droplet and a statistical form prescribed by the system's geometry [14]. The

walking droplet system provides the first classical platform for exploring pilot-wave

dynamics, and speaks in favour of de Broglie's rather than Bohm's pilot-wave theory

[14, 15].
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Chapter 3

Statistical projection effects in a

hydrodynamic pilot-wave system

Millimetric liquid droplets can walk across the surface of a vibrating fluid bath, self-

propelled through a resonant interaction with their own guiding or 'pilot' wave fields.

These walking droplets, or 'walkers', exhibit several features previously thought to be

peculiar to the microscopic, quantum realm. In particular, walkers confined to circu-

lar corrals manifest a wave-like statistical behaviour reminiscent of that of electrons

in quantum corrals. In this chapter, we demonstrate that localised topographical

inhomogeneities in an elliptical corral may lead to resonant projection effects in the

walker's statistics similar to those reported in quantum corrals. Specifically, we show

that a submerged circular well may drive the walker to excite specific eigenmodes in

the bath that result in drastic changes in the particle's statistical behaviour. The

well tends to attract the walker, leading to a local peak in the walker's position

histogram. By placing the well at one of the foci, a mode with maxima near the

foci is preferentially excited, leading to a projection effect in the walker's position

histogram towards the empty focus, an effect strongly reminiscent of the quantum

mirage. Finally, we demonstrate that the mean pilot-wave field has the same form as

the histogram describing the walker's statistics.
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3.1 Introduction

Since the groundbreaking experiments of Yves Couder, Emmanuel Fort and co-workers

[23, 107], significant effort has been devoted to examining the potential and limita-

tions [3] of walking droplets as a hydrodynamic quantum analogue system [14]. Harris

et al. demonstrated that the chaotic motion of a walker confined to a circular cavity,

or 'corral', may lead to the emergence of a wave-like statistical behaviour, with the

droplet's position histogram being prescribed by the eigenmode of the cavity 1651,

reminiscent of the probability distribution of a two-dimensional electron gas confined

to a circular quantum corral [25]. Despite several attempts [121, 52, 53], a conclu-

sive theoretical demonstration of this robust statistical behaviour remains an open

challenge. The results in the circular corral [65] suggest the possibility of establishing

deeper connections between these two markedly different systems.

The Kondo effect [78, 47] is the suppression in the local differential conductance

of a metallic substrate due to the presence of magnetic impurities. In a remark-

able recent set of experiments, Manoharan and co-workers [94] exploited this effect

to demonstrate that, due to the special resonant properties of elliptical corrals, an

individual atom (magnetic impurity) inside a quantum corral can be used to control

the relative importance of specific cavity modes, thus allowing for the production of

arbitrary superpositions of spatial quantum states [94]. When the magnetic impu-

rity is placed at one focus, a particular elliptical eigenmode with extrema near the

foci is preferentially excited, leading to a heightened statistical response in the elec-

tron density near the empty focus. Owing to the acute sensitivity-of the differential

conductance to the statistical response, the result is the projection of a pronounced

minimum in the differential conductance from the occupied focus to the empty one,

the so-called quantum mirage [871. Here, we demonstrate that similar mode superpo-

sition and projection effects can be induced and manipulated in the walking droplet

system by using a submerged circular well in the role of the magnetic impurity.
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3.2 Experiments

A schematic of the experimental set-up is shown in Fig. A-5. An elliptical corral

made of stainless steel was filled with 20 cSt silicon oil with density p = 950 kgm-3,

viscosity v = 20.9 cSt and surface tension o- = 20.6 mN m-. The eccentricity of

the ellipse is e = 0.5 and the length of its semi-major axis isa = 14.25 mm. The

corral was filled to a height h = 1.70 t 0.05 mm such that a very thin liquid film

of depth hi = 0.05 0.03 mm overlays the border of the cavity, serving as a wave

damper. The bath was mounted on an optical table and vibrated vertically by an

electromagnetic shaker with acceleration IF(t) = y cos(wt), where -y and f = w/27r are

the prescribed maximum acceleration and frequency, respectively. Unless otherwise

noted, the driving frequency was fixed at f = 72 Hz. The shaker was connected to

the bath by a thin steel rod coupled with a linear air bearing to ensure a spatially

uniform vibration to within 0.1% (ref. [63]). The forcing was monitored by two

accelerometers, attached to the bath on opposite sides of the drive shaft, and a closed-

loop feedback ensured a constant acceleration amplitude to within t0.002g (ref. [63]).

A droplet of the same silicon oil with diameter d = 0.79 0.01 mm was generated

with a piezoelectric droplet-on- demand generator and placed on the vibrating bath

with the help of a removable slide 1641. Provided the driving acceleration was in the

appropriate range, the drop could survive indefinitely by bouncing on the surface of

the bath 122]. To ensure that ambient air currents did not affect the results, the

corral was sealed with a transparent acrylic lid. We note that, although previous

studies of walking droplets have considered the deep-water regime (h > 4 mm for

the vibrational frequencies typically examined), we considered a relatively shallow

layer in order to exploit variable bottom topography as a means of altering the drop's

statistical behaviour.

The walker motion was recorded at 20 frames per second with a charge-coupled

device (CCD) camera mounted directly above the bath and tracked with an in-house

particle-tracking algorithm. The bath was illuminated with a light-emitting diode

(LED) light ring to increase the contrast between the drop and the black background.
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This visualisation set-up is optimal for droplet tracking but does not allow for obser-

vation of the wave field. The simplest method to capture the wave form is to view

the normal reflection of light at the free surface [34]. To that end, a semi-reflective

mirror at 450 was placed between the CCD camera and the bath, and the light ring

was replaced by a diffuse-light lamp facing the mirror horizontally. Images can then

be observed with bright regions corresponding to horizontal parts of the surface, ex-

trema or saddle points [34] (Fig. A-6a,b). The wave field was recorded at frequency

f/4.

When the driving acceleration exceeds the Faraday threshold ThF, which depends

on f, h, the fluid properties and cavity size, the bath spontaneously becomes unstable

to a standing field of subharmonic Faraday waves [43, 88]. A critical parameter of the

system is the so-called 'memory', -y/7F, which indicates the proximity of the driving

acceleration to the Faraday threshold and so prescribes the longevity of the waves

excited by the drop at each impact [39]. In the high-memory regime ( -+ y), the

waves are more persistent, so the droplet is more strongly influenced by its history

[39].

For the range of parameters considered, yF = 4.022 g. We focus on the statistical

behaviour of a walker in the high-memory regime, specifically y/yF= 0.998, thereby

ensuring that, as in the original corral experiment [65], the characteristic decay time

of the subharmonic Faraday waves, or 'memory' time TM = Td/(1 - / -'F) - 7.8

s, exceeds the droplet's characteristic crossing time T, = a/u ~ 1.6 s. Here, Td =

F/(87r2 v) is the wave decay time in the absence of vibrational forcing [92], AF is the

Faraday wavelength as prescribed by the standard water-wave dispersion relation, and

u - 6-9 mms 1 is the characteristic speed of the droplet. If TM < T, the waves decay

faster than the droplet crosses the cavity and dissipation precludes the persistent

wave field necessary for the emergence of the quantum-like statistical behaviour. The

droplet motion was recorded for 3.5 h in 30 min intervals to maintain the prescribed

memory, which may drift slowly owing to variations in viscosity and surface tension

resulting from ambient temperature changes. yF was measured before and after each

acquisition period and only data sets for which 16 YF IF < 0.001 were retained, where
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6 'F represents the variation in the Faraday threshold over a 30 min segment. The

Faraday threshold is never crossed: the bath surface would remain flat in the absence

of the droplet.

In this high-memory regime, the droplet motion is highly irregular. Its trajectory

is characterised by frequent and abrupt changes in direction and speed prompted by

impacts on its complex pilot wave field. Figure A-6a,b illustrate the spatio-temporal

complexity of the instantaneous wave field and the associated droplet trajectory.

Note that the instantaneous wave field inside the corral is markedly different from

both the distinct horseshoe shape arising for a free walker [39] and from the corral's

most unstable Faraday mode, whose form is evident in Fig. A-7c. Figure A-6c

shows the drop trajectory, colour-coded according to speed, for paths of increasing

length. Eventually, a well-defined pattern emerges, revealing a correlation between

drop position and speed (Fig. A-6d). The histogram of the walker position (Fig. A-6e)

reveals sharply defined regions that the walker visits more frequently, including two

small circular regions near the centre of the ellipse and enclosing elliptical rings whose

intensity decreases outwards. The average speed map presented in Fig. A-6f shows

that peaks in the histogram correspond to regions of lower speed, as is also indicated

in Fig. A-6d. Figure A-6f shows an overlay of the average velocity (arrows), which is

effectively zero in the centre of the corral, indicating that the droplet visits each point

there with some characteristic speed but with a random direction. Conversely, near

the borders of the corral, an apparent quadrupole stream emerges in the mean velocity

field. Specifically, the walker has a tendency to move along the border from the ends of

the major axis towards the ends of the minor axis, where it then recirculates towards

the corral centre.

Averaging the highly irregular instantaneous wave field (Fig. A-6a,b) over 30 min

reveals a well-defined mean wave field (Fig. A-7a) with features strikingly similar to

those characterising the position histogram and average speed map (Fig. A-6e,f). The

brighter areas in the mean wave field represent regions whose average slope is zero and

coincide with high-density and low-speed regions in the position histogram and speed

map, respectively. This correspondence indicates that the walker's statistical response
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is slaved to the mean wave field through the relatively incoherent, particle-centred,

instantaneous pilot wave.

To rationalise this correspondence, we turn our attention to the Faraday waves

emerging inside the corral, in the vicinity of the driving frequency, just above the

Faraday threshold. It is important to distinguish these standing Faraday wave modes,

which appear above threshold in the absence of the walker, from the instantaneous

wave fields (for example Fig. A-6a,b) excited at 7 < yF by the walking drop, which

decay both in time and space. Figure A-7c,e shows the Faraday waves observed at

threshold Y = YF with f = 72and 70 Hz, respectively, which are well approximated

by particular solutions of the Helmholtz equation for an elliptical membrane with

Dirichlet boundary conditions. Specifically, the waves observed at f = 72 Hz (Fig. A-

7c) correspond to the odd (1, 5) elliptical eigenfunction (Fig. A-7d), while those found

at f = 70 Hz correspond to the even (4,4) mode [57]. We note that Dirichlet boundary

conditions are the most appropriate given the minimal thickness of the fluid film

surrounding the cavity and the resulting tendency of surface tension and viscosity to

minimise the wave amplitude there [81.

By superposing the (1, 5) and (4,4) wave modes in equal weight as a first approx-

imation, we find the pattern presented in Fig. A-7b, whose main features correspond

closely to those of the mean wave field shown in Fig. A-7a and consequently to the

walker's position histogram and speed map in Fig. A-6e,f. This correspondence in-

dicates that the walker's seemingly chaotic motion is actually being dictated by the

resonant Faraday modes of the cavity, some combination of which is subcritically

(-Y < 7F) excited at each impact. In this particular case, the walker appears to be

exciting not only the Faraday mode at the driving frequency (f = 72 Hz) but also

a second mode that is dominant at a nearby frequency (f = 70 Hz). The presence

of other modes with relatively small weights cannot be discounted. We note that

each drop impact must excite other eigenmodes in order to give rise to the intricate

instantaneous wave field observed experimentally (Fig. A-6a,b). It is only in some

exceptional occasions, when the walker happens to move along one of the main crests

or troughs of one of the two fundamental cavity modes for an extended period, that
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the instantaneous wave resembles either of these two modes (Fig. A-6). At each im-

pact, the walker is thus exciting some collection of modes, two of which (the (1, 5)

and (4,4) modes) are predominant, their relative weight depending on the drop po-

sition and recent trajectory. The remaining rapidly decaying modes evidently have

no significant effect on the mean wave field or the droplet statistics. The mean wave

field also indicates that, on average, the dominant modes are being excited equally.

We note that it has been shown that averaging chaotic Faraday waves well above

threshold (Y >> YF), in the absence of a walker, also yields a mean field related to

the linear wave modes of the cavity [54].

We now focus on demonstrating how localised topographic features in the form of

submerged circular wells can vary the mode balance by diminishing or enhancing the

resonance of specific cavity eigenmodes and so alter drastically the statistical response

of the walking droplet. We machined a cylindrical well of diameter D = 5.5 mm and

depth H = 4.5 mm on the bottom of the elliptical corral (Fig. A-5c) and repeated

the experiment under precisely the same conditions as those in Fig. A-6. Because

iF decreases for increasing liquid depth, the well is essentially generating a spatially

varying memory distribution, and the effective local memory above the well is larger

than elsewhere. Although we ensure that -y < 7F everywhere, drop-induced surface

disturbances are larger in amplitude and more persistent above the well due to the

local diminution of the rate of viscous dissipation. The submerged well can thus be

thought of as playing the role of the impurity in the quantum corral: by encouraging

the emergence of localised high-amplitude perturbations in the underlying wave field

through topographically induced changes in the local memory -Y/1F, it enhances the

resonance of specific cavity modes.

Two distinct configuration are considered: (1) the well is located at the midpoint

of the upper semi-minor axis; (2) the well is placed at the left focus (Fig. A-5d,e).

The position histogram for the first configuration is presented in Fig. A-9a. In this

case, we find that the impurity substantially diminishes the resonance of the dominant

fundamental modes. By comparing Fig. A-9a with Fig. A-6e, we observe a drastic

decrease in the definition of the histogram: only weak traces of the fundamental
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modes are visible, along with localised high-density regions near the well. The latter

indicate that the sub-merged well acts to attract the walker. The presence of the well

also has noticeable effects in the walker's kinetics (Fig. A-9c). Specifically, the speed

map depicts a brighter area at the well's position, indicating that the droplet speed is

higher in the deeper region, as is consistent with drop speed increasing with memory

[39, 92]. The average velocity map also underscores the attractive nature of the well.

The direction of the arrows has changed in the upper half of the corral relative to

the homogeneous corral (Fig. A-9c), indicating that the walker now has a heightened

tendency to move from the centre of the corral towards the well, along the upper semi-

minor axis, then recirculate back towards the extremities of the major axis along the

border of the corral. The mean wave field, now with reinforced horizontal bands in the

centre, is presented in Fig. A-9e. These features can be understood by examining the

associated Faraday wave mode (Fig. A-9g), which cannot be represented by a single

eigenfunction. Placing the well at the midpoint of the semi-minor axis evidently

induces more than one cavity mode. We note that placing the well in a relatively

low-symmetry position, for example on a diagonal, has a similar effect: a relatively

incoherent mixture of cavity modes is induced.

A markedly different response is observed when the well is located at a focus of

the elliptical corral. In this case, the well enhances the resonance of a particular

mode with maxima near the foci. Specifically, the presence of the well results in

the (4,4) mode, found at 70 Hz in the homogeneous corral, becoming resonant at

72 Hz (Fig. A-9h). This topographically induced effect has a drastic impact on the

statistical behaviour of the droplet, which becomes slaved to the new dominant (4,4)

wave mode. As a consequence, the histogram of the droplet presented in Fig. A-9b

shows a markedly stronger signal, in which high-density vertical bands appear to be

projected from focus to focus. The height of the histogram peaks above the foci is the

same for the homogeneous corral (Fig. A-6e), but adding the submerged well at one

focus (Fig. A-9b) causes the overlying peak to be roughly twice that of its counterpart

over the empty focus. The intensified resonance of the (4, 4) mode is also evident in

the mean velocity field (Fig. A-9d), where new preferred paths emerge, including a
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motion along the boundary from the left to the right side of the corral. The mean

wave field (Fig. A-9f) also shows reinforced vertical bands, providing further evidence

of the enhanced weight of the (4,4) mode.

