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Abstract

Phase-field modeling of brittle fracture of linear elastic solids has been the subject of several studies
in the past 25 years. An attractive feature of this approach to model fracture is its seamless ability
to simulate the complicated fracture processes of nucleation, propagation, branching and merging
of cracks in arbitrary geometries. While most existing models have focussed on fracture of "ideal
brittle" materials, we consider fracture of "quasi-brittle" materials. The material is considered to
be quasi-brittle in the sense that it does not lose its entire load-carrying capacity at the onset of
damage. Instead there is a gradual degradation of the strength of the material, which is the result
of microscale decohesion/damage micromechanisms.

In this thesis we discuss the formulation of our gradient-damage theory for quasi-brittle fracture
using the virtual-power method. The macro- and microforce balances, obtained from the virtual
power approach, together with a standard free-energy imbalance law under isothermal conditions,
when supplemented with a set of thermodynamically-consistent constitutive equations will provide
the governing equations for our theory. We have specialized our general theory to formulate a simple
continuum model for fracture of concrete - a quasi-brittle material of vast importance. We have
numerically implemented our theory in a finite element program, and simulated numerical examples
which show the ability of the simulation capability to reproduce the macroscopic characteristics of
the failure of concrete in several technically relevant geometries reported in the literature.

Thesis Supervisor: Lallit Anand
Title: Warren and Towneley Rohsenow Professor of Mechanical Engineering
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Chapter 1

Introduction

Phase-field modeling of brittle fracture of isotropic linear elastic solids has been the subject of sev-

eral studies in the past 20 years. Major contributions to the field have been made by Francfort and

Marigo (1998), Bourdin et al. (2000), Bourdin et al. (2008), Miehe and coworkers (cf., e.g., Miehe

et al., 2010a,b, 2015), and Borden et al. (2012). In this approach to model fracture, one introduces

a scalar order-parameter or "phase-field" variable d E [0, 1], which affects the energy storage and

stiffness characteristics of the material. If d = 0 at a point then it is intact, while if d = 1 at

some point, then it is fractured. Values of d between zero and one correspond to partially-fractured

material. All fields remain continuous until the critical condition d = 1 is reached, and this gives

rise to the nucleation of a "crack" with attendant small zones of high gradients of d and therefore

stiffness. In the phase-field approach the evolution of d depends not only on d and other locally-

defined variables, but also on the gradient of the phase-field parameter Vd.

As reviewed by Ambati et al. (2015), phase-field modeling of brittle fracture overcomes the

limitations of the classical Griffith sharp-crack theory. An attractive feature of the phase-field

approach is its seamless ability to simulate the complicated fracture process of nucleation, propa-

gation, branching and merging of cracks in arbitrary geometries - propagating cracks are tracked

automatically by the evolution of the smooth phase-field d. This leads to a significant advantage

over the discrete fracture models, whose numerical implementation requires special methods for
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handling the discontinuities. In the phase-field approach the tedious task of tracking complicated

crack surfaces is avoided, and this significantly simplifies its numerical implementation relative to

the discrete crack formulations.

In contrast to fracture of "ideal brittle" materials, in this work we consider fracture of "quasi-

brittle" materials. A material is considered to be quasi-brittle in the sense that it is a heterogeneous

material with brittle constituents, which does not lose its entire load-carrying capacity at the onset

of damage. Instead there is a gradual degradation of the strength of the material, which is the result

of microscale decohesion/damage micromechanisms.

We focus in this thesis on modeling fracture of concrete, which is a quasi-brittle material of vast

importance. In laboratory-sized concrete specimens,1 the size of the fracture process zone ahead

of the crack tip in these materials can become quite large - compared to the other structural

dimensions - as the damage progresses on its path to total failure (Hillerborg et al., 1976; Bazant

and Oh, 1983; Van Mier, 1991; Bazant and Planas, 1998; Elices et al., 2002; Bazant and Le, 2017).

To model such materials we make a constitutive assumption regarding their behavior - we

consider some amount of local inelastic deformation that precedes the damage initiation and further

drives the damage progression. The quasi-brittle nature of concrete is attributed to the bridging

phenomena observed in these materials. The several micro-cracks that develop are bridged by the

various aggregate particles present within. This bridging phenomena has been investigated over

the past few decades and several researchers have reported on the bridging processes across length

scales.

Van Mier (1991) and Schlangen and van Mier (1992) vacuum-impregnated single-edge notched

plate tension specimens of concrete which were tested to a post-peak state, with a low-viscosity

fluorescing epoxy. Using high-contrast imaging techniques they were able to reveal some fine-scale

microstructural details in the macro-crack/damage-zone which they observed in their specimens.

They observed that the damage-zone occurs primarily perpendicular to the direction of the maxi-

mum principal tensile stress, and that the faces of the crack-like features in the damage-zone were

'Less than 1m in some characteristic size such as the depth of a beam.
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connected by ligaments which allow for some stress-transfer between the faces. To quote Van Mier

(1991):

"The macrocracks are highly discontinuous cracks with debonding near larger aggregates

and intact material bridges between them. The load carrying capacity of a tensile

specimen for average crack openings larger than 50pm can be explained from distributed

crack interface grain bridging. The failure of the grain bridges is a process involving

bending and frictional pull-out."

Such "crack face bridging" by aggregate particles was seen to occur for several different classes of

concretes; one such observation is shown in the Fig. 1-1(a).

I-..

I or'

(a) (b)

Figure 1-1: (a) Crack face bridging in concrete specimen observed by fluorescent epoxy impregnation.
Taken from Schlangen and van Mier (1992). (b) Micro-CT scan of Portland cement showing evidences of
the bridging phenomena. Taken from Trtik et al. (2007).

More recently, Trtik et al. (2007) conducted micro-tomography studies and observed similar

bridging mechanisms at a much finer length scale in micro-tension specimens of Portland cement

- one of the constituents of concrete - which is depicted in Fig. 1-1(b).

In the past two decades, great strides have been made in developing high performance polymer

fiber-reinforced "engineered cementitious composites" which exhibit multiple-cracking and significant

17



inelastic behavior in uniaxial tension (Li, 2003). In these cementitous composites, crack face bridging

is further enhanced by the polymer fibers. Fig. 1-2(a), taken from Wang and Li (2004), shows

engineering stress-strain curves from direct tension tests on un-notched specimens on one such

cementitious composite - a significant level of inelastic tensile strain, ~ 4%, is clearly evident in

this figure. Fig. 1-2(b) shows a representative photograph of the microcrack pattern observed on the

surface of one of the specimens. Multiple microcracks with bridging fibers develop in the specimen

perpendicular to the direction of the maximum principal tensile stress.

6

5

W
a-

23

C

-1

0
0 1 2 3 4 5

Strain (%)

(a) (b)

Figure 1-2: Fiber reinforced cementitious composite subjected to tension: (a) engineering stress-strain
curves. (b) Microcracks with bridging fibers normal to loading direction. Taken from Wang and Li (2004).

We note that the process of inelastic deformation, damage, and fracture in concrete with dis-

tributed fibers bears a certain similarity to the "crazing" process which eventually leads to fracture

in certain amorphous polymeric materials. A craze in a polymer is a planar crack-like defect that

develops and expands normal to the maximum principal stress direction. Figure 1-3(a) shows a

micrograph depicting several crack-like features developed during the crazing process in a loaded

polymethyl-methacrylate (PMMA) specimen. Further, as can be seen from figure 1-3(b), that shows

a microtomed polystyrene specimen, these crazes are usually bridged by micro-fibrils - hence the

crack faces are not traction-free.

18



- "N M

006

a)a

(a) (b)

Figure 1-3: (a) Crazes developed perpendicular to the loading direction in a PMMA specimen. Taken from

Ishiyama et al. (2001). (b)Microfibrils bridging across the crack faces of a craze in a polystyrene specimen.
Taken from Argon and Hannoosh (1977).

It is based on this similarity between the macroscopic characteristics of inelastic deformation,

damage, and failure in polymers and that of concrete, that we have borrowed the terminology of

"crazing" from the polymer literature to describe the deformation and failure processes in concrete.

In our view, whether it be in a polymer or in a concrete,

o a craze is a planar crack-like defect that develops and expands inelastically normal to the

maximum principal stress direction.

We emphasize from the outset that while we borrow the terminology "crazing" from the polymer

literature, we recognize that the crack-bridging micromechanisms leading to fracture in quasi-brittle

materials like concrete (cf., e.g., Van Mier, 1991), are very different from those leading to craze for-

mation, growth, and breakdown in polymers.

For the continuum level of interest here, the inelastic deformation due to crazing will be defined

as an average over a microstructural representative volume element that results in an acceptably

smooth process at the macroscopic level (prior to final fracture). We will introduce a simple craze

initiation criterion based on the local maximum principal tensile stress reaching a critical value,

19



which we call the craze resistance. After crazing has initiated, our continuum model will allow for

(a small amount of) craze-widening by dilational inelastic stretching which will be taken to occur

in the direction of the local maximum principal stress. Finally, in order to model craze-breakdown

and fracture, we develop a damage theory which depends not only on a damage variable d, but also

its gradient Vd, which represents a measure of the spatial inhomogeneity of the damage during the

fracturing process. Hence there is a material length scale, e, in the vicinity of a crack over which the

damage variable d varies between zero and one, i therefore represents a measure of the "width of the

damage process zone". Another reason for introducing a gradient-damage theory is to "regularize"

the strain-softening behavior during the fracture process as in Francfort and Marigo (1998), and

to avoid mesh-dependency related issues during finite element simulations - as in the pioneering

studies on fracture of quasi-brittle materials (cf., e.g., Pijaudier-Cabot and Bazant, 1987; Peerlings

et al., 1996, 1998), and also in the more recent phase-field theories of fracture of brittle materials

(cf., e.g., Miehe et al., 2010a,b, 2015; Borden et al., 2012). Numerically, a gradient theory can ensure

that the simulation results are mesh-independent, provided the mesh size is small enough; that is,

typical element size h, less than ~ 0.2f.

There has been considerable recent activity in the research community to propose models for

quasi-brittle fracture which use various non-local, gradient-damage, or phase-field-regularized cohe-

sive zone models (cf., e.g., Lorentz, 2017; Wu, 2017; Wu et al., 2018, and the reference cited therein).

The objectives of this thesis are similar to the objectives in these other recent efforts in the literature.

However the details of our theory and its development are quite different. A major point of depar-

ture of our theory is that while most existing phase-field models of fracture have been formulated

using a variational approach, 2 in this thesis we shall formulate our phase-field - or more precisely

a gradient-damage theory - for fracture of quasi-brittle materials using an alternative approach.

