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ARTICLE

Floquet Chern insulators of light
Li He1, Zachariah Addison1, Jicheng Jin1, Eugene J. Mele1, Steven G. Johnson2 & Bo Zhen1

Achieving topologically-protected robust transport in optical systems has recently been of

great interest. Most studied topological photonic structures can be understood by solving the

eigenvalue problem of Maxwell’s equations for static linear systems. Here, we extend

topological phases into dynamically driven systems and achieve a Floquet Chern insulator of

light in nonlinear photonic crystals (PhCs). Specifically, we start by presenting the Floquet

eigenvalue problem in driven two-dimensional PhCs. We then define topological invariant

associated with Floquet bands, and show that topological band gaps with non-zero Chern

number can be opened by breaking time-reversal symmetry through the driving field. Finally,

we numerically demonstrate the existence of chiral edge states at the interfaces between a

Floquet Chern insulator and normal insulators, where the transport is non-reciprocal and uni-

directional. Our work paves the way to further exploring topological phases in driven optical

systems and their optoelectronic applications.
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The field of topological photonics seeks to classify and
demonstrate various topological phases in Maxwell’s
equations, and to apply their associated robust states in

optical systems1–3. Though initially inspired by progress in
electronic systems, topological photonics has recently developed
in multiple directions using its unique ingredients, such as the
easy incorporation of non-Hermiticity via material gain4–6 or
radiative loss7. Many important applications of topological pho-
tonics, such as optical isolators and circulators, are non-reciprocal
in nature, which means they are exclusive for topological phases
in systems with broken time-reversal symmetry. In static struc-
tures, such topological phases are often achieved by starting with
engineered degeneracies between two bands of a PhC—in an
either linear (Dirac) or quadratic fashion—followed by a static
perturbation that breaks reciprocity, such as gyromagnetic
effects8–11. The resulting systems are often referred to as Chern
insulators, as their topological gaps can support uni-directional
modes, whose transport is protected by the topological invariant
of Chern numbers. Another important method to break reci-
procity is through temporal modulation12, yet the understanding
of topological phases in dynamically driven optical systems is
often limited to tight-binding models of coupled resonators13–15

or waveguides16–18.
Here, we study Floquet topological phases in general nonlinear

PhCs under external drive and show how non-reciprocal transport
can be achieved in a Floquet Chern insulator. We start by for-
mulating the Floquet eigenvalue problem of Maxwell’s equations,
and show it is necessarily non-Hermitian but with real eigenvalues
in many cases. After elucidating what time-reversal symmetry (T)
entails in driven systems, we engineer the external drive to break T
and to close and re-open Floquet gaps to change bands Chern
numbers. Finally, through numerical simulations of realistic
designs, we present an explicit example of a Floquet Chern insu-
lator, along with the dispersions and locations of uni-directional
chiral edge states at its interfaces with normal insulators.

Results
Floquet gaps and Floquet eigenvalue problem. We start by
showing that new bandgaps—Floquet gaps—can be created in
driven nonlinear PhCs, which do not exist in the static band
structure. We consider a two-dimensional PhC that involves
second-order optical nonlinear materials such as LiNbO3.
The static band structure is schematically shown in Fig. 1b, and
we focus on two isolated bands: |1〉 in blue and |2〉 in red, which
are separated by a gap in the spectrum. When an external driving

field at frequency Ω is applied along the normal direction, the
discrete spatial translation symmetry of the system is preserved,
but the continuous temporal translation symmetry is broken,
leaving only a discrete temporal translation symmetry. Accord-
ingly, each band creates copies of itself—Floquet bands—shifted
up or down in the spectrum by mΩ, where m is an integer. When
Ω is slightly larger than the static gap, two of the Floquet bands,
|1, m= 0〉 and |2, m=−1〉, cross, and the coupling between them
V21 opens a new gap—Floquet gap—that is controlled by the
driving field. When the driving field is weak, the size of the
Floquet gap is linearly proportional to the coupling strength |V21|,
meaning this gap can only be closed at momentum (k) points
where the complex coupling term vanishes: V21(k)= 0. We later
show these singular points represent the topological phase tran-
sitions between Floquet Chern insulators and normal insulators.