3.3 Discussion

It is constructive to discuss the similarities with and differences between our exper-

imental results and the controlled mode superposition and projection effects arising

in elliptical quantum corrals [94, 871. The most striking difference is the vast dis-

parity in scales between these macroscopic and microscopic systems. In the quan-

tum experiment, the characteristic corral size and electron speed are a - 75A and

u = h/(mAdB) - 2.5 x 105 ms-1, respectively [47], while the equivalent parameters

are a ~ 15 mm and u ~ 9 mms-1 in the walking droplet experiment. The walking

droplet system is a driven dissipative classical system for which the spatial decay rate

of the waves imposes an upper bound on the size of the cavity. Although 84 elec-

trons were bounded within the quantum corral in the experiments of Manoharan et

al. [87], the theoretical modelling of the quantum corrals is based on a single-particle

description [47]. Our experiments demonstrate how a similar behaviour may emerge

from a single-particle hydrodynamic pilot-wave system. Another similarity between

the hydrodynamic and quantum corrals has been brought to light by our study. The

statistics in a topographically homogeneous corral at 72 Hz are prescribed by the

superposition of two fundamental cavity modes. One might thus surmise that this

particular bouncing droplet experiment is essentially a mixed-state system charac-

terised by a two-level Hamiltonian [19].

We have demonstrated striking new similarities between hydro-dynamic and quan-

tum corrals. We have shown that the statistical behaviour of the walker in a homo-

geneous elliptical corral can be described in terms of the superposition of a number

of statistical states, a fundamental feature of quantum mechanics. Furthermore, we

have demonstrated that a localised irregularity in the medium can drastically change

the relative weight of the resonant modes and thus the statistical response of the
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confined droplet. As in the quantum corral experiments [94, 871, we have shown

that the position of the irregularity plays a critical role in the resulting statistical

behaviour. High-symmetry configurations (specifically, with the well at the midpoint

of the semi-minor axis) do not necessarily enhance the resonance of a particular cav-

ity mode. However, when the impurity is placed at a focus, the walker induces a

specific mode with maxima near the foci, leading to drastic changes in the statistical

behaviour, including resonant projection towards the empty focus. Although these

projection effects are directly evident in our hydro-dynamic system, they only become

apparent in quantum corrals by subtracting the standing waves that arise with and

without the impurity [47]. The quantum mirage, a projection effect in the differen-

tial conductance, results directly from the sensitivity of the local conductivity to the

altered statistical response. New challenges posed by our study include the determi-

nation of analogues in the walking droplet system of electric current and differential

conductance in quantum corrals.

In the context of hydrodynamic quantum analogues [14], our study represents a

significant advance. In previous studies, the fluid depth was sufficiently large that

the pilot waves could be described in terms of deep-water waves. Here, we have

demonstrated that hydro- dynamic pilot-wave dynamics is viable in relatively shallow

water, where the lower boundary influences the walking droplet's dynamics without

entirely suppressing the Faraday waves [80]. Variations in topography may thus be

used to generate spatial gradients in memory, effectively allowing for topographically

induced potentials. Finally, we have characterised the mean pilot-wave field within

the corral and demonstrated that its form is equivalent to the position histogram of

the droplet and so also related to the fundamental modes of the cavity. While the

focus of this study has been on effects akin to quantum superposition and projection,

our results motivate consideration of hydrodynamic corrals of different geometries

that will allow for quantitative comparative studies with quantum chaos in corrals

[67] and quantum-mechanical pilot-wave theories [14].
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Chapter 4

Walking Droplets in a Circular

Corral: Quantisation and Chaos

A millimetric liquid droplet may walk across the surface of a vibrating liquid bath

through a resonant interaction with its self-generated wavefield. Such walking droplets,

or 'walkers', have attracted considerable recent interest because they exhibit certain

features previously believed to be exclusive to the microscopic, quantum realm. In

particular, the intricate motion of a walker confined to a closed geometry is known

to give rise to a coherent wave-like statistical behaviour similar to that of electrons

confined to quantum corrals. In this chapter, we examine experimentally the dynam-

ics of a walker inside a circular corral. We first illustrate the emergence of a variety

of stable dynamical states for relatively low vibrational accelerations, which lead to a

double quantisation in angular momentum and orbital radius. We then characterise

the system's transition to chaos for increasing vibrational acceleration and illustrate

the resulting breakdown of the double quantisation. Finally, we discuss the similari-

ties and differences between the dynamics and statistics of a walker inside a circular

corral and that of a walker subject to a simple harmonic potential.
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4.1 Introduction

Yves Couder and co-workers [23, 107] discovered that a small liquid droplet can walk

above the free surface of a vibrating liquid bath, self-propelled via a resonant inter-

action with its own wavefield. Since their discovery more than a decade ago, these

walking droplets have received considerable attention owing to their ability to exhibit

behaviours analogous to those observed in a number of quantum systems (see review

of Bush [14]). The quantum-like behaviour in the walking droplet system typically

emerges as the bath's vibrational acceleration 7 approaches the Faraday threshold

-F, the critical vibrational acceleration above which the fluid bath destabilises into a

field of standing subharmonic waves [88]. A crucial parameter in the walker system is

the so-called 'memory', defined as 'y/-yF, which provides a measure of the proximity

to the Faraday threshold and so the longevity of the waves excited by the bouncing

drop at each impact [391. In the high-memory regime, the waves generated by each

impact are relatively persistent; consequently, the walker's motion is more strongly

influenced by its past.

Harris et al. [65] investigated the motion of a walker confined to a circular cavity,

or 'corral'. They found that at low and intermediate memories (0.82 < y/YF < 0.94),

the walker may display simple periodic trajectories. They focused their study on the

emergence of a wave-like statistical behaviour in the high-memory limit. Specifically,

they found that the seemingly chaotic motion of the drop eventually leads to a prob-

ability distribution related to the most unstable wave mode of the cavity, which is

reminiscent of the probability distribution of a two-dimensional electron gas confined

to a circular quantum corral [25]. Reproducing this robust statistical behaviour with

theoretical models [121, 52, 53, 8] has proven to be challenging, owing largely to the

subtleties of walker-boundary interactions [109].

Sdenz et al. [114] recently considered the dynamics of a walking drop in a relatively

shallow elliptical corral. Owing to the special properties of this geometry, the authors

demonstrated that a localised topographical inhomogeneity inside the corral may lead

to resonant projection effects in the walker's statistics analogous to those observed
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in elliptical quantum corrals [87, 47, 94]. In particular, the authors found that an

inhomogeneity in the corral, in the form of a submerged circular well, may drive

the walker to excite specific elliptical eigenmodes that result in drastic changes in

the particle's statistical behaviour, as do magnetic impurities in the quantum corral.

Finally, they demonstrated the emergence of a coherent mean (time-averaged) wave

field with a form similar to the droplet's position histogram.

While the corral experiments sought to elucidate the statistical behaviour of walk-

ing drops confined by solid boundaries, other investigations have characterised and ra-

tionalised the dynamics of walkers confined by central forces. Perrard et al. 1104, 1031

performed experiments with ferro-fluid suspended within a droplet. By subjecting this

walker to a vertical magnetic field with a radial gradient, they studied the effects of a

confining simple harmonic potential on a walking droplet. The authors reported the

existence of both stable and chaotic trajectories, and the emergence of a double quan-

tisation in orbital radius and angular momentum over a certain span of memories.

Their experiments thus demonstrate a classical analogue of the quantum mechanical

eigenstates of the simple harmonic potential, as are defined in terms of their quantised

energy and angular momentum.

The original experiments by Perrard et al. [104, 1031 have motivated a number of

theoretical developments. Labousse et al. [83] analysed the motion of a walker in an

attractive potential and argued that the horizontal motion may be characterised in

terms of three distinct time scales at high memory, associated with droplet propulsion

on a straight-line, motion along a pivot with a preferred radius of curvatures, and

self-organisation into a global wave structure associated with a periodic or quasi-

periodic orbit. Labousse et al. [82] investigated the stability of the circular orbits

arising at low memory and so rationalised the corresponding quantisation of orbital

radius. Durey et al. [36] developed a relatively sophisticated method to analyse the

drop's trajectory in terms of stable sub-trajectories, which allowed the authors to

demonstrate that the double quantisation of orbital radius and angular momentum

occurs even in the high-memory regime, where the dynamics are dominated by erratic

switching between unstable periodic and quasi-periodic sub-trajectories. Kurianski
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et al. [81] revisited this system theoretically with the stroboscopic model of Oza

et al. [101] and captured a number of periodic, quasi-periodic, and chaotic walker

trajectories, including a number that were not reported experimentally. Kurianski

et al. also demonstrated that a requirement for double quantisation in the simple

harmonic potential system is that the memory time (the characteristic decay time

of the Faraday waves) exceeds the crossing time (the characteristic time taken for

the drop to span its maximum range). Their study concludes with the observation

that the specific details of the double quantisation identified in the hydrodynamic

pilot-wave system are weakly sensitive to the specifics of the wave model used.

A common feature of walker motion in corrals and a simple harmonic potential is

the presence of chaos. Tambasco et al. [125] were the first to characterise theoretically

the onset of chaos in orbital pilot-wave dynamics. The authors considered the dy-

namics of walking droplets acted upon by external forces such as Coriolis, Coulomb,

and linear spring forces. They demonstrated that the route to chaos followed in the

destabilisation of circular orbits depends on the form of the external force. For the

case of Coulomb and Coriolis forces, chaos sets in via a classic period-doubling cas-

cade [105, 92]. In the case of a central harmonic potential, the route to chaos is

reminiscent of the Ruelle-Takens-Newhouse scenario [113, 97].

Gilet developed a discrete theoretical model [52, 53] of walkers in circular corrals

that captures the family of stable circular orbits arising at low memory reported by

Harris et al. [651, as well as chaotic behaviour at higher memory. The transition

to chaos with increasing memory was also characterised in terms of a supercritical

Neimark-Sacker bifurcation. Rahman and Blackmore [110] build upon these model

results for the special case of one-dimensional motion, and demonstrated that both

supercritical and subcritical Neimark-Sacker bifurcations may arise. In the high mem-

ory limit, Gilet's model [52, 53] predicts trajectories with cusps at which the walker

stops then restarts in a different direction. These sharp turning events occur at radii

corresponding to the extrema of the axially symmetric wave eigenmode and so are

separated by approximately half of the Faraday wavelength.

While walking drops in corrals [65, 52, 53, 110, 114] and harmonic potentials

64



[104, 103, 83, 82, 36, 81] are two of the more robust and rich examples of hydrodynamic

quantum analogs, to date these two systems have been treated separately. Thinking

of the circular corral walls as an alternative means of inducing a radial potential on a

walking droplet allows one to place these systems on equal footing. Building upon the

works of Harris et al. [65] and Sdenz et al. [114], we thus revisit the circular corral

experiments to illustrate the emergence of a variety of dynamical states, stable at

low memory and unstable at high, that lead to a double quantisation in the angular

momentum and orbital radius reminiscent of that reported in the simple harmonic

potential [104]. In addition, we characterise the system's transition to chaos with

increasing vibrational acceleration, and discuss the concomitant disappearance of the

double quantisation.

4.2 Experiments

A schematic of the experimental set-up is shown in figure A-10a. A circular corral

made out of acrylic is filled with silicon oil with density p = 950 kg m- 3, viscosity

v = 20.9 cSt, and surface tension o = 20.6 mN m- 1. The bath is mounted on an

optical table and vibrated vertically by an electromagnetic shaker with acceleration

F(t) = y cos(wt), where -y and f = w/27r = 80 Hz are the prescribed maximum

acceleration and frequency, respectively. The circular corral of diameter D = 20.2

mm is filled to a height h = 5.92 0.05 mm such that a very thin liquid film of depth

h, = 0.22 0.03 mm overlays its border, serving as a wave damper. The ratio of the

cavity diameter to the Faraday wavelength is 4.25.

The shaker was connected to the bath by a thin steel rod coupled to a linear

air bearing in order to ensure a spatially uniform vibration to within 0.1% [63]. The

forcing was monitored by two accelerometers, attached to the bath on opposite sides of

the drive shaft, and a closed-loop feedback ensured a constant acceleration amplitude

to within 0.002 g [63]. A droplet of the same silicon oil of diameter d = 0.70 0.01

mm was generated with a piezoelectric droplet-on-demand generator and placed on

the vibrating bath with the help of a removable slide [64]. To ensure that ambient air
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currents did not affect the results, the corral was sealed with a transparent acrylic lid

[108]. The image acquisition was done using a charge-coupled device (CCD) camera

mounted directly above the bath operating at 20 frames per second. The bath was

illuminated with a light-emitting diode (LED) light ring to increase the contrast

between the drop and the black background. The walker's location was extracted

using an in-house particle-tracking algorithm.

For -y just above the Faraday threshold -yF (which depends on f, h, the fluid

properties and cavity size), the bath displays the wave pattern shown in figure A-

10b, corresponding to the most unstable Faraday wave mode of the cavity. This

wave form is visualised using the normal reflection of light from the free surface [34],

measurement of which required a semi-reflective mirror angled at 450 between the

CCD camera and the bath, and a diffuse-light lamp facing the mirror and illuminating

the bath [114]. The same technique was used to compute the instantaneous wave fields

(e.g. figure A-10c,d), the averaging of which yielded the mean wave fields (figure A-

10e,f).

Figure A-10c,d illustrate the instantaneous wave form and the associated droplet

trajectory for two different memory values. At y/yF = 0.91, the droplet follows a

circular orbit centred on the corral (figure A-10c). At 7/7F = 0.99, the motion is

irregular, with many abrupt changes in direction and speed (figure A-10d). The in-

stantaneous wave form generally becomes more complex as the memory is increased.

Figure A-10e,f illustrates the mean wave forms obtained by superposing with equal

weights the instantaneous wave forms over a 15 minute interval [114]. Despite the

drastically different walker behaviour, we note the striking similarity between both

of these wave forms and the most unstable Faraday wave-mode of the cavity (fig-

ure A-10b). The features of the mean wave form become more pronounced at higher

memories, as is consistent with the droplet dynamics being more strongly influenced

by the mean wave field at higher memory [37].

We study the walker's dynamics exclusively for -y < F, so that no waves would

exist in the absence of the droplet. For the range of parameters considered, 7F =

4.732 i 0.004g. We increased the memory of the system from -y/'YF = 0.87 to 0.99
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in steps of Jm/-YF = 0.005. Each experiment was recorded for a period of 5 min.

The characteristic decay time of the subharmonic Faraday waves, or memory time

TM = Td/(I - /-F) ~ 0.1 - 2 s, where Td ~ A2 /(87r 2 V) is the wave decay time in the

absence of vibrational forcing, and AF is the Faraday wavelength as prescribed by the

standard water-wave dispersion relation [14]. The droplet's characteristic orbital or

crossing time T, = D/(2u) ~ 2 - 4 s, where u ~ 4.2 - 5.7 mm s-1 is the characteristic

droplet speed in the range of memory under consideration. We note that these two

timescales are comparable, indicating that we are in the memory-dominated regime

in which the entirety of the bath surface is generally excited at all times [81].