Specifically, we shall formulate the balances in our theory by following the pioneering virtual-power

method of Germain (1973) and Gurtin (1996), and in a spirit similar to that of Fremond and Nedjar

(1996) who first adopted the virtual-power method to formulate a gradient-damage theory. This

approach leads to "macroforce" and "microforce" balances for the forces associated with the rate-

like kinematical descriptors in the theory. These macro- and microforce balances, together with a

2 Variational arguments, by their very nature, cannot adequately characterize the dissipation associated with
inelasticity and fracture.
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standard free-energy imbalance law under isothermal conditions, when supplemented with a set of

thermodynamically-consistent constitutive equations will provide the governing equations for our

theory. We have specialized our general theory to formulate a simple continuum model for fracture

of concrete - a quasi-brittle material of vast importance. We present results from our numeri-

cal implementation that demonstrates it's capability to reproduce macroscopic failure response of

concrete. Subsequently, we also show preliminary results of applicability of our model to materials

other than concrete, when specialized suitably.

21



22



Chapter 2

Theoretical framework

This chapter concerns with the formulation of a thermodynamically-consisitent continuum mechan-

ical damage model for a quasi-brittle fracture.

Our theory relates the following basic fields: 1

'Notation: We use standard notation of modern continuum mechanics Gurtin et al. (2010). Specifically: V and

Div denote the gradient and divergence with respect to the material point X in the reference configuration; grad and

div denote these operators with respect to the point x = X(X, t) in the deformed body; a superposed dot denotes the

material time-derivative. Throughout, we write F'-' = (F)--, FT = (F')T, etc. We write tr A, sym A, skw A,
Ao, and sym0 A respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor

A. Also, the inner product of tensors A and B is denoted by A: B, and the magnitude of A by JAI = VA: A.
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x = X(X, 0),

Fz=VX, Jz=detF>O,

F = FeFC,

FC, Jc detFc> 1,

Fe, Je=detFe>0,

Fe= ReUe

Ue =:_ Aere 0 re,

= Z_ (in A )r' 0 re,

me,

T = Je-ReMeReT,

TR = JTF-T ,

,

Sc > 0,

IE ;> 0,

d E [0, 1],

Vd,

f > 0,

motion;

deformation gradient;

multiplicative decomposition of F;

inelastic craze distortion;

elastic distortion;

polar decomposition of Fe;

spectral decomposition of Ue;

logarithmic elastic strain;

Mandel stress conjugate to logarithmic strain Ee;

Cauchy stress;

Piola stress;

free energy per unit reference volume;

craze resistance;

craze strain;

damage variable;

gradient of d;

length scale in the gradient damage theory.

We restrict our attention to isothermal conditions and assume that the material behavior may be

modeled as isotropic.

2.1 Kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a fixed

reference configuration, and denote by X an arbitrary material point of B. A motion of B is then a

smooth one-to-one mapping x = X(X, t) with deformation gradient, velocity, and velocity gradient

given by

F = VX, v= , L = grad v = F-1. (2.1)
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We base our theory on the multiplicative decomposition of the deformation gradient,

F = FeFc.

As is standard, we assume that

and hence, using (2.2),

J = Je J, and we assume that

def
J = detF >0,

je f det Fe > 0 and Jc=dt det Fe > 0,

so that F' and FC are invertible. Here, suppressing the argument t:

(i) FC(X) represents the local inelastic deformation in an infinitesimal neighborhood of material

at X due to "crazing" which eventually culminates in a "quasi-brittle"-type failure.

(ii) F6 (X) represents the local deformation of material due to stretch and rotation of the micro-

scopic structure.

We refer to FC and F' as the craze and elastic distortions, respectively.

The right polar decomposition of F' is given by

(2.5)

where Re is a rotation, while U' is a symmetric, positive-definite tensor with

Ue = vFeT Fe. (2.6)

As is standard, we define

Ce = Ue2 = FeTFe.

By (2.1)3 and (2.2),

L = Le + FeLCFe-1

25
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(2.7)

(2.8)
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with

Le - YeFe-1 Lc = PcFc-1

As is standard, we define the elastic and craze stretching and spin tensors through

We = skw L', DC = sym Lc, WC = skwLc,

so that Le = De + We and Le = Dc + Wc.

We make the following additional kinematical assumption concerning craze flow:

(i) First, from the outset we constrain the theory by assuming that the craze flow is irrotational,

in the sense that 2

WC = 0. (2.11)

Then, trivially, Lc = DC and

PC = DcFc.

On account of (2.11), the relation (2.8) reduces to

L = Le + FeDcF-1.

(ii) Second, we assume that DC has the form (Gearing and Anand, 2004)

(2.12)

(2.13)

DC -- cNC with Nc = m ( m, (2.14)

where m is a unit vector (yet to be specified),

Dc = IDcl > 0, (2.15)

represents a craze extension rate in the direction m. We call

Cdef t
E - c(s) ds (2.16)

0
2 This assumption is adopted here solely on pragmatic grounds: when discussing finite deformations the theory

without craze spin is far simpler than one with craze spin.
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the craze-strain.

Thus, using (2.1), (2.2), and (2.14) we may write (2.13), for future use, as

(Vj)F- 1 = #eFe- + c Fe Nc Fe- 1 . (2.17)

2.2 Damage variable

Next, in order to model the process of "craze-breakdown", we introduce a damage variable or phase-

field,

d(X, t) C [0, 1]. (2.18)

If d = 0 at a point then that point is intact, while if d = 1 at some point, then that point is

fractured. Values of d between zero and one correspond to partially-fractured material. We assume

that d grows montonically so that

d(Xt) > 0, (2.19)

which is a constraint that represents an assumption that microstructural changes leading to damage

are irreversible.

2.3 Method of virtual power. Balance of forces

We follow Gurtin (1996, 2002) and Gurtin et al. (2010) to derive macroscopic and microscopic

force balances via the principle of virtual power. In developing our theory we take the "rate-like"

kinematical descriptors to be , c, , , and also Vd. Also, in exploiting the principle of virtual

power we note that the rates (, #', c ) are not independent - they are constrained by eq. (2.17).

We denote by P an arbitrary part of the reference body B, with nR the outward unit normal on

the boundary aP of P. With each evolution of the body we associate macroscopic and microscopic

force systems. The macroscopic system is defined by: (i) A traction tR(nR), for each unit vector nR,

that expends power over the velocity j, an external generalized body force bR that also expends

power over y. That is,

bR = bOR - PR, (2.20)
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where boR represents the conventional body force per unit volume of the reference body, and (-pRk)

represents the inertial body force; PR is the mass density of the referential body. (ii) An elastic stress

Se that expends power over the elastic distortion rate t'.

The microscopic system is defined by: (a) A positive-valued scalar microscopic stress W that

expends power over the craze strain rate '. (b) A scalar microscopic stress r that expends power

over the rate, a, of the damage variable, d. (c) A vector microscopic stress that expends power

over the gradient Vd. And (d) A scalar microscopic traction (nR) that expends power over d on

the boundary of the part.

We characterize the force systems through the manner in which these forces expend power; that

is, given any part P, through the specification of Wext(P), the power expended on P by material

external to P, and Wit(P), a concomitant expenditure of power within P. Specifically,

Wext(P) JtR(R) *daR + JbR XdVR + J (nR) daR,

/ ) O(2.21)

Wint(P) = J Se: e + rec + a + -V) dvR.

P

Assume that, at some arbitrarily chosen but fixed time, the fields X, F' (and hence F and

FC), and NC are known, and consider the fields j, t', and ec as virtual velocities to be specified

independently in a manner consistent with (2.17); that is, denoting the virtual fields by j, F', and

gC to differentiate them from fields associated with the actual evolution of the body, we require that

(Vj)F-- = FeFe-l + FcFe NC Fe~l (2.22)

Further, also considering d to be a virtual velocity, and denoting its virtual counterpart by a, we

define a generalized virtual velocity to be a list

V =s( t Fe (cd)

consistent with (2.22).
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We refer to a macroscopic virtual field V as rigid if it satisfies

(2.23)

with f a spatially constant skew tensor, together with

Fe = Fe = ,dO =O. (2.24)

Writing

Wext (P, V) =

Wint(P, V) =

j tR(R) daR + f R *dvR

Se: -P + 7rU + =d + -vd) dvR,

(nR)d daR,

(2.25)

respectively, for the external and internal expenditures of virtual power, the principle of virtual

power consists of two basic requirements:

(VI) Given any part P,

Wext (P, V) = Wint (P, V) for all generalized virtual velocities V.

(V2) Given any part P and a rigid virtual velocity V,

Wiit (P, V) = 0

2.4 Consequences of the principle of virtual power

The virtual-power principle has the following consequences:

(a) The stress

TR SeFc~T,

is consistent with a macroscopic force balance and a macroscopic traction condition,

Div TR+ bOR - PRi and tR(fR) = TRfR,
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and TRFT is symmetric,

TRFT = FTTP. (2.30)

In view of (2.29) and (2.30) the stress TR represents the classical Piola stress, with (2.29) and

(2.30) representing the local macroscopic force and moment balances in the reference body.

As is standard, the symmetric Cauchy stress T in the deformed body is related to the Piola

stress by

T = J-TRFT . (2.31)

It is convenient to introduce two new stress measures:

- The elastic second Piola stress,

Te def JeFe-lTFe-T

which is symmetric on account of the symmetry of the Cauchy stress T.

- The Mandel stress,

Medf CeTe JeFeT TFe~ T

which in general is not symmetric.

Using (2.28) and (2.31) we find that

se = JTFe T.

Thus, using the definitions (2.32) and (2.33) we find that

(2.32)

(2.33)

(2.34)

Fe-lSe = Jc~e and FeTSe = jcMe.

(b) A microscopic force balance,

(2.35)

C-= 7r,
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where o- is a resolved tensile stress defined by the relation

a =- jcMe : NC. (2.37)

(c) The microstresses and z are consistent with the microforce balance and microtraction

condition,

Div -- = 0, and (nR) R (2.38)

These macro- and microforce balances, when supplemented with a set of thermodynamically con-

sistent constitutive equations, provide the governing mechanical equations for the theory.

