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Abstract

Regarding individual quantum-mechanical degrees of freedom as elements of a parallel
computation, a simple but fully interacting quantum many-body system is analyzed
in order to derive a fundamental quantum-mechanical limit to massively parallel
computation. . )

Exact solutions for all eigenvalues and eigenvectors of an operator I' that the
characterizes parallel computational velocity are found. A symmetry between the
Hamiltonian and I is described, and its consequences investigated. The largest eigen-
value of the computational velocity operator is found to scale with system size, N,
as Ymax ~ 2N/m < N, a result which implies the impossibility of using additional
quantum-mechanical parallel processors to obtain the same ideal speedup as in the
classical case. A variational argument shows that this is a special case of a more
fundamental limit to parallel quantum computation.
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Chapter 1

Introduction

“Information”, as Rolf Landauer has put it, “is physical”. But to go beyond this
general observation to specific results, we must find ways to analyze informational
processes, “computation”, using the familiar tools of theoretical physics. This thesis
investigates the problem of analyzing computation—especially computation in which
the nature of the information-bearing degrees of freedom is quantum-mechanical—
with tools drawn from scattering theory, density matrix theory and the quantum
theory of magnetism.

The central result, from which the thesis takes its title, is the formulation of the
first exactly solvable model of “quantum computation”. More specifically, I show that
there is a class of cellular automata which is both powerful enough computationally
to simulate any possible computer and simple enough physically to be identified with
an exactly solvable quantum spin modei: the Lieb-Shultz-Mattis model[104, 117],
sometimes known as the one-dimensional XY model. The exact solution lets us
obtain a rigorous picture of how computational properties, like the computation rate,
are related to physical properties, such as the excitation energy.

Together with the other results presented here, the proposed model falls within
the domain of a small interdisciplinary field, the theory of “physical computation”.
Physical computation seeks to reconstruct the conventional theory of computation on
a foundation of physically realistic models. Eventually, it is hoped that such models

will permit the extension of physical principles to computational phenomena, much
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as the development of physical chemistry in the late nineteenth and early twentieth
century saw the extension of thermodynamical principles (by van’t Hoff, Ostwald and
Arrhenius) and quantum-mechanical principles (by Pauling and Slater) to chemical
phenomena.

In addition to this admittedly philosophical motivation, there 1s a considerably
more prosaic one. The end of the era of computation based on the metal-oxide/semiconductor
field-effect transistor (MOSFET) appears to be within sight[42, 134, 66, 11]. Con-
sequently, many researchers are investigating the possibility of basing the next gen-
eration of computers on nanometer-scale devices whose operation depends directly
on physical effects like resonant tunneling, Ballistic electron transport and Coulomb
blockade effects. By developing computational primitives with a more physical form,
a form more compatible with the way we understand these effects, we can hope to

facilitate the systematic search for ways to apply these effects wo computing.

From a slightly broader perspective, this thesis can be viewed as advocating a cer-
tain class of lattice-gas[111, 56, 63] cellular automata as the most appropriate vehicle
for describing computation as a physical process. Members of this class are referred to
as “few-body automata” because the primitive computational operation is identified
with the scattering of a few particles at the vertices of the lattice-gas. The few-body
model is based on concepts derived from the theory of quantum N-body scattering
and the theory of reduced N-body density matrices. Few-body autcmata can be
applied when the physical interactions are “regular” in the sense used in scattering
theory. That is, few-body automata apply to interactions sufficiently nonsingular
that there is some finite time far enough before and after the interaction that the
evolution is effectively the “free” evolution. Not all interactions fall in this class; in
particular, the Coulomb interaction does not.

It is the few-body model that provides, among other things, the route to for-
mulating the first physically realistic model of quantum computation—computation
in which the information-bearing degrees of freedom obey the Schrédinger equation.
Unlike previous models of quantum computation, which have been roundly criticized

by Landauer[96] and others for their Rube-Goldberg-like Hamiltonia, the model pro-
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posed here has a form familiar to physicists. Under very special conditions, the Hamil-
tonian of the 1D XY model, to which our modei is very closely related, may even
describe experimentally accessible systems. About twenty years ago, it was shown ex-
perimentally that the 1D XY model accurately describes the low-temperature heat
capacity and transverse electric susceptibility of praseodymium trichloride[65] and

praseodymium ethyl sulphate[52].

The plan of this thesis is described in more detail in §1.2. Since this thesis falls
within the domain of the relatively unknown theory of physical computation, we
begin in §1.1 with a brief history of the theory of physical computation. That history
began when physicists like P. Bridgman and R. Landauer first questioned the physical
realizability of certain operations that the conventional theory of computation has

borrowed from abstract set theory.

1.1 History of physical computation

Set theory first attracted the skepticism of physicists in 1934, when P. W. Bridgman|[29],
better known for his experimental work on the properties of matter at very high pres-
sures, wrote an extensive article criticizing set theory on the grounds that it was
implicitly based on physically unrealizable procedures. Just two years later, Church -
and Turing made some of these same procedures! as the basis for the modern theory of
computation. But Bridgman did more than object, he offered a physically-motivated
alternative. By carefully considering the physical operations involved in determining
which objects in the universe belonged to a given set, Bridgman was able to resolve
some of the famous paradoxes of set theory, such as Russell’s paradox?. Although
Bridgman’s method of resolving these paradoxes was ignored by workers in the the-
ory of computation, his “operationalist” epistemology[24]—basically, the idea that all
meaningful physical concepts must ultimately be clearly defined in terms of experi-

mental operations—has so thoroughly pervaded physics that we take it for granted.

'In particular, one such procedure on infinite sets, known as “diagonalization[73, 103]” is used
extensively in the theory of computation.
2Does the set that contains all sets not containing themselves contain itself, or not?
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For thirty years, uo serious attempts were made to reconcile operationalist phys-
ical theory with non-operationalist computation theory, until Landauer pointed out
the consequences of this inconsistency. Landauer[94] advocated (and continues to
advocate[98]) the need for what he calls a “self-consistent theory” in which, on the
one hand, physical laws are expressed only in terms of computationally executable
operations and on the other, the theory of computation is expressed only in terms of

operations that are physically realizable.

This thesis addresses only the latter half of Landauer’s program, which calls for
bringing the theory of computation into the scope of systems treatable by theoretical
physics. There are many precedents for the historical process by which a discipline
that initially developed its own free-standing conceptual framework gradually ac-
quires a foundation linked to theoretical physics. A particularly relevant example
can be found in the development of physical chemistry during the last quarter of the
nineteenth century.

To some extent, the analogous development of physical computation has already
begun. Substantial progress has been made in understanding the thermodynamics
of computation[19, 17]. In 1961, Landauer[93] proved wrong the widely held belief
that each binary logical operation required the dissipation of energy k7" In2. He cor-
. rectly identified the locus of dissipation as logically irreversible operations, those that
compress the phése space of the information-bearing degrees of freedom and hence
increase the entropy of the remaining non-information-bearing degrees of freedom.
Because all the logical primitives in common use at the time had N > 2 inputs but
only a single output, it was structurally impossible for them to be logically reversible.
The single binary output could not possibly carry enough information to reconstruct
the input. Logically reversible operations with N inputs and N outputs were known,
the simplest nontrivial example being the 2-input/2-output operation that exchanges
its inputs. However, it was not evident that universal computation could be per-
formed using only reversible operations. In fact, it was widely believed that at least
some irreversible operations would be required.

About a decade after Landauer’s pioneering paper, Bennett[16] exhibited a re-

12



versible Turing machine, thereby showing that completely reversible computation
was possible. Bennett[17, 18, 107] also gave the definitive account of Maxwell’s De-
mon, showing that the demon incurs a thermodynamic cost in recording velocity
information about the particle he is currently deciding to block (or not). The cost is
incurred at the point where the demon, having finite memory, must eventually over-
write (i.e. erase) information: pertaining to previous particles. The resulting increase
entropy is sufficient to offset the ‘paradoxical’ decrease in entropy due to the demon’s

intervention.

E. Fredkin arrived at his interest in reversible logic from a different point of
departure. Driven by the conviction that all physics was at root computational
phenomenon, he began searching for universal logic gates that possessed the nearly
ubiquitous physical property of microscopic reversibility. The simplest such gate,

having 3-inputs and 3-outputs, is now known as the Fredkin gate[54].

Fredkin also saw that if one wants to find models of computation that resemble
physics as closely as possible, it is natural to start with cellular automata. Cellular
automata were introduced around 1950 by S. Ulam[146] and J. von Neumann[147],
and independently by K. Zuse[158]. Cellular automata, like many physical systems
and quite unlike other models of computation, are spatially uniform. This raised a
question—“Is it possible to combine the reversibility and computation-universality of
Bennett’s Turing machine with the spatial locality of a cellular automaton”? Initially,
it was believed that this had been proven impossible, until Toffoli[142] exhibited the

first computation-universal, reversible cellular automaton.

Fredkin[54] also realized that physics and computation could be brought closer not
only by endowing models of computation with physical properties (like reversibility),
but by endowing physical models with computational properties (like computation-
universality). He showed that—with appropriate boundary conditions and initial
conditions—a classical gas of infinitely hard billiard balls could be interpreted as a
universal computer. In the course of implementing Fredkin’s billiard ball model as
a cellular automaton, Margolus[111] introduced a new kind of cellular automaton,

which he called partitioning automaton.
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Although special cases of partitioning cellular automata had been reinvented nu-
merous times, particularly by Monte Carlo investigators[71, 72]) and in the early lattice
gas papers by J. Hardy, O. De Pazzis and Yves Pomeau[63] and U. Frisch, B. Hass-
lacher and Yves Pomeau[56], Margolus[111] was the first to recognize them as a sepa-
rate class of cellular automata (CA) whose form made it particularly straightforward
to incorporate conservation laws of all sorts, not just the momentum conservation laws
of interest to lattice gas theorists, the fermion commutation relations of lattice QED,

or the fine-grained entropy conservation that leads to reversible cellular automata.

Like conventional (von Neumann/Ulam/Zuse) cellular automata, partitioning cel-
lular automata incorporate the notion of distance betweer sites only through the

drastically simplified relation of adjacency. But, as Landauer[96] has remarked,

Real particles have an interaction that falls off with dis.ance, but is not
all that selective, and is not limited to nearest neighbors or nert nearest

neighbors.

In this thesis, we bring models of computation a step closer to being treatable
within the scope of physics by defining an extension of partitioning cellular automata
called few-body automata. Few-body automata address Landauer’s objection by re-
placing the stylized nearest-neighbor interactions of cellular automata with realistic
physical interactions among a few conserved particles. In particular, we use the
few-body form to show in Chapter 5, Parallel Quantum Computation, that one can
construct a physically-realistic model of quantum computation. The resulting model
is realistic in the sense that it is closely related to the one-dimensional XY spin
model of Lieb, Shultz and Mattis. Their model, in turn, has been successfully ap-
plied to predicting the low-temperature heat capacity and electric susceptibility of

praseodymium trichloride and praszodymium ethyl sulphate.
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1.2 Plan

The central theme that has guided us in defining few-body automata (§2.6) is the
analogy between a reversible N-input/N-output logic gate and the quantum scatter-
ing matrix (§ matrix) pertaining to N conserved particles, where typically N = 2,3 or
4. Tt is well-known that the S matrix formalism is valid only if the interaction poten-
tial satisfies certain regularity conditions at r = 0 and r = co. In §2.1, we use similar
arguments to identify sufficient conditions on the interactions under which the few-
body automaton abstraction—that is, the analogy between N-input/N-output logic
gates and the S matrix—is physically valid.

