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ABSTRACT

A theoretical study was carried out on two techniques for
improving the accuracy and extending the range of applicability
of the self-consistent-field Xa scattered-wave (SCF-Xa-SW) method
for electronic structure calculations. The purpose of the
molecular partitioning technique, which involves the division of
a molecule or a cluster into spherical sub-clusters, is to
minimize the effects of the constant potential region of the
standard SCF-Xa-SW method. The molecular partitioning technique
was applied to methanol, yielding better agreement with published
photoemission data than the standard SCF-Xa-SW method. In
particular, the molecular partitioning method gave the correct
relative ordering of ,the methanol sigma and pi orbitals. The
purpose of the approximate coupling technique is to allow
calculations to be performed on molecules or clusters which are
too large for the standard SCF-Xa-SW method. The molecule is
divided into a principal sub-cluster and its environment; the
electronic interactions between these two regions are treated
approximately. This technique was applied to methanol with
excellent results.

The chemisorption of carbon monoxide on supported rhodium
catalysts was studied using the molecular partitioning and
approximate coupling techniques. A notable result of the
calculation was the relative weakness of the "back donation" to
the carbon monoxide pi antibonding orbital. In addition, it was
demonstrated that the approximate coupling technique is effective
in the study of chemisorption.

Finally, a study of Zr-Cu and Pd-Si metallic glasses was carried
out using the standard SCF-Xa-SW method. The resulting densities
of states are in quantitative agreement with, and provide an
interpretation of, published photoelectron spectra.
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Introduction

The self-consistent-field Xa scattered wave (SCF-Xa-SW or simply

Xa-SW) method of calculating molecular orbitals has proved to be an

important tool for investigating electronic structure problems in

chemical and solid state physics. The usefulness and popularity of

this method is due to its computational efficiency as well as its

facility in treating transition metal and other relatively heavy

atoms. These two characteristics arise from the combined use of the

Xa statistical approximation to the exchange energy and the SCF-Xa-SW

model potentials. The statistical (or local density) exchange

approximation provides a substantial simplification of the complete

Hartree-Fock equations; yet, when the resultant one-electron energies

are compared to experiment, they are generally as good as, or better

than, those obtained from Hartree-Fock calculations. The SCF-Xa-SW

model potentials provide an additional computational simplification

compared to calculations using the "true" molecular potential. At the

same time, the model potentials allow the use of what is essentially a

numerical basis set, which provides the flexibility needed for

accurate treatment of inner shell electrons in heavy atoms. This

flexible basis set is a distinguishing feature of the SCF-Xa-SW

method, and in this respect it compares quite favorably to other

techniques, such as LCAO or pseudo-potential methods.

There are, of course, limitations to the SCF-Xa-SW method; two

general types of limitations, and possible procedures to overcome

them, will be addressed in this dissertation. First, molecules (or

clusters representing solids) with very open structures present a

problem for the model potentials used in the SCF-Xa-SW method. The

SCF-Xa-SW potentials (described more fully in Chapter 1) consist of

4



Introduction 5

spherically averaged regions about the atoms and volume averaged

regions in the space between the atoms. The volume averaged regions

represent the more severe approximation; therefore, inaccuracies may

be expected when performing an SCF-Xa-SW calculation on a system with

a great deal of open space, such as an organic or biological molecule.

A second type of limitation is encountered with molecules or clusters

containing relatively large numbers of atoms. Often such calculations

are impractical, because of the amount of computer time involved, or

impossible because of numerical difficulties inherent with large

matrices. Again, biological molecules provide a good example of this

type of problem. Another example is the difficulty of providing

realistic boundary condition of a cluster that represents a portion of

a solid, the so-called "embedding" problem. In this thesis the

techniques of molecular partitioning, first suggested by Kjellander,

are described that attempt to solve these problems. Chapter 1 briefly

reviews the standard SCF-Xa-SW theory and gives the formalism for the

partitioned multiple scattering problem. In Chapter 2, calculations

using these techniques are presented and compared with standard

SCF-Xa-SW calculations as well as published experimental results.

Chapter 3 describes the approximate coupling procedure for partitioned

systems and presents some results of test calculations using this

procedure. Chapter 4 is a study of carbon monoxide chemisorbed on a

supported rhodium catalyst using the techniques described in the

previous chapters. Chapter 5 is a study of metallic glasses using the

standard SCF-Xa-SW method.



Chapter 1

CHAPTER 1 - MOLECULAR PARTITIONING THEORY

In the calculation of molecular orbitals in the SCF-Xa-SW method,

the model potential consists of spherically averaged regions about the

atoms and a volume averaged region in the space between the atomic

spheres [1-3). While this approximation is a primary reason for the

computational efficiency of the SCF-Xa-SW method, it is generally

recognized that these model potentials are the most important source

of inaccuracies [4-6]. The most severe approximation is the use of a

single constant potential in the intersphere region, a region in the

"true" molecular potential may vary widely. As a result, since the

introduction of the SCF-Xa-SW method there have been many attempts to

improve the model potential, particularly in the intersphere region

[7-11). Although the technique of molecular partitioning was

introduced by Kjellander primarily to facilitate approximate

calculations, it has the additional effect of improving the

representation of the potential in the interatomic region [12-15]. In

this chapter, the standard Xa-SW method is briefly reviewed, and the

theory for molecular partitioning is presented.

1.Review of Standard SCF-Xa-,SW Theory

The SCF-Xa-SW method is a way of calculating molecular orbital

energies and wavefunctions for molecules or clusters consisting of as

6



Chapter 1

many as fifty atoms. The Xa statistical approximation to the exchange

energy replaces the exchange term in the full Hartree-Fock equations.

This simplification allows each eigenstate to be calculated

independently, unlike the full Hartree-Fock case in which all

one-electron wavefunctions are coupled through the exchange

interaction.

An additional simplification is obtained through the use of a

model potential (similar to a "muffin tin" potential of band theory).

In the standard Xa-SW method, the space surrounding a molecule or

cluster of atoms is divided into three types of regions (see

Fig. 1.1). The potential is treated differently in each of the three

types of regions. Region I consists of spheres which are centered on

the atoms of the molecule. The potential of the molecule is

spheri.cally averaged in this region. Region I consists of the space

between the atomic spheres and the outer sphere, which is a sphere

surrounding the entire molecule. In region 11 the potential is

represented by a single constant value, which is obtained by volume

averaging the true potential throughout the intersphere region.

Region III consists of the space outside of the outer sphere. In this

region the potential is spherically averaged, and provides a way for

the wavefunctions to decay smoothly at large distances from the

molecule.

7



Chapter 1

IIIl

Figure 1.1 - Division of a molecular cluster into (1) atomic, (Ii)

interatomic, and (I 1) extramolecular (or outer sphere) regions.

8



Chapter 1

Corresponding to each type of region is a different

representation of the molecular orbital wavefunction.

REGION 1: 4 \ - ..- /^ A

L

(1.1)

where L=(1,m) is the angular momentum index, alpha is a label for the

atom, R r) is the solution to the radial Schrodinger equation in

sphere alpha at energy E, is a real spherical harmonic, and

is a coefficient which will be determined in the course of the

calculation.

Region I:

where

/'

is a

L

L

a ( Rais the position

I

(~-2

~ (vt))

i,~ (~ CJ~)

~~>( r2~

)

of atom

(1.2)

alpha)

i( ~<7 ~

v( E 1 1

;~

~

- ' where E is the energy eigenvalue, and

is the value of the constant potential in Region II), 2 X;

spherical Bessel funct i on, r.; X i s a spher i cal Neumann
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(1)

function, .pX, is a modified spherical Bessel function, and (X)

is a modified spherical Hankel function of the first kind (see Ref.

3)) The A-L are coefficients which are determined in the course

of the calculation.

REGION I I I :(Y - (1.3)

Here the quantities are analogous to those of region 1.

The problem of finding the eigenstates or molecular orbitals of

the system can be considered as a boundary value problem in which an

energy is found that allows the wavefunction and its first derivative

to be matched across all the sphere boundaries, or it can be

considered as a scattering problem in which the scattering of an

electron wave from a given atom alpha is consistent with the

subsequent re-scatterings by all the other atoms of the molecule. The

latter approach will be used here as it can be more easily generalized

to the approximation techniques to be described later.

Consider the wavefunction just outside a given atomic sphere

alpha. It can be written in a multi-center representation as in

(1.2), or it can be described as an expansion of spherical bessel

functions about sphere alpha alone:

+ (1-4)
L L

Chapter 1 10



Chapter 1 11

The first sum in the above expression can be described as the outgoing

or scattered wave from sphere alpha, while the second sum can be

described as the incoming wave arriving from all the other atoms of

the molecule. The ratio of the components of the incoming wave to the

outgoing wave is given by a scattering matrix:

(1 .5)
P~y tP

For scattering

application of

are not mixed;

of m:

from spherically symmetric potentials, a simple

the Wigner-Eckart theorem shows that the 1-components

the T-matrix (1) is therefore diagonal and independent

A -K (1 .6)

Now the incoming waves in (1.4) can be related to the outgoing

waves from all spheres other than beta:

) - i Gf[ a, AlI
LL

('.7)

(1)
Because the waves in this theory are actually standing rather

than traveling waves, what is here called a T-matrix or scattering

matrix corresponds to what is often called the K-matrix or reaction

matrix in other works dealing with scattering theory [10].
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LL *

's function

ical bessel

is a matrix element of the one-particle unperturbed

in the intersphere region and the basis is the set of

and neumann functions:

If beta is the outer sphere,

&- , (E) (1 .9)

The precise analytical forms of these matrix elements can be found in

Reference E3). A bound state solution to the scattering problem is

obtained when an energy is found for which the outgoing wave from

sphere beta is equal to the transformation of the incoming wave by the

T-matrix:

AL L L UZ L
L L Le

L tL L1
(1. 10)

The above relation must be true for all atoms beta in order for E to

be the energy of a bound state. The problem is finally cast as a

system of coupled linear equations for the unknown

where

Green

spher

12

k" -Y I Y'% A Y-13 j p i

0( % T: .=&L L ( .)

< X ,Y_
0.)y(y A) 

A

)yL(Y



Chapter 1

coefficients L

(1. 11)/ at 0

For the case of spherically averaged potentials inside the atomic

spheres, the T-matrix is simplified:

,I = 0 (1.12)

The are found by equating the logarithmic derivatives of

(1.4) and (1.1) at the boundary of atomic sphere alpha; they are given

explicitly by:

Here L is the radius of atomic sphere alpha, and the following

notation for the Wronskian is used:

13

L.

OL

12 bo

d'

o y- 01% = OA4ieV-
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Chapter 1

In order to find bound states of the system, the energy of (1.12)

is varied until the determinant of the matrix of the linear system of

(1.12) vanishes. The coefficients At can then be found with

standard matrix manipulation techniques. These AL are the

coefficients of the wavefunction in the interatomic region (see

(1.2)). The coefficients C4 for the wavefunction inside the atomic

spheres are obtained from the AL and the following relationships

(which arise from demanding the continuity of the wavefunction and its

first derivative at the sphere boundaries):

L klb(1. 17)

A L (1. 18)

Once all the wavefunctions for the occupied states of the

molecule are obtained they are normal ized and used to create a new

14



Chapter 1 15

potential. To create the new potential, the charge density is first

spherically averaged in the atomic spheres and volume averaged in the

interatomic region (region 11). Using this averaged charge density,

potentials are calculated which are then spherically averaged in the

atomic spheres and volume averaged in the inter-atomic region. This

new potential is used to find a new set of one-electron eigenstates

for the molecule; the entire process is repeated until

self-consistency is achieved.



Chapter 1

Molecular Partitioning Theory

Kjellander [12-15] made two related suggestions for further

development of the Xa-SW method: the partitioning of the molecule or

cluster into sub-clusters, and the approximation of the interaction

between sub-clusters. The partitioning into sub-clusters is described

in this section; the approximate coupling techniques are described in

Chapter Three.

Often a molecule or a cluster can be divided into groups of atoms

which can be enclosed by spheres. An example of this is shown in Fig.

1.2 for the molecule methanol. This method of partitioning space is

used to define a new model potential, allowing a different intersphere

potential to be defined for each of the spheres shown in Fig. 1.2.

The intersphere potential for sphere 1 refers to the constant

potential of the region inside sphere 1 but outside spheres 2 and 3.

The intersphere potential for sphere 2 (or 3) refers to the constant

potential of the region inside sphere 2 (or 3) but excluding the

regions contained in the atomic spheres. In the partitioned model,

the electron waves will be scattered from the sphere surfaces as well

as from the atomic surfaces. For example, an outgoing wave from an

atom inside sphere 2 strikes the surface of sphere 2, part of it will

be reflected back into the interior of sphere 2 and the rest will be

transmitted to the rest of the molecule outside of sphere 2.

-M

16



Chapter 1

Figure 2 - Division of methanol molcule into two sub-clusters.

IV IV
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Chapter 1

The basic motivation for partitioning the cluster into spherical

regions as opposed to some other shape is that the calculation of the

scattering matrix is particularly simple for a spherical surface.

Scattering from an arbitrarily shaped surface can be mathematically

formulated, but has been found to be computationally impractical [9].

The introduction of the sub-cluster spheres should improve the

accuracy of the self consistent calculations in two ways. First, the

flexibility of having regions of different intersphere potential

should lead to electronic states which are closer to the hypothetical

electronic states of the "true" potential, the molecular potential

without any spherical or volume averaging. Of course, if the

electronic states of the "true" potential could be calculated, the

types of averages and approximations described here would be

unnecessary. Second, the sub-cluster spheres allow the intersphere

charge associated with each electronic state to be divided among the

various spheres, rather than averaged throughout the entire

interatomic region as is done in the standard SCF-Xa-SW method. The

divided charge will then be volume averaged within the individual

intersphere regions of the sub-clusters. The resultant charge

distribution is more realistic than that of the standard SCF-Xa-SW

procedure, and should lead to more accurate potentials in the atomic

regions as well as the various intersphere regions.

The representation of the wavefunction in the partitioned system

is somewhat more involved than in the standard Xa-SW case, because

there are more types of regions. In what follows, the region numbers

refer to types of regions (Roman numerals in Fig. 1.2) and should not

be confused with the numbering of the partitioning spheres. The

18



Chapter 1

mathematical notation will use the convention of numbering the

partitioning spheres with the letters i,j,k,..., while the atomic

spheres will be denoted by the Greek letters An atomic

sphere will be uniquely specified by the ordered pair (i, c ), where

i is the partitioning sphere containing atom .

Region I refers to space inside an atomic sphere.

(1.20)
-L

where is the coefficient for atom alpha in sub-cluster

is the corresponding radial function, and i I

where is the location of the center of atom o( in

sub-cluster i.

Region I refers to the space inside the outer sphere of the entire

molecule (which shall be called the "system outer sphere" ) but

outside of the sub-clusters.

where AL is a coefficient for the system outer sphere,

coefficient for sub-cluster i, \-o 1

is the constant potential in Region II, and

is the location of the center of sub-cluster i.

(1.21)

AL\ is a

where V

,where Y-1.

19
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Chapter 1

Region I II refers to space outside the system outer sphere in which

the potential is spherically averaged.