Next, we present the Floquet eigenvalue problem of Maxwell’s
equations in this system. The result (Eqs. (1a) and (1b)) is
achieved by adding time-dependent nonlinear permittivity tensor
ϵnlðtÞ—determined by both the nonlinear material and the
driving field—into the static eigenvalue problem1.

AΨ ¼ i∂t ½ðB0 þ BnlÞΨ� ð1aÞ

A ¼ 0 i∇ ´
�i∇ ´ 0

� �
;B0 ¼

ϵl 0

0 μ0

 !
;Bnl ¼

ϵnlðtÞ 0

0 0

� �

ð1bÞ
where ϵl is the linear permittivity tensor, and Ψ(t)= (E, H)T are
the complex electromagnetic fields. Here, we focus on instanta-
neous nonlinear processes and assume all materials involved are
dispersion-less and loss-less for simplicity, although dispersive
medium can potentially also be included19. Compared to the
Floquet eigenvalue problem of Schrödinger equation20–22, our
problem is different in a few unique ways. First, it is necessarily
non-Hermitian, as the i∂t term cannot commute with the Bnl(t)
term on the right hand side of Eq. (1a), though each individual
term is Hermitian. Second, interestingly, the Floquet eigenvalues
can be guaranteed as real under some conditions discussed later.
We solve the Floquet states Ψ(t), which are the eigenstates of this
linear eigenvalue problem, by expanding them in the Floquet
basis j;mj i ¼ jj ieimΩt as ΨðtÞ ¼ eik�r�iεt

P
jm

cjm j;mj i. Here, ε is the

quasi-energy; |j〉 satisfies the static eigenvalue problem of
e−ik⋅rAeik⋅r|j〉= ωjB0|j〉 and therefore forms a complete basis of
spatial modes. Similar approach has also been used in solving the
Floquet eigenstates of periodic paraxial equations23,24. The
detailed solution is presented in Supplementary Note 1 with
discussions in Note 2.

Topological defects in momentum space. To better illustrate
some of the key concepts, we focus on an example when two
bands become close to each other under driving ω2− ω1 ≈Ω,
while both are far away from other bands. Hence, we restrict the
trial solutions to the subspace spanned by the two bands for
simplicity; however, the presented formalism is general and not
limited to the two-band model. Under a further rotating-wave
approximation, the Floquet eigenvalue problem can be simplified
into:

ω2 �Ω �ΩV21

0 ω1

� �
c2;�1

c1;0

 !
¼ ε

1 V21

V�
21 1

� �
c2;�1

c1;0

 !
:

ð2Þ
As shown, this generalized eigenvalue problem is indeed non-
Hermitian, but its eigenvalues can be guaranteed as real under
some conditions. For example, when the driving field is exactly
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Ω

Fig. 1 Floquet bands and gaps in a periodically driven nonlinear photonic
crystal. a Schematic of a nonlinear photonic crystal (PhC) placed in a
monochromatic driving field Ed at frequency Ω. b Due to the periodic drive,
static bands of the PhC (solid lines) create copies of themselves—Floquet
bands (dashed lines)—by shifting up or down in the spectrum. c Two of the
Floquet bands |1, m= 0〉 and |2, m=−1〉 cross at ±k1. Their coupling term
V21 opens a new gap Eg—Floquet gap—and its size is linearly proportional
to the magnitude of their coupling strength |V21| under weak drive
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on-resonance, namely ω2= ω1+Ω, the two Floquet eigenvalues
can be further simplified as: ε± � ω1 ± 2jV21j ffiffiffiffiffiffiffiffiffiffiω1ω2