Eventually, we hope that such analogies will play a role in the development of
physical computation as a subdiscipline, much as van’t Hoff’s analogy between dilute
chemical solutions and mixtures of ideal gases guided early work in physical chemistry.

In response to the model presented in Chapter 5, Landauer® has raised the question
of whether N-body automata with N = 2 are too restricted to be capable of universal-
computation. In §2.8, I show that 2-body automata are indeed capable of universal
computation, and that in fact no more than 5.81 bits of state (i.e., 56 states) per site
are required. I also show that if Wolfram[151] is correct in conjecturing that rules
with Wolfram codes 357 and 824 are computation-universal, then 3.58 bits of state
will suffice.

In Chapter 3, Logical Completeness, we make a brief excursion into the theory of
logical completeness, a part of classical circuit theory that seeks to determine whether
or not a circuit element or binary function is “universal”—as the familiar NAND gate
is—in the sense that all other binary functions can be composed from it. We show how
the few-body format, in conjunction with graphs of a certain partial order on input
states, can be used to determine whether or not the physical interaction governing
the evolution of a particular few-body automaton has the two logical properties—
nonmonotonicity and nonlinearity—that are prerequisites of logical completeness.

In Chapter 4, Inverse Quantum Scattering, we show how restricting ourselves to

3Personal email communication.
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the few-body form permits us, at least in principle, to start from the logical function

we want and analytically derive the form of interaction potential that will provide it.

Compared to the amount of progress made in putting the theory of computation
on a sound thermodynamic footing, substantially less progress has been made in
viewing computation as a quantum mechanical process. Benioff[13, 14] presented
the first model of quantum computation by describing a time-dependent Hamiltonian
operating on spin—% particles that represented Boolean variables. The time-evolution
of the system simulated the operation of a computation-universal Turing machine.
Similar models, but also requiring time-dependent Hamiltonians, were elaborated on
by Deutsch[44], Zurek[156] and Peres[131]. A notable improvement was made by
Feynman[51], who gave the first time-independent Hamiltonian model of quantum
computation. But none of the models are very satisfactory from the point of view of
providing a model of quantum computation that is physically-realistic, because the
resulting Hamiltonians are quite contrived and therefore bear little resemblance to
actual physical systems.

Bennett has stressed the “...unphysical idealizations in existing models and the
importance of specifying a quantum computer more concretely than by merely in-
venting a Hamiltonian[19].” Landauer has been even more critical of the physical

relevance of these models:

In describing quantum computers we have felt free to invent arbitrary
Hamiltonians, without the need to explain how the physical universe per-
mits the construction of these Hamiltonians. Classical mechanics is ac-
companied by a tradition which does not encourage discussion of phase
space mappings in such a sweeping way; we feel the nced to draw pictures

of the pieces, as if we were writing a patent disclosure[96).

In an effort to make a more realistic model of quantum computation, Margolus[112]
applied Feynman’s method[51] of producing a time-independent Hamiltonian to the
two-dimensional billiard ball cellular automaton, and succeeded in providing a model

of quantum computer in which the Hamiltonian is both time-independent and short-
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ranged. Unfortunately, the rate at which useful computation occurs is diffusive rather
than linear—that is, one has to wait a time N? rather than N before there is a rea-
sonable probability that the quantum automaton will have made N forward steps
in the computation. Because diffusive behavior severely limits the length of practi-
cal computations, it is questionable as to whether we can meaningfully assert that
such computation is universal. Some progress on this problem was made in a one-
dimensional analog of this quantum cellular-automaton. In [115], Margolus and I were
able to show that a computation-rate operator, as defined in [112], commutes with
the Hamiltonian. This means that the computation-rate is a constant of the motion,
but we were not able to explicitly compute any eigenvalues of the computation-rate
operator in this model.

Chapter 5, Parallel Quantum Computation, contains the result from which this
thesis takes its title. In that chapter, I present an exactly solvable one-dimensional
quantum cellular automaton with a Hamiltonian related to the one considered in
[115]. All of the interesting long-range properties of the system can be described by
an effective Hamiltonian ﬁsync for the subsystem responsible for synchronizing com-
munication between the cells. The computation within each cell is still performed
by a contrived subsystem—but a very small one. The specific structure of this sub-
system (see §2.8) is dictated by computational considerations, and is of less interest
physically than the system described by ﬁsync.

Remarkably, E,ync turns out to be identical to the Hamiltonian of a certain
anisotropic Heisenberg antiferromagnet first solved by Lieb, Shultz and Mattis[104],
sometimes referred to as the 1D XY model. In addition, experimental measurements
of the heat capacity Cyv and transverse electric susceptibility x, of praseodymium
trichloride and praseodymium ethyl sulphate by D. R. Taylor, D. J. Thouless et al.[65]
and J. T. Folinsbee, J. P. Harrison et al.[52] agree well with theoretical predictions[82,
27] derived from the 1D XY model. Consequently, this model of quantum compu-
tation begins to answer Landauer’s objection that models of quantum computation

rely on Hamiltonians so contrived that they lose all physical relevance:

After all, parts are obtained from a stockroom, or from a particle physicist.
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They are not just degrees of frecdom whose time-evolution is controlled by
a cleverly chosen Hermitean operator. Most physicists would very likely
be satisfied by a Hamiltonian which has a sufficiently familiar and simple
structure, e.g. a Hamiltonian for a reversible cellular automaton which
resembles an Ising lattice Hamiltonian. But it really is a very drastic
assumption, about the real world, to assume that even simple Hermitean

operators are physically realizable Hamiltonians (Landauer[99]).

About the time Benioff was beginning to explore spin models of quantum compu-
tation, interest in computing with microscopic degrees of freedom was increasing in
the engineering community as well. In fact, although we have thus far emphasized
the importance we attach to bringing the theory of computation within the scope of
physical theory, it is only fair to mention that most of the recent impetus—or more
candidly, the funding—comes from sponsors with significantly more practical con-
cerns. The expectation is that as we begin to understand computation as a physical
process, particularly in nanometer scale structures where quantum effects are impor-
tant, we will be better able to understand whether or not these phenomena can be
used as the basis of a new generation of computers.

Responding to perceived limits in downscaling conventional microprocessor archi-
tectures [11, 42, 134], a number of device physicists [10, 9, 50, 130] have proposed an
alternative architecture based on cellular automata. Specifically, they envision dense
arrays of nanometer-scale devices communicating with one another via direct physical
interactions rather than through wired interconnections. The devices might consist of
semiconductor heterostructures, molecular switches, or some other nanometer-scale
structure capable of changing state in response to interactions with neighboring struc-
tures. For certain interactions among cells, the array might be made to function as a
cellular automaton in which each device acts as a single cell.

Various groups have proposed that devices be coupled via resonant quantum
tunneling[10, 9, 48], Coulomb interaction effects[105, 130}, or soliton switching in

m-conjugated polyenes[28]. If such proposals are ever realized, the resulting cellular
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automata machines would differ in an important way from the cellular automata ma-
chines constructed by Toffoli and Margolus[144, 145, 116]. The dynamics of the cellu-
lar automaton would no longer be determined by an arbitrarily definable lookup table;
instead, it would be completely determined by the particular physical interactions[119)
between cells. Consequently, we might expect few-body automata to be of some use
in understanding how we might extract computation from arrays of such nanoscale
devices.

As an exercise in applying few-body automata, Chapter 6, Ballistic Computation
i an Array of Quantum Dots, describes a 4-body automaton that simulates the
ballistic computation of the billiard ball cellular automaton[111, 113} in an array of
idealized quantum dots. The resulting “gedanken” computer provides a computation-
universal ceilular automata architecture for the single-electron quantum-dot device
proposed by Obermayer et al.[130, 129, 140, 128, 108]. For a number of practical
reasons, the resulting construction is not easily amenable to error-correction (or even
fabrication), but it serves well enough as a simple example of how few-body cellular

automata might be applied to more realistic nanometer scale devices.
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Chapter 2

Few-body Automata

In this chapter we define N-body automata, determine the conditions under which
they are physically meaningful, and prove that they can simulate all other cellular
automata, including computation-universal ones, at a reasonable cost.

The definition of few-body automata depend on the analogy alluded to in §1.2
between the vertex rule S : ZN — ZJ that maps incoming to outgoing states of a
lattice gas (Fig. 2-1a shows the case N = 3) and an N-particle scattering matrix S
(Fig. 2-1c). The computational primitive is therefore the vertex rule S, a reversible

logic gate f with N inputs and N outputs (Fig. 2-1(b)).

R

C)}

®) ©

Figure 2-1: (a) Lattice gas vertex with three incoming and three outgoing particles,
(b) Reversible three-input/three-output logic gate, (c) Three-particle S-matrix.

In §2.1 and §2.2 we determine the physical conditions under which this compu-
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tion with Hami] tonian

Jdim Uty < Hm Uo(t) ),
where U(t) is the time-

the time-evolution oper



Hilbert space is said to be the out-asymptote of |¢) if
lim U()1) = Jim Un(®)lous)- (2.2

In order to understand what the computational abstraction of the vertex rule &
means physically, we would like to find an operator S : H — M that maps the in-
asymptotes to the out-asymptotes, but without explicit reference to what goes on in
between, just as the cellular automaton rule & maps the N input states at each vertex
of a lattice gas to the N output states. In quantum scattering theory the operator 3 ,
known as the scattering metriz, is defined as the product of two auxiliary operators

Qs = lim UNt)Uo(2), (2.3)

t—Foo

called Mgller operators. The Mgller operators ﬁ+ and Q_ transform the asymptotic-
in and asymptotic-out states |1)in) and |thow) into the actual states |phn%) of the
fully-interacting system that have |1in) and |thou) as their in- and out-asymptotes:

ﬁ+|")[)in) = |¢in+)7 (24)

O thout) = [¥in—). (2.5)

The limit (2.3) that defines the Mgller operators only exists if the interaction
potential is sufficiently non-singular. Below, we derive sufficient conditions. When
these are satisfied, asymptotic states exist and the N-input/N-output abstraction is
physically valid. To avoid a proliferation of + and F indices, consider the case of {}_;
the conditions for the existence of ﬁ+ are the same.

The Mgller operator {)_ exists only if, for all |tou) € H, the limit
Jim U (£)Uof) o) (26)

“converges in the norm”! to to some 1) in the Hilbert space. To convert the question

1A sequence of vectors ¢(t) in a Hilbert space is said to converge in the norm to ¢g if limy— co |-
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of convergence in Hilbert space to one in the reals, express this operator as the integral

of its derivative
OO 0o(t) o) = [us) +7 [ OHE)T Dot bons) !, (27)

where V = H — Fo.
The limit (2.6) then exists if the integral converges, which is certainly the case if

the integral is absolutely convergent

LI O et = [~ 1P 0ot ) o)t < 0, (28)

0

the last equality following from the unitarity of . For two-body interactions, (2.8)

can be established in a basis composed of Gaussians
(Thpou) = e 707127 (2.9)
in the relative coordinate 7. The norm of the integrand in (2.8) satisfies
IV 0o(¢) oun) I* = / V@) P Do(t) o) P (2.10)

The second factor is just the modulus of a freely propagating Gaussian

Fa 7n20‘4 3/2 —(F=79)2/(c? "2
[(F1Uo(") [9hous) |* = (m) e~ TRV /(7 or), (2.11)
SO 32
~~ m2o? -
VOOl < (2s) ([ W) (212

and therefore (2.8) converges if the integral over the squared potential is finite.