14)" --- ) \ - )

L

where .9

sphere, and

(1.22)

refers to the radial function outside of the system outer

are the coefficients for those functions.

Region IV refers to the various intersphere regions within the

sub-clusters, but outside of the atoms of those sub-clusters.

_~j ZZ Aj j~ ~ ~.23)
LX W .rL

where 1 is a

is a coefficient for

notation , 6 0~;

partitioning sphere

coefficient for atom al

the sphere surrounding

denotes all atoms cA,

ri .

pha in sub-cluster i, and

that sub-cluster. The

contained in

A system of equations for the coefficients of the Region II

wavefunction can now be written by adapting (1.11) of the previous

section:

r ~ Nfl
4-.. ACZA LT(~'

~ ,, I A 1  I
4 '- A

'A ~j

L. (1.24)

20
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Chapter 1

where the matrix represents the scattering of waves from

the outside of sphere i; its elements are yet to be determined. The

summation over j includes j=0, the system outer sphere. Note that

because partitioning sphere i may contain several atomic spheres, it

is not, in general, spherically symmetric; thus, is not

necessarily diagonal in the angular momentum indices.

In order to find T, the relationship between

and A is examined for a given sphere. In the spirit of the

discussion of (1.4), L is the coefficient for the scattered

wave outside of sphere j (traveling outward away from the surface of

sphere j), while A is the coefficient for the scattered wave

inside of sphere j (traveling inward away from the surface of sphere

j). Introducing the coefficient . for the incoming wave

outside of sphere j (traveling inward towards the surface of sphere

j), the wavefunction just outside the surface of sphere j can be

represented as

= A' jJ (1.25)

Introducing the coefficient for the incoming wave inside of

sphere j (traveling outward towards the surface of sphere j), the

wavefunction just inside the surface of sphere j can be represented as

21
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4 j (1.26)

By equating the wavefunction and its first derivative across the

sphere boundary, the following relationships are obtained:

(1.28)

22
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where

-VX2G< W') 7~0 d)

U0L] t

&- , 1

\ I 3 L j

t-.

4-.

/

~Q

is the radius of partitioning sphere j.

and can be found by using

AllIL~

Other expressions

(1.7) :

(1.34)

(1.29)

(1.30)

(1.31)

~(~~)] ~

'N ,J

(1.32)

Here

for

(1-33)

A

C 6Ir
L L

23
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(1.35)

(- L L.N J L

where the summation over i includes the system outer sphere (i=0) . The

Green's function matrix elements in the above equations are defined in

(1.8) and (1.9) , wi th the differences that \ for "r and

Y,: o for L.

Substituting the above expressions for B and B' in (1.27) and (1.28),

M~t

ji A''
!I 'L +t2 -7.

L L2 (1-.36)

(1.37)
:E

(for all j except the system outer

includes the system outer sphere).

would be enough to determine

coefficients were known. An

by adopting (1.12):

sphere (j=O); summation over i

The equations (1.36) and (1.37)

and if the atomic

expression for the A is foundL

I..'L ~L' 4

24
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An
An expression for JAL is found in a similar way:

7 c-j'r _OfJ: .2- L j~L 6LL
Ler

-~~ ~~ LU,(~A

where and t (E are defined

with and ka replacing k(

(1.38), and (1.39) constitute a complete 1

coefficients ,, and

define T as the scattering ma

sub-cluster j (excluding the scattering fr

sub-cluster j) so that

(9 (1.39)

in (1.13) and (1.14), but

. Equations (1.36), (1.37),

inear system for the

. Now,

trix for the atoms in

om the sphere surrounding

(1.40)L E) t . -- L.L

With the aid of this definition, the linear system can be put in a

matrix form which displays the physical meaning of the various matrix

elements. For a system with two partitioning spheres and a system

25
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outer sphere, the secular matrix is

V i
(L)I

~Lr
- - - - - - b

~ ~a1 N' t

I I I

I 1.
N H -& / I

1 I

j~U. L1A1  - -

-(I" ~
I-

I ~
NI

-C
L

I7

N~A~

1 L

I'
L -ii

)

A"'

A

A

(1.41)

Here LT stands for a matrix composed of the elements

L L ;analogous conventions apply of the other matrix symbols.

stands for the column vector composed of the

elements g ( 6G; the other A symbols follow analogous

conventions.

Note that the matrix is nearly in block diagonal form. Each

26
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partitioned sphere has its own sub-matrix, and the sub-matrices are

coupled together with the Green's function matrices . The

, , , and matrices serve as transmission and

reflection coefficients at the partitioning sphere boundaries.

The matrices are scattering matrices for the clusters of atoms

within the partitioning spheres.

Bound states are found in the same way as in the standard

SCF-X -SW method: the energy is varied until a zero is found in the

determinant of (1.41); the wavefunctions are then normalized. When all

the molecular orbitals have been found, their charge densities are

used to create a new potential. New bound states are then obtained

using a mixture of the old and new molecular potentials. The process

is repeated until self-consistency is attained.

A series of test calculations of the methanol molecule using this

procedure are described in Chapter 2. Applications of this procedure

to a chemisorption problem is presented in Chapter 4.

27
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Chapter 2

CHAPTER 2 - MOLECULAR PARTITIONING APPLIED TO THE METHANOL MOLECULE

The modification of the standard SCF-Xa-SW potentials to include

the partitioning spheres described in the previous chapter should

provide a more realistic description of the electronic structure of a

molecule or cluster of atoms. Observables, such as ionization

energies, obtained from Xa-SW calculations using the partitioning

spheres should be closer to experimental quantities than those

obtained from Xa-SW calculations not using the spheres. To test this

assumption, a series of calculations of the electronic structure of

the methanol molecule have been performed and compared to published

experimental observations. Methanol was chosen as a test case because

it is an organic molecule with a relatively open structure. As

discussed in Chapter 1, the large amount of intersphere volume

associated with such open structures is considered an important source

of inaccuracies; it is inaccuracies of this sort that the

partitioning spheres should counteract. Because methanol is well

characterized experimentally and theoretically [1-8], there should be

little ambiguity in interpreting the results of the calculations. As

an organic molecule, methanol can be considered representative of

other types of systems of current interest which are not so well

understood, such as polymers and biological molecules. If the

partitioning method improves the results for methanol, these other

larger systems should benefit from its use as well.

It has long been recognized that the large intersphere volume of

30
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certain systems, such as organic molecules, presented difficulties to

the standard SCF-Xa-SW method [9-11). The most successful technique

for dealing with this problem has been to increase the atomic radii,

thus allowing the spherical atomic regions to overlap. Because the

potential in the spherically averaged atomic regions is more realistic

than the volume averaged potential in the intersphere region,

increasing the volume in the atomic regions at the expense of the

intersphere volume should improve the results. Of course, errors will

be introduced if no corrections are made to the scattering equations

to take account of the overlap. Although these corrections are well

known [12), the general practice is for overlapping sphere

calculations to be performed with the same formalism and computer

codes developed for the tangent sphere case. Numerical tests have

shown that for modest amounts of overlap, the introduced errors are

small, and are generally far outweighed by the improvements in the

potential. There is no a priori way to decide what the optimal amount

of sphere overlap should be; by trial and error it has been found that

an overlap of approximately twenty per cent ( i.e., a 20% increase of

the radii of the tangent atomic spheres) usually gives the best

results. Typically, even when overlapping atomic spheres are used, the

radius of the outer sphere is chosen so that there is no overlap

between the outer sphere and any of the atomic spheres.

The introduction of partitioning spheres raises a number of

questions concerning sphere radii and placement. How should the

molecule or cluster be partitioned? Should partitioning spheres be

allowed to overlap other partitioning spheres? Should they be allowed

to overlap atomic spheres? Should they be allowed to overlap the

31
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system outer sphere? As in the problem of deciding the optimal amount

of atomic sphere overlap, there seems to be no a priori way to answer

these questions; actual numerical tests are required. To this end,

calculations of the methanol molecule using three different types of

partitioning have been performed and are described in this chapter.

The first question to be addressed is the placement of the

partitioning spheres. Consider the methanol molecule, shown in Fig.

2.1 with tangent, non-overlapping atomic spheres and in Fig. 2.2 with

overlapping spheres. There are two non-equivalent ways to divide the

molecule. First, it may be divided into a methyl (CH3) fragment and an

OH fragment. This division is appropriate if these fragments are

considered as "building blocks" of the methanol molecule.

Alternatively, the molecule may be divided into a CO fragment inside a

single partitioning sphere with the the four hydrogen atoms outside

this partitioning sphere but inside the system outer sphere. This

division is appropriate if the CO bond is considered the most

important in the molecule. The first approach is shown in Fig. 2.3

and 2.4, while the second is shown in Fig. 2.5.

The second question to be addressed is whether the partitioning

spheres should be allowed to overlap. The case of tangent and

overlapping partitioning spheres are shown in Fig. 2.3 and 2.4

respectively. As there is only one partitioning sphere in Fig. 2.5,

this question does not arise; on the other hand, the partitioning in

Fig. 2.5 does overlap several atomic spheres. Consideration of the

geometric structure of methanol quickly reveals that this overlap

cannot be avoided if tangent atomic spheres are used. The atomic

sphere-partitioning sphere overlap could be eliminated if the atomic
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Fig. 2.1. Schematic diagram showing sphere sizes used

SCF-X -SW calculation of methanol with tangent atomic

diagram is a projection of the molecule onto a single

in standard
spheres. The
plane.
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Fig. 2.2. Schematic diagram showing sphere sizes used in standard

SCF-Xa-SW calculation of methanol with overlapping atomic spheres.
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Fig. 2.3. Diagram of Model I partitioning of methanol, showing tangent

partitioning spheres.
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Fig. 2.4. Diagram of Model 11 partitioning of methanol, showing

overlapping partitioning spheres.
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Fig. 2.5. Diagram of Model III partitioning of methanol, in which a

single partitioning sphere surrounds the carbon and oxygen atoms.
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sphere radii were drasticly reduced; however, the same considerations

that make overlapping spheres an improvement over tangent spheres

imply that the use of atomic radii smaller than tangent sphere radii

would lead to decidedly inferior results. Note that all the

partitioned calculations in this chapter have tangent rather than

overlapping atomic spheres. The coordinates and radii of the atomic

and partitioning spheres used in the different models are given in

Table 2.1 E8).

Comparing the first partitioning scheme in Fig. 2.3 (Model 1)

with the second and third in Figs. 2.4 and 2.5 (Models II and i1), it

is clear that the requirement that the partitioning spheres do not

overlap any other type of sphere is a severe restriction that results

in large partitioning spheres as well as a large system outer sphere.

This defeats the purpose of the partitioning method, which aims at

reducing the effects of the volume averaged regions; yet, for the

first partitioning scheme the overall intersphere volume is markedly

increased. This problem is more general than this single example might

suggest. Many molecules and clusters are not easily divisible into

spherical regions unless these regions are allowed to overlap each

other or with the smaller atomic regions. Thus, in order for the

partitioning method to have the widest application, successful

calculations with overlapping partitioning spheres should be possible.

Before comparing the detailed results of the various partitioning

schemes, it might be useful first to review the electronic structure

of methanol using the standard SCF-Xa-SW method with tangent spheres.

The one electron energy levels of this calculation are shown in Fig.

2.6, with the omission of the C is and 0 is core levels. One standard
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TABLE 2.1

ATOMIC COORDINATES FOR METHANOL

Atom

out. sph.
C
0
H
H
H
H

x y Z Radius

0.0 0.0 0.0
0.0 0.0 -1.267
0.0 0.0 1.431
0.0 1.951 -1-956
0.0 1.715 2.022

1.690 -0.976 -1.956
-1.690 -0.976 -1.956

3.483
1.349
1.349
0.720
0.720
0.720
0.720

Alpha

0.75805
0.75928
0.74447
0.77720
0.77720
0.77720
0.77720

PARTITIONING SPHERE COORDINATES

Model 1:

Sphere No.

1
2
3

Model I I:

Sphere No.

x

0.0
0.0
0.0

x

Y Z Radius

0.0 -0.542
0.0 2.282
0.0 -2.742

Z Radius

0.0 0.0
0.440 1.583
0.0 -1-956

Model I I I:

Sphere No.

1

x

0.0
2 0.0

Y0

0.0
0.0

Z Radius

0.0 3.48
0.082 2.35

Alpha

3 0.77720
7 0.75039

5.023
2.200
2.823

Alpha

0.75805
0.74915
0.76696

Alpha

1
2
3

0.0
0.0
0.0

3.483
1.814
2.671

0.75805
0.74915
0.76696
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"textbook" description [7) of these levels is as follows:

la' 0 2s (weakly bonding)

2a' C 2s (weakly bonding)

3a' 0 2p + C 2p + H is (HOC bonding)

la" C 2p + H Is (CH3 bonding)

4a' C 2p + H Is (CH3 bonding)

5a' 0 2p (HOC angle determining)

2a" 0 2p (0 lone pair)

The SCF-Xa-SW calculations support some of these descriptions, but

reveal the situation as being more complicated. The molecular orbital

calculations show more interaction between the carbon and oxygen (both

bonding and antibonding) than the intuitive description suggests. The

la" and 4a' levels, described as localized on the methyl group, have

substantial amounts of oxygen character (21% and 52% respectively,

compared to 47% and 38% for carbon). (1) The 4a' state should

definitely be considered a carbon-oxygen sigma-bonding level, while

the la" might be considered a carbon-oxygen pi bonding level.

Similarly, the 5a' and 2a" states have a substantial amount of carbon

character (27% and 16% respectively, compared to 50% and 70% for

oxygen). The 5a' state should probably be considered an antibonding

C-0 sigma level, while the characterization of the 2a" as an oxygen

(1)
Throughout this work, all references to percentage charge of a

molecular orbital on a given atom assumes that the intersphere charge

has been divided among the various atoms in proportion to the valence

charge contained in the atomic spheres.
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METHANOL

(TANG.) (OVER.)

-0.4-

-0.6-

-0.8 -

-1.0 -

-1.2h

z

.61-

- 2.0L

20"
5a'

30

2a'

Ia'

Fig. 2.6. Comparison of methanol energy levels found with standard

SCF-Xa-SW method using tangent and overlapping atomic spheres.
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lone pair seems correct, although it may be considered weakly

antibonding. The strongest contribution from the hydrogen of the OH

group is from the 3a' state, as expected, but this hydrogen also

appears with bonding character in the la', 2a' and 5a' states as well.

The hydrogen atoms in the methyl group have substantial bonding

character in all of the valence orbitals except the la' level. The la"

and 4a' levels are not exceptional in this regard, and it is erroneous

to characterize only them as CH3 bonding levels. Based on the standard

Xa-SW calculations, a revised description of the methanol molecular

orbitals may be as follows:

OH la' 0 2s (weakly bonding)

bonding 2a' C 2s (weakly bonding)

3a' 0 2p + C 2p + H Is (HOC bonding)

Ia" 0 2p + C 2p (pi bonding) CH3

4a' 0 2p + C 2p (weakly sigma bonding) bonding

[15a' 0 2p + C 2p (pi antibonding)

2a" 0 2p (lone pair or weakly

antibonding)

Plots of the wavefunctions of these levels are shown in Figs. 2.7

- 2.13. These plots reinforce the description given above of

substantial C-0 interaction in all levels except the la' and 2a".

