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Abstract

Phase-field modeling of brittle fracture of linear elastic solids has been the subject of several studies
in the past 25 years. An attractive feature of this approach to model fracture is its seamless ability
to simulate the complicated fracture processes of nucleation, propagation, branching and merging
of cracks in arbitrary geometries. While most existing models have focussed on fracture of “ideal
brittle” materials, we consider fracture of “quasi-brittle” materials. The material is considered to
be quasi-brittle in the sense that it does not lose its entire load-carrying capacity at the onset of
damage. Instead there is a gradual degradation of the strength of the material, which is the result
of microscale decohesion/damage micromechanisms.

In this thesis we discuss the formulation of our gradient-damage theory for quasi-brittle fracture
using the wirtual-power method. The macro- and microforce balances, obtained from the virtual
power approach, together with a standard free-energy imbalance law under isothermal conditions,
when supplemented with a set of thermodynamically-consistent constitutive equations will provide
the governing equations for our theory. We have specialized our general theory to formulate a simple
continuum model for fracture of concrete — a quasi-brittle material of vast importance. We have
numerically implemented our theory in a finite element program, and simulated numerical examples
which show the ability of the simulation capability to reproduce the macroscopic characteristics of
the failure of concrete in several technically relevant geometries reported in the literature.

Thesis Supervisor: Lallit Anand
Title: Warren and Towneley Rohsenow Professor of Mechanical Engineering
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Chapter 1

Introduction

Phase—ﬁeld.modeling of brittle fracture of isotropic linear elastic solids has been the subject of sev-
eral studies in the past 20 years. Major contributions to the field have been made by Francfort and
Marigo (1998), Bourdin et al. (2000), Bourdin et al. (2008), Miehe and coworkers (cf., e.g., Miehe
et al., 2010a,b, 2015), and Borden et al. (2012). In this approach to model fracture, one introduces
a scalar order-parameter or “phase-field” variable d € [0, 1], which affects the energy storage and
stiffness characteristics of the material. If d = 0 at a point then it is intact, while if d = 1 at
some point, then it is fractured. Values of d between zero and one correspond to partially-fractured
material. All fields remain continuous until the critical condition d = 1 is reached, and this gives
rise to the nucleation of a “crack” with attendant small zones of high gradients of d and therefore
stiffness. In the phase-field approach the evolution of d depends not only on d and other locally-
defined variables, but also on the gradient of the phase-field parameter Vd.

As reviewed by Ambati et al. (2015), phase-field modeling of brittle fracture overcomes the
limitations of the classical Griffith sharp-crack theory. An attractive feature of the phase-field
approach is its seamless ability to simulate the complicated fracture process of nucleation, propa-
gation, branching and merging of cracks in arbitrary geometries — propagating cracks are tracked
automatically by the evolution of the smooth phase-field d. This leads to a significant advantage

over the discrete fracture models, whose numerical implementation requires special methods for
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handling the discontinuities. In the phase-field approach the tedious task of tracking complicated
crack surfaces is avoided, and this significantly simplifies its numerical implementation relative to

the discrete crack formulations.

In contrast to fracture of “ideal brittle” materials, in this work we consider fracture of “quasi-
brittle” materials. A material is considered to be quasi-brittle in the sense that it is a heterogeneous
material with brittle constituents, which does not lose its entire load-carrying capacity at the onset
of damage. Instead there is a gradual degradation of the strength of the material, which is the result

of microscale decohesion/damage micromechanisms.

We focus in this thesis on modeling fracture of concrete, which is a quasi-brittle material of vast
importance. In laboratory-sized concrete specimens,! the size of the fracture process zone ahead
of the crack tip in these materials can become quite large — compared to the other structural
dimensions — as the damage progresses on its path to total failure (Hillerborg et al., 1976; Bazant

and Oh, 1983; Van Mier, 1991; Bazant and Planas, 1998; Elices et al., 2002; Bazant and Le, 2017).

To model such materials we make a constitutive assumption regarding their behavior — we
consider some amount of local inelastic deformation that precedes the damage initiation and further
drives the damage progression. The quasi-brittle nature of concrete is attributed to the bridging
phenomena observed in these materials. The several micro-cracks that develop are bridged by the
various aggregate particles present within. This bridging phenomena has been investigated over
the past few decades and several researchers have reported on the bridging processes across length
scales.

Van Mier (1991) and Schlangen and van Mier (1992) vacuum-impregnated single-edge notched
plate tension specimens 6f concrete which were tested to a post-peak state, with a low-viscosity
fluorescing epoxy. Using high-contrast imaging techniques they were able to reveal some fine-scale
microstructural details in the macro-crack/damage-zone which they observed in their specimens.
They observed that the damage-zone occurs primarily perpendicular to the direction of the maxi-

mum principal tensile stress, and that the faces of the crack-like features in the damage-zone were

'Less than 1m in some characteristic size such as the depth of a beam.
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connected by ligaments which allow for some stress-transfer between the faces. To quote Van Mier
(1991):
“The macrocracks are highly discontinuous cracks with debonding near larger aggregates
and intact material bridges between them. The load carrying capacity of a tensile
specimen for average crack openings larger than 50um can be explained from distributed
crack interface grain bridging. The failure of the grain bridges is a process involving
bending and frictional pull-out.”
Such “crack face bridging” by aggregate particles was seen to occur for several different classes of

concretes; one such observation is shown in the Fig. 1-1(a).

(a) (b)

Figure 1-1: (a) Crack face bridging in concrete specimen observed by fluorescent epoxy impregnation.
Taken from Schlangen and van Mier (1992). (b) Micro-CT scan of Portland cement showing evidences of
the bridging phenomena. Taken from Trtik et al. (2007).

More recently, Trtik et al. (2007) conducted micro-tomography studies and observed similar
bridging mechanisms at a much finer length scale in micro-tension specimens of Portland cement

— one of the constituents of concrete — which is depicted in Fig. 1-1(b).

In the past two decades, great strides have been made in developing high performance polymer

fiber-reinforced “engineered cementitious composites” which exhibit multiple-cracking and significant
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inelastic behavior in uniaxial tension (Li, 2003). In these cementitous composites, crack face bridging
is further enhanced by the polymer fibers. Fig. 1-2(a), taken from Wang and Li (2004), shows
engineering stress-strain curves from direct tension tests on un-notched specimens on one such
cementitious composite — a significant level of inelastic tensile strain, &~ 4%, is clearly evident in
this figure. Fig. 1-2(b) shows a representative photograph of the microcrack pattern observed on the
surface of one of the specimens. Multiple microcracks with bridging fibers develop in the specimen

perpendicular to the direction of the maximum principal tensile stress.
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Figure 1-2: Fiber reinforced cementitious composite subjected to tension: (a) engineering stress-strain
curves. (b) Microcracks with bridging fibers normal to loading direction. Taken from Wang and Li (2004).

We note that the process of inelastic deformation, damage, and fracture in concrete with dis-
tributed fibers bears a certain similarity to the “crazing” process which eventually leads to fracture
in certain amorphous polymeric materials. A craze in a polymer is a planar crack-like defect that
develops and expands normal to the maximum principal stress direction. Figure 1-3(a) shows a
micrograph depicting several crack-like features developed during the crazing process in a loaded
polymethyl-methacrylate (PMMA) specimen. Further, as can be seen from figure 1-3(b), that shows
a microtomed polystyrene specimen, these crazes are usually bridged by micro-fibrils — hence the

crack faces are not traction-free.
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tension axis

(a) (b)

Figure 1-3: (a) Crazes developed perpendicular to the loading direction in a PMMA specimen. Taken from
Ishiyama et al. (2001). (b)Microfibrils bridging across the crack faces of a craze in a polystyrene specimen.
Taken from Argon and Hannoosh (1977).

It is based on this similarity between the macroscopic characteristics of inelastic deformation,
damage, and failure in polymers and that of concrete, that we have borrowed the terminology of
“crazing” from the polymer literature to describe the deformation and failure processes in concrete.

In our view, whether it be in a polymer or in a concrete,

e a craze is a planar crack-like defect that develops and expands inelastically normal to the

mazimum principal stress direction.

We emphasize from the outset that while we borrow the terminology “crazing” from the polymer
literature, we recognize that the crack-bridging micromechanisms leading to fracture in quasi-brittle
materials like concrete (cf., e.g., Van Mier, 1991), are very different from those leading to craze for-

mation, growth, and breakdown in polymers.

For the continuum level of interest here, the inelastic deformation due to crazing will be defined
as an average over a microstructural representative volume element that results in an acceptably
smooth process at the macroscopic level (prior to final fracture). We will introduce a simple craze

initiation criterion based on the local maximum principal tensile stress reaching a critical value,
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which we call the craze resistance. After crazing has initiated, our continuum model will allow for
(a small amount of) craze-widening by dilational inelastic stretching which will be taken to occur
in the direction of the local maximum principal stress. Finally, in order to model craze-breakdown
and fracture, we develop a damage theory which depends not only on a damage variable d, but also
its gradient Vd, which represents a measure of the spatial inhomogeneity of the damage during the
fracturing process. Hence there is a material length scale, £, in the vicinity of a crack over which the
damage variable d varies between zero and one, £ therefore represents a measure of the “width of the
damage process zone”. Another reason for introducing a gradient-damage theory is to “regularize”
the strain-softening behavior during the fracture process as in Francfort and Marigo (1998), and
to avoid mesh-dependency related issues during finite element simulations — as in the pioneering
studies on fracture of quasi-brittle materials (cf., e.g., Pijaudier-Cabot and Bazant, 1987; Peerlings
et al., 1996, 1998), and also in the more recent phase-field theories of fracture of brittle materials
(cf., e.g., Miehe et al., 2010a,b, 2015; Borden et al., 2012). Numerically, a gradient theory can ensure
that the simulation results are mesh-independent, provided the mesh size is small enough; that is,

typical element size h. less than = 0.2¢.

