
THE E2 BATHE SUBSPACE ITERATION METHOD
by

Bryce Daniel Wilkins
B.S., United States Military Academy (2017)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

@Massachusetts Institute of Technology 2019. All rights reserved.

The author hereby grants to MIT and Draper permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium known or hereafter created.

Signature redacted
A uthor

Aut or .epartm ent of M echanical Engineering

Signature redacted May 22, 2019

C ertified by
Klaus-Jiirgen Bathe

Professor of Mechanical Engineering

Signature redacted Thesis Supervisor
C ertified by

Mavis Driscoll
Princip? the Technical Staff, Draper

Signature redacted..Thesis Supervisor

A ccepted by

MASSACHUSETTS INSTITUTE Nitolas Hadjiconstantinou
OF TECHNOLOGY Chairman, Department Committee on Graduate Theses

JUN 3 2019

LIBRARIES

.IRCPj-VES

THE E2 BATHE SUBSPACE ITERATION METHOD

by

Bryce Daniel Wilkins

Submitted to the Department of Mechanical Engineering
on May 28, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Since its development in 1971, the Bathe subspace iteration method has been widely-

used to solve the generalized symmetric-definite eigenvalue problem. The method is

particularly useful for solving large eigenvalue problems when only a few of the least

dominant eigenpairs are sought. In reference [18], an enriched subspace iteration method

was proposed that accelerated the convergence of the basic method by replacing some

of the iteration vectors with more effective turning vectors. In this thesis, we build

upon this recent acceleration effort and further enrich the subspace of each iteration by
replacing additional iteration vectors with our new turning-of-turning vectors.

We begin by reviewing the underpinnings of the subspace iteration methodology.
Then, we present the steps of our new algorithm, which we refer to as the Enriched-

Enriched (E2) Bathe subspace iteration method. This is followed by a tabulation of

the number of floating point operations incurred during a general iteration of the E2

algorithm. Additionally, we perform a simplified convergence analysis showing that the

E2 method converges asymptotically at a faster rate than the enriched method. Finally,
we examine the results from several test problems that were used to illustrate the E2

method and to assess its potential computational savings compared to the enriched

method.
The sample results for the E2 method are consistent with the theoretical asymptotic

convergence rate that was obtained in our convergence analysis. Further, the results from

the CPU time tests suggest that the E2 method can often provide a useful reduction in

computational effort compared to the enriched method, particularly when relatively few

iteration vectors are used in comparison with the number of eigenpairs that are sought.

Thesis Supervisor: Klaus-Jirgen Bathe
Title: Professor of Mechanical Engineering

Thesis Supervisor: Mavis Driscoll
Title: Principal Member of the Technical Staff, Draper

3

4

Acknowledgments

I would like to thank my research advisor, Professor Klaus-Jirgen Bathe, for his

patience and for guiding me through the completion of this thesis. I have learned a lot

from this experience, and I am grateful for his investment in me over the last two years.

I would like to thank my Draper advisor, Dr. Mavis Driscoll, for her thoughtful

mentorship and for giving me ample flexibility to pursue my academic interests. Our

weekly meetings were great for exploring some very neat aspects of mathematics.

I would like to thank Draper for funding my graduate study at MIT, and I would

also like to thank the U.S. Army for giving me this opportunity to pursue graduate

education.

I would like to thank my roommate and West Point classmate, Adam Kratch, for

two years of adventures in Boston. Additionally, I would like to thank the rest of my

friends and family for their support and encouragement while I have been here.

I am also grateful to the several mentors that I have had over the last few years who

have continued to help me become a better version of myself. These people include, but

are not limited to, Dr. Theodore Hromadka, Mrs. Laura Hromadka, Colonel Joseph

Lindquist, Captain Brian Drapp, Major Jonathan Paynter, Major John Morrow, Dr.

Christopher Morey, and Mrs. Jennifer Miller.

Finally, I would like to thank my Mom for, among many things, (almost) always

answering my phone calls!

This thesis is dedicated to my family.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 INTRODUCTION 15

2 THE BATHE SUBSPACE ITERATION METHOD 21

3 THE E2 BATHE SUBSPACE ITERATION METHOD 31

3.1 The New Algorithm 32

3.1.1 Steps of the E 2 Bathe Subspace Iteration Method 32

3.1.2 Flow Chart Representations of the E2 Algorithm 43

3.1.3 Visualization of Turning Vectors and Turning-of-Turning Vectors . 46

3.2 Tabulation of Floating Point Operations 51

3.3 A Simplified Convergence Analysis 55

3.4 Test Problems 62

3.4.1 Small Test Problems 63

3.4.2 Large Test Problems 66

3.4.3 CPU Time Test Problems . 80

4 CONCLUSIONS 87

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

List of Figures

2-1 Flow chart depicting the relationship between the basic and enriched sub-

space iteration methods. The blue boxes are the steps of the basic method.

The red box is the enrichment step in which turning vectors are calcu-

lated and used to replace some of the less effective iteration vectors. In

the basic method, there is no enrichment step. Instead, the algorithm

immediately defines the new subspace after the simultaneous inverse it-

eration step. Note: while it is theoretically possible to miss convergence

to one of the target eigenvectors, for example if all of the starting vectors

are M-orthogonal to one of the target eigenvectors, this situation rarely

occurs in practice if a large enough q is selected. Using Equation (2.15)

to determine q is usually sufficient in practice. 30

3-1 Flow chart depicting how the enrichment and second enrichment pro-

cedures are integrated into the basic subspace iteration method. The

simple integration of these procedures makes them attractive acceleration

schemes. The blue boxes show the steps of the basic method. The red

box is the first enrichment step in which turning vectors are calculated

and replace less effective iteration vectors. The green box is the second

enrichment step in which turning-of-turning vectors are calculated and

replace additional iteration vectors. 44

9

3-2 Algorithm flow chart for the E2 subspace iteration method. The blue

boxes indicate the steps of the E2 method that are the same as in the

basic method. The red boxes indicate the steps of the E2 method that are

the same as in the enriched method. The green boxes indicate the steps

of this procedure that are unique to the E 2 method. Note: the partition

step is highlighted in green, even though there is also a partition step

in the enriched method because the enriched method does not partition

iteration vectors into X 1 45

3-3 Geometric illustration of the subspaces Eki-1 and Ek using the original

Bathe subspace iteration method. In this illustration, M = I, and two

iteration vectors are depicted. The depicted subspaces are defined by

Ek-1 = span X (k-1) X(k-1)} and Ek = span {Y(k) kI) . The vectors

d k) and Y k) are obtained by applying inverse iteration to x(k-1) and
(k-i) 4
2" I, respectively. 46

3-4 Geometric illustration of the subspaces Ek_1 and Ek using the enriched

Bathe subspace iteration method. In this illustration, M = I, and two

iteration vectors are depicted. The depicted subspaces are defined by

Ek_1 = span {Xz1~ ,X -1)} and E = span {(k), (k) . The vector

,) is obtained by applying inverse iteration to k-i) and V() is the

forward turning vector that is the key ingredient for the acceleration of

the enriched method. 47

3-5 Geometric illustration of the E2 Bathe subspace iteration method showing

the computation of the inverse iteration step on x(k-), which results in

(ik); the computation of the forward turning vector, V, ; as well as the

computation of the forward turning-of-turning vector, (k) which is the

key ingredient for the additional enrichment of the E2 method. In this

illustration, M = I, and three iteration vectors are depicted. In the

E 2 method, the previous and current subspaces are defined as Ek_1 =

span { (k-1) , (-k) X(k-) } and E = span {Y(k)I (k) (k) , respectively. 48

10

3-6 Illustration of vector projection and the calculation of a turning vector

using the Gram-Schmidt orthogonalization algorithm. Xk is projected

onto the subspace spanned by Xk_1. Then, the turning vector is defined

as the difference between Yk and its projection onto Xk_1. To visualize

the relationship between projx,_, (Yk) and Xk, the turning vector has been

translated so that the tail of the turning vector is located at the tip of

projXkl (Yk). 50

3-7 Convergence results for the 2 5 0 th smallest eigenvalue of the membrane

problem. The asymptotic convergence rates for the basic, enriched, and

E2 methods are depicted. 64

3-8 Geometry and mesh of the membrane with square hole problem. 65

3-9 Convergence results for the 2 0 th smallest eigenvalue of the membrane with

square hole problem. The asymptotic convergence rates for the basic,

enriched, and E 2 methods are depicted. 66

3-10 Geometry of the 3D bracket with two holes problem. 69

3-11 The structure was fixed at the surface denoted F1 69

3-12 Convergence results for the 3D bracket with two holes problem. Asymp-

totic convergence rates for the enriched and E 2 methods are depicted for

the 7 0 th smallest eigenvalue. 70

3-13 Convergence results for the 3D bracket with two holes problem with the

different convergence zones for the E 2 method indicated. 70

3-14 Geometry of the 3D wall problem. 72

3-15 The structure was fixed at the surface denoted F1 72

3-16 Convergence results for the 3D wall problem. Asymptotic convergence

rates for the enriched and E2 methods are depicted for the 4 0 th smallest

eigenvalue. 73

3-17 Convergence results for the 3D wall problem with the different conver-

gence zones for the E 2 method indicated. 73

3-18 Geometry of the 3D pipe problem. 75

3-19 The structure was fixed at the surface denoted F1- 75

11

3-20 Convergence results for the 3D pipe problem. Asymptotic convergence

rates for the enriched and E 2 methods are depicted for the 6 0 th smallest

eigenvalue. 76

3-21 Convergence results for the 3D pipe problem with the different conver-

gence zones for the E2 method indicated. 76

3-22 Geometry of the 3D ring problem. The structure was fixed at the bottom

of the ring . 78

3-23 Convergence results for the 3D ring problem. Asymptotic convergence

rates for the enriched and E2 methods are depicted for the 6 0 th smallest

eigenvalue. 79

3-24 Convergence results for the 3D ring problem with the different conver-

gence zones for the E2 method indicated. 79

3-25 Geometry of the 3D bracket with connector and holes problem. 82

3-26 The structure was fixed at the surface denoted FlO. 82

3-27 Geometry of the 3D heat sink problem. 83

3-28 The structure was fixed at the surface denoted F2 84

3-29 Geometry of the 3D bracket with one hole problem. 85

3-30 The structure was fixed at the surface denoted F4 85

12

List of Tables

3.1 List of symbols and their associated meanings used in Tables 3.2 - 3.4. . 51

3.2 Tabulation of floating point operations for the basic Bathe subspace itera-

tion method when the algorithm iterates on all iteration vectors, including

converged iteration vectors. 52

3.3 Tabulation of floating point operations for the enriched Bathe subspace

iteration m ethod. 52

3.4 Tabulation of floating point operations for the E2 Bathe subspace iteration

method. 53

3.5 Comparison of asymptotic convergence rates for the basic, enriched, and

E2 Bathe subspace iteration methods. For these results, we have assumed

that all iteration vectors are used in each iteration and that all turning

vectors and turning-of-turning vectors are used, as applicable, in each

iteration. These convergence rates apply for 1 < i < q in the basic

method, 1 < i < q/2 in the enriched method and 1 < i < q/3 in the E2

m ethod . 61

3.6 Test problem 1 details. 63

3.7 Test problem 2 details. 65

13

3.8 Summary of the performances of the enriched and E2 methods applied to

test problems 3-6. In terms of CPU time required to reach convergence,

the enriched method out-performed the E2 method in test problem 5. In

test problem 6, the results between the two methods were similar, but the

E2 method converged in about 2% less time than the enriched method

in this problem. For test problems 3 and 4, the E2 method provided

computational savings of roughly 10% and 20%, respectively, compared

to the enriched method. 68

3.9 Test problem 3 details. 69

3.10 CPU time used in each iteration of the E 2 subspace iteration method for

calculating the p = 100 smallest eigenvalues of the 3D bracket with two

holes problem . 71

3.11 Test problem 4 details. 72

3.12 CPU time used in each iteration of the E 2 subspace iteration method for

calculating the p = 100 smallest eigenvalues of the 3D wall problem. . . . 74

3.13 Test problem 5 details. 75

3.14 CPU time used in each iteration of the E 2 subspace iteration method for

calculating the p = 100 smallest eigenvalues of the 3D pipe problem. . . . 77

3.15 Test problem 6 details. 78

3.16 CPU time used in each iteration of the E 2 subspace iteration method for

calculating the p = 100 smallest eigenvalues of the 3D ring problem. . . . 80

3.17 Test problem 7 details. 82

3.18 CPU time results for test problem 7. 83

3.19 Test problem 8 details. 83

3.20 CPU time results for test problem 8. 84

3.21 Test problem 9 details. 85

3.22 CPU time results for test problem 9. 86

14

Chapter 1

INTRODUCTION

In this thesis, we discuss a new extension of the Bathe subspace iteration method for

solving the generalized eigenvalue problem:

Kq5 = w2 M4, where K E R"" , M E n

(1.1)
0 E Rn, and w2 c R

For simplicity, the matrices K and M in (1.1) are assumed to be symmetric and positive

definite. However, as discussed in reference [5], the subspace iteration method is also

applicable when K is indefinite, as well as when M is semi-definite.

Eigenvalue problems such as (1.1) are often encountered in the finite element analysis

of structures when modal superposition is used to model the structural dynamics. In

the context of finite element analysis, K and M correspond to the stiffness matrix and

mass matrix, respectively, of the system. For structural problems in particular, the

eigenvalues of (1.1) are interpreted physically as the natural vibration frequencies of the

system, and the corresponding eigenvectors represent the modal shapes.

Many structures respond to loads primarily in just a few of the lowest frequencies

and modes of the system [7]. When this is the case, it is possible to create accurate

models of the structural dynamics without necessarily computing all n eigenpairs 181.

Instead, it is usually sufficient to compute only the first p < n eigenpairs of the least

dominant subspace of K and M. These p eigenpairs of interest are written compactly

15

as
K4) = M~p 2, where D =2 4p

-~ (1.2)
= diag(W , ,. . . ,w)

The generalized eigenvalues and eigenvectors of (1.2) are assumed to be ordered as

follows:

(1.3)

As noted in references [1, 18, 26], the solution of (1.2) is often the most time-

consuming part of the dynamic response analysis of large structures. Consequently,

there is great interest in developing new numerical schemes, or improving existing and

reliable algorithms, for solving the generalized eigenvalue problem.

As indicated by the review conducted in reference [8], there are several numerical

algorithms that can be used to solve the generalized eigenvalue problem at hand. When

determining which one of the several existing algorithms to use, it is necessary to consider

characteristics of the problem such as the order of the system, the mean half-bandwidth

of K and M, the densities of K and M, and also the number of eigenpairs that are

required.