These plots are are presented here as a reference for comparison with

the partitioned calculations discussed later.

Also shown in Fig. 2.6 are the energy levels of a standard

SCF-Xa-SW calculation with overlapping spheres. The energy level
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Fig. 2.7. Plot of the wavefunction of the methanol la' orbital, found

using standard SCF-Xa-%SW method with tangent atomic spheres.
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Fig. 2.10. Plot of the wavefunction of the methanol 4a' orbital, found

using standard SCF-Xa-SW method with tangent atomic spheres.
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Fig. 2.11. Plot of the wavefunction of the methanol 5a' orbital, found

using standard SCF-Xa-SW method with tangent atomic spheres.
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Fig. 2.12. Plot of the wavefunction of the methanol la" orbital, found

using standard SCF-Xa-SW method with tangent atomic spheres.
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Fig. 2.13. Plot of the wavefunction of the methanol 2a" orbital, found

using standard SCF-Xa-SW method with tangent atomic spheres.
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structure is similar to that of the tangent sphere case, except that

the levels are all shifted higher and the 4a' and la" levels are

nearly degenerate. In general practice, the methanol calculation would

be done with overlapping spheres in order to minimize the interatomic

volume. Overlapping atomic spheres are not used in any of the

partitioned calculations so that the effect of the partitioning

spheres can be distinguished from the effects of the atomic sphere

overlap.
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Model I Partitioning

As mentioned above, the partitioning spheres in the Model I

calculation are non-overlapping. Furthermore, the system outer sphere

is tangent to the two partitioning spheres. Compared to the standard

SCF-Xa-SW tangent sphere case (STAN-I), the total intersphere volume

(i.e., inside the system outer sphere but outside the atomic spheres)

has increased by 400%. However, if the total intersphere volume of the

STAN-I calculation is compared to just the intersphere volume inside

the partitioning spheres of Model-1, there is a 10% decrease.

Nevertheless, because of the enormous system outer sphere, this

partitioned calculation should not be expected to give better results

than the STAN-I results. Still, the calculation is useful because it

allows a direct examination of the effects of partitioning without the

added complications of overlapping partitioning spheres.

A difficulty arises when comparing the Model I calculation with

the STAN-I results: The STAN-I calculation uses a substantially

smaller outer sphere radius than the Model I calculation, for reasons

just mentioned. However, changing the size of the outer sphere radius

by itself can affect the results of a calculation. Thus, differences

between STAN-I and Model I can be due either to the outer sphere size

or to the presence of the partitioning spheres. To isolate the effects

of the partitioning spheres alone, another standard Xa-SW calculation

has been performed (STAN-Il) which is identical to STAN-I except that

its outer sphere radius is equal to that of the Model I calculation.

The one electron energies of STAN-I I and the Model I calculation are
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shown in Fig. 2.14.

In comparing the energy level diagrams of STAN-1I and Model I to

that of STAN-1 in Fig. 2.14, two basic differences are noticeable.

First, the energy levels of both STAN-Il and Model I are lower (i.e.,

more deeply bound) than those of STAN-I. Second, the ordering of 4a'

and la" levels is reversed in both STAN-Il and Model I with respect to

the ordering of STAN-1. Because these differences are found in both

the STAN-I I and Model I calculations, they must be due to the larger

outer sphere.

To understand these energy shifts, ignore for the time being the

effects of the partitioning spheres and consider the changes in the

potentials caused just by increasing the outer sphere size; that is,

consider the differences between the STAN-1 and STAN-Il calculations.

To do this, the steps of charge averaging and potential averaging in

the intersphere region must be considered separately. When the

intersphere charge is volume averaged over a larger intersphere

region, the charge that is normally close to the atomic nuclei is

moved further away. The electronic charge is therefore less effective

in screening the nuclear charge, and the potentials in the atomic and

intersphere regions are therefore lowered (become more negative).

However, the subsequent volume averaging of the intersphere potential

has the effect of raising the average intersphere potential, because

the larger intersphere volume now includes more space at large

distances from the atomic nuclei. Thus, the charge averaging and

potential averaging have opposite effects on the average intersphere

potential; the potential generally has the greater effect, so that the

average intersphere potential increases as the outer sphere radius is
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METHANOL

OUT. SPH.: OUTER SPHERE:
3.48 A.U. 5.0 2 A.U.

STAN. STAN. MODEL I MODEL
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Fig. 2.14. Comparison of energy level diagrams for several methanol
calculations. The first column is a standard SCF-Xa-SW calculation
with an outer sphere radius of 3.48 bohrs. The second column is also a
standard SCF-Xa-SW calculation, but with an outer sphere radius of

5.02 bohrs. The third column uses Model I partitioning, and the fourth
column uses Model III partitioning modified with a larger outer
sphere. Note that for the second and third columns the order of the

4a' and la" levels are reversed. All calculations used tangent atomic
spheres.
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increased. Of course, the volume averaging of the intersphere

potential has no effect on the atomic potentials, so the atomic

potentials are always lowered with increasing outer sphere radius.

From the results of self-consistent calculations of methanol, the

effect of increasing the outer sphere radius from 3.31 bohrs to 5.02

bohrs is to raise the average intersphere potential from -1.018 to

-0.946 rydbergs; the atomic potentials are lowered by roughly 0.30 to

0.60 rydbergs. The change in the atomic potentials dominates the

effect on the one electron energy levels, which are lowered by roughly

0.1 rydbergs.

The change in the ordering of the 4a' and la" levels is also

explained by these potential shifts. The la" level is pi-bonding

between the carbon and oxygen atoms, whils the 4a' level is

sigma-bonding. Because more of the pi wavefunction is in the

intersphere region than the sigma wavefunction, the pi levels are more

sensitive to the intersphere potential than sigma levels. Thus

although all the energy levels are lowered by increasing the outer

sphere radius, the la" is lowered less than the 4a' level, due to the

former's greater sensitivity to the intersphere potential.

The main effect of the addition of the partitioning spheres is to

raise the energy levels, as seen in Fig. 2.14. This can be understood

by examining the electrostatic effects of the additional spheres.

Because the charge is volume averaged separately in each partitioning.

sphere, the electronic charge remains closer to the atomic nuclei than

in the same case without the partitioning spheres (i.e., the STAN-Il

calculation). This results in more effective screening of the nuclear

charge and a consequent rise in the atomic and intersphere potentials.
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The step of volume averaging the intersphere potential has different

effects in the regions inside the partitioning spheres and the region

outside (between) the two partitioning spheres. Because the potential

averaging inside the partitioning spheres is performed over a region

closer to the atomic nuclei than in the case without the partitioning

spheres, these average potentials should decrease. On the other hand,

the averaging process should increase the average potential between

the partitioning spheres because the regions near the atomic nuclei

are now excluded. For the methanol case, the average potential in the

intersphere region exterior to the partitioning spheres increases from

the intersphere potential without the partitioning spheres (-0.653

compared to -0.946 rydbergs without the additional spheres), while the

average potentials inside the sub-spheres decreases (-1.204 rydbergs

for the OH sub-cluster and -1.112 rydbergs for the CH 3 sub-cluster).

The atomic potentials are roughly 0.2 to 0.3 rydbergs higher with the

partitioning spheres.

The net effect of the various shifts in the potentials is an

overall rise in the one electron energy levels of roughly 0.05 to 0.06

rydbergs; otherwise the two calculations (STAN-I I and Model I) give

remarkably similar results. The ordering of ordering of the levels is

identical and the spacing between the levels is qualitatively the

same. The charge distributions of the levels are similar and plots of

their wavefunctions show no important differences.

In principle, the one electron energy levels obtained from any

method using the Xa approximation for the exchange interaction can not

be directly related to experimental values (such as ionization

energies) because the Xa energies are defined as the derivative of the
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energy with respect to occupation number. This situation differs from

the Hartree-Fock case, where Koopman's theorem states that one

electron energies correspond directly to ionization energies [13]. In

order to find ionization energies in the Xa method, Slater's concept

of a transition state is used [14]. In a transition state calculation,

the energy of a one electron excitation is found by reducing the

occupation number of the initial state by 0.5 and increasing the

occupation number of the final state by 0.5. After iterating to

self-consistency with the changed occupation numbers, the excitation

energy is found by taking the difference between the final and initial

one electron energies.

Transition state calculations have been performed with the two

methods (STAN-Il and Model 1) to obtain ionization energies; these

energies are plotted in Fig. 2.15 along with published results of

photoemission experiments of the free methanol molecule (hv=21.2 eV).

As with the one electron energies, the main difference in the

ionization energies obtained from the calculation using the

partitioning spheres is that they are uniformly higher (less tightly

bound) than those obtained without the partitioning spheres. The

partitioning method does give better agreement with experiment;

however, the ordering of the la" and 4a' orbitals is still reversed.

It should be noted that the symmetry assignments given the

experimental values are confirmed by several Hartree-Fock

calculations.

56



Chapter 2

METHANOL

UPS STAN.

2a"

50'

4 a'

a-

Fig. 2.15. Comparison of experimental photoemission data from methanol
(see Ref. El]) with two transition state ionization energy
calculations. The first calculation uses the standard SCF-Xa-SW method
with tangent atomic spheres and an oversized outer sphere of radius of

5.02 bohrs. The larger outer sphere matches that of the Model I
partitioning case, which is shown in the third column. The Model I
type of partitioning uses tangent partitioning spheres. Note that
both calculations have the ordering of the la" and 4a' levels
reversed.
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Model I Partitioning

The restriction that the partitioning spheres must not overlap is

a severe one for the case of methanol; it leads to very large outer

sphere sizes, and, therefore, more regions of constant potential. This

is ironic, in that the partitioning spheres were introduced in part to

correct for errors caused by the intersphere regions. Thus, it is

important to discover whether or not this restriction can be relaxed.

To this end, a calculation with overlapping partitioning spheres

having the geometry shown in Fig. 2.4 has been performed.

The partitioning spheres for this calculation have been chosen so

that they do not overlap any atomic spheres, although partitioning

spheres were allowed to overlap each other without restriction. The

sphere centers were chosen so as to minimize the sphere volume. The

resulting construction yields partitioning spheres with 26% overlap.

(1) This is a large percentage which is near the upper limit of

overlap that has been found feasible for atomic sphere overlap in

previous studies. In addition, both partitioning spheres protrude

significantly from the system outer sphere, which is the same size as

that of the standard SCF-Xa-SW calculation (STAN-I). As before, none

of the atomic spheres overlap.

(1)
The overlap of two spheres is found in the following manner:

Maintaining the ratio of the two radii constant, the radii are reduced

until the spheres are tangent. The fractional increase of the reduced

radii necessary to attain the original size is defined as the overlap.

This definition corresponds to one used in earlier studies of

overlapping atomic spheres.
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The X one electron energy levels are shown in Fig. 2.16, along

with those of the STAN-I. There are two noticeable differences in the

spectra. First, the levels of the partitioned calculation (with the

exception of the la' and 4a') are somewhat higher in energy. This

agrees with the general expectation that the nuclear charges are more

effectively screened in partitioned calculations due to the electronic

charge being contained to a greater degree inside the partitioning

spheres. Second, the ordering of the 4a' and la" are reversed in

comparison to the standard SCF-Xa-SW calculation. Unlike the previous

case of the tangent partitioning spheres in which the incorrect

ordering was caused by the large outer sphere, this misordering must

be caused by the partitioning spheres themselves. Still, the same type

of arguments that explained the previous misordering probably apply to

this case as well. The la" state, being a C-0 pi orbital, has more of

its wavefunction outside of the two partitioning spheres than the 4a'

state (a C-0 sigma orbital). The former state is therefore more

sensitive to the constant potential in this region, which is

considerably higher than the overall constant potential for the

non-partitioned case (-0.76 versus -1.06 rydbergs respectively). The

other constant potentials for the partitioned calculation were -1.64

rydbergs for the OH sub-cluster and -1.19 rydbergs for the CH 3

sub-cluster.

The results for the transition state calculations for this type

of partitioning are shown in Figure 2.17. Although the misordering of
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Fig. 2.16. Comparison of methanol energy level diagram for the
standard SCF-Xa-SW case (outer sphere radius of 3.48 bohrs, tnagent
atomic spheres) with those of the Model 11 and Model III partitioning
cases. Note that the order of the la" and 4a' levels is reversed for
Model 11, but is correctly found with Model IlIl.
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Fig. 2.17. Comparison of experimental photoemission data from methanol

(see Ref. [1) with several transition state ionization energy

calculations. All of the calculations used an outer sphere of radius

3.48 bohrs. The first two calculations used the standard SCF-Xa-SW

method with tangent and overlapping atomic spheres, respectively. The

last two calculations used Model II and Model III partitioning. Note

that the order of the la" and 4a' levels are reversed for the standard

overlapping case and for the Model II partitioning case.
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the 4a' and. la" levels persists, in other respects the ionization

energies do not compare unfavorably with the standard SCF-Xa-SW

results (also shown in Figure 2.17).

The arguments given above may not be the complete explanation for

the misordering of the levels; it is possible that errors introduced

by the large amount of partitioning sphere overlap may play a role.

Studies of errors introduced by the overlap of atomic spheres in the

standard SCF-Xa-SW method have identified two types of error: errors

introduced during the solution of Schrodinger's equation, and errors

introduced during the solution of Poisson's equation (creation of the

potential) [10). In general practice, no explicit corrections for the

overlap are added to the formalism of the tangent atomic sphere case.

Similarly, in the present case no corrections are included to account

for overlap of the partitioning spheres. It is possible that both

types of errors occur with this calculation, for although similar

percentages of atomic sphere overlap have been shown to give

reasonable results, the absolute amount of overlap of the partitioning

spheres is much greater (due to the larger radii). Nevertheless, the

wavefunctions obtained from this calculation show no gross

discontinuities at the partitioning sphere boundaries, indicating that

the solution to Schrodinger's equation is performed accurately.

Unfortuanately, there is no simple analogous check on the solution of

Poisson's equation.

Thus, the interpretation of the Model IL partitioning results is

somewhat ambiguous. The misordering of the energy levels could be

caused by overlap errors or by a poor choice of partitioning spheres.

This ambiguity can be resolved only by further calculations with
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overlapping partitioning spheres.

Model III Partitioning

The partitioning spheres in the first two calculations in this

chapter divided the methanol molecule into OH and methyl fragments.

This division seems reasonable if these two sub-units are considered

as the fundamental building blocks from which the molecule is

constructed, i.e., if the molecular orbitals of methanol can be

described as orbitals obtained by relatively weak interactions between

the molecular orbitals of OH and CH 3 . However, another viewpoint would

hold that the C-0 bond is the most fundamental sub-unit in the

molecule, and that the carbon and oxygen atoms should be within a

single sub-sphere rather than split between two spheres. From this

perspective, methanol could be understood as a carbon monoxide

molecule plus four additional hydrogen atoms. Support for this view is

given by the discussion earlier in this chapter of the standard Xa-SW

results for methanol; there it was seen that there is much more C-0

interaction than is typically assumed.