Finally, using the traction conditions (2.29)2, and (2.38)2 the actual external expenditure of

power (2.21) may be written as

Wext (P) = J(TRnR) daR + JbR kdvR + j n,)daR (2.39)

aP P OP

Also, using (2 .3 5)1 and (2.7), the stress power Se: P# may be alternatively written as

1
Se: Fe = --JcTe:Ce (2.40)

2

Thus, the corresponding actual internal expenditure of power (2.21)1 may be written as

Wint (P) =J JcTe: d + -F +d + (- vd) dvR. 2.41
P

2.5 Free-energy imbalance

Under isothermal conditions the two laws of thermodynamics reduce to the statement that the

temporal increase in free energy of any part P is less than or equal to the power expended on P.

Precisely, letting OR denote the free energy per unit reference volume, this requirement takes the

form of a free-energy imbalance (Gurtin et al., 2010)

TbRdVR Wext(P). 
(2.42)
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Since Wext(P) = Wit(P), using (2.41) we obtain

J R - (!JcTe:-e +1rO + v + (- v dv 0, (2.43)

which upon using the fact that (2.43) must hold for all parts P, yields the following local free-energy

imbalance under isothermal conditions,

1
R IJT:C1(ZZ 7d - V< 0. (2.44)

2

Remark. For brevity we have not discussed invariance properties of the various fields appearing in

our theory. Here, we simply note that all quantities in the free energy imbalance (2.44) are invariant

under a change in frame. D

2.6 Constitutive theory

By (2.15) the craze inelastic strain satisfies

Ec(X, 0) = 0, ec (X, t) > 0, (2.45)

and hence e' increases with time in any "inelastic process". We view Ec as a measure of the past

history of inelastic strain in the material. Recall that we have also introduced an additional damage

variable d. Here we consider a theory which allows for an energetic and dissipative effects associated

with temporal changes in d, and also an energetic effect due to the gradient Vd. We consider the

gradient Vd as a measure of the inhomogeneity of the microscale damage.

Guided by the free-energy imbalance (2.44), we consider C, fC, and d as independent variables,

and we consider the following set of constitutive equations for the free energy 4 bR, the stress T',

and the vector microforce:

b = 4bR(A), Te = Te(A), = (A), (2.46)
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where A denotes the list

A = (Cecc, d, Vd). (2.47)

Substituting the constitutive equation (2.46)1 into the free-energy imbalance (2.44), we find that

it may be written as,

JCT (A)
2

a R(A) c _

e E

We assume that the free energy function bR(A) delivers the stress Te and the vector microstress (

through the state relations

e _ 2 JC_ ftR(A)
aCe

_ 4 KR(A)

OVd

Further, upon introducing energetic microstresses 7ren and wen through the relations,

a R(A)
7Ten = a~c

_ DR (A)
and 'en = Dd ' (2.50)

and a dissipative microstresses 7rdi, and 'Zdis through the relations

7rdis = 7r - 7ren and Ldis = Z - Zen, (2.51)

we are left with the following reduced dissipation inequality

'D =7disEc + Ldisd > 0. (2.52)

We assume that the terms in (2.52) individually satisfy the dissipation inequalities

7rdisc 0, =disd > 0. (2.53)

In the following sections we introduce special constitutive equations which should be useful in

applications.
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2.7 Free energy

Henceforth we restrict our attention to isotropic materials for which the response function ?PR(A) is

taken to depend on Ce only through its principal invariants

Ice = (I, (Ce), 12 (Ce), 1 3 (Ce)), (2.54)

and that the dependence on Vd is through its magnitude IVdI, so that the free energy function

(2 .46)1 becomes3

R R (IC' , Ec, d, JVdJ). (2.55)

Thus, from (2.49), it follows that the constitutive equation for T' is,

T= 2 Jc-1 a OR (ICe ,d, VdI (2.56)
aCe

and

aO| = I ,cdV (2.57)
aVd'

and that the constitutive equation for T' is an isotropic function of C'. Then since the Mandel

stress is defined by (cf. (2.33))

me = CeTe, (2.58)

we find that Te and Ce commute,

Cere TeCe, (2.59)

and hence that the Mandel stress is symmetric.

Now, the spectral representation of Ce is Ce = (Ae)2r 09 r, where (ri, re, r') are the

orthonormal eigenvectors of Ce and Ue, and (Ae, A,, Ae) are the positive eigenvalues of Ue. Instead

of using the invariants Ice, the free energy bR may be alternatively expressed in terms of the

principal stretches as,

OR = gtR(A an A, cn t j Vd (260)

3 We neglect any dependence on the joint invariants of Ce and Vd.

34



3

Ee ln Ue = Eer (9 r with Ee = In A , (2.61)

denote the logarithmic elastic strain with principal values Ei, and consider a free energy function

of the form

(2.62)

Then, the Mandel stress is given by

Me JC- 3 O R(El, Ee, E, cc, d, IVd|)r! ® rI.M ~ ~ ~ / 1 Ie( r, (2.63)

With the logarithmic strain defined by (2.61), and bearing in mind (2.62) and (2.63), we henceforth

consider a free energy of the form

(2.64)

with lEe a list of principal invariants of Ee, or equivalently a list of principal values of E. The

Mandel stress is then given by

(2.65)Me - Jc-1 f/R (IEe, cd, IVdI)
OEe

and the corresponding Cauchy stress is

T = Je-lReMeReT. (2.66)

As a further specialization we consider a free energy of the form,

bR(IEe, Ec, d, I Vd g (d)Jc [e(TEe) + ,bc)I + A IVd 2. (2.67)

In (2.67) the term [e (IEe) + c(c)] is a free energy per unit volume of the intermediate space

defined by the range of Fc(X), and multiplication of this term by J gives the free energy per unit

volume of the reference space. Further:
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(i) 0'/ is an elastic energy given by,

e(_TE1) = G(E' + - K - 'G (trEe)2 . (2.68)
2 3

Here G is the shear modulus, K the bulk modulus, respectively. This free energy is a simple

generalization of the classical strain energy function of isotropic linear elasticity to moderately

large elastic deformations using the logarithmic strain measure(Anand, 1979).

(ii) We assume that the crazing process gives rise to local disordering which stores energy according

to,

0'C(cc) = (1 - x)Sc, (2.69)

with SC > 0 a constant modulus with units of stress representing the craze flow resistance,

and x is positive-valued fraction, such that xScc represents the dissipation due to craze flow,

and that the fraction (1 - x) SCY is stored in the material. 4

(iii) The positive-valued g(d) > 0 degradation function is monotonically decreasing,

g'(d) < 0, (2.70)

and satisfies

g(0) = 1, g (1) = 0, and g'(1) = 0. (2.71)

A widely-used degradation function is (cf., e.g., Bourdin et al., 2000; Miehe et al., 2010a;

Ambati et al., 2015),

g(d) = (1 - d) 2 ; (2.72)

we adopt it here. 5

(iv) In order to account for gradient effects for the damage we have included a quadratic term

4 More complicated forms for t/)C(eC) my be chosen, but at this time not much is known about such energy storage
mechanisms due to crazing.

5 In numerical calculations g(d) is modified as

g(d) = (1 - d) 2 + k, (2.73)

where k ~ 0 is a small positive-valued constant which is introduced to prevent ill-conditioning of the model when
d = 1.
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dependent the gradient Vd,

A jVd1 2 ,

where A is coefficient with units of energy per unit volume times length-squared.

Thus, combining (2.67), (2.68) and (2.74), the free energy is taken to be given by,

'V) = g(d)Jc GIEe12 + - K - -G (tr Ee)2
2 3

(-TE )

Then, by (2.65) the Mandel stress is given by

Me = g(d) [2GE' + K(trE')1].

Further, from (2.75), (2.50), and (2.49)4,

Iren g(d) (1 - x)Sc,

mUen = g'(d) Jc (e(Ie) + CE C,

= 2AVd.

(2.76)

(2.77)

2.8 Craze flow rule

The spectral decomposition of the Mandel stress Me is Me = E_ 1 o-, e, 9 &6 where {o-I i = 1, 2, 3}

are the principal values and and {6i = 1, 2, 3} are the principal directions of Me. We take that

the principal stresses to be strictly ordered such that

Fut er w2 t m3

Further, we denote the mean normal stress by

def 1I 0
am -(01 0-2 + U*3)>03

(2.78)
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We postulate that crazing in a material neighborhood can occur only when the maximum principal

stress and the mean normal stress are positive:

> 0 possible if 1 > 0 and a-M 1 + 0'2 +0 3) >0,
ec = 3(2.79)

0 otherwise.

If ec = 0 then there is no need to specify a consitutive equation for 7dis, while when eC > 0 we

assume that the dissipative microforce idis is given by a constitutive equation of the form

7rdis g(d)JcX<SC > 01 (2.80)

resistance to craze flow

In (2.80),

Sc > 0, (2.81)

is a constant modulus with units of stress representing the craze flow resistance, and x E (0, 1) is

positive-valued fraction such that g(d)JcxScec represents the dissipation due to craze flow, and so

that the dissipation inequality (2.53)2 is satisfied. Thus from (2.77), and (2.80) the microforce 7r is

given by

7r = g(d)Jc(1 - x)Sc +g(d)JxSC = g(d)JcSc. (2.82)
7ren 7dis

Further, we assume that the direction m for craze extension coincides with the maximum principle

stress direction,

m = 1 . (2.83)

That is, we assume that

* the craze flow direction NC is parallel to and points in the same direction as the direction of

the eigen projection-tensor 61 0 61 corresponding to the maximum principal value -1 of Me:

NC = 6i & 6i. (2.84)
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In this case the resolved tensile stress o appearing in (2.37) is

Jc'M : NC - J'co-. (2.85)

Thus, from the microforce balance (2.36) and the constitutive equation (2.82), we obtain the fol-

lowing strength relation for craze flow,

r1 = g(d)Sc when e' > 0.

We may rewrite (2.86) as

f=0 when ec>0,

def Cf =T g(d)S,

represents a yield function for craze flow. Equation (2.87) implies that a necessary condition for

c > 0 is that

f = 0; (2.89)

we assume here that this condition is also sufficient for ec > 0. This means that craze flow occurs

only when (2.89) holds. Equivalently U = 0, and no craze flow occurs when

f < 0.

Thus, in our rate-independent model for craze flow we have,

c > 0, f < 0, C f = 0,

(2.90)

(2.91)

which are the Kuhn-Tucker conditions associated with rate-independent craze flow. It may be shown

that in the rate-independent theory,

if c > 0, then f = 0 and f = 0, (2.92)

which is known as the consistency condition. The consistency condition may be used to determine
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the value of e' when it is non-zero.

Finally, using (2.84) and (2.14) with the consistency condition (2.92) serving to determine eC

when it is non-zero. the evolution equation for FC is then taken to be given by

FC = DcFC, with DC - ic6i & ei

2.9 Evolution equation for the damage variable d

Recall the reduced dissipation inequality (2.53)3,

Wdis 0.