In this work, our focus is on the solution of eigenvalue problems where n is very

large (say, n between 104 and 10'), K and M are sparse, and relatively few of the least

dominant eigenpairs are sought. When n is very large, transformation methods, such as

the Householder-QR algorithm, and search-type methods, such as the determinant search

approach, are not practical because of the excessive computational cost and memory

resources that these methods require [13, 23]. Rather, more practical methods for the

case when n is very large are the Lanczos method and the Bathe subspace iteration

method. Both of these methods have consistently done well solving the large eigenvalue

problems that are the focus of this thesis [19]. The Lanczos method has been the subject

of much research, and the reader is referred to references [10, 12, 14, 15, ?, 21, 22, 24, 27]

for more details.

The subspace iteration method is a competitive alternative to the Lanczos method

16

and was introduced by Klaus-Jiirgen Bathe in 1971 [2]. Similarly to the Lanczos method,

the Bathe subspace iteration method is useful for the solution of large eigenvalue prob-

lems, particularly when relatively few of the least-dominant eigenpairs are sought. Sev-

eral of the attractive properties of the Bathe subspace iteration method are as follows:

1. The algorithm is robust and efficient.

2. The algorithm converges quickly when the starting subspace is close to the target

subspace. This is a desirable property because the eigenvectors of a particular

structure can be useful starting vectors for the computation of the eigenvectors of a

slightly altered structure. Similarly, the eigenvectors for a particular conformation

of a protein can be useful starting vectors for the computation of the eigenvectors

of a nearby conformation of the original protein [11, 23].

3. The algorithm works directly on the generalized eigenvalue problem and does not

require conversion of (1.2) to the standard form of KOr = w 2 , for suitable choices

of k and .

4. The algorithm does not require the computation of all eigenpairs.

5. The algorithm is easily parallelized in both shared and distributed memory pro-

cessing schemes [4]. In fact, it was demonstrated in reference [4j that a parallel

implementation of the basic subspace iteration method achieved solution times for

(1.2) that increased linearly with respect to the number of eigenpairs sought, which

is comparable to what can be observed using the Lanczos method.

When the subspace iteration method was first proposed in the 1970's, the finite ele-

ment analyses of structures at the time typically incorporated only a few thousand de-

grees of freedom and required the computation of only a few dozen eigenpairs. However,

in current analyses, structures with millions of degrees of freedom can be considered, and

several hundred eigenpairs are frequently required. Since the Bathe subspace iteration

method has been established as a reliable method for the solution of eigenvalue prob-

lems in computational mechanics, there is a significant interest in improving the original

17

methodology to make the procedure effective for the growing demands of today's anal-

yses [16, 251. Several schemes have been proposed to accelerate the convergence of the

basic subspace iteration method, and we will briefly summarize some of the most rele-

vant ones here to give the reader a general sense of what research has been done in this

area.

In reference [3], the author proposes using over-relaxation procedures to modify how

the iteration vectors are updated after the Rayleigh-Ritz analysis of the basic method.

Let q denote the number of iteration vectors being used in the subspace iteration method.

The over-relaxation strategy requires the computation of an over-relaxation factor (po-

tentially one factor for each iteration vector) that depends on an accurate estimation

of q+ 1 . Since wq+l is not estimated directly in the subspace iteration method, it is

necessary to approximate this value, which can be done indirectly by estimating the

asymptotic convergence rates for some of the iteration vectors 161. However, this approx-

imation of wq+1 is not reliable until at least some of the iteration vectors have reached

their asymptotic rate of convergence, which may not happen until after a few, or many,

iterations. Therefore, this acceleration strategy cannot usually be applied during the

initial iterations of the algorithm when acceleration is particularly valuable.

In reference [131, a two-phase method is proposed that combines the subspace itera-

tion method with Rayleigh quotient iteration. The first phase of this strategy is to use a

few iterations of the basic subspace iteration method to compute initial approximations

of the target eigenvectors. If enough starting vectors are used in the subspace iteration

phase, then it is possible to obtain good approximations of the target eigenvectors. These

eigenvector approximations are subsequently used in the second phase as the inputs for

Rayleigh quotient iteration. This hybrid proposal combines the ability of the subspace

iteration method to provide quick approximations of the target eigenvectors with the

cubic convergence rate of Rayleigh quotient iteration.

In references [6, 16, 281, a shifting technique of the form K - aM has been proposed

using particular selections of the shift a c R. When the subspace iteration method is

applied to the shifted system K - aM, the algorithm will converge most quickly to the

eigenpairs with an eigenvalue near a. Shifting is a useful strategy because it makes it

18

possible to obtain faster convergence to higher frequency eigenpairs than would other-

wise be possible operating only on the original, un-shifted, system. However, shifting

requires computing the Cholesky decomposition of K - aM, which incurs an additional

computational cost. Therefore, an efficient shifting strategy needs to balance the cost of

additional Cholesky decompositions with the benefit of accelerated convergence to the

eigenpairs near the shift.

Of particular relevance to this work is the enriched subspace iteration method, which

is described in references [17, 18]. The key observation of the enriched method is that the

iteration vectors turn a certain amount towards the target subspace after the simulta-

neous inverse iteration step of the basic algorithm. Since Rayleigh-Ritz analysis is used

to extract the best eigenvector approximations from the current subspace of iteration

vectors, it is proposed that the current subspace can be improved by discarding some of

the less effective iteration vectors in favor of turning vectors that point in the direction

that the current subspace is turning towards the target subspace. The calculation of

turning vectors is computationally inexpensive and their inclusion in the subspace results

in significant computational savings compared to the basic subspace iteration method.

Another appealing property of the enriched method is that the above over-relaxation,

hybridization, and shifting acceleration strategies can be applied to the enriched method

in the same manner that they are applied to the basic method.

In this thesis, we improve upon the enrichment procedure proposed in references

[17, 18] for the acceleration of the basic subspace iteration method. Specifically, we

develop the E2 Bathe subspace iteration method, which uses turning vectors as well

as our new turning-of-turning vectors to enrich the subspace of the current iteration

by replacing less effective iteration vectors. Determining the turning-of-turning vectors

is computationally inexpensive and often results in computational savings compared

to the enriched method, particularly when relatively few iteration vectors are used in

comparison to the number of eigenpairs that are sought. The E2 method maintains

the reliability of the basic subspace iteration method while also providing a superior

theoretical asymptotic convergence rate compared to the basic and enriched subspace

iteration methods.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

Chapter 2

THE BATHE SUBSPACE

ITERATION METHOD

In this chapter, we provide a review of the original Bathe subspace iteration method. We

also discuss the enriched Bathe subspace iteration method that was recently proposed

in references [18, 17]. The enriched method, which accelerates convergence of the basic

method by using turning vectors to replace less effective iteration vectors, is particularly

relevant to the E2 algorithm that is developed in the subsequent chapter. The material

in this chapter provides context for the novel material presented in Chapter 3.

The Bathe subspace iteration method is an iterative approach to solving the gener-

alized eigenvalue problem. Specifically, given symmetric and positive definite matrices

K and M of order n, the Bathe subspace iteration method can be used to compute the

first p eigenpairs of the least dominant subspace of K and M.

K4 = Mqp 2, where (= 41 02 ... 2.

Q 2 =diag(Wf 2 O2 2

In (2.1), 1 E R"'P and Q2 c RPXP. The generalized eigenvectors, b, of (2.1) are assumed

to be normalized so that they are M-orthonormal and K-orthogonal, as indicated below:

4#TMoy = 63j and O[K j3 =w W26i, i, j = 1, 2,. .. , p (2.2)

21

In (2.2), 5ij is the Kronecker delta function, which is defined as follows:

1, = iJ (2.3)
0, i -fj

Due to the assumption that K and M are both positive definite, all n generalized

eigenvalues of K and M are positive and finite. Throughout this thesis, we will use the

following convention for ordering the eigenvalues and the corresponding eigenvectors:

< 2 n(2.4)

011, 02, .. - O- , p. .. , On

The subspace iteration method is initialized with a set of q > p linearly independent

starting vectors X0 E R' x, given by X0 =[X) (0) ... (0) X . In general,

the iteration vectors in the kth iteration are denoted

Xk= E(k) (k) (k) (k) Xk E nXq (2.5)
X X1 X 2 . .Xq-i XqI kER(25

Corresponding to each set of iteration vectors, Xk, is a q-dimensional subspace defined

by

Ek =span X(k) I (k) 1 (k) x1 k)} (2.6)

The target subspace of the q least dominant eigenvectors of (2.1) is denoted

Ec = span{1, 42, .-. . , Oq} (2.7)

The goal of the subspace iteration method is to produce a sequence of subspaces

E0 , E1 , E2,.. , Efin that converges to Eo. If Eo, E1 , E2 ,... , Efn converge to EO, then

Efin can be used to obtain the required eigenvectors by the use of Ritz analysis, as demon-

strated in reference 17]. The corresponding eigenvalue approximations are obtained from

the eigenvector approximations by using the Rayleigh quotient. Since the Rayleigh quo-

tient is used to obtain the eigenvalues, the error of the eigenvalue approximations is on

22

the order of the square of the error of the corresponding eigenvector approximations.

An important property of the subspace iteration method is that it is not necessary for

the iteration vectors x1(), X2) . (k) (k) to individually converge to an eigenvector

of (2.1). Instead, it is only necessary to be able to obtain the target eigenvectors by

linear combinations of the iteration vectors because the best eigenvector approximations

will be extracted from the current subspace of iteration vectors during the Rayleigh-

Ritz analysis. Consequently, if the starting iteration vectors happen to span the target

subspace, then the Bathe subspace iteration method will converge in one iteration.

Moreover, even if the starting vectors do not span the target subspace, the number

of iterations of the subspace iteration method that are required to reach convergence

does not depend on the closeness of each iteration vector in X0 to a target eigenvector,

but rather on the closeness of E0 to E,. One of the reasons why the Bathe subspace

iteration method is effective is based on the presumption that it is easier to find a

starting subspace that is close to E, than it is to find starting iteration vectors that

are close to the required eigenvectors.

The steps of the Bathe subspace iteration method are as follows:

1. Select q > p linearly independent starting vectors to create Xo E Rnxq:

X0 = X (0) (0) ... (0, 0) (2.8(0 ..2 xqi 1 Xq~ 1 (2.8)

2. For k = 1, 2,..., repeat Steps 2(a) - 2(c) below until convergence of Ek to E.:

(a) Perform simultaneous inverse iteration to obtain Xk E R nq from Xk_1:

KXk = MXk1, k = 1, 2,... (2.9)

(b) Perform the Rayleigh-Ritz procedure:

i. Project the stiffness and mass matrices onto the current subspace Ek

23

span {Xk __

k KXk, Kk G R (2.10)
Mk Xk MXk, Mk E R

ii. Determine Qk E Rqxq and G E Rqxk by solving the generalized eigen-

value problem of the projected operators:

KkQk = MkQk (2.11)

iii. Compute an improved approximation of the eigenvectors using the Ritz

coordinates obtained in (2.11):

Xk XkQk (2.12)

(c) Check for convergence of the eigenvalues using the criterion in (2.13), which

was given in reference [5].

[,k 1 1/2

T

--< tol (2.13)
q (k) (k)

In (2.13), wi(k) denotes the approximation of wf in the kth iteration and

q k) is the Zth column of Qk.

3. After convergence to E,,, perform the Sturm sequence check to ensure that all

required eigenpairs have been computed. A thorough discussion of how to apply

the Sturm sequence check is provided in references [9, 5].

In the algorithm above, it is assumed that the iteration vectors are sorted so that

the iteration vector converging to the ith eigenvector is stored in the jth column of Xk.

Additionally, note that (2.11) requires the computation of the complete eigensystem

of the projected operators Kk and Mk. Using the Jacobi iteration method to solve

the order q eigenvalue problem, the computational cost of this step is 0 (q 3), which is

24

relatively inexpensive compared to the cost of other steps in the algorithm since q < n.

We recommend that the user preset the convergence tolerance used in (2.13) following

the guideline tol = 1 0 -2, where t E Z is the number of digits to which the eigenvectors

should be accurate, and 2t is the number of digits to which the eigenvalues should be

accurate [5]. The eigenvalue approximations are accurate to twice as many digits as the

corresponding eigenvector approximations because the eigenvalue approximations are

computed using the Rayleigh quotient, as discussed previously.

If the starting vectors are not deficient in any of the first q generalized eigenvectors,

then the following convergence limits are observed, where 4 and Q 2 denote the first q

eigenvectors and eigenvalues, respectively, of the least dominant subspace of K and M:

lim Xk= 4 and lim Q2 = Q2 (2.14)
k-*oc k-4oo

The purpose of the Sturm sequence check is to verify that the algorithm has, indeed,

converged to all of the target eigenpairs. An eigenpair can be missed if the starting

vectors are all deficient in that particular eigenvector. If the Sturm sequence check

reveals that there are missing eigenpairs, we recommend appending random vectors to

the current set of iteration vectors. Then, continue the subspace iteration method with

the higher-dimensional subspace. Note that it is only necessary to continue the subspace

iteration on the non-converged vectors. Therefore, converging to the missing eigenpairs

can be quick if only a few of the target eigenpairs are found to be missing after performing

the Sturm sequence check.

However, we emphasize that while it is theoretically possible for the subspace itera-

tion method to not converge to one or more of the target eigenpairs, if q is sufficiently

larger than p, then the method rarely fails to converge to any of the target eigenpairs

in practice. In reference [81, it is recommended to determine the number of iteration

vectors, q, by

q = max {2p, p + 8} (2.15)

If q is selected by (2.15), then it is very unlikely that the starting vectors will all be

25

M-orthogonal to any of the target eigenvectors, especially if the starting vectors are

selected using the procedure described in reference [5] or if random vectors are used as

the starting vectors.

An interesting observation regarding the history of the subspace iteration method

is that, originally, it was recommended to select q according to q = min {2p, p + 8},

as stated in reference [7]. Selecting q in this manner was appropriate for the analyses

that occurred early in the history of the method when comparatively small problems

were considered, only a few dozen eigenpairs were sought, and computers were much

less powerful [4]. However, in reference [4], the author uses the fact that the eigenvalues

of structures frequently increase according to some known or guessed functional form,

which can be used to determine an optimal value of q. The resulting analysis given in

reference [4] ultimately concludes that the recommendation for selecting q that is given

in (2.15) is satisfactory for general use.

It was shown in [3] that if Ek is sufficiently close to E,, then the following convergence

rates are observed for the ith iteration vector to Oi and for the jth eigenvalue to w':

2
(k)

xk - #i at a rate on the order of

Wq+1 (2.16)

W.' -+ . at a rate on the order of
\q+1/

Since the theoretical convergence rates of (2.16) require Ek to be sufficiently close to

E., they are known as asymptotic convergence rates, and we note that the asymptotic

rates might not be observed during the initial iterations of the algorithm. Hence, there

is also significant interest in beginning the subspace iteration with high-quality starting

vectors that reach their asymptotic convergence rates immediately or after only a few

iterations.