These considerations emphasize the point that the choice of how a

given system is partitioned will affect the results of that

calculation. In general, interactions between atoms inside a given

partitioning sphere will be enhanced, while interactions between atoms

in different partitioning spheres will be attenuated. To see why this

is so, it is necessary to note that the constant potentials inside the

partitioning spheres are generally lower than the constant potentials

in the region outside the partitioning spheres (the reasons for this
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tendency were discussed in the previous two sections). The Green's

function matrix elements which describe the propagation of the

electron in the intersphere region decay rapidly with increasing

intersphere potential. For molecular orbital energies below that of a

given constant potential, this decay is roughly proportional to

exp(-K R) (2.1)

where E- and R is the distance between the two

scattering centers [15). For propagation between two partitioning

spheres, V for region (11) is used in this expression; because it is

generally higher than the constant potential within the partitioning

spheres (Region IV), the interaction between atoms in different

partitioning spheres is correspondingly reduced. Therefore it would be

logical to place the partitioning spheres such that the strong

chemical interactions take place between the atoms belonging to the

same sphere and the weaker ones occur between atoms in different

spheres. In this way, the theoretical description would more nearly

match the chemical reality.

Fig. 2.5 shows the sphere placement of a calculation in which the

carbon and oxygen atoms have been placed in a single partitioning

sphere. Because of the geometry of the methanol molecule, the

partitioning sphere must overlap several atomic spheres. The

partitioning sphere radius was chosen by minimizing the volume of the

overlap region while simultaneously insisting that no atom be

overlapped by more than 25% of its atomic sphere radius. This

percentage is consistent with the most severe atom-atom overlaps used
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in standard SCF-Xa-SW calculations.

The general features of the one-electron energy levels (shown in

Fig. 2.16) are similar to those of the corresponding standard

SCF-Xa-SW calculation, except for a slight upward shift of from 0.5 to

1.0 eV. This upward shift is consistent with the increased screening

of the nuclear charges, as dicussed in previous sections. Note that

the ordering of the la" and 4a' levels are correct in this

calculation. An examination of the wavefunctions and charge

distributions of the various molecular orbitals show no significant

differences between the results of the standard SCF-Xa-SW and the

partitioned calculations (see Figs. 2.18 - 2.22). In particular, there

are no severe discontinuities of the wavefunction in the overlap

region, which implies that the amount of overlap used here is quite

reasonable.

The transition state ionization energies, shown in Fig. 2.17, are

in respectable agreement with experiment. Overall, they are somewhat

too weakly bound in comparison to experimental values, while the

standard SCF-Xa-SW ionization energies are too strongly bound. The

spacing of the levels is more realsitic than the standard SCF-Xa-SW

calculation. Furthermore, there is no ambiguity in the ordering of the

troublesome la" and 4a' levels.

Also shown in Fig. 2.17 are the transition state ionization

energies for the standard SCF-Xa-SW calculation with overlapping

spheres. The one electron energies (shown in Fig. 2.14) had the

correct ordering, although the la" and 4a' levels were nearly

degenerate. Here it is seen that the ionization energies are

incorrectly ordered.
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Fig. 2.18. A plot of the wavefunction of the 3a' methanol orbital
found using Model III partitioning.
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Fig. 2.20. A plot of the wavefunction of the 5a' methanol orbital
found using Model I II partitioning.
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Fig. 2.21. A plot of the wavefunction of the la" methanol orbital

found using Model III partitioning.
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The generally favorable results of the Model III partitioning are

encouraging. Because of this, one further methanol calculation was

done using this type of partitioning, but with the system outer sphere

having a radius equal to that of the Model I type of partitioning

(5.02 bohrs). In that previous calculation, it was found that the size

of the outer sphere led to a misordering of the 4a' and la" levels.

The point of the present calculation is to see if the Model III type

of partitioning will correct this misordering even with the large

outer sphere. Of course, this is not a realistic calculation, because

there is no reason to use such a large outer sphere in this case.

However, the results of this calculation may be applicable to other

molecules for which the outer sphere must be rather large.

The energy levels of this second Model III partitioning

calculation are shown in Figure 2.14, along with the other

calculations using the larger outer spheres. The la" and 4a' levels

do, in fact, have the correct ordering; furthermore, the downward

shift of energy levels of the standard SCF-Xa-SW (STAN-Il) and Model I

partitioning (with respect to the standard SCF-Xa-SW calculation with

outer sphere radius equal to 3.48 bohrs) is substantially reduced.

To repeat, this is not a realistic calculation. However, it does

simulate a calculation which must use a very large outer sphere.

Previous standard SCF-Xa-SW studies of benzene and other relatively

large organic molecules have encountered problems with the relative

ordering of CY and i' levels [11]. The use of partitioning

spheres may be a way to prevent such difficulties.
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SUMMARY

It has been demonstrated that the Model III type of partitioning

does give improved agreement with experiment. In the standard

SCF-Xa-SW calculations, the 4a' and la" levels are either nearly

degenerate or incorrectly ordered. Even the standard SCF-Xa-SW case

using overlapping atomic spheres, which would be expected to give the

best results, yields an incorrect ordering of the ionization energies.

Using the Model III type of partitioning there is no ambiguity in the

ordering of these levels even with the oversized outer sphere. Still,

the importance of this result is not so much the specific application

to methanol, but the potential of applying the partitioning method to

larger molecules. Methanol, with only six atoms, is a rather small

molecule with a reasonably sized outer sphere. With larger molecules,

the partitioning method's effectiveness should increase as the size of

the outer sphere increases. This has been demonstrated, albeit in a

somewhat artificial manner, with the methanol studies using large

outer spheres.

Aside from demonstrating that the partitioning method can give

improved results, the studies reported in this chapter give guidelines

on how partitioning calculations should be done. First, and most

important, is the use of careful judgment with regard to the placement

of the partitioning spheres. It seems that the most important chemical

interactions of the molecule or cluster should take place within a

N
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single partitioning sphere. For the case of methanol, splitting the

central C-0 bond into two sub-clusters gives inferior results. A

second guideline is that the use of a partitioning scheme which

necessitates a large system outer sphere may be counter-productive.

The drawbacks associated with a large outer sphere may overwhelm the

benefits of the partitioning spheres. Finally, it appears feasible to

use partitioning spheres with modest amounts of overlap. However,

because of the uncertainty in the interpretation of the Model I

calculations, this final point should be confirmed with further tests.

Thus, the partitioning method has been shown to be a useful

improvement on the standard SCF-Xa-SW method. A further application of

this method to a chemisorption problem is described in Chapter 4;

additional applications to a wide variety of other areas are part of

an ongoing research program.
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CHAPTER 3 - APPROXIMATE COUPLING THEORY AND APPLICATIONS TO METHANOL

There are a wide variety of interesting electronic structure

problems that involve a number of atoms greater than that which is

practical or possible with standard SCF-Xa-SW methods. Examples are

biological molecules, in which the sub-unit of interest may contain

tens or hundreds of atoms [1-4]; polymers, in which a series of

identical sub-units may interact with each other [5-8); and a whole

class of problems in which a cluster of atoms is used to represent a

localized portion of a solid [9-11]. The use of clusters to represent

solids has had much success, but questions remain regarding the

effects of using a small number of atoms as a substitute for a

macroscopic object [12]. Studying larger clusters may resolve some of

these uncertainties.

Often the constituents of these large clusters or molecules can

be divided into two groups of atoms: one having the most scientific

interest, and the other acting as an environment for the first,

modifying its electronic properties in some manner. For example, a

biological molecule may have an active enzymatic site consisting of a

transition metal and its nearest neighbors. The enzymatic properties

of this site may be modified by other sub-groups which are physically

more distant. If the electronic coupling between these groups is

weak, it may be appropriate to treat their interaction in some

approximate way. Such approximations may allow calculations to be

performed which would otherwise be impossible. In the following two

sections, techniques for performing such approximate calculations will
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be discussed.
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Molecular Field Approximation

One approach to approximating the partitioned scattered wave

equations can be understood by examining the matrix of (1.41) (the

full partitioned matrix). The matrix is almost in block diagonal

form, with the three sub-matrices corresponding to the scattering

matrices of the system outer sphere and the two sub-clusters. The

deviation from block diagonal form is caused by the Green's function

matrix elements which couple the two sub-clusters with each other and

with the system outer sphere.

If we assume that these inter-cluster Green's function elements

are zero ( with the Green's function elements coupling atoms within a

given sub-cluster remaining non-zero), the secular matrix divides into

three block diagonal matrices. The linear systems represented by

these matrices can be solved iLndependently. This level of

approximation may be called the "molecular field" approximation,

because although we are ignoring any coupling between the sub-clusters

of the molecule, the potentials for each sub-cluster include the

electrostatic effects of the neighboring sub-clusters. Thus, even

this lowest order approximation will give energy levels and

wavefunctions that differ considerably from those of an isolated

sub-cluster.

From (1.41), it is seen that the matrix corresponding to one of
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the sub-clusters has the form

1/ (3.1)

L*

However, this matrix must be modified; the boundary conditions at

infinity must be determined for the molecular field approximation.

The sub-cluster under consideration is viewed as isolated in- the

constant potential of the inter-cluster region, and it is assumed that

this constant potential stretches to infinity. There will be no

scattering from infinity, which imposes the following boundary

condition: all spherical waves exterior to the sphere surrounding

sub-cluster 4~- will be "out-going" waves, that is n, or hx . This

is equivalent to demanding that all vanish, where are the

coefficients of the "incoming" waves exterior to the sub-cluster.

Setting L equal to zero in (1.27),

A (3.2)
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i sand are no longer linearly independent, so

eliminated from (3.1) to obtain

N 7
+ Ir

- j6iL) ;'0

F T'1

Using the definitions of N , N' , M and

and some algebra,

M' in

(3.3)

(1.29) through (1.33)

r

"X II>
'.2

K'

(3.4)

Here is the scattering matrix element corresponding to

change in constant potential upon going from the interior to

exterior of the sphere surrounding sub-cluster Y . Thus,

the

the

the
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secular matrix for the molecular field approximation is written

I-[ .10

L T
L

This is not the only boundary condition that could used for a

molecular field approximation. Alternatively, one could construct a

model in which the potentials for all sub-clusters except sub-cluster

a are replaced by the inter-cluster constant potential, while

retaining the spherically averaged potential of the system outer

7
(

A

SA

(3.5)

J1
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sphere. Such a model would have a secular matrix of the form

Va

-~1~
~ I

1 '~

ri'1 N''

1v~ /

/ bO,,~

I

I I

A(36
(3.6)

This model may have the advantage of providing a better representation

of eigenstates with energies greater than the inter-cluster constant

potential. For (3.5), such eigenstates are technically resonances

rather than bound states. Calculations using both forms of the

molecular field approximation have been performed, and are reported

later in this chapter.

1~
I -~

G'0

r

V
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Contraction Of The Secular matrix And The Approximate Coupling Method

In order to go beyond the molecular field approximation, the

effects of electronic coupling between the sub-clusters must be

considered as well as the electrostatic coupling. The method presented

here, which has been created with the assumption of relatively weak

electronic interaction, is called "approximate" or "iterative"

coupling. There are two components of this approximation: first,

contraction of 'the secular matrix; second, evaluation of the matrix

elements of the environment only at certain specified trial energies

(to be discussed further below).

Contraction of the secular matrix is accomplished using a simple

property of linear algebra 15). As an example, consider the

following linear system:

'-~(3.7)

L ~ JL --f-1/L

Here , , (yc , are sub-matrices;

and are column vectors. A solution to this linear

system is possible only when the determinant of the entire matrix

vanishes. However, this linear system can be re-written in a way that
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eliminates the V coefficient. To see this, the matrix

multiplication of the column vectors is explicitly written out to

obtain the following two matrix equations:

ToA +&A =0

( 7 1 o

(3.8)

(3.9)T~

Solving (3.9) for column vector

- A (3.10)

where I 6

into (3.9)

is the matrix inverse of . Substituting (3.10)

(3.11)GAO T~ JbC4iJ \C4~

Here the order of the secular matrix has been reduced, i.e., the

matrix has been "contracted"; solutions to the linear system of (3.11)

are obtained only when the determinant of the following matrix

vanishes:

T'k
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(3.12)

Once the column vector As has been obtained, Ar can be obtained

using (3.10). Thus, solution of the reduced linear system of (3.11)

is equivalent to solution of (3.7), with the exception of cases in

which the matrix inverse of does not exist (i.e., when

det( T6 ) vanishes).

Taking the deteminant of the smaller matrix of (3.11) is

certainly computationally more efficient than calculating the

determinant of the larger matrix of (3.7); however, (3.11) was

obtained by taking the matrix inverse of , so it is not clear

whether or not there is an overall computational advantage in

following this procedure.

The above mathematical manipulations can be directly applied to

electronic structure calculations using multiple scattering theory

E13,14,16,17). In the approximate coupling method, T and .5

are identified with the diagonal sub-matrices of (1.41),

while dyd, and Utr6,\ are identified with the off diagonal

sub-matrices. The 6e, and A , which represent the Green's

functions connecting the individual sub-clusters, are assumed to be

small in some sense. Suppose the energy eigenvalues of the

sub-cluster corresponding to the sub-matrix were found using

the molecular field approximation; these energy eigenvalues should not

differ greatly from those of (3.11), provided 6 and tro are

small. This suggests the following prescription for an approximate

multiple scattering theory:
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1) First, an energy eigenvalue (EO) is found from

sub-matrix To using the molecular field approximation.

2) The matrix elements of ,, , and Cr( are

calculated using EO as the energy; the matrix inverse of 's

is taken.

3) Determinants of the matrix

are calculated at various values of E until a zero is found.

This final value of E (call it El ) is assumed to be an

approximate solution of (3.11).

Note that in the third step of this procedure, the matrix

elements -ak, z , and &c, are unchanged. This means that

they must only be calculated once per eigenvalue. Similarly, the

matrix inverse of T need be taken only once per eigenvalue. Thus,

this procedure can lead to very substantial improvements in

computational efficiency, particularly for large systems.

The crucial question, of course, is the accuracy of this

approximation. How close is the energy El to the eigenvalue of

(3.11)? In general, it can be said that El is a good approximation

/ I __4/
if rAyo and C5rLc, are small, and if o , g , and 1{ are

relatively slowly varying over the energy range of interest. If the

molecular field eigenvalue EO differs greatly from the corresponding

eigenvalue of (3.11), it may be safe to assume that the conditions for
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weak coupling are not being met. However, even if the conditions of

weak coupling are not met, an iterative scheme can be used to find an

accurate energy. This iterative scheme is discussed in the next

section of this chapter.

The precise form of the approximate scattered wave theory can be

found by placing (1.41) in the form (3.13). Identifying T with

the sub-matrix of sphere 1 and T , with the sub-matrix of sphere

2 and that of the system outer sphere, one obtains:

4 1%

NiN

-I _7-j

%Jr~iL

(3. 14)

-J



where the notation denotes matrix inversion.