p
. The nor-

malized gap size is linearly proportional to |V21|, whose magni-
tude is determined by both the modal overlap and the driving
field strength. Furthermore, we note that both eigenvalues are
necessarily real as long as we are coupling bands both at positive
(or negative) frequencies (ω1ω2 > 0). Physically, these scenarios
are analogous to the depletable sum-frequency generation: power
oscillates between a depletable pump ω1 and the sum-frequency
beam ω2, but their total photon number remains fixed in
time25,26. On the other hand, complex eigenvalues may appear
when a positive-frequency mode is coupled to a negative-
frequency mode (ω1ω2 < 0) and the resulting Floquet modes
may grow exponentially in time. These scenarios are analogous to
optical parametric amplification where a non-depletable pump
beam (|ω1|+ |ω2|) amplifies the signal and idler beams26. In this
Letter, we focus on the first situation where Floquet eigenvalues
are real. Topological phase transitions can only happen at k
points where the gap is closed, requiring the coupling term V21=
0. This is equivalent to requiring the complex phase argV21 to be
undefined, or to be a topological defect27, in k space. The topo-
logical phase transitions, being topological defects, are thus robust
against any perturbations that modify the complex coupling
terms V21, as such perturbations cannot get rid of the topological
phase transitions but shift their positions in the 3D parameter
space of (kx, ky, Ω).

Next, we show how such topological defects can be synthesized
by engineering the polarization of the driving field. Our
considered PhC sample is shown in Fig. 2a, which is consisted
of a hexagonal lattice, with lattice constant a, of regions made of
silicon (ϵ ¼ 12:25) and regions made of z-cut LiNbO3

(ϵxx ¼ ϵyy ¼ 4:97, ϵzz ¼ 4:67). Both inversion and rotation
symmetries are broken to lift all degeneracies at high-symmetry
k points. The static band structure is calculated using Finite
Element Methods (see Methods section for details) and shown in
Fig. 2b. In the static structure, TE bands (Hz, Ex, Ey; red) are
decoupled from the TM bands (Ez, Hx, Hy; blue), due to the
mirror symmetry in the z direction. However, under a driving
field polarized in the xy plane, TE and TM bands are coupled:
specifically, the external field Ed

x;y drives the second-order optical

nonlinearity of LiNbO3, χð2Þzxx and χð2Þzyy , and creates ϵxz;zx and ϵyz;zy
terms in the effective permittivity tensor of LiNbO3. These four
terms break the mirror symmetry in z and couple the Ez
component of a TM mode to the Ex,y components of a TE mode.
By analyzing the nonlinear optical property of LiNbO3, one can
show only TE-TM bands are coupled via modulation in this
setup, while the Floquet TE-TE or TM-TM bands will not couple
to each other (see Methods for details).

We found that time-reversal symmetry (T) in the Floquet
eigenvalue problem is defined as V21ðkÞ ¼ V?

21ð�kÞ. Further-
more, we found T is preserved when the driving field is linearly
polarized and no topological Floquet gap can be opened. On the
other hand, elliptically polarized driving fields break T. The
condition on T in these two scenarios can be intuitively
understood by analyzing the temporal evolution of the instanta-
neous optical principle axes of LiNbO3: under a linearly polarized
monochromatic drive, one optical axis remains static, while the
other two oscillate in a time-reversal symmetric manner. In
comparison, under an elliptically polarized drive, all three optical
axes rotate around the z axis at the driving frequency and this
spinning behavior breaks T. Detailed derivation is presented in
Supplementary Notes 4 and 5.

The properties associated with time-reversal symmetry are
confirmed in our simulation results of the modal coupling terms
V21 as shown in Fig. 2c, d. Specifically, under a linearly polarized

drive (T-symmetric), V21 reduces to 0 at pairs of opposite k points
that are related by T-symmetry, shown as bright spots in Fig. 2c.
Furthermore, each pair of topological defects carry opposite
topological charges q, which are defined through the winding
numbers of the complex phase:

q ¼ 1
2π

I
C
dk � ∇k argV21: ð3Þ

Here C is a closed path in k space that encircles the defect in the
counter-clockwise direction. Consequently, the Floquet gap can
be closed and re-opened by tuning the driving frequency through
a critical value ΩL