There has been considerable recent activity in the research community to propose models for
quasi-brittle fracture which use various non-local, gradient-damage, or phase-field-regularized cohe-
sive zone models (cf., e.g., Lorentz, 2017; Wu, 2017; Wu et al., 2018, and the reference cited therein).
vThe objectives of this thesis are similar to the objectives in these other recent efforts in the literature.
However the details of our theory and its development are quite different. A major point of depar-
ture of our theory is that while most existing phase-field models of fracture have been formulated
using a variational approach,? in this thesis we shall formulate our phase-field — or more precisely
a gradient-damage theory — for fracture of quasi-brittle materials using an alternative approach.
Specifically, we shall formulate the balances in our theory by following the pioneering virtual-power
method of Germain (1973) and Gurtin (1996), and in a spirit similar to that of Fremond and Nedjar
(1996) who first adopted the virtual-power method to formulate a gradient-damage theory. This
approach leads to “macroforce” and “microforce” balances for the forces associated with the rate-

like kinematical descriptors in the theory. These macro- and microforce balances, together with a

*Variational arguments, by their very nature, cannot adequately characterize the dissipation associated with
inelasticity and fracture.
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standard free-energy imbalance law under isothermal conditions, when supplemented with a set of
thermodynamically-consistent constitutive equations will provide the governing equations for our
theory. We have specialized our general theory to formulate a simple continuum model for fracture
of concrete — a quasi-brittle material of vast importance. We present results from our numeri-
cal implementation that demonstrates it’s capability to reproduce macroscopic failure response of
concrete. Subsequently, we also show preliminary results of applicability of our model to materials

other than concrete, when specialized suitably.
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Chapter 2

Theoretical framework

This chapter concerns with the formulation of a thermodynamically-consisitent continuum mechan-

ical damage model for a quasi-brittle fracture.

Our theory relates the following basic fields:!

INotation: We use standard notation of modern continuum mechanics Gurtin et al. (2010). Specifically: V and
Div denote the gradient and divergence with respect to the material point X in the reference configuration; grad and
div denote these operators with respect to the point x = x(X,¢) in the deformed body; a superposed dot denotes the
material time-derivative. Throughout, we write F¢~1 = (F)~!, F*7 = (F°) ™7, etc. We write tr A, symA, skw A,
Ay, and symgyA respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor
A. Also, the inner product of tensors A and B is denoted by A:B, and the magnitude of A by |[A| = VA:A.
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x = x(X,t),

F=Vyx, J=detF >0,
F = FeF¢,

Fe, J°=detF¢ > 1,

F¢, Jé=detFe >0,

F¢ = R°U¢,

U =30 NrL®rs,
E =30, (InX)rs ®rs,
Me,

T = J*IR*M°R*",

Tr =JTF ",

Yr,

S€ >0,

€ >0,

de|o0,1],

vd,

£>0,

We restrict our attention to isothermal conditions and assume that the material behavior may be

modeled as isotropic.

2.1 Kinematics

Consider a macroscopically-homogeneous body B with the region of space it occupies in a fixed
reference configuration, and denote by X an arbitrary material point of B. A motion of B is then a

smooth one-to-one mapping x = x(X,t) with deformation gradient, velocity, and velocity gradient

given by
F =Vx,

motion;

deformation gradient;

multiplicative decomposition of F;
inelastic craze distortion;

elastic distortion;

polar decomposition of F¢;

spectral decomposition of U¢;
logarithmic elastic strain;

Mandel stress conjugate to logarithmic strain E€;
Cauchy stress;

Piola stress;

free energy per unit reference volume;
craze resistance;

craze strain;

damage variable;

gradient of d;

length scale in the gradient damage theory.

V=X, L=gradv=FF_1.
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We base our theory on the multiplicative decomposition of the deformation gradient,
F = F°F°. (2.2)

As is standard, we assume that

T det F > 0, (2.3)

and hence, using (2.2),
J = JJC, and we assume that Je ¥ det Fe > 0 and J¢ ¥ det Fe > 0, (2.4)

so that F'¢ and F€ are invertible. Here, suppressing the argument ¢:

(i) F¢(X) represents the local inelastic deformation in an infinitesimal neighborhood of material

at X due to “crazing” which eventually culminates in a “quasi-brittle”-type failure.

(i1) F¢(X) represents the local deformation of material due to stretch and rotation of the micro-

scopic structure.

We refer to F¢ and F€ as the craze and elastic distortions, respectively.

The right polar decomposition of F€ is given by
F¢ = R°U°, (2.5)
where R€ is a rotation, while U® is a symmetric, positive-definite tensor with
U® = VFFe. (2.6)

As is standard, we define

C® = U2 = F“F°. (2.7)

By (2.1)3 and (2.2),
L = L¢ + FL°F¢ !, (2.8)
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with
Le = FeFe—l LE = Fch—l.

As is standard, we define the elastic and craze stretching and spin tensors through

D¢ = symL®, W¢€ =skwL®, D¢ = sym L, W€ = skw L€,

so that L® = D¢ + W¢ and L¢ = D¢ + W¢.

We make the following additional kinematical assumption concerning craze flow:

(2.9)

(2.10)

(i) First, from the outset we constrain the theory by assuming that the craze flow is irrotational,

in the sense that?

We¢=0.

Then, trivially, L¢ = D¢ and
F° = D°F°.

On account of (2.11), the relation (2.8) reduces to
L = L¢ 4+ F*D°F* L,
(ii) Second, we assume that D¢ has the form (Gearing and Anand, 2004)
D¢ = é°N° with N=m®m,
where m is a unit vector (yet to be specified),
€ =D >0,

represents a craze extension rate in the direction m. We call

t
€° dzef/ €°(s) ds
0

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

2This assumption is adopted here solely on pragmatic grounds: when discussing finite deformatlons the theory

without craze spin is far simpler than one with craze spin.
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the craze-strain.

Thus, using (2.1), (2.2), and (2.14) we may write (2.13), for future use, as

(Vx)F~! = FeFe~! 4 ¢eFENCFe L, (2.17)

2.2 Damage variable

Next, in order to model the process of “craze-breakdown”, we introduce a damage variable or phase-
field,
d(X,t) € [0,1]. (2.18)

If d = 0 at a point then that point is intact, while if d = 1 at some point, then that point is
fractured. Values of d between zero and one correspond to partially-fractured material. We assume

that d grows montonically so that

d(X,t) >0, (2.19)

which is a constraint that represents an assumption that microstructural changes leading to damage

are irreversible.

2.3 Method of virtual power. Balance of forces

We follow Gurtin (1996, 2002) and Gurtin et al. (2010) to derive macroscopic and microscopic
force balances via the principle of virtual power. In developing our theory we take the “rate-like”
kinematical descriptors to be x, F¢, ¢, d, and also Vd. Also, in exploiting the principle of virtual
power we note that the rates (x, F€, é° ) are not independent — they are constrained by eq. (2.17).

We denote by P an arbitrary part of the reference body B, with ng the outward unit normal on
the boundary OP of P. With each evolution of the body we associate macroscopic and microscopic
force systems. The macroscopic system is defined by: (i) A traction tg(ng), for each unit vector ng,
that expends power over the velocity %, an external generalized body force by that also expends

power over x. That is,

br = bor — PrX; (2.20)



where bog represents the conventional body force per unit volume of the reference body, and (—pgrX)
represents the inertial body force; pg is the mass density of the referential body. (ii) An elastic stress

S¢ that expends power over the elastic distortion rate Fe.

The microscopic system is defined by: (a) A positive-valued scalar microscopic stress 7 that
expends power over the craze strain rate é¢. (b) A scalar microscopic stress w that expends power
over the rate, d, of the damage variable, d. (c¢) A vector microscopic stress € that expends power
over the gradient Vd. And (d) A scalar microscopic traction £(ng) that expends power over d on

the boundary of the part.

We characterize the force systems through the manner in which these forces expend power; that
is, given any part P, through the specification of Wext(P), the power expended on P by material

external to P, and Wiy (P), a concomitant expenditure of power within P. Specifically,

Wext (P) = /tR(nR) -x dag + /bR - x dvg + /f(nn)&daR,
oP

1°)
g g (2.21)

Wint(P) = /(Se Fe 4 mé¢ +wd+ € Vd) dvg.
P

Assume that, at some arbitrarily chosen but fized time, the fields x, F¢ (and hence F and
F¢), and N¢ are known, and consider the fields x, F¢, and ¢¢ as virtual velocities to be specified
independently in a manner consistent with (2.17); that is, denoting the virtual fields by X, Fe, and

€° to differentiate them from fields associated with the actual evolution of the body, we require that
(Vx)F~! = FeFe! + eFeNeFe L, (2.22)

Further, also considering d to be a virtual velocity, and denoting its virtual counterpart by a, we

define a generalized virtual velocity to be a list
V= (x,F&,d),
consistent with (2.22).
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We refer to a macroscopic virtual field V as rigid if it satisfies
(Vx) =F = QF, (2.23)

with € a spatially constant skew tensor, together with

Fe=QF¢, &€=0, d=0. (2.24)
Writing

Wext(P, V) = / tR(nR) ‘ X darR + / bR ° Xd,UR + / f(ng)adag,
oP P oP
(2.25)

Wint (P, V) = /

P(S€:F€+n€C+w8+§ova) dug,

respectively, for the external and internal expenditures of virtual power, the principle of virtual

power consists of two basic requirements:

(V1) Given any part P,

Wext (P, V) = Wint(P,V) for all generalized virtual velocities V. (2.26)

(V2) Given any part P and a rigid virtual velocity V,

Wine(P,V) =0 (2.27)

2.4 Consequences of the principle of virtual power

The virtual-power principle has the following consequences:

(a) The stress

Ty & geFeT, (2.28)

is consistent with a macroscopic force balance and a macroscopic traction condition,

Div Txr + bgr = prX and tr(ng) = Tgrng, (2.29)
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and TrF' is symmetric,

TRF = FT}.

(2.30)

In view of (2.29) and (2.30) the stress Ty represents the classical Piola stress, with (2.29) and

(2.30) representing the local macroscopic force and moment balances in the reference body.

As is standard, the symmetric Cauchy stress T in the deformed body is related to the Piola

stress by
T =J TF.

It is convenient to introduce two new stress measures:
— The elastic second Piola stress,
def -1 e—T
T® = JF¢ "TF¢ 7,

which is symmetric on account of the symmetry of the Cauchy stress T.

— The Mandel stress,
Me & ceTe = JeFT TR

which in general is not symmetric.

Using (2.28) and (2.31) we find that
S¢=JTF* .

Thus, using the definitions (2.32) and (2.33) we find that

Fe18S¢ = J°T° and F¢'S¢=J°M°.

(b) A microscopic force balance,

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)



where o is a resolved tensile stress defined by the relation

o & e Ne. (2.37)

(c) The microstresses & and w are consistent with the microforce balance and microtraction
condition,

DivE —w =0, and &(ng) = & ng. (2.38)

These macro- and microforce balances, when supplemented with a set of thermodynamically con-

sistent constitutive equations, provide the governing mechanical equations for the theory.