From the form of the second term of (3.14), it can be seen that

only the sub-matrix of the first term is modified. If this

modification is denoted , 3.14) can be re-written (with

explicit energy dependence):

(3-15)

This matrix looks like an SCF-Xa-SW calculation for sub-cluster 1, but

with modified boundary conditions at the surface of the partitioning

sphere. The effects of scattering from sphere 2 and from the system

outer sphere are entirely included in the term . With this

division of the molecule, sphere 1 will be'referred to as the

"principal" sub-cluster, while sphere 2 and the system outer sphere

will together be referred to as the "environment". This division is

arbitrary; for this example, it is equally possible to treat

sub-cluster 2 as the principal sub-cluster, with sub-cluster 1 and the

system outer sphere constituting the environment.

To find an eigenstate using this approximation, the following

procedure is used: first, the matrix elements of are computed

88Chapter 3
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with energy FC' , the molecular field energy level. Then E is varied

until a zero of the determinant of (3.15) is found. Note that the

matrix is calculated only once per eigenvalue, leading to very

substantial savings in computational effort.
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Approximate Coupling Techniques Applied To Methanol

To see if the approximate coupling method gives reasonable

results in practice, two test calculations have been performed on the

methanol molecule. The two calculations use different methods of

partitioning the atoms in the molecule, corresponding to Model I and

Model III of Chapter 2. The discussion of the motivation for the

different types of partitioning in Chapter 2 is applicable to the

current case as well. If the CH 3 and OH fragments are considered the

fundamental building blocks of the molecule, Model I is favored. If

the CO bond is considered the fundamental unit, Model III is more

appropriate. These distinctions are heightened by the use of the

approximation method, which explicitly assumes weak coupling between

the partitioned sub-clusters. Because the results of the fully coupled

calculations of Chapter 2 show that there is substantial C-0

interaction in most of the methanol orbitals, the approximate coupling

method should be more appropriate for Model III type of partitioning,

in which the carbon and oxygen atoms are in a single sub-cluster.

Nevertheless, an approximate coupling calculation has also been

performed for the Model I type of partitioning (in which the carbon

and oxygen atoms are in separate sub-clusters) to see if the technique

can be used in a situation that might more accurately be considered as

"strong coupling."

_W
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Model III Approximate Coupling

In the Model III calculation, the partitioning sphere containing

the carbon and oxygen atoms is treated as the principal sub-cluster,

while the four hydrogen atoms and the system outer sphere are treated

as the environment. The potentials for the approximate calculation

were obtained from the converged, fully coupled Model III calculation

described in Chapter 2; thus, the success of the approximate

calculation can be judged by how closely it replicates the molecular

orbital energies and wavefunctions of the previous calculation.

The second column of energy levels in Fig. 3.1 shows the results

of the initial molecular field calculation for the CO sub-cluster. The

formalism of (3.6) is used, so that scattering from the system outer

sphere is included. All scattering from the four hydrogen atoms is,

of course, neglected. Note that two pairs-of levels are degenerate:

the la", 3a' pair and the 2a", 5a' pair. This degeneracy is due to the

fact the true symmetry of the CO sub-cluster is ( , so that the

degenerate pairs correspond to 1V levels of an isolated molecule.

Even though the potentials in the molecular field calculation include

the electrostatic effects of the hydrogen atoms, the spherical

averaging process in the C and 0 atomic spheres precludes any symmetry

breaking.

For purposes of comparison, a standard SCF-Xa-SW calculation of

an isolated CO molecule was performed using the C-0 bond distance of

methanol. The results are displayed in the first column of Fig. 3.1.
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Co METHANOL

ISOL. MOL. ITER. ITER. FULLY
CO FIELD NO. I NO. 2 COUPLED

-0.3- 2",5o'

2at
40' -. -- 5do

-0.7- Ia", 3a'of 4a
I a

-- ~ 3-0'

6 20

cr

>- -1.1z

-'.5'

Ia

-1.9-

Fig. 3.1. Energy levels of approximate coupling calculations of

methanol using Model III partitioning, compared with a standard

SCF-Xa-SW calculation of an isolated CO molecule on the left and the

"exact" Model III partitioning results from Chapter 2 on the right.

The second column shows the molecular field energies found using the

formalism of (3.6). The third and fourth columns show the first and

second iteration approximate coupling results. The iteration scheme is

described in.the text.
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The energy levels seem very similar to those of the molecular field

calculation, except that they are shifted lower by about 0.5-0.6

rydbergs. This shift is explained by the donation of charge from the

hydrogen to the carbon and oxygen atoms in the methanol molecule.

Because this particular molecular field calculation uses a potential

converged in a fully coupled calculation, the energy levels reflect

the charge transfer but not the stabilization energy associated with

the interaction with the hydrogen atoms. For an approximate

calculation on a system too large for the fully coupled method, such

converged potentials would not be available. In such a case, the

initial potential would be obtained by superimposing potentials (or

charge densities) of the various sub-clusters; the sub-cluster

potentials would be obtained from standard Xa-SW calculations.

Column three of Fig. 3.1 shows the energy levels of the first

iteration of the approximate coupling method. The initial environment

energies (E Q in (3.13)) were taken from the molecular field

results. Comparing the approximately coupled results to the fully

coupled results in the fifth column, it is seen that although the

energy levels have the correct ordering, they have a tendency to

"overshoot" the fully coupled values. To correct this, a simple

iteration scheme was devised. In the fourth column of Fig. 3.1 are the

energy levels of another approximate coupling calculation, but with

initial energies obtained from the average of the molecular field

energies and the first iteration approximately coupled energies (i.e.,

those of column three). The energy levels resulting from the second

iteration are in remarkably good agreement with those of the fully

coupled case.
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Plots of wavefunctions from molecular field and the first

iteration approximately coupled calculations are shown in Figs. 3.2

through 3.8. Wavefunctions from the second approximately coupled

calculation are not shown because they are virtually identical with

those from the fully coupled calculation of Chapter 2.
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Fig. 3.2. Wavefunction plots of the molecular field (upper) and first

iteration approximate coupling calculations (lower) of the la'

methanol orbital using Model III partitioning.
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Fig. 3.3. Wavefunction plots of
iteration approximate coupling
methanol orbital using Model 1I

the molecular field (upper) and first

calculations (lower) of the 2a'
I partitioning.
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Fig. 3.4. Wavefunction plots of the molecular field (upper) and first

iteration approximate coupling calculations (lower) of the 3a'

methanol orbital using Model III partitioning.
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Fig. 3.5. Wavefunction plots of the molecular field (upper) and first

iteration approximate coupling calculations (lower) of the 4a'

methanol orbital using Model III partitioning.
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Fig. 3.6. Wavefunction plots of the molecular field (upper) and first

iteration approximate coupling calculations (lower) of the 5a'

methanol orbital using Model III partitioning.
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Fig. 3.7. Wavefunction plots of
iteration approximate coupling
methanol orbital using Model 11

the molecular field (upper) and first

calculations (lower) of the la"

I partitioning.
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Fig. 3.8. Wavefunction plots of the molecular field (upper) and first

iteration approximate coupling calculations (lower) of the 2a"

methanol orbital using Model III partitioning.
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Model I Approximate Coupling

The motivation of the approximate coupling calculation using

Model I type of partitioning is to see if the method works in a

situation in which the interaction between the principal sub-cluster

and the environment might more accurately be considered "strong

coupling". In Model I partitioning, a CH 3 fragment is in one

sub-cluster, while an OH is in the other, thus separating the atoms

that constitute the most important bond in the molecule.

To apply the approximate coupling method to this type of

partitioning, two sets of calculations must be done: one set in which

the methyl fragment is the principal sub-cluster (with the OH and

system outer sphere as the environment) and another set with the OH

fragment as the principal sub-cluster (with the CH 3 and system outer

sphere as the environment). The results of these two sets of

calculations are shown in Fig. 3.9, with the former set on the left

and the latter on the right. Two iterations of the approximate

coupling calculations are shown along with the molecular field

results. The results of the fully coupled calculations from Chapter 2

are shown in the center column of the figure. Energy level diagrams of

standard SCF-Xa-SW calculations of the isolated, neutral fragments are

shown in Figs. 3.10 and 3.11. The standard SCF-Xa-SW calculations used

the coordinates of the fragments as they exist in the methanol

molecule; furthermore, the radii of the outer spheres were equal to

the radii of the corresponding partitioning spheres of the Model I

calculation. The molecular field calculation was performed using the

formalism of (3.5), in which scattering from the system outer sphere
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Fig. 3.9. Approximate coupling calculations of methanol with Model I

partitioning compared with the "exact" results from Chapter 2 
in the

center column. The calculations on the left use the methyl fragment as

the principal sub-cluster, while those on the right use the OH

fragment as the principal sub-cluster.
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CH3

Fig. 3.10. Energy level diagram of an isolated methyl fragment found

using the standard SCF-Xa-SW method. Interatomic distances of the

methanol molecule were used in this calculation.
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Fig. 3.11. Energy level diagram of an isolated OH fragment found using

the standard SCF-Xa-SW method. Interatomic distances of the methanol

molecule were used in this calculation.
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is neglected. The iteration scheme used for the approximate coupling

calculations was the same as that used in the previous section, in

which the average of the initial and final energies of the first

iteration is used as the initial environment energy of the second

iteration.

The molecular field energies are shifted downward significantly

from the energies of the standard SCF-Xa-SW calculations of the

isolated fragments. This differs from the Model III situation, where

the electron donation from the hydrogen atoms caused the molecular

field energies to rise. In the present case, most of the electron

transfer has occurred in the isolated fragments. The lowering of the

energies is caused by bringing the carbon and oxygen nuclei closer

together, as well as by the large system outer sphere (see Chapter 2

for a discussion of the effects of a large outer sphere).

It's interesting to note-that not all of the methanol orbitals

can be obtained from approximate coupling calculations using a single

principal sub-cluster. For example, the CH3 0H la' level is found only

when the OH fragment is chosen as the principal sub-cluster. This is

explained by the character of the la' level, which is predominantly 0

2s (91% oxygen versus 7% carbon). The reason that this orbital is

localized on the oxygen atom is closely related to the large energy

difference between it and the closest CH 3 molecular field level. The

approximate coupling method can be considered as a modification of the

boundary conditions of the partitioning sphere containing the

principal sub-cluster (see (3.15)); however, in this case there are no

nearby CH 3 energy levels to be so modified. Thus, it is not surprising

that the methanol la' level cannot be found when the CH 3 fragment is
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treated as the principal sub-cluster. Similar comments apply to the

methanol 2a' orbital, which is primarily localized on the carbon atom

(65% carbon versus 18% oxygen).

The situation becomes more complex with the higher lying valence

levels (3a', 4a', 5a', la", and 2a"). The 3a' and 5a' orbitals can be

found using either fragment as a starting point, while the 4a', la"

and 2a" orbitals can not. An explanation of why a methanol level can

be found from either sub-cluster lies in the nature of the levels,

which share electronic charge more evenly between the carbon and

oxygen atoms than the lower lying la' and 2a' levels. The 5a' orbital

consists of 50% oxygen and 32% carbon, while the 3a' consists of 64%

oxygen and 27% carbon. This delocalization is an expected result of

the relatively close proximity in energy of the CH3 and OH molecular

field levels.

However, a relatively equal charge distribution does not ensure

that an orbital can be derived from either sub-cluster. For example,

the charge of the la" orbital is equally distributed between the

carbon and oxygen atoms, yet this level cannot be found when the OH

group is used as the principal sub-cluster. Apparently, this is due to

the relatively large energy difference between the OH molecular field

a" level and the methanol la" level. There seems to be a limit to the

energy shift that the approximate coupling scheme can tolerate. This

limit cannot be precisely specified, and, in fact, seems to vary from

one case to the next.

The rather complicated interlacing of the two sets- of molecular

field levels to form the methanol spectrum emphasizes the point that

the interaction between the two sub-clusters is strong rather than
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weak. In fact, the structure of the upper valence levels of methanol

bears little resemblance to the structures of the CH3 and OH

fragments. The five high lying methanol levels are divided into two

groups, depending on whether the C-0 interaction is bonding (3a', 4a',

la") or antibonding (5a', 2a"). Within these two groups there are

smaller energy splittings determined by the degree of hydrogen

interaction or by whether the C-0 bond is sigma-like or pi-like. By

contrast, the energy splittings of the corresponding molecular field

levels are entirely determined by the interaction with hydrogen. In

the OH sub-cluster, the molecular field 2a' level (at E = -0.94

rydbergs) is sigma bonding between 0 and H, while the degenerate pair

(3a',la") is non-bonding (i.e., 0 p orbitals oriented perpendicular to

the 0-H axis). In the molecular field levels of the CH 3 sub-cluster,

the degenerate pair at -0.90 rydbergs (2a',la") are C p orbitals lying

in the plane of three hydrogen atoms. The higher C p orbital (the a'

at -0.675 rydbergs) is perpendicular to this plane, i.e., it lies

along the C-0 axis. Thus, the 3a' corresponds to a carbon p orbital

that is non-bonding with respect to hydrogen, in contrast to the

degenerate pair which is non-bonding.

Wavefunction plots of the molecular field and first iteration

approximate coupling levels are shown in Fig. 3.12 - 3.17. The

discontinuities in the wavefunctions at the partitioning sphere

boundaries for the molecular field levels are due to the use of the

formalism of (3.5). This can be contrasted with molecular field

wavefunctions in the previous section which were found using (3.6);

clearly, this latter technique gives more realistic wavefunctions.

Looking at the wavefunction plots, it is clear that there is
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Fig. 3.14. Wavefunction plots of the molecular field (upper) and first
iteration approximate coupling (lower) calculations of the 5a'
methanol orbital using Model I partitioning. The methyl fragment is
the principal sub-cluster.
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Fig. 3.15. Wavefunction plots of the molecular field (upper) and first
iteration approximate coupling (lower) calculations of the 4a'
methanol orbital using Model I partitioning. The OH fragment is the
principal sub-cluster.
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Fig. 3.16. Wavefunction plots of the molecular field (upper) and first
iteration approximate coupling (lower) calculations of the 5a'
methanol orbital using Model I partitioning. The OH fragment is the
principal sub-cluster.
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Fig. 3.17. Wavefunction plots of the molecular field (upper) and
iteration approximate coupling (lower) calculations of the 2a"
methanol orbital using Model I partitioning. The OH fragment is t
principal sub-cluster.
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little relation between the orientation of the atomic p orbitals of

the molecular field levels of a' symmetry and their orientation in the

corresponding approximate coupling states. For example, in the OH

molecular field level 3a', the 0 p orbital is nearly aligned with the

C-0 axis (see Fig. 3.15). However, the approximate coupling state

derived from that level is a pi state, with the 0 p orbital

perpendicular to the C-0 axis. The changes in the other molecular

field" states are no less drastic. Note that the symmetry restrictions

of the a' states prevent similar changes.

This state of affairs, in which the electronic structures of the

sub-units are unrecognizable in the structure of the whole system,

differs significantly from the Model I calculations reported earlier

in this chapter. In the previous case, it was clear that the

approximate coupling wavefunctions had the same basic character as the

molecular field wavefunctions. Because it involves relatively weak

coupling between the principal sub-cluster and the environment, the

Model III type of partitioning is more in the spirit of the

approximate coupling calculations. That this method works in the

current strongly coupled case is an encouraging indication that this a

robust and perhaps widely applicable approximation.
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Discussion

The most surprising outcome of these tests is how quickly the

approximate coupling results converge to the "exact" fully coupled

results. It's probably not possible to explain precisely why this

happens. Perhaps one can only re-state what does happen: The

electronic bound states of a sub-unit of a cluster are relatively

insensitive to the "freezing" of the energy of the scattering matrix

of that sub-unit's environment. This insensitivity extends even to the

case in which the bound state is delocalized and has substantial

charge density in the environment.