4.2.1 Fundamental Trajectories and Double Quantisation

We proceed by detailing the evolution of the system with increasing memory for

our small corral geometry. In relatively large domains, as -Y is increased beyond the

walking threshold, the stationary bouncing state gives way to rectilinear walking at

a constant speed [23, 107, 92, 93]. In our small circular corral, the onset of motion

is decidedly different. Just above the walking threshold, 7/-yF = 0.85, the droplet

executes rectilinear oscillations of amplitude comparable to its diameter. At slightly

higher memories, specifically 'Y/YF = 0.87 (figure A-Ila), the walker reaches its first

stable trajectory, the centred circle of radius ~ 0.32AF shown in figure A-10c. Pro-

gressively increasing -Y/7YF to 0.90 leads to the continuous expansion of the orbital

radius to a value of - 0.44AF. At -y/ YF = 0.91 the circle begins to wobble and desta-

bilise, with the droplet describing a deformed circular orbit of maximum radial extent

~ 0.7AF (figure A-1lb). The second stable trajectory is reached at -Y/-yF = 0.92, when

the walker describes a centred circular orbit with radius ~ 0.7AF (figure A-11c). We

note that the small and large circular trajectories (figure A-1la,c) roughly coincide,

respectively, with the innermost and second innermost dark rings of the mean wave

field evident in figure A-10e,f. Increasing the memory to y/YF = 0.93 destabilises the

larger circular orbits, leading to wobbling (figure A-iid).

Following the destabilisation of the large orbit, relatively complex trajectories

arise, of the form illustrated in figures A-1le,f,g. As shown by Perrard et al. [104]
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however, one may identify a variety of periodic and quasi-periodic sub-trajectories

embedded within these complex trajectories, henceforth referred to as "fundamental

trajectories", whose form depends on memory. At -y/7F 0.935, we note the emer-

gence of two fundamental trajectories, ovals and lemniscates (figure A-Ile). Further

increasing 1/'YF leads to trefoils (figure A-11f) and papillons (figure A-11g). We note

that in the range -y/YF = 0.935 - 0.95, multiple fundamental orbits may coexist at the

same memory, with the dominant three being lemniscates, trefoils, and papillons. The

orbits of figure A-11 are similar to those reported for walkers in the simple harmonic

potential [104, 36, 81].

At the highest memories considered, _y/YF = 0.98 - 0.99, the droplet displays an

erratic trajectory similar to that shown in figure A-lh, with sudden and seemingly

unpredictable variations in speed. At this memory, the motion is characterised by

trapped states, in which the droplet bounces in the place for a time ranging from 2

to 30 seconds. These trapping locations can be identified in figure A-llh by their

corresponding zero speed. We note that trapped states have also been predicted by

Oza et al. [100] for motion in a rotating frame at high memory and by Tambasco et

al. [126] for walkers above the Faraday threshold. Such wave-induced trapping was

not reported in the experiments of Perrard et al. [104, 103], but was evident in the

numerical models of Gilet [52, 531.

In order to provide a more quantitative description of the fundamental trajectories

arising for '}/YF < 0.95, we define the non-dimensional radial distance from the corral

centre,

R(t) r(t)
AF

and the non-dimensional angular momentum about the centre,

Lt)=r(t) xV(t)
F 0

where r(t) and V(t) are the walker's position and velocity. To be consistent with

Perrard et al. [104], we define V as the walker's speed along the first stable trajectory,

specifically the small circle shown in figure A-11a.
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Figure A-12 shows the time series of R and L, over a complete orbital period

for the lemniscate, trefoil, and papillon fundamental trajectories evident in figure A-

1le,f,g. We note that, while the orbital periods for these 3 fundamental trajectories

are different, the time difference between successive radial maxima is comparable. The

angular momentum of the lemniscate (figure A-12b) displays a pair of positive and

negative peaks of equal magnitude. The angular momenta of the trefoils (figure A-

12d) and the papillons (figure A-12f) have either completely positive or negative

angular momenta. The time between successive extrema of the angular momenta is

approximately the same for lemniscates, trefoils, and papillons, and corresponds to the

time between consecutive radial maxima. This common timescale can be understood

by noting that the basic unit of time is that of a single loop, with the lemniscate

containing 2 loops, the trefoil 3, and the papillon 4.

Following Perrard et al. [104], we characterise the walker's motion by its mean

non-dimensional radial distance to the corral centre, R:

- (R 2 ) 1 r2(t)(
R --- _E k2(4.1)

AF N k=1 F

and its mean non-dimensional angular momentum about the centre, L,:

{L I N k _ Vkt)
L _ 1 x . (4.2) z mAFVO N k1AF YO

where rk(t) and Vk(t) are the walker's position and velocity at the k-th point along

the trajectory, N is the total number of points, and m the droplet mass.

Following the method developed by Durey et al. [36], we analyse the motion

of the droplet in terms of periodic sub-trajectories by segmenting long trajectories

between successive radial maxima. The values of R and Lz for each such segment are

represented by a point in the R - L plane. The next step leverages the use of K-

means clustering to calculate the centroids of the global clusters in the R - Lz space,

in order to highlight the double-quantisation in the chaotic regime. We proceed in a

similar fashion.
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For 0.87 < y/YF < 0.95 (figure A-13a), identifiable clusters representative of

double-quantisation are formed by the fundamental trajectories shown figure A-11.

We note that R generally grows with increasing 7/-yF. While qualitatively similar

to the double-quantisation reported for the simple harmonic potential, there are a

number of notable differences. For the circular corral, the quantisation in R occurs

over the range 0.3-0.9, while that in IL, over the range 0-1.7. By way of comparison,

in the simple harmonic potential, the double-quantisation occurs over the ranges

R = 0.4 - 2.5 and JLJ = 0 - 1.9 [81]. Hence, a radial compression is apparent:

the fundamental orbits arise at lower R. Furthermore, the lemniscates in the circular

corral do not appear in two distinct clusters, resulting in an empty region in the centre

of figure A-13a. Another difference is that the trefoils in the circular corral are defined

by half the value of L, reported for those in the simple harmonic potential. These

differences presumably arise owing to the relatively sharp increase in the wall-induced

effective potential close to the corral's edges.

For 0.95 < -/-F < 0.98, the disappearance of previously identified clusters occurs

as the memory is increased, particularly the clusters corresponding to circles and

ovals. Some remnants of the lemniscate, trefoil, and papillon clusters are apparent

around R = 0.7 for JL2J < 0.5. We notice the emergence of clusters with LZ ~~ 0

having a wide spread in R.

For 0.98 < -Y/yF < 0.99, no noticeable double-quantisation is apparent (figure A-

13b). Most trajectories are characterised by Lz ~ 0, an effect due in part to the

walker being trapped for extended periods, as is evident in figure A-11h. In addition,

the erratic trajectories do not typically execute loops, but instead move along straight

lines. We note the preponderance of trapped states at Lz = 0 and R = 0.7, denoted

by blue circles, indicating the walker's propensity to be trapped [123] at the radius

of the unstable large orbit (figure A-Ilc).

4.2.2 Chaos in the Corral

We proceed by characterising the system's transition to chaos that arises as the mem-

ory is increased progressively, and stable circular orbits give way to more complex
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trajectories. Fourier analysis provides a means of characterising the onset of chaos

using power spectra [46, 45]. A periodic trajectory is defined by a sharply peaked

spectrum at one particular frequency as well as a number of higher harmonics [128].

A quasi-periodic trajectory is defined by a sharply peaked spectrum at multiple irra-

tionally related frequencies as well as a number of higher harmonics [1281. A chaotic

trajectory is characterised by a broad spectral form [128].

In figure A-14, we characterise the evolution with increasing memory of the power

spectral form of the droplet radial position R(t) as the circular orbit of radius Ro = 0.7

destabilises into chaos (see figures A-11c,d). We note that the circular orbits found

in the range -y/'YF = 0.87 - 0.93 are stable. Whatever the droplet's initial position,

it will eventually converge to such a circular orbit. The left column of figure A-14

illustrates the time-series of R(t) - Ro, where Ro is the mean radius. The right column

shows the associated power spectrum. The black circles highlight sharp peaks in the

power spectra. At y/YF = 0.93 the wobbling circles (figure A-14a) give rise to a

power spectrum with one sharp peak (figures A-14b).

Figure A-14c shows the relatively complex time series corresponding to the trajec-

tory in figure A-11g at Y/YF = 0.95. The associated spectrum (figure A-14d) shows

multiple relatively broad peaks. The dominant peak corresponds to the orbital fre-

quency of a droplet performing a loop, which represents half of a lemniscate, a third

of a trefoil, and a quarter of a papillon. The other noticeable peaks are consecutive

integer multiples of this dominant loop frequency. Similar plots are obtained for the

memory range 7/-yF. = 0.935 - 0.95. In this range the walker's motion is charac-

terised by chaotic switching between stable subtrajectories, as was also observed in

the simple harmonic potential by Perrard et al. [104].

Figure A-14e shows the time-series of a droplet at 7y/YF = 0.98 with trapped

states present and no clear periodic structure. The associated frequency spectrum

(figure A-14f) is broad with no distinct peaks. Similar spectral forms arose for larger

memories as y -+ F- Our power spectral analysis shows the transition of our system

from periodic, to quasi-periodic, to chaotic trajectories as the memory is increased

progressively. We note that numerical investigations of the routes to chaos in orbital
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pilot-wave dynamics indicated that the transition to chaos happens over an extremely

narrow range of -y [125]. For example, in the case of a walker in a simple harmonic

potential, the transition arose over a span of AXy = 0.004. Given the limitations in

our experimental precision, a detailed characterisation of the route to chaos in corrals

was thus impractical. Nevertheless, we have traced the evolution from periodic to

quasi-periodic to chaotic trajectories with increasing -y.

Finally, figure A-15 illustrates the chaotic switching between fundamental trajec-

tories observed at intermediate memories, specifically 'y/7F = 0.95. Notice the ap-

pearance of lemniscates, trefoils, and papillons, as may be identified by their signature

time series shown in figure A-12. Multiple switches between precessing fundamen-

tal orbits are a defining feature of the trajectories observed at 'y/-yF = 0.95. This

behaviour is reminiscent of that reported by Perrard et al. [104], who showed that

the chaotic trajectories found experimentally for the simple harmonic potential are

characterised by transitions between unstable periodic orbits.

4.3 Discussion

Our study serves to connect two hydrodynamic quantum analogs previously consid-

ered to be disparate, walker dynamics in a circular corral and in a simple harmonic

potential. Both systems are characterised by periodic and quasi-periodic orbits at

low memory, and complex chaotic trajectories at high memory. Both systems are

characterised by trajectories with preferred radii and angular momenta that lead to

a double-quantisation reminiscent of that arising in the quantum simple harmonic

oscillator. We have highlighted the similarities and differences between the double

quantisation arising here and that reported by Perrard et al. [104], Durey et al. [36],

and Kurianski et al. [81] for walker motion in a simple harmonic potential. The

similarities may be rationalised on the grounds that the corral walls play the role

of a relatively sharp confining potential. However in the high memory regime, the

dynamics in the two system are markedly different: the walker in the corral moves

erratically between trapped states, presumably owing to the interactions between its
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pilot-wave and the boundary walls.

Through their influence on the walker wave field, the corral walls act to repel the

drop from its edges [109]. One thus expects that the influence of the corral boundaries

may be described crudely in terms of a steeply increasing effective radial potential,

with a form lying somewhere between a two-dimensional simple harmonic potential

and an infinite circular step potential.

Finally, we have examined via power spectra analysis the emergence of chaotic

behaviour in our system as the memory is increased progressively. Specifically, we

tracked the evolution from periodic to quasi-periodic to chaotic behaviour. A more

detailed characterisation of the route to chaos would be possible by following an

approach similar to that of Tambasco et al. [125, 124j or by building upon the

theoretical results of Gilet [52, 53] and Rahman and Blackmore [110]. The relation

between routes to chaos in the walker system and the pure Faraday wave system

[18, 71] is also the subject of current interest. We were able to track the evolution from

periodic to quasi-periodic to chaotic behaviour. A more detailed characterisation of

the route to chaos would be possible if one was able to theoretically model the motion

of walkers in circular corrals following an analysis similar to that of Tambasco et al.

[125].
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Chapter 5

Localised hydrodynamic pilot-wave

statistics around a topographical

defect

Impurities on the surface of a metal may modify its transport properties [17] and

lead to the emergence of wavelike statistical patterns in the surrounding electron sea

known as Friedel oscillations 150, 25]. In this chapter, we demonstrate that, despite its

vast difference in scale, a classical hydrodynamic pilot-wave system [14] may exhibit

strikingly similar statistical behaviour. Through experiments and simulations, we

study the wave-mediated interaction between a liquid drop self-propelling on the

surface of a vibrating fluid bath [23] and a submerged circular well, as plays the role

of an impurity, or topographical defect, in the medium. The well induces a self-excited

attractive force that draws the drop inwards along an Archimedean spiral, before it

crosses over the well and departs along a straight radial path. The drop is thus

scattered relative to the incoming direction. Oscillations in the drop speed emerge in

its outgoing trajectory due to the waves induced by the drop's resonant interaction

with the well. By considering an ensemble of particle trajectories, we demonstrate

the emergence of localised wavelike statistics in the otherwise uniform histogram

of the particle position, an effect strongly reminiscent of Friedel oscillations. The

emergent statistical behaviour is rationalised in terms of a wave-mediated interaction
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mechanism, which motivates similar mechanistic explorations of localisation effects

from a particle within disordered media [4] or in particle-particle interactions [74].

5.1 Introduction

Motivated by both fundamental and technological reasons, the role played by defects

on charge-carrier mobility has been one of the most exhaustively studied phenomena

in modern condensed-matter physics [76]. A collection of disordered impurities may

cause an electron to become immobile in a semiconductor through Anderson localisa-

tion [4]. A single magnetic impurity embedded within the electron sea on the surface

of a metal may lead to an increase in the electrical resistivity at low temperatures,

the so-called Kondo effect [78]. A region of localised Mott screening [95] typically

adjoins such an isolated impurity, beyond which decaying Friedel oscillations arise

[50, 25, 77]. By placing an array of such impurities in specific geometrical patterns,

such as circles or ellipses [25, 87], the oscillations may interfere constructively and

display standing-wave patterns in the enclosed electron sea that can be interpreted

in terms of eigenmodes of the bounding cavities [47], or so-called quantum corrals.

Remarkably, wavelike statistics [25] and mode superposition effects [87] similar to

those emerging in quantum corrals have been recently reproduced with a classical

hydrodynamic pilot-wave system [65, 114].

A millimetric liquid drop may self-propel along the surface of a vibrated liquid bath

through a resonant interaction with its own wave field [23, 107]. This coupled wave-

particle object, henceforth termed a Faraday 'walker', extends the range of classical

mechanics to include certain features previously thought to be exclusive to quantum

systems [14]. Quantum-like behaviours have been reported primarily in effectively

'closed' systems, wherein the drop's spatial domain is limited by either applied forces

[49, 38, 103, 37] or solid boundaries [65, 114, 24]. A requirement for the emergence of

quantisation and quantum-like statistics is that the 'memory' time [39], as dictates

the longevity of the drop's guiding or 'pilot' wave field, exceed the time taken for the

drop to cross its domain; thus, the drop continually navigates its self-excited wave
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field. Wavelike statistics emerge in these settings when the drop dynamics becomes

chaotic, and the drop switches between unstable periodic orbital states [15].