As a special constitutive equation for Zdis we take it to be given by,

Ldis = a + ( ,7

with a given by

a = 2(1 - d) c, + 2ibd > 0, with cr, > 0 and 4* > 0,

( > 0 is a constant kinetic modulus, (2.97)

so that the dissipation inequality (2.94) is satisfied, that is

(a +( ) >0 whenever d >0, (2.98)

Note from (2.98) that in the rate-independent limit (( = 0), the energy dissipated per unit

volume as d increases from 0 to 1 is given by

2(d - d2)0cr + V*d2 = c + $'. (2.99)

Thus (,r + ,) represents a contribution to the energy per unit volume dissipated during dam-
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age growth.6 As we shall see shortly, damage will be presumed to initiate when the free energy

( e(IEe) + cEC)) reaches a value equal to 0c. A further increase in the deformation results in

an increasing value of d, and 0. represents an additional energy dissipated in the fracture process

as d increases from 0 to 1.

From (2.51), (2.77), and (2.95) the scalar microstress z and the vector microstress are given

by the thermodynamically consistent constitutive equations

z = -2(1 - d) Jc ( e) + /2(E ) + 2(1 - d)Ocr + 2L'd + d, and ( 2AVd

energetic dissipative energetic

(2.100)

These constitutive relations and the microforce balance (2.38), viz.

Dive - w = 0,

yield the following evolution equation for d,

2(1 - d) o - 2(1 - d)Ocr - 2)*d + 2A Ad, (2.101)

where

00 jc (Je(Ie) + 4C(cC)) (2.102)

represents an undamaged free energy.

Consider the rate-independent limit, ( 0, in the absence of the gradient effects, Ad 0. Then

the microforce balance (2.101) during the damaging process d > 0 requires that

2(1 - d) ( bo - Ocr) - 20*d 0, (2.103)

which gives

d ( 0 -/Ocr) (2.104)
'0 + (00 - Ocr)

Note that (2.104) shows that d > 0 only if i'o > 4cr. Thus, to ensure that d E [0, 1] we use the

6 There is of course an additional "viscous" energy dissipation due to the contribution from the term involving C.
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Macauley bracket,

0, X < 0,

X, X z 0

and rewrite (2.104) as

d= ('i/)0.') (2.105)

or in a form similar to (2.103) as

2(1 - d) (L O --c) - 20,d = 0. (2.106)

Next, eq. (2.105) in turn gives

d = 0 (2.107)
(4' + (4o - cr)) 2

Then, in order to satisfy the irreversibility constraint, d > 0, from (2.107) we see that we must

require that

(0O - cr) 0. (2.108)

That is, the damage "driving force" (4o - c,) must be a montonously increasing function of time.

This requirement is satisfied if we replace (4o - Oc,) in (2.106) with the monotonically increasing

history field function (cf., Miehe et al., 2015):

def
(t) = max [(o(s) - rcr)]. (2.109)

se[O,t]

We further impose the requirement that the craze strain must exceed a critical value, c before the

history field may evolve and damage process may initiate.

M ef , < (2.110)

max [(o(s) - ,r)], otherwise
sE [O,t]

Finally, reinstating the rate-dependence and the dependence on Ad, as in (2.101), the evolution of
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d is then governed by the partial differential equation,

2(1 - d) - - 2),d + 2AAd, with

0, if 1c <ec
def c

where (2.111)
Max [(4o(s) - /)cr)], otherwise

SG[lO,t]

_ J' G(e2 + (K - 2G) (tr Ee)2) + (1 - >)Scec].

The evolution equation (2.125) for d is similar to the evolution equation for d in the papers by

Miehe et al. (cf., e.g., Miehe et al., 2010a,b, 2015, 2016) on phase field modeling of fracture. Indeed

if we take the energetic term A which is associated with the damage-gradient contribution to the

free energy in (2.74) to be given by

A = Oj2, (2.112)

where f > 0 is an internal length scale which controls the width of zones across which the damage

varies rapidly, then (2.111), reduces to

( d = 2(1 - d) W - 2V)*(d - f2 Ad). (2.113)

which is of a form identical to that in the work of Miehe and co-workers (cf., e.g., Miehe et al., 2015,

eq. (53)). However, the details of our derivation differ in may respects from the derivations given

in the papers by these authors. Differences of particular importance are:

" We allow for a small amount of inelastic craze-like deformation when the maximum principle

tensile stress reaches a critical value S' > 0, which we call the craze strength.

" Craze inelasticity is allowed to occur only when the maximum principal stress is positive.

There is no need in our theory to decompose the free energy into "positive" and "negative"

parts to avoid cracking under "compressive" states of strain, as done in most existing theories

for phase-field modeling of fracture.

" We do not a-priori invoke the purely geometric ideas of approximating a sharp-crack topology

by a damage field d and a length-scale f.
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" Our theory contains a material parameter 7P which sets a level of energy that must be

exceeded before damage initiates.

" The value of the parameter A which appears in the contribution A IVd 12 to the free energy

(2.75) in our theory is constitutively taken to have a value A = 0 j2; we do so in order to

make connection with the work of Miehe and co-workers. The term A IVd1 2 = 0 f 2IVdj 2

is energetic in our theory since it appears in the free energy (2.75), and therefore the term

20, f2 Ad in eq. (2.125) is also energetic and not dissipative - as is commonly assumed in the

literature by many including Miehe and co-workers.

" The value of the strength parameter S' in our theory is not related to the elastic Young's

modulus E, a toughness Gc, and the length scale f - as in most existing phase-field theories

of fracture (cf., e.g., Pham et al., 2017). In our theory the material strength is controlled

directly by S'.

" The parameter f is a suitable gradient regularization parameter which may be indepen-

dently prescribed based on physical considerations of the microstructure and computational-

tractability.

2.10 Summary

The theory formulated above is summarized below:

2.10.1 Constitutive equations

1. Free energy

The free energy is taken to be given by,

R = g(d)4o + ef2 IVdI 2, with

C= Jc GIE2 + K - G (tr E) 2 + (1 - x) Scec . (2.114)

"undamaged" energy

Here:
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(i) G, K > 0 are the shear and bulk moduli, respectively.

(ii) S'ef represents an inelastic work expended due to crazing and x a fraction in the range

x E (0, 1). We assume that the fraction xS'ec is dissipated, while the balance (1- x)S'e'

is stored in the material due to craze-disordering,

SCEC XScEc + (1 - x)SeC . (2.115)

energy dissipated due to crazing energy stored due to craze disordering

(iii) g(d) = (1 - d) 2 is a monotonically decreasing degradation function.

(iv) The parameter O4 is an energy per unit volume associated with the evolution of damage,

and f > 0 is a length scale parameter that controls the spread of the diffuse damage zone.

2. Mandel stress

The Mandel stress is given by

M JC-J I g(d) [2GE8 + K(trEe)1], (2.116)

which is symmetric. The spectral decomposition of the Mandel stress is

3

Me = a 6i 0 6i with O-1 2 -2 (-3, (2.117)
i=1

where {ujIi = 1, 2, 3} are the principal values and {6i = 1, 2, 3} are the principal directions

of M'. Craze inelasticity will be taken to occur in the maximum principal stress direction ei;

cf. eq. (2.118) below.

3. Evolution equation for Fc
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The evolution of FC is taken to be given by,

with initial condition Fc(X, 0) = 1, where

DC = cioi e1, and

> 0 possible
ec __

0

(2.118)
ifal >O0 and a,-f owai + 2 + a3) > 0,

otherwise.

Here '

to that

> 0 is craze strain-rate, which is determined, as discussed below, in a manner similar

in classical theories of rate-independent inelasticity.

With SC > 0 denoting a stress-dimensioned variable representing a resistance to craze flow,

we introduce a yield function

def Cf = ui-g~)

and require that

f < 0, (2.119)

which limits the admissible maximum principal stress al. Then, as is standard in rate-

independent theories of plasticity, the loading-unloading conditions may be expressed in the

Kuhn-Tucker form

ec > 0, f _ 0, f = 0,

to which we append the consistency condition

gcff= when f=0.

The consistency condition serves to determine eC whenever it is not zero. The craze strain is

defined by

(2.120)

4. Evolution equation for the damage variable d
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(2.121)
00 Je c GIEe 12 + I K - 2 G (tr E e)2) + (1 - ><)Sc c

2 3 ) %- Necraze disordering energy
elastic energy

"driving energy" for damage growth

represent a "driving energy" per unit volume for damage growth; cf. eq. (2.114). Then, with

4cr , Ecr representing threshold values of energy and craze strain respectively for initiation of

damage, we define a history loading parameter by

[odef 
0'

max [(ipo(s) - V$cr)] ,
s(E[O,t]

if eC < r

otherwise
(2.122)

and take the evolution of d to be governed by the partial differential equation,

( = 2(1 - d) -H - 20.(d - f Ad), (2.123)

where ( > 0 is a (small) viscous regularization parameter.

2.10.2 Governing partial differential equations. Boundary and initial conditions

The governing partial differential equations consist of:

1. The force balance (neglecting body forces and inertia),

DivTR = 0, (2.124)

where TR is the Piola stress. The boundary conditions are

X = X on S. x [0, T], TRnR = tR on StR X [0, T],

where SX and StR are complementary subsurfaces of OB. To these boundary conditions we

append the initial condition X(X, 0) = X0 (X) in B.
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2. Evolution of d,

( = 2(1 - d) R - 20*(d - j 2 Ad). (2.125)

The boundary conditions for this partial differential equation are taken as

d = 0 on Sd x [0, T], (Vd) - nR = 0 on SvdX [0, T],

where Sd and Svd are complementary subsurfaces of OB. To this we append the initial

condition d(X, 0) = 0 in B.

2.11 Constitutive response of a single element undergoing ho-

mogeneous simple extension

To fix ideas regarding the intrinsic stress-strain response of the material in the absence of the

effects of a gradient in the damage field, we first consider the response of a single element

in monotonic simple extension under homogeneous plane-strain conditions. The numerically

calculated stress-strain response is shown in Fig. 2-1(a). As the strain is increased from zero,

the initial response is elastic until a craze strength level S' is reached at point (i) marked in

Fig. 2-1, when inelastic deformation due to crazing is initiated.7 With further extension the

craze strain E' increases, while the stress-level remains constant at S'. When the craze strain

reaches a critical value c' at point (ii) marked in Fig. 2-1, the undamaged energy Vo (cf. eq.