Finally, using the traction conditions (2.29)2, and (2.38)2 the actual external expenditure of

power (2.21) may be written as

Wext(P) = [(Tang) - xdag + [ bg - xdve + [ (€ ng)ddag. (2.39)
/ [rrrms]

Also, using (2.35); and (2.7), the stress power S€: F¢ may be alternatively written as
e < 1 .
Se:F¢ = §JCT6:Ce. (2.40)
Thus, the corresponding actual internal expenditure of power (2.21); may be written as

Wint (P) = /(%JCTe 1€+ e + wd + € Vd) do. (2.41)
P

2.5 Free-energy imbalance

Under isothermal conditions the two laws of thermodynamics reduce to the statement that the
temporal increase in free energy of any part P is less than or equal to the power expended on P.
Precisely, letting ¢y denote the free energy per unit reference volume, this requirement takes the

form of a free-energy imbalance (Gurtin et al., 2010)

/ Pr dvr < Wext(P). (2.42)
P
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Since Wext(P) = Wint(P), using (2.41) we obtain

1

/ (1&3 - (EJCTE :Ce 4+ e + wod + ¢€- Vd)) dug <0, (2.43)
P

which upon using the fact that (2.43) must hold for all parts P, yields the following local free-energy
imbalance under isothermal conditions,

Vp — %JCT@:C@ —mé¢ —wd —£-Vd <O0. (2.44)

Remark. For brevity we have not discussed invariance properties of the various fields appearing in
our theory. Here, we simply note that all quantities in the free energy imbalance (2.44) are invariant

under a change in frame. |

2.6 Constitutive theory

By (2.15) the craze inelastic strain satisfies
©(X,0) =0, ¢(X,t) >0, (2.45)

and hence €° increases with time in any “inelastic process”. We view € as a measure of the past
history of inelastic strain in the material. Recall that we have also introduced an additional damage
variable d. Here we consider a theory which allows for an energetic and dissipative effects associated
with temporal changes in d, and also an energetic effect due to the gradient Vd. We consider the

gradient Vd as a measure of the inhomogeneity of the microscale damage.

Guided by the free-energy imbalance (2.44), we consider C¢, €¢, and d as independent variables,
and we consider the following set of constitutive equations for the free energy g, the stress T¢,

and £ the vector microforce:

e =9r(A), T =T(A), €£=§(A), (2.46)



where A denotes the list

A = (C*,¢,d, Vd). (2.47)

Substituting the constitutive equation (2.46); into the free-energy imbalance (2.44), we find that

it may be written as,

(azER(A) - %Jc’i‘e(A)) e <7r - aQJSR(A)) o (w - 81/}R(A)> i (g _ Q*/Ln(ﬂ) vd <o

8Ce Be° ad avd
(2.48)

We assume that the free energy function ¢ (A) delivers the stress T¢ and the vector microstress &

through the state relations

1 OYr(A)

_ Hr(A) (2.49)
oCe ’ '

T =2J°
J ovd

£

Further, upon introducing energetic microstresses me, and e, through the relations,

Ten = 82&5{6(;\) and en = ?%2, (2.50)
and a dissipative microstresses mq;s and wogis through the relations
Tdis = T — Ten and Wdis = T — Wen, (2.51)
we are left with the following reduced dissipation inequality
D = mgis€® + waisd > 0. (2.52)
We assume that the terms in (2.52) individually satisfy the dissipation inequalities
Tdis€® > 0,  woaisd > 0. (2.53)

In the following sections we introduce special constitutive equations which should be useful in

applications.
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2.7 Free energy

Henceforth we restrict our attention to isotropic materials for which the response function 1,[A)R(A) is

taken to depend on C¢ only through its principal invariants
Tce = (I1(C°), I(C®), I5(C?)), (2.54)

and that the dependence on Vd is through its magnitude |Vd|, so that the free energy function
(2.46); becomes?

¥r = Pr(Toe, €, d, | Vd)). (2.55)
Thus, from (2.49), it follows that the constitutive equation for T¢ is,

1 8 QZ;R(ICe, EC, d, |Vd|)

T =2J
o0Ce

(2.56)

and .
£ = OYr(Zce, €, d,|Vd|)
. ovd ’

(2.57)

and that the constitutive equation for T€ is an isotropic function of C¢. Then since the Mandel
stress is defined by (cf. (2.33))
M¢ = C*T*®, (2.58)

we find that T¢ and C® commute,

C°T® = T°C*, (2.59)
and hence that the Mandel stress is symmetric.

Now, the spectral representation of C¢ is C° = Z?Zl()\f)er ® r{, where (r§{,r§,r§) are the
orthonormal eigenvectors of C® and U*®, and (A{, A5, \§) are the positive eigenvalues of U®. Instead
of using the invariants Zce, the free energy 1r may be alternatively expressed in terms of the

principal stretches as,

sz'(ZR( iﬁ 5’ §75C>d7IVd|)' (2-60)

3We neglect any dependence on the joint invariants of C¢ and Vd.
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Let
f 3 def
ECmU=Y Erfor; with B Eln), (2.61)
=1

denote the logarithmic elastic strain with principal values Ef, and consider a free energy function

7!
of the form

Pr(AS, A5, AS, €€, d,|Vd|) = Pr(ES, ES, ES, €€, d,|Vd]). (2.62)

Then, the Mandel stress is given by

3 7 e
ME = Jc—l Z BT/JR(Ef’EZ’ E§, fc’d’ IVdD
=1

r{ ®r;. (2.63)

OE®

With the logarithmic strain defined by (2.61), and bearing in mind (2.62) and (2.63), we henceforth

consider a free energy of the form
¥r = ¥r(Tee, €%, 4, |Vd]), (2.64)

with Zge a list of principal invariants of E€, or equivalently a list of principal values of E¢. The

Mandel stress is then given by

100 (Tge, €°,d, |Vd|)

e _ jc— 2.65
Me = J SE : (2.65)
and the corresponding Cauchy stress is
T = J IR*M°R*". (2.66)
As a further specialization we consider a free energy of the form,
Pa(Tie, €, ,[Vd]) = g(d)J° [§(Tae) + 9(e7) | + A|V]”. (2.67)

In (2.67) the term I:’I,Z;e(IEE) + zﬁc(ec)] is a free energy per unit volume of the intermediate space
defined by the range of F¢(X), and multiplication of this term by J¢ gives the free energy per unit

volume of the reference space. Further:
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(i) ¢ is an elastic energy given by,

J°(Tge) = GIE + % (K _ ga) (trE°)2, (2.68)

Here G is the shear modulus, K the bulk modulus, respectively. This free energy is a simple
generalization of the classical strain energy function of isotropic linear elasticity to moderately

large elastic deformations using the logarithmic strain measure(Anand, 1979).

(ii) We assume that the crazing process gives rise to local disordering which stores energy according
to,

1210(60) = (1 — ) S°", (2.69)

with §¢ > 0 a constant modulus with units of stress representing the craze flow resistance,
and s is positive-valued fraction, such that 3 .S°¢ represents the dissipation due to craze flow,

and that the fraction (1 — 5)S°¢ is stored in the material.*

(iii) The positive-valued g(d) > 0 degradation function is monotonically decreasing,
g'(d) <0, (2.70)
and satisfies
9(0)=1, g¢(1)=0, and g'(1)=0. (2.71)

A widely-used degradation function is (cf., e.g., Bourdin et al., 2000; Miehe et al., 2010a;
Ambati et al., 2015),
g9(d) = (1 —d)%; (2.72)

‘we adopt it here.’

(iv) In order to account for gradient effects for the damage we have included a quadratic term

4More complicated forms for 1/3°(e°) my be chosen, but at this time not much is known about such energy storage
mechanisms due to crazing.
5In numerical calculations g(d) is modified as

g(d) = (1—d)> + k, (2.73)
where k =~ 0 is a small positive-valued constant which is introduced to prevent ill-conditioning of the model when

d=1.
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dependent the gradient Vd,
A|Vd]?,

where A is coefficient with units of energy per unit volume times length-squared.

Thus, combining (2.67), (2.68) and (2.74), the free energy is taken to be given by,

Yr = g(d)J¢ |GIES]? + ! (K — gG) (trE®)2 + (1 — 2) S8%° | + A|Vd|%.
2 3 -

N

—= pe(€€
e (Ige) v

Then, by (2.65) the Mandel stress is given by
MF® = g(d) [2GE§ + K (trE°)1].
Further, from (2.75), (2.50), and (2.49)4,
Ten = g(d) (1 — )55,
Den = ¢/(d) J° (¥ (Zee) +9°(e9))

£ = 2AVd.

2.8 Craze flow rule

(2.74)

(2.75)

(2.76)

(2.77)

The spectral decomposition of the Mandel stress M€ is M€ = Z;}:l o; é; ® &; where {o;|i = 1,2,3}

are the principal values and and {&;|i = 1,2,3} are the principal directions of M¢. We take that

the principal stresses to be strictly ordered such that
o1 2 02 2 03.

Further, we denote the mean normal stress by

1
oM d=ef§(01 + o9+ 03) > 0.
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We postulate that crazing in a material neighborhood can occur only when the maximum principal

stress and the mean normal stress are positive:

> 0 possible ifo; >0 and oy = %(01 + 02+ 03) >0,
¢ = (2.79)

0 otherwise.

If é€© = 0 then there is no need to specify a consitutive equation for 74is, while when € > 0 we

assume that the dissipative microforce ;s is given by a constitutive equation of the form

Tas =  9(d)JxS° >0, (2.80)
N e’

resistance to craze flow

In (2.80),
S¢>0, (2.81)

is a constant modulus with units of stress representing the craze flow resistance, and s € (0,1) is
positive-valued fraction such that g(d)J¢s S°€ represents the dissipation due to craze flow, and so
that the dissipation inequality (2.53)7 is satisfied. Thus from (2.77); and (2.80) the microforce 7 is
given by

™= g(d)JC(l - z)Si+g(d)JcnSi = g(d)J°S°. (2.82)

Tlen Tdis

Further, we assume that the direction m for craze extension coincides with the maximum principle
stress direction,

(2.83)

5
Il
LD)

That is, we assume that

o the craze flow direction N¢ is parallel to and points in the same direction as the direction of

the eigen projection-tensor €, ® €1 corresponding to the maximum principal value o1 of M€:

N¢=¢ ®é. (284)
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In this case the resolved tensile stress o appearing in (2.37) is

JME: N¢ = J,. (2.85)

Thus, from the microforce balance (2.36) and the constitutive equation (2.82), we obtain the fol-

lowing strength relation for craze flow,

o1 =9(d)S® when é°>0. (2.86)
We may rewrite (2.86) as
f=0 when ¢°>0, (2.87)
where
= 1 - g(d)s°, (2.88)

represents a yield function for craze flow. Equation (2.87) implies that a necessary condition for
€° > 0 is that

f=0; (2.89)

we assume here that this condition is also sufficient for é¢ > 0. This means that craze flow occurs

only when (2.89) holds. Equivalently é° = 0, and no craze flow occurs when
f<o. (2.90)
Thus, in our rate-independent model for craze flow we have,
€ >0, <0, e€f=0, (2.91)

which are the Kuhn-Tucker conditions associated with rate-independent craze flow. It may be shown

that in the rate-independent theory,
if ¢€ >0, then f =0 and f =0, (2.92)

which is known as the consistency condition. The consistency condition may be used to determine
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the value of é° when it is non-zero.