The asymptotic convergence rate of the ith eigenpair, for i in the interval 1 < i < q,

is fastest when the ratio w W2+, is small. Consequently, the smallest eigenvalues have

the fastest asymptotic convergence rates. Therefore, because of the ordering in (2.4), W1

converges most quickly, and Lj is the slowest of the target eigenvalues to converge, with

26

an asymptotic convergence rate of W + -

However, all eigenpairs will have faster asymptotic convergence rates as q -+ n unless

)2+ = Uw2 = 2. In this unlikely scenario, of course, the ratio L2 W 2 does
LJq+1 Wq+2 unieyo th w/ q+1

not change as q approaches n. But, assuming that the eigenvalues are reasonably well-

spaced, then there is an interesting trade-off that is a consequence of the convergence

rate in (2.16):

1. If a large value for q is selected, then each of the target eigenpairs has a faster

asymptotic convergence rate. However, each iteration of the algorithm is more

computationally expensive due to using more iteration vectors. The consequence

of using the additional iteration vectors is that each iteration requires more central

processing unit (CPU) time to complete.

2. Conversely, if a small value for q is selected, then each of the target eigenpairs has

a slower asymptotic convergence rate, but each iteration of the algorithm is less

computationally expensive due to using fewer iteration vectors and therefore each

iteration costs less CPU time.

The optimal value of q with respect to minimizing the total CPU time required to

reach convergence is specific to each problem and can depend on the quality of the

starting vectors and how well-spaced the target eigenvalues are, among other factors.

The importance of this trade-off is examined in the test problems of Chapter 3.

We conclude this chapter with a discussion of the enriched subspace iteration method,

which was first proposed in references [18, 171. As indicated in Figure 2-1, the enriched

subspace method is closely related to the basic method. In fact, the only difference

between the two methods is in how the iteration vectors undergo the inverse iteration

step, and consequently, how the vectors that define the next subspace are determined.

In the basic method, the inverse iteration step is Xk = K-1 MXk-. However, in

the enriched method, the iteration vectors in Xk_ are first partitioned as follows:

Xk-1 = F__1 X; 1 XAt] k-1 E RnXPk-1, X" 1 E r'
L k(2.17)

b nXrbk

27

In (2.17), Pk-1 is the number of converged vectors after k - 1 iterations, with po = 0.

The remaining iteration vectors are split between X' 1 and X_ 1 . The partition sizes

satisfy q = Pk-1 + r + rb. The iteration vectors in <_k-1 no longer undergo the inverse

iteration step since they have already converged within the pre-specified tolerance, which

is important for reducing the computational expense of the algorithm.

Then, in the enriched method, the inverse iteration step is, at first, only applied to

Xa_, as opposed to the entire Xk-1 as is the case in the basic method. Thus,

= K-MX_ 1 , c E an" (2.18)

The key insight of the enriched method is that in going from X _1 to X the iteration

vectors have turned a certain amount towards the target subspace. Turning vectors are

identified from the iteration vectors that turned significantly from X_ 1 to Xa. Then,

these turning vectors are used to replace less effective iteration vectors in X _1 that are

not converging to one of the target eigenvectors.

The updated Xb 1 , which now includes the turning vectors, is then M-

orthogonalized and normalized, and the result is called Yk-1 E R"Xk. Next, the newly

formed Yk_1 undergoes inverse iteration resulting in:

Yk = K-MYk_1, ek E Rf (2.19)

After (2.19), the vectors that were previously known as turning vectors are now known

as forward turning vectors. The forward turning vectors point in the direction that the

current subspace is turning towards the target subspace. Finally, the new q-dimensional

subspace is defined by

Ek = span {<(k_1, Xk, Yk} (2.20)

As indicated in Figure 2-1, after the new subspace has been defined, the rest of the

enriched algorithm proceeds according to the steps of the basic method. The enrich-

ment procedure is a simple addition to the basic subspace iteration method that is very

effective in improving the asymptotic convergence rate of the basic method.

28

The forward turning vectors are noteworthy because they underwent inverse iteration

twice: once in (2.18) and a second time in (2.19). However, it is important to recognize

that even though the forward turning vectors underwent inverse iteration twice, the total

number of vectors undergoing inverse iteration within a single iteration of the algorithm

is still q - Pk-1 because an iteration vector was discarded for each turning vector that

was selected. Hence, no more vectors undergo inverse iteration in the enriched method

than in the basic method. Consequently, the only additional cost of the enriched method

is the determination of the turning vectors.

Lastly, in reference [18], the author performed a simplified convergence analysis and

obtained the following asymptotic convergence rates for the enriched subspace iteration

method for the case when q = 2p and all possible turning vectors are used in each

iteration:

(k) at a rate on the order of 2 < i < p

2(2.21)
(k) 2

,) +W at a rate on the order of ' < i < P
(q+1

The computational savings of the enriched subspace iteration method, as reported in

reference 118] make the enrichment procedure an important acceleration strategy for the

basic subspace iteration method.

In this thesis, we have extended the enrichment procedure to now include two

enrichments of the subspace during each iteration of the algorithm. The first enrich-

ment entails computing turning vectors by the process just described. The second

enrichment entails computing turning-of-turning vectors using our new process, which

will be described in Chapter 3. The result is a further improvement to the asymptotic

convergence rates of the subspace iteration method beyond the convergence rates

reported in (2.21).

29

Establish q starting vectors

Set k = 1.

Enrichment l I M ion.

: This path is followed if
I enrichment is not used.

Define the dag ubspace based on the new iteration vectors.

Project the K and . subspace.

Perform Rayleigh-Ritz analysis to extract the best

eigenvector approximations from the current subspace.

Update the iteration vectors.

Converged? NO

YES

Perform Sturm sequence check to verify convergence

of target eigenvalues.

Increase dimensionality of

subspace by adding new

random vectors to the current

set of iteration vectors.

NO

Figure 2-1: Flow chart depicting the relationship between the basic and enriched subspace iteration

methods. The blue boxes are the steps of the basic method. The red box is the enrichment step in

which turning vectors are calculated and used to replace some of the less effective iteration vectors.

In the basic method, there is no enrichment step. Instead, the algorithm immediately defines the new

subspace after the simultaneous inverse iteration step. Note: while it is theoretically possible to miss

convergence to one of the target eigenvectors, for example if all of the starting vectors are M-orthogonal

to one of the target eigenvectors, this situation rarely occurs in practice if a large enough q is selected.

Using Equation (2.15) to determine q is usually sufficient in practice.

30

Convergence YES

< Verified?

Chapter 3

THE E2 BATHE SUBSPACE

ITERATION METHOD

A key observation of the subspace iteration method is that after each iteration, the iter-

ation vectors have turned a certain amount towards the target subspace. This turning

occurs primarily as a result of the inverse iteration step. Another important observation

of the basic method is that due to the use of Ritz analysis, which extracts the best eigen-

vector approximations from the current subspace, faster convergence can be obtained if

a higher quality subspace is available.

The insight of the work done in references [17, 18] is that a better subspace can be

obtained in each iteration of the basic method by replacing some of the less effective iter-

ation vectors with turning vectors. The turning vectors, and their corresponding forward

turning vectors, enrich the subspace by incorporating information about the direction

that the current subspace is turning towards the target subspace. This additional turn-

ing information is useful since Ritz analysis extracts the best eigenvector approximations

from the possible linear combinations of the iteration vectors. The turning vectors are

simple to calculate, yet they have a significant speed-up effect when they are used to

enrich the subspace of the basic subspace iteration method.

In this chapter, we present a novel extension of the enriched subspace iteration

method, which we refer to as the E2 Bathe subspace iteration method. The idea of the

31

E 2 method is to measure the turning of the turning vectors after they undergo inverse

iteration as part of the enriched method. Then, the turning vectors that are determined

to have turned significantly after the inverse iteration step are used to compute our new

turning-of-turning vectors.

Enriching the subspace of the basic subspace iteration method by including turning

vectors as well as our new turning-of-turning vectors is the central idea for obtaining the

improved asymptotic convergence rate that the E2 method provides.

3.1 The New Algorithm

Like the basic and enriched subspace iteration methods, the E2 method is used to solve

the generalized, symmetric-definite eigenvalue problem of (3.1).

KO = w 2 M# (3.1)

The finite element matrices K and M are symmetric, positive-definite, and of order

n. We are particularly interested in eigenvalue problems when n is large, K and M

are sparse, and only the first p < n least dominant eigenpairs are sought. The desired

eigenpairs are written compactly below.

K4) = M4Q 2, where D = [1 02 -. p] (3.2)

Q 2= diag(W ,2 ,..., 2

As before, the ordering of the eigenpairs is assumed to be

(3.3)

3.1.1 Steps of the E2 Bathe Subspace Iteration Method

The E2 algorithm is initialized with a set of linearly independent starting vectors, denoted

Xo E R "q, where q > p is the number of iteration vectors that will be used to obtain

32

the convergence of the p least-dominant eigenpairs.

Xo = x0) (0) (3.4)

One commonly-used procedure to generate the starting vectors that is based on exciting

the target degrees of freedom is described in reference [5]. Alternatively, initializing the

starting vectors with q random vectors can be a useful strategy for reducing the risk of

the starting vectors being M-orthogonal to any one of the target eigenvectors. If all of

the starting vectors are M-orthogonal to a target eigenvector, then the E2 method will

not converge to that eigenvector. Situations such as this are why the Sturm sequence

check is used to ensure that no eigenpairs have been missed after the algorithm has

reported convergence. However, we note that this situation is rarely encountered in

practice if q is sufficiently larger than p. The recommendation of reference [8] is to select

q according to

q = max {2p, p + 8} (3.5)

Selecting q according to (3.5) makes it very unlikely that the starting vectors will all

be M-orthogonal to any of the target eigenvectors, especially if the starting vectors are

selected using the procedure described in reference 15] or if all of the starting vectors are

chosen as random vectors.

The starting q-dimensional subspace is E0 = span (0) , X2 , span {Xo}.

Selecting good starting vectors is important because the number of iterations that will

be required to reach convergence depends on the closeness of E0 to the target subspace

Eoc = {1, 2, ... , Oq}. It is noteworthy that if E0 and E, span the same space, then

the subspace iteration method will converge in one iteration, even if none of the vectors

in X0 are any of the target eigenvectors.

Additionally, the selection of q affects the number of iterations that will be required

to reach convergence and also the CPU time required until convergence. The larger q

is, the fewer number of iterations will be required to reach convergence. However, as

q increases, so does the computational burden of each iteration, which results in each

33

iteration requiring more CPU time to complete. For general use, the recommendation of

(3.5) seems to be practical. However, in Section 3.4, we examine the convergence results

of the enriched and E2 methods using different values of q.

Prior to beginning the main loop of the E2 subspace iteration algorithm, the stiffness

matrix is factorized into K = LDLT. This decomposition of K is important since the

algorithm requires solving linear systems with the coefficient matrix K. Additionally,

before beginning the algorithm, the starting vectors are M-orthonormalized by perform-

ing an iteration of the basic subspace iteration method. After the LDLT decomposition

of K and the M-orthonormalization of the starting vectors, the following steps are

repeated until convergence of p eigenpairs.

For k = 1, 2, .. . , repeat the following steps until convergence:

1. Partition the iteration vectors as follows:

Xkl_ [Xk-1 XX _ X xC1] XkI E Rn Xq (3.6)

Notes on step 1:

" The vectors stored in <bk-1 E R"XPk-1 are the converged iteration vectors.

The number of converged iteration vectors at the beginning of the kth iter-

ation is denoted Pk-1, and the algorithm is initialized with po = 0. Xk 1

contains the iteration vectors that will be the first set of vectors to un-

dergo simultaneous inverse iteration and will then be used to determine

the turning vectors. The turning vectors will be used to replace less effec-

tive iteration vectors in X' 1 . Turning-of-turning vectors will replace less

effective iteration vectors in X_ 1 .

" The number of iteration vectors stored in X , X _ and X'_ 1 are ra

rb and r', respectively, and can be determined by the user subject to the

34

condition in (3.7).

q = Pk-1+ k + c + r

2. Perform simultaneous inverse iteration on X'_ 1 to obtain Xa:

Xk R k

(3.7)

(3.8)

3. Let tk,1 E Z denote the number of turning vectors in the kth iteration. Initially,

tk,1 = 0. Identify the turning vectors by repeating steps 3(a) and 3(b) for

= r a - 1 ,max1r -- r'+1
k' k '~ L k k

(a) Let '(k) denote the 1th column of Xk, and let a E R denote the amount

of turning of ya'(k) from a,(k-1) which is calculated by:

tk,l

-a,(- Xkk (XTM k)) - u (u M (k))

The components of a,(k)

in the direction of the The components of 7'("
previous subspace in the direction of the

already-selected
turning vectors

(k 2

(3.9)

(b) Let tolt > 0 denote the tolerance used

enough to qualify as a turning vector.

turning vector and proceed to the next

vector and do the following:

to determine if yai,(k) has turned

If ai < tolt, then a,(k) is not a

i. Otherwise, X',() is a turning

tk,1 tk,1 + I

-ij
2t =

Vtkl - (k)

(3.10)

Proceed to the next i.

35

X = K - MXa_,

Notes on step 3:

* The iteration vectors are considered in reverse order in this step be-

cause of how the iteration vectors are assumed to be ordered. Recall

the iteration vectors are ordered as follows: the iteration vector con-

verging to #1 is stored in the first column of Xk_1, the iteration vector

converging to 02 is stored in the second column of Xk_1, etc. There-

fore, the first few vectors in X and Xa_ 1 are presumably close to

convergence and do not turn very much from X_ 1 to Xa.

4. Let tk,1 be the final value of tk,1 obtained in step 3. Let x 1,(k-i) denote the jth

column of X'_ 1. Then, construct Ykl - R" k by

S.(k-1) . b- k 1) I - - - tkl] (3.11)
rktk,1I

Notes on step 4:

e The first rb -tk,1 columns of Yk_1 are copied from the first rb -tk,1 iteration

vectors of X'_1 . The last t,1 vectors in Y_1 are vectors from Xa and will

become the turning vectors.

5. M-orthogonalize v 1 , .. . , . For i = 1,... , tk,1, do the following in (3.12) and

(3.13):

-Xa 1 ((Xa)T Mv) j (4)T 1A iv

M-orthogonalize to M-orthogonalize to
the vectors in X'_ the vectors in _'k-1

k-tkl+i-1 (k-1) (k-1Y) T Mvi - X -1 ((Xc_1)T MVi) (3.12)

J= , M-orthogonalize to

M-orthogonalize to the first the vectors in
- tk,1 vectors in Xb_ and

to the first i - 1 turning vectors

(k-1) _ __ __(3.13)
rk -tk,1+i V 2 M

31i

36

Notes on step 5:

* The vectors ij, and their normalizations in (3.13), are the desired turning

vectors.

" The purpose of the M-orthonormalization in this step is to obtain a more

numerically stable basis for Yk-1, which is necessary since v1 , Vtkl can

be very parallel after the inverse iteration of step 2.

6. Perform simultaneous inverse iteration on Yk_1 to obtain Yk:

Yk =K-MYk_1, Yk E R k (3.14)

Notes on step 6:

" The first rb - tk,1 vectors of Yk have now undergone inverse iteration for

the first time in the kth iteration, which they would have done in the basic

method, as well. However, the last tkl vectors of Yk have now undergone

inverse iteration twice in this iteration, which is the distinction between the

enriched algorithm and the basic method.