Ca=2πc ¼ 0:375 (dashed circle); however, the
transitions always happen at a pair of opposite k points and the
Floquet bands are always topologically trivial. See Supplementary
Note 6 for the definition of Berry curvature and Chern number of
Floquet bands. On the other hand, under an elliptically polarized
drive (T-broken), topological defects appear without any
symmetry (Fig. 2d). As a result, the Floquet gap can close and
re-open at a single k point, as V21(k) is no longer related to
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Fig. 2 Topological charges in modal coupling terms and the influence of
time-reversal symmetry. a Nonlinear PhC unit cell involving Si and z-cut
LiNbO3. The centers of the Si and LiNbO3 rods are at (0:55abx þ a=2
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b Static modes are separated into TE (red) and TM (blue) bands. Under a
driving field polarized in the xy plane, a TE band is coupled to a TM band
through χ(2) of LiNbO3. Their coupling term V21 is controlled by the
polarization of the drive. c Under a linearly polarized drive (�0:13bx þ by),
pairs of vortices with opposite topological charges (±1) are found in the
complex phase argV21, located at opposite k points. At these k points, the
modal coupling term vanishes and 1/|V21|→∞. d Under an elliptically
polarized drive, bx � ð0:5� iÞby, vortices in argV21 appear without any
symmetry. Topological phase transition is achieved between a Floquet
normal insulator and a Floquet Chern insulator through a single topological
charge at ΩE

C (dashed circle)
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V21(−k). In our system, this topological phase transition happens
at another critical value ΩE

Ca=2πc ¼ 0:381 (dashed circle).

Topological phase transition through unpaired topological
defects. Next, we study topological phase transitions between
Floquet Chern insulators and normal insulators and show these
transition points are singular points in the parameter space of (kx,
ky, Ω) as shown in Fig. 3a. First, the Floquet band gap closes at the
transition point, but grows linearly as Ω deviates from Ω2

(Fig. 3b). Furthermore, we compare the Floquet spectra near the
transition point: the bands are gapped when either Ω >Ω2 (left
panel of Fig. 3d) or Ω <Ω2 (right); however, the two Floquet
bands touch at a singular point in k space in a linear fashion
when Ω=Ω2 (middle). We note the small difference between Ω2

and ΩE
C arises from the difference between full Floquet for-

mulation we adopt here and results under rotating-wave
approximation. The gap size grows linearly as the system para-
meter deviates from a single point in the three-dimensional
parameter space of (kx, ky, Ω), therefore, the transition points can
also be interpreted as synthetic Weyl points28–31. We further
track the Chern numbers of the Floquet bands as Ω is varied: the
Chern number of the top (bottom) band changes by −1 (1) as the
modulation frequency reduced from Ω1a/2πc= 0.395 (Floquet
normal insulator) to Ω3a/2πc= 0.37 (Floquet Chern insulator),
through Ω2a/2πc= 0.383 (Fig. 3c). In addition, the Chern num-
bers of the two bands jump in opposite directions with their sum
fixed at 0, which confirms our system is a Chern insulator.
Similarly, the Floquet gap can also be closed and re-opened under
linearly polarized driving fields. For example, by tuning Ω

through a critical value of ~Ω2a=2πc ¼ 0:375, the Floquet gap is
closed and re-opened, but at a pair of opposite k points. Through
this process, all bands remain topologically trivial with zero
Chern numbers due to the presence of T-symmetry.

Chiral edge states induced by driving field. Finally, we show the
existence of chiral edge states at the interfaces between a Floquet
Chern insulator (gray region in Fig. 4a) and normal insulators
(white region). In this super-cell geometry, we apply periodic
boundary conditions in both x and y directions, and these two
insulators have two interfaces, top and bottom. The topological
region shares the same setup as the right panel of Fig. 3d; the
trivial region is driven at the same frequency Ω3a/2πc= 0.37, but
with a linearly polarized light (bx þ 0:3by) that preserves T.
Through a super-cell calculation (Supplementary Note 7), all
bands in the system are computed. Aside from the bulk bands in
the trivial and nontrivial regions, we see chiral edge states (red
and blue lines) emerge at the two interfaces with frequencies
going across the topological band gap. Their mode profiles fur-
ther confirm these are indeed edge states localized at the top (red)
and bottom (blue) interfaces (Fig. 4c); in comparison, a bulk
mode (black) is delocalized along the y-direction. As a control
experiment, when the driving frequency is changed to Ω1 such
that all regions are topologically trivial, no gapless chiral edge
state is observed in such scenario (Fig. 4d). This confirms the
number of chiral edge states and their traveling directions are
consistent with the Floquet topological band theory results for
electronic systems32. We note that the photon number is con-
served in edge state transport. This is to be distinguished from a
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previous study using nonlinear parametric driving by Peano
et al.33, where the photon number is not conserved, and the edge
state transport becomes inelastic. Although helical spatial mod-
ulation of waveguide arrays achieves Floquet Chern insulators in
the transverse plane16, our approach breaks reciprocity for the
system as a whole and thus enables optical isolation through the
chiral edge states.