(2.114)2) reaches the threshold energy cr (cf. eq. (2.122)), and damage is initiated. The

energy density 0c, has a contribution from the elastic strain at that point, as well as a fraction

of the energy stored due to craze growth between points (i) and (ii). A simple one-dimensional

estimate for the energy 4c' in terms of the parameters (E, Sc, Ecr, x) is

sc2
Ocr = + (1 - x)SCE',. (2.126)

2E r

7In the civil engineering literature on concrete, the parameter Sc which we have called the the craze strength, is
usually called the tensile strength and denoted by ft or also sometimes by f'.
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With increasing deformation as the damage progresses, the value of d increases and the stress

begins to decay. The shape of the decaying portion of the stress-strain curve in Fig. 2-1(a)

is controlled by both the degradation function g(d) = (1 - d)2 as well as the energy density

parameter V) in our model. In all the calculations shown in this thesis we keep the degradation

function fixed, and increasing or decreasing the value of I, increases or decreases the amount

of energy dissipated as d increases from zero to unity.8

'

E

(a)

SC

(b) (c) (d)

Figure 2-1: (a) Stress-strain response of a single element in monotonic simple extension under homogeneous
plane-strain conditions, without gradient-damage effects. Keeping the values of other parameters fixed: (b)
shows the effect of varying the value of Sc; (c) shows the effect of varying the value of e'r; and (d) shows the
effect of varying the value of 0*.

8Although our theory allows for the use of different degradation functions, we refrain from adding complexity to

our model by exploring different forms of the degradation function to more closely match experimental data.
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Keeping the values of the other material parameters fixed, Fig. 2-1(b), (c), and (d) quali-

tatively show the effects of increasing the value of S', E, and 0', respectively. Thus the

strength and toughness of different quasi-brittle materials may be modeled by suitably vary-

ing the values of these parameters. For strain-softening materials the length scale f in our

gradient theory also has a major effect on the softening response. We discuss this matter in

the next chapter in section 3.1, where we consider the inhomogeneous deformation in a direct

tension test on concrete.

We wish to emphasize here the distinction between the craze-type inelasticity (that we have

used here) and classical shear-yield plasticity. Although our constitutive response, with a con-

stant stress at the peak load appears analogous to the behavior of a perfectly-plastic metallic

material, the two processes are fundamentally different. Classical shear-yield plasticity in

metals is based on plastic incompressibility and the plastic deformation is isochoric ; however,

crazing is a dilational form of inelasticity which accommodates volume changes that might

appear within the RVE due to the opening of several micro-cracks.

Fr

Figure 2-2: Single-element stress-strain response with an unload-reload excursion.

Before closing this section we show the unloading-reloading response of the model. We sub-
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jected a single element to extension with an unload-reload excursion in the decaying region of

the stress-strain curve. The corresponding stress-strain curve is shown in Fig. 2-2. The un-

loading branch shows a linear response corresponding to elastic unloading but with a reduced

modulus because of the damage. As expected, the intercept of the unloading branch on the

strain axis corresponds to the inelastic craze strain Ec' at the point on the decay curve from

where the unloading process was initiated.

To contrast against the existing phase-field models in the literature for ideally-brittle mate-

rials, as in Miehe et al. (2010a), we discuss the effect of craze inelasticity on the behavior.

Suppressing crazing in our model, we have an elastic-damage model analogous to Miehe et al..

The single element load-unload response without craze inelasticity is shown in fig.2-3. In the

absence of any inelastic mechanisms, damage initiates at the peak followed by decay with

progressing damage. A major point of deviation is the unloading characteristic where upon

unloading the specimen does not show any permanent set, i.e. unloading response intercept

on the strain axis is zero. This is because the deformation is purely elastic.

Figure 2-3: Single-element stress-strain response for an elastic-damage model with an unload-reload ex-
cursion.

Physically, with the macroscopic deformation of the specimen there is some associated open-
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ing of the micro-cracks in concrete. Beyond the onset of damage, it is reasonable to expect

that the opening of these several micro-cracks is not completely reversible, i.e., when the load

on a damaged concrete specimen is fully removed, micro-crack closure does not necessarily

occur. This leads to some unrecovered macroscopic deformation which is associated with some

inelastic processes taking place within the material. This is supported by several experiments

performed by van Mier and co-workers. Figure 2-4, taken from Schlangen and van Mier (1992)

shows the load-displacement curve with several unload-load excursions. Unloading the spec-

imen does not lead to complete recovery of the displacement indicating that some inelastic

mechanism are operative during the deformation process. It is based on this type of evidence

that we have allowed for some dilational craze-inelasticity before the commencement of dam-

age in order to obtain a response as in fig.2-2 instead of that in fig.2-3

P (kN)
hsc dm = 16 mm

72A060
10

74A061.

o 20 40 60 80 100 120 140 160 180
w(pm)

Figure 2-4: Load-crack opening diagram of a single edge notched high strength concrete. Taken from
Schlangen and van Mier (1992)
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2.12 Material parameters

Before applying the theory to model concrete, we recall that the material parameters in our

theory are:

(a) The elastic shear and bulk moduli, G and K. Or equivalently, using the standard relations

of isotropic linear elasticity, the Young's modulus E and the Poisson's ratio v.

(b) The craze strength parameter, S' > 0.

(c) A parameter x E (0, 1), such that (1 - x)Sc represents the amount of energy per unit

volume stored due to crazing.

(d) A parameter c' which represents a critical craze strain which in turn determines an

energy 4'cr that must be reached for damage to initiate.

(e) A parameter 0, > 0 which represents a contribution to the energy dissipated as damage

grows from zero to unity.

(f) A length scale parameter, f > 0, which controls the spread of the diffuse damage zone.

(g) A parameter ( > 0, which is a small viscous regularization parameter for the evolution

of damage.

In the numerical simulations of the different experiments that we consider in the following

chapter we have used:

* A constant value of x = 0.7. The precise value of x is not known. In choosing a value

of x = 0.7, we are guided by experience with theories of metal plasticity where a large

fraction x of the inelastic work is dissipated, and a small fraction (1 - x) stored in the

material. Further, our numerical experiments show that a value of x = 0.7 ensures that

in the expression (2.121) for the "driving energy" for damage growth, 4'o, the elastic

energy term does not overwhelm the craze-disordering term (1 - x)S'E'. It is possible

to use values of x in the range x E (0.6, 0.8), but then the other material parameters

would have to be suitably adjusted to obtain similar load-displacement curves. In this

thesis we keep the value of this parameter fixed at x = 0.7.
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* A constant value of the viscous-regularization parameter ( = 40kPa-s.9 We have chosen

this value so that it has only a minor effect on the load-displacement curves in our

simulations, while imparting stability to our numerical solution scheme across the various

cases in consideration in this thesis.

The experimental data considered in the next chapter is taken from several different publica-

tions in which the experiments were performed on different concretes. Because of the inherent

variability of the composition and microstructure of different concretes, the calibrated values

of the Young's modulus E, the craze strength S', and the critical value of the craze strain

Crit vary quite a bit from one material to another. We discuss the special role of the values

for the energy 0,, and the gradient length scale f in Section 3.1.1.

9 This value is of the same order as that used by Miehe et al. (2010b).
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Chapter 3

Application to concrete fracture

In this chapter we demonstrate the capability of our theory and its numerical implementation to

reproduce the macroscopic failure response of concrete in several technically relevant geometries

reported in the literature. Specifically, we simulate the fracture of concrete in: (i) a direct tension

test on a symmetric double-notched specimen; (ii) several symmetrically loaded un-notched and

notched three-point bend tests of various specimen sizes; (iii) asymmetrically loaded three-point

and four-point notched bend specimens; and finally (iv) an L-shaped panel test without a notch.

3.1 Direct tension test

Even though it is well-known that because of strain-softening the deformation in a direct tension

experiment is not homogeneous, such a test is often considered a fundamental experiment to char-

acterize the tensile softening and fracture response of concrete. Such experiments are difficult to

perform, and the first set of carefully-controlled, stable tension experiments to obtain the softening

response of concrete were conducted in a stiff testing machine by Petersen (1981). Due to the

inherent heterogeneity of concrete, homogenous or even slightly tapered tension specimens lead to

multiple cracking, and therefore the results form such experiments are not very informative. Hence,

symmetric double-notched tension specimens, similar to those shown schematically in Fig. 3-1(a),

are often used to characterize the tensile behavior of concrete (Bazant and Planas, 1998).
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3.5

3 - Experiment(Hordijk,1991)
- Simulation (our model)

2.5

2

0.5 -

t u, P

35 -------- 5! C J

60

(a)

0.01 0.02 0.03 0.04 0.05
6 (mm)

(b)

+.060-01

142 .0

N2 0-1

.210-01

3.5

3-

2.5
(i)

2-
0.

S1.5

0.5
(iv) (v)

0 0.05 0.1 0.15
6 (mm)

(C)

(h)

Figure 3-1: (a) Schematic of the geometry of the direct tension specimen; dimensions in mm. (b) Compar-
ison of the experimental o- response (gray line) with the numerically-calculated result (blue) line. (c) The
numerically calculated o- response to larger values of 6, showing a bilinear approximation. (d) through (h)
Contours of the damage variable d at points (i) through (v) marked on the o-6 curve in (c).

In this section we use representative data from one such experiment for a concrete reported by

Hordijk (1991) in his Ph.D. thesis. The particular specimen that we focus on had an of overall

dimension 125 x 60 mm in the plane, with two symmetric notches each of width and depth of 5mm,

and an out-of-plane thickness of 50 mm. The average displacement 6 across the notches was obtained

by measurements from several extensometers over a gage length of 35 mm spanning the notches, as

indicated in Fig. 3-1(a). The nominal stress o- (load P divided by the minimum cross-sectional area)

versus the displacement 3 reported by (Hordijk, 1991, Fig. 5.6b) is shown in Fig. 3-1(b) as the gray

line . We have simulated such an experiment and adjusted the material parameters in our theory
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to match the o-6 response reported by Hordijk (1991). The numerically-calculated response is also

shown in Fig. 3-1(b) as the blue curve. The material parameters used to obtain the fit are given in

Table 3.1. Given the inherent scatter in the experimental data, our model captures the peak and

the decaying portion of the o-6 response quite well.