But the contribution to

/ |V(7)|2dF ~ / |V (7)|*4nr2dr (2.13)

ol — 0.
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near r = 0 will be finite if

1in(1)7'2|V(1')|2 < rTlte (2.14)

for some € > 0. Similarly, the contribution to (2.13) for r — oo will be finite if

lim r2|V(r)]? < r~1-¢ (2.15)

T—00

for some ¢ > 0. Therefore, for the Mgller operators to exist, it is sufficient? that the

potential satisfies the regularity conditions

limr#=V(r) = 0 (2.16)
and
lim r3*V(r) = 0. (2.17)

Potentials which are weak enough that the scattered states attain a well-defined
asymptotic value are called regular, as distinguished from singular, potentials. Not
every physically reasonable interaction satisfies these regularity conditions. For exam-
ple, the unscreened attractive Coulomb potential admits no asymptotic states. This

is manifested, for example, in the fact that its phase shifts[139, p.261],

.meiez

6 = —In(2kr) + argl'(l + 1+ ¢ )

(2.18)

which characterize the effect of the scattering interaction on states with angular mo-
mentum [/, are not well-defined since they do not approach a limit as r — oco. That is,
the interaction is so strong that, at least by the definition of “free” in (2.3), the par-
ticles never behave freely. Already, we see that the physical assumptions implicit in
the computational abstraction of an N-input, N-output gate are by no means trivial:
some interactions do not support the asymptotic states on which the abstraction is

based. But the validity of the N-input/N-output abstraction depends on more than

2But net necessary; conditions that are both necessary and sufficient are not known. Simon(136)
has shown that (2.22) can be weakened somewhat. Asymptotic states can still be defined even when
V(r) is as singular as r~2+¢ near r = 0.
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the existence of asymptotic states; it also requires that the system be free of patho-
logical states having one kind of asymptote (in or out), but not the other. When this

pathology is absent, the system is said to be asymptotically complete.

2.2 Asymptotic Completeness

If the ranges Ran(2; ) and Ran(Q2_) of the Mgller operators are identical subsets of the
full Hilbert space, the system is said to have the property of asymptotic completeness.
When this condition holds, the Mgller operai';or ()_ has a well-defined inverse—equal
to O, since {_ is norm-preserving—on the range of Q+. As a consequence, it is

possible to define an S-matrix

~

S=0tqQ,. (2.19)

The S matrix connects the asymptotic-in and asymptotic-out states,

8ltin) = [ous), (2.20)

without explicit reference to the intervening interaction. Asymptotic completeness is
also required in order to establish that 5, as defined in (2.19), is unitary 3.

Proving a system asymptotically complete is notoriously difficult. For the case of
three-body scatiering, L. D). Fadeev[47] was able to establish asymptotic completeness
when all pairwise interactions V;; of the three particles satisfy the regularity condition
(2.16) at r = 0, in addition to the more stringent condition

lim r>+V;;(r) = 0 (2.21)

r—00

at 7 = oo. More recently, Hepp(70] has shown that, under the same conditions,
the general N-body case—the case we associate with an N-input/N-output logical

gate—is also asymptotically complete.

3In the axiomatic S-matrix theory of strong interactions(33, 74], no such proof is required because
the existence and unitarity of S is assumed.
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Consequently, we see that the practice of breaking computation down into a com-
position of functions (or gates) is not without physical limits. Even though the
composition of an arbitrary binary function from more primitive binary functions is
a mathematical tautology, from an operationalist perspective the decomposition is
physically meaningless unless the interactions V;; used to implement the primitive

functions satisfy both

limr3=<V;;(r) =0, (2.22)
and
Jim 7V (r) = 0. (2.23)

Therefore, few-body automata, which are spatially regular compositions of N-body
interactions, can only be realized by the class of physical interactions that satisfy
these conditions. Within this class, our goal is to probe the latent computational

properties—such as the computation-universality—of physical interactions.

2.3 Few-body Automata as a Probe

In order to probe the latent computational properties of an interaction, we must
define an appropriate “probe”, a probe which, when applied, stimulates the physical
interaction to compute, but without introducing spurious effects that overwhelm and
obscure the computational properties to be probed. Just as NMR (nuclear magnetic
resonance) and related techniques let us probe the local magnetic properties of systems
by applying appropriate constraints and driving forces consisting of static and time-
dependent external fields, few-body automata are a way of probing the computational
properties of an interacting system by imposing appropriate constraints on the pattern
of interactions in space and time.

To understand what motivates the definition of few-body automata, suppose we
are given a collection of conserved, interacting particles. Since they are conserved,
but are assumed to have some nontrivial interaction, it is natural to view them as

information-bearing degrees of freedom. Next, we would like to understand the condi-
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tions under which the interaction is sufficiently “rich” to provide the basis for a compu-
tation. In particular, suppose we want to understand the computational properties—
that is, view as a computation—a physical process invelving six conserved, interacting
particles. In the absence of further assumptions about the interactions, we must re-

gard this as an irreducible twelve-legged process, as in Fig. 2-2.

Figure 2-2: Generic process with six input states and six output states.

However, if the interactions are regular, we have seen that it is valid to view the

six-particle process as a composition of few-body scattering events, as in Fig. 2-3.

Ty
A

Figure 2-3: Process with six input states and six output states when all interactions are
regular.

But the scattering events still occur too irregularly in space and time for us to

analyze them using the tools available from the theory of lattice-gas cellular automata.
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Instead, we discretize the times and places where events can occur, until the pattern
of interactions resembles that in Fig. 2-4. This is now isomorphic to the space-time

structure of a special kind of cellular automaton, a lattice gas[56, 63, 111].

cluster of C!

cluster of CO

Figure 2-4: Interaction pattern of a 2-body CA in one dimension is isomorphic to that of
a one-dimensional lattice gas.

In this thesis, I will only analyze computations that involve physical interactions
satisfying the regularity conditions (2.22) and (2.23), and which conform to the space-
time structure of a lattice-gas (or partitioning[111]) cellular automaton (see Fig. 2-4
and Fig. 2-5). Any physical implementation of a cellular automaton that satisfies
these regularity and structural conditions is called a few-body automaton.

Except for the formal simulation theorems of §2.6-2.8, we confine our attention
almost entirely to few-body automata in one or two dimensions. The pattern of
interactions in one dimension is shown in Fig. 2-4 and the two-dimensional pattern
in Fig. 2-5. In Fig. 2-5, the cells of the cellular automaton are represented as dotted
boxes, each of which can take on a finite number of states. The open balls indicate
the S operator that transforms the four in-asymptotic states into four out-asymptotic
states. Note that the four out-states become inputs to four different interactions
at the next discrete time step. On the following time step, however, the original
grouping recurs, so that the time dependence has two distinct phases. The alternating
groupings are called clusterings, and are denoted C° and C! in the formal proofs of

§2.6-2.8. In two dimensinns, each clustering consists of 2x2 clusters of cells; in one
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dimension (Fig. 2-4), the clusters contain two cells.

In order to identify this pattern of interactions with a particular binary cellular
automaton, someone must supply a mapping £ : H — {0,1} from states in the
Hilbert space H to binary values. Following Landauer, we will not pursue the details
of how information-bearing degrees are linked to the information they bear. Often
the association is obvious. In schemes like Likharev’s single-electron logic[5, 105], the
presence of an electron is associated with the binary value 1, its absence with the

binary value 0.

2.4 Cluster Separation and Liouville equation

As Landauer[96] has remarked, one of the unphysical features of cellular automata is

that

Real particles have an interaction that falls off with distance, but is not
all that selective, and is not limited to nearest neighbors or next nearest

neighbors.

That is, conventional cellular automata do not incorporate any notion of distance
between cells, only adjacency. In contrast, N-body automata incorporate the notion
of distance by setting a scale A for the separation between N-body clusters. More
generally, in any physical realization of an N-body automaton, A would be deter-
mined by the range of the physical interaction between information-bearing degrees
of freedom.

For example, although we have seen that the Coulomb interaction is not regular,
the screened Coulomb, cr Yukawa interaction, e="/A/r, is regular. The scale A, the
Debye screening length, will be important to us in Chapter 6. There, it determines
the required separation of clusters in the few-body automaton which was used to solve
the problem of how to extract universal computation from Coulomb-induced shifts in
the energy levels of neighboring quantum dots.

The simplest example of an N-body autematon is the one-dimensional 2-body

automaton shown schematically in Fig. 2-6. The linear array of cells indicates one
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possible placement of cells in the z-y plane. The cells are to be thought of as some sort
of interacting nanometer-scale structure. In the case shown, the cells take on one of
three physical states, representing two logical states: 1 (solid circles), 0 (open circles),
and a third, physically “unoccupied”, state (crossed circles ®) that is computationally
quiescent®. Possible physical states might be a soliton localized near a particular
monomer in a polyacetylene chain[28], or a charge state localized on a metallic particle
in a linear array of metal-insulator-metal (MIM) tunnel junctions[105]. A second, less

fundamental, scale can also be defined if we let A represent the diameter of a cluster.

Since N-body automata entail the evolution of mutually isolated clusters con-
taining precisely N particles, the physical state of the cluster, which determines the
corresponding computational state in the N-body cellular automaton, can be char-

acterized by an N-body reduced density matrix.

Let p'!) denote the density matrix for the entire N-body automaton, the collection

of all clusters. The equation of motion of 5!) is the quantum Liouville equation

. 0 ~
zhaﬁ(’) = [V D). (2.24)
where the potential
V= SR+ T+ T v, (2.25)
ci#i cc!irj

contains terms describing the interaction of the site 7 in cluster ¢ with an external
field, interactions between sites ¢ and j within ¢ and a term describing the possibility

of residual interactions between sites in different clusters ¢ and ¢'.

For a particular cluster co, tracing over all degrees of freedom outside ¢o in the

full quantum Liouville equation (2.24) yields the generalized master equation

. 0 ~
ZEEA(C({) = [chl) 1)] + Trc;éco orc’;éco{[ Z 'IC)'J , "(l)]}- (2.26)

cfchij

*By computationally quiescent, we mean that this state “evolves” into itself.

31



This is the equation of motion for the reduced N-body density matrix () that de-
scribes the state of the N-body cluster cy.

Each term of (2.26) has direct computational significance. The term

Treze{[ 3. VA2, 50)) (2.27)

c#c! i, j
is an incoherent driving term. For ideal few-body automata, it vanishes since it
is due to intercluster effects on the information-bearing degrees of freedom. More
realistically, it must be treated as a noise source and its effects minimized through

error correction.

In the ideal limit of no interaction with other clusters, the commutator [ch' ), Y
determines the coherent evolution S of the state of the cluster and hence the logical

function S at the N-body vertex.