The distinction between closed and open systems is also fundamental at the quan-

tum level: 'particle-in-a-box' models [25, 871 may qualitatively rationalise the ob-

served resonance energies of closed structures, but they have no predictive power for

resonance widths or standing-wave patterns in open systems [471. Friedel oscillations

[50, 25, 77], an effectively open phenomenon, result from single electron-impurity

scattering interactions, and are manifest as localised, spatially-decaying, wavelike

modulations in the free electron sea surrounding the atomic impurity. Sufficiently

far from the impurity, the charge carriers are undisturbed by screening effects, and

the electron sea is homogeneous. Here, we combine experiments and simulations to

demonstrate that hydrodynamic pilot-wave dynamics around a topographical defect

may lead to a statistical behaviour analogous to Friedel oscillations. The localised

wavelike statistics are rationalised in terms of a wave-mediated scattering mecha-

nism that is markedly different from that arising in closed hydrodynamic analogs

[65, 114, 49, 38, 103]. Notably, no such interaction mechanism has been elucidated

in the related quantum systems [50, 25, 77], where microscopic impurities are simply

modelled in terms of scattering potentials [471.

5.2 Experiments

We consider the interaction between a walking drop and a topographical defect in

the form of a submerged circular well at the bottom of the vibrating liquid bath

(Fig. A-16a). The plan view and schematic cross section of the bath are shown

in Fig. A-16b,c. The drop and bath are both composed of 20 cSt silicon oil with

density p = 950 kgm- viscosity v = 20.9 cSt and surface tension o- = 20.6 mN m-.

The bath is vibrated vertically with an electromagnetic shaker operating at forcing

acceleration F(t) = cos(2rft), where f = 70 Hz is the prescribed oscillation frequency.

A spatially uniform vibration with an acceleration amplitude -y that is constant to

within t0.002g, where g is the gravitational acceleration, is achieved by using the
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vibrating setup detailed elsewhere [63]. We define the Faraday threshold -YF as the

critical vibrational acceleration above which a standing field of Faraday waves [43] is

excited in the vicinity of the well. In all experiments, -y < -yF, so no waves exist in the

absence of the drop. The bath depth beyond the well h = 1.6 t 0.03 mm is chosen as

to ensure that the walker responds to variations in bottom topography [114]. The well

diameter D = 13 0.1 mm is chosen so that the Faraday waves emerging at threshold

Y = KF are concentric (Fig. 3c). The well depth H = 6.2 0.03 mm is sufficiently

large with respect to the Faraday wavenumber kF that the well corresponds to the

so-called deep-fluid regime, i.e. tanh kFH ~ 1.

The experiment is performed at a forcing acceleration -y/'YF = 0.990, where

-yF ~ 3.820g. Notably, -F < -yF < 7, where -y ~ 3.325g and yh ~ 4.050g are

the Faraday thresholds of uniform baths of depth H, and h, respectively. Decaying

monochromatic Faraday waves with wavelength AF = 27/kF, prescribed by the stan-

dard capillary-gravity dispersion relation w4 = (gkF + oki/p) tanh kF, are excited

by the impacting drop, where WF = wrf is the Faraday frequency. Note that the Fara-

day wavelengths corresponding to the shallow A = 5.19 mm and deep AH = 5.27

mm regions are only marginally different. The wave-induced lateral force on the drop

is F(xp, t) - mgVqj,=x, where m is the drop mass and VT1x=x, the surface height

gradient evaluated at the point of impact x,(t) [107, 93]. The waves decay exponen-

tially - e-t/TMwith a characteristic timescale TM = Td/(1 - 'Y/'YF), as dictates the

memory time of the system [39]. Here, Td is the local wave decay time in the absence

of vibration [39, 93], and -F the local Faraday threshold. Owing to its influence on

both the Faraday threshold and wave-decay rate, the well may be seen to act as a

region of high excitability.

A drop with radius R = 0.39 0.01 mm is created using an on-demand piezoelectric

drop generator [64]. The resulting walker motion is characterised by the synchronous

(2, 1) walking mode [132] in both the deep and shallow regions. In the absence of

the well and boundary interactions, the drop executes rectilinear motion at the free-

walking speed vo = 7.1 mm s-'. A submerged star-shaped wave damper around the

border of the bath serves as a passive launcher that continuously redirects the drop
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towards the well (Fig. A-16b). The liquid height above the damper is 0.2 0.1 mm.

The distance between the region of interest around the well and the innermost part

of the launcher is sufficiently large (~ 64) that boundary effects play a negligible

role on the walker-well interactions. The time that the drop takes to revisit the well,

typically ~ 50 20 s, is much longer than the relevant memory time TM ~ 2.5 s;

thus, only memory effects related to the current interaction are significant. The bath

is sealed with a transparent acrylic lid to shield the system from air currents. The

walker motion is recorded from above with a CCD camera at 20 frames per second and

tracked with an in-house particle-tracking algorithm. The wave field (Fig. A-19a) is

visualised by placing a semi-reflective mirror at 45 0 between the camera and the bath,

and lighting horizontally with a diffuse-light lamp. Bright regions then correspond to

horizontal portions of the surface, dark regions to areas of large slope [34].

A total of six hours of experimental data was recorded, acquired in one-hour in-

tervals to minimise temperature-induced drifts in 7F, which were limited to t0.01g.

Fig. A-16d shows the walker trajectories in the vicinity of the submerged well. Ini-

tially, the drop approaches the well along a straight path with some offset relative to

the well centre, the so-called impact parameter yi. The drop then spirals in towards

the well as if acted upon by an attractive force. After passing through the well, the

drop departs radially along a rectilinear path off set by an angle a relative to its

incident path, henceforth the scattering angle. The walker accelerates significantly

when passing above the well due to the local generation of relatively high-amplitude

waves; however its vertical motion is largely unaffected. A total of 449 trajectories

were collected, the superposition of which reveals a striking pattern of evenly-spaced,

concentric speed modulations (Fig. A-16d-iv). Before discussing the statistical impli-

cations of such a spatially-dependent speed distribution, we rationalise its origins by

examining the drop trajectories in greater detail.

The experimental trajectories are characterised in terms of y, and a in Fig. A-16e.

The well evidently acts as a scatterer. In order to explore further such walker-well

interactions (as are limited experimentally by the finite bath size), we complement

our experiments with simulations based on the quasi-potential model of Faria [44],
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according to which the influence of step-wise variable bottom topography is captured

through its effect on the local wave speed (See the Appendix B for a detailed descrip-

tion of the model and associated numerics). In all the simulations presented, a uniform

distribution of impact parameters yi is considered, with resolution 6yi/Ah = 0.25. The

resulting trajectories (Fig. A-16f) are virtually identical to those arising in our ex-

periments. Fig. A-16g shows the relation between yi and a in both the experiment

and simulations. Excellent quantitative agreement is observed. The simulations fur-

ther demonstrate that the well-induced attraction is spatially limited: a increases

monotonically with yi, up to a critical tethering length yT beyond which the walker

is not drawn into the well (Fig. A-16g). We use the simulations to examine the in-

fluence of -y/1F, and drop size 0.353 < R < 0.425 mm, the latter correspond to drop

speeds in the range 0.024 < vo 5 0.055 at -y/F = 0.990 (see Appendix B, Numerical

Simulations section). For a given PY/YF, smaller (slower) drops lead to larger yT and

a. For a given drop speed, decreasing -/yF reduces YT but a is virtually unaffected

(Fig. A-16g).

By rotating clockwise the walker trajectories (Fig. A-16f) by their corresponding

scattering angles a, all collapse onto an Archimedean spiral, of the form r = a +

bO (Fig. A-17a). Note the nearly linear relationship in r(6) (Fig. A-17b) and the

satisfactory fit to a pure Archimedean spiral (Fig. A-17c). The impact parameter yi

determines when the walker locks onto the spiral. The spiral slope b = dr/dO, which

along with yi determines the scattering angle a - yi/b, is largely unaffected by 7Y/YF

but decreases in magnitude with increasing drop speed vo (Fig. A-17b). An expression

for the effective well-induced force on the drop during the incoming phase may then

be inferred [60]. Using the spiral parametric equation r(6) with constant the speed

v, as is the case for r > 2 .5AF (Fig. A-17b), one may substitute into mdv/dt = F" to

deduce (see Appendix B, Effective Force section) the effective well-induced force F.,

Fw = m 1+ 2 x v (5.1)

where 0 = (vo/r)67 is the instantaneous angular velocity of the drop around the
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well centre and 6, the vertical unit vector. Note that F, is a lift force, orthogonal to

the direction of drop motion. Our experiments indicate that this effective well-induced

force may be tuned through the outer fluid depth h. Specifically, decreasing h may

lead to trapped states in which the drop is unable to escape the well (Fig. A-17d), as

are known to arise for y > 'YF [123, 126, 1241.

We now turn our attention to the walker's statistical behaviour in the vicinity of

the well (Fig. A-16d-iv). We split the trajectories at their point of nearest approach to

the well centre into incoming (Fig. A-18a) and outgoing (Fig. A-18b) phases. While

the speed along the incoming spiral phase is constant and equal to vo beyond the well

(Fig. A-18a), the straight outgoing trajectories display speed oscillations (Fig. A-18b).

These outgoing speed modulations are also evident in the simulations (Fig. A-18d,e).

Comparing the speed pattern (Fig. A-18b) with the Faraday wave mode of the well

(Fig. A-18c) reveals their spatial correlation; specifically, the wavelength of the speed

modulations is AF. Note that these speed modulations are not the result of the walker

moving over externally imposed Faraday waves; rather, they reflect self-excited wave-

mediated forces generated by the resonant interaction between the walker and the well.

Figs. A-18f,g demonstrate that, for a given drop, the instantaneous speed data v(r)

for all the trajectories collapses onto the same curve, indicating the insensitivity of the

statistical behaviour to the initial conditions. Note that the relative amplitude of the

speed modulations increases for smaller drops. Fig. A-18d-e shows the trajectories

for the smallest drop simulated (previously shown in Fig. A-16f), in which speed

oscillations are enhanced relative to the experiments.

The localised wavelike statistical behaviour in the vicinity of the well is most

clearly manifest in the histogram of the walker position. The data shown in Fig. A-

18f,g results in the position histograms presented in Fig. A-18h-i. The statistical

modulations, only evident in the histograms of the outgoing phase (Fig. A-18i), have

the same spacing, AF, as the speed oscillations but are out of phase. Speed minima

thus correspond to peaks in the histogram. The relative size of the statistical modula-

tions is thus prescribed by the amplitude of the speed oscillations; hence, slower drops

have more pronounced statistical modulations. The different decay rates apparent in
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Fig. A-18h are simply the result of the well having a larger range of influence on

smaller drops. A 2D rendering of the experimental and simulated histograms is pre-

sented in Fig. A-18j-k, which bears a striking resemblance to the Friedel oscillations

around a magnetic impurity [50, 25, 77]. Moreover, we note that the amplitude of the

walker's histogram modulations, relative to the histogram height at the centre of the

well, is - 0.8% (Fig. A-18k), comparable to that in the quantum experiment, - 1.5%

[25].

Having described the scattering and statistical behaviour emerging from the wave-

mediated drop-well interaction, our hydrodynamic system allows us to take a step

further and detail the underlying mechanisms. We thus examine the wave field 77(x, t)

through which the drop interacts with the well (Fig. A-19a,b). Of particular interest

is the well-induced, or 'anomalous', wave field ((x, t) = T - i (Fig. A-19c), which

is obtained by subtracting from the simulated wave field q (x, t) (Fig. A-19b) that of

the same drop following the same path in the absence of the well r(x, t) (as may be

computed via simulation).

The scattering properties of the well are related to the emergence of a beam-like

[90] structure in the anomalous wave field during the incoming phase (Fig. A-19c-

ii). This beam, whose origin lies in the resonant reflection of subharmonic waves

between regions of different depth, spans the drop and the well, rotating around the

well while sliding in the radial direction. Note that the drop is always in one of the

beam troughs, which is consistent with the constancy of the drop speed during the

incoming phase. Decreasing -y/-yF reduces the tethering length YT by reducing the

characteristic extent of the wave field [93]. The dependence of the scattering angle on

drop size (Fig. A-16g) may be rationalised in terms of the fundamental wave slopes

at the drop position as a - y/b - yj(dO/dr) (yc/r)(vo/vr) ~ VOT/V. By noting

the negligible contribution to the azimuthal gradient from the well-induced wave field

Voe >> Vo(, one may readily show that a - Voi/V. Moreover, vo is proportional

to Voi, from which it follows that faster drops scatter more.

The mechanism responsible for the localised wavelike statistics is rooted in the

enhanced (up to 30% in amplitude) concentric waves resonantly excited when the
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drop crosses over the well (Fig. A-19c-iii). These resonant waves are spatially fixed

and have a decay time TH - 2.5 s signiffcantly larger than that of the waves in

the shallow region Th - 0.6 s, and also larger than the characteristic crossing time

AF/VO 0.7 s. The speed oscillations described in Fig. 3 are thus the result of the

drop navigating this relatively persistent localised wave pattern as it exits the well

(Fig. A-19c-iv,v). A 3D visualisation of the anomalous wave field is presented Fig. A-

19d-f, including the complete time series of the perturbation at the drop location.

5.3 Discussion

The differences between the quantum [50, 25, 77, 87] and hydrodynamic [14] systems

are vast: the typical defect size and particle speed in the macroscopic experiment

are - 108 larger and - 10' slower than those in their microscopic counterpart. Nev-

ertheless, we have demonstrated striking similarities. We have shown that a self-

propelling walking drop interacting with a submerged well, a topographical defect in

the medium, may lead to particle scattering and localised wavelike statistics. These

two effects may be rationalised in terms of the markedly distinct dynamics arising

as the particle approaches, and exits the well. The scattering angle is set during the

incoming trajectory, in which the drop is deviated by a wave-mediated lift force in-

duced by the well. While distant walkers are only weakly deviated, those sufficiently

close are drawn into the well along an Archimedean spiral. The scattering mecha-

nism is related to the emergence of a shifting beam-like wave perturbation between

the drop and well. The drop speed along the incoming spiral trajectory is virtually

constant; consequently, this phase does not contribute to the emergent wavelike statis-

tics. As the walking drop crosses the well, it resonates with the wave-mode of the

well, generating a standing wave field. These well-centred waves persist as the walker

exits the well, leading to modulations in the drop speed responsible for the axially

symmetric statistical signature. Our hydrodynamic pilot-wave system thus displays

localised wavelike statistics strongly reminiscent of Friedel oscillations [50, 25, 77].

The decaying oscillations have half the Fermi wavelength in the quantum system,
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and the Faraday wavelength AF in the hydrodynamic system, as corresponds to the

wavelength of the drop's pilot wave.

The wavelike statistics reported here are fundamentally different from those pre-

viously observed in hydrodynamic corrals [65, 114]. The undulating statistical be-

haviour revealed in this study is localised to a finite region within an otherwise ef-

fectively open domain. Conversely, the wavelike statistics in corrals span the entire

cavity, a closed domain. The underlying mechanisms are also markedly different.