" The last tk,1 vectors of yk are known as the forward turning vectors. The

forward turning vectors are the key ingredient in the enriched method for

accelerating the convergence of the basic method.

7. Let tk,2 E Z denote the number of vectors that turned significantly from Y_ 1 to

Y. Initially, tk,2 = 0. In this step, we will identify additional turning vectors

(similar to the turning vectors identified in step 3) and we will also identify our

new turning-of-turning vectors.

The new turning vectors and turning-of-turning vectors are identified by repeat-

ing steps 7(a) and 7(b) for i = r, r - 1,...,max {1,r - r +1}.

(a) Let y k) denote the Zth column Of Yk, and let ai C R denote the amount of

37

turning of Y) which is calculated by:

k-1

Y= (k) -[k-1 X_ 1 Yk-l Xk-, -X ! 1

(k-

The components of (k
in the direction of the

tk,2 previous subspace (3.15)
-j >~(uTMV(k))
j=1

The components of Vk
in the direction of the

already-selected turning
and turning vectors of this step

y mi
(k)) T Mk)

(b) Let tolt' > 0 denote the tolerance used to determine if V k) has turned

enough to qualify as a turning (or turning-of-turning) vector. If ai < tolt',

then Y) is not a turning (or turning-of-turning) vector and proceed to the

next i. Otherwise, (k) is a turning (or turning-of-turning) vector and do

the following:

t k,2 = tk,2 + 1

Utk,2 = (3.16)

(0h2 k)

Proceed to the next i.

Notes on step 7:

9 The distinction between turning vectors and turning-of-turning vectors is

as follows. A vector in yk is a turning vector if it satisfies the following

two requirements:

38

- The vector must have began the kth iteration in X'_ 1 and must have

been copied into Yk-1 during step 4.

- The vector must have turned significantly from Yk_1 to Yk.

A vector in Yk is a turning-of-turning vector if it satisfies the following

three requirements:

- The vector must have began the kth iteration in X'l.

- The vector must have been selected as a turning vector in step 3 and

then stored in Ykl during step 4.

- The vector must have turned significantly from Yk-1 to Yk.

8. Let tk,2 denote the final value of tk,2 obtained in step 7. Let xc(k- 1) denote the

cth Column of Xc_ 1. Then, construct ZkI E R"X'* by

Zk -1 = [X?(1 xc,(k-1)
Xr' tk WI .. Wtk 2

1
I (3.17)

Notes on step 8:

* The first rk - tk,2 columns of Zk_1 are copied from the first r' - tk,2 iteration

vectors of X _1 .

" The last tk,2 vectors in Zk-I are the vectors from Yk that will become the

additional turning vectors and new turning-of-turning vectors.

9. M-orthogonalize wi, .. , Wtk,2. For i = 1, . . . , tk,2, do the following in (3.18) and

39

(3.19):

-iX" 1 ((Xa 1)TMwi) -- <I)1 _iMwi)

M-orthogonalize to M-orthogonalize to
the vectors in X the vectors in <_k-1

r' -tk,2+i-1I

(Y k-ktgn k-1) (k-1) T ai) (3.18)- (y-IMJw) - E ((Z k))vw' '91

M-orthogonalize to %
the vectors in Yk-1 M-orthogonalize to the first

r - tk,2 vectors in XI_ and
to the first i - 1 turning-of-turning vectors

(k-1) (_ 19)
rk-tk,2+i /

Notes on step 9:

* The vectors QO, and their normalizations in (3.19), are the additional turning

vectors and new turning-of-turning vectors.

* The purpose of the M-orthonormalization in this step is to obtain a more

numerically stable basis for Zkl_, which is necessary since w,... , Wt, 2 can

potentially be very parallel after the inverse iteration of step 6.

10. Perform simultaneous inverse iteration on ZkI to obtain Zk:

Zk - K-1 MZkl_, Zk e E nxr (3.20)

Notes on step 10:

* The first rc - tk,2 vectors of Zk have now undergone inverse iteration for

the first time in this iteration, which they would have done in the basic

and enriched methods, as well. However, the last tk,2 vectors of Zk contain

a mixture of additional forward turning vectors and, importantly, forward

turning-of-turning vectors.

* The new forward turning vectors are vectors that began this iteration in

40

Xb, 1were not replaced during the construction of Y_1, and were de-

termined to have turned significantly from Ykl to Yk. Similarly to the

forward turning vectors computed in step 6 of the algorithm, these vec-

tors have undergone inverse iteration twice during a single iteration of the

algorithm.

e The new forward turning-of-turning vectors are vectors that began this

iteration in X_ 1 , were selected as turning vectors in step 3 of the algorithm,

and were determined to have turned significantly from Yk_ to Yk. These

iteration vectors have undergone inverse iteration three times during a single

iteration of the algorithm and are the key to the double enrichment of the

E2 method.

11. Define the new q-dimensional subspace:

Ek =span { Xk} where Xk [14k-I Xi k Zk](.1

12. Project the stiffness and mass matrices onto the current subspace:

Kk XTKX, Kk e
k G R(3.22)

Mk =4XkMXk, Mk E R^9

13. Determine Qk E jRqx4 and 2 E Rqxq by solving the generalized eigenvalue

problem of the projected operators:

KkQk = MkQk (3.23)

14. Compute an improved approximation of the eigenvectors using the Ritz coordi-

nates obtained in (3.23):

Xk XkQk (3.24)

41

15. Use (3.25) to determine the convergence of the eigenvalues:

[2,(k)
2 - 1/2

)T , < tolc, i = Pk1 + 1, ... ,P, (3.25)

where qrr,(k) is the (i - pk_1)th column of Qr, which is square matrix of order

(rk+ rk +r). Qr' defined by

Qi cc Qcr .(.6
Qk= [Qk k (3.26)

[rc QrrJ

16. Update the number of converged iteration vectors to Pk. If Pk < p, then return

to step 1 to continue the iteration.

In the algorithm above, steps 1-6 are the same as the steps of the enriched subspace

iteration method given in reference 118]. Steps 7-10 are specific to the E2 method. Steps

11-16 are the same as the steps in the basic subspace iteration method. Generally, the

algorithm above can be thought of as having five components:

1. Partition the iteration vectors (step 1).

2. Enrich the subspace by computing turning vectors and, ultimately, forward turning

vectors (steps 2 - 6).

3. Further enrich the subspace by computing additional forward turning vectors and

new forward turning-of-turning vectors (steps 7 - 10).

4. Perform Ritz analysis, which entails projecting the K and M operators onto the

new subspace and solving the projected eigenvalue problem (steps 11 - 13).

5. Update the approximations of the iteration vectors using the results from the Ritz

analysis and check for convergence (steps 14 - 16).

42

After convergence to E., the Sturm sequence property is used to verify that the

algorithm has not missed any of the p lowest eigenvalues. Let p E R such that p is

slightly greater than 2. Then, factor the shifted matrix K - pM into LDLT. The

Sturm sequence property states that the number of negative elements on the diagonal

of D is equal to the number of eigenvalues smaller than p. Therefore, the results from

our calculations are verified if there are exactly p negative elements in D. If there are

more than p negative elements in D, this is an indication of one several possibilities:

1. The shift p was too large and should be reduced to be closer to w2.

2. has a multiplicity greater than 1.

3. One or more eigenpairs were missed during the subspace iteration. In this case, it is

recommended to increase the dimensionality of the subspace by appending random

vectors to the current set of iteration vectors. Then, the subspace iteration should

be continued with the new iteration vectors.

3.1.2 Flow Chart Representations of the E2 Algorithm

In this section, we visualize how the enrichment steps of the E2 algorithm are integrated

into the basic subspace iteration method. As indicated in Figure 3-1, the enrichment

steps of the E 2 method are easily added to the basic method. In fact, the primary

difference between the basic, enriched, and E2 methods is with regard to how the new

subspace is defined in each iteration. In the basic method, the new subspace is obtained

by applying inverse iteration to all of the iteration vectors. In the enriched method,

some iteration vectors are discarded and forward turning vectors are incorporated when

defining the new subspace. In the E 2 method, some iteration vectors are discarded and

forward turning vectors as well as forward turning-of-turning vectors are used when

defining the new subspace.

In Figure 3-2, we visualize how the E2 algorithm proceeds through the steps described

in the previous section.

43

Establish q starting vectors

Set k = 1.

EnrichmePefr Perform inverse iter xrcthbe

This path
is followed if

second-

Figre3-: lo cartdeicin hw heenrchen ad ecndenrichmentprcdesaeitgtd

Second- 'a et ed. he This path is followed if neither
f enrichment nor second-

Enrichment seon enrichment are used.

Define the new subspace based on the new iteration vectors

Project the K and M operators onto the new piubspace.

Perform Rayleigh-Ritz analysis to extract the best

eigenvector approximations from the current subspace.

Update the iteration vectors.

NO
Converged? 01k=ka+l1

YES

Perform Sturm sequence check to verify convergence

of target eigenvalues.

Increase dimensionality of
subspace by adding new Convergence YES

random vectors to the current NO Verified? O I

iteration vectors.

Figure 3-1: Flow chart depicting how the enrichment and second enrichment procedures axe integrated

into the basic subspace iteration method. The simple integration of these procedures makes them

attractive acceleration schemes. The blue boxes show the steps of the basic method. The red box is the

first enrichment step in which turning vectors are calculated and replace less effective iteration vectors.

The green box is the second enrichment step in which turning-of-turning vectors are calculated and

replace additional iteration vectors.

44

r()(0) (0)1
Establish q starting vectors: Xo = [W0) ... qj.

Set k = 1.

Partition the iteration vectors: Xk- 1 = 4_1 Xa_ 1 X_ X_1].

Perform simultaneous inverse iteration on Xa_ to obtain: XY = K' MX .

Measure how much the iteration vectors turned from Xa_ to Xk and identify turning vectors.

Form Yk-1 by replacing vectors in X 1 with the turning vectors.

Perform simultaneous inverse iteration on Yk- to obtain: Yk = K-'MYk-l.

Measure how much the iteration vectors turned from Y1 _1 to Yk and identify turning-of-turning

vectors. Form Zk_1 by replacing vectors in Xc_1 with the turning-of-turning vectors.

Perform simultaneous inverse iteration on Z_,1 to obtain: ZYk = K-IMZk-.

Define the new subspace: Ek = span { _k1,i, kZ 1= span {xk}.

Project the K and M operators onto Ek: Kk = XikKXk and Mk = X MX.

Solve the eigenvalue problem: KkQk MkQk k.

U Vectors by Xh= XkQk.

Converged?

YES

NO
k=k+1

Perform Sturm sequence check to verify convergence

of target eigenvalues.

Increase dimensionality of

subspace by appending new

random vectors to Xk.
NO

Figure 3-2: Algorithm flow chart for the E2 subspace iteration method. The blue boxes indicate the

steps of the E2 method that are the same as in the basic method. The red boxes indicate the steps
of the E2 method that are the same as in the enriched method. The green boxes indicate the steps

of this procedure that are unique to the E2 method. Note: the partition step is highlighted in green,

even though there is also a partition step in the enriched method because the enriched method does

not partition iteration vectors into Xc_ 1 .

45

<Convergence
YES

DONE!
Verified?>

The Sturm sequence check is included in Figures 3-1 and 3-2 as an important step of

the E2 algorithm. The figures consider the situation in which the Sturm sequence check

fails and it is necessary to continue the subspace iteration. It is important to note that

while it is theoretically possible to fail to converge to one of the target eigenvectors, for

example if all of the starting vectors are M-orthogonal to that eigenvector, this situation

rarely occurs in practice when Equation (3.5) is used to determine q.

3.1.3 Visualization of Turning Vectors and Turning-of-Turning

Vectors

In this section, we illustrate the process by which turning vectors and turning-of-turning

vectors are calculated. We also depict the relationship between turning vectors and the

corresponding forward turning vectors, as well as the relationship between turning-of-

turning vectors and the corresponding forward turning-of-turning vectors.

Both the basic and enriched subspace methods can be implemented using as few as

two starting vectors. Hence, the subspaces Ek-1 and Ek can be depicted in the smallest-

dimension case as planes. In Figures 3-3 and 3-4, we provide an illustration of how these

two methods define the new subspace, Ek, from the iteration vectors in the current

subspace, Ek1.

Ek
R(k)

2

X(k-1)

(k-1)

R(k) Ek-1

Figure 3-3: Geometric illustration of the subspaces Ek_1 and Ek using the original Bathe subspace

iteration method. In this illustration, M = I, and two iteration vectors are depicted. The depicted

subspaces are defined by Ek-1 = span X(ok-1) (-1) and Ek = span (k) () The vectors (k)

and Y2) are obtained by applying inverse iteration to x(k1) and x k-'), respectively.

46

M

Ek

(k)

(k)

X(k-1)

(k) Ek_1

Figure 3-4: Geometric illustration of the subspaces Ek_1 and Ek using the enriched Bathe subspace
iteration method. In this illustration, M = I, and two iteration vectors are depicted. The depicted

subspaces are defined by Ek-1 = span {X(k-1) (k-1)} and Ek = span {(k) (k)}. The vector Y k) is

obtained by applying inverse iteration to xi 1), and y1) is the forward turning vector that is the key

ingredient for the acceleration of the enriched method.

The acceleration of the enriched method is due to the fact that A is a linear com-

bination of Y1 and Xjc), which represents xik-) after two inverse iterations. Therefore,
=(k)
X, is in the new subspace that has been created using the forward turning vector,

Ek = span {Yk) 1 k) . Consequently, during the Ritz analysis step, either Yk) or a

superior approximation for #1 can be extracted from the subspace. Since Y' points

from Y1k) to (k), it is referred to as a forward turning vector.

As opposed to the basic and enriched methods, which can work on as few as two

iteration vectors, the E2 method requires at least three iteration vectors: one iteration

vector that undergoes the initial inverse iteration step, a second iteration vector that

can be replaced by a turning vector, and a third iteration vector that can be replaced

by a turning-of-turning vector. In Figure 3-5, we visualize how the E2 method iterates

fro Ea1 =spa {(k-1),(k-1) (k-1) toE pn{(k) (k) (k)from Ek-1= span I X1 7X2 1X3J1t Ek =span l 1 1 ei 1 .

The upper graphic of Figure 3-5 shows the result of applying inverse iteration on

X(k-1) to obtain Y(k). Then, z1 is identified as the turning vector that represents the

direction ik-i turned towards the target subspace after undergoing inverse iteration.

The turning vector, -i, is then normalized to obtain y(i), which is the input to the

lower graphic of Figure 3-5.

In the lower graphic of Figure 3-5, y(k-1) undergoes inverse iteration to obtain V (k.