2.5 Formal Definition

Although the separation of few-body clusters is crucial to any physical implementa-
tion, in the remainder of this chapter we are concerned exclusively with the computa-
tional, rather than the physical properties of N-body automata. Specifically, we will
define few-body automata formally—as mathematical objects like Turing machines—
in order to obtain numerical estimates of the minimum number of states they require
to achieve computation-universality. We need to do this in order to assure ourselves
that this number is not so exorbitant that each cell of the few-body automaton would
have to be physically enormous. Fortunately, we will find that this is not the case;
but proof is fairly tedious, and the impatient reader may wish to glance at Tables 2.1

and 2.2, which summarize the results, and proceed to Chapter 3.
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2.6 TFew-body Automata in d Dimensions

We begin by focusing on the simulation of d-dimensional conventional CA by d-
dimensional N-body automata where N = 2¢. These d-dimensional N-body au-
tomata employ two clusterings C° and C! directly analogous to those illustrated in
Figs. 2-4 and 2-5. The clusters making up C° and C! consist of d-dimensional cubes

with two cells along each edge.

' = {Czi,,ziz....zidﬁk € 7}, (2.28)
and
C' = {Caiy+1,2i3+1,..2i441]ix € Z}, (2.29)
where
Carinria = {Tivtmintraiatralik € Z,7 € {0,1}}. (2.30)

Definition 2.6.1 A d-dimensional 2¢-body cellular automaton is a pair (§ , @), where
Q is the finite set of states that each cell can occupy and the automorphism S : Q" —
Q2" is a local evolution operator which synchronously updates each cluster of 2% cells

belonging to the clusterings C® and C!.

Our goal is to find least upper bounds on the number of states required to attain
computation universality in the limiting case N = 2. The importance of this limit has
two sources. First, the physics of two interacting devices is both experimentally the
most accessible and theoretically the most tractable. Secondly, from a computational
perspective the case of N = 2, where each cell has only a single neighbor aside
from itself, is the most difficult limit in which to achieve computation universality.
Therefore, the upper bounds we will obtain on the number of states required for
N = 2 automatically represent upper bounds for all N-body automata with N > 2.

In addition, these bounds can be used to evaluate the practicality of using specific
nanometer-scale devices as cells of a CA . Some of the proposed coupling mecha-

nisms (such as single-electron tunneling[105]) are limited by the underlying physics
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Figure 2-5: Partitioning cellular automaton with 2 x 2 cluster neighborhoods. Clusters of
C° are shown as solid squares; clusters of C! are dashed; the cells are shown as dotted boxes.
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to providing only a single bit per cell [21, 105, 130]; none of them can provide more
than a few bits per cell. Consequently, although one can easily show that universal
computation is possible even in the limit of 2-body cellular automata, the question
of practical relevance is, “How many bits per cell will be required”?

To approach this question, in section 2.7 we establish a general theorem describ-
ing the efficiency with which a 2¢-body automaton in d-dimensions can simulate an
arbitrary conventional cellular automz -n (CA). By applying the simulation theorem
to known computation-universal CA of conventional type, we find that it is possible
to perform universal computation in a 2-body automaton with no more than 5.81
bits per cell. We then show how 4-body automata can be systematically simulated
by 2-body automata. Using this technique, we are able to lower the bound further

and obtain a universal 2-body automaton requiring just 2 bits per cell.

Simulation by Contraction Automata

We will show how any d-dimensional conventional cellular automaton (U, @,r) can

be simulated by a 2¢-body automaton (5, Q).

Conventional Cellular Automata

To begin, we define explicitly what we mean by “conventional” (or “von Neumann”)
cellular automata, and explain why they are not a satisfactory tool for analyzing the
CA -like properties of arrays of interacting devices. Conventional CA {147] usually
reside on a d-dimensional cartesian lattice, and we restrict our attention to this case.
The neighborhood of a given cell is defined to consist of all cells within some radius
r. (For example, in d = 2, the case r = 1 gives the well-known Moore neighborhood
[145]).) The next state of the cell then depends on an evolution operator U with

domain Q1% where Q is the finite set of states each cell may occupy.

Definition 2.6.2 On a d-dimensional rectengular laitice, a conventional cellular au-
tomaton with radius r is a triple (U, Q,r), where Q is the finite set of states that each
cell can occupy, r is the radius of the neightorhood and U : Q)" — Q is the local
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evolution operator,
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Unfortunately, for the application device that physicists are proposing, where
cells are coupled by real physical interactions (such as Coulomb dipole interactions
[130, 21]), conventional CA are not a suitable model. Note that cellular automata

are characterized by three forms of discreteness:

1. each cell can take on only a finite number of states,
2. the state of the cell changes at discrete time intervals and,

3. state of each cell at the following time-step is completely determined by a well-

defined (usually small) subset of nearby cells, its “neighbors”.

If wé simply arrange nanometer-scale devices in a dense rectangular array, as in
a conventional cellular automata, then in general, properties 2 and 3 will be lost.
Because the cells are coupled by physical interactions, state transitions occur contin-
uously rather than at controlled discrete time-intervals. And although the effect of
distant cells decreases with separation (e.g., the Coulomb dipole potential[78] falls off
as ~ 1/r?), in most cases the next state of each cell will depend on a large, rapidly
fluctuating subset of all cells. The resulting dynamics may be of interest in its own
right, but other than its spatial discreteness, it has little in common with cellular
automata. Until we find a format to constrain the dynamics of such device arrays so

that they have the essential discreteness of a cellular automaton, we will not be able
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to analyze their computational properties within the framework of cellular automata
theory.
For certain kinds of interactions between cells, we can impose the required con-

straints by imposing the structure of N-body automata.

cluster of CO

A A

- — . -

@ o
*/H\M/H\.@/H};L{M\%
®) x

Figure 2-6: (a) One-dimensional 2-body automaton with cells of the C° clustering occupied,
solid cells indicate state o = 1, open cells indicate o = 0, crossed cells indicate the quiescent,
or unoccupied, state. (b) 2-body automaton with cells of the C? clustering occupied.

Contraction Automata

The simplest way to prove the simulation theorem is to introduce an auxilliary form
of cellular automaton, the contraction cellular automaton, and first prove that any
conventional CA can be simulated by a contraction automaton. Then we complete
the proof by showing that any contraction automaton can be simulated by a 2¢-body
cellular automaton.

Contraction automata are a straightforward generalization to higher dimensions
of the one-way automata introduced by Culik [2]). Their sole function here is to
systematically compress the neighborhood volume from the (2r + 1)¢ cells of a con-

ventional CA with radius r to the 2¢ cells available to a 2¢-body automaton, trading
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off a reduction in the volume of the neighborhood for an increase in the size of the

state set{75].

Definition 2.6.3 A d-dimensional contraction automaton is a pair (U,Q) where Q

is the state set and U : Q¥ — Q is the local evolution operator,

[ a \

11,12/83.0,1d
al
11+1,82,83...,8d
i
a: . . .
11,0241, 83...,¢
at+l — U b Y 2+ k) d . (2-32)

‘.I |'.’2 |---o‘.d t
@) +1,i241,63 . ia

\ a‘:: +1,i24+1,834+1...,8a+1 )

Each cell has a neighborhood consisting of the 24 cells having coordinates equal
to or one greater than the corresponding coordinate of the cell. For d = 1,2 and 3,

the neighborhoods for contraction automata are shown in figure 2-7.

@

®

Figure 2-7: Comparison of the neighborhoods of the open cell in (2) conventional CA
(r = 1 as shown) and (b) contraction automata for d = 1,2,3.

Lemma 2.6.1 Any d-dimensional cellular automaton (U,Q,r) can be simulated by

o d-dimensional contraction automaton (U',Q'). The simulation can be performed
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in the same amount of space with a slowdown of at most 2r and employs |Q'] =

;—1 |Q|J states per cell.

POINT: For the sake of concreteness, we present the construction for the case d = 2
and r = 1; generalization to any d > 1 and r > is straightforward.
First, Q' is enlarged to include the tensor products of @ needed to encode a

contracted representation of the (2r+1)? cells in the conventional CA neighborhood.

2r
Q=QuU(®%LQ)U..u®E'Q=U¢" (2.33)
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Figure 2-8: Simulation of an arbitrary two-dimensional cellular automaton by a two-
dimensional contraction cellular automaton.

to+1

Since r = 1 and d = 2 in figure 2-8, the only new states introduced into Q' are
exfxaxb fxgxbxe,..€ Q' The product symbols will henceforth be omitted
for the sake of brevity.

By construction, the local evolution rule U’ has two distinct parts. First, it per-

forms a sequence of contraction steps after which each cell is in a state eiicoding the
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states of all (2r + 1)? cells of a neighborhood of (U, Q, r). In a single additional step,
U’ then simulates the action of I/ on that neighborhood.

For example, in the lower left corner of figure 2-8, the local evolution operator U’
acts at time o to produce the contracted state efab at time to + 1. After U’ has been
applied everywhere, the neighbors of the corner cell are in the states efab, fabe, ijef
and jkfg. These cells contain enough information for U’ to produce the contracted
state ijkx efgx abc€ Q° which summarizes an entire 3 x 3 neighborhood of cell f at
to. (That is, the accumulated neighborhood information is not centered around the
cell originally in state a, but around the cell originally in state f .) But instead of
recording the state of the neighborhood in an element of )°, we let U’ be defined to

simulate U on that neighborhood, e.g.,

efab
,| fabe - ,
v iief =U(f,e,9,1,4,k,a,b,¢) = f'. (2.34)
jkfg

In the general case, 2r — 1 applications of U’ are required to contract the state
information of the (2r + 1)? neighbors of a cell of (U,Q,r) into the 2%-cell neigh-
borhood of (U’,@'). Since an additional application of U’ is required to simulate U
on that neighborhood, the simulation proceeds at a rate 2r times slower than the
conventional automaton being simulated. The net effect is that an exact simula-
tion of (U, @, ) is performed, except for a computationally unimportant drift of the

simulated configuration with velocity (—r, —r,... — r) per simulated step. B

The principal cost of simulation manifests itself not in the slowdown, but in the
number of states |Q’| required to simulate (U, @, r). From (2.33), we see that |Q’| =
e |Q|*“. Unless both r and |Q| are small integers, |Q’|, which is bounded below by

Q| > /r e "Rlgy,  when d,r > 1, Q] > 2, (2.35)

Jo
grows rapidly.
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2.7 Simulation by N-body Automata

Theorem 2.7.1 Any d-dimensional cellular automaton (U,Q,r) can be simulated
by a 2-phase, 2¢-body automaton (5,Q). The 2%-body automaton takes 2r steps to

simulate each step of (U,Q,r), needs at most 2% times as much space, and employs

-~ r .d
101 = 52, [QF* states.

PROOF. As above, the construction is given explicitly for d = 2, but in such a way
that the generalization to any d > 1 is clear. Since Lemma 2.6.1 assures us that
for any (U,Q,r) there exists a contraction automaton (U’,Q’) that simulates it, it
suffices to first construct the 2%-body cellular automaton (§ ,@) from (U’,Q’) and
then show that (S,Q) can simulate any finite volume V of (U’,Q’) using a volume
no larger than 2¢V.