While the mechanism responsible for the emergence of quantum-like statistics in cor-

rals is not yet entirely clear, it is thought to require chaotic pilot-wave dynamics

rooted in the complex drop-wave-boundary interactions. Our study provides a clear

mechanism for the emergent statistical behaviour: the oscillatory pattern emerges

from speed modulations associated with the anomalously large waves excited due to

a resonant interaction between the drop and the well, which acts as a localised re-

gion of high excitability. Our investigation thus demonstrates that chaos is not an

indispensable ingredient for the emergence of wavelike statistics from hydrodynamic

pilot-wave dynamics. In the context of hydrodynamic quantum analogs [14], our

study constitutes an open system displaying wavelike statistical behaviour, thereby

providing an alternative route for emergent quantum like behaviour in classical sys-

tems [65, 114, 49, 38, 103, 37, 24].

More broadly, our work has elucidated a wave-mediated interaction mechanism

between a classical pilot-wave system and a topographical defect that gives rise to a

modulated statistical signature surprisingly similar to that of an electron sea inter-

acting with an atomic impurity [50, 25, 77]. An equivalent mechanism is unknown

in the counterpart quantum system, where impurities are modelled as effective scat-

tering potentials [47]. This work thus invites further mechanistic investigations and

interpretations of other wave-mediated phenomena dealing with carrier mobility, such

as localisation effects resulting from particle-impurity interactions within a collection

of disordered defects [4] or particle-particle interactions such as those involved in

metal-insulator transitions [74, 95].
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Chapter 6

The walkers in a circular corral

In this chapter, we present the results of an experimental study of the dynamics and

statistics of a walking droplet inside a circular bath, thereby deepening the connec-

tions between our system and quantum corrals. Particular attention is given to mea-

suring the walker's instantaneous wave field using the free-surface synthetic Schlieren

(FSSS) technique developed by Moisy et al. [91]. First, we measure the mean wave

fields associated with the fundamental trajectories in the circular corral reported in

chapter 4, noting their resemblance to the eigenstates of a quantum particle in a cir-

cular domain. Next, the influence of the of liquid height at the boundary of the cavity

on its most unstable Faraday modes are investigated. We then present a technique

for decomposing the wave field generated by a walking droplet into the normal modes

of the cavity. This allows us to demonstrate that, just below the Faraday thresh-

old, the instantaneous walker wave field is primarily characterised by two dominant

modes, reminiscent of a two-level quantum system [19]. The first direct measurement

of the system's mean wave field [114] is reported, and found to resemble the corral's

most unstable Faraday mode. Our measurement of the mean wave field allows us to

provide the first experimental test of a recently derived theoretical result [37] linking

the mean wave field to the histogram of the drop's position. The main dynamical

and statistical timescales associated with the motion of confined walking droplets

are characterised and the effects of the droplet's bouncing phase on the emergent

statistics discussed. Finally, we discuss a new dynamical mechanism for the emergent
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statistics in the circular corral, rooted in modulations in the droplet speed along its

path.

6.1 Introduction

The quantisation of orbits is prevalent in closed hydrodynamic quantum analogues

owing to the dynamic constraint imposed on the droplet by its monochromatic wave

field [81, 24]. Quantised orbits were first reported in experiments with a rotating

bath as an analog of Landau levels [49, 62, 100, 102J. Droplets confined by a simple

harmonic potential may lead to double quantisation in orbital radius and angular

momentum, resembling the quantum eigenstates of quantum particles moving in the

same potential [104, 103, 82, 36, 811.

A particularly robust hydrodynamic quantum analog has been drawn between

droplets walking in confined geometries and electrons in quantum corrals, the details

of which were discussed in chapter 2. At relatively low memories, periodic and quasi-

periodic orbits arose [65]. At high memory Harris et al. [65] found that a coherent

wavelike statistical behaviour, reminiscent of that of electrons in quantum corrals,

emerges from the chaotic motion of walkers in a circular corral. The droplet's speed

map showed concentric circular modulations with wavelength AF/2. The authors

inferred that the histogram of the particle's location is related to the dominant Fara-

day mode of the cavity. The average speed map of the droplet showed that peaks

in the histogram correspond to regions of lower speed. Harris et al. [65] proposed

a dynamical mechanism for the emergent statistics in terms of chaotic switching be-

tween unstable periodic orbits, similar to that at play in orbital pilot-wave dynamics

[49, 62, 100, 102, 104, 103, 36, 81].

Saenz et al. 1114] extended the study of Harris et al. [65] to the case of elliptical

corrals. By averaging over grey-scale images (normal reflection of light) of the instan-

taneous droplet wave field, they obtained a qualitative measure of the form of the

cavity's mean wave field. They demonstrated that this mean could be represented as

the superposition of two dominant cavity modes; the most unstable Faraday mode
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of the cavity and another mode arising at a slightly lower driving frequency. The

weights in the superposition vary transiently: the wave field is generally a complex

superposition of modes but in some instances resembles one of the two dominant

Faraday modes. Finally, Saienz et al. observed that the walker's position histogram is

more strongly correlated with the mean wave field than with the dominant Faraday

mode of the corral.

Cristea-Platon et al. [24] extended the work of Harris et al. [65], by investigating

the dynamics of a walker inside a circular corral at relatively low memory. They

reported a variety of stable dynamical states. The observed trajectories exhibited

a double quantisation in angular momentum and orbital radius, reminiscent of that

arising for walker motion in a harmonic potential [104]. In section 6.2.1 we calculate

the mean wave fields associated with these periodic orbits.

Despite several attempts [121, 52, 53], a conclusive theoretical demonstration of

the robust statistical behaviour of walkers inside corrals remains a challenge, owing

in part to uncertainties in the outer boundary conditions [35]. The theoretical model

of the hydrodynamic corral by Gilet [53] assumed Neumann boundary conditions.

However, Blanchette [8] argued in favour of Dirichlet boundary conditions. Harris

et al. [65] and Sienz et al. 1114] also assumed Dirichlet conditions in interpreting

their experimental results. The influence of boundary conditions, specifically the

outer layer depth, on the most unstable Faraday mode of a circular corral will be

considered in section 6.2.2.

We proceed by revisiting the original experimental setup of Harris et al. [65]

through quantitative measurement of the walker wave field. We perform the mode

decomposition of the walker's instantaneous wave field in section 6.2.3. In section

6.2.4, we compute the mean wave field and evaluate the rate of convergence to this

mean. The statistics of the droplet motion and their dependence on bouncing phase

are explored in section 6.2.5. We provide the first experimental test of the convolution

wave field result of Durey et al. [37] in section 6.2.6. In section 6.2.7, the mechanism

responsible for the emergent quantum-like statistics is discussed.
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6.2 Experiments

A schematic of the experimental set-up is shown in figure A-20. An acrylic circular

cavity of diameter D = 20.2 mm and depth H = 5.90 0.05 mm is filled with 20 cSt

silicon oil with density p = 950 kg m-3, viscosity v 20.9 cSt, and surface tension

a = 20.6 mN m-. A thin liquid film of depth h = 0.22 0.03 mm overlays the

border of the cavity, acting as a wave damper [34]. The bath is vibrated vertically

by a shaker with acceleration F(t) = -ycos(wt), where 7 and f = w/27r are the

prescribed maximum acceleration and frequency, respectively. The experimental set-

up is detailed in Harris et al. 1631.

For all our experiments involving walkers, a droplet of the same silicon oil of

diameter d = 0.69 0.01 mm was generated with a piezoelectric droplet-on-demand

generator and placed on the vibrating bath with the help of a removable slide [64].

The droplet's position was acquired at 20 fps using a charge-coupled device (CCD)

camera mounted directly above the bath in conjunction with an in-house particle

location tracking algorithm [114]. To measure the wave field, we employed the free-

surface synthetic Schlieren technique (FSSS), developed 'by Moisy et al. [91] and

previously used by Eddi et al. [39] and Damiano et al. [29] to measure the surface

deformations generated by a bouncer and a walker. The image acquisition was done

at 19 frames per second with the same CCD camera arrangement.

6.2.1 Fundamental trajectories and their mean wave fields

We first compute the wave fields associated with the periodic trajectories reported

by Harris et al. [65] and Cristea-Platon et al. [24]. The vibrational frequency was

set to f = 80 Hz. The resulting Faraday threshold was -F = 4.732 0.004 9. Figure

A-21a-e illustrates the periodic and weakly aperiodic droplet trajectories considered.

We employed two different wave imaging techniques. The first is the qualitative

grey-scale method (figure A-21f-j) developed by Douady [34] and employed by Sdenz

et al. [114]. The second (figure A-21k-o) is the FSSS [911, which yields a direct

quantitative measurement of the wave amplitude throughout the corral [29]. Using
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both methods, we compute the mean wave fields by averaging over one period of the

periodic trajectories.

The circular trajectories in figures A-21a,b have associated azimuthally symmetric

mean wave fields (figures A-21f,g,k,l). Different orbital radii may lead to the mean

wave fields being out of phase with one another, as evident in figures A-21k,l. The

dark centre in figure A-21f indicates that the instantaneous wave field of the droplet

executing a small circle displays a node at the origin, as was reported for walker

motion in the harmonic potential [104]. The mean wave fields evident in figures

A-21h,i,j display different rotational symmetries of order 2, 3, and 4, mirroring the

symmetries in the lemniscate, trefoil, and papillon respectively (figures A-21c,d,e).

These wave fields resemble the eigenstates of a particle in a quantum circular domain

and their radial and azimuthal modulations suggests similar quantisations to the

radial and azimuthal quantum numbers [19].

6.2.2 Influence of the outer depth h on Faraday wave modes

Following the treatment of Benjamin and Ursell [7], the amplitude of the Faraday

patterns in a circular corral can be expanded in terms of the complete orthogonal set

of eigenfunctions umn. These eigenfunctions are the solutions to the two-dimensional

Helmholtz equation in polar coordinates (r, 0):

+ + + A2 ) = 0 (6.1)Or2 r Or r2 002

for 0 < r < a, 0 < 0 < 27r, where a is the radius of the circular corral. A solution to

the above equation, with Dirichlet boundary conditions, u = 0, at the corral edges,

r = a, can be obtained via separation of variables:

Umn(r, 0) = Jm(Amnr) (A cos(mO) + B sin(mO)) (6.2)

where m E N, n? E N*, Jm is the Bessel function of the first kind, Amn is the n-th

positive root of Jm divided by a, and A and B are constants. These circular cavity
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modes provide the basis for the wave modes observed in our experiments.

We proceed by exploring the effect of outer boundary conditions on the Faraday

modes for an aluminium circular corral of diameter D = 2a = 28.5 mm and depth

H = 6.28 0.03 mm. The dominant Faraday instabilities, at _Y = _YF, are illustrated

in figures A-22 and A-23 for the shaker frequency of f = 65 Hz and 70 Hz for three

values of the thin outer liquid film depth, h = 0.05, 0.50, 1.00 0.03 mm.

Our results demonstrate that the Faraday patterns emerging at f = 65 Hz and

f = 70 Hz converge to the Dirichlet modes (3,6) and (6,0), respectively, as the liquid

height h decreases. For the smallest liquid depth considered, h = 0.05 mm, shown

in figures A-22c and A-23c, we notice a good agreement with the modes given by eq.

(6.2) and illustrated in columns d. A comparison of the radial wave profiles in figure

A-23 is shown in figure A-24. The differences arise from the Faraday pattern appearing

stretched in the radial direction and having a smaller rate of amplitude decay, relative

to the analytical solution. The possible reason for this disagreement is the deviation

from Dirichlet boundary conditions at the outer-'beach', although Neumann boundary

conditions do not lead to a better agreement (see figure A-24).We note that while the

boundary conditions significantly influence the Faraday mode present at 65 Hz (see

figure A-22), they appear to have limited effect on the azimuthally symmetric mode

occurring at 70 Hz (see figures A-23 and A-24).

6.2.3 Wave decomposition in the circular corral

We next compute the instantaneous pilot wave field and decompose it into the cavity's

normal modes. The thickness of the outer depth was set to h = 0.22 0.03 mm, the

corral's diameter D = 28.5 mm, and the driving frequency f = 70 Hz. For the

range of parameters considered, -yF = 3.875 0.004 g and AF = 5.275 mm. We

focus on the high-memory regime, -y/YF - 0.995. The system is then effectively

closed as the 'memory' time TM - 3.5 s, exceeds the droplet's characteristic crossing

time Tc = D/2u ~ 1.7 s, where u - 8mm s-1 is the characteristic speed of the

droplet. The instantaneous wave field as well as the particle's position are recorded.

In figure A-25a, the droplet's recent trajectory is overlaid on the instantaneous wave
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field. Note that the instantaneous wave field is markedly different from both the

distinct horseshoe shape arising for a free walker [391 and from the circular corral's

most unstable Faraday mode, whose form is evident in figure A-23c. Furthermore,

the droplet motion is highly irregular, as is characteristic of the high-memory regime

[65, 114, 241.

We developed an in-house mode-decomposition algorithm in order to determine

the underlying mode superposition associated with the recorded wave field. The

instantaneous wave field, 71(r, 0), is decomposed into a weighted sum of the terms like

those in eq. (6.2), with the individual weights given by the inner product:

Wmn = j j q (r, 6)Umn(r, 0) dr dO (6.3)

where Wmn is the weight of mode mn. The 5 dominant modes of the instantaneous

wave field shown in figure A-25a are plotted in figure A-25b. As the instantaneous

wave field is relatively complex, the significance of multiple modes is expected.

As did Sdenz et al. [114], we notice that the instantaneous wave fields can some-

times resemble a single cavity mode. We illustrate such occurrences in figures A-26

and A-27. Figure A-26a shows an instantaneous wave field resembling the corral's

most unstable Faraday mode (see figure A-23c) as well as the azimuthally symmet-

ric mode (6, 0) (see figure A-26b). Figure A-27a depicts an instantaneous wave field

arising in the same experiment that is well approximated by the non-azimuthally

symmetric mode (5, 2) (see figure A-27b). More generally, several modes contribute

to the instantaneous pilot-wave field.

We recorded 36,000 instantaneous wave fields, resulting from the droplet's chaotic

trajectories, and decomposed them into their dominant modes. The resulted distri-

bution of the cavity-modes obtained is indicated by the blue histogram in figure A-28.

The mode number represents the order index of modes with increasing eigenvalue.

Notice the dominant peak at the azimuthally symmetric mode (6, 0) and the sec-

ondary peak at the non-azimuthally symmetric mode (5, 2). This suggests that the

droplet's motion is dominated by two underlying cavity modes, with time dependent
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weights. Furthermore, the (6, 0) mode resembles the mean wave fields of the circular

trajectories (see figure A-21k,l), while the (5, 2) mode evokes a superposition of the

mean wave fields of the trefoils and papillons (see figure A-21n,o). These observa-

tions align with the mechanism originally proposed by Harris et al. [65], that the

wave-like statistical pattern in the corral reflects the intermittent switching between

fundamental trajectories.

6.2.4 The mean wave field

We obtain the evolution of the mean wave field by computing a running average of

the strobed FSSS-inferred instantaneous wave field (see figure A-29). Figure A-29a

shows that after 5 minutes, a central maximum becomes apparent. The concentric

rings begin to appear after 15 minutes (see figure A-29b) and azimuthal asymmetries

are diminished after 25 minutes (see figure A-29c). A well-defined mean wave field

is revealed after 30 minutes (see figure A-29d) and its features are strikingly similar

to those of the cavity's Faraday mode, shown in figure A-23c. We note that the

mean wave field converges with time, the exponential decay time being ~ 150 TM,

as can be seen in figure A-29e,f,g,h, with its radial profile displaying, as expected, a

decrease in exponential decay time, ~ 80 TM (see figure A-29i). We conclude that

the convergence time of the mean wave field is 30 minutes - 500 TM.