Discussion
To sum up, we present a general framework to achieve Floquet
topological phases in nonlinear photonic crystals, defined by the
Floquet eigenvalue problems in Maxwell’s equations. We show
that Floquet band gaps can be closed and re-opened in a virtually
arbitrary fashion by engineering the driving field (polarization and
frequency). Using this framework, we propose and numerically

demonstrate a Floquet Chern insulator of light by breaking time-
reversal symmetry using elliptically polarized driving fields. We
show the Floquet topological phase transitions are through sin-
gular points of modal coupling terms in 3D parameter space.
Finally, we numerically demonstrate the existence of chiral edge
states at the interfaces between topologically trivial and non-trivial
regions. Our work paves the way to further classifying and rea-
lizing topological phases in dynamically driven optical systems
and their optoelectronic applications in communication and signal
routing. Our method of inducing Floquet topological phases is
also applicable to other wave systems, such as phonons, excitons,
and polaritons.

Note added: During the completion of this work, we became
aware of a related study by Fang and Wang34.

Methods
Numerical simulation of Maxwell equation using Finite Element Methods. The
band structures and mode profiles are calculated using Finite Element Methods in
COMSOL Multiphysics 5.3a. Specifically, we first compute the static band struc-
tures and mode profiles using the linear permittivity in a 2D geometry with per-
iodic boundary conditions. The modal overlaps V21(k) are calculated by taking the
inner product between the two modes mediated by external drive and nonlinear
susceptibility of the LiNbO3. Finally, we input these coupling terms into the master
equation (Supplementary Eq. (4)) to calculate the eigenvalues, mode profiles, Berry
curvature, and Chern numbers of the Floquet bands.

Band coupling via the second-order optical nonlinearity of LiNbO3. Under an
driving field polarized in the xy plane, TE-TM bands are coupled to each other
through χð2Þzxx (d31) and χð2Þzyy (d32) terms of LiNbO3, both of which are 5 pm⋅V−135.
On the other hand, the Ez components of TM modes cannot couple to each other
via modulation, because the relevant terms, χð2Þzxz and χð2Þzyz , are both 0 in LiNbO3.
Similarly, the Ex,y components of TE modes cannot couple via modulation either.
The resulted Floquet gap size due to band coupling is linearly proportional to both
the χ(2) coefficients and the driving field strength. We present the estimation on the
Floquet gap size that can be possibly achieved in realistic nonlinear materials in
Supplementary Note 8.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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cell geometry with a Floquet Chern insulator placed in between two Floquet
normal insulators. The Floquet Chern insulator is the same setup as the
right panel of Fig. 3d. All regions are driven at the same frequency Ω3, and
the associated gap Chern number for the Floquet insulator is Cg= 1. Further
details of the super-cell setup can be found in Supplementary Note 7. b The
dispersion along kx axis shows two types of modes: bulk bands in the
normal and Chern insulator regions (yellow) and uni-directional chiral edge
states at the top and bottom interfaces (red and blue). c Chiral edge states
are absent in the projected dispersion when all regions are driven at
frequency Ω1 before the topological phase transition. d Comparison among
the mode profiles of a bulk state (black), the chiral edge states localized at
the top interface traveling to the left (red) and at the bottom interface
traveling to the right (blue)
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