Let § = Q'. By definition 2.6.3, in (U’,Q’) each cell belongs simultaneously to 24
neighborhoods, whereas (by definition 2.6.1) in (S,Q") each cell can belong to only
a single neighborhood at any given time. Therefore, the initial state of (§, Q') must
contain at least 2¢ copies of the initial state of (U’,Q’') and so requires at least a
volume 2¢V (see figure 2-9 for d = 2 and figure 2-10 for d = 1). Since the same
argument holds at each subsequent step of the simulation of (U’,Q’) by (§ ,@'), the

local evolution operator
§:@)" = (@) (2:36)

must be constructed to produce 2¢ copies of the value U’ would produce on the same

input; that is,
t

/ a31132|z3"'|3d
U’ : \
t 1
T1,22,Z3---1Td a:z:1+1,z‘2+l,::3+1...,:!:d+1
g = (2.37)
t a;
azl +1,z24+1,z3+1...,24+1 T3.T2,Z3../Td
Ul .

at
r1+1,z241,z3+1...,.24+1

From figures 2-9 and 2-10, we see that in fact a volume 24V is both necessary and
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sufficient. As indicated by the dashed boxes in figure 2-10, the 2?-fold copies of the
simulated configuration of (U’, Q') shift at the rate of (1/2,1/2,...,1/2) per operation
of S; after 2T steps of simulation, the simulated configuration must be read relative

to the translated origin at (7,T,...,T).

Since Lemma 2.6.1 asserts that for any (U, @, r) there exists a contraction automa-
ton (U, Q') that simulates it with slowdown 2r and |Q'] = 2, |Q}7", it follows that
for any (U,Q,r) there exists a 2¢-body automaton (5,Q’) that simulates (U, Q,r)
with the same number of states and the same slowdown in a volume 2¢-times larger.
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Figure 2-9: Simulation of a contraction automaton by a 2-phase, 2?-body scattering au-
tomaton, for d = 2.
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2.8 Universal 2-body Automata Requiring Few States

In the Introduction, we have emphasized the importance of obtaining strong numer-
ical bounds on the minimum number of bits per cell required to perform univer-
sal computation in a few-body cellular automaton. Fabricators of cellular-automata
device-arrays can use these bounds to assess the feasibility of using various physical
couplings between device-cells without losing the potential for universal computa-
tion. Coupling mechanisms that are physically incapable of supporting enough bits
per cell to be universal must be abandoned, or at best redirected toward special-
purpose applications. Two of the most stringent cases, with clusters of size V = 2
and N = 4, occur for d = 1, 2 respectively (IV = 3 does not occur on a square lattice,
but can occur on a triangular lattice). If we apply Theorem 2.7.1 to conventional
computation-universal CA having small neighborhood radii and small state sets, we
can set an upper bound on the number of bits per cell required. For d =1 (N = 2),
figure 2-10 shows explicitly how the final stage of the simulation proceeds. The num-
ber of bits per cell required to simulate various conventional CA are discussed below

and summarized in Tables 2.1 and 2.2.

N/ N N/
N, ./ |
' )g :

Figure 2-10: Simulation of a one-dimensional contraction (i.e., one-way) automaton by a
2-body automaton.

From the time von Neumann first introduced his two-dimensional, self-reproducing
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cellular automaton with 29 states, many researchers [26, 35, 6, 75] have attempted
to reduce both the state count |@| and the neighborhood radius r of computation-
universal rules. The earliest work focused on decreasing the number of states in von
Neumann’s automaton; Codd [35] reduced |Q| from 29 to 8; Banks [6] later reduced
|Q| to 4. From Theorem 2.7.1, we see that by simulating the von Neumann, Codd
and Banks constructions we obtain 4-body automata that are computation-universal
and require log, |Q’'| = 19.43, 12.00 and 8.02 bits per cell respectively.

Banks also discovered a rule in d = 2 which, like Conway’s well-known “Life” rule,
has the fewest possible states, |Q| = 2, the smallest possible radius, r = 1, but is still
provably computation universal. The 4-body cellular automata that simulate these
rules each require just 3.32 bits per cell. Together with Margolus’s one-bit version
of Fredkin’s universal billiard ball model [111] (which was, however, implemented
from the start as a 4-body CA), the Banks and Conway rules represent the smallest
possible conventional cellular automata and constitute the smallest possible universal
cellular automata in d = 2.

In contrast, for d = 1 the problem of minimizing Q| while retaining universality
remains open. A.R. Smith has proven a series of theorems on the simulation of (m,n)-
Turing machines® by one-dimensional conventional cellular automata. By applying his
theorems to the small (6,6)- and (4, 7)-Turing machines that Minsky [118] has shown
to be universal, Smith has produced universal one-dimensional cellular automata with

neighborhood radii r = 1,2 and 3.

Theorem 2.8.1 (Smith [76]) For any Turing machine with m symbols and n states,
there exists a one-dimensional CA (U,Q,r) with |Q| = max(m,n)+1 and r = 3 that

simulates it in real-time.

For the (6,6)-Turing machine of [118], this yields a conventional CA with Q| =
7, 7 = 3. Applying Theorem 2.7.1 yields a 2-body CA with IQ'| = 137,256 or
log, |Q’| = 17.07 bits per cell.

That is, Turing machines employing m tape symbols and n head states.
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Theorem 2.8.2 (Smith [76]) For any Turing machine with m symbols and n states,
there exists a one-dimensional CA (U, Q,r) with |Q| = m+n and r = 2 that simulates

it in real-time.

For the (4,7)-Turing machine of [118], this yields a conventional CA with |Q| =
11, » = 2. Applying Theorem 2.7.1 yields a 2-body CA with |Q’| = 16,104 or
log, |Q'| = 13.98 bits per cell.

Theorem 2.8.3 (Smith [76]) For any Turing machine with m symbols and n states,
there exists a one-dimensional CA (U,Q,r) that simulates it in 2 times real-time and

has |Q|=m +2n and r = 1.

For the (4,7)-Turing machine of [118], this yields a conventional CA with |Q| =
18, r = 1. Applying Theorem 2.7.1 yields a 2-body CA with |Q’| = 342 or log, |Q’| =
8.42 bits per cell.

Culik at al. [2] have reduced the state set to |Q| = 14 with r = 1; the resulting
universal CA yields a universal 2-body CA with [@'| = 210 or log, |Q’| = 7.71 bits
per cell.

Recently, Lindgren et al. [106] have strengthened Theorems 2.8.2 and 2.8.3.

Theorem 2.8.4 (Lindgren and Nordahl [106])) For any Turing machine with m sym-
bols and n states, there ezists a one-dimensional CA (U,Q,r) that simulates it in 2

times real-time and has |Q=m +n+2 and r = 1.

Applying Theorems 2.7.1 and 2.8.4 to Minsky’s (4, 7)-Turing machine would only
reduce the state set to [Q| = 13, but Lindgren et al. reduce this further to |@Q| = 7 and
r = 1 by simulating the Turing machine head with composite objects propagating in a
periodic background. Applying Theorem 2.7.1 to their construction yields a universal
2-body CA requiring just 5.81 bits per cell.

Smaller lower bounds on the required number of bits per cell in d = 1 have not
yet been obtained, but several members of Wolfram class 4, widely conjectured to be

universal, would yield lower bounds. The two r = 1 rules, W, and W3,,, (where
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| (d=2) Rule [ Q] | r | Universal | log, |Q'] |
von Neumann [147,26] [ 29 | 1 Y 19.43
Codd [35] 8|1 Y 12.00
Banks [6] 4|1 Y 8.02
Conway(“Life”) [20] 211 Y 3.32
Banks [6] 2|1 v 3.32

Table 2.1: Simulation of two-dimensional conventional automata by 4-body automata.

W¥ denotes the k-ary rule with Woifram [151] code ¢) both have |Q| = 3, and hence

would yield log, |@'] = 3.58 bits per cell if their universality can be estabiished.
Since we are primarily interested in minimizing N for universal NV-body automata,

we can obtain 2-body automata with even fewer states by applying the contraction

operation within the 2 x 2 clusters of universal 4-body automata (see figure 2-11). It

is not difficult to see that

Claim 2.8.1 Any 4-body automaton (5' , Q) can be simulated by a 2-body automaton
(U, Q) at the cost of a slowdown of 2 and augmentation of the state set 10| = 2|Q|.

b a'|b
d d’
(@
a[o] ac]
c n ca

lelle] [8]E]

acl|bd
e

()

Figure 2-11: Simulation of a 4-body automaton by a 2-body automaton.
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| (d=1) Rule |Q| | r | Universal | log, |Q’|
Smith [76] 713] Y 17.07
Smith [76] 12| v 13.98
Smith [76] 181 Y 8.42
Lindgren et al. [106] | 4 | 2 Y 8.41
Albert et al. [2] 14 |1 Y 7.71
Lindgren et al. [106] [ 7|1 Y 5.81
W2, W3, 31| — 3.58
W2, 2|1] — 9.58

Table 2.2: Simulation of one-dimensional conventional automata by 2-body automata.

2.9 Summary

In order to put to rest any fears that few-body automata may have lost the abil-
ity to perform universal computation, or may incur unacceptable costs to do so, in
this chapter we have explicitly shown that there is at least one completely straight-
forward way in which a few-body automaton can simulate any conventional cellular
automaton, including the ones that perform universal computation. The costs of this
simulation are calculated in detail, and found not to require an exhorbitant number
of states or amount of space. This does not rule out the possibility that there are
other ways to simulate conventional cellular automata with few-body automata that
are even more eflicient.

In particular, we have tried to find the a good upper bound on the number of bits
per cell required to perform universal computaticn in 2-body automata, because this
is the type of few-body automaton we wili employ in the Lieb/Shultz/Mattis model
of quantum computation discussed in Chapter 5.

By applying Theorem 2.7.1 to universal conventional CA , we obtained an upper
bound on the number of bits per cell required for universal computation when only
two-body interactions are permitted. The lowest upper bound we have established,
based on a conventional CA constructed by Lindgren [106], is 5.81 bits per cell. If
the hypothesized universality [151] of Wolfram rules 357 and 824 can be proven, the
bound can immediately be reduced to 3.58 bits per cell. If any binary CA with r = 1

can be shown to be universal (and there is some disagreement about the possibility;
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compare [106] with [151, p.31]) then the required amount of state can be reduced to
2.58 bits per cell.

In d = 2 we have shown how to construct a computation-universal 2-body au-
tomaton requiring 2 bits per cell. This requirement can probably be met by many of
the proposed schemes for computing with nanometer-scale arrays. The construction
of a computation-universal 2-body automaton that only requires a single bit per cell

remains an open problem.
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Chapter 3

Logical Completeness

In this chapter we return to the problem of determining the logical properties of
physical interactions. Recall from §2.3 that we follow Landauer in assuming that
we are given a mapping £ from the physical states of information-bearing degrees of
freedom to the logical values they represent. One of the benefits of few-body automata
is that £ induces a natural mapping from the physical evolution determined by the
scattering matrix S (or master equation (2.26) ) to the vertex rule S of a lattice-gas
cellular automaton. The vertex function can be interpreted as an N-input/N-output
logic gate. Each of its N outputs can be regarded as the output of an N-input gate—
an ordinary binary logic gate—and its logical properties can therefore be analyzed
using the tools of classical circuit theory. By this route, we can analyze the logical
properties of S and, via ¢, ultimately the logical properties of the physical interactions
that determine S. In particular, we will use the Post-Glushkov theorem([132, 60] to
give a new graphical method for determining when, under interpretation ¢, a physical
interaction is “rich” enough to support computation or, in terms of classical circuit
theory, “logically complete”. The Post-Glushkov theorem states that, given ready
access to constants of 0 and 1, a gate is logically complete unless it is either linear or
monotonic.