The azimuthal symmetry of the mean wave field is also apparent in the corre-

sponding mode-decomposition distribution, illustrated by the red histogram in figure

A-28. Notice that while the (6, 0) mode is once again evident, the non-azimuthally

symmetric mode (5, 2) is absent. The rotational symmetry of the circular corral ev-

idently leads to the destructive interference of non-azimuthally symmetric modes.

This mechanism elucidates the resemblance of the mean wave mode to the corral's

most unstable Faraday mode, both here and in the original corral experiments of

Harris et al. [65].
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6.2.5 Droplet statistics

We proceed by evaluating the rate of convergence of the walker position histogram

and average speed map. Figures A-30a and A-31a show that after 5 minutes, no

clear patterns can be distinguished in either. Central features become apparent af-

ter 30 minutes (see figures A-30b and A-31b) and pronounced concentric rings occur

after 60 minutes (see figures A-30c and A-31c). Azimuthal asymmetries are further

diminished after 180 minutes when a converged position histogram and associated

speed map emerge (see figures A-30d and A-31d). The statistical convergence is vi-

sually manifested via the decreasing amplitude of difference plots shown in figures

A-30e,f,g,h and A-31e,f,g,h, respectively. As expected, the radial profiles of the his-

togram and average speed map show a decrease in exponential decay time, - 220

TM and ~ 450 TM, respectively, compared to their two-dimensional representations,

~ 310 TM and ~ 530 TM, respectively, (see figures A-30i and A-31i, respectively).

We thus obtain the statistical steady-state convergence time in the circular corral to

be 180 minutes, ~ 3000 TM, an order of magnitude larger than the convergence time

of the mean wave field. We point out that Harris et al. [65] computed the walker

position histogram over only 30 minutes, - 500 TM, while Sienz et al. [114] used 210

minutes, - 3600 TM, and this study used 195 minutes, - 3300 TM.

The effects of variability in the walker bouncing phase complicate our theoretical

understanding of the hydrodynamic corral [35]. The presence of two-mode droplet

statistics observed by Sdenz et al. [114] suggests that the impact phase of the droplet

relative to the liquid's surface might be selectively exciting an in- or out-of-phase

wave field (see figure A-32). This indicates the possibility of the walker's motion

giving rise to two very different statistics depending on the wave field's phase at the

time of impact. In the high-memory regime, 7/_YF = 0.995, we observed an even

split, 44 - 56%, in the distribution of the droplet's impact phase, with phase changes

occurring on average every 7 seconds, - 2 TM. However, the two phase-differentiated

position histograms were indistinguishable from that reported in figure A-30d.

Just above the Faraday threshold, the corral's background wave field is exter-
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nally imposed and so might potentially alter the particle statistics. Nevertheless, the

statistics of the corralled walker at Y/YF = 1.004 (see figure A-33), showed minimal

differences from those observed at '/7YF = 0.995 and were similarly independent of the

droplet's bouncing phase. Further increasing the memory above -Y/YF =1.004 led to

the liquid inside the corral spilling onto the outer-'beach', precluding the convergence

to a statistically steady state.

6.2.6 Relation between the particle histogram and the mean

wave field

Durey et al. [37] proved that, for infinite domains, the mean wave field created by

a walking droplet is equal to the convolution between the wave field of a stationary

bouncing droplet, B(r), and the statistical histogram of the droplet position, 7(r, 0).

The convolution wave field, C(r, 0), is prescribed by:

C(r, 6) = B(r) * N(r, 0) (6.4)

We here test relation (6.4) in a circular domain. The bouncer wave field (see figure

A-34a) used in the convolution (6.4) has an analytical form [201:

B(r)= AJo(kFr) 1 + (K 1 (kFr) kFr - 1) e(kFr)-2 (6.5)

where A = 1.65 mm, kF = 1.19 mm 1, = 1.36 x 10-4, Jo is the Bessel function of

the first kind of order zero and K1 is a spatial damping function [20].

Figure A-34b illustrates the radial dependence of the droplet's position histogram

and in figure A-35 we compare the convolution wave field to the mean wave field. We

obtain a fair agreement between the two wave fields throughout the corral, despite

our geometry being closed. We expect discrepancies near the boundaries because

the corral is not an infinite domain and the boundaries will lead to the bouncer

wave field being dependent on the droplet's location, B(r, 0), and damped near the

outer boundaries. The agreement could be improved by using the more sophisticated
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version of Durey et al.'s result that accounts for the corral boundary conditions [35].

6.2.7 A dynamical mechanism for the emergent statistics

Speed modulations occurring along the particle's trajectory were recently found to

be significant in understanding the hydrodynamic analogue of Friedel oscillations

[115]. They are also apparent in our corral experiments, and may play a key role in

the form of the emergent statistics. Figure A-36 shows the trajectory of the walker

colour-coded according to speed, for time intervals of increasing duration: 15 and 60

seconds, 2 and 8 minutes, and 3 hours. A well-defined pattern emerges after 3 hours,

revealing a correlation between drop position and speed (see figure A-36e), similar to

that reported in the original experiments by Harris et al. [65]. The average spacing

of the speed modulations along the droplet's trajectory is ~ 0.8AF (see figure A-37)

and the circular bands of high droplet speed observed in figure A-36e are spaced at

~ 0.5AF intervals.

As the droplet approaches the corral's border, it is typically deflected with what

appears to be a preferred angle (see figure A-36d). Pucci et al. [109] reported that

walkers incident on a submerged wall have a tendency to be reflected at ~60 in-

dependent of their incident angle. This preferred reflection angle leads the radial

projection of the speed oscillations along the droplet's trajectory to have wavelength

~ 0.5AF, as is consistent with the speed maps reported by Harris et al. [65] and

shown in figures A-36e and A-31d. The speed variations necessarily give rise to a

signature in the droplet's position histogram, with the same wavelength ~ 0.5AF-

Thus the droplet speed modulations along its trajectory combined with the peculiar

non-specular reflection of walkers (see figure A-38) may play a significant role in the

observed statistical modulations in the corral. 1

'Coincidently, the theoretical treatment of quantum corrals describes the oscillations in the num-
ber density of electrons as arising from the constructive interfering of scattered waves from the
border [47].
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6.3 Discussion

We have reported the results of an experimental investigation of walker motion in

a hydrodynamic corral, giving particular attention to a characterisation of the wave

dynamics. Specifically, the instantaneous and mean wave fields accompanying peri-

odic and chaotic motion were measured and decomposed into the Faraday modes of

the cavity. Our study also allowed us to characterise the influence of boundary con-

ditions on the wave modes of the cavity. As the liquid height decreases, the Faraday

modes resemble more closely pure vibration modes of a circular membrane attached

at the edge. We demonstrate the negligible influence of a binary bouncing phase

on the walker statistics. Finally, our research gave us new insight into the emerging

statistics in the hydrodynamic corral.

In the chaotic regime, the droplet's instantaneous wave field typically contains

two dominant wave modes: the first closely resembling the most unstable Faraday

mode of the corral, and the second being a non-azimuthally symmetric Faraday mode

dominant at a lower vibrational frequency. By averaging the strobed walker wave field,

we provide the first quantitative measurement of the mean wave field. Its azimuthally

symmetric form and its striking resemblance to the cavity's dominant Faraday wave

mode, indicate that the influence of non-axially symmetric modes is averaged out.

We expect that the emergence of rotationally invariant mean wave fields is a general

property of the circular corral, consistent with the statistical form reported by Harris

et al. [65].

The wave-like statistics in the circular corral shows azimuthal symmetry with

radial oscillations of 0.5AF wavelength, a robust result that occurs within 0.005% of

the Faraday threshold. We provided the first experimental test of the theoretical link

formulated by Durey et al. [37] between the mean wave field and the statistically

steady state of the droplet position histogram. The observed agreement is fair and

the validation of a convolution wave field that incorporates the influence of the corral

boundaries will be the subject of further experimental and theoretical inquiries.

In the circular corral, the speed oscillations of wavelength ~ 0.8AF along the
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droplet's trajectory combined with the non-specular reflection law [109], result in

radial speed modulations of ~ 0.5/\ spacing. The latter necessarily lead to a signal

in the drop histogram with the same wavelength - 0.5AF. We thus propose a new

dynamical mechanism for the observed statistical modulations in the corral that may

find broader applications in hydrodynamic quantum analogues.

We conclude by reviewing the physical analogy between the hydrodynamic and

quantum corrals that has emerged from this and prior studies. The bouncing timescale,

TF - 0.02 TM - 0.03 seconds, plays the role of the vibration period of the Compton

timescale, TC, in de Broglie's mechanics, as outlined in chapter 2. The instantaneous

pilot-wave field is similar to that envisioned by de Broglie [14]. The crossing time,

T, ~ D/v - 0.5 TM, describing the period between consecutive walker-wall interac-

tions is analogous to the classical period the Tp in semi-classical quantum mechanics

[112]. Similarly, the statistical convergence timescale, T, - 3000 TM ~ 180 minutes

parallels the statistical relaxation timescale T, [112]. The convergence timescales of

the mean wave field, ~ 500 TM, does not have an evident counterpart in quantum

mechanics. We expect the value of the convergence time scales to be of interest to

experimentalists working in the field of hydrodynamic quantum analogues.
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Chapter 7

Conclusions

It seems a little paradoxical to construct a configuration space with the coordinates of

points which do not exist. - Louis de Broglie [5]

In this thesis, we have explored walking droplets in both closed and open geome-

tries through consideration of hydrodynamic analogues of the quantum corral and

Friedel oscillations. A one-sentence summary of this thesis would be the following:

The notion of particle trajectories is not inconsistent with the statistical behaviour

evident in quantum corrals and Friedel oscillations, if one adopts a pilot-wave dynam-

ics of the form proposed by de Broglie in conjunction with the Ensemble Interpretation

of quantum mechanics.

We started by investigating the walking droplets confined to elliptical cavities.

Building upon the earlier work of Harris et al. [651, we characterised the emergence

of coherent walker statistical forms that can be characterised in terms of a small

number of normal modes of the cavity. We also reported a new statistical projection

effect due to a submerged well placed at one of the foci. Specifically, we demonstrate

that bottom topography may lead to preferential mode selection: when the well is

placed at one of the foci of the cavity, the particle position distribution displays over-

densities perpendicular to the major axis of the ellipse, an effect reminiscent of the

quantum mirage effect [87, 94]. We also presented a qualitative measure of a mean
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wave field, and noted the similarity between its form and that of the statistical wave

form describing the drop position. We further demonstrated that this mean wave

field may be decomposed into two cavity modes, one being the cavity's dominant

Faraday pattern and the other being a mode prevalent at a nearby frequency. The

instantaneous wave field switches between two dominant cavity-modes, reminiscent

of a time-dependent superposition of two quantum states [19]. A similar switching

of dynamical states was reported previously in orbital pilot-wave hydrodynamics,

for example, walker motion in a rotating frame [49, 62, 100, 102] or walker motion

in a simple harmonic potential [104, 103, 82, 36, 81], where a walker would switch

chaotically between periodic and quasi-periodic trajectories.

In chapter 4, we characterised the emergence of periodic and quasi-periodic tra-

jectories of walkers confined to circular corrals. In the low and intermediate memory

regimes, the droplet executes simple periodic trajectories such as circles, lemniscates,

trefoils, and papillons. Each such path has distinct speed modulations and an asso-

ciated mean wave field, the form of which was measured quantitatively in chapter 6.

Associated with the periodic orbits is a double quantisation in orbital radius and an-

gular momentum resembling that arising for walking droplets confined by a harmonic

potential [104, 36, 81]. This similarity suggests a common origin of the quantum-like

behaviour emerging in all closed hydrodynamic quantum analogues.

In chapter 5, we explored the first successful open hydrodynamic quantum ana-

logue, that of Friedel oscillation from a topographical defect. Specifically, we con-

sidered the interaction of a walker with a submerged well. If the droplet's spatially

extended wave field has a sufficiently large amplitude above the well, it triggers a

self-excited wave beam, spanning the droplet and the well, that guides the particle

towards the well along an Archimedean spiral. As the walker passes over the well,

it generates a standing wave field centred on the well that leads to speed modula-

tions in the droplet's outgoing rectilinear trajectory. These speed modulations have

a characteristic wavelength of AF, the result being a particle position histogram with

radial modulations with the same wavelength. In the quantum equivalent, the elec-

tron sea around an electrically charge impurity has a statistical distribution of the
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same form, with spacing given by half the Fermi wavelength. Our analysis shows that

a rational dynamics underlying the statistical Friedel-like oscillations is indeed possi-

ble. Ongoing research has suggested that, in the high memory regime, perturbed free

walkers display decaying oscillations in droplet speed, with characteristic wavelength

of AF [1271. Thus, speed modulations might be a generic mechanism for the emer-

gent quantum-like statistics in pilot-wave hydrodynamics. The possibility of particle

trajectories underlying quantum mechanics would seem far less distant.

In chapter 6, we explored the high-memory regime for the circular corral, where

chaotic walker dynamics arises. The droplet's position histogram and complementary

speed map are circularly symmetric, showing radial oscillations of wavelength 0.5AF-

The former bears a strong resemblance to the particle density function of an electron

inside a circular quantum corral, where statistical modulations arise on the de Broglie

length scale. We performed a direct measurement of the mean wave field and were thus

able to provide the first experimental test of the convolution result derived by Durey

et al. [37]. The chaotic motion of the corralled droplet shows speed modulations

with average spacing - 0.8AF, arising from the walker-wall interaction. Following

the reflection off the border, the droplet's trajectory follows preferred angles that

are roughly consistent with the ~60' non-specular reflection angle reported by Pucci

et al. [109]. The combination of these two wall-mediated effects give rise to the

radial speed oscillations of wavelength - 0.5AF, consistent with our speed map. The

alternating regions of slow and fast speeds produce the emergent wave-like statistics

in the droplet's position histogram, with characteristic spacing 0.5AF. This represents

a new potential dynamical mechanism underlying the quantum-like statistics in the

hydrodynamic corral, one that may find wider relevance in hydrodynamic quantum

analogues.

There is no dynamical explanation for the emergent wave patterns in the electron

sea observed in quantum corrals, only a statistical description. Our work suggests

three possibilities for the dynamical roots of the wave-like statistical pattern emerging

in the hydrodynamical corrals. The first treats the cavity as an effective harmonic

potential for the droplets, which move along periodic and quasi-period partial tra-
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jectories, switching intermittently between them [65]. This mechanism mirrors the

description provided in the semi-classical periodic-orbit theory 158] of quantum cor-

rals, where the electrons are modelled as wave-packets moving along a multitude of

classical billiard trajectories. The second candidate views the mean wave field in-

side the hydrodynamic corral as an effective potential felt by the droplets. Notably,

the convolution law of Durey et al. [37] provides a direct link between this wave

field and the droplet's position statistics, suggesting that the mean wave field plays

a role similar to the quantum potential in Bohmian mechanics. The third possibility

considers the border reflection as inducing a Friedel-like speed modulation and pre-

ferred outgoing trajectory angle, leading to a modulation in the particle histogram

that propagates inwards from the walls of the corral. Notably, these three dynamical

scenarios for the origins of quantum-like statistics in the hydrodynamic corral are not

mutually exclusive, and may all be significant.