Finally, using (2.84) and (2.14) with the consistency condition (2.92) serving to determine €é°

when it is non-zero. the evolution equation for F¢ is then taken to be given by

F° = D°F¢, with ‘ D°=¢€e; ®é;
2.9 Evolution equation for the damage variable d
Recall the reduced dissipation inequality (2.53)3,
wdisd > 0.
As a special constitutive equation for wg;s we take it to be given by,
wais = a + ¢ d,
with o given by
a=2(1-d)¢, +2¢d >0, with 9¥,>0 and 1, >0,

and

¢ > 0 is a constant kinetic modulus,

so that the dissipation inequality (2.94) is satisfied, that is

(a+§d)d>0 whenever d > 0,

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

Note from (2.98) that in the rate-independent limit ({( = 0), the energy dissipated per unit

volume as d increases from 0 to 1 is given by

1

Pm-%&ma+m¥]=wa+m.
0

(2.99)

Thus (¢ + ¥«) represents a contribution to the energy per unit volume dissipated during dam-
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age growth.® As we shall see shortly, damage will be presumed to initiate when the free energy
(@e(IEe) + 1/36(66)) reaches a value equal to 9.,. A further increase in the deformation results in
an increasing value of d, and . represents an additional energy dissipated in the fracture process
as d increases from 0 to 1.

From (2.51), (2.77), and (2.95) the scalar microstress @ and the vector microstress € are given

by the thermodynamically consistent constitutive equations

w=—2(1—d)J (zze(zEe) + @ZC(GC)) +2(1—d)po +2pd+¢d,  and = 24Vd .

—
ene;éetic dissipative energetic
(2.100)
These constitutive relations and the microforce balance (2.38), viz.
DivE —w =0,
yield the following evolution equation for d,
¢d =2(1 —d) ¥ — 2(1 — d)ibe — 2¢5d + 24 Ad, (2.101)
where
def ~ ~c
Yo = J° (4 (Zae) + 9°(e)) (2.102)

represents an undamaged free energy.

Consider the rate-independent limit, { = 0, in the absence of the gradient effects, Ad = 0. Then

the microforce balance (2.101) during the damaging process d > 0 requires that
2(1 —d) (Y0 — te) — 2¢hud = 0, (2.103)

which gives

d= (1110 - ¢cr)
w* + (’(pO - ¢cr) .

Note that (2.104) shows that d > 0 only if ¢9 > ¥.. Thus, to ensure that d € [0,1] we use the

(2.104)

5There is of course an additional “viscous” energy dissipation due to the contribution from the term involving ¢.
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Macauley bracket,

0, =<0,
(z) =
z, x>0,
and rewrite (2.104) as
<¢0 - /l/)cr>
- , 2.105
or in a form similar to (2.103) as
2(1 — d) (4o — Yer) — 20xd = 0. (2.106)
Next, eq. (2.105) in turn gives
¥ (Y0 = Yo (2.107)

d= 5.
(¢* + WJO - ¢cr>)

Then, in order to satisfy the irreversibility constraint, d > 0, from (2.107) we see that we must

require that

(tho — Per) 2 0. (2.108)

That is, the damage “driving force” (y9 — v.,) must be a montonously increasing function of time.
This requirement is satisfied if we replace (9 — v¢.,) in (2.106) with the monotonically increasing

history field function (cf., Miehe et al., 2015):

H(t) < max [(o(s) — ¥ur)] - (2.109)

s€[0,¢]

We further impose the requirement that the craze strain must exceed a critical value, €, before the

history field may evolve and damage process may initiate.

0, if €€ < €,

H(t) & (2.110)
max [(¢o(8) — Vo), otherwise
s€[0,t]

Finally, reinstating the rate-dependence and the dependence on Ad, as in (2.101), the evolution of
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d is then governed by the partial differential equation,

¢d=2(1-d) H—2¢d+24AAd, with
0, if €€ < €€,

H where (2.111)
srél[%,)t(] [(1/}0(5) - wcr>] ) otherwise

o & e [<G|Ee[2 + % (K - %G) (trEe)z) +(1— %)Scec] .

The evolution equation (2.125) for d is similar to the evolution equation for d in the papers by
Miehe et al. (cf., e.g., Miehe et al., 2010a,b, 2015, 2016) on phase field modeling of fracture. Indeed
if we take the energetic term A which is associated with the damage-gradient contribution to the
free energy in (2.74) to be given by

A =02, (2.112)

where £ > 0 is an internal length scale which controls the width of zones across which the damage

varies rapidly, then (2.111); reduces to

¢d=2(1—d) H —2¢.(d — £2Ad). (2.113)

which is of a form identical to that in the work of Miehe and co-workers (cf., e.g., Miehe et al., 2015,
eq. (53)). However, the details of our derivation differ in may respects from the derivations given

in the papers by these authors. Differences of particular importance are:

e We allow for a small amount of inelastic craze-like deformation when the maximum principle

tensile stress reaches a critical value S¢ > 0, which we call the craze strength.

e Craze inelasticity is allowed to occur only when the maximum principal stress is positive.
There is no need in our theory to decompose the free energy into “positive” and “negative”
parts to avoid cracking under “compressive” states of strain, as done in most existing theories

for phase-field modeling of fracture.

e We do not a-priori invoke the purely geometric ideas of approximating a sharp-crack topology

by a damage field d and a length-scale 4.
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e Our theory contains a material parameter 1. which sets a level of energy that must be

exceeded before damage initiates.

e The value of the parameter A which appears in the contribution A4 |Vd|? to the free energy
(2.75) in our theory is constitutively taken to have a value A = 1,¢2; we do so in order to
make connection with the work of Miehe and co-workers. The term A |Vd|? = v,£%|Vd|?
is energetic in our theory since it appears in the free energy (2.75), and therefore the term
2¢,£2Ad in eq. (2.125) is also energetic and not dissipative — as is commonly assumed in the

literature by many including Miehe and co-workers.

e The value of the strength parameter S° in our theory is not related to the elastic Young’s
modulus E, a toughness G., and the length scale £ — as in most existing phase-field theories
of fracture (cf., e.g., Pham et al., 2017). In our theory the material strength is controlled
directly by S°.

e The parameter ¢ is a suitable gradient regularization parameter which may be indepen-
dently prescribed based on physical considerations of the microstructure and computational-

tractability.

2.10 Summary

The theory formulated above is summarized below :

2.10.1 Constitutive equations

1. Free energy
The free energy is taken to be given by,

Y = g(d)vo + ¥ul? |Vd[?,  with
¢0 = J¢ [G|E6|2 + % (K _ §G> (trEe)2 + (1 _ %) Scecjl ] (2.114)

7

-~
“undamaged” energy

Here:
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(i) G,K > 0 are the shear and bulk moduli, respectively.

(ii) S°° represents an inelastic work expended due to crazing and s a fraction in the range
» € (0,1). We assume that the fraction »S°€€ is dissipated, while the balance (1— 3)S®¢

is stored in the material due to craze-disordering,

S’ = 3#S5°°¢ + 1 — 3)5%° . 2.115
xS ( ) ( )

energy dissipated due to crazing  energy stored due to craze disordering
iii d) = (1 — d)? is a monotonically decreasing degradation function.
g Yy g aeg

(iv) The parameter v, is an energy per unit volume associated with the evolution of damage,

and £ > 0 is a length scale parameter that controls the spread of the diffuse damage zone.

2. Mandel stress
The Mandel stress is given by

Me = jet (gﬁ‘:) = g(d) [2GE§ + K (trE®)1], (2.116)

which is symmetric. The spectral decomposition of the Mandel stress is
3
M=) 0;6;®& with o1>0y> 03, (2.117)

=1

where {o;|i = 1,2,3} are the principal values and {&;|i = 1,2, 3} are the principal directions
of M¢. Craze inelasticity will be taken to occur in the maximum principal stress direction é;

cf. eq. (2.118) below.

3. Ewolution equation for F¢
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The evolution of F€ is taken to be given by,

F°¢ = D°F° with initial condition F¢(X,0) =1, where
D¢ = écél ® €1, and
(2.118)
> 0 possible  ifo; >0 and oy = 3(01+02+03) >0,

0 otherwise.

Here €° > 0 is craze strain-rate, which is determined, as discussed below, in a manner similar

to that in classical theories of rate-independent inelasticity.

With S¢ > 0 denoting a stress-dimensioned variable representing a resistance to craze flow,

we introduce a yield function

f dzef g1 — g(d)Sca

and require that

f <o, (2.119)

which limits the admissible maximum principal stress o1. Then, as is standard in rate-
independent theories of plasticity, the loading-unloading conditions may be expressed in the

Kuhn-Tucker form

€20, f<0, €¢f=0,

to which we append the consistency condition
é€f=0 when f=0.

The consistency condition serves to determine é° whenever it is not zero. The craze strain is

defined by
t
(1) & / ¢(s) ds. (2.120)
0

4. Evolution equation for the damage variable d
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Let

w e |(oEpag (K- 20) @EpR)+ a-mse |,
N, o’

— = craze disordering energy
elastic energy

~ J/

(2.121)

“driving energy” for damage growth

represent a “driving energy” per unit volume for damage growth; cf. eq. (2.114). Then, with
Yer, €5, Tepresenting threshold values of energy and craze strain respectively for initiation of

damage, we define a history loading parameter by

0, if €€ < €€,

nE : (2.122)
max [<¢0 (S) - wcr>] 5 OtherWise
s€[0,t]

and take the evolution of d to be governed by the partial differential equation,
¢d=2(1—d) H — 2¢.(d — 2 Ad), (2.123)
where { > 0 is a (small) viscous regularization parameter.

2.10.2 Governing partial differential equations. Boundary and initial conditions

The governing partial differential equations consist of:

1. The force balance (neglecting body forces and inertia),
DivTg = 0, (2.124)
where Tj is the Piola stress. The boundary conditions are
x=% on Sx[0,T] Trng =tx on S x 0,77,

where Sy and Sgy are complementary subsurfaces of 9B. To these boundary conditions we

append the initial condition x(X,0) = xo(X) in B.
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2. Evolution of d,

¢d=2(1—-d)H — 2, (d — 2 Ad). (2.125)
The boundary conditions for this partial differential equation are taken as
d=0 on &y x[0,T], (Vd) 'ng =0 on Sgy x [0,77,

where Sy and Sgqy are complementary subsurfaces of B. To this we append the initial

condition d(X,0) =0 in B.