In Sections 3.2 and 3.3 we define what ‘linear’ and ‘monotonic’ mean in this
context. Then we show how both properties can easily be detected in a graph of the

partial order on input states. Finally, we use the partial order technique to identify
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precisely which transitions from input to output—physically, which elements of the
S matrix—give the billiard ball cellular automaton(111] its logical completeness, and

hence computation-universality.

3.1 Partial Orders

A partial order is like the familiar ordering relationships, such as “<”, which defines
an order on any pair of distinct real numbers. The only difference is that for 2 partial
order there exist pairs of objects which are not related at all; neither one is “smaller”

than the other.

The partial order “<” that plays a role in determining the logical properties of an
N-input binary gate is a partial order on the vector space of all possible inputs; that
is, on all N-vectors with binary components. If A = (ay,4ay,...,an), a; = £( ,(,'.))) €
{0,1}, represents a possible input state and B = (by, b, ..., bn) represents another

possible input, then we say
A4 B (3.1

if and only if for all ¢, a; = 1 implies b; = 1. That is, A < B only if B has a 1 in
every position that A does. Figure 3-1 is a graph of the partial order that <1 induces
in the case N=2. The graph of a partial order is called (somewhat infelicitously) a
lattice. Each possible input state is represented by a node. The “largest” inputs are
further up the lattice. If an input B satisfies B <1 A, then there is a path from B to
A consisting only of upward links.

The principal advantage of the lattice representation is that it provides a unified
representation for simultaneously determining whether the corresponding gate has the
two properties, nonmonotonicity and nonlinearity, which are necessary and sufficient
for the gate to be logically complete. If, in addition, it is physically possible to use
the outputs of one gate as the inputs to another, then the gate is universal in the
sense that any computable binary function can be constructed from a collection of

such gates.
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(00)

Figure 3-1: Partial order <1 on input states with two binary components.

3.2 Linearity

It is straightforward to verify that every binary function of n binary inputs can be

written in the canonical form

PLL |

f(z1,22,..zn) = @ ai A(zj, Azj A A zjy), (3.2)
=0

where {j,} are the positions of the nonzero bits in the binary expansion of the integer
¢, ® is the exclusive-or (parity) operator, and A is the logical AND (conjunction)

operator.

DEFINITION. A gate is I‘near if its canonical form contains no conjunctions of two

or more T;

: f{z1,22,..ZN) = a0 ® (a1 A 1) ® (a2 A 22) @ ... ® (an A zN). (3.3)

That is, if all inputs but one are held fixed and the remaining input is inverted,
then the output is inverted. The output is therefore the linear superposition (mod 2)

of the inputs.
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3.3 Monotonicity

DEFINITION. A gate f : (Z2)Y — Z, is monotonic if and only if, for any two input

vectors A and B,
(A< B)A(f(A)=1) = f(B)=1. (3.4)

That is, if the input increases, as measured by the partial order <1 on binary vectors,
then the output either remains the same or increases.

The monotonicity properties of a gate are trivial to verify in the lattice represen-
tation. Since the binary input vectors are nrdered from smallest at the bottom to
largest at the top of the lattice, to determine whether or not a gate is monotonic
it suffices to search the links in the lattice from bottom to top. If a link is found
with a 1 at the bottom node and a 0 at the top node, then and only then is the gate

nonmeonotonic.

3.4 Graphical Algorithm for Determining Com-

pleteness

Seeing whether or not a gate is nonlinear from the partial order graph requires a little
more effort than seeing that it is nonmonotonic. The best way to grasp the trick is
to understand how the canonical form (3.2) can be derived using the lattice of binary
input states.

The methed consists of successively approximating the actual output until an
exact canonical expression is found after N + 1 iterations. Starting with the smallest
input (according to the partial order <), we write down an initial approximation
fo(zo, ...,zn—1) = 0, which has the canonical form (3.2). In general, approximations
that produce the correct output for smaller values of the input will produce incorrect
values for some of the larger values further up the lattice. Working our way up the
lattice, these cases are corrected. A new approximation is produced by taking the

exclusive-or (®) of the previous approximation with a term that identifies the case in
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which the previous approximation gives the wrong output. Since the output is binary,
the exclusive-or operation flips the output value for that case, thereby correcting
it. Because successive approximations proceed from smallest to largest inputs, this
cannot cause any of the previously correct output values for smaller inputs to become
incorrect. It can, however, cause output values for larger inputs that were accidentally
correct to become incorrect but, being larger inputs, these cases will be corrected at

a later stage of the procedure.

All of the essential points occur in the following simple example. Using the lattice
on two binary inputs (Fig. 3-1), we show how to construct the canonical form (3.2)

of the logical OR operation.

In Fig. 3-2, the input vectors are shown in parentheses and the correct output
value of OR are shown in square brackets. White circular nodes indicate binary
value 0 in the current approximation and black circular nodes indicate binary value
1. Since OR has two inputs, the graph of the partial order has three levels; the 0
level has one node, (00), the 1% level has two nodes and the second level has a single

node.

Starting with the (00) node, in Fig. 3-2(a) we find that the initial approximation,
fE® 0 is correct since the actual output is [0].

In Fig. 3-2(b) we move to node (zoz1) = (01) on the 1% level. The previous
approximation fOR gives 0 for the output when (01) is the input, while the actual
output is [1). To correct the situation we form the term z; which describes the input

(xoz1) = (01), and take the exclusive-or of this term with the previous approximation

to produce a new approximation
R=50 "=z (3.5)

that gives the correct output of the OR gate for both inputs (00) and (01). This
is indicated in Fig. 3-2(b) by the fact that the approximation at node (00) (white
circle) agrees with the desired output [0], and similarly the approximation at (01)

(black circle) matches the output [1] of OR on that input.
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In Fig. 3-2(b) we see that node (zoz;) = (10) still disagrees with the approximation
OR - 1 since the correct output [1] is not matched by the white node. To correct
this, we form the new approximation by taking the exclusive-or of £, with the previous
approximation, obtdining

=210 z0. (3.6)

As shown in Fig. 3-2(c), this now agrees with the actual output of OR on inputs (00),
(01) and (10), but the approximation fPR = z; ® z, is still in disagreement on input
(il?l.’lf]).

The final approximation,
3 =21 ®To® (To A T1), (3.7)

which brings the node (11) into agreement, is formed by taking the exclusive-or of
the (11) term zo A z; with f9R,
All nodes are now agreement with the actual output of OR, and the final approx-

imation is the exact canonical form of OR.
Jor(Zo, To) = 21 ® o ® (o A ). ‘ (3.8)

Because of the factor (zo A ;), this is not of the form (3.3), and so the logical OR.

function is not linear.

The general procedure for determining nonlinearity in the lattice representation is
now easy to describe. A function is nonlinear if, in the “bottom-up” approximation
procedure, the first-order approximation fi(zo,...,zn_1) is not identical to the final

exact canonical form.

Stated another way, suppose we are given two things: some structure which evolves
its N asymptotic input states |1/)i(nz') into N asymptotic output states lzpéuti), and a
mapping z: that associates binary values with each of these states. Then we can
determine whether or not a particular output n of the structure is logically complete

by drawing the lattice representation of the partial order on N binary inputs and

94



labeling each node with the value of the output that is associated with that input.
If there is at least one bottom-up path with a 1 — G transition, output n of the
structure is nonmonotonic. Then, to determine whether or not output n is linear,
look at the nodes on the 2" level. Each node will have several predecessors on the 1%
level. If there is even a single node of the second level whose output value is not equal
to the parity of the number of its predecessors on the 1% level whose output value is
1, then the gate is nonlinear. Similarly for all higher levels, if even a single node does
not have the output value predicted by the parity of its 1% level predecessors, output

n of the structure is nonlinear; otherwise, it is linear.

(1) 1] (1) m

(or1) (ro) (o) (10)
m [ (1 ([
@ ®

(00) (00)
101 (oj
(11) {1 (1) in
(01) (1oy (01) (10)
rn () (n (n
© @
(00) (00)
(oj (0)

Figure 3-2: Lattice procedure for finding the canonical form of the OR gate output
fOR. Input vectors are in parentheses, values of fOR are in square brackets, and
values of successive approximations are unbracketed. The successive approximations
to fOR(zo,z,) are: fOR =0, fOR = 2o, fOR = 10 ® z0, and the final canonical form
fPR=2Q10Q® (zo A zo).
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Figure 3-3: Lattice representation of the upper-left cell output for the billiard ball
cellular automaton[113].

3.5 Physical Locus of Logical Completeness in the
Billiard Ball Model

We close this section by showing how the partial order method can be used to identify
the particular state transitions of the billiard ball cellular automaton that make it
computation-universal. Figure 3-3 shows the partial order for the output of the upper-
left cell of Margolus’s cellular automaton version[113, 111] of Fredkin’s billiard ball
model[54] (see Fig. 6-3 for the complete transition matrix Sppm), when the output of

the upper-left cell is considered a function of the input values of all fonr cells.

Since it is computation-universal, the properties of nonlinearity and nonmono-
tonicity must occur somewhere in the mapping Sppy from inputs to outputs. In the
lattice representation, the nonmonotonicity is apparent in the transitions [d — ="
[d = M, [d —  and @ — @M. The nonlinearity is evident in any transition from
the first (i.e., next to lowest) level to the second level. In particular, the input [
has two predecessors on the 1% level, ™, which has output 0, and (&, which has out-
put 1. Therefore, if it were linear, the output of [l would be equal to the parity

of the outputs of its predecessors, or 1. Since the output is 0, the upper-left cell
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of the 2x2 neighborhood, regarded as a logical function of the input states of the
four cells, is nonlinear as well nonmonotonic. Therefore, under the assumptions of
the Post-Glushkov theorem, it is logically complete, and so can provide the basis for

constructing any binary function.
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Chapter 4

Inverse Quantum Scattering

In the previous chapter we have seen how the partial order graph on input states
enables us to determine the logical properties a few-body automaton acquires from
the interaction it is based on. However, there are circumstances, particularly in the
search for practical applications, where we might want to do the converse—that is,
we might want to specify the logical operation, the input/output relation of a given
few-body automaton, and find the form of some interaction that will produce that
operation. By relating primitive logical operations to physical scattering events, few-
body automata make it possible in principle to achieve this by applying a recently
developed tool for determining interactions from scattering data—inverse scattering
theory. Although current inverse scattering techniques are not quite general enough
to solve the cases that are most interesting from a computational point of view,
Cheney(32] and others[122, 123, 124] are actively extending the techniques. In the
expectation that these techniques will be of increasing utility in the very near future,
in this chapter, we briefly describe how we might apply the inverse scattering tech-
nique, along with a simple derivation of the central result of inverse scattering theory,

namely the Marchenko equation.