7.1 Future directions

Our work motivates several further studies of open pilot-wave systems, such as Friedel-

like oscillations from a submerged border (see figures A-39a,b) and a submerged

pillar. The first would represent the analogue for the Friedel oscillation from a wall.

Preliminary results depict a ~60' non-specular reflection angle and speed modula-

tions of wavelength - AF (see figure A-39c) along the droplet's outgoing trajectory.

Following ~ 300 walker-wall interactions, we notice the emergence of speed modu-

lations with ~ 0.5AF spacing (see figure A-39d), showing a striking resemblance to

its quantum counterpart. The submerged pillar could lead to speed modulations of

Faraday wavelength [127] along the droplet's outgoing spiral trajectory [60]. This

behaviour could then give rise to gallery modes [96, 111] in the walker's statistics, as

the oscillations would occur azimuthally, rather than radially as was the case in the

Friedel analogue reported in chapter 5.

This thesis also suggests a revisitation of the notorious walker diffraction exper-

iment [21, 3, 108], however, with the following modifications. First, as the walk-
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ing droplet system is dissipative, something negligible in typical optical or quantum

diffraction experiments, we propose an investigation of the equivalent of the near-

field Fresnel diffraction [13] instead of the previously explored far-field Fraunhofer

diffraction [21, 3, 108]. Second, the slits used should reinforce rather than damp the

coherent wave field of the walker, and hence act as exciters. We propose the use of

submerged wells, on the grounds that the beaming wave field observed in our ana-

logue to the Friedel oscillations had a relatively large radial extent and a slow decay

time. We would also like to encourage the use of a physical experimental set-up when

performing this investigation in favour of a Gedankenlaboratorium 131. The funda-

mental appeal of the hydrodynamic quantum analogue system is that it represents a

new experimental platform for exploring quantum like behaviour. Hence, predictions

can be checked experimentally, precluding the need for thought experiments.
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Figures
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5,1 4,4 5,2

6,0 3,7 5,3

Figure A-1: Examples of quantum eigenmodes of the two-dimensional circular box.
The modes are identified by the their associated quantum numbers n, no and listed
in order of increasing energy levels, as defined in eq. (2.9), left to right and top to
bottom.
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Figure A-2: (a) STM topographic image of the electron sea density in and around
a quantum corral made up of 48 Fe atoms in a ring assembled on Cu(111) surface.
Notice the eigenstate pattern inside the corral. The diameter of the ring is 142.6 A
and the ring encloses a defect-free region of the surface [25]. (Copyright 1993 by
AAAS) Elliptical electron resonators built using Co atoms to corral two-dimensional
electrons on Cu(111). (b-c) Topographic measurements of the standing wave patterns
in the electron sea. (d-e) Differential conductance maps acquired simultaneously [87].
(Copyright 2000 by Nature Research)
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Figure A-3: (a) STM topographic 130 A x 130 A image of an electron sea density in the
vicinity of an Fe adatom on the Cu(111) surface. The concentric rings, called Friedel
oscillations, around the impurity are standing waves generated by the scattering of
the surface state electrons by the Fe adatom [25]. (Copyright 1993 by AAAS) (b)
STM topographic 500 A x 500A image of an electron sea density at the Cu(111)
surface. Three mono-atomic steps are visible along with - 50 point defects. Spatial
oscillations, Fridel oscillations, with a wavelength of ~ 15 A are apparent near the
steps and in the vicinity of impurities [26]. (Copyright 1993 by Nature Research)
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Figure A-4: (a) Theoretical computations of Friedel oscillations arising in a two

dimensional electron gas due to a localised impurity. Notice the half Fermi wavelength

characterising both modulations. (b) dI/dV images of the Friedel oscillation around

a point scatterer in a 67 nm x 67 nm area as a function of energy (bias voltage).

Notice the different wavelengths of the oscillations. (c) The experimentally obtained

oscillations in (b) compared to the theoretical two-dimensional electron gas from (a))

[77]. (Copyright 2001 by American Physical Society)
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Figure A-5: Schematic of the experimental set-up. a, Oblique view of a droplet and

its pilot wave exploring an elliptical corral. b,c, Cross-section of the topologically

homogeneous elliptical corral (b) and the elliptical corral with a submerged circular

well of depth H = 4.5 mm and diameter D = 5.5mm (c). The liquid depth in the

corral and in the wave damper is h = 1.70 mm and h, = 0.05 mm, respectively. d,e,

Location of the circular well corresponding to the results presented in the left and

right columns of Fig. A-9. The length of the semi-major axis and eccentricity of the

ellipse are a = 14.25 mm and e = 21 - b2/a2= 0.5, respectively.
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Figure A-6: Droplet statistics in an elliptical corral. a,b, Top views illustrating the
complex instantaneous wave field excited by the drop's motion along the yellow dashed
trajectory. c, Chaotic droplet trajectory, coloured according to the instantaneous
speed, for increasing time intervals. d, Emergent pattern after 3.5 h. e, Histogram
of the walker's position (90 x 90 bins). f, Local average speed (contour plot) and
velocity (arrows) for the data shown in d. The absolute average speed is < u > 8.68
mm s'. Here, f = 72 Hz, -y/-yF = 0.998 and d = 0.79 i 0.01 mm, for which the most

unstable Faraday wave mode is the (1, 5) mode illustrated in Fig. A-7c,d.
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Figure A-7: Mean pilot-wave field. a, Mean pilot-wave field obtained by averaging the
instantaneous waves, such as those shown in Fig. A-6a,b, over 30 min. Note that at
the prescribed acceleration (-Y < uF), no waves would exist in the absence of the drop.
b, Superposition of the analytical gradient maps presented in d and f, showing good
agreement with the mean wave pattern (a) and so the walker's statistical response
( A-6e,f). c,e, Faraday waves observed at threshold -y = -YF with f = 72 Hz (c)
and 70 Hz (e). df, The patterns in c and e are well approximated by the two
analytical eigenfunctions in d and f, respectively, which correspond to solutions of
the Helmholtz equation in an elliptical domain with Dirichlet boundary conditions.
In d and f, right, the eigenmodes are depicted in bright colours, while the greyscale
figures show the magnitude of their spatial gradients, with white corresponding to
zeros in slope (extrema or saddle points) and black corresponding to extrema in
slope. This depiction allows for a direct comparison between the analytical modes
and experimental visualisation of the waves [34].
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Figure A-8: Fundamental modes of the elliptical corral transiently excited by the

walker. On rare occasions when the walker's trajectory coincides with one of the

crests or troughs of the fundamental Faraday modes for an extended period, a pilot-

wave form resembling the corral's fundamental Faraday modes may briefly appear.

a,b, The (4,4) Faraday mode dominant at 70 Hz emerges in the bath. c,d, The

(1, 5) Faraday mode dominant at 72 Hz becomes apparent. The yellow dotted line

illustrates the droplet's trajectory. Here, -Y/7F 0.998 and f = 72 Hz.
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Figure A-9: Resonant projection effects. a-f, Walker's histogram (a,b), average speed

(colour map) and average velocity (arrows) (c,d) and mean wave field (e,f), arising

when a submerged circular well is placed at the midpoint of the upper semi-minor

axis (left column) or the left focus (right column). The well's diameter and depth are

D = 5.5 mm and H = 4.5 mm, respectively, and its specific locations are indicated in

e and f. The experimental parameters are as in Fig. A-6. When the well is off focus

(a), the resonance of the fundamental modes is notably obstructed: the histogram

only shows traces of the statistical signature observed within a homogeneous corral

(Fig. A-6e). Conversely, when the well is at the focus (b), the resonance of the (4, 4)

mode is drastically enhanced, leading to a radical change in the walker's statistical

behaviour, now characterised by high-density vertical bands projected towards the

empty focus. This resonant effect is also evident in the corresponding average speed

and average velocity maps (cd), which show the emergence of substantially stronger

mean velocities when the well is at the focus. In e and f, the mean pilot-wave field is

shown averaged over 30 min, showing reinforced horizontal (e) and vertical (f) bands

with respect to Fig. A-7a due to the effects of the well. g,h, Faraday waves observed

at threshold Y = YF with f = 72 Hz when a submerged well is placed as in e and f.

In both cases, the well induces waves markedly different from those observed at the

same f with homogeneous topography (Fig. A-7c). Specifically, the well at the focus

enhances the (4, 4) mode observed at 70 Hz in the absence of the well (Fig. A-7e).
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Figure A-10: Experimental setup 165]. (a) Cross-sectional view of the circular corral
filled with silicon oil. (b) Faraday wave pattern obtained for the circular corral

driven at f = 80 Hz and -y = 1 .01YF- Examples of the walker trajectory (of duration

~ 8 s) and instantaneous waveform at (c) Y1/YF = 0.91 and (d) /'YF = 0.99. The

corresponding mean waveform (obtained over - 60 s) at (e) 7/F = 0.91 and (f)

0.99, respectively.
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Figure A-11: Fundamental trajectories in a circular corral of diameter D = 20.2
mm. (a) Small circle at 'Y/YF = 0.88. (b) Deformed circle at Y/YiF = 0-91 (C)
Large circle at y/yF = 0.92. (d) Large wobbling circle at -y/'yF = 0.93. (e) Oval

and lemniscate embedded within a complex trajectory at Py/YF = 0.935. (f) Trefoil
at ?/yF = 0.94. (g) Papillon at y/'YF = 0.95. (h) Erratic motion punctuated by

intermittent trapping at -y/'YF = 0.98. Wave-induced trapping locations correspond to

the deep blue portions of the trajectories. The fundamental trajectories are colour-
coded according to instantaneous speed. The grey trajectories represent 5 minute
long series. AF = 4.75 mm indicates the Faraday wavelength.
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Figure A-12: Time series of radial orbit and angular momentum, colour-coded ac-
cording to instantaneous drop speed, over one orbital period for (a,b) a lemniscate,
(c,d) a trefoil, and (e,f) a papillon. The trajectories analysed are those highlighted
in figures A-lle,f,g.

117

a

C>O

0 1 2 3 4
Time (s)

0

c 1.4

0.7

0

-2.

1~7

56 1 2 3 4
Time (s)

0

9

13

b 2.5-

0-

1.2 - -

0.6



1

0.8a b

0.6 --

0.4 - - -

7F

0.2 -

-1 0 1 1 0
Lz Lz

Figure A-13: The double quantisation of angular momentum and orbital radius ev-
ident in the circular corral. The axes are the non-dimensional mean angular mo-
mentum, L, and the non-dimensional mean radius, R. Each grey circle represents a
separate sub-trajectory. Fundamental trajectories are colour coded to correspond to
those shown in figure A-11. The black crosses are the centroids found via K-means
clustering [36]. The data has been symmetrised with respect to L, = 0. The dashed
grid has the same spacing as the one used by Perrard et al. [104, 103]. (a) In the
intermediate memory regime (1/YF = 0.87 - 0.95), the individual clusters are repre-
sentative of the stable trajectories identified in figure A-11. (b) In the high memory
regime (Y/7YF = 0.98-0.99), where trajectories are similar to that in figure A-11h, the
scarcity of clusters with L, $ 0 indicates the dissolution of the double quantisation
apparent at lower memory. The blue circles denote walkers in trapped states.
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Figure A-14: Walker radial position time series (left column) and associated power
spectra (right column) at different memories. The black circles highlight the frequency

peaks. (a) - (b) y/yF= 0.93, corresponding to the large wobbling circular trajectory

shown in figure A-11c. (c) - (d) y/7F = 0.95, corresponding to the trajectory shown

in figure A-11f. (e) - (f) -Y/7F= 0.98, corresponding to the trajectory shown in

figure A-1Ih.
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Figure A-15: Time series of (a) orbital radius and (b) angular momentum illustrating

chaotic switching between fundamental orbits at y/-F 0.95. The green shaded area

corresponds to a papillon, the blue to a lemniscate, and the orange to a trefoil.
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Figure A-16: Walker dynamics in the vicinity of a circular well. (a) Oblique view of

a walking drop self-propelling above a submerged circular well (dashed line). Sup-

plementary Movie 1. (b) Top view of the experimental setup. A submerged well of

diameter D = 13 t 0.1 mm is located at the centre of a circular liquid bath vibrated

vertically at frequency f = 70 Hz and maximum acceleration y/F = 0.990 0.002.

The corner geometry serves to automatically redirect the walker towards the well.

(c) Schematic cross section. The submerged well of depth H = 6.2 + 0.03 mm is

located at the bottom of a relatively shallow liquid layer of depth h = 1.6 t 0.03

mm. (d) Walker trajectories with -y/-yF = 0.990, drop radius R = 0.39 t 0.01 mm

and free-walking speed vo = 0.039. The arrows denote the direction of motion and

trajectories are colour-coded according to speed. A total of 449 trajectories were col-

lected. (e) Experimental trajectories coloured according to their impact parameter

yi. These trajectories are obtained by rotating those shown in d-iv until the drop's

initial motion is parallel to the x-axis. a then denotes the scattering angle at which

the walker exits the well. (f) Simulated trajectories with uniformly-distributed im-

pact parameters yi for a drop with vo = 0.024 at -y/'yF = 0.990. (g) Scattering angle

versus impact parameters yi for experimental (yellow dots) and simulated (solid lines)

trajectories with walkers of different size (speed) at 'y/-yF = 0.990. The dotted ma-

genta line corresponds to the same drop as the blue solid line but at a lower memory,

y/7F = 0.970. Space is non-dimensionalised by the Faraday wavelength X0 = AF in

the shallow region and speed by V = Xo/TF, where TF = 2/f is the Faraday period.
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Figure A-17: Spiral trajectory and effective force. (a) Unique spiral resulting from
suitable rotation of the trajectories shown in Fig. A-16f. Only walkers trapped
by the well are considered. (b) Dependence of the radial coordinate r (solid and
dotted lines) on the azimuthal angle 0 for the longest spirals achieved with walkers of
different size (speed), as previously shown in Fig. A-16g. The nearly linear relation
between r and 0 demonstrates that the incoming drop trajectory is well approximated
by an Archimedean spiral. The dashed blue line shows the normalised instantaneous
speed v/vo corresponding to the drop with vo = 0.024 at 'y/YF = 0.990 (solid blue
line). (c) Comparison between the drop trajectory (dashed line) and the Archimedean
spiral (solid) obtained with the fit shown in .b for vo = 0.024 at -Y/yF = 0.990. (d)
Experimental dependence of walker trajectories at 'y/'yF = 0.990 on depth h illustrates
heightened trapping states at small h. The red-shaded area corresponds to the extent

of the well. The drop size is the same as in Fig. A-16d.
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Figure A-18: Emergent statistical behaviour. Top view illustrating the experimental
(a) incoming, and (b) outgoing drop trajectories coloured according to speed v.
Trajectories are obtained by splitting those shown in Fig. A-16d at the point nearest
to the centre of the well (dashed line). Concentric speed modulations appear in the
outgoing phase. (c) Faraday waves observed above the well at threshold y = YF-