2.11 Constitutive response of a single element undergoing ho-

mogeneous simple extension

To fix ideas regarding the intrinsic stress-strain response of the material in the absence of the
effects of a gradient in the damage field, we first consider the response of a single element
in monotonic simple extension under homogeneous plane-strain conditions. The numerically
calculated stress-strain response is shown in Fig. 2-1(a). As the strain is increased from zero,
the initial response is elastic until a craze strength level S¢ is reached at point (i) marked in
Fig. 2-1, when inelastic deformation due to crazing is initiated.” With further extension the
craze strain € increases, while the stress-level remains constant at S°. When the craze strain
reaches a critical value €¢, at point (ii) marked in Fig. 2-1, the undamaged energy 1o (cf. eq.
(2.114)2) reaches the threshold energy .. (cf. eq. (2.122)), and damage is initiated. The
energy density v, has a contribution from the elastic strain at that point, as well as a fraction

of the energy stored due to craze growth between points (i) and (ii). A simple one-dimensional

estimate for the energy 1., in terms of the parameters (E, S¢, €, ») is
Sc2
wcr - ﬁ =+ (1 - %)Scfgr. (2126)

"In the civil engineering literature on concrete, the parameter S which we have called the the craze strength, is
usually called the tensile strength and denoted by f: or also sometimes by fi.
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With increasing deformation as the damage progresses, the value of d increases and the stress
begins to decay. The shape of the decaying portion of the stress-strain curve in Fig. 2-1(a)
is controlled by both the degradation function g(d) = (1 — d)? as well as the energy density
parameter 1, in our model. In all the calculations shown in this thesis we keep the degradation
function fired, and increasing or decreasing the value of 7, increases or decreases the amount

of energy dissipated as d increases from zero to unity.®

Sc._(_i) (ii)
o

€

@
€ ;

Sc
a o a |
| |
1 '
(b) (c) (d

Figure 2-1: (a) Stress-strain response of a single element in monotonic simple extension under homogeneous
plane-strain conditions, without gradient-damage effects. Keeping the values of other parameters fixed: (b)
shows the effect of varying the value of S; (c) shows the effect of varying the value of €Z,; and (d) shows the
effect of varying the value of ..

# Although our theory allows for the use of different degradation functions, we refrain from adding complexity to
our model by exploring different forms of the degradation function to more closely match experimental data.
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Keeping the values of the other material parameters fixed, Fig. 2-1(b), (c¢), and (d) quali-
tatively show the effects of increasing the value of S¢, €, and ., respectively. Thus the
strength and toughness of different quasi-brittle materials may be modeled by suitably vary-
ing the values of these parameters. For strain-softening materials the length scale £ in our
gradient theory also has a major effect on the softening response. We discuss this matter in

the next chapter in section 3.1, where we consider the inhomogeneous deformation in a direct

tension test on concrete.

We wish to emphasize here the distinction between the craze-type inelasticity (that we have
used here) and classical shear-yield plasticity. Although our constitutive response, with a con-
stant stress at the peak load appears analogous to the behavior of a perfectly-plastic metallic
material, the two processes are fundamentally different. Classical shear-yield plasticity in
metals is based on plastic incompressibility and the plastic deformation is isochoric ; however,
crazing is a dilational form of inelasticity which accommodates volume changes that might

appear within the RVE due to the opening of several micro-cracks.

€

Figure 2-2: Single-element stress-strain response with an unload-reload excursion.

Before closing this section we show the unloading-reloading response of the model. We sub-
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jected a single element to extension with an unload-reload excursion in the decaying region of
the stress-strain curve. The corresponding stress-strain curve is shown in Fig. 2-2. The un-
loading branch shows a linear response corresponding to elastic unloading but with a reduced
modulus because of the damage. As expected, the intercept of the unloading branch on the
strain axis corresponds to the inelastic craze strain € at the point on the decay curve from

where the unloading process was initiated.

To contrast against the existing phase-field models in the literature for ideally-brittle mate-
rials, as in Miehe et al. (2010a), we discuss the effect of craze inelasticity on the behavior.
Suppressing crazing in our model, we have an elastic-damage model analogous to Miehe et al..
The single element load-unload response without craze inelasticity is shown in fig.2-3. In the
absence of any inelastic mechanisms, damage initiates at the peak followed by decay with
progressing damage. A major point of deviation is the unloading characteristic where upon
unloading the specimen does not show any permanent set, i.e. unloading response intercept

on the strain axis is zero. This is because the deformation is purely elastic.

€

Figure 2-3: Single-element stress-strain response for an elastic-damage model with an unload-reload ex-
cursion.

Physically, with the macroscopic deformation of the specimen there is some associated open-
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ing of the micro-cracks in concrete. Beyond the onset of damage, it is reasonable to expect
that the opening of these several micro-cracks is not completely reversible, i.e., when the load
on a damaged concrete specimen is fully removed, micro-crack closure does not necessarily
occur. This leads to some unrecovered macroscopic deformation which is associated with some
inelastic processes taking place within the material. This is supported by several experiments
performed by van Mier and co-workers. Figure 2-4, taken from Schlangen and van Mier (1992)
shows the load-displacement curve with several unload-load excursions. Unloading the spec-
imen does not lead to complete recovery of the displacement indicating that some inelastic
mechanism are operative during the deformation process. It is based on this type of evidence
that we have allowed for some dilational craze-inelasticity before the commencement of dam-

age in order to obtain a response as in fig.2-2 instead of that in fig.2-3

Pr(kN)

0+ % : 4 b 4 4 : 4 § 4
0 20 40 60 80 10O 120 40 WO 180 —=
w(um)

Figure 2-4: Load-crack opening diagram of a single edge notched high strength concrete. Taken from
Schlangen and van Mier (1992)
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2.12 Material parameters

Before applying the theory to model concrete, we recall that the material parameters in our

theory are:

(a) The elastic shear and bulk moduli, G and K. Or equivalently, using the standard relations

of isotropic linear elasticity, the Young’s modulus F and the Poisson’s ratio v.
(b) The craze strength parameter, S¢ > 0.

(c) A parameter s € (0,1), such that (1 — 5)S° represents the amount of energy per unit

volume stored due to crazing.

(d) A parameter €5 which represents a critical craze strain which in turn determines an

energy 1., that must be reached for damage to initiate.

(e) A parameter 1, > 0 which represents a contribution to the energy dissipated as damage

grows from zero to unity.
(f) A length scale parameter, £ > 0, which controls the spread of the diffuse damage zone.

(g) A parameter ¢ > 0, which is a small viscous regularization parameter for the evolution

of damage.

In the numerical simulations of the different experiments that we consider in the following

chapter we have used:

e A constant value of x = 0.7. The precise value of 3¢ is not known. In choosing a value
of s = 0.7, we are guided by experience with theories of metal plasticity where a large
fraction s of the inelastic work is dissipated, and a small fraction (1 — ) stored in the
material. Further, our numerical experiments show that a value of ¢ = 0.7 ensures that
in the expression (2.121) for the “driving energy” for damage growth, ¢y, the elastic
energy term does not overwhelm the craze-disordering term (1 — 5)S%®¢. It is possible
to use values of s in the range s € (0.6,0.8), but then the other material parameters
would have to be suitably adjusted to obtain similar load-displacement curves. In this

thesis we keep the value of this parameter fixed at s = 0.7.
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e A constant value of the viscous-regularization parameter ¢ = 40kPa-s.® We have chosen
this value so that it has only a minor effect on the load-displacement curves in our
simulations, while imparting stability to our numerical solution scheme across the various

cases in consideration in this thesis.

The experimental data considered in the next chapter is taken from several different publica-
tions in which the experiments were performed on different concretes. Because of the inherent
variability of the composition and microstructure of different concretes, the calibrated values
of the Young’s modulus F, the craze strength S¢, and the critical value of the craze strain
€cry Vary quite a bit from one material to another. We discuss the special role of the values

for the energy ¢, and the gradient length scale £ in Section 3.1.1.

This value is of the same order as that used by Miehe et al. (2010b).
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Chapter 3

Application to concrete fracture

In this chapter we demonstrate the capability of our theory and its numerical implementation to
reproduce the macroscopic failure response of concrete in several technically relevant geometries
reported in the literature. Specifically, we simulate the fracture of concrete in: (i) a direct tension
test on a symmetric double-notched specimen; (ii) several symmetrically loaded un-notched and
notched three-point bend tests of various specimen sizes; (iii) asymmetrically loaded three-point

and four-point notched bend specimens; and finally (iv) an L-shaped panel test without a notch.

3.1 Direct tension test

Even though it is well-known that because of strain-softening the deformation in a direct tension
experiment is not homogeneous, such a test is often considered a fundamental experiment to char-
acterize the tensile softening and fracture response of concrete. Such experiments are difficult to
perform, and the first set of carefully-controlled, stable tension experiments to obtain the softening
response of concrete were conducted in a stiff testing machine by Petersen (1981). Due to the
inherent heterogeneity of concrete, homogenous or even slightly tapered tension specimens lead to
multiple cracking, and therefore the results form such experiments are not very informative. Hence,
symmetric double-notched tension specimens, similar to those shown schematically in Fig. 3-1(a),

are often used to characterize the tensile behavior of concrete (Bazant and Planas, 1998).

55



Tu, P

35 . 35

L )

— Experiment (Hordijk,1991) J
=——Simulation {(our model)

~ (MPa)
7 (MPa)

125|35 51C |6
‘f ,, “I

! (iii)

+

Lz

3
LgLis

| .

LhtisihsLiLd
Sibdihalised

5%
23

+6.650-02
~5.97e-07

(d) (e) Ui (@) (h)

Figure 3-1: (a) Schematic of the geometry of the direct tension specimen; dimensions in mm. (b) Compar-
ison of the experimental o-J response (gray line) with the numerically-calculated result (blue) line. (c) The
numerically calculated o-§ response to larger values of §, showing a bilinear approximation. (d) through (h)
Contours of the damage variable d at points (i) through (v) marked on the ¢-d curve in (c).