It has been that this technique works; but is it actually useful

in practice? It is clearly a potentially powerful tool for calculating

electronic states of systems much larger than is now practical.

However, some of the potential difficulties have been hidden by the

simple nature of the examples shown in this chapter. In a real

application of this technique, the results of a fully coupled

calculation would obviously not be available. It is possible that an

orbital of the entire system which could be derived from either

sub-cluster (as occurred in the Model I calculation) could be

mistakenly counted as two different orbitals. This problem is unlikely

to happen if the results are carefully examined, as the two orbitals

would be seen as very close in energy and very similar in character.

However, such a discrimination depends on the judgement of the

investigator, and cannot be mechanically implemented in the computer

codes.
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Another possible problem is that of failing to find an energy

level. This could conceivably happen in a "strong coupling" situation

in which the molecular field energy is distant from the energy of the

corresponding level of the whole system. Again, the judgment of the

investigator must be relied upon. In such cases, it's possible to use

a "best guess" for the initial environment energy, rather than the

molecular field energy. Convergence to the true eigenstate should be

rapid. It should be pointed out that this situation has not occurred

in any test to date.

Neither of these problems are critical; at worst, they demand

some human interaction in an otherwise automated procedure. In

addition, such problems are minimized by the extent to which the

sub-clusters can be described as weakly interacting. The partitioning

of the system should be chosen with this in mind.

The starting potentials for the tests in this chapter were

obtained from self-consistent calculations of the corresponding fully

coupled system. In a real application, such potentials would not be

available. A starting potential could be obtained by combining the

potentials (or charge densities) from self-consistent standard

SCF-Xa-SW calculations of the individual sub-clusters. The eigenstates

for this potential would then be found using the approximate coupling

techniques. Although the calculations described in this chapter were

not done self-consistently, there is, in principle, no obstacle to

doing so. In fact, it may be important to perform self-consistent

calculations for cases in which significant charge transfer between

clusters is expected.

The approximate coupling techniques described in this chapter
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have been shown to work both in situations where the inter-cluster

coupling could be described as "weak" and where it could be described

as "strong". In both cases, the approximate method rapidly converged

to the fully coupled (or "exact") results. However, the test clusters

used were relatively small. A further test of this method on a larger,

more realistic application is described in Chapter 4.
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CHAPTER _ - CO CHEMISORPTION ON SUPPORTED RHODIUM CATALYSTS:

APPLICATIONS OF MOLECULAR PARTITIONING AND APPROXIMATE COUPLING THEORY

The chemisorption of CO and other molecules on transition metal

catalysts has received much attention. Because many practical

applications involve supported catalysts [1], the interaction between

the support material (typically alumina or silica) and the transition

metal catalyst (typically a platinum group element) is of particular

interest. In this chapter, molecular orbital calculations of clusters

representing rhodium supported on alumina (both with and without

chemisorbed CO) are presented and discussed. Aside from the intrinsic

interest in the chemistry of this system, a primary purpose for this

study is the opportunity it provides for a realistic application of

the partitioning techniques discussed in Chapter Two and the

approximate coupling techniques discussed in Chapter Three.

In the past, the SCF-Xa-SW method has been successfully applied

to many types of catalytic problems [2-5]. For heterogeneous

catalysts, small clusters of atoms are chosen to model the active

catalytic surfaces. Many questions of theoretical interest, such as

the nature of the "potential surface", cannot be answered with Xa-SW

calculations (or with most other computational techniques);

nevertheless, knowledge of the bonding and electronic interactions

between the chemisorbed molecule and the surface can lead to a broader

understanding of the catalytic process.

The chemisorption of CO on alumina supported rhodium has been

extensively studied with infrared spectroscopy and NMR [6-8). Although

there is some disagreement in interpretation, these studies identify
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at least three distinct types of rhodium binding sites. Species I

consists of two CO molecules bound to a single isolated rhodium atom.

Species 1I is a single CO bound to a rhodium atom which is part of a

larger metallic "raft" of rhodium atoms, while species III is a CO

bridged between two rhodium "raft" atoms. J.T. Yates and co-workers

[9) claim that electron microscopy experiments have shown that species

I is not atomically dispersed. In their view, species I atoms occur on

the edges of the metallic rafts. However, the case for atomically

dispersed rhodium has been made by C.A. Rice and co-workers [8] using

infrared spectroscopy. Rice and other investigators also claim that

there is evidence that the species I rhodium is in a +1 oxidation

state. Other types of binding sites have been tentatively identified

by Rice, including an isolated rhodium atom with a single CO.

In this study, two model clusters have been used to study the

CO-rhodium-alumina chemisorption problem. The first consists of a

single rhodium atom supported on a seven atom group representing

alumina. The second (CO/RhAlO6 ) is the same as the first but with a CO

molecule attached carbon first to the rhodium atom. This second

cluster can be considered to represent the single carbonyl isolated

rhodium species identified by Rice et al; however, it is likely that

this model will also give insight into the chemical bonding of the

dicarbonyl rhodium (species I). The interatomic distances used to

construct these clusters were obtained from Ref. [10]; they are

displayed in Table 4.1. Schematic diagrams of the clusters are shown

in Figs. 4.1 and 4.2.

The standard SCF-Xa-SW calculations of these two clusters are

presented in the second section of this chapter. A partitioned
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TABLE k.1

Coordinates for RhAl06

Atom X Y Z Radius Alpha

outer sph. 0.0 0.0 -1.052 6.419 0.73554
Al 0.0 0.0 -2.086 2.215 0.72853
01 -2.947 0.0 2.827 2.539 0.70217
01 1.474 -2.552 0.0 1.989 0.74447
01 1.474 2.552 0.0 1.989 0.74447
02 2.947 0.0 -4-170 2.129 0.74447
02 -1.474 2.552 -4-170 2.129 0.74447
02 -1.474 -2.552 -4-170 2.129 0.74447

Coordinates for CO/RhA06

outer sph. 0.0 0.0 1.628 8.633 0.73896
C 0.0 0.0 6.701 1.417 0.75928
0 0.0 0.0 8.837 1.425 0.74447

Coordinates for Partitioning Spheres of CO/RhAI06

sph. 1 0.0 0.0 7.773 2.488 0.75039
sph. 2 0.0 0.0 -1.052 6.419 0.73554
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Fig. 4.1. Schematic drawing of RhAl06 cluster.
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Fig. 4.2. Schematic drawing of CO/RhAl06 cluster.
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calculation of.the second cluster is described in the third section,

and the approximate coupling treatment of the second cluster is

described in the last section.
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Standard SCF-Xa-SW Calculation of RhALO6and CO/RhAlO6

The electron energy levels for the RhAl06 and CO/RhAI06 clusters

are shown in Fig. 4.3. Both of these calculations assumed a charge of

-9 on each of the clusters; to stabilize the electronic charge, a

Watson sphere of radius 6.4186 bohrs was used for the RhAl06 cluster,

and a Watson sphere of radius 8.6328 bohrs was used for the CO/RhA06

cluster. In addition, both clusters used an inner Watson sphere of

radius 4.9131 bohrs.

For most catalytic systems, it is generally true that the

molecular orbitals of greatest catalytic importance are those lying

near the Fermi level. The three highest occupied levels of the RhAI06

cluster (e, a,, and e) are primarily rhodium d orbitals ( d-xz, d-z2,

and dx2-y2 respectively, where the z axis points along the

aluminum-rhodium axis). Plots of the wavefunctions of these orbitals

are shown in Figs. 4.4-4.6. These rhodium levels are pushed to the top

of the valence band by their antibonding interaction with the oxygen

atoms of the alumina support. Similar effects have been seen in

numerous other molecular orbital studies of transition metal- support

or transition metal-ligand interactions.

Many other orbitals throughout the upper valence band (-1.1 to

-0.5 rydbergs) have some rhodium d character. In the center of this

band the rhodium is essentially non-bonding, while in the four lowest

levels it is bonding. The al level at E= -1.03 rydbergs consists of

rhodium d-z2 bonding with aluminum and oxygen, while the three next

higher lying orbitals are rhodium-oxygen bonding levels.
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Fig. 4.3. Comparison of the energy level diagrams of the RhAl06 and
CO/RhAl06  clusters. Both of these calculations were done with the
standard SCF-Xa-SW method. The CO 4 sigma level interacts with the
10al orbital of the RhAl0 6 cluster to form the primary CO-rhodium
bond (the 8al orbital). The CO pi antibonding orbital interacts with
the 12e orbital of the RhA10 6 cluster, leading to "back-donation."
Note that the energy scales of the two calculations have been adjusted
for purposes of comparison.
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Fig. 4.4. A wavefunction plot of the lie orbital of the RhAJ06

cluster.
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Fig. 4.5. A wavefunction plot of the 10al orbital of the RhAl06
cluster, showing the Rh d-z2 character; this orbital leads to the
primary rhodium-CO bond in the CO/RhAl0 6 cluster (the 8a1 level).
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Fig. 4.6. A wavefunction plot of the 12e orbital of the RhAl06
cluster; this is the highest occupied molecular orbital.
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The energy levels of the CO/RhAl0 6 cluster (in Fig. 4.3) have

been shifted so that the levels can be easily compared with those of

the RhA106 cluster. It can be seen that the energy level structures

are nearly identical. The significant differences arise from those

orbitals having substantial CO-rhodium bonding interactions, namely

the Ba, and the Ile levels. The Ba, level, whose wavefunction plot is

shown in Fig. 4.7, consists of a strong CO-rhodium sigma bond, derived

from the 5 sigma level of the isolated CO molecule. The Ile level,

shown in Fig. 4.8, is the CO-rhodium "back-bond", consisting of a pi

bonding interaction between the rhodium and the carbon atom, and a pi

antibonding interaction between the carbon and the oxygen. This

corresponds to the CO 2 pi level, which is unoccuppied in the isolated

CO molecule. The back donation is relatively weak, as the carbon and

oxygen atoms each have less than 6% of the charge in the e orbital.

Note should be taken of the other two valence levels'of CO: the e

level at -2.16 rydbergs corresponds to the CO 1 pi, and the al level

at -2.53 rydbergs (not shown in Fig. 4.3) corresponds to the CO 4

sigma. Both of these orbitals are non-bonding with respect to the

rhodium.
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Fig. 4.7. A wavefunction plot of the Bal orbital of
the CQ/RhAl06 cluster, found using the standard SCF-Xa-SW method.
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Fig. 4.8. A wavefunction plot of the 12e orbital of the CO/RhAI06
cluster, calculated using the standard SCF-Xa-SW method. This plot
shows the "back-donation" of charge from the rhodium to the CO pi
antibonding orbital.
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Partitioned Calculation of CO/RhAI06

A cluster composed of a molecule chemisorbed on a surface

presents a particularly appropriate application of the partitioning

techniques described in Chapters 1 and 2. Such clusters are often

characterized by a large outer sphere and by a great deal of "empty"

interatomic space. The volume averaging of charge and potential over

such a large interatomic region may lead to significant inaccuracies;

these effects can be reduced by the inclusion of partitioning spheres.

In addition, placing the surface sub-cluster and the adsorbed molecule

in separate partitioning spheres appeals to physical intuition. The

surface and adsorbate are chemically quite distinct; it is expected

that the interactions within each sub-cluster will dominate those

between the sub-clusters.

A schematic diagram of the partitioning spheres used in the

CO/RhA106 cluster is shown in Fig. 4.9. Note that the geometry of the

cluster allowed tangent partitioning spheres to be used. Without the

partitioning spheres, the volume of the interatomic region is 1523

cubic bohrs; the interatomic volume inside the two partitioning

spheres is 814 cubic bohrs. Thus, the use of the partitioning spheres

decreases what might be called the "effective" interatomic volume by

nearly 50%.

The electron energy levels of the partitioned calculation are

shown in Fig. 4.10, along with the standard SCF-Xa-SW results for the

identical cluster. The partitioned calculation used the same Watson

and inner Watson sphere as that used in the standard SCF-Xa-SW case.

It can be seen that the primary result of using the partitioning
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Fig. 4.9.
CO/RhA 106

Schematic drawing of the partitioning spheres used for the

cluster.
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Fig. 4.10. Comparison of the energy level diagrams of the CO/RhAl06
cluster using the standard SCF-Xa-SW method (left) and the

partitioning method (right). Note the differences in the three primary

CO orbitals (7a1, 8e, and 8al). The energy scales are the same for

both calculations.
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spheres is to shift the energy levels to higher energy. This shift is

the expected result of containing more of the electronic charge closer

to the atomic nuclei (see the discussion in Chapter 2). The constant

potentials in the three different interatomic regions are markedly

different from the value of -1.738 rydbergs found in the standard

SCF-Xa-SW case. For the partitioned case, the constant potential of

the CO sub-cluster was -2.300 rydbergs, that of the RhAl06 sub-cluster

was -1.505 rydbergs, and that of Region 11 (i.e., outside the two

partitioning spheres) was -1.728 rydbergs. Note that the overall shift

in the energy levels was roughly about 25% less than the shift in the

constant potential of the RhAl06 sub-cluster. This agrees with

previous observations that the one electron energy levels tend to

track the value of the intersphere potential [11).

A distinct, and possibly significant, difference between the

partitioned results and the standard SCF-Xa-SW results is found in the

relative splitting of the CO levels. In the standard SCF-Xa-SW case,

the energies corresponding to the CO 4 sigma, 1 pi, and 5 sigma levels

are -2.53, -2.16, and -2.08 rydbergs respectively. The corresponding

energies for the partitioned case are -2.31, -2.10, and -1.90

rydbergs. For the partitioned case, the sigma levels are shifted

upwards by about 0.2 rydbergs, while the pi level is shifted by only

0.06 rydbergs. In the methanol studies of Chapter Two, it was found

that a partitioning sphere placed around a CO fragment improved the

ordering of and splitting between pi and sigma levels. Thus, it can be

expected that the partitioned calculation for the CO/RhAl0 6 cluster

gives a more accurate picture of the splitting between these three CO

levels.
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Although there are no photoemission data on CO chemisorbed on

supported rhodium, R.J. Baird and co-workers [12] have performed UPS

experiments with CO chemisorbed on Rh(110). They observed two

prominent CO derived lines at 7.6 eV and 10.6 eV below the Fermi

level. Baird identifies these lines with the CO 4 sigma (more tightly

bound) and the combined 5 sigma, 1 pi levels (less tightly bound

line). Earlier studies of CO chemisorbed on Ni and Pd have made the

same identification of similar features 5]. These earlier

identifications were in good agreement with standard SCF-Xa-SW

calculations.

Rigorously speaking, a direct comparison cannot be made between

photoemission data and Xa one electron eigenvalues. Transition state

energies are the relevant quantities for comparison. Nevertheless, in

practice the Xa eigenvalues have often proved to be a useful guide.