47

Then, we identify 1 as the turning-of-turning vector. The turning-of-turning vector

is normalized and then undergoes inverse iteration to obtain the corresponding forward

turning-of-turning vector, z k). The acceleration of the E2 method is due to the fact that

zjk) is a linear combination of Vj'1 and k), which represents xfci) after undergoing

three inverse iterations. Therefore, Yk) is in the new subspace that has been created

using the forward turning vector and forward turning-of-turning vector. Consequently,

during the Ritz analysis step, either Y(k) or a superior approximation for 4i can be

extracted from the subspace. Since (k) points from (k) (recall that V(k) is the normal-

ization of the turning vector identified in the upper graphic of Figure 3-5) to k), it is

referred to as a forward turning-of-turning vector.

span{xsi}

span n{xi-, xik"}

span {p),4) }

y_7,span {yc-), xi1)}

Figure 3-5: Geometric illustration of the E2 Bathe subspace iteration method showing the computation
of the inverse iteration step on (k-~i), which results in z"; the computation of the forward turning

(k-1))

-(k) kl1)

vector, y(* ; as well as the computation of the forward turning-of-turning vector, zi , which is the
key ingredient for the additional enrichment of the E2 method. In this illustration, M = I, and three
iteration vectors are depicted. In the E2 method, the previous and current subspaces are defined as

_ = span J() (-~-i) ~(ki) pd E = span +(k))(k) (k) ,respectively. In F - b v than wn an k)

(k))

Finr Figure3-o serve utat wfte h'ae sownac iteatnd meho Thsen v ecorpresein

48

Xzk1) after two and three inverse iterations, respectively. Hence,

(k) -- K-'Mxlk- 3

X(k) -K-M1k) (3.27)

-() K-M=(k)

First, note that neither Y-() nor xk) are actually computed in the E2 method. How-

ever, they are shown in Figure 3-5 to illustrate the following observations:

1. The forward turning vector, V,), points from the space spanned by Y to the

space that would be spanned by Y(k) after undergoing an additional step of inverse

iteration. That is, k) is a linear combination of Yk) and =X(). This is the reason

why we refer to y(k) as a forward turning vector.

2. The forward turning-of-turning vector, k), points from the space spanned by Ik)

to the space that would be spanned by yk) after an additional step of inverse

iteration. That is, -ik) is a linear combination of ill) and x,). This is the reason

why we refer to zk) as a forward turning-of-turning vector.

To demonstrate the turning process, consider the following simple example. Define

K, M, and Xk-l as follows:

1 2 1 0 1 0.879049 (3.28)

[2 8 [0 1= 22 [V5 0.476731

Note that Xk-1 is M-orthonormal. Then, Yk is obtained by inverse iteration as follows:

1 2 -1/2] 1 0] [17
Yk K-- MXk_1=

22-1/2 1/4 0 1 7

1 2v/1- - v/-/2

- 1](3.29)
-,/72 + [5/5

1.51973

--0.320342

49

The vectors Xk_ and i4 are depicted in Figure 3-6 as the solid blue and red arrows,

respectively. The turning vector is found by projecting Xk onto the subspace spanned by

Xk_1. This process is Gram-Schmidt orthogonalization, which is described in reference

[5]. The projection is denoted projx, (2E) and is computed by

x TM
proj 1 (k) = Xkl T-I = _1 x[1Myk (3.30)

In (3.30), we have invoked the M-orthonormality of Xkl1, and so x_ 1Mx_= 1. The

projection of Xk onto the subspace spanned by Xk1 is depicted as a dashed red line in

Figure 3-6. Once the projection is computed, then the turning vector is computed by

1.51973 1.04009
Turning Vector = Yk- proj M_- (Y) -0.320342 0.56407

.. -I- - -J (3.31)
0.479639

-0.884411

The turning vector that is visualized in Figure 3-6 is obtained by translating the vector

in (3.31) such that the tail of the vector in (3.31) is located at the tip of proj.,_, (54).

Y

0.41

-Xk.1

0.2A

---- - projxk_1 (A)
- Tuming Vector

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.2

Figure 3-6: Illustration of vector projection and the calculation of a turning vector using the Gram-

Schmidt orthogonalization algorithm. Yk is projected onto the subspace spanned by Xk- 1. Then, the

turning vector is defined as the difference between Tk and its projection onto Xk-1. To visualize the

relationship between proj,,_, (Tk) and Yk, the turning vector has been translated so that the tail of

the turning vector is located at the tip of proj.,,_ (yk).

50

3.2 Tabulation of Floating Point Operations

In this section, we report the total number of floating point operations used by the basic

subspace iteration method, the enriched subspace iteration method, and the E2 subspace

iteration method. The results of Tables 3.2 and 3.3 can be found in references [5] and

[181, respectively, and are only repeated here for reference and comparison to the new

table for the E2 method. Table 3.4 contains an accounting of the number of floating

point operations used in the E2 method and is original to this thesis. In Table 3.3, the

iteration vectors were assumed to be partitioned equally, hence rg = rb, and we denoted

this partition size by rk. In Table 3.4, we have also assumed that the iteration vectors

are partitioned equally, so ra = rb = r , and we denoted this partition size by r'.

Symbol Meaning

rk = q l The number of non-converged iteration vectors2

used in the enriched method

q-Pk-1 The number of non-converged iteration vectors

used in the E2 method

tk,1 The number of turning vectors identified

during the enrichment step of the enriched method

t i The number of turning vectors identified

during the first enrichment step of the E2 method

tk,2 The number of additional turning vectors

and new turning-of-turning vectors identified

during the second enrichment step of the E2 method

Rk_1 = MXk_1 The iteration vectors multiplied by M

XPk-1 = M4k_1 The converged iteration vectors multiplied by M

m The mean half-bandwidth of K and M

Table 3.1: List of symbols and their associated meanings used in Tables 3.2 - 3.4.

51

Basic Subspace Iteration Method

Operation

Factorization of K

Define Ro

For k = 1, 2 . repeat steps (a) - (f):

(a) Inverse iteration

(b) Project the K Operator

(c) Compute lk

(d) Project the M Operator

(e) Solve the eigenproblem

(f) Update iteration vectors

Total in a single iteration of (a)-(f):

Sturm sequence check

Calculation Number of operations

K LDLT 1 nm2 + 3 nm

Ro = MXO

Xk = K-1Rk-1 nq(2m + 1)

Kk = T k- 1 4nq(q + 1)

Ak = M3k nq(2m + 1)

Mk = XTk nq(q + 1)

KkQk = MkQkk 0 (V)

Rk = RkQk nq
2

nq(4m + q + 3) + nq
2

+ 0 (q
3

)

K = K - pM
K=LDLT

n(m + 1)

nm2 3nm

Table 3.2: Tabulation of floating point operations for the basic Bathe subspace iteration method when

the algorithm iterates on all iteration vectors, including converged iteration vectors.

Enriched Subspace Iteration Method

Operation

Factorization of K

Define R0

For k = 1, 2, ., repeat steps (a) - (i):

(a) Partition iteration vectors

(b) Inverse iteration

(c) Compute Ak, Bk,Ck, Dk

(d) Check the amount of turning

(e) Calculate Sk_1 = MYk-1

(f) Inverse iteration on turning vectors

(g) Project the K and M operators

(h) Solve the eigenproblem

(i) Update iteration vectors

Total in a single iteration of (a) - (i):

Calculation

K = LDLT

RO = MXO

Rk-1 = [k-1 Rk-1 R 11
Ya = K-iRk--ake k-i

Dk Ak Bk =X Rk_1
-Aa = M-Ka

Ck = k k

See algorithm

See algorithm

Yk = K-'Sk-I

Xk+1 = X4 % - V1 k]

k-1 sym.

Kk = 0 Ak

0 Yk'k_ 1 YkSk-1.

k = MYk

sym.

Mk= DT
kk= D Ck

T Ta Tb~k *k-1 Yk k k vAk

KkQk = MkQk k

Rk = r4k-1 Rk k1 Qk
2nrk (4m + q + 3) + nq2 + ntk,l (q + rk

Number of operations

1 nm2 + m

nrk(2m + 1)

nrk (Pk-1 + rk2+1 + rk)

nrk (2m + 1)

rnrk(rk +)
o(qr)

ntk,1(q+ 1)

nrk (2m + 1)

nrk (tk,1 + rkl+1

nrk(2m + 1)

nrk (Pk-1 + rk2+1 + rk)

o(q3)

nq
2

+ 1) + o q3)

Sturm sequence check K = K - pM

K = LDLT

n(m + 1)

vnm + inm

Table 3.3: Tabulation of floating point operations for the enriched Bathe subspace iteration method.

52

E
2

Subspace Iteration Method

Total in a single iteration of (a) - (m):

Sturm sequence check

Calculation

K = LDLT

RO = MXO

Number of operations

2 2 3

Operation

Factorization of K

Define Ro

For k = 1, 2,. repeat steps (a) - (m):

(a) Partition iteration vectors

(b) Inverse iteration

(c) Compute Ak,Bk,Ck,Dk,Fk

(d) Check the amount of turning

(e) Calculate Sk-1 = MYk1

(f) Inverse iteration on turning vectors

(g) Compute Ak,B',C',D' ,Fk

(h) Check the amount of turning-of-turning

(i) Calculate Tk_1 = MZk-
1

(j) Inverse iteration on turning-of-turning vectors

(k) Project the K and M operators

(1) Solve the eigenproblem

(m) Update iteration vectors

K = K - pM

k = LDLT

n(m + 1)

1nm2 + 2 nm

Table 3.4: Tabulation of floating point operations for the E 2 Bathe subspace iteration method.

53

Rk-1 =wk-1 R_ 1 Ri_ Rk 1]

Ya = K-R 1 nr' (2m + 1)

= MX% n'(2m + 1)

Dk Ak Bk Ck = X)Rk_1 nrk (Pk-1 + 2 + 2r

Fk = (a) T Anrk(rk + 1)

See algorithm 0 (q - (r'2)

See algorithm ntk, 1 (q + 1)

k = K-- Sk-1 nrk (2m + 1)

MVk nr'k(2m + 1)

D' Ak B' Cl

=k w k 1 R[k H1 Sk-1 R_1] nrk (Pk -1 + 2 + tk,

F= T kj, 'nr'k(r+1)

See algorithm (q (r'2)

See algorithm ntk,2(q + 1)

Zk = K~'Tk-l nrk (2m + 1)

AZ = MZk nr (2m + 1)

n - sym.

Kk= Ak nrk (2tk,2 + 2

0 Ak Bk

0 ZT 'R ZT -A ZT _Ac
k-1 k k-i k k-1Rk

sym.

DkT Fk '+
Mk = DT Fk nrk (Pk-1 + 2 +

(Dk)T YkRk Fk

-gT -Ta -T-kb -T-e
Zk- k k k k k k

KkQk = MkQk r,2cs (q3)

Hkw V -~k n Ac % Qie nq
2

Rk = kk- +q k2

3nrk (4m + q+3) +nq2 kt1(q +r' +1) +ntk,2(q +2r' +1) + 0(

k)

1+ k

The following three observations pertain to the E2 method and are used to avoid

unnecessarily performing the same computations twice.

1. The first r' - t rows of A' are the first r' - t, rows of BT.

2. The first r[- tk,2 rows of Z[1R are the first r - tk,2 rows of C .

3. The first r' - tk,2 rows of Z'_R aare the first r' - tk,2 rows of (C')T.

We conclude this section with a remark on the relationship between the number

of floating point operations used by the enriched method and the number of floating

point operations used by the E2 method. Specifically, consider the situation in which we

perform the two methods without ever accepting converged iteration vectors. Therefore,

Pk-1 = 0 for all k = 1, 2,..., and the total number of iteration vectors being used in each

iteration is always q. In this special case, the only difference between the enriched and

the E2 methods is that the E2 method requires the computation of the turning-of-turning

vectors.

To be specific, let PVo, M, and 2 denote the number of floating point operations in

the basic method, enriched, and E2 methods, respectively. We will analyze the special

case when Pk-1 = 0 for all k = 1, 2 ,. In this case,

KO =nq(4m + 2q +3) +0 (q')

M1 = nq(4m + 2q + 3) + ntk,1 + 3 nqtk,1 + 0 (q') (3.32)2
4nqt' nt

2 = nq(4mn + 2q + 3) + k, ' + nt, 1 + + nt,2 + 0 (q')
J\Ari(4m2q3) + 3

Then, assuming that the enriched and E2 methods use the same number of turning

vectors in a given iteration, that is tk,1 = , the following equation holds:

4 - 4 = 5 nqtk,2 - nt,2 - kt' 1 + 0 (q 3) (3.33)
3 6

Equation (3.33) represents the number of additional floating point operations performed

by the E2 method compared to the enriched method in a given iteration when both

54

methods use the same number of turning vectors. Therefore, (3.33) represents the cost

of performing the second enrichment procedure of the E2 method.

If we also assume that all possible turning-of-turning vectors are used, hence, t'=

tk,2, then the number of additional floating point operations of the E2 method compared

to the enriched method is:

- 3nt,2 + ntk,2 + O(q3) (3.34)

In (3.34), we have assumed tk,1 = tk,2. In this case, the number of additional

floating point operations of the E2 method compared to the enriched method is the

same, up to ((q 3), as the number of additional floating point operations of the enriched

method compared to the basic method:

Uqk -I= + ntk,1 + O(q3)2
= 3 nqtk,2 + ntk,2 + 0 (q 3) (3.35)

2

In reference [18], the author remarked that the enriched method is a relatively inex-

pensive addition to the basic method. Based on equations (3.33), (3.34) and (3.35), we

conclude that the E2 method is a relatively inexpensive addition to the enriched method.

3.3 A Simplified Convergence Analysis

In this section, we examine the effects of using both turning vectors and turning-of-

turning vectors to enrich the subspace of each iteration in the E2 algorithm. The goal of

this analysis is to provide insight into how these vectors are used to enrich the subspace

and actually accelerate the convergence of the iteration vectors to the target subspace.

As before, suppose K and M are symmetric, positive definite matrices of order n.

Recall, we are interested in finding the lowest p generalized eigenvalues satisfying KO =

w2Mo. Following the convention used in this thesis, the eigenvalues and corresponding

55

eigenvectors are ordered as follows:

(3.36)
4017 42 1...iO

Let Xk_ (E Rnxq, p < q < n, denote the iteration vectors at the beginning of the kth

iteration. The first step of the main loop in the algorithm is to partition the iteration

vectors as follows:

Xk-1 = [X_ 1 X X X_1 XI1 E Rx I _- E R"(.,
(3.37)

X[_ 1 E Rfl'E

We omit)k-1 in (3.38) because we are assuming that all of the iteration vectors are used

in each iteration. Additionally, we assume that the iteration vectors are partitioned into

groups of equal size: a = rb = re = rk = 1 and that all turning vectors and turning-of-

turning vectors are used in each iteration.