Table 3.1: Material parameters for the direct tension test simulation

E, GPa v S', MPa x erit , kJ/m3  f, mm (, kPa-s

18 0.2 3.2 0.7 5.3 x 10- 4 4.0 2 40

Fig. 3-1(c) shows the numerically calculated o-6 response to larger values of 6. Figs. 3-1(d)

through (f) show contours of the damage variable d at points (i) through (v) marked on the o-6

curve in Fig. 3-1(c). Note from Fig. 3-1(d) that damage starts well before the maximum tensile stress

is reached at point (ii). Further the o-6 curve in Fig. 3-1(c) shows that even at relatively large values

of 6 = 0.15mm = 150 pm, the stress has not completely decayed to zero - the specimen still shows

some stress-carrying capacity. This is commensurate with numerous experimental measurements on

concrete shown in Fig. 6.4 of Hordijk (1991).

Concrete shows a gradual degradation of modulus prior to the peak load, and this reflects the

fact that in the region ahead of the notch-tips crazing and damage accumulates before a major

localization happens. It is important to note that this physically realistic macroscopic response is

predicted by our model in a multi-element simulation of an inhomogeneous direct-tension test, even

though in the underlying homogeneous constitutive response of a single element we have allowed

for a small amount of craze strain ' 5.3 x --4. That is,

9 the physically realistic macroscopic response of a direct tension test simulation of concrete

predicted by our model is not very sensitive to the existence of a craze strain in the response

of a single element, as long as the craze strain is small, Egrit ~ 0(10-4).

Remark. The dashed lines in Fig. 3-1(c) shows that the o-6 curve may be approximated by two

straight lines, a sharp initial descent beyond the peak followed by a long slowly decaying tail. Such

an approximation is often made for ease of analysis in bilinear cohesive-crack models of concrete

(cf., e.g., Bazant and Planas, 1998; Hoover and Bazant, 2014) . We do not need to make such an

approximation in our continuum model and its numerical implementation. El
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3.1.1 The gradient length scale f and its relation to the parameter Vi

We begin by recalling that the length scale f appears in our gradient-damage theory - in concert

with the dependence on 1Vd1 2 and the energy /' in the contribution V/y( 21Vdf 2 to the free energy

in eq. (2.114).

In choosing a value for the length scale f for the direct tension test simulations we were guided

by the following considerations:

(i) The experimental result of Hordijk (1991) show that the relative displacement had a value

of 6 m 0.15mm before the material lost its stress-carrying capacity, cf. Fig. 3-1(c). So we

expected that a value of ~ 0.15 mm might be an approximate lower bound to the value of f.

(ii) The expectation that the width of the fracture process zone ~ 2f, would be of the same order

as the notch-width of 5 mm.

(iii) That the aggregate size in concrete was - 2 to 5 mm.1

Based on these considerations we chose a value of f = 2 mm and arrived at a value of /' = 4kJ/m 3,

together with the other material parameters listed in Table 3.1, from our curve-fitting exercise.

Aa

Figure 3-2: A contour plot of the damage variable d in the process zone at a notch tip, showing the width of
the process zone a 2f, and the amount of crack extension ~ Aa. To visualize the amount of crack extension
the finite elements with values of d > 0.9 have not been plotted.

Fig. 3-2 shows a contour plot of the damage variable d in a representative process zone at a notch

tip. To visualize the fully-damaged region or the amount of crack extension, the finite elements with

values of d > 0.9 have not been plotted. In this figure we have marked the width of the process

zone as ~2, and the amount of crack extension as ~ Aa. Recall that in our theory the parameter

'The maximum aggregate size in concrete can sometimes get as large as 10 mm or even larger.
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, represents (a portion of) the energy per unit volume dissipated as the damage variable increases

form zero to unity. Thus the energy dissipated in the volume (2f x Aa x unit depth) is proportional

to (@,, x f x Aa), and hence

9 the energy dissipated per unit area of crack extension is proportional to (0, x f).

In Table 3.1 the values for f and 4',, were taken as f = 2 mm and $. = 4kJ/m 3 , respectively.

However, as indicated by our simple dimensional analysis above, if we were to choose values of f

and 0. such that the product

9 (0. x f) is kept constant,

then the decaying portion of the a-6 curve should not be significantly affected by variations in the

value of f. This is indeed borne out by our numerical simulations shown in Fig. 3-3, where we show

u-- curves for the direct tension tests with the values of all other material parameters fixed, but

the values of f varying between 0.5 mm and 5 mm while keeping the product

x f) = 8J/m2 constant.

3.5

3-

2.5 -0.5 mm
- 1 mm
-1.5 mm

2- -2 mm
a. -- 5 mm

t: 1.5

, x =constant

0.5

0''
0 0.01 0.02 0.03 0.04 0.05

6 (mm)

Figure 3-3: Variation of the o-6 curve using different values of f and V,, keeping , x f = constant.

Some remarks:
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1. We consider f as an adjustable regularization parameter in our gradient damage theory. The

value of f may be chosen in a suitable physically realistic range. If the value of f is varied in

this range and correspondingly the value of 0,, is adjusted such that (V,. x f) is held constant,

then the resulting a- response will not be substantially altered.

2. The value of the constant (4, x f) will of course be different for different concretes, but we

expect it to have a value of ~ 1OJ/m 2 , which represents an intrinsic portion of the toughness

of the material. For reference, the value of the critical energy release rate for brittle fracture

of soda-lime glass is g, 1OJ/m2 . There is of course a major additional contribution to the

overall toughness of concrete due to the distributed inelastic deformation of the material due

to crazing prior to and during the process of craze-breakdown and its progression to final

failure. It is the energy dissipated due to crazing that makes the material "quasi-brittle".

3. This scaling further suggests that in finite element calculations a small but computationally-

tractable mesh size he may be selected for macroscopic-dimensioned specimens, and a suitably

large value of f | 5 x he may be chosen, and the value of , suitably adjusted so that

(4' x f) = constant for a particular concrete. We take this pragmatic approach for the

numerical simulations shown in the remaining sections of this chapter.

E

3.1.2 Mesh insensitivity

he~300 pm he~200 im h- 150 pm he~100 Am

Figure 3-4: Meshes of varying resolution in the damage zone for the direct tension specimen

In this section we illustrate the above simulation results are mesh objective due to the 'regularized'

gradient damage theory as suggested in the introductory chapter. We consider four different meshes
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with the mesh sizes he C {100, 150,200, 300}ptm in the damage zone. The mesh around the notch

for the four different resolutions are shown in fig.3-4. The overall geometry and the boundary con-

ditions are all identical to that described above.

The damage contours around the notch for the different mesh resolutions in consideration are

shown in fig.3-5(a). Due to the regularization -gradient damage - the damage zone width re-

mains invariant for the meshes, thus independent of the element size. The resulting nominal stress-

displacement plots for the different mesh resolutions are shown together in fig.3-5(b). The responses

are nearly coincident with the exception of the coarsest mesh in a small region post-peak indicating

that the curves are converging to identical results. These results validate our numerical implemen-

tation as well as reiterate the mesh objectivity of gradient damage theories in contrast to localized

damage theories that yield mesh-sensitive results. In the subsequent examples we select a suitably

resolved mesh in our calculations.

he~300 pm he~200 im Cu
.

3.5

3

2.5

2

1.5

1

0.5

0
0

he~150 mm he~100 rm

(a)

0.01 0.02 0.03 0.04
6(mm)

(b)

Figure 3-5: (a) The damage contours (b) o- - 6 response for the different direct tension test cases with
varying mesh resolution

3.2 Three-point un-notched and notched bend tests

As noted by Hoover et al. (2013),
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"Although hundreds of concrete fracture tests exist, their evaluation is ambiguous be-

cause they have limited ranges of specimen size, initial notch depth and post-peak re-

sponse, and refer to different concretes, different batches of concrete, different ages,

different environmental conditions, different loading rates and test procedures, and dif-

ferent specimen types."

So they conducted an extensive experimental investigation of their own. Amongst the various results

presented in their paper was data from three-point bend tests on un-notched and notched beams

with crack depths ranging from 0% to 30% of the beam depth, and a broad range of specimen sizes

- all made from one batch of concrete. The specimens were tested at essentially the same age under

carefully-controlled conditions. The geometry of their beams is shown schematically in Fig. 3-6(a),

while Fig. 3-6(b) shows a photograph of the different sizes of the beams. With D denoting the depth

of the beam, they made beams of length L = 2.4D, and tested four families of beams of dimensions

D x L of

40 x 96, 93 x 223.2, 215 x 516, and 500 x 1200 mm,

which contained notches of 1.5 mm width and five different relative depths

= 0, 0.025, 0.075, 0.15, and 0.3,

with a = 0 representing an un-notched beam. The thickness of all beams was 40 mm. The span

between the top two rollers was S = 2.176H, and the crack mouth opening displacement (CMOD)

J was measured by either an extensometer bridging the notch mouth, or by an LVDT spanning a

sufficient distance on the tensile face of the beam for the un-notched beams. The P-6 response from

their three-point bend experiments is given in Fig. 8 of their paper (Hoover et al., 2013).

We have conducted numerical simulations corresponding to a number (not all) of different cases

investigated experimentally by Hoover et al. (2013) .2 Fig. 3-6(c) shows a representative snapshot of

the deformed geometry with a plot of the damage contours from one of the simulations for a beam of

depth D = 93 mm and a = 0.3. The numerically-calculated P-6 responses are shown in Fig. 3-7(a)

through (f) as (solid blue lines), and compared against the corresponding experimentally-reported

2 We used the symmetry of the three-point bend geometry and used a finite element mesh of only one-half of the
specimen.
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results (solid gray lines).

S = 2.176D

6(CMOD)

aDI

D

L = 2.4D

(a)

d
102

0.85
0.48
0664

0.25
0 '17
000
-0.00

(c)

Figure 3-6: (a) Schematic of the geometry of the three-point bend specimens. (b) Photograph of the

different sizes of beams with notch depth of a = 0.3; from Hoover et al. (2013). (c) A typical plot of the

damage contours from one of the simulations for D = 93mm and a = 0.3

Fig. 3-7(a) through (c) show results corresponding to tests performed on specimens of the same

depth, D = 93 mm, but with the notch depth varied from a = 0, to the beam with the deepest

notch, a = 0.3. Note the different scale for the vertical load axis in these figures. As can be seen,

with increasing notch depth the value of the peak load falls by more than half from 8 kN in (a)

to ~ 3.5 kN in (c).