With this caveat, it seems that neither the standard SCF-Xa-SW or

partitioned calculations presented here can be reconciled with the

assignments that Baird has made.An alternative assignment would

identify the UPS line at 7.6 eV with the 1 pi level and place the 5

sigma level buried within the rhodium d levels. This assignment would

agree with expectations that forward donation from CO to rhodium

should be weaker (and back donation stronger) than for the case of

nickel or palladium, which are to the right of rhodium in the periodic

table. For nickel and palladium, the transition metal-CO interaction

is strong enough to pull the 5 sigma level below the 1 pi level. In

the case of rhodium, however, this interaction is relatively weak, and

the orbitals retain the ordering of the isolated CO molecule.

Additional support for this assignment lies in the lack of any
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observable structure in the 7.6 eV line. Because Baird and co-workers

claim an instrumental resolution of 0.4 eV, identifying both the 5

sigma and the 1 pi levels with the 7.6 eV line implies that they are

almost exactly degenerate. Such a degeneracy is not observed in either

of the calculations presented here.

Another difference between the partitioned and standard SCF-Xa-SW

calculations is the distribution of electronic charge. The charges on

the individual atoms for the RhAl06 cluster are shown in Table 4.2.

The absolute values of these charges are not accurate, because they

depend strongly on the somewhat arbitrary values of the atomic sphere

radii. However, some insight can be gained by examining the relative

values among the various calculations, as they have all used the same

atomic radii.

The oxidation state of isolated rhodium atoms on an alumina

support has been discussed by several workers 18,13]. The consensus

opinion is that species I rhodium (with two attached carbon molecules)

should be in an oxidation state of +1. While the total charges of

Table 4.2 do not show an oxidation state of +1, it is interesting to

note that when the CO is attached, the charge on the rhodium atom

decreases by 0.28 electrons for the standard SCF-Xa-SW case and by

0.58 electrons for the partitioned case. The difference between the

two calculations is primarily acounted for by greater back donation to

the CO molecule in the partitioned calculation. The back bonding e

level is 6.4% C, 4.9% 0 for the standard SCF-Xa-SW case, and 9.6% C,

10.2% 0 for the partitioned case. Furthermore, an additional 0.1

electron is transferred to the aluminum atom in the partitioned case.

Assuming that the charge transfer to CO is the primary cause of
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TABLE 4.2

Total Atomic Charges in RhAl06 and CO/RhAI06 Clusters

RhAJO6 CO/RhAl06

Atom (stan. Xa) [a] (stan. Xa)

46.12

11.85

9.30

9.71

5.39

8.65

45.84

11.99

9.28

9.77

[a]. The intersphere and outer sphere

in proportion to their valence charge.

(part.) [b]

5.51

8.88

45.54

12.07

9.25

9.75

charge was divided among the atoms

[b]. The intersphere charge within each partitioning

sphere was divided among the atoms of that sphere in

proportion to their valence charges. The charge in the outer

sphere region and in region 1I (outside the partitioning

spheres) was divided among all of the atoms in proportion to their

valence charges.

C

03

Rh

Al

01

02
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the decrease of rhodium charge in both cases, one can speculate that a

cluster with two attached CO molecules (representing species I) would

roughly double the decrease of charge on the rhodium atom. If the

charge transfer to the aluminum were discounted, this would lead to

Rh(+0.28) for the standard SCF-Xa-SW calculation, and Rh(+0.92) for

the partitioned case. Thus, the partitioned calculation tends to

support the widely held belief that species I rhodium is in the +1

oxidation state, and adds the new information that the missing charge

is transferred to the chemisorbed CO. However, these numbers must be

considered speculative, as many important determinants of the charge

state are not considered here. For example, the above estimate assumes

that the rhodium in the RhAl06 cluster is close to being neutral; the

calculations give us no reliable information on this point.

In summary, it can be seen that the inclusion of the partitioning

spheres does lead to significant differences in electronic structure.

The partitioned calculations for CO/RhAlO6 lead to spectral

assignments that differ from those of the experimental literature.

However, additional research would be helpful to confirm these

results. In particular, a molecular orbital study of CO chemisorbed on

an unsupported rhodium surface would resolve the question of the

effect of the metal-support interactions on the CO levels.

NJ



Chapter 4 143

Approximate Coupling Treatment of CO/RhA106

Approximate coupling calculations have been performed on the

partitioned CO/RhA106 cluster. Because this cluster is tractable with

the fully coupled method, these calculations serve primarily as a test

of the approximate coupling method. The results will not give new

information on the CO/RhAl06 cluster, but they will give information

on the range of the applicability of the approximate coupling

technique. The CO/RhAJ0 6 chemisorption problem provides a particularly

good test case for the approximate coupling method described in

Chapter Three. There are several reasons for this; first, the

adsorbate-surface system is very easily divided into two sub-clusters,

as discussed in the third section on the partitioned calculation. It

is quite natural to think of the adsorbate molecule as the principal

sub-cluster, with its properties being somewhat modified by the

surface sub-cluster (i.e., the "environment"). Of course, it is also

possible to treat the surface as the principal sub-cluster. In either

case, most of the molecular field energy levels should be unaltered by

interaction between the two sub-clusters. The only orbitals that

should be noticeably affected are those for which the

adsorbate-surface interaction has significant bonding or antibonding

character.

Another reason for the use of the approximate coupling method is

found in the way that chemisorption studies are often done. Typically

one may be interested in trends that develop when a series of

different types of molecules are chemisorbed on a single type of
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surface (or vice versa: a single type.of molecule on different

surfaces). In principle, it is possible to converge a large surface

cluster only once (using the standard SCF-Xa-SW method), and use the

resulting potential as a starting point for a whole series of

adsorbate-surface calculations using the approximate coupling method.

Use of this procedure would save very substantial amounts of computer

time, and make systematic chemisorption studies practical even with

large surface clusters.

A third reason for the use of of the approximate coupling method

in chemisorption problems is the potential ability to treat very large

surface clusters. While standard SCF-Xa-SW techniques have been widely

and successfully applied to surface problems, its use still encounters

controversy from theorists schooled in band structure techniques. In

particular, criticism is directed at the modelling of an infinite

surface by a cluster consisting of a small number of atoms. Most

standard SCF-Xa-SW calculations of transition metal surfaces are

limited to a dozen or so atoms by practical and numerical

considerations. To use the approximate coupling method for a molecule

adsorbed on a very large surface cluster, the system would probably be

divided differently. The principal sub-cluster would consist of the

adsorbed molecule and a few atoms of the adjoining surface. The

environment would consist of the more distant atoms of the surface

cluster. Although this type of calculation has not yet been performed,

it holds out the possibility of laying this controversy to rest.

The potentials for the CO/RhAI06 approximate coupling

calculations were obtained from self-consistent, converged, fully

coupled partitioned calculations described earlier in this chapter.
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Two sets of approximate calculations were performed: one with the CO

as the principal sub-cluster, and one with the RhAl06 as the principal

sub-cluster. The molecular field calculations used the formalism of

(3.6) in which scattering from the system outer sphere is included.

The iteration procedure used a slightly different weighting scheme for

finding the new trial environment energies, in which the old energy

was multiplied by 0.75 and the eigenvalue by 0.25; the next trial

environment energy was obtained from their sum. The procedure used for

the methanlo molecule in Chapter Three simply used the mean of the two

energies for the next trial energy.

The resulting energy levels are shown in Fig. 4.11. Because the

orbitals localized on the RhA106 cluster are virtually unchanged from

their molecular field values, they are not explicitly given; only

those orbitals with substantial CO character are shown in Fig. 4.11.

It is interesting to note that even those orbitals with substantial

CO-Rh interaction are shifted only slightly from their molecular field

levels. The Rh-CO sigma bonding orbital (the al level at E=-1.90) is

shifted by less than 0.02 rydbergs, even though the charge

distributions for this level are 16% 0, 64% C, and 17% Rh, indicating

substantial Rh-C bonding. The back-bonding orbital (the e level at

E=-1.43 rydbergs) is shifted by less than 0.04 rydbergs; its charge

distributions are 10% 0, 10% C, and 15% Rh. This is the only occupied

orbital with substantial CO character that cannot be derived from the

CO sub-cluster (i.e., with CO as the principal sub-cluster). The

molecular field CO e level at E=-1.36 (corresponding to a CO 2 pi

antibonding level) which might lead to the back-bonding level instead

develops
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CO CO/RhA10 6  RhAIO6

MOL. ITER. ITER. FULLY ITER. ITER. MOL.
FIELD NO. I NO.2 COUPLED NO.2 NO. I FIELD

e

T I
0j

e

Fig. 4.11. Energy level diagram for the approximate coupling

calculations for CO/RhA106. Only the levels with substantial CO

character are shown; the other orbitals are represented by the shaded

box. The calculations using the CO as the principal sub-cluster are on

the left, while those using the RhAl06 as the principal sub-cluster

are on the right. In the center are the "exact" energy levels from the

partitioned calculations.

NJ



Chapter 4

into an unoccupied state which is antibonding with respect to the C-Rh

interaction. The absence of the back-bonding orbital from the CO

sub-cluster can be explained, perhaps, by the relative weakness of the

back-donation.

In discussing the interaction of the CO molecule with the RhA106_

cluster, this method allows distinctions to be made between

"electrostatic" interactions and "electronic coupling" interactions.

The molecular field calculations can be said to include electrostatic

effects, because the potentials reflect the presence of the nuclei and

electronic charge of the atoms in the environment. The difference

between the molecular field levels and the fully coupled levels

reflect the degree of electronic coupling between the two

sub-clusters. Using this differentiation, it can be said that the

electrostatic interaction between CO and RhAl06 is strong, because the

CO molecular field levels are quite different from those of an

isolated CO molecule. On the other hand, it could be said that the

electronic coupling is weak, because the CO levels (and the rhodium

level involved in the back-bonding orbital) are shifted by a small

amount.

The weak electronic coupling implies that the approximate

coupling scheme is appropriate for this type of chemisorption problem.

However, the fact that the electrostatic interactions are large raises

the question of the importance of self-consistency. The results of

this chapter have generally shown that charge transfer between the

sub-clusters is important. If this were not a test calculation in

which converged self-consistent potentials are available, a starting

potential would be created by superimposing potentials (or charge
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densities) of converged sub-clusters. Would such a starting potential

include enough of the electrostatic effects? The answer isn't known

because such potentials have not yet been created. If it were not

adequate, some facility for self-consistent calculation of potentials

must be added to the approximate coupling procedure to allow for

charge re-arrangement both between and within the sub-clusters. As

mentioned in Chapter Three, there is, in principle, no obstacle to

self-consistent calculations within the approximate coupling scheme.

In summary, it has been shown that the approximate coupling

method successfully reproduces the eigenvalues found in fully coupled

calculations, both in the test case of methanol and in the more

demanding (and realistic) application to chemisorption. Thus, this

method has the potential of opening up new areas of application of the

Xa-SW method, applications which are otherwise impractical or

impossible due to large cluster size. This potential can be confirmed

only by further investigation.
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CHAPTER j - MOLECULAR ORBITAL MODELS OF METALLIC GLASSES

Since Duwez and co-workers first demonstrated that the alloy

Au-Si could be solidified in the amorphous state using rapid

solidification techniques, countless other metallic glasses have been

prepared and their properties studied [1]. The motivation for these

investigations has been more than pure scientific curiousity in a

novel state of matter; it has included the numerous practical

applications that some of these materials may possess. Metallic

glasses have exhibited unique magnetic, chemical, structural, and

electronic properties. In some cases, metallic glasses have

properties which cannot be obtained with crystalline alloys; in other

cases, they can substitute for crystalline alloys that are

prohibitively expensive. The wide range of compostitions from which

metallic glasses can be formed allows their properties to be

"fine-tuned", while also providing new materials or the study of the

physics of alloys.

Fundamental to the understanding of the properties of a material

is an understanding of its electronic structure. Electronic structure

calculations of crystalline substitutional alloys have long been a

thorny problem in solid state physics [2]. The band structure

techniques which have been very effective in elemental and compound

solids cannot be applied to alloys in which the translational symmetry
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is broken. Electronic structure calculations of metallic glasses

present even greater difficulties than crystalline substitutional

alloys. In addition to the compositional disorder characteristic of a

substitutional alloy, metallic glasses have topological disorder as

well. In fact , the definition of a metallic glass is generally taken

to be a material with no evidence of microstructure in x-ray

diffraction experiments. Thus, methods used for substitutional alloys

which rely on the existence of a crystal lattice are not necessarily

applicable to glasses.

There have been a variety of techniques used by other workers to

calculate the electronic structure of amorphous materials. The Bethe

lattice technique has been applied to a wide variety of semiconductor

problems, but its reliance on tight-binding formalism makes it

inappropriate for use with transition metals E3]. A number of studies

have been done in which the geometric structure of a large disordered

cluster has been determined by dense-random-packing-of-hard-spheres

(DRPHS) or similar techniques [4); this cluster can then be used as a

starting point for an electronic structure calculation, either as an

isolated cluster using tight-binding techniques or as a large unit

cell in a band structure calculation. Yet another method has been to

postulate a hypothetical crystal structure for an alloy having roughly

the same composition as the metallic glass under consideration [5).

Band structure calculations performed on such hypothetical crystal

structures yield densities of states which are generally consistent

with spectroscopic data obtained from the corresponding metallic

glass.

This study uses small clusters of atoms as a model for the

MM
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metallic glass. The clusters are constructed to incorporate what is

known lf the glass's local chemical environment. Unlike the cluster

studies described above, no attempt is made to include the effects of

disorder: the proposed clusters consist of four to nineteen atoms in

relatively symmetrical configurations. These "ordered" clusters

cannot model the effects caused by long range disorder, and this

failure is unfortunate; undoubtedly there is interesting physics

caused specifically by the randomness of the material. However, the

lack of convincing structural information on the nature of the

disordered state makes it difficult to include the effects of

disorder. The disordered clusters referred to previously consist of

100-1000 atoms arranged according to various structural theories of

the metallic glass, typically being a modified version of the DRPHS

model. While DRPHS does provide a plausible simulation of the

disordered state, many other proposed structures of the glass can also

reproduce the experimentally obtained pair distribution functions.

Thus, the relationship of DRPHS or any model to the structure of the

actual metallic glass is speculative at this time.

A justification for omitting consideration of the disorder is

found in the observation that photoemission studies comparing metallic

glasses and their crystalline counterparts reveal many similarities in

the electronic densities of states. This suggests that many essential

features of the electronic structure are determined by the local

chemical environment, certain aspects of which remain unchanged when

the material goes from an ordered to-an amorphous state. Electronic

structure calculations of amorphous semiconductors have relied on

similar assumptions; for example, amorphous Si is commonly modelled as
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a network of tetrahedral bonds to insure that the Si atom has the same

coordination number as the atoms of crystalline Si.