By construction, the iteration vectors stored in Xk_1 are M-orthonormal. Hence,

the iteration vectors satisfy X_ 1 MXk = I. The analysis here follows the structure

of analyses performed in 13] and [18] for the convergence of the basic subspace iteration

method and the enriched subspace iteration method, respectively. To begin, let

Xk_1 = 4 k-1, where 4) = '1n (3.38)

(k-1 c Rnxq

The vectors stored in Ck-1 are the coordinates of the iteration vectors in the basis of the

eigenvectors. The eigenvectors in P are M-orthonormal and K-orthogonal and can be

normalized such that the following equations are satisfied:

K4) - 02 where 02 = diag (, , ... , w (339)

)MQ = I

Further, since K and M are symmetric and positive definite, it can be shown by

56

the spectral decomposition theorem that the generalized eigenvectors in 4 are linearly

independent. Therefore, 4 is invertible and we obtain

M = D-T4D where T (4) = (@T) (3.40)

Consequently, the system of equations in (3.38) can be solved uniquely for _k-1:

Ck-1 =4 @1Xk_1 (3.41)

Further, by the M-orthonormality of Xk_1, it follows that

~k-1Ck-1 =(P-1X)Tl k-X

= T X_4-T.I- 1Xk_1k-
(3.42)

= Xi 1 MXk_1

=I

Now, recall the first inverse iteration step of the E2 method: we compute X' E Rn'Ik

by solving

KX = MXk 1 (3.43)

Now, let (a_1 E R"xrk denote the first rk columns of (k-1. Additionally, let a (E Rflxrk

denote the coordinates of Xa in the basis of the eigenvectors. Hence,

and Xa = (b (3.44)

Then, using this change of basis, the inverse iteration step of (3.43) can be written

as
KXa = MX_ 1

K4Ci = M4((3
K (P ~ k -1(3 .4 5)

57

Xk_1 = 4(k_1

Since K and M are positive definite, 2 is invertible, and the inverse is given by

inv (Q2) = diag (1, 2 ... , 1), w, > 0 for all i = 1, 2,..., n (3.46)

Consequently, since the inverse of 2 is well-defined, it follows from (3.45) that k is

uniquely defined by

Ca = inv (f 2) a (3.47)

The quantity zk represents Xk in the eigenvector basis. It follows from (3.46) that, in

the eigenvector basis, inverse iteration is performed by multiplying the current iteration

vectors by inv (Q2)

In the description of the algorithm in Section 3.1.1, we defined the quantities Yk E

R"Xrk and Zk E Rnxrk. Suppose that in each iteration, we use all of the turning vectors

and turning-of-turning vectors to create forward turning and forward turning-of-turning

vectors, respectively. In this case, Yk consists of all of the forward turning vectors

and Zk consists of all of the forward turning-of-turning vectors. Then, the following

relationships hold

span {Xa, Yk} = span {Ck, }, where k = [kv (2)2 _ (3.48)

span {yk, Zk} = span , I ,} where k = [inv (k2)3 _1 (3.49)

Using the results from (3.48) and (3.49), we conclude that the current subspace is

given in the eigenvector basis by

Ek= span {, (a ((3.50)

58

Now, define 'k-1 E R",X as follows:

1 0 -.. 0

o 1 -.- 0

o 0

0 0 ... 1
-k-_1 (3.51)

(k-1) (k-1) (k-1)
q+l, q+1,2 .. ** q+2,q

(k-1) (k-1) (k-1)
q+2,1 q+2,2 .. ' q+2,q

(k-1) (k-1) (k-1)
n, 1 n,2 ' 'n,q

Let 6,..., q denote the first q columns of the identity matrix. Assuming that the

iteration vectors in (k-1 are not deficient in &,... q then the columns of Ck-1 can be

linearly combined to obtain k-1. The first q rows of 'k-1 are the q x q identity matrix.

Further, the column space of a matrix is not changed by forming linear combinations

of the columns, so we conclude that spanf{k-1}= span {-k-1}. Thus, Ck_1 and Ek-1

correspond to the same subspace. Now, the vectors iC,(k-i), for i = 1,... , rk can be

written as a linear combination of the corresponding zth column Of Ek-1 and a residual

vector, given by r (k-1

a,(k-1) (k-1) (k-1) (k-1) (k-1) (3.52)

In (3.52), ki- denotes the zth column of 2k-1, 7k1) E R,) ER, and r) C R.

As the subspace approaches convergence, the following limits are observed:

lim (-l) _ --, jim (k-1) lim E -1) = 0 (3.53)
k-4c k-+oc k-+oo

We assume that the ith iteration vector has reached its asymptotic convergence rate,

which means that c (k-1) « and (k - 1 1 + 0 (k-1). Then, combining (3.52) with

59

the definition of [in (3.49), we have

a,(k) (k-1) [Q2v (2 3 k-1) (k-1) 2)3 (k-1) (354)

In (3.54), ('(k) denotes the ith column of Z. Then, it follows that,

(-) ,k _ 2 k-i) ()3 kiv (02)]3 k-1) 0-(1)) (k) - ai 2

W a,(k-1) k-21) k- (k- 1)) k-1) - 1)

()3 [v (2)3
(-1)

2 (3.55)

a6 k--))

+1 k-)

Finally, since ((k is the best approximation of & in the subspace Ek, it follows from

the result of (3.55) that

(k))3 ,a(k)

a,(k-1) -a,(k-1)

2 2

W 2
3

Therefore, assuming that the iteration vectors are ordered properly and are not

M-orthogonal to any of the target igenvectors, we conclude from (3.56) that in the

E 2 method, the first q/3 iteration vectors converge asymptotically proportional to

(wg/w!+1) 3 . Therefore, if q =3p, the first p iteration vectors will converge asymp-

totically to the target subspace according to the rate (gw+)

60

Further, since the eigenvalues are calculated using the Rayleigh quotient, which con-

verges at a rate proportional to the square of the rate at which the eigenvectors converge,

we conclude that the asymptotic convergence rate for eigenvalues using the E 2 method

is (w /w+ 1)6 . For comparison purposes, the asymptotic convergence rates for the basic

and enriched subspace iteration methods are provided in Table 3.5.

Let Pk-1 denote the number of converged iteration vectors at the start of the kth

iteration. The important conclusion from this analysis is that for each iteration, no

more than q'-P3- iteration vectors can converge at the asymptotic rate given in (3.56).

Method Asymptotic Convergence Asymptotic Convergence

Rate of Eigenvectors Rate of Eigenvalues

Basic /j 2W2/02+1)2

Enriched (O2/U 2 W /W +14

E
2

q___ _+1) _ (/+1)6

Table 3.5: Comparison of asymptotic convergence rates for the basic, enriched, and E 2 Bathe subspace
iteration methods. For these results, we have assumed that all iteration vectors are used in each iteration
and that all turning vectors and turning-of-turning vectors are used, as applicable, in each iteration.

These convergence rates apply for 1 < i < q in the basic method, 1 < i < q/2 in the enriched method
and 1 <i q/3 in the E 2 method.

61

3.4 Test Problems

In this section, we provide sample solutions to illustrate the performance of the E2

method on different test problems. We examine a variety of test problems, including:

o Small problems with n < 4, 000 equations

o Large problems with n > 100, 000 equations

o CPU time test problems with n > 200, 000 equations

These tests were designed to assess the ability of the E 2 method to solve a wide variety

of eigenvalue problems. The largest eigenvalue problem that is considered in this section

is the finite element model of a 3D ring, which incorporates over 2 million degrees of

freedom. In all of the test problems, no more than 400 of the least dominant eigenpairs

are sought.

The new E2 algorithm was written in Fortran 90. However, there are several sub-

routines that are called by the E2 algorithm that were written in Fortran 77. Specifically,

Fortran 77 routines were used to multiply the iteration vectors by M, to perform the

Cholesky decomposition of K, to perform the inverse iteration step, to solve the pro-

jected eigenvalue problem using the Jacobi method, and to perform the Sturm sequence

check after reaching convergence. These subroutines are available in reference [5].

The following test problems were obtained from finite element systems that modeled

two-dimensional and three-dimensional structures. The finite element models were cre-

ated using a partial differential equations package that is an add-on for the computer

software MATLAB. The stiffness and mass matrices that were generated in MATLAB

were converted to a skyline representation, which is a sparse storage scheme that is

described in reference [5].

For some of the test problems, random starting vectors were used. For other prob-

lems, the Bathe starting vectors were used, which are described in reference [5]. The

tables used to describe each example problem are explicit with regard to the method

used to construct the starting vectors.

62

All test problems were conducted on a Mac Pro desktop computer using a single core

with a 2.71 GHz Intel Core i5 processor and 32 GB of random access memory. For these

results, we did not use a parallel implementation of the algorithm.

3.4.1 Small Test Problems

In this section, we consider the results of two small test problems. These problems

examine the dynamics of two different two-dimensional vibrating membranes. These

small test problems were used to assist in debugging the algorithm during its early

stages of development. Additionally, these problems were used to test the theoretical

asymptotic convergence rate of the E2 method that was derived in Section 3.3. For these

small problems, we present the asymptotic convergence rates that are observed for the

basic, enriched, and E2 subspace iteration methods.

Test Problem 1 - Vibrating Membrane on Rectangular Domain

Number of Equations 3,876

Half-Bandwidth of K and M 106

Order of FE Basis Functions Linear

Number of Eigenvalues Sought 400

Number of Iteration Vectors Used 800

Convergence Tolerance < 10-8

Starting Vector Type Bathe

Table 3.6: Test problem 1 details.

In this test problem, the generalized eigenvalues of a vibrating square membrane are

calculated. The stiffness and mass matrices for this problem were determined from the

discretization of the wave partial differential equation using the finite element method.

An adaptive triangular mesh was used to model the problem geometry. The size of the

domain was im x im. For this problem, the boundary conditions were fixed (homoge-

neous, Dirichlet) on all sides.

63

A250

* Bathe

2log(A250 o0
* Enriched

4log(A 2MASM)
* Doubly Enriched

6log(A250/801

0 5 10 15 20
Iteration Number

5

0

2

-5

Figure 3-7: Convergence results for the 2 5 0 th smallest eigenvalue of the membrane problem. The
asymptotic convergence rates for the basic, enriched, and E2 methods are depicted.

As demonstrated in Figure 3-7, the observed asymptotic convergence rates for the

basic, enriched, and E2 methods are consistent with their theoretical rates that are

reported in Table 3.5. It is clear from Figure 3-7 that, at least for the 2 5 0 th smallest

eigenvalue, the E2 algorithm converged in fewer iterations than the enriched method.

This is important because the computational savings of the E2 method are observed

when the E2 algorithm converges in fewer iterations than the other methods.

For a given problem, if the E2 method converges in approximately the same number

of iterations as the enriched method, then using the E2 method may not provide any

computational savings. This is because each iteration of the E2 method usually requires

more CPU time to complete than each iteration of the enriched method since the E2

method requires the additional computation of the turning-of-turning vectors. Our ex-

perience suggests that even when the enriched method out-performs the E2 method, the

E2 method is not much slower than the enriched method.

64

-10 F

-15
25 30 35

Test Problem 2 - Vibrating Membrane on Rectangular Domain with Square

Hole

Number of Equations 3,777

Half-Bandwidth of K and M 2,905

Order of FE Basis Functions Linear

Number of Eigenvalues Sought 100

Number of Iteration Vectors Used 200

Convergence Tolerance < 10-8

Starting Vector Type Bathe

Table 3.7: Test problem 2 details.

The eigenvalues of a vibrating square membrane are calculated for a more complicated

geometry than the simple square geometry considered in the previous example. The

stiffness and mass matrices for this problem were determined from the discretization

of the wave partial differential equation using the finite element method. An adaptive

triangular mesh was used to model the problem geometry. The size of the domain was

1m x 1m with a square hole of size 1/3m x 1/3m removed from the center. For this

problem, the boundary conditions were fixed (homogeneous, Dirichlet) on all sides.

0

0

0

0

0

0

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3-8: Geometry and mesh of the membrane with square hole problem.

65

.7

.6

.5

.4

\3\ \\\/\//\///\/

A
20

- Bathe

2log(A20/A20)

- Enriched
4log(A2IA20)

- Doubly Enriched
61og(A

20/A 201)

6

4

2

0

-2

-4

-6

-8

5 10 15 20
Iteration Number

*ea.sssBe 33S33

Figure 3-9: Convergence results for the 2 0 th smallest eigenvalue of the membrane with square hole

problem. The asymptotic convergence rates for the basic, enriched, and E2 methods are depicted.

As demonstrated in Figure 3-9, the asymptotic convergence rates for the basic, en-

riched, and E2 methods are consistent with their theoretical rates that are reported in

Table 3.5. In this case, the E2 algorithm converged in two less iterations than the en-

riched method. However, both the enriched and E2 methods converged in many less

iterations than the basic method.

3.4.2 Large Test Problems

Having now examined the performance of the E2 method on two small test problems,

we turn our attention to larger problems on the scale of problems that are commonly

seen in actual engineering analyses. The purpose of these large problems is to examine

the scalability of the E2 method.

For each of the four large test problems, the following information is supplied:

e A table showing the details of the problem, including the number of equations and

66

gsgg..a.sseaaiisiia

0
a>

0-j

-10 -

-12 -

-14

0

=11

25 30 35 40

the half-bandwidth of the stiffness and mass matrices.

" A figure depicting the problem geometry.

" Observed convergence rates of the enriched and E 2 methods for a single represen-

tative eigenvalue.

" A figure showing the different convergence zones for the E2 method. The conver-

gence zones are identified as follows:

- Pre-asymptotic convergence zone: this occurs in the first few iterations

of the E2 method when the initial subspaces are not close enough to the target

subspace for the asymptotic convergence rate to be observed.

- Asymptotic convergence zone: this occurs when the iteration vectors

converge according to the rate (Wi /w 1) , as predicted in Section 3.3. In this

zone, there are plenty of non-converged iteration vectors, so turning vectors

and turning-of-turning vectors can be used to accelerate convergence to the

target subspace.

- Post-asymptotic convergence zone: this occurs when the subspace has

almost converged to the target subspace and the iteration vectors are no

longer turning significantly enough to be used as turning vectors or turning-

of-turning vectors. If the subspace is still turning enough to compute turning

vectors, then the E2 method will converge at the rate of the enriched method,

otherwise, if no turning vectors are calculated, then the E2 method will con-

verge at the rate of the basic method.

- Converged zone: this occurs when the iteration vector has converged and

does not continue iterating.

" A table showing the CPU time used in each iteration of the E2 method. The

numbers of turning vectors and turning-of-turning vectors used in each iteration

of the E2 method are also provided.

67

A summary of the results from the following four large test problems is given below

in Table 3.8.

Problem Method Number of Number of Bandwidth Number of Number of Total CPU

number iterations equations eigenpairs sought iteration vectors time

to reach vectors used

convergence

3 Enriched 20 112,758 2,647 100 140 2,942

3 E2 17 112,758 2,647 100 140 2,643

4 Enriched 49 525,060 342 100 160 1,968

4 E2 36 525,060 342 100 160 1,571

5 Enriched 19 1,004,262 411 100 140 4,520

5 E2 19 1,004,262 411 100 140 4,651

6 Enriched 21 2,013,571 756 100 140 15,729

6 E2 19 2,013,571 756 100 140 15,302

Table 3.8: Summary of the performances of the enriched and E2 methods applied to test problems
3-6. In terms of CPU time required to reach convergence, the enriched method out-performed the E2

method in test problem 5. In test problem 6, the results between the two methods were similar, but
the E 2 method converged in about 2% less time than the enriched method in this problem. For test
problems 3 and 4, the E2 method provided computational savings of roughly 10% and 20%, respectively,
compared to the enriched method.