In this section we use representative data from one such experiment for a concrete reported by
Hordijk (1991) in his Ph.D. thesis. The particular specimen that we focus on had an of overall
dimension 125 x 60 mm in the plane, with two symmetric notches each of width and depth of 5mm,
and an out-of-plane thickness of 50 mm. The average displacement § across the notches was obtained
by measurements from several extensometers over a gage length of 35 mm spanning the notches, as
indicated in Fig. 3-1(a). The nominal stress o (load P divided by the minimum cross-sectional area)
versus the displacement 4 reported by (Hordijk, 1991, Fig. 5.6b) is shown in Fig. 3-1(b) as the gray

line . We have simulated such an experiment and adjusted the material parameters in our theory
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to match the o-0 response reported by Hordijk (1991). The numerically-calculated response is also
shown in Fig. 3-1(b) as the blue curve. The material parameters used to obtain the fit are given in
Table 3.1. Given the inherent scatter in the experimental data, our model captures the peak and

the decaying portion of the o-§ response quite well.

Table 3.1: Material parameters for the direct tension test simulation

E,GPa v S° MPa it ¥y, kJ/m?® £, mm ¢, kPa-s

18 0.2 3.2 0.7 53x10~¢ 4.0 2 40

Fig. 3-1(c) shows the numerically calculated o-d response to larger values of §. Figs. 3-1(d)
through (f) show contours of the damage variable d at points (i) through (v) marked on the o-6
curve in Fig. 3-1(c). Note from Fig. 3-1(d) that damage starts well before the maximum tensile stress
is reached at point (ii). Further the o-4 curve in Fig. 3-1(c) shows that even at relatively large values
of 6 = 0.15mm = 150 pm, the stress has not completely decayed to zero — the specimen still shows
some stress-carrying capacity. This is commensurate with numerous experimental measurements on
concrete shown in Fig. 6.4 of Hordijk (1991).

Concrete shows a gradual degradation of modulus prior to the peak load, and this reflects the
fact that in the region ahead of the notch-tips crazing and damage accumulates before a major
localization happens. It is important to note that this physically realistic macroscopic response is
predicted by our model in a multi-element simulation of an inhomogeneous direct-tension test, even
though in the underlying homogeneous constitutive response of a single element we have allowed

for a small amount of craze strain €, = 5.3 x 107%. That is,

e the physically realistic macroscopic response of a direct tension test simulation of concrete

predicted by our model is not very sensitive to the existence of a craze strain in the response

of a single element, as long as the craze strain is small, €5, ~ O(107%).

Remark. The dashed lines in Fig. 3-1(c) shows that the 0- curve may be approximated by two
straight lines, a sharp initial descent beyond the peak followed by a long slowly decaying tail. Such
an approximation is often made for ease of analysis in bilinear cohesive-crack models of concrete
(cf., e.g., Bazant and Planas, 1998; Hoover and Bazant, 2014) . We do not need to make such an

approximation in our continuum model and its numerical implementation. O
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3.1.1 The gradient length scale ¢ and its relation to the parameter .

We begin by recalling that the length scale ¢ appears in our gradient-damage theory — in concert
with the dependence on |Vd|? and the energy 1. — in the contribution ,¢%|Vd|? to the free energy
in eq. (2.114).

In choosing a value for the length scale £ for the direct tension test simulations we were guided

by the following considerations:

(i) The experimental result of Hordijk (1991) show that the relative displacement had a value
of § = 0.15mm before the material lost its stress-carrying capacity, cf. Fig. 3-1(c). So we

expected that a value of ~ 0.15mm might be an approximate lower bound to the value of £.
(ii) The expectation that the width of the fracture process zone ~ 2¢, would be of the same order
as the notch-width of 5 mm.

(iii) That the aggregate size in concrete was =~ 2 to 5 mm.!

Based on these considerations we chose a value of £ = 2mm and arrived at a value of ¥, = 4kJ/m?,

together with the other material parameters listed in Table 3.1, from our curve-fitting exercise.

Figure 3-2: A contour plot of the damage variable d in the process zone at a notch tip, showing the width of
the process zone = 2¢, and the amount of crack extension =~ Aa. To visualize the amount of crack extension
the finite elements with values of d > 0.9 have not been plotted.

Fig. 3-2 shows a contour plot of the damage variable d in a representative process zone at a notch
tip. To visualize the fully-damaged region or the amount of crack extension, the finite elements with
values of d > 0.9 have not been plotted. In this figure we have marked the width of the process

zone as =~ 2¢, and the amount of crack extension as = Aa. Recall that in our theory the parameter

'The maximum aggregate size in concrete can sometimes get as large as 10 mm or even larger.

58



1, represents (a portion of) the energy per unit volume dissipated as the damage variable increases
form zero to unity. Thus the energy dissipated in the volume (2¢ x Aa x unit depth) is proportional

to (¢ x £ x Aa), and hence
e the energy dissipated per unit area of crack extension is proportional to (. x £).

In Table 3.1 the values for ¢ and 1, were taken as £ = 2mm and 9. = 4kJ/m?, respectively.

However, as indicated by our simple dimensional analysis above, if we were to choose values of ¢

and 1, such that the product
o (¥, x {) is kept constant,

then the decaying portion of the o-4 curve should not be significantly affected by variations in the
value of £. This is indeed borne out by our numerical simulations shown in Fig. 3-3, where we show
o-8 curves for the direct tension tests with the values of all other material parameters fixed, but

the values of ¢ varying between 0.5 mm and 5mm while keeping the product

(v, x £) = 8J/m* constant.

35
3 b
V4
25t —0.5 mm
-1 mm
—1.5mm
= Al —2 mm
o —5 mm
2
e15) |
¥, x £ = constant
1 '
05,

0 0.01 0.02 0.03 0.04 0.05
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Figure 3-3: Variation of the o-§ curve using different values of £ and v, keeping 1, x £ = constant.

Some remarks:
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1. We consider ¢ as an adjustable regularization parameter in our gradient damage theory. The
value of £ may be chosen in a suitable physically realistic range. If the value of 7 is varied in
this range and correspondingly the value of 1. is adjusted such that (1. x £) is held constant,

then the resulting o-d response will not be substantially altered.

2. The value of the constant (¢, x £) will of course be different for different concretes, but we
expect it to have a value of ~ 10J/m?, which represents an intrinsic portion of the toughness
of the material. For reference, the value of the critical energy release rate for brittle fracture
of soda-lime glass is G. ~ 10J/m?. There is of course a major additional contribution to the
overall toughness of concrete due to the distributed inelastic deformation of the material due
to crazing prior to and during the process of craze-breakdown and its progression to final

failure. It is the energy dissipated due to crazing that makes the material “quasi-brittle”.

3. This scaling further suggests that in finite element calculations a small but computationally-
tractable mesh size h, may be selected for macroscopic-dimensioned specimens, and a suitably
large value of ¢ £ 5 x h. may be chosen, and the value of ¢, suitably adjusted so that
(¢« x £) = constant for a particular concrete. We take this pragmatic approach for the

numerical simulations shown in the remaining sections of this chapter.

3.1.2 Mesh insensitivity

he~300 pm he~200 pm ~150 um he~100 pm

Figure 3-4: Meshes of varying resolution in the damage zone for the direct tension specimen

In this section we illustrate the above simulation results are mesh objective due to the regularized’

gradient damage theory as suggested in the introductory chapter. We consider four different meshes
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with the mesh sizes h, € {100,150, 200,300}xm in the damage zone. The mesh around the notch
for the four different resolutions are shown in fig.3-4. The overall geometry and the boundary con-

ditions are all identical to that described above.

The damage contours around the notch for the different mesh resolutions in consideration are
shown in fig.3-5(a). Due to the regularization —gradient damage — the damage zone width re-
mains invariant for the meshes, thus independent of the element size. The resulting nominal stress-
displacement plots for the different mesh resolutions are shown together in fig.3-5(b). The responses
are nearly coincident with the exception of the coarsest mesh in a small region post-peak indicating
that the curves are converging to identical results. These results validate our numerical implemen-
tation as well as reiterate the mesh objectivity of gradient damage theories in contrast to localized
damage theories that yield mesh-sensitive results. In the subsequent examples we select a suitably

resolved mesh in our calculations.
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Figure 3-5: (a) The damage contours (b) ¢ — & response for the different direct tension test cases with
varying mesh resolution

3.2 Three-point un-notched and notched bend tests

As noted by Hoover et al. (2013),
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“Although hundreds of concrete fracture tests exist, their evaluation is ambiguous be-
cause they have limited ranges of specimen size, initial notch depth and post-peak re-
sponse, and refer to different concretes, different batches of concrete, different ages,
different environmental conditions, different loading rates and test procedures, and dif-

ferent specimen types.”

So they conducted an extensive experimental investigation of their own. Amongst the various results
presented in their paper was data from three-point bend tests on un-notched and notched beams
with crack depths ranging from 0% to 30% of the beam depth, and a broad range of specimen sizes
— all made from one batch of concrete. The specimens were tested at essentially the same age under
carefully-controlled conditions. The geometry of their beams is shown schematically in Fig. 3-6(a),
while Fig. 3-6(b) shows a photograph of the different sizes of the beams. With D denoting the depth
of the beam, they made beams of length L = 2.4D, and tested four families of beams of dimensions
D x L of
40 x 96, 93 x 223.2, 215 x516, and 500 x 1200 mm,

which contained notches of 1.5 mm width and five different relative depths
a=0, 0.025, 0.075, 0.15, and 0.3,

with a = 0 representing an un-notched beam. The thickness of all beams was 40 mm. The span
between the top two rollers was S = 2.176 H, and the crack mouth opening displacement (CMOD)
0 was measured by either an extensometer bridging the notch mouth, or by an LVDT spanning a
sufficient distance on the tensile face of the beam for the un-notched beams. The P-4 response from
their three-point bend experiments is given in Fig. 8 of their paper (Hoover et al., 2013).

We have conducted numerical simulations corresponding to a number (not all) of different cases
investigated experimentally by Hoover et al. (2013).2 Fig. 3-6(c) shows a representative snapshot of
the deformed geometry with a plot of the damage contours from one of the simulations for a beam of
depth D = 93 mm and « = 0.3. The numerically-calculated P-4 responses are shown in Fig. 3-7(a)

through (f) as (solid blue lines), and compared against the corresponding experimentally-reported

2We used the symmetry of the three-point bend geometry and used a finite element mesh of only one-half of the
specimen.
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results (solid gray lines).
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Figure 3-6: (a) Schematic of the geometry of the three-point bend specimens. (b) Photograph of the
different sizes of beams with notch depth of @ = 0.3; from Hoover et al. (2013). (c) A typical plot of the
damage contours from one of the simulations for D = 93mm and a = 0.3 a

Fig. 3-7(a) through (c) show results corresponding to tests performed on specimens of the same
depth, D = 93 mm, but with the notch depth varied from a = 0, to the beam with the deepest
notch, & = 0.3. Note the different scale for the vertical load axis in these figures. As can be seen,
with increasing notch depth the value of the peak load falls by more than half from ~ 8kN in (a)
to =~ 3.5kN in (c).