In the familiar theory of (direct) quantum scattering, we learn to calculate the
scattering amplitude S given the interaction potential V(7). The goal of inverse
scattering theory is just the opposite: for a specified S, find the interaction V(7) that

would produce S.
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Intuitively, the inverse problem may seem, except in special cases, to be intrin-
sically underdetermined—Ilike asking if we can hear the shape of a drum(80]. But a
moment’s reflection reveals that the inverse problem is the problem physicists really
wanted to solve all along. We only find the direct problem so familiar because it is
so often the case that the inverse problem cannot be solved, and our only recourse is
to guess, solve the direct problem, compare to experiment, and guess again until we

are confident we have found the correct potential.

The quantum inverse scattering problem is indeed solvable in some cases, notably
for local, rotationally symmetric potentials in three dimensions and local potentials
in one dimension. However, there are some caveats. In particular, if it is known that
the unknown potential has bound states (as all attractive potentials in one dimension
have), then the method of solving the inverse problem requires us to provide some
additional (and difficult to obtain) data about the bound state wavefunctions. How-
ever, we will see that in the application to few-body automata, these problems would

not arise because the input data, S would not come from scattering experiments.

Instead, we would start with a computation-universal few-body cellular automa-
ton. Any collection of scattering amplitudes consistent with its input/output relation
would serve as a “synthetic” .§'comp for the inversion procedure. By solving the in-
verse problem, we would obtain an analytic expression for an interaction V(7). If any
real systems existed that were governed by this interaction, its dynamics would be

isomorphic to that of the few-body automaton described by .§comp.

Unfortunately, it is not quite possible yet to carry out this program because the
development of inverse scattering theory has heen much more laborious than that of
the more familiar (direct) scattering theory. The history of inverse scattering the-
ory really begins around 1940 when Heisenberg[69] and Wheeler[149] first defined
the scattering matrix S , and Heisenberg conjectured that it contained all “physical”
information. If this were the case, it should be possible to determine all physical
observables, in particular the scattering potential V(7), from S. Soon thereafter,
Hylleraas published a procedure for finding a central potential V(r) from the scat-

tering phase shifts §;(£), which are related to the matrix elements s;(E) of § in the
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angular momentum sector ! by s;(E) = ¢?(E), Unfortunately, in the following year
Bargmann([8, 7] exhibited two distinct central potentials that give identical phase
shifts, thus showing that Hylleraas’ procedure was flawed. Levinson’s theorem[102]
reestablished the uniqueness of Hylleraas procedure when the potential is assumed
to have no bound states. But Levinson’s theorem simulataneously deait a fatal blow
to Heisenberg’s idea that the S matrix contained all physical information, since the
theorem showed that the enly connection between the bound states: and phase shifts
is that §;(E — 0) — 6§i(E — oo) = Ny, where N; is the number of bound states of
angular momentum I. Still missing was a solution to the inverse problem thas worked
when the unknown potential was known to have bound states. In the narrowest
mathematical sense, I. M. Gel’fand and B. M. Levitan[58] gave the first such solution
in 1951. But their solution requires knowledge of physically peculiar scattering data,

such as the slope of the normalized bound state wavefunctions at the origin?.

The first solution of the quantum inverse scattering problem that starts from the
kind of data few-body automata can provide—the scattering matrix—was presented
by Marchenko[109] in 1955, almost thirty years after the corresponding direct scatter-
ing problem was first solved. Since the Marchenko equation is the simplest member
of the class of inverse methods that are applicable to few-body automata, we devote
the next two sections to reviewing its structure. In a third section, we examine the
prospects for using more sophisticated methods in the Marchenko class for the pur-
pose of deriving the form of computationally interesting interactions from the form

of few-body automata.

The Marchenko equation is simplest in the case where it is known beforehand
that the potential we are seeking has no bound states. In that case, the Marchenko

method requires that, given the scattering amplitude s;( £) at some particular angular

There are some cases where the so-called “norming constants” can either be deduced from
(non-scattering) experiments, or dispensed with altogether. Thaker et al.[141) have reconstructed
infinitely deep quark potentials this way by observing that for symmetric potentials V(r)=-V(-r),
knowledge of the bound state energies alone is sufficient.
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momentum / for all energy E, we first form the kernel

Q) = 5= [ 1= (BB, )i (B, ) B (1)

where x{%(E, r) are the free Jost solutions®, solutions of the free Schrodinger equation
that behave asymptotically as x{*(E,r) — e (&),

Next, the method prescribes that we solve the linear integral equation
K(r,") + Q(r,r") +/ K(r,7")Q(r",7")dr" = 0, (4.2)

known as Marchenko’s equation, for the generalized shift operator K(r,r'). Finally,
the desired potential is
h? d
V(ir) = ——K . 4.
(r) —n (r,7) (4.3)
The only thing immediately clear about this procedure is that the scattering data
goes in one end and the potential comes out the other. In the next two sections, |

try to expose the simple quantum mechanical ideas behind Marchenko’s seemingly

opaque inversion procedure.

4.1 Inverse Schrédinger Equation: Discrete Case

The physical ideas that underly solution of the inverse scattering problem are most
easily grasped when we solve the problem on & discrete lattice[29, 30, 154, 153]. We
consider the problem of finding a three-dimensional, rotationally-invariant potential
for the non-relativistic scattering of a spinless particle from a finite-range potential
given the scattering amplitude s;( E) = ?%(E) for all energies E at fixed angular mo-
mentum . Except for the property of rotational-invariance, each of these conditions
can be relaxed withcut greatly increasing the complexity[31].

Since the system is rotationally symmetric, we will be solving the radial Schrodinger

?For scattering in three dimensions from an unknown potential that is assumed rotationally
symmetric, x?*(E, r) are the Ricatti-Hankel functions[139]; in one dimension, they are plane waves.
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equation. Letting ¥(r, 0, ¢) = ripi(E, 7)Y, (0, #), after separation of variables the ra-

“dial equation becomes

- B + () = () (t4)

Defining k = v/2mE [k, two independent solutions of 4.4 are the Ricatti-Bessel func-

ilkr) = || 2 B k), (45)

and Ricatti-Neumann functions

n(kr) = (—1)'@1-1—1/2(kr)- (4.6)

These functions behave asymptotically (i.e. as r — co) as jj(kr) — sin(kr — Ir/2)

and ny(kr) — cos(kr — Ix [2).

tions

It is more useful to form combinations of these functions that behave asymptoti-
cally like incoming and outgoing plane waves, and these are called the Ricatti-Hankel

functions

hiE(kr) = n(kr) £ iji(kr). (4.7)

Since the potential V(r) that produced the given s;(k) is assumed to have finite range

(i.e. V(r > a) = 0), the exact solution ¥(k,r) of (4.4) satisfies
(ks> a) = ZIA7 (kr) = si(k)AF (kr)]. (4.8)

For r < a, the exact solution can be expressed in the same form, but with the so-called

Jost solutions xif(k,r) replacing the Riccati-Hankel functions
Lo
ik 2 @) = 217 (kr) — (k)i (kr)]. (1.9)

Without loss of generality®, we consider the case that we are given the | = 0

3We will see later that it is no trouble at all to include the centrifugal potential for ! # 0, or any
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Figure 4-1: Discrete radial Schrodinger equation. The potential vanishes for r > a =

NA.

scattering amplitude s(E) = so(E) = e%%(E) 50 that the centrifugal potential term
i(I 4+ 1)/r? vanishes. Then the discrete radial Schrédinger equation (see Fig. 4-1)
becomes

—h?Y(E,n +1) — 20(E,n) + y(E,n — 1)
2m A?

+V(n)¥p(E,n) = EY(E,n). (4.10)

Where V(n) is completely unknown for n < N and is identically zero for n > N; that
isa = NA.
Since s(E) determines 1)(E,n) for n > N, we would like to solve the set of discrete

coupled equations (4.10) by performing the recursion

2mA?
h2

s(En-1)= (24 2 v ~B)pEm - pEnt) @)

inward from the asymptotic region n > N.
Set I = 0 in (4.8) and substitute the asymptotic forms of hi(kr). At points

N and N +1 the free asymptotic behavior is still valid and we can determine the

in fact any fixed local potential at all. The only requirement is that we should b. able to solve for
the resulting energy eigenstates, because we will need to use them in place of the frec eigenstates.
The inversion procedure then requires as input the phase shifts (or scattering amplitude) relative to
the “free” case that includes the fixed potential, and it yields a potential difference relative to the
fixed potential.
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wavefunction from the exact free solutions and the given scattering data s(E),
(B, N +1) = e Esgin[k(N + 1)A + §o(E)) (4.12)
and, since V(N + 1) =0,

H(E,N) = (2 - 2",:?2 E) »(E,N +1) —(E, N +2). (4.13)

At n = N —1, the inward recursion begins without difficulty. From the wavefunc-

tion recursion relation (4.11) and V(N) = 0 we find,

2mA?

(E,N —1) = (2- E) »(E,N) —b(E, N +1). (4.14)

However, the next inward step of the recursion runs into trouble. The recursion

relation (4.11) yields

2mA?
h2

H(E,N ~2) = (2 + V(N -1) - E]) $(E,N-1) = (E,N).  (4.15)

The problem with (4.15) is that it contains two unknowns, ¥(E,N — 2) and
V(N —1). Furthermore, no help is to be found in applying the recursion relation to

n = N — 3 since that introduces two new unknowns, (E, N — 3) and V(N — 2).

This is probably the impasse our intuition had in mind when it warned us that

solving, the inverse problem is just impossible in principle.

Fortunately, our intuition is incorrect. Another relation can be brought to bear:

the completeness relation of the energy eigenfunctions,

o= [ $(E, )" (E,n)dE = 6/ (4.16)

Multiplying (4.15) by (E, N—1) and integrating over all energies yields an expression

h2
mA?’

V(N -1) = % / E¢*(E,N — 1)%(E, N)dE — (4.17)
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for the unknown potential. 3(E,N) and (E, N — 1) are already known from the
previous iteration of the wavefunction recursion relation (4.11).

Notice that our ability to obtain expression (4.17) hinged on two easily overlooked
but crucial properties. First, by using the completeness relation, we have commited
ourselves to obtaining ¥ (E, N) and ¥(E, N — 1) not just for positive energy scattering
states, but also for the bound states, if any. In particular, we must be given the
energies {E;} of these bound states and the normalization ¢; of their wavefunctions
P(Ei,r) = c;x?(iE;,r) when expressed as free scattering states at imaginary energy
Second, in order to obtain (4.17) we used the fact that the potential entered only at
the point n = N — 1; that is, we have assumed that the unknown potential V(r) is
local.

Once V(N —1) is known, we can go back to the wavefunction recursion relation
(4.15) and continue the inward recursion by solving for 4(N —2). It is straightforward
to see that we can alternate application of the wavefunction recursion relation (4.11)
and the potential recursion relation,

52
mA?’

V(in—-1) - % / Ep*(E,n — 1)(E,n)dE — (4.18)

as indicated schematically in Fig. 4-2.

The important thing to note is that the dependencies denoted by the arrows are
all directed downward or horizontally, and therefore the coupled recursion relations
can descend toward n = 0 until both ¥(E,n) and V(n) are found for all n > 0, and

the inverse scattering problem is solved.