68

Test Problem 3 - 3D Bracket with Two Holes

In this test problem, we examine a finite element model of a 3D bracket with two holes, as

shown in Figure 3-10. Convergence results for the enriched and E2 method are presented

in Figures 3-12 and 3-13 for the 7 0th smallest eigenvalue.

Number of 112,758

Equations

Half-Bandwidth 2,647

of K and M
Order of FE Quadratic

Basis Functions

Number of 100

Eigenvalues

Sought

Number of 140

Iteration Vectors

Used

Convergence < 10-6

Tolerance

Starting Vector Bathe

Type

Table 3.9: Test problem 3 details.

In each convergence zone, the

E2 method converges at a differ-

ent rate. In the post-asymptotic

convergence zone, the E2 method

converges more slowly than in the

asymptotic convergence zone due

to the E2 method using less turning

vectors and turning-of-turning vec-

tors as the iteration vectors become

very close to the target subspace.

100

50-

20mm

01-Z

1o30mm

200

-0nu 1s0

y
-50

-50
0

50 -50
100

7100

,750
E=200d
v-=0.3

Figure 3-10: Geometry of the 3D bracket with two holes
problem.

100-

50-

0-

3/t-

Z

05 --0

Ao
-5-50-

-'100
100/

50 7150

-50 200

Figure 3-11: The structure was fixed at the surface
denoted Fl.

69

1

0

-1

-2

-3

-4

-5

-6

-7

-8
0 2 4 6 8

Iteration Number
10 12 14

Figure 3-12: Convergence results for the 3D bracket with two holes problem. Asymptotic convergence

rates for the enriched and E2 methods are depicted for the 7 0 th smallest eigenvalue.

Enriched
4I[wnt I

0

-1

-2

-3

-4

-5

-0 1
Doubly Enriched
6-o(--

70 A281)

Pro-asymptotic
convergenceo -

.zone

Sconvergence
zonePost-

asymptotic Converged zone
convergence
zone

4 6 8
Iteration Number

2 10 12 14

Figure 3-13: Convergence results for the 3D bracket with two holes problem with the different con-

vergence zones for the E2 method indicated.

70

0

- Enriched
4log(A 70/A21)

- Doubly Enriched
flog(A70/A 281)

0

0

-6

-7

-8

-9

-10
0

M

-

-

E 2
Bathe Subspace Iteration Method

Iteration Number of turning Number of turning- Cumulative number of CPU time (sec) used

number vectors used in of-turning vectors converged vectors in iteration/ Rounded

iteration used in iteration after iteration cumulative CPU time

(sec)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

46

46

45

27

35

31

25

21

19

15

13

16

14

14

11

9

8

42

28

16

3

1

2

5

2

1

0

0

0

1

2

0

0

0

5

14

23

28

42

55

65

65

72

78

81

88

92

94

96

100

309/309

257/566

250/816

228/1044

211/1255

195/1450

167/1617

150/1767

136/1903

132/2035

123/2158

109/2267

103/2370

95/2465

88/2553

84/2637

6/2637

Table 3.10: CPU time used in each iteration of the E 2 subspace iteration method for calculating the
p = 100 smallest eigenvalues of the 3D bracket with two holes problem.

71

Test Problem 4 - 3D Wall

In this test problem, we examine a finite element model of a 3D wall, as shown in Figure

3-14. Convergence results for the enriched and E2 method are presented in Figures 3-16

and 3-17 for the 4 0 th smallest eigenvalue.

Number of 525,060

Equations

Half-Bandwidth 342

of K and M
Order of FE Linear

Basis Functions

Number of 100

Eigenvalues

Sought

Number of 160

Iteration Vectors

Used

Convergence < 10-6

Tolerance

Starting Vector Bathe

Type

Table 3.11: Test problem 4 details.

In each convergence zone, the

E2 method converges at a differ-

ent rate. In the post-asymptotic

convergence zone, the E2 method

converges more slowly than in the

asymptotic convergence zone due

to the E2 method using less turning

vectors and turning-of-turning vec-

tors as the iteration vectors become

very close to the target subspace.

400mm
4002

3001

200- Z

100 100M

200

0 - - '100
50m

069 '0

Y

2 10 0

ure 3-14: Geometry of the 3D wall problem.

450,

4W00

350-

300

250

200-

1501

100-13
52

50-

-50-

-100-

.200
-305 100

0
-1 100 oaW0

200 -

3-15: The structure was fixed at the surface
Fl.

E =20
ig=0.3

Fig

Figure
denoted

72

1

0

-1

I I I I I I I I
0 2 4 6 8 10

Iteration Number
12 14 16 18

Figure 3-16: Convergence results for the 3D wall problem. Asymptotic

enriched and E2 methods are depicted for the 4 0 th smallest eigenvalue.

Pre-asymptotic
convergence zone

Asymptotic
convergence zone

convergence rates for the

- Enriched
4Iog(-'40/- 321)

- Doubly Enriched
"o(\40/A32)

-E-i...
asymptotic
convergence
zone

Converged zone

I I I I I I I
2 4 6 8 10

Iteration Number

Figure 3-17: Convergence results
E2 method indicated.

12 14 16 18

for the 3D wall problem with the different convergence zones for the

73

-

-2

-3

o -4

-5

-6

-7

-8

0

-1

0

0
-J

-2

-3

-4

-5

-6

-7

-8

0

- Enriched

- Doubly Enriched
6-og(A

40/A 321)

E 2
Bathe Subspace Iteration Method

Iteration Number of turning Number of turning- Cumulative number of CPU time (sec) used

number vectors used in of-turning vectors converged vectors in iteration/ Rounded

iteration used in iteration after iteration cumulative CPU time

(sec)

1 53 53 0 71/71

2 53 39 0 69/140

3 53 34 2 69/209

4 47 25 7 68/277

5 40 21 11 64/341

6 40 15 13 60/401

7 33 11 22 58/459

8 33 9 29 57/516

9 31 10 29 54/570

10 26 8 36 52/622

11 25 8 39 50/672

12 24 8 39 49/721

13 22 10 40 47/768

14 24 10 48 46/814

15 21 9 48 45/859

16 19 10 48 43/902

17 17 8 51 42/944

18 18 6 51 41/985

19 16 4 54 40/1025

20 16 2 54 39/1064

21 15 1 55 38/1102

22 17 1 55 37/1139

23 14 1 55 37/1176

24 16 1 55 36/1212

25 15 1 56 35/1247

26 18 1 60 34/1281

27 17 0 60 33/1314

28 16 0 60 33/1347

29 17 1 69 32/1379

30 18 2 69 31/1410

31 17 3 99 30/1440

32 18 5 99 29/1469

33 16 4 99 29/1498

34 14 3 99 28/1526

35 13 2 99 28/1554

36 13 0 100 17/1571

Table 3.12: CPU time used in each iteration of the E 2 subspace iteration method for calculating the
p = 100 smallest eigenvalues of the 3D wall problem.

74

Test Problem 5 - 3D Pipe

In this test problem, we examine a finite element model of a 3D pipe, as shown in Figure

3-18. Convergence results for the enriched and E2 method are presented in Figures 3-20

and 3-21 for the 6 0 th smallest eigenvalue.

Number of 1,004,262

Equations

Half-Bandwidth 411

of K and M
Order of FE Linear

Basis Functions

Number of 100

Eigenvalues

Sought

Number of 140

Iteration Vectors

Used

Convergence < 10-6

Tolerance

Starting Vector Random

Type

Table 3.13: Test problem 5 details.

In this problem, random start-

ing vectors were used to show that

the E2 method can obtain the theo-

retical convergence rate without us-

ing the Bathe starting vectors.

50

4W0

300

100-

Pipe Problem Cross-Section Geometry

45m

500CM

100-

0
.200 oE--06

*~~a -100-100 0s .3
0 -20

Figure 3-18: Geometry of the 3D pipe problem.

500-

4W-

300-
if

- -200

200 -150

100 Q1-la
0 -150

-100a

-200 -150 -100 -50 0 50

Figure 3-19: The structure was fixed at the surface
denoted Fl.

75

F

- Enriched
4Iog(A60/A

281)
- Doubly Enriched

6log()\,/A281)

4 6 8
Iteration Number

10 12 14

Figure 3-20: Convergence results for the 3D pipe problem. Asymptotic
enriched and E2 methods are depicted for the 6 0 th smallest eigenvalue.

convergence rates for the

- Enriched
4i(A60/A 28 j)

- Doubly Enriched
6Iog(A so /A 281)

Pro-
asymptotic
convergence
zone

Asymptotic
convergence
zone

Poet-
asymptotic
convergence
zone

0 2 4 6 8
Iteration Number

Figure 3-21: Convergence results for the 3D pipe problem
the E 2 method indicated.

Converged zone

10 12 14

with the different convergence zones for

76

0

-1

-2

-3

-4

-533

-6

-7

-8

-9

-10
2

0

-1

-2

-3

-4

-5
0

0
-J

-6

-7

-8

-9

I I I I

-I

E2
Bathe Subspace Iteration Method

Iteration Number of turning Number of turning- Cumulative number of CPU time (sec) used

number vectors used in of-turning vectors converged vectors in iteration/ Rounded

iteration used in iteration after iteration cumulative CPU time

(sec)

1 46 44 1 411/411

2 46 33 4 406/817

3 45 9 10 391/1208

4 41 6 23 371/1579

5 39 5 31 338/1917

6 32 5 46 302/2219

7 26 2 52 271/2490

8 20 0 60 254/2744

9 19 0 65 235/2979

10 17 0 67 222/3201

11 17 0 79 209/3410

12 16 1 81 185/3595

13 13 1 88 174/3769

14 11 0 90 157/3926

15 9 0 90 154/4080

16 7 0 92 151/4231

17 6 0 94 146/4377

18 7 0 97 141/4518

19 7 0 100 133/4651

Table 3.14: CPU time used in each iteration of the E2 subspace iteration method for calculating the
p = 100 smallest eigenvalues of the 3D pipe problem.

77

Test Problem 6 - 3D Ring

In this test problem, we examine a finite element model of a 3D ring, as shown in Figure

3-22. Convergence results for the enriched and E2 method are presented in Figures 3-23

and 3-24 for the 6 0th smallest eigenvalue.

In Figure 3-24, we have indicated different convergence zones for the E2 method. In

each convergence zone, the E2 method converges at a different rate. We note that in

the post-asymptotic convergence zone, the E2 method converges more slowly than in the

asymptotic convergence zone. This is due to the E2 method using less turning vectors

and turning-of-turning vectors as the iteration vectors become very close to the target

subspace. The number of turning vectors and turning-of-turning vectors used in each

iteration of the E 2 method for this problem are reported in Table 3.16.

In this problem, random starting vectors were used to show that the E2 method can

obtain the theoretical convergence rate without using the Bathe starting vectors.

Number of 2,013,571

Equations

Half-Bandwidth 756
of K and M
Order of FE Linear

Basis Functions

Number of 100

Eigenvalues

Sought

Number of 140

Iteration Vectors

Used

Convergence < 10-6

Tolerance

Starting Vector Random

Type I

Table 3.15: Test problem 6 details.

10mm

8nmM

10-
0

z

-10

-20- Y

-307

20

0 -60

E =200e6 40 8
v= 0.3

Figure 3-22: Geometry of the 3D ring problem. The
structure was fixed at the bottom of the ring.

78

40

20

- Enriched
4og(A

60/A 281)
- Doubly Enriched

6og(A
60 /A 281)

1

0

-1

-2

-3

9 -4

-5

-6

-7

-8 0 2 4 6 8
Iteration Number

Figure 3-23: Convergence results for the 3D ring problem. Asymptotic

enriched and E2 methods are depicted for the 6 0 th smallest eigenvalue.
convergence rates for the

- Enriched
4Iog(A./

281)
- Doubly Enriched

6"(AW/281)

Pre-
asymptotic
convergence
zone

Asymptotic
convcnence

ozone

Post-
- asymptotic

convergence
- zone

2 4 6 8
Iteration Number

Figure 3-24: Convergence results for the 3D ring problem with the

E2 method indicated.

Converged zone

10 12 14

different convergence zones for the

79

10 12 14

1

0

-1

-2

-3

-4

-5
0

0
-J

-6

-7

-8

-9

-10
0

-

E 2
Bathe Subspace Iteration Method

Iteration Number of turning Number of turning- Cumulative number of CPU time (sec) used

number vectors used in of-turning vectors converged vectors in iteration/ Rounded

iteration used in iteration after iteration cumulative CPU time

(sec)
1 46 44 1 1367/1367

2 46 32 3 1345/2712

3 45 7 9 1316/4028

4 38 4 23 1255/5283

5 37 5 33 1125/6408

6 31 4 46 1013/7421

7 25 2 50 899/8320

8 19 0 59 868/9188

9 18 0 61 786/9974

10 15 0 71 730/10704

11 15 0 78 667/11371

12 17 0 81 595/11966

13 13 1 87 548/12514

14 11 0 87 521/13035

15 7 0 92 500/13535

16 7 0 93 483/ 14018

17 7 0 99 447/14465

18 5 0 99 418/14883

19 5 0 100 419/15302

Table 3.16: CPU time used in each iteration of the E 2 subspace iteration method for calculating the
p = 100 smallest eigenvalues of the 3D ring problem.

3.4.3 CPU Time Test Problems

In test problems 1-6, we observed that the E2 method converges according to the the-

oretical rate derived in Section 3.3. In this section, we determine if this accelerated

convergence rate actually translates to computational savings with respect to the CPU

time required to reach convergence. This is important to examine because, in general,

each iteration of the E2 method is more computationally expensive than each iteration

of the enriched method due to the additional cost of computing the turning-of-turning

vectors. Therefore, we need to determine if the extra cost of each iteration of the E2

method is worth the benefit of the accelerated asymptotic convergence rate that the E2

method provides. Additionally, in this section we examine the effect of the dimension of

the subspace, q, on the CPU time required to reach convergence.

For these CPU time test problems, we consider the solution of eigenvalue problems

80

arising from the finite element analysis of three-dimensional structures using at least

200,000 degrees of freedom. Each test problem is solved using both the enriched and the

E2 method. The CPU time results for each method are compared in order to assess the

potential computational savings of the E2 method. For each test problem, we report the

"percent savings" that would be obtained using the E2 method instead of the enriched

method. The percent savings results were calculated as follows:

CPU time for enriched method - CPU time for E2 method

CPU time for enriched method

For some of the test problems, the percent savings measure is found to be negative, which

indicates that for that particular test problem, the enriched method out-performed the

E2 method. When this happened, it was usually when q was close to 2p. The E2

method was usually faster than the enriched method when q was selected in the interval

p < q < !. We have highlighted the instances of negative percent savings in red text

for quick identification.