Fig. 3-7(d) through (f) show results corresponding to tests performed on specimens of the same
notch depth, a = 0.3, but with the specimen depth varied from the smallest, D = 40mm to the
largest, D = 500 mm. Again note the different scale for the vertical load axis in these figures. With

increasing specimen depth the value of the peak load increases by a factor of ~ 6, from a low value
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of ~ 1.75kN in (d) to ahigh value of ~ 11kN in (f).
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Figure 3-7: Comparison of the the numerically-calculated P-6 results (blue lines) against the
experimentally-measured response (gray lines).

Table 3.2: Material parameters for three-point bend simulations

E,GPa v S§° MPa €t Py, kJ/m® £ mm (, kPa-s

41 0.17 4.5 0F 44:x 1074 3.8 2 40

The material parameters used in our three-point bend calculations are given in Table 3.2. We note

that:

e We have used the values of E and v reported by Hoover et al. (2013) for their concrete, and

we have used the P-¢ data from only two cases, Fig. 3-7(b) and (e), to calibrate the remaining
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material parameters in our model.

e The remaining cases shown in Fig. 3-7 are predictions based on this set of calibrated material

parameters.

As can be seen from Fig. 3-7, the numerically calculated response from our model matches the
experimental results quite well for both cases used for material parameter calibration. More impor-
tantly, the predictions for the other cases are also in reasonable agreement with the experiments.
The satisfactory blind predictions of the P-4 response across this wide range of sizes and for both
unnotched as well as the notched specimen, convincingly shows the ability of our model to satis-
factorily simulate the deformation and fracture response of concrete — at least in the three-point

bend configuration tested by Hoover et al. (2013).

3.3 Mixed-mode notched bend tests

We turn next to an application of the theory to calculate the macroscopic load versus crack mouth
opening displacement curves as well as the crack trajectories under mixed-mode conditions, as re-
ported by Galvez et al. (1998) in their notched bend tests on concrete. The geometry of their
specimens and the loading conditions are shown schematically in Fig. 3-8. They conducted exper-
iments on beams of three different depths: 75mm, 150 mm and 300 mm. Here we focus on their
medium-sized beams of depth 150 mm, which were 675 mm long and 50 mm thick. The beams were
notched at their midspan, with a notch width of 2mm and notch depth of 75 mm. The asymmet-
ric three-point bend geometry shown in Fig. 3-8(a) corresponds to what they call their Type 1
experiments, and the asymmetric four-point bend geometry shown in Fig. 3-8(b) corresponds to
their Type 2 experiments. The crack mouth opening displacement (CMOD) é was measured by an
extensometer bridging the mouth of the notches. Because of the asymmetric bending, the crack no
longer propagates straight across the narrowest cross section. Galvez et al. (1998) reported results
for the crack trajectories for their Type 1 and Type 2 experiments in Fig. 3(b) of their paper, and
the P-§ response for their Type 1 experiments in their Fig. 5(a), and the P-4 response for their

Type 2 experiments in their Fig. 8(a).
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Figure 3-8: Schematic of the specimen geometry and loading conditions for the mixed-mode notched bend
experiments of Galvez et al. (1998): (a) Type 1, three-point bending. (b) Type 2, four-point bending. All
dimensions in mm.

Table 3.3: Material parameters for mixed-mode notched bend simulations

E,GPa v 5° MPa € Py, kJ/m?® £ mm (, kPa-s

crit

38 0.2 3.1 0.7 25x107* 2.1 3 40

Using the material parameters listed in Table 3.3, in Fig. 3-9(a) and (b) we show our numerically-
predicted contours of the damage field and the crack trajectory (d = 1) for the Type 1 and Type
2 experiments. Fig. 3-9(c) and (d) show the corresponding experimentally-observed scatter in
the crack trajectories as the shaded gray region in each figure. The numerically-calculated crack
trajectories shown in Fig. 3-9(a) and (b) are overlayed as blue lines in Fig. 3-9(c) and (d) to
facilitate a comparison of the numerical predictions versus the experimental observations. Our
model predictions of the crack trajectories are in good agreement with the experiments for both the
three-point and four-point mixed-mode notched bend tests.

As noted by Galvez et al. (1998), the cracks in their experiments were observed to grow in a
direction normal to the direction of the maximum principal stress at the crack-tip, in accordance with
the criterion based on linear elastic fracture mechanics proposed by Erdogan and Sih (1963).3 The
crack trajectories are well-predicted by our non-linear theory for fracture of quasi-brittle materials

because the inelastic craze flow direction (which precedes damage initiation and growth to final

3Also see Carpinteri et al. (1993), who found that their cohesive crack model which dissipates energy only on
Mode I, was able to reproduce experimental results from a single-edge notched specimens of concrete subjected to
four-point shear to a very good approximation. They concluded that fracture in concrete predominantly propagates
in Mode 1.
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fracture) has been presumed to occur in the direction of the maximum principal tensile stress.
Therefore, the orientation of the damage zones and the crack trajectories are built-in features of our

theory.
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Figure 3-9: (a) and (b) show the numerically-predicted contours of the damage field and the crack tra-
jectory (d = 1) for the Type 1 three-point bend, and the Type 2 four-point bend experiments. (c) and
(d) show the corresponding experimentally-observed scatter in the crack trajectories as the shaded-gray
region. The numerically-calculated crack trajectories shown in (a) and (b) are overlayed as blue lines for
ease of comparison of the numerical predictions and the experimental observations. (e) and (f) compare the
numerically-predicted load versus CMOD curves with the corresponding experimentally-measured responses
which are shown as gray-shaded scatter ranges. Experimental curves from Galvez et al. (1998).
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The numérically-predicted P-4 responses for the two mixed-mode notched bend tests are shown
as blue lines in Figs. 3-9 (e) and (f), and compared with the corresponding experimentally-measured
responses which are shown as gray-shaded bands. The agreement of the numerical prediction for
the Type 1 experiment in Fig. 3-9(e) is good, but that for the Type 2 experiment in Fig. 3-9(f) is
not as good. It is important to note that while we used the same set of material parameters listed in
Table 3.3 for simulating the two different types of tests, the experimental results are from specimens
made from two different batches of concrete. Given the variablity in the mechanical properties of
concrete from different batches — a variability which was recognized by Galvez et al. in their paper
— we consider the prediction shown for the Type 2 four-point notch-bend experiment in Fig. 3-9(f)

to be acceptably close to that in the experiments.

3.4 L-shaped panel

In recent years the response of an L-shaped panel has become a popular benchmark test for the
verification of numerical predictions from models for fracture of concrete. Winkler et al. (2001)
have reported results from such experiments. The geometry of their specimen and the boundary
conditions are shown schematically in Fig. 3-10(a). The long and the short edges of the L-shaped
panel are 500 mm and 250 mm, respectively, and the thickness of the panel is 100 mm. The lower
horizontal edge of the vertical leg is fixed, and the bottom edge of the horizontal leg is subjected to
a vertical displacement prescribed at a distance of 30 mm from the right edge. Unlike the previous
cases studied in this thesis, there is no pre-existing notch in the L-panel specimen. A crack nucleates
from the sharp corner, and the trajectory of the cracks (with its scatter) as experimentally-measured

by Winkler et al. (2001) is shown as the gray-shaded region in Fig. 3-10(Db).

Table 3.4: Material parameters for L-panel simulations

E,GPa v S° MPa i €St Yu, kJ/m? £, mm (, kPa-s

18 0.2 2.5 0.7 49x10~* 3.2 4 40

Using the material parameters listed in Table 3.4, in Fig. 3-10(c) we show our numerically-
predicted contours of the damage field and the crack trajectory (d = 1). The numerically-calculated

crack trajectory shown in Fig. 3-10(c) is overlayed as the blue line in Fig. 3-10(d) to facilitate a
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comparison of the numerical prediction versus the experimental observations. The prediction of the
nucleation of the crack and its trajectory from our model is in good agreement with the experimental
observation. The corresponding numerically-predicted force versus displacement response is shown
by the blue line in Fig. 3-10(e), and compared with the corresponding experimental range which
is shown as the gray-shaded region. Our model reproduces the experimentally-measured load-

displacement response with good accuracy.
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Figure 3-10: (a) Schematic of the specimen geometry and boundary conditions for the L-panel experiments
of Winkler et al. (2001); dimensions in mm. (b) Experimentally-observed crack trajectories shown as the
gray-shaded region. (c¢) Numerically-predicted contours of the damage field and the crack trajectory (d = 1)
(d) The numerically-calculated crack trajectories shown in (c) is overlayed as the blue line for ease of
comparison of the numerical prediction and the experimental observation. (e) Numerically-predicted load
versus displacement curve blue line, compared with the corresponding experimentally range which is shown
as the gray-shaded region.
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Chapter 4

Conclusion

We have formulated a new gradient-damage theory for fracture of quasi-brittle materials and spe-
cialized it to model the response of concrete. We have numerically implemented our theory as a
user-element subroutine (UEL) in Abaqus (2017), and used this numerical capability to simulate

the response of.concrete in several important experimental geometries:
(i) Direct tension experiments on symmetrically double-notched specimens of Hordijk (1991).

(ii) Several symmetrically loaded un-notched and notched three-point bend tests of a large range

of specimen sizes of Hoover et al. (2013).
(iii) Mixed-mode three-point and four-point notch-bend specimens of Galvez et al. (1998).
(iv) L-shaped panel tests without a notch of Winkler et al. (2001).

The results from these numerical calculations show the ability of our theory and simulation capa-
bility to satisfactorily reproduce the macroscopic load-deflection characteristics as well as crack-
propagation trajectories during the failure of concrete.

The good correspondence of the results from our numerical simulations and available experi-
mental data indicates that our theory and numerical simulation capability should be of practical
utility in the design and analysis of structures made from concrete under largely tensile dominated

stress states, the ones that usually control structural failure.
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Some directions for future work are: (i) to extend the numerical simulation capability to model
fracture of concrete in three-dimensions; (ii) to account for inertial effects; and (iii) to extend the
theory to model fracture of high-performance concrete with dispersed polymeric fibers (cf., e.g.,
Li, 2003). Also, because of the great variability of the microstructure of concrete, the results of
macroscopic force-deflection curves and crack trajectories show substantial variability. Whenever

data is scattered a probabilistic treatment is required — we also leave such an effort to future work.
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Appendix A

Numerical implementation details

A.1 Implementation in ABAQUS/Standard

We have numerically implemented our theory as a user-element (UEL) subroutine in the implicit
finite element program Abaqus/Standard (Abaqus, 2017) by following the implementation proce-
dures detailed in Chester et al. (2015). Our numerical implementation is for a plane-strain scenario
and uses a linear 4-noded plane-strain element. At the constitutive level the time integration proce-
dure in our numerical implementation is by an implicit backward-Euler scheme. At the global level

the deformation problem and the damage problem are solved using a staggered scheme.