4.2 Derivation of the Marchenko Integral Equa-
tion

The wavefunction and potential recurrence relations (4.11) and (4.18) show that the
physical ideas behind Marchenko’s solution (4.2) of the inverse problem are indeed

simple—completeness of energy eigenfunctions and inward recursion from the asymp-
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Figure 4-2: Schematic representation of how the two recursion relations alternate in
solution of the Marchenko-like discrete inverse scattering problem.

totic wavefunctions determined by s(E). They also provide a convenient starting
point for numerically solving the inverse problem. But we still haven’t connected the
inward recursion described in the last section to the Marchenko equations (4.1-4.3),
which were presented ez cathedra. In this subsection we follow Zakhar’ev, Mel’nikov
et al.[153, 154] in deriving the Marchenko equation from the discrete solution of the
inverse problem.

We start by introducing a change of the energy variable E that will simplify the

algebra. Rewriting the free Schrodinger equation as

2mFE 2
mE L D)y, a9

$(Byn+ 1) +$(En—1) = (-

suggests that we might be able to simplify the recrusively generated expression for

the free Jost solutions x°%(E,n) by defining

1 _( 2mE 2
Z-l-;: (——ﬁ—z'—-i- E) (420)
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Then
Y(n+ 1)+ $(z,n = 1) = (= + )b(z,n),

which has solutions

XO:I:(Z, n) = z:l:n.

Since for I = 0 (and also in one dimension), the free Jost solutions satisfy

Xoi(E, n) — e:!::'knA,

so we recognize that
ik(E)A

z=e¢
Because V(n > N) = 0, the full Jost solutions satisfy
Xi(z,n) = XOi(zan), n > N.
So we can start the inward recursion
+ 1 2m +
Xtn=1)= (2424 22V(0) ~ x*(zn+1)
for the full Jost solutions at n = N using

Xi(zaN + 1) = XOi(zaN + 1) = zi(N-H)’

and
X*(2,N) = x**(2,N) = 2*V.

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

From the form of the recursion (4.26) it is clear that for n < N the x*(z,n) are

polynomials in z. As the recursion proceeds toward the origin, the least power of z

present in the polynomial x*(z,n) decreases by one and the Jargest powér of z present

increases by one.

For N —3 < n < N — 1, exact cancellations of the highest power (attributable

to residual effects of the free asymptotic form 2%") cause a slight deviation from this

68



polynomlal terms

N5 N4 N3 N2 Nl N
N o
N-1 o
N-2 o o
N-3 ) o o o
N~ o o) o) o o o
NS O o o o o o o o

Figure 4-3: Schematic representation of the polynomials x*(z, N).

rule. The powers of z actually present in the polynomial x*(z, N) are shown in Fig.
4-3.

Expanding the full Jost functions x*(z, N) in terms of the free Jost functions

XOi(z,N) = z:bn’
2N—(n43)
N =GN+ Y Kmmxi(e M)A (4.29)

m=n+1<2N—(n+3)

By definition, the radial wavefunction can be written as

$(z,m) = 21X (5, N) = s()x* (2, M), (4.30)

in terms of the scattering amplitude s(z) and Jost functions. Using (4.29) to represent

the Jost functions, the radial equation can be written

IN—(n+3)
¢(27N) = "po(ziN) + Z K(n,m)ipo(z,N)A, (4'31)

m=n+1<2N-(n+3)
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where the auxilliary functions
W0z m) = Z[x*(2,7) - s(2)x®* (2,7)] (4.32)

are defined to be that combination of solutions y°%(z,n) to the free Schrodinger equa-
tion that have exactly the asymptotic behavior prescribed by the scattering amplitude
s(z).

From the orthogonality of the energy eigenfunctions

= d
3 [ B (B mE = 2 [ om0

and the expression (4.31) for the radial wavefunction in terms of the avxilliary func-
tions 1°(z,n), it follows that t(z,n) is orthogonal to all the polynomials %%z, n)
with m > n.

Substituting (4.31) into the orthogonality relation (4.33) yields the Marchenko
equation (4.2)

2N—(n+3)
Knm)+Qmm)+ Y KmpQem) =0,  (431)

m=n+1<2N —(n+3)

where the kernel is

dz  bpn
Q(n,m) = #‘/c[l — .s(z)]z""'"‘;z A (4.35)

Substituting equation (4.29) for the full Jost functions x*(z, N) into the discrete
Schrédinger equation and using the fact that the free Jost functions x°%(z, N) satisfy
the free Schrédinger equation, we find

_h_2K(n,n+1)—K(n— 1,n)

Vin)=-— 2A

. (4.36)

4This property of K (m, n) is analogous to that possessed by a triangular matrix, and hence is
called triangularity. 1t is crucial to the development of a solution to the inverse scattering problem,
and the difficulty of finding a simiiar property in d > 1 has retarded the solution of higher dimensional
inverse problems.
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In the continuum limit (recalling that z™ = Af (kmA) — A} (kr), etc.) the discrete
equations (4.34), (4.35) and (4.36) become the equations of the Marchenko method
(4.2), (4.1) and (4.3).

4.3 Discussion

We have seen that given any scattering amplitude s;(E) for a single angular momen-
tum /, we can use a Marchenko inverse scattering method to find a local, rotationally
symmetric potential V/(r) that produces it. The inverse scattering problem we would
really like to solve for the sake of finding potentials that produce the few-body au-
tomaton of our choice is somewhat more challenging.

First, the preferred dimension is d = 2, not d = 1, which is less attractive be-
cause there are few really interesting one-dimensional CA, or d = 3, which makes
fabrication enormously more difficult, and would therefore preempt one the ultimate
goal of making a connection with experiment. Second, the restriction that V() be
rotationally-symmetric restricts our ability to choose computationally interesting few-
body as the generators of S. Finally, we would really like to solve the two-dimensional,
non rotation-invariant inverse scattering problem for multichannel scattering; that is,
for the case where the scattered entities could change their internal state, as well as
their momentum vector, when scattered. Permitting the scattered particles to change
internal state opens up the widest variety of computationally interesting possibilities.

Somewhat surprisingly, the development of the inverse scattering methods we
need may be near. In just the last decade, R. G. Newton has published a series of
papers[122, 123, 124, 125] laying the foundation for solving the single-channel but not
necessarily rotation-invariant inverse scattering problem in d > 1. And in the last
four years, Cheney[32] has addressed the problem of logarithmic singularities peculiar
to the general inverse scattering problem in d = 2. Once these results are generalized
to the multichannel case, it should be possible to derive explicit interaction potentials
for specific few-body automata in the manner outlined here. Then we will be able to

see if such potentials can be realized experimentally.

71



In the meantime, there is at least one possible application of inverse scattering
methods that may already be amenable to experirental realization. Undoubtedly,
the case that has seen the most applicability is not the three-dimensional rotationally-
invariant case described in the last two sections, but the strictly one-dimensional case
on the entire real line —oo < z < oc. It has been used to diagnose irregularities in
transmission lines from their measured reflection coeficient r(k), and to determine
the ionization density of the ionosphere from the time-profile of a pulse reflected back

to its earth-bound transmitter.

It may be feasible to apply similar methods to systems like quantum wires, whose
novel behaviors have recently excited the interest of physicists and may someday lead
to computational applications. Briefly, one might first employ the Landauer formula

_ T 21— |r?

"~ 7hR  nh 7|2 (4.37)

to relate the measured conductance G of a one-dimensional conductor to the modulus
of the reflection coefficient r. If the phase of r can be measured or deduced by
methods analogous to those used in three-dimensional scattering[121], then it should
be possible in principle to apply such techniques in order to obtain the profile of the

potential produced by the scattering impurities.

The Landauer formula (4.37) applies to a single spin-1/2 electron channel. That
is, it describes a two-probe measurement in which a single transverse mode propagates
between the two leads. to a single transverse mode but both spin projections. If such
an inversion procedure hoped to make contact with experiment, it would have to deal
directly with multiple channels®. Inverse scattering methods for one-dimensional,
multichannel systems have been developed in the last few years[154], but subtleties
in the correct definition of the multichannel § matrix[23, 137] probably push such
investigations to the edge of what is currently feasible. I do not know if it is practical

to make the conductivity measurements needed to determine r(k), or if the potential

SFor actual experimentally accessible systems, the number of transverse modes present is appar-
ently of order 30[40].
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V(z) obtained from the inverse scattering procedure is of sufficient scientific interest

to justify the effort.
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Chapter 5

Parallel Quantum Computation

Finding quantum-mechanical models of computation is not just an important part
of Landauer’s philosophical program for a self-consistent theory of physical compu-
tation. It also bears indirectly on the practical goal of exploiting quantum effects for
practical applications. Device physicists have already produced structures in which
the quantum-mechanical phase coherence of the electron is maintained over thousands
of unit cells[12, 39]. So it is not too soon to begin considering the compatibility of

quantum mechanics and computation.

One strategy for finding ways to apply quantum devices to computation is to first
find a touchstone model, a model simple enough to be solvable, but complex enough
that it exhibits the interplay of quantum effects and computation. Understanding
this interplay is a prerequisite if we are to systematically identify the obstacles and

opportunities for practical applications.

This chapter describes how a cellular automaton of 2-body type can be used to
construct a model of parallel “quantum computation” that is both physically realistic

and exactly solvable.

Since the methods and key problems of quantum computation are not widely
known, §5.0.1 is devoted to a brief review and §5.0.2 gives a short history, restricted

to those previous contributions on which our own depends.
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5.0.1 What is ‘Quanium Computation’?
How is a binary variable represented?

Over the past decade, there has been an increasing interest in models of “quan-
tum computation”[13, 14, 15, 44, 156]—that is, models in which the information-
bearing degrees of freedom obey quantum-mechanical rather than classical-mechanical
equations of motion. These models are constructed from ordinary models of binary
computers—models like the Turing machine-by making the straightforward associa-
tion

{0,1} = {[ IL 1)} (5.1)

between binary values and the spin-projection states of spin-% particles.
Once this identification is made, any logical function of n binary variables {p:i}
can be written as an operator F' consisting of a sum of products of the 2n raising and

lowering operators,

opilms) = b, | 1): (5.2)

and
pelmz) = bm, 1l L), (5.3)

on the Hilbert space 'Hi% of n spin-% particles.

How is a logic gate represented?

For a given logic gate, the corresponding operator F is easiest to write down if we
first define two kinds of auxiliary operators that perform simple logical operations on
the basis states |¢) € {|m{®,m{), ..., m*1)}, m € {||),] 1)}. The first type is a
“checking” operator C'¢. On a general state [¢) € 'H(l';)z, C'¢ checks for the presence of
|¢) and returns the uniform spin-down state with the same amplitude: For any basis
state |¢),

Colw) = (81} L, 1,-.. 1). (5.4)

The second set of operators, “lookup” operators, map the uniform spin-down state
P ’ p op ) p 1Y
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to each of the basis states:

Lyl Lyl 1) =19 (5.5)

Together, the checking and lookup operators can be composed to construct an
operator representation for any lookup-table—that is, for any logic gate with n binary

inputs and outputs.

As a simple example, consider the NAND gate on two binary variables p and q.

. ) op
p— Fp
f N
q— — q’
Uq Uq
P q P q R
F =
oo . |1 |1 (hCoo
0 ] e l ] +|;'|'|¢n'|
1 | o 1 +