Fig. 3-7(d) through (f) show results corresponding to tests performed on specimens of the same

notch depth, a = 0.3, but with the specimen depth varied from the smallest, D = 40 mm to the

largest, D = 500 mm. Again note the different scale for the vertical load axis in these figures. With

increasing specimen depth the value of the peak load increases by a factor of ~~ 6, from a low value
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of e 1.75kN in (d) to ahigh value of ~ 11kN in (f).
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Figure 3-7: Comparison of the the numerically-calculated P-6 results (blue lines) against
experimentally-measured response (gray lines).

the

Table 3.2: Material parameters for three-point bend simulations

E, GPa v Sc, MPa x ecrit , kJ/m3  f, mm (kPa-s

41 0.17 4.5 0.7 4.4 x 10-4 3.8 2 40

The material parameters used in our three-point bend calculations are given in Table 3.2. We note

that:

e We have used the values of E and v reported by Hoover et al. (2013) for their concrete, and

we have used the P-6 data from only two cases, Fig. 3-7(b) and (e), to calibrate the remaining
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material parameters in our model.

* The remaining cases shown in Fig. 3-7 are predictions based on this set of calibrated material

parameters.

As can be seen from Fig. 3-7, the numerically calculated response from our model matches the

experimental results quite well for both cases used for material parameter calibration. More impor-

tantly, the predictions for the other cases are also in reasonable agreement with the experiments.

The satisfactory blind predictions of the P-6 response across this wide range of sizes and for both

unnotched as well as the notched specimen, convincingly shows the ability of our model to satis-

factorily simulate the deformation and fracture response of concrete - at least in the three-point

bend configuration tested by Hoover et al. (2013).

3.3 Mixed-mode notched bend tests

We turn next to an application of the theory to calculate the macroscopic load versus crack mouth

opening displacement curves as well as the crack trajectories under mixed-mode conditions, as re-

ported by Galvez et al. (1998) in their notched bend tests on concrete. The geometry of their

specimens and the loading conditions are shown schematically in Fig. 3-8. They conducted exper-

iments on beams of three different depths: 75 mm, 150 mm and 300 mm. Here we focus on their

medium-sized beams of depth 150 mm, which were 675 mm long and 50 mm thick. The beams were

notched at their midspan, with a notch width of 2mm and notch depth of 75 mm. The asymmet-

ric three-point bend geometry shown in Fig. 3-8(a) corresponds to what they call their Type 1

experiments, and the asymmetric four-point bend geometry shown in Fig. 3-8(b) corresponds to

their Type 2 experiments. The crack mouth opening displacement (CMOD) 6 was measured by an

extensometer bridging the mouth of the notches. Because of the asymmetric bending, the crack no

longer propagates straight across the narrowest cross section. Galvez et al. (1998) reported results

for the crack trajectories for their Type 1 and Type 2 experiments in Fig. 3(b) of their paper, and

the P-6 response for their Type 1 experiments in their Fig. 5(a), and the P-S response for their

Type 2 experiments in their Fig. 8(a).
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Figure 3-8: Schematic of the specimen geometry and loading conditions for the mixed-mode notched bend
experiments of Galvez et al. (1998): (a) Type 1, three-point bending. (b) Type 2, four-point bending. All
dimensions in mm.

Table 3.3: Material parameters for mixed-mode notched bend simulations

E, GPa v S', MPa x Ecrit V)*, kJ/m 3  f, mm , kPa-s

38 0.2 3.1 0.7 2.5 x 10-4 2.1 3 40

Using the material parameters listed in Table 3.3, in Fig. 3-9(a) and (b) we show our numerically-

predicted contours of the damage field and the crack trajectory (d = 1) for the Type 1 and Type

2 experiments. Fig. 3-9(c) and (d) show the corresponding experimentally-observed scatter in

the crack trajectories as the shaded gray region in each figure. The numerically-calculated crack

trajectories shown in Fig. 3-9(a) and (b) are overlayed as blue lines in Fig. 3-9(c) and (d) to

facilitate a comparison of the numerical predictions versus the experimental observations. Our

model predictions of the crack trajectories are in good agreement with the experiments for both the

three-point and four-point mixed-mode notched bend tests.

As noted by Galvez et al. (1998), the cracks in their experiments were observed to grow in a

direction normal to the direction of the maximum principal stress at the crack-tip, in accordance with

the criterion based on linear elastic fracture mechanics proposed by Erdogan and Sih (1963).3 The

crack trajectories are well-predicted by our non-linear theory for fracture of quasi-brittle materials

because the inelastic craze flow direction (which precedes damage initiation and growth to final

3Also see Carpinteri et al. (1993), who found that their cohesive crack model which dissipates energy only on
Mode I, was able to reproduce experimental results from a single-edge notched specimens of concrete subjected to
four-point shear to a very good approximation. They concluded that fracture in concrete predominantly propagates
in Mode I.
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fracture) has been presumed to occur in the direction of the maximum principal tensile stress.

Therefore, the orientation of the damage zones and the crack trajectories are built-in features of our

theory.
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Figure 3-9: (a) and (b) show the numerically-predicted contours of the damage field and the crack tra-
jectory (d = 1) for the Type 1 three-point bend, and the Type 2 four-point bend experiments. (c) and
(d) show the corresponding experimentally-observed scatter in the crack trajectories as the shaded-gray
region. The numerically-calculated crack trajectories shown in (a) and (b) are overlayed as blue lines for
ease of comparison of the numerical predictions and the experimental observations. (e) and (f) compare the
numerically-predicted load versus CMOD curves with the corresponding experimentally-measured responses
which are shown as gray-shaded scatter ranges. Experimental curves from Galvez et al. (1998).
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The numerically-predicted P-6 responses for the two mixed-mode notched bend tests are shown

as blue lines in Figs. 3-9 (e) and (f), and compared with the corresponding experimentally-measured

responses which are shown as gray-shaded bands. The agreement of the numerical prediction for

the Type 1 experiment in Fig. 3-9(e) is good, but that for the Type 2 experiment in Fig. 3-9(f) is

not as good. It is important to note that while we used the same set of material parameters listed in

Table 3.3 for simulating the two different types of tests, the experimental results are from specimens

made from two different batches of concrete. Given the variablity in the mechanical properties of

concrete from different batches - a variability which was recognized by Galvez et al. in their paper

- we consider the prediction shown for the Type 2 four-point notch-bend experiment in Fig. 3-9(f)

to be acceptably close to that in the experiments.

3.4 L-shaped panel

In recent years the response of an L-shaped panel has become a popular benchmark test for the

verification of numerical predictions from models for fracture of concrete. Winkler et al. (2001)

have reported results from such experiments. The geometry of their specimen and the boundary

conditions are shown schematically in Fig. 3-10(a). The long and the short edges of the L-shaped

panel are 500 mm and 250 mm, respectively, and the thickness of the panel is 100 mm. The lower

horizontal edge of the vertical leg is fixed, and the bottom edge of the horizontal leg is subjected to

a vertical displacement prescribed at a distance of 30 mm from the right edge. Unlike the previous

cases studied in this thesis, there is no pre-existing notch in the L-panel specimen. A crack nucleates

from the sharp corner, and the trajectory of the cracks (with its scatter) as experimentally-measured

by Winkler et al. (2001) is shown as the gray-shaded region in Fig. 3-10(b).

Table 3.4: Material parameters for L-panel simulations

E, GPa v S', MPa x Erit / kJ/m3 , mm (, kPa-s

18 0.2 2.5 0.7 4.9 x 10-4 3.2 4 40

Using the material parameters listed in Table 3.4, in Fig. 3-10(c) we show our numerically-

predicted contours of the damage field and the crack trajectory (d = 1). The numerically-calculated

crack trajectory shown in Fig. 3-10(c) is overlayed as the blue line in Fig. 3-10(d) to facilitate a
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comparison of the numerical prediction versus the experimental observations. The prediction of the

nucleation of the crack and its trajectory from our model is in good agreement with the experimental

observation. The corresponding numerically-predicted force versus displacement response is shown

by the blue line in Fig. 3-10(e), and compared with the corresponding experimental range which

is shown as the gray-shaded region. Our model reproduces the experimentally-measured load-

displacement response with good accuracy.

500

500

250

250

u, P

30

(a)

d
1,00

S0,92
0'84
0'75
0.67
0.59
0.50
0.42
0.33
0.25
017
0 08
-0.00

(b)

0
U..

0

(d)

Experiment
-Our model

(C)

0 0.1 0.2 0.3 0.4 0.5
Displacement(mm)

(e)

Figure 3-10: (a) Schematic of the specimen geometry and boundary conditions for the L-panel experiments
of Winkler et al. (2001); dimensions in mm. (b) Experimentally-observed crack trajectories shown as the
gray-shaded region. (c) Numerically-predicted contours of the damage field and the crack trajectory (d = 1)
(d) The numerically-calculated crack trajectories shown in (c) is overlayed as the blue line for ease of
comparison of the numerical prediction and the experimental observation. (e) Numerically-predicted load
versus displacement curve blue line, compared with the corresponding experimentally range which is shown
as the gray-shaded region.
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Chapter 4

Conclusion

We have formulated a new gradient-damage theory for fracture of quasi-brittle materials and spe-

cialized it to model the response of concrete. We have numerically implemented our theory as a

user-element subroutine (UEL) in Abaqus (2017), and used this numerical capability to simulate

the response of concrete in several important experimental geometries:

(i) Direct tension experiments on symmetrically double-notched specimens of Hordijk (1991).

(ii) Several symmetrically loaded un-notched and notched three-point bend tests of a large range

of specimen sizes of Hoover et al. (2013).

(iii) Mixed-mode three-point and four-point notch-bend specimens of Galvez et al. (1998).

(iv) L-shaped panel tests without a notch of Winkler et al. (2001).

The results from these numerical calculations show the ability of our theory and simulation capa-

bility to satisfactorily reproduce the macroscopic load-deflection characteristics as well as crack-

propagation trajectories during the failure of concrete.

The good correspondence of the results from our numerical simulations and available experi-

mental data indicates that our theory and numerical simulation capability should be of practical

utility in the design and analysis of structures made from concrete under largely tensile dominated

stress states, the ones that usually control structural failure.
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Some directions for future work are: (i) to extend the numerical simulation capability to model

fracture of concrete in three-dimensions; (ii) to account for inertial effects; and (iii) to extend the

theory to model fracture of high-performance concrete with dispersed polymeric fibers (cf., e.g.,

Li, 2003). Also, because of the great variability of the microstructure of concrete, the results of

macroscopic force-deflection curves and crack trajectories show substantial variability. Whenever

data is scattered a probabilistic treatment is required - we also leave such an effort to future work.
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Appendix A

Numerical implementation details

A.1 Implementation in ABAQUS/Standard

We have numerically implemented our theory as a user-element (UEL) subroutine in the implicit

finite element program Abaqus/Standard (Abaqus, 2017) by following the implementation proce-

dures detailed in Chester et al. (2015). Our numerical implementation is for a plane-strain scenario

and uses a linear 4-noded plane-strain element. At the constitutive level the time integration proce-

dure in our numerical implementation is by an implicit backward-Euler scheme. At the global level

the deformation problem and the damage problem are solved using a staggered scheme.