A.2 Residuals and Tangents

Displacement governing equation

The displacement solution variables are governed by the partial differential equation for the balance

of momentum (see (2.124)), the strong form of which, in the current configuration, along with
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appropriate boundary conditions is given by

divT =0 on B,
u=u on &, (A1)
Tn=t%t on &,
where B; denotes the body in the current deformed configuration, on the deformed surface S; we

prescribe displacements, and on the deformed surface S; we prescribe surface tractions. To find the

weak form of (A.1) we multiply by a test function w and integrate over the body

0= / (w-divT)dV (A.2)
Bt
which integrating by parts yields
0= (—gradw:T) dV + (w-Tn)dA, (A.3)
B: OBy
and using (A.1)3 we have
0= / (—gradw:T)dV + [ (w-t)dA. (A.4)
Bt Sl

The body is approximated using finite elements B; = > Bf and the trial solution for the displace-

ment vector is interpolated inside each element by
u=> NAu* (A.5)
A

with the index 4 = 1,2, ... denoting the nodes of the element, u” denoting the nodal displacement
vector, and N4 the shape functions. We employ a standard Galerkin approach, in that the weighting

field is interpolated by the same shape functions, such that

w = z NAwA, (A.6)
A
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This yields the element-level relation

0= / (—w? . (Tgrad N4) dV + / (NAwA - t)dA
B¢ 8

e
1

which must hold for all wA. Therefore, we define the element level displacement residual

RA = /B (~Tgrad N4)dV + /S (N4 da,
t 1

which in index notation is

A
R4 = / —Tij-al dv + / (N4E) dA.
* B¢ 8(1,'] S

€
1

The element stiffness/tangent is given by

oR; OR,,

KAB — _~~4  orin index notation K2B = - ——%
B UL B
Ou Ouy

Using the residual defined above we have

ONA IT;; ot
KAB — 2 AV — / NANB — dA
Witlk Be Or; Oug e Ouy,
Furthermore,
BTU aTZU 8F mn
auf OFn Oug ’
and since
ONA A dF,,, ONB
= Omn —_— y d - )
Eonn = 0mn + 5 tmy - and 5 g = g, Omk

we arrive at

ONA 9T;; ONB ot

AB 1) AarB

KAB dv — | NANB__4A.
Usuk Be a.z‘j OF, Or, st Oug,

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

In computing the term 87T;;/0Fy,, in the stiffness matrix, we utilize a numerical perturbation method

as follows :

e We perturb one out of the nine components of the deformation gradient by a small but finite

value : ~ 106
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e We evaluate the Cauchy stress tensor (with damage) based on our model as outlined in the

time integration procedure in section A.3

e We repeat the perturbation for each component of the deformation gradient sequentially to

obtain a numerical approximation to the 4th order tensor 0T;;/0Fk,.

Damage governing equation

The damage variables are governed by the partial differential equation for the evolution of the
damage variable (see (2.125)). The strong form complemented by the boundary condition is given

as:
¢d=2(1-d) H — 2. (d — 2Ad),
(A.15)
(Vd) ' ng =0 onS

To find the weak form of (A.15) we multiply by a test function w and integrate over the body as,
0= / w(Cd - 2(1 — d) H + 2.(d — €2 Ad)) dVie (A.16)
B
As earlier, integration by parts gives

0= / w [ga —2(1-d) H+ 2¢*(d)] dVa + / 20, 02(Vw - Vd) dVx — / 200, L2w(Vd - ng) dAg
B B 9B
(A.17)
Use of (A.15) in the last term on the right gives

0= /Bw [ga —21—d) H + 21/;*(d)] dVi + /B 26, 02(Vw - Vd) dViy (A.18)

The body is approximated using finite elements B = >~ B¢ and the trial solution for the damage

variable is interpolated inside each element by
d= Z NA4g4 (A.19)
A
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with the index A = 1,2, ... denoting the nodes of the element, d4 denoting the nodal damage field,

and N4 the shape functions. We again employ a standard Galerkin approach, such that

w= ZNA’UJA.

A

Subsequently, we have element-level relations for our finite-element framework as
0= / wANA [ga —2(1—d) H + 2¢*(d)] dVs + /B 20,2 (VNA . Vd)w? dVi
which hold for every test function w”. Therefore, we define the element level residual,
R4 = / NA [ga —-2(1—d) H + sz*(d)] dVa + /B 200, 2(VNA . Vd) dVi.

The element stiffness is given by
AB 8Ré
dd — T od B

Using the residual defined above we have

(A.20)

(A.21)

(A.22)

(A.23)

K48 = /B ) N4 [c NBxli —2(-NBYH + 2¢*(NB)] dVx + /B ) 20,2 (VN2 . VNB)dV,. (A.24)

We use a staggered formulation for the coupled damage-deformation system in our ABAQUS/Standard

User Element subroutine(UEL) implementation. Hence the mixed tangent terms K4, and K,q are

not of importance and we do not evaluate them here.

A.3 Time Integration Procedure

The summary of the time integration procedure implemented in the UEL subroutine for our model

is as follows:

Step 0. Given {F¢, ¢, e }! at time t,, and {Fp11,dn+1} at time ¢ty = t, + At,

we wish to evaluate {Tpy1, FS, 1, €“nq1, €5, 1} at time tp4;.

1
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Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Calculate the trial elastic deformation gradient as

friat = Fn1Fy L (A.25)

Perform the polar decomposition

Eria.l = Rfrial Ugria.l . (A26)

Perform the spectral decomposition of Uf,,,; and calculate trial logarithmic elastic strain as

€
e _ € — € € (-
Efia = 0 Ui = D10 X i T irial ® TEipian - (A.27)

i=1
Evaluate the trial Mandel stress as
Mgrial = g(d) [2GE§ria.l + Atr E:rial] ) (A28)

and calculate the maximum principal value (o7) of the Mandel stress through spectral decom-

position and the hydrostatic stress as

[

grial = E In Uftrial €; trial & €; trial
i=1 (A.29)

1
Op = gtr M*®

Check for craze initiation: when o > 0 and oy > S, are both satisfied then craze is initiated.

Activate a craze flag to indicate craze initiation for use in subsequent time steps.

When crazing is not initiated then the Mandel stress, craze deformation gradient are obtained

simply as M, = Mg, and F;; = F;, . Go to step 8 directly.

€
trial
When crazing is initiated, set the craze direction tensor as

N° = e @ e (A.30)
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Step 6.

Step 7.

Step 8.

Evaluate

O1trial = :rial : N¢ (A.31)

When o7 tria1 — g(d)S€ > 0, evaluate craze strain increment as (see section A.4)

01 trial —g(d)Sc . 1—-v

Ae® = th C =g(d)E A.32
¢ Cun with Cun =9(@DE R ya = (A.32)

The craze strain at the end of the step and the craze strain rate are evaluated as

. A€’
€nt1 = €, + A€ €€ = A7 (A.33)
The craze stretch tensor is calculated as

w1 = €N° (A.34)

The craze deformation gradient is calculated as in (2.12), by means of an exponential map

following Weber and Anand (1990),

F. 11 = exp(AtD] ) Fy. (A.35)

The elastic deformation gradient at the end of the step is
Frvt =FonFiol. (A.36)

As earlier, polar decomposition and spectral decomposition leads to the logarithmic elastic

strain at end of step

Frez+1 = Rfz+1 Ufz-}-l
e (A.37)
EL=lU7, = Z In A 1Ty ® iy

=1
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Step 9. The Mandel stress at the end of the step is given as
M:,, = g(d) [QGEZ_H + Atr E;_H] . (A.38)

The craze direction tensor at the end of the step is obtained from the spectral decomposition

of the Mandel stress as

€

MfH—l = Zln Ufn+1ein+1 D €in+1
i=1 (A.39)
c __ _cr cr . cr
ntl = €pp1 @€y with ey =ejny

Step 10. The Cauchy stress tensor is calculated from Mandel stress as
Tnt1 = J'RE ME  RE, (A.40)

This is a brief summary of the time integration procedure which is implemented in the UEL to

evaluate the behavior as described by our constitutive model.

A.4 Craze strain increment

The craze strain increment is evaluated based on the following algorithm.

e The trial elastic distortion at the start of the increment is calculated based on the current

deformation gradient and the craze deformation from the previous step,

¢ = FFS L (A.41)

tri

Subsequently, Ef;,; = In\/F¢.  F¢. | is known.
e The trial Mandel stress and the corresponding principal value is then evaluated as
3
Mfia = 9(d) 2GE® + AtrE°1] = Z O trial €i trial ® €;trial - (A.42)
i=1

e When 07ia1 exceeds the damaged craze resistance, i.e o1ial > g(d)S€, the craze strain
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increment is to be evaluated based on the craze flow strength relation oy = g(d)S°.

Let us denote by Ae€, the craze strain increment in the present timestep. Then we have

A
D° = zfel ® e (A.43)

Based on an exponential mapping, the craze strain deformation gradient update can then be
expressed as

FS = exp (AtD°) F{ = exp (Ac‘e; ® e1) Fy. (A.44)

The elastic deformation gradient at the end of the step can then be given as

F¢ = F,FS! = F¢, exp (—Ac%e; ® e) (A.45)
The polar decomposition of the trial and the current deformation gradient leads to

RIU7 = R Ulia exp (—Ac‘e; @ 1) (A.46)

The principal directions of the tensor e; ® e; are the same as that of the trial Mandel stress

€

tensor M .,

which is also that of Uf, ;. Thereby, the uniqueness of the polar decomposition
yields,
RC=RG, and UL =Ugyexp(~Ace Ger). (A.47)
Then based on the definition of the logarithmic strain tensor, we have
Ef. — EET = —Aecel X ej. (A.48)
The increment in the principal value of the Mandel stress can be estimated as
AO‘] =e. [(C (E: - fr)] €] (A.49)

where C = g(d)Celas, With Celas the standard fourth order elasticity tensor. Then using the
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relation from (A.48)

Aoy = —Ace. [C(e; ®e1)]e; = —Ci111A€C (A.50)

where
1—v
1+v)(1-2v)

Cii1 = g(d)E
e Finally, substituting back in the craze flow strength relation, we have

01 = Oltrial + A01 = O1trial — C1111A€° = g(d)S°
O1ltrial — g(d)SC . (A51)

A€ =
Ciinx
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