In spite of the similarities of the spectra of metallic glasses

and their crystalline counterparts, the use of small clusters has

clear advantages over band structure calculations. First, many

metallic glasses have no crystalline analogue. To perform a band

structure calculation on these glasses, one must assume a hypothetical

crystal structure. A cluster allows much more flexibility in

coordination number and interatomic distance because there are no

constraints imposed by the periodicity of a lattice. In addition,

alloys with three or more types of atoms can be easily modelled with

clusters, while corresponding crystal structures would become quite

complex. Finally, while disorder is not explicitly included in the

small cluster model, neither is long range order; in this respect, the

cluster calculations are more realistic than band structure

calculations. The periodicity which must be assumed for band

structure calculations may introduce artifacts in the resultant

densities of states.

How should the structure of the small clusters be chosen?

Because the precise structure of the glass is unknown, plausible

guesses must be made of an appropriate structure for the cluster.

However, these guesses are informed by two important sources of

information. First, knowledge of the behavior of similar alloys in

the crystalline state may qualitative information on the nature of the

bonding of the constituent atoms, as well as more quantitative

information on coordination numbers and interatomic distances.

Second, many metallic glasses have been experimentally studied with
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EXAFS, x-ray scattering, neutron scattering scattering, and other

structural probes. Experimentally obtained pair distribution

functions can sometimes provide important constraints on interatomic

distances and coordination numbers. Nevertheless, the relationship of

the clusters to the structure of the actual metallic glass must be

regarded as tentative and speculative. The results of calculations

using these clusters should not be regarded as rigorous, but rather as

a guide to the interpretation of experimental data.

Once a given cluster is specified, its electronic structure is

computed, from first principles, by the self-consistent-field Xa

scattered-wave (SCF-Xa-SW) molecular orbital method. This method has

been used in the past to show that cluster molecular orbitals can

provide a good description of many features of the electronic

structure of bulk materials, including elemental metals, alloys, and

amorphous semiconductors E6-10]. In this chapter, the results of such

calculations are reported for amorphous Pd-Si and Zr-Cu, two alloys

which are representative of the transition metal-metalloid (TM-M) and

transition metal-transition metal (TM-TM) types of glasses,

respectively.

Zr-Cu Metallic Glasses

To model the TM-TM alloy Zr-Cu, a series of clusters have been

studied which have the symmetry and structure of the close packed

lattices FCC and HCP. Close packed structures are appropriate for

Zr-Cu because the bonding of Zr and Cu is considered to be relatively

non-directional. Furthermore, these crystal structures correspond to

those of the pure metals Cu (FCC) and Zr (HCP). It might be noted
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that the use of clusters which are close packed is in the spirit of

the DRPHS model of the metallic glass, which can be considered as a

type of disordered close packing.

The FCC cluster is shown schematically in Figure 5.1. It is a

nineteen atom cluster having Td symmetry; this type of cluster has

been widely used in studies of crystalline metals and alloys [6,13).

The interatomic distance, 5.48 (au), was obtained from the interatomic

distance between Cu and Zr in crystalline Zr2 Cu. The cluster's

central atom and the six outer atoms are Zr; the twelve first nearest

neighbors of the central Zr are Cu atoms. This cluster can be

considered to represent a Cu rich Zr-Cu alloy, with composition of

roughly Zr3 7 -Cu 6 3.

Figure 5.2 shows a schematic representation of a 13 atom HCP

cluster having D3h symmetry. The central plane consists of seven Cu

atoms, while the upper and lower planes consist of three Zr atoms

each. The lower symmetry of this cluster allows more flexibility of

interatomic distances in comparison to the FCC cluster. In

particular, distances between like and unlike atom pairs can differ.

Results from EXAFS studies have been used to assign a length of 2.67 A

to the Zr-Cu bond, and a length of 3.10 A to the Zr-Zr bond [11). The

Cu-Cu bond length in this cluster is also 3.10 A, although this length

was not determined in the EXAFS study. This cluster corresponds to an

alloy with composition of roughly Zr46 Cu 54.

Figure 5.3 shows a diagram of the molecular orbital energy levels

of the HCP cluster, labelled according to the irreducible

representations of the D3h point group. The highest occupied orbital,

the 9e', has a population of 2 electrons. Figure 5.4 is a plot of the
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density of states of this cluster, obtained by Gaussian broadening of
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Fig. 5.1. Schematic drawing of the nineteen atom cluster modelling tne

local structure of the Zr-Cu metallic glass. This cluster has the

geometric arrangement of an FCC lattice.
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Fig. 5.2. Schematic drawing of the thirteen atom cluster modelling the

local structure of the Zr-Cu metallic glass. This cluster has the

geometric arrangement of an HCP lattice.
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the discrete levels according to the relationship

In this expression, E; is the Xa orbital eigenvalue, n; is the

orbital occupation number, and O'

chosen in this case to be 0.25 eV.

of a published photoemission study

(hv- 21.2 eV) [12). For purposes

the calculated density of states h

energy. Plotted in Figure 5.5 is

density of states into partial Cu

were obtained by weighting the occ

fraction of the charge density of

given atomic species. The energy

shown in Figure 5.6. The highest

is the width of the broadening,

Figure 5.4 also shows the results

of the metal l i c g l ass Zr60 Cu 40

of comparison, the Fermi level of

as been aligned with the zero of

the decomposition of the total

and Zr dens-ities of states. These

upation number in (5.1) by the

the given molecular orbital on the

level diagram of the FCC cluster is

occupied orbital of the FCC cluster

is the 4 tag , with a population of 2 electrons.

The calculated results for these two systems are qualitatively

quite similar. In the energy level diagrams and in the densities of

states the division of the spectrum into two distinct bands is

evident. While the lower consists primarily of Cu d levels, it has a

significant amount of Zr-Cu bonding character. Similarly, the upper

band is mainly composed of Zr d levels, but it has a significant

amount of Zr-Cu antibonding character. In both of these clusters,

there is characteristic similarity in the nature of the highest or

nearly highest occupied molecular orbitals; they exhibit a delocalized
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Fig. 5.5. Decomposition of the density of states of the thirteen atom
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Zr-Zr bonding structure, promoted in part by Zr-Cu antibonding. A

plot of a wavefunction of one of these orbitals is given in Figure

5.7. It is possible that such networks of Zr-Zr bonds may play a role

in the stabilization of the glass.

By examining Figure 5.4, it can be seen that the calculated

densities of states are in good quantitative agreement with the

photoelectron spectra. In particular, a noteworthy feature of the

photoemission data is the downward shift of about 1 eV observed in

the Cu d band in comparison to elemental Cu. If the position with

respect to the Fermi level of the Cu d bands in these alloy cluster

calculations are compared to the position of the d band in a pure Cu

cluster [13), shifts of 1.5 eV and 1.0 eV are seen for the FCC and HCP

clusters respectively.

Pd-Si Metallic Glasses

In this section, studies of Pd-Si, a representative of the TM-M

type of metallic glass, are presented. Recent experimental work has

revealed a distinction between the local environments of the TM-M and

the TM-TM glasses [14,15). In the TM-TM alloys, the nearest neighbor

of a given constituent may be a like or unlike atom. While there may

be a slight statistical preference for like or unlike pairs, x-ray

diffraction studies have shown that the constituents can best be

considered as randomly distributed. In contrast, the metalloid atoms

in TM-M systems exhibit strong interactions with the transition metal

atoms. Experimental evidence seems to support the widely held belief

that there are no metalloid-metalloid nearest neighbor pairs in TM-M
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Fig. 5.7. Plot of the wavefunction of the 5eg orbital from the

nineteen atom FCC cluster, showing second nearest neighbor Zr-Zr

bonds.
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metallic glasses.

Further insight into the nature of the local chemical environment

can be obtained by considering the nature of the bonding in

crystalline alloys, such as Pd 3Si. The range over which Pd-Si forms a

glass (14 to 22 %Si) is reasonably close to the concentration of Si in

crystalline Pd Si. The coordination of Si in Pd Si can be described

as six Pd atoms forming a trigonal prism about the central Si, with

three additional Pd atoms capping the square faces at a larger 
Pd-Si

distance. This general type of coordination is also seen in

crystalline alloys of Si, B, P, or C with many other transition metals

[16).

It is interesting to note that x-ray and neutron diffraction

experiments [17) on glassy Pd-Si give the number of nearest neighbors

of Si as six at the highest Si concentration (22%); for low SI

concentrations, the number is seven, which extrapolates to nine at 0%

Si. Clearly, these numbers are consistent with trigonal prismatic

coordination of the Si in the Pd-Si glass. It is tempting to

speculate that the glass is formed from non-periodic arrangements of

these trigonal prismatic units, and that the strength of the bonding

and relative stability of these units may play an important role 
in

the stability of the glass. It is, in general, more difficult to form

a periodic structure from large assymetrical structural units than

from spherically symmetrical atoms.

Three clusters representing Pd-Si alloys are depicted in Figures

5.8. 5.9, and 5.10. The Pd 3Si cluster in Figure 5.8 is tetrahedral,

representing half of a trigonal prism, while the Pd6 Si cluster of

Figure 5.9 represents the full trigonal prism. These two clusters

uJ
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Fig. 5.8. Schematic drawing of the Pd 3 Si cluster representing the

Pd-Si metallic glass.
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Fig. 5.9. Schematic drawing of the Pd6 Si cluster. The trigonal prism

of Pd atoms surrounding the Si atom is similar to the coordination of

Si in crystalline Pd 3 Si'
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-Pd

Fig. 5.10. Schematic drawing of the Pd3 Si 2 cluster. This cluster was
studied to investigate the possibility of second nearest neighbor
Si-Si bonds.
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nearly span the range of concentrations for which Pd-Si can be formed

into a glass . The Pd 3Si 2 cluster in Figure 5.10 has been investigated

with the intention of studying the possibility of second nearest

neighbor Si-Si interaction. The coordinates of all three clusters were

chosen to be consistent with partial pair distribution functions

obtained from published x-ray and neutron diffraction studies [15,18).

However, the Si-Si distance in the third cluster is simply a guess

based on observations suggesting that the Si-Si distance must be

greater than that of a second nearest neighbor.

The basic nature of the interaction between Pd and Si can be seen

in the electronic structure of the Pd 3Si cluster. As seen in the

energy level diagram in Figure 5.11 and the plot of the component

densities of states in Figure 5.12, there is a manifold of Pd d states

centered at about -0.5 rydbergs. The Si p states interact with the Pd

at the top and the bottom of this Pd d band. The- 2a1 and 3e levels,

at the bottom of the band, are bonding between Pd and Si. The plot of

the wavefunction of the 2a1  level is shown in Figure 5.13. The 5a,

level, at the top of the Pd d band, consists of a Si p state which is

antibonding with respect to Pd. A plot of the wavefunction of this

level, showing its very diffuse character, is given in Figure 5.14.

The Si s state at -0.91 rydbergs is completely detached from the Pd d

and Si p valence states.

The Pd 6Si cluster differs from the Pd 3 Si cluster in that the Si

is now completely coordinated, i.e., it has six nearest neighbor Pd

atoms, as it does in crystalline Pd Si. Examining the energy levels in

Figure 5.15, the most dramatic differences from the Pd3 Si results are

the Si-Pd bonding (1a2" and le') and antibonding (4a2" and 6e')
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Fig. 5.11. Energy level diagram of the Pd 3 Si cluster.
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Fig. 5.13. Plot of the wavefunction of the 2al orbital of the Pd3Si
cluster showing Si p, Pd d bonding interaqtion.
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Fig. 5.14. Plot of the highest occupied molecular orbital of the Pd3Si
cluster showing the diffuse Si p character.
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Fig. 5.15. Energy level diagram of the Pd6Si cluster. Note how the two
main Si-Pd bonding orbitals (le' and 1a2") have been pulled
substantially below the manifold of Pd d states.

K



Chapter 5 177

levels, which are now more definitely split off from the Pd d band.

The 1a2" and 2e' levels are pulled much lower in energy than the

corresponding orbitals (2al and le) of the Pd 3Si cluster. Because the

Pd-Si interatomic distances are identical in the two clusters, the

degree to which the 1a2" and 2e' levels are lowered is a measure of

the strength of the chemical bonding between the Si and the additional

three Pd atoms.

The strong chemical interaction between the Pd and Si has

implications for the mechanism of glass formation. Bernal [19] first

described the structure of a liquid metal as a dense random packing of

hard spheres. This theory is notable for the appearance of

characteristic interstitial voids, called "Bernal holes." Later, Polk

and others [20) explained the stability of TM-M glasses by assuming

that the smaller metalloid atoms would fill the Bernal holes created

by the dense random packing of the larger transition metal atoms. From

this viewpoint, the difference in the atomic sizes is crucial to the

stability of the glass. Chen and Park [21), using arguments based on

volumetric studies, argued that factors other than atomic size (such

as chemical bonding) must be important for the stability of TM-M

glasses in general and the Pd-Si glasses in particular. While the

cluster calculations reported here can shed no light on the relative

importance of the atomic size differential to glass formation, they do

lend weight to the claim that strong chemical bonding between the

transition metal and metalloid is important to the formation of the of

TM-M glasses.

The energy levels of the Pd 3Si 2 cluster are shown in Figure 5.16.

While the general features are similar to those of the first two
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clusters, the highest occupied orbitals (4e' and 4al') are of

interest. These orbitals are antibonding between the Si and Pd, but

bonding between the two Si atoms. The diffuse nature of this second

nearest neighbor bond is seen in the plot of the 4a' wavefunction in

Figure 5.17. Although the strength of such a bond is uncertain, one

might speculate that a network of such Si-Si bonds may have a role in

the stabilization of of the glass. In addition, because orbitals of

this type are at the Fermi level, they must determine the transport

properties of the alloy. It is interesting to note that these orbitals

can be considered to correspond to the Si conduction band, while the

lower Pd-Si bonding levels (le' and 2a' in the Pd Si cluster)

correspond to the Si valence band.

Both UPS and high resolution XPS studies of Pd-Si metallic

glasses have identified a shoulder in the density of states at the the

Fermi level that does not appear in pure Pd [22,23). Cartier and

co-workers claim that this shoulder arises from Pd d states; the

calculations presented here lead to the identification of the shoulder

with the Pd-Si antibonding orbitals. In all three clusters the Pd-Si

antibonding orbitals consist of Si p character and varying degrees of

Pd s-d hybridization. In the Pd3 Si cluster, the partial wave

decomposition of the Pd character of the 5a1 level is 57% s, 6% p, and

36% d. The 4a2" level of the Pd 6Si cluster has a partial wave

decomposition of 32% s,.5% p. and 64% d. The corresponding figures for

the 4al' and 4e' levels of the Pd 3Si 2 cluster are 40% s, 5% p, and 55%

d for 4al'; 18%s, 4% p, and 77% d for the 4e' state. For all three

clusters, significant Pd s-d hybridization is seen only in those

orbitals having substantial Si character.
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4ali

Pd

r

F ig 5.17. PIot of the wavefunction of the 4a1' orbitaI of the Pd3Si2
cluster, showing diffuse second nearest neighbor Si-Si bonds.
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To summarize, small clusters of atoms have been shown to provide

useful models for the calculation of the electronic structures of

TM-TM and TM-M metallic glasses. The calculated electronic structures

are in good quantitative agreement with, and provide an interpretation

of, published photoelectron spectra of amorphous Zr-Cu and Pd-Si. In

addition, these calculations provide information on the chemical

bonding in these alloys, giving into their glass forming ability.
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