A.2 Residuals and Tangents

Displacement governing equation

The displacement solution variables are governed by the partial differential equation for the balance

of momentum (see (2.124)), the strong form of which, in the current configuration, along with
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appropriate boundary conditions is given by

divT=0 on Bt,

u=u on S1, (A.1)

Tn =t on S 2 ,

where Bt denotes the body in the current deformed configuration, on the deformed surface Si we

prescribe displacements, and on the deformed surface S 2 we prescribe surface tractions. To find the

weak form of (A.1) we multiply by a test function w and integrate over the body

0= j(w -divT) dV (A.2)
JBt

which integrating by parts yields

0 = (-grad w: T) dV + (w Tn) dA, (A.3)
J Bt JaBt

and using (A.1) 3 we have

0= (-gradw:T)dV+ (w -')dA. (A.4)

The body is approximated using finite elements Bt = Z B' and the trial solution for the displace-

ment vector is interpolated inside each element by

u = I N AuA (A.5)
A

with the index A = 1, 2, ... denoting the nodes of the element, uA denoting the nodal displacement

vector, and NA the shape functions. We employ a standard Galerkin approach, in that the weighting

field is interpolated by the same shape functions, such that

w = E N AwA. (A.6)
A
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This yields the element-level relation

0 = j (wA. (Tgrad NA) dV + (NAwA i) dA
0 B - (Tgra

which must hold for all wA. Therefore, we define the element level displacement residual

j (-Tgrad NA)dV +
e i

J(N AE) dA,
1

which in index notation is

The element stiffness /tangent is given by

OR A
KAB = U"KU DuB' or in index notation KAB = - Ri

UiUk DukB

Using the residual defined above we have

KAB _ N A dVUiuk DN j DTBJB t k
NANB dA.

DUk
(A.11)

(A. 12)

Furthermore,
DT
Du

and since

DTi3 DFrnn
DFmn Dugn

Fmn = rmn +
DNA A

DXn Un

DFrn
and Du

we arrive at

K [ NA T NBKAB - d_-UiUk DxB j DFkn OXn

DNB
_ n k,

-DE

[AND dA.
Duk

In computing the term DTi/DFkn in the stiffness matrix, we utilize a numerical perturbation method

as follows :

* We perturb one out of the nine components of the deformation gradient by a small but finite

value: 10-6
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(A.8)

R =j -TijN) dV + ( NA'i) dA. (A.9)

(A.10)

(A.13)

(A. 14)



" We evaluate the Cauchy stress tensor (with damage) based on our model as outlined in the

time integration procedure in section A.3

" We repeat the perturbation for each component of the deformation gradient sequentially to

obtain a numerical approximation to the 4th order tensor OTi/&Fk,.

Damage governing equation

The damage variables are governed by the partial differential equation for the evolution of the

damage variable (see (2.125)). The strong form complemented by the boundary condition is given

as:

=2(1 - d) W - 2?,,(d - f2 Ad),
(A.15)

(Vd) -nR = 0 on J
To find the weak form of (A.15) we multiply by a test function w and integrate over the body as,

O= w((? - 2(1 - d) W + 20*(d - 2 2Ad)) dV (A.16)

As earlier, integration by parts gives

0 = w d -2(1 - d) -H + 24*(d)1 dVR + 2,O*f 2 (VW. Vd) dVR -j 20 2 W(Vd - nR) dAR

(A.17)

Use of (A.15) in the last term on the right gives

0 = j w [ d - 2(1 - d) R + 24'(d)J dVR+ j 20*f 2(VW Vd) dVR (A.18)

The body is approximated using finite elements B = E BE and the trial solution for the damage

variable is interpolated inside each element by

d = ZNAdA (A.19)
A
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with the index A = 1, 2, ... denoting the nodes of the element, dA denoting the nodal damage field,

and NA the shape functions. We again employ a standard Galerkin approach, such that

W= E NAWA. (A.20)
A

Subsequently, we have element-level relations for our finite-element framework as

0 j WANA [(d - 2(1 - d) R + 2V*(d)] dV + 2 ,f 2 (VNA. Vd)wA dV (A.21)

which hold for every test function wA. Therefore, we define the element level residual,

RA j NA d - 2(1 - d) W + 2V)* (d)] dVR + j 20*f 2(VNA V Vd) dV. (A.22)
fB e B Je

The element stiffness is given by
OR A

KdaB = -d (A.23)

Using the residual defined above we have

KAB = N A ( B - 2(-NB) W + 20*(N B ) dVR + 20* f2 (VN A -VNB dVR. (A.24)

We use a staggered formulation for the coupled damage-deformation system in our ABAQUS/Standard

User Element subroutine(UEL) implementation. Hence the mixed tangent terms Kau and Kud are

not of importance and we do not evaluate them here.

A.3 Time Integration Procedure

The summary of the time integration procedure implemented in the UEL subroutine for our model

is as follows:

Step 0. Given {F', E e"[ 1 at time tn, and {F + 1 , d,+ 1} at time tn+1 = t,- + At,

we wish to evaluate {Tn+l, Fc+ 1, ECn+1, e7+i} at time t+ 1 -

le" is the direction for craze extension which coincides with the first principal direction of the Mandel stress ei.
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Step 1. Calculate the trial elastic deformation gradient as

(A.25)

Step 2. Perform the polar decomposition

Ftrial = Rtrial Utrial. (A.26)

Perform the spectral decomposition of Utrial and calculate trial logarithmic elastic strain as

(A.27)Etria= ln Ulriai = ln AMtriai rtria 0 rAtrial .
i=1

Step 3. Evaluate the trial Mandel stress as

Mtrial = g(d) [2GEtriai + A tr Eiriai , (A.28)

and calculate the maximum principal value (oj) of the Mandel stress through spectral decom-

position and the hydrostatic stress as

e

Mtrial = In Jitrial ej trial 0 ej trial
i=~1 (A2
1

Uh = -tr Me
3

(A.29)~

Step 4. Check for craze initiation: when 0 h > 0 and a, > S, are both satisfied then craze is initiated.

Activate a craze flag to indicate craze initiation for use in subsequent time steps.

When crazing is not initiated then the Mandel stress, craze deformation gradient are obtained

simply as Mn+1= Mrial and F 1 = F . Go to step 8 directly.

Step 5. When crazing is initiated, set the craze direction tensor as

NC = ec[ 0 ec[ (A.30)
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Step 6. Evaluate

(71 trial Mtrial : NC

When C-1 trial - g(d)Sc > 0, evaluate craze strain increment as (see section A.4)

A~CC ~1- trial - g(d)SC with C1111
C1111

=g(d)E 1-V
(1 + v)(1 - 2v)

(A.32)

Step 7. The craze strain at the end of the step and the craze strain rate are evaluated as

ECn+ 1 = ECn + AEC (A.33)
At

The craze stretch tensor is calculated as

D'n+1 = cNc (A.34)

The craze deformation gradient is calculated as in (2.12), by means of an exponential map

following Weber and Anand (1990),

F+ = exp(AtDc+ 1)F . (A.35)

Step 8. The elastic deformation gradient at the end of the step is

Fe+1 = Fn+ 1Fcj. (A.36)

As earlier, polar decomposition and spectral decomposition leads to the logarithmic elastic

strain at end of step

Fn+1 = Rn+ Un+1

E+ =lnU+ = e 
(A.37)

n+1 n+1 Sln r~n+j in
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Step 9. The Mandel stress at the end of the step is given as

= g(d) [2GEn+ 1 + AtrEe+ 1] (A.38)

The craze direction tensor at the end of the step is obtained from the spectral decomposition

of the Mandel stress as

e

Me+ ZI ln n~ei n+1 09ei n 1
(A.39)

n = n7+1 0n+1 with en+1= ei n+1

Step 10. The Cauchy stress tensor is calculated from Mandel stress as

Tn+1 = Je-'Rne Mne+6 ReT (A.40)

This is a brief summary of the time integration procedure which is implemented in the UEL to

evaluate the behavior as described by our constitutive model.

A.4 Craze strain increment

The craze strain increment is evaluated based on the following algorithm.

* The trial elastic distortion at the start of the increment is calculated based on the current

deformation gradient and the craze deformation from the previous step,

Ftrial = FFi 1 . (A.41)

Subsequently, E'rial = FIn j 1ial Ftrial is known.

* The trial Mandel stress and the corresponding principal value is then evaluated as

3

Mtrial = g(d) [2GEe + A trEe 11 = Oi trial ei trial 0 ei trial .
i=1

(A.42)

* When Oa1 trial exceeds the damaged craze resistance, i.e OItrial > g(d)Sc, the craze strain
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increment is to be evaluated based on the craze flow strength relation O1 = g(d)Sc.

Let us denote by Ac', the craze strain increment in the present timestep. Then we have

Dc = ei 0 ei
At

(A.43)

Based on an exponential mapping, the craze strain deformation gradient update can then be

expressed as

F' = exp (AtDC) F' = exp (Ac'ei 0 ei) Fc. (A.44)

e The elastic deformation gradient at the end of the step can then be given as

FS = FTFc- 1 = Ferial exp (-AE iej 9 ei) (A.45)

The polar decomposition of the trial and the current deformation gradient leads to

RU; = Rtrial Utrial exp (-AEcei 90 el) (A.46)

The principal directions of the tensor el 0 el are the same as that of the trial Mandel stress

tensor M'riai, which is also that of U'ria1. Thereby, the uniqueness of the polar decomposition

yields,

Re= Rerial and U =Utrial exp (- Ac'e1 0 el). (A.47)

* Then based on the definition of the logarithmic strain tensor, we have

E' - E'. = -Acce, 0 el. (A.48)

The increment in the principal value of the Mandel stress can be estimated as

(A.49)

where C = g(d)Celas, with Celas the standard fourth order elasticity tensor. Then using the
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Au-1 = el. [C (Ee - Et)]ei



relation from (A.48)

Aol = -AE'ej. [C (ei 0 e1 )] el = -Cllll Ec (A.50)

where

C1111 = g(d)E v
(1 + v)(1 - 2v)

9 Finally, substituting back in the craze flow strength relation, we have

O1 = O-itrial + AO- = 61trial - CiiiAEc = g(d)Sc

AEc _ 1trial - g(d)Sc (A.51)

C11 11
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