Note the spatial correspondence between the Faraday wave extrema and the speed
modulations observed in the outgoing trajectories shown in b. (d, e) Incoming
(top) and outgoing (bottom) speed-coloured trajectories corresponding to the slowest
walker in Fig. A-16g, as presented in Fig. A-16f. White and red arrows identify the
outermost trajectories crossing the well. (f, g) Dependence of the normalised speed v
on radius r for incoming (top) and outgoing (bottom) walkers of different size (speed).
The grey area denotes the well's extent. (h, i) Histogram of the drop's radial position
corresponding to the data shown in f and g. The bin size is AF/13. The histograms
have been normalised by their respective height at r/AF = 2, corresponding to the first
speed minimum outside the well observed in e. (j, k) Two-dimensional histograms

(normalised by the histogram height at the centre of the well) resulting from the
experimental b, and simulated e outgoing trajectories, respectively.
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Figure A-19: Wave-mediated interaction. (a) Experimental and (b) simulated walker
wave field 2gat different stages during its interaction with a submerged well (solid
circle). Snapshots illustrate the walker (i) approaching the well in straight-line
motion, (ii) spiralling inwards, (iii) exciting localised large-amplitude waves as it
crosses the well, (iv,v) exiting the well along a straight trajectory. (c) Well-induced
wave perturbation ( =- - i# (normalised by the instantaneous maximum wave
amplitudenma = max g ) obtained by subtracting from the wave field y shown in
b the computed wave field i9 of a drop following the same trajectory in the absence
of the well. A sliding beam-like wave mode emerges as the drop spirals inwards (ii).
Conversely the drop crosses a spatially fixed wave mode entered at the well in the
outgoing trajectory (iv), giving rise to the wavelike statistics evident in Fig. A-
18. (d-f) 3D visualisation of the well-induced wave perturbation as the drop spirals
inwards, crosses the well and exits in straight-line motion, respectively. Solid lines
illustrate the time series of the perturbation at the drop position. The simulated
walker corresponds to 0/.F3= 0.990, vo = 0.024 and y0/AF = 6.
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Figure A-20: The experimental set-up, showing the cross-sectional view of the corral
filled with silicon oil and indicating the dotted-pattern beneath it used for free-surface
synthetic Schlieren.
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Figure A-21: Fundamental trajectories with their associated mean wave fields in a
circular corral of diameter D = 20.2 mm. Top row represents the droplet's trajectories
colour coded by speed. The grey trajectories represent 5 minute long series. Middle
row illustrates the mean wave fields using the grey-scale image technique used by
[114]. Bottom row represents the associated mean wave fields obtained using the free-
surface synthetic Schlieren, 191]. (a,fk) Small circle at y/YF= 0.88. (b,g,1) Large
circle at 7/YF = 0.92. (c,h,m) Lemniscate embedded within a complex trajectory at

/0F = 0.935. (d,in) Trefoil at 'y/yF = 0.94. (e,j,o) Papillon at -y/7F = 0.95. The
trajectories coloured in red and their associated mean wave fields were recorded over
one orbital period. AF= 4.75 mm indicates the Faraday wavelength.
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Figure A-22: Experimentally obtained Faraday waves modes for a circular corral of
diameter D = 28.5 mm, driven at 65 Hz with a h = 1.00 0.03 mm. b h = 0.5010.03
mm. c h = 0.05 + 0.03 mm. d The (3,6) mode given by equation (6.2).
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Figure A-23: Experimentally obtained Faraday waves modes for a circular corral of
diameter D = 28.5 mm, driven at 70 Hz with a h = 1.00 0.03 mm. b h= 0.50t0.03
mm. c h = 0.05 0.03 mm. d The (6,0) mode given by equation (6.2).

-- (6,0) Dirchlet mode
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Figure A-24: Comparison between the azimuthally symmetric (6, 0) Dirichlet and
Neumann modes and the Faraday wave mode obtained for the circular corral of di-
ameter D = 28.5 mm, driven at 70 Hz with h = 0.05 0.03 mm, h = 0.50 0.03 mm,
and h = 1.00 0.03 mm.

127

ow 21



-j

a b 1

0.5

-0.18 0 0.15
Wave Amplitude (mm) 5,1 4,4 5,2 6,0 3,7

Modes

Figure A-25: Instantaneous wave field when the droplet is exploring the circular corral
of diameter D = 28.5 mm, vibrated vertically at f = 70 Hz. a An arbitrary selected
instantaneous wave field. Overlaid in white is an example of the walker trajectory
(of duration - 10 s). b The weights of the five most dominant modes present in the
reconstruction of an arbitrary selected instantaneous wave field.
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Figure A-26: Azimuthally symmetric instantaneous wave field when the droplet is ex-
ploring the circular corral of diameter D = 28.5 mm, vibrated vertically at f = 70 Hz.
a Instantaneous wave field displaying the dominantly described by one azimuthally
symmetric mode. Overlaid in white is an example of the walker trajectory (of duration
~ 1 s). b The weights of the five most prominent modes present in the reconstruction
of the mean wave field.
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Figure A-27: Non-azimuthally symmetric instantaneous wave field when the droplet
is exploring the circular corral of diameter D = 28.5 mm, vibrated vertically at
f - 70 Hz. a Instantaneous wave field displaying the dominantly described by one
non-azimuthally symmetric mode. Overlaid in white is an example of the walker
trajectory (of duration ~ 1 s). b The weights of the five most prominent modes
present in the reconstruction of the mean wave field.
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Figure A-28: Distribution of the mode decomposition weights for the instantaneous
wave fields and mean wave field, shown in blue and red, respectively. The modes

are ordered by increasing eigenvalue, A,n, and labeled as (n, m). The weights are

normalised with respect to that of the dominant mode. No significant modes were

present outside the (1, 10) - (3, 9) range.
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Figure A-29: The mean wave field is computed over increasing periods of time a

5 minutes, b 15 minutes, c 25 minutes, d 30 minutes. The difference between the
mean wave field obtained after 30 minutes and after e 5 minutes, f 15 minutes, g 25

minutes. The differences between the converged mean wave field in d and the mean
wave fields in a, b, and c, are shown in e, f, and g, respectively. The convergences of
the mean wave field and of its radial profile as a function of time are illustrated in h,
where the 12-nr was utilised to characterise the differences between the wave fields.
The dotted lines represent the fitted exponential decays. The mean wave field's radial
profiles for increasing periods of time are shown in i. The corral of diameter D = 28.5
mm is vibrated vertically at f= 70 Hz for .y/#} = 0.995.
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Figure A-30: Evolution of the walker's position histogram, after a) 5 minutes, b) 30
minute, c) 60 minutes, and d) 180 minutes. The differences between the converged
walker histogram in d and the walker histograms in a, b, and c, are shown in e, f, and
g, respectively. Note that we normalise the histograms, expect for the one in d), by
dividing the individual bin counts by the total count. The colour axis represents the
bin count. The convergences of the histogram and of its radial profile as a function of
time are illustrated in h, where the 12-norm was utilised to characterise the differences
between the histograms. The dotted lines represent the fitted exponential decays. The
histogram's radial profiles for increasing periods of time are shown in i. The corral
of diameter D = 28.5 mm is vibrated vertically at f = 70 Hz for -y/F = 0.995.
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Figure A-31: Evolution of the walker's average speed map, after a) 5 minutes, b) 30
minute, c) 60 minutes, and d) 180 minutes. The differences between the converged

average speed map in d and the average speed maps in a, b, and c, are shown in e, f,
and g, respectively. The colour axis represents the droplet's speed. The convergences
of the average speed map and of its radial profile as a function of time are illustrated

in h, where the 12-norm was utilised to characterise the differences between the speed

maps. The dotted lines represent the fitted exponential decays. The average speed

map's radial profiles for increasing periods of time are shown in i. The corral of

diameter D = 28.5 mm is vibrated vertically at f = 70 Hz for 'y/yF = 0.995.
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Figure A-32: Schematic of the droplet's impact phase relative to the liquid's surface
illustrating the a in-phase and b out-of-phase cases. The droplet's previous vertical
motion is indicated by the dotted line and its future horizontal direction by the arrow.
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Figure A-33: The walker position histogram obtained after 180 minutes for 7/7F
1.004. The corral of diameter D = 28.5 mm is vibrated vertically at f = 70 Hz.
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Figure A-34: a Wave profile of a free bouncer at Y/}F = 0.995. b The position

histogram of the droplet as a function of distance
Azimuthally symmetrised position histogram.
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Figure A-35: Comparison plot showing the radial dependence of the mean wave field
and the convolution of the bouncer wave field with the position histogram of the
droplet. Inset - Azimuthally symmetrised mean and convolution wave fields.
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Figure A-36: The walker trajectories are colour coded by speed for increasing time
intervals of a 15 seconds, b 60 seconds, c 120 seconds, d 480 seconds.
pattern after 3 hours. The corral of diameter D = 28.5 mm is vibrated
f = 70 Hz for 7/YF = 0.995.
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Figure A-37: Histogram illustrating the spacing of the walker speed oscillations along
its trajectory. The corral of diameter D = 28.5 mm is vibrated vertically at f = 70
Hz for -Y/yF 0.995.
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Figure A-38: Droplets reflected from a wall show a preferred reflection angle of ~60',
regardless of their incident angle. The incoming walker trajectories are coloured in
purple. The outgoing walker trajectory is colour coded by speed, blue being slow,
red being fast. The speed oscillations along the outgoing trajectory have spacing AF-

Their normal projections lead to a speed map with oscillations of wavelength AF/2.
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Figure A-39: The walker interacting with a submerged boundary. a The droplet's
outgoing trajectory and grey scale wave-field. b Experimental schematic. c The
walker's incoming and reflected trajectory are coloured by the droplet's speed, with
arrows indicating the incidence angle. The speed oscillations along the outgoing
trajectory have spacing AF. d Speed map emerging from ~ 350 walker trajectories
reflected by a submerged wall, showing speed modulations of wavelength AF/2. The
deeper fluid region has a thickness of 6.20 0.05 mm and the think film above the
barrier is 0.25 t 0.05 mm. The bath is vibrated vertically at f = 70 Hz for 1/F

0.990.
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Appendix B

Friedel Oscillations from a submerged

well

B.1 Numerical Simulations

Our simulations are performed with the model developed by Faria 144] to account for

variable bottom topography, which builds on the linearized quasi-potential, weakly-

viscous flow model developed by Milewski et al. [89] and Dias et al. 1331. Faria [44]

reduces the problem to the free surface 7(x, t) by treating changes in topography as

regions where the local wave speed changes. Specifically, the wave problem becomes

o- 1
'7= -G(t V + 2 2vqV2# - -PD(X - xP(t), t) (B.1)
P P

,q -V - [b(x)V#] + 2vV 2 T, (B.2)

where #(x, t) denotes the velocity potential u = V# in the bath, G(t) = g +

y cos(27ft - <p) the effective gravity in the bath's frame of reference, <p the drop's

impact phase, ve = 0.861v the effective kinematic viscosity (chosen to match the

experimental stability threshold -yF), and xp(t) the drop's horizontal position. The

wave-drop coupling is modeled by treating the drop as an instantaneous excess point-

pressure PD on the dynamic surface condition[93, 89]. Changes in bottom topogra-

phy are modeled by approximating the vertical gradient of the velocity potential as
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0, ~-V - [b(x)V#], where b(x) is an effective depth chosen to ensure the correct the

dispersion relation of Faraday waves in both the shallow and deep regions, according

to

b(x) = tanh(kFH)/kFH , for x E (B.3)
tanh(kFhh)/kFh, for x W

where W denotes the well region, and kFH and kFh the most unstable wavenumbers

in the deep and shallow region, respectively, computed as detailed by Milewski et al.

[89].

The local gradient of the resulting wave field Vqlx=x, determines the lateral force

exerted on the drop at impact. The drop's trajectory is thus described through

Md X + C4  F (t ) + 6rR pai dt - -F(t)V77Jx=x, (B.4)

where Pair = 1.8 x 10-5 Pa s is the dynamic viscosity of air, and c4 = 0.17 the coefficient

of tangential restitution [93]. The drop bounces periodically with the Faraday waves,

the impacts thus take place at t = nTF, where TF = 2/f is the Faraday period.

Assuming instantaneous contacts, the force becomes F(t) = mg _ 6(t/TF n),

where 6 is the delta function. Finally, the penetration depth of the drop is assumed to

be infinitesimally small relative to the Faraday wavelength. The drop pressure thus

becomes PD(x - x,, t) = (F(t)//F)6((X - p)/F) which vanishes when the drop is

not in contact with the bath [44].

The model is solved numerically using a pseudo-spectral method in space and

periodic boundary conditions, and fourth-order Runge-Kutta scheme for the time

integration [44]. The simulations are performed on a square domain of size 484\ x

48/\, discretized with 512 x 512 points. Numerical tests were performed to ensure

that the domain size and spatial resolution were adequate to render discretization-

independent results. Simulations with a larger domain size but the same resolution

(644\ x 644h, 682 x 682) and same domain size but a finer resolution (48A4 x 484 ,

768 x 768) produced virtually indistinguishable results to those included in the main

text.
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R(mm) y/1F vo(mm s) o/27

0.355 0.990 4.4 0.259
0.375 5.8 0.266
0.390 7.1 0.269
0.400 7.6 0.277
0.425 10.0 0.286
0.355 0.970 4.4 0.268

Table B.1: Range of drops considered in this study. All the R - vo combinations are
experimental observations with h = 1.6 mm, except for the case with 1/'YF= 0.970,
where the impact phase p has been readjusted in the simulations in order to maintain
a constant vo with the smallest drop. This allows us to assess the role of memory
independently from inertial effects, as illustrated in Fig. A-17g.

B.2 Effective Force

The drop is drawn into the well through an intricate wave-mediated interaction.

However, an analytical expression for the effective well-induced force F" may be

inferred by exploiting two key observations from both experiments and simulations.

Specifically, (i) the incoming trajectories are Archimedean spirals centred on the well

to a good approximation, and (ii) the drop speed remains constant along the spiral

trajectories.

The drop trajectory may thus be written as

r(6) = a + bO, (B.5)

where (r, 0) are the polar coordinates on the horizontal plane, and a and b constants

which may be determined from the initial conditions. Given the trajectory, one may

infer the effective force F, acting of the drop of mass m starting from the equation

of motion mdv/dt = F., with v = rer + rO o in polar coordinates. The force may

thus be written as

FW = m - r) er + (ri + 2i) eo (B.6)

Since the drop speed v = IvI is constant along the incoming spiral trajectory, it follows
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that

2 2 + 2 = -2 + (r )2 = const, (B.7)

expression whose time derivative leads to

2 i + 2ri' 2 + 2r299 = 0. (B.8)

Noting that i = b and i = b from (B.5), and that i f 0 from (B.7), we may write

r02

and =
r 2

b(1 + 2)
(B.9)

By substituting (B.9) in (B.6), the force becomes

2 +2-).
F_ = m 2 0 (-rer + bo)

( b2 g
(B.10)

Using i = bO in (B.7), it follows that

V 2 = +
2

b2,
(B.11)

We thus obtain the components of the effective well-induced force acting on the drop

by substituting (B.11) and = bO in (B.10), which leads to

m I + 2) + 62-

Denoting Vr = and vo = r6, (B.12) may be written as

= m 1

= m(1 +

+ 2 (-VOer + V,6o)

2)

where e = (vo/r)ez.

We conclude by noting that the spiral parameters a and b may be determined

142

(B.12)

F (B.13)
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from the initial conditions. Denoting the initial position and velocity as (ro, 0o) and

(VrO, vOO), respectively, simple manipulations of the previous equations lead to

a = ro I - VO , and b = ro Vro. (B.15)
Vo V0
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