We note that the solution times reported in the following tables do not reflect the

maximum performance of the E2 algorithm. This is because we have not taken full

advantage of the sparsity of the stiffness and mass matrices. Specifically, using our

current storage scheme, all of the zeros of each column that occur between the main

diagonal and the last non-zero entry of the column are stored and treated as non-zeros.

Further, our matrix multiplication routine and also the reduction and back substitution

routines are not optimized to take advantage of the sparsity within the bandwidths

of K and M. Consequently, for the following results, many multiplications of zeros

are unnecessarily performed, which leads to longer solution times. Using more efficient

routines, it would be possible to reduce many unnecessary computations. However, since

the same routines are used for the enriched and E2 methods, the results in this section

are comparable for our purposes.

Finally, we observe that the CPU time test results suggest that the solution time

using the E2 method scales linearly with respect to the number of eigenpairs sought.

81

Test Problem 7 - 3D Bracket with Connector and Holes

Number of 205,929

Equations

Half-Bandwidth 2,612

of K and M
Order of FE Quadratic

Basis Functions

Number of 100, 200, 400
Eigenvalues

Sought

Number of Various

Iteration Vectors

Used

Convergence < 10-6

Tolerance

Starting Vector Bathe

Type

Table 3.17: Test prob-
lem 7 details.

100-

50-

0-

-50-

-50

Y

0

E=700e0
v = 0.3

Figure 3-25:
holes problem.

'Jos

50050 -20

-40
150-60

20

Geometry of the 3D bracket with connector and

100 -1

50 -

0-

F10

1 F 4

R

z

150
-50- 100

50

20 0
0 -20 40 -60 -50

Figure 3-26: The structure was fixed at the surface denoted F10.

82

i

Number of Number of CPU Time (sec) for CPU Time (sec) for Percent

Eigenvalues Iteration E-Subspace E2-Subspace Savings

Sought Vectors Iteration Iteration

100 110 4,324 3,899 9.82%

100 140 3,319 3,193 3.79%

100 170 3,230 3,424 -6.00%

100 200 3,246 3,284 -1.17%

200 220 8,329 7,871 5.49%

200 280 7,217 6,749 6.48%

200 340 7,245 7,326 -1.11%

200 400 7,569 7,650 -1.07%

400 440 20,580 20,221 1.74%

400 560 17,433 16,863 3.26%

400 680 17,336 18,727 -8.02%

400 800 17,212 17,662 -2.61%

Table 3.18: CPU time results for test problem 7.

Test Problem 8 - 3D Heat Sink

Number of 303,204

Equations

Half-Bandwidth 1,985

of K and M

Order of FE Quadratic

Basis Functions

Number of 100, 200, 400

Eigenvalues

Sought

Number of Various

Iteration Vectors

Used

Convergence < 10-6

Tolerance

Starting Vector Bathe

Type

Table 3.19: Test prob-
lem 8 details.

0.5

-0.5
Y

-1

-3
--2 .

E = 700 9 02 -

v = 03 1 2

Figure 3-27: Geometry of the 3D heat sink problem.

83

K

7

/

'0

0

-0.5 -

-1 -

F2z
.5

I I I I I I I
1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5

z

-- 3

r -2

- -1

-0

- 1

2

-3

Figure 3-28: The structure was fixed at the surface denoted F2.

Number of Number of CPU Time (see) for CPU Time (see) for Percent

Eigenvalues Iteration E-Subspace E 2-Subspace Savings

Sought Vectors Iteration Iteration

100 110 41,177 31,519 23.45%

100 140 25,675 23,290 9.28%

100 170 23,324 22,426 3.85%

100 200 24,361 21,823 10.41%

200 220 61,239 54,308 11.31%

200 280 45,645 42,515 6.85%

200 340 44,136 41,921 5.01%

200 400 44,768 43,514 2.80%

400 440 112,860 101,278 10.26%

400 560 83,632 77,841 6.92%
400 680 82,391 79,275 3.78%

400 800 87,198 81,802 6.18%

Table 3.20: CPU time results for test problem 8.

84

Test Problem 9 - 3D Bracket with One Hole

Table 3.21: Test prob-
lem 9 details.

0.15-

0.1

0.05-

0

-0.05

0.2

0.15

0.1 -

0.05-

0 -

Number of 420,846

Equations

Half-Bandwidth 8,975

of K and M
Order of FE Quadratic

Basis Functions

Number of 100, 200, 400

Eigenvalues

Sought

Number of Various

Iteration Vectors

Used

Convergence < 10-6

Tolerance

Starting Vector Bathe

Type

7

11

z

y
05

_
-0.05

0

0

0.2 -0.05

X 0.1
0.05

0.2

0.15

E=200e9

Figure 3-29: Geometry of the 3D bracket with one hole problem.

z

0. 1 0 0.05 0 0.05 0.1

Figure 3-30: The structure was fixed at the surface denoted F4.

85

-0.

Number of Number of CPU Time (sec) for CPU Time (sec) for Percent

Eigenvalues Iteration E-Subspace E2-Subspace Savings

Sought Vectors Iteration Iteration

100 110 29,441 25,648 12.88%

100 140 27,895 25,324 9.21%

100 170 28,940 27,041 6.56%

100 200 29,198 27,215 6.79%

200 220 77,140 70,891 8.10%

200 280 60,845 59,153 2.78%

200 340 57,766 61,262 -6.05%

200 400 62,348 66,400 -6.49%

400 440 251,243 240,441 4.29%

400 560 175,386 158,377 9.69%

400 680 156,039 153,026 1.93%

400 800 149,617 160,970 -7.58%

Table 3.22: CPU time results for test problem 9.

86

Chapter 4

CONCLUSIONS

In this thesis, we developed the E 2 Bathe subspace iteration method for solving large,

generalized, symmetric-definite eigenvalue problems when several hundred of the least

dominant eigenpairs are sought. The E2 method is a new extension of the basic sub-

space iteration method (see reference [2]) and also an extension of the recently proposed

enriched subspace iteration method (see reference [18]). The E2 method is able to accel-

erate the asymptotic convergence rate of the basic and enriched methods by replacing

less effective iteration vectors with turning vectors and our newly-developed turning-of-

turning vectors.

Compared to the enriched method, the additional computational effort of the E2

method is due to determining the turning-of-turning vectors. However, this extra com-

putational cost is relatively small compared to the more computationally expensive in-

verse iterations that the basic, enriched, and E2 methods each perform. We note that

the E2 method does not require any more inverse iterations than either the basic or the

enriched methods. Specifically, for all three methods, the number of inverse iterations

that are performed in each iteration of the algorithm is given by q - Pk-1, where q is the

dimension of the subspace and Pk-1 is the number of converged iteration vectors at the

beginning of the kth iteration.

Additionally, we conducted a simplified convergence analysis for the E2 method and

derived the following asymptotic convergence rates corresponding to the ith iteration

87

vector:
(_23

aZ): + k) at a rate on the order of 3
~q+1 (4.1)

2 6

2, (k) a at a rate on the order of (
Wi W 2__

(q+1

An important conclusion from the convergence analysis in Section 3.3 was that in each

iteration, no more than q-pk-1 iteration vectors will converge at the rate given in (4.1).

The illustrative solutions provided in Section 3.4 demonstrated the improved asymp-

totic convergence rate that the E2 method achieves. Additionally, the example results

revealed that the iteration vectors converge at a slower, sub-asymptotic rate when the

current subspace is close to the target subspace. This is because the current subspace

does not turn very much once convergence to the target subspace is nearly achieved. As

a result, fewer turning vectors and turning-of-turning vectors are used, which causes the

convergence rate for many of the iteration vectors to slow down in the final iterations.

We recommend that future acceleration strategies account for this observation.

We also examined the CPU time required for the E2 method to reach convergence

for several three-dimensional test structures. These CPU time results were compared

to results obtained using the enriched method to solve the same eigenvalue problems.

As indicated in Section 3.4.3, we found many instances in which the E2 method pro-

vided savings in CPU time compared to the enriched method. These savings were often

observed when q was in the interval p < q < P. However, for q = 2p, we found that

the enriched method was occasionally able to converge in less time than the E2 method.

Based on this observation, we conclude that there are situations in which the extra

computational effort required to perform the second enrichment of the E2 method is not

necessarily offset by the resulting improvement of the asymptotic convergence rate that

the E2 method provides.

While the example problems showed a few instances in which the enriched method

converged faster than the E2 method, there were still many example problems in which

the E2 method out-performed the enriched method. Consequently, we believe that the

E2 method is a useful algorithm for solving the generalized eigenvalue problem, and we

88

believe that the E 2 method is a strong candidate for future research and improvement.

Further research on the E2 method could be done in the following areas:

" Implementing a parallel version of the algorithm.

" Applying an over-relaxation or shifting strategy to the E2 method to accelerate

convergence even further. These methods have already been adapted to the basic

subspace iteration method and could easily be integrated into the E 2 method.

" Developing a hybridization of the basic, enriched, and E 2 methods that can adap-

tively choose in each iteration which of the three methods to use for that iteration

depending on how the subspace is currently converging.

" Adaptively selecting a new q for each iteration depending on how the iteration

vectors are currently converging.

" Changing the tolerances in each iteration that are used to determine if a particular

iteration vector has turned enough to either be used as a turning vector or a

turning-of-turning vector. Reducing this tolerance in the final iterations could

mitigate the slow-down effect observed in the convergence rates for the iteration

vectors that are close to reaching convergence.

The E2 method appears to be a useful technique for accelerating the convergence of

the Bathe subspace iteration method, and it has the potential to be improved further

by investigating the topics that are listed above.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

Bibliography

[1] R.R. Arnold, R.L. Citerley, M. Chargin, and D. Galant. Application of Ritz vectors
for dynamic analysis of large structures. Computers and Structures, 21(3):461-467,
1985.

[2] Klaus-Jiirgen Bathe. Solution Methods for Large Generalized Eigenvalue Problems
in Structural Engineering. PhD thesis, University of California, Berkeley, 1971.

[3] Klaus-Jiirgen Bathe. Convergence of subspace iteration. Formulations and numer-
ical algorithms in finite element analysis, pages 575-598, 1977.

[4] Klaus-Jiirgen Bathe. The subspace iteration method - revisited. Computers and
Structures, 126:177-183, 2013.

[5] Klaus-Jiirgen Bathe. Finite Element Procedures. K.J. Bathe, Watertown, MA,
2014.

[6] Klaus-Jirgen Bathe and Seshadri Ramaswamy. An accelerated subspace iteration
method. Computer Methods in Applied Mechanics and Engineering, 23:313-331,
1980.

[7] Klaus-Jiirgen Bathe and Edward L. Wilson. Large eigenvalue problems in dy-
namic analysis. In Journal of the Engineering Mechanics Division Proceedings of

the American Society of Civil Engineers, volume 98, pages 1471-1485, 1972.

[8] Klaus-Jiirgen Bathe and Edward L. Wilson. Solution methods for eigenvalue prob-
lems in structural mechanics. International Journal For Numerical Methods Engi-
neering, 6:213-226, 1973.

[9] Klaus-Jirgen Bathe and Edward L. Wilson. Numerical methods in finite element

analysis. Prentice-Hall, 1976.

[10] D. Calvetti, L. Reichel, and D.C. Sorensen. An implicitly restarted Lanczos method
for large symmetric eigenvalue problems. Electronic Transactions on Numerical

Analysis, 2:1-21, 1994.

[11] Qiang Cui and Ivet Bahar, editors. Normal Mode Analysis: Theory and Applications
to Biological and Chemical Systems, chapter 6. Chapman and Hall/CRC, 2005.

91

[121 Jane Cullum and Ralph A. Willoughby. A survey of Lanczos procedures for very
large real 'symmetric' eigenvalue problems. Journal of Computational and Applied

Mathematics, pages 37-60, 1985.

[13] Franciszek A. Dul and Krzysztof Arczewski. The two-phase method for finding a
great number of eigenpairs of the symmetric or weakly non-symmetric large eigen-
value problems. Journal of Computational Physics, 111:89-109, 1994.

[141 Thomas Ericsson and Axel Ruhe. The spectral transformation Lanczos method for
the numerical solution of large sparse generalized symmetric eigenvalue problems.

Mathematics of Computation, 35(152):1251-1268, October 1980.

[151 Mark T. Jones and Merrell L. Patrick. The Lanczos algorithm for the general-
ized symmetric eigenproblem on shared-memory architectures. Applied Numerical

Mathematics, pages 377-389, 1993.

[16] Hyung-Jo Jung, Man-Cheol Kim, and In-Won Lee. An improved subspace iteration
method with shifting. Computers and Structures, 70:625-633, 1999.

[17] Ki-Tae Kim. The Enriched Subspace Iteration Method and Wave Propagation Dy-
namics with Overlapping Finite Elements. PhD thesis, Massachusetts Institute of

Technology, June 2018.

1181 Ki-Tae Kim and Klaus-Jiirgen Bathe. The Bathe subspace iteration method en-
riched by turning vectors. Computers and Structures, 186:11-21, 2017.

[19] J.D. Kress, G.A. Parker, R. T Pack, B.J. Archer, and W.A. Cook. Comparison
of Lanczos and subspace iterations for hyperspherical reaction path calculations.

Computer Physics Communications, 53:91-108, 1989.

[20] Cornerlius Lanczos. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. Journal of Research of the National
Bureau of Standards, 45(4):255-282, 1950.

[21] C.C. Paige. Computational variants of the Lanczos method for the eigenproblem.
IMA Journal of Applied Mathematics, 10(3):373-381, December 1972.

[22] C.C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric

eigenproblem. Linear Algebra and Its Applications, 34:235-258, 1980.

1231 Reza Sharifi Sedeh, Mark Bathe, and Klaus-Jirgen Bathe. The subspace iteration
method in protein normal mode analysis. Journal of Computational Chemistry,
31(1):66-74, 2010.

[24] Horst D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonal-

ization methods. Linear Algebra and Its Applications, 61:101-131, 1984.

[25] Xuelin Wang and Ji Zhou. An accelerated subspace iteration method for generalized

eigenproblems. Computers and Structures, 71:293-301, 1999.

92

[261 Edward L. Wilson, Ming-Wu Yuan, and John M. Dickens. Dynamic analysis by di-
rect superposition of Ritz vectors. Earthquake Engineering & Structural Dynamics,
10(6):813-821, 1982.

[27] Kesheng Wu and Horst Simon. A parallel Lanczos method for symmetric generalized
eigenvalue problems. Computing and Visualization in Science, 2(1):37-46, 1999.

[28] Qian-Cheng Zhao, Pu Chen, Wen-Bo Peng, Yu-Cai Gong, and Ming-Wu Yuan.
Accelerated subspace iteration with aggressive shift. Computers and Structures,
85:1562-1578, 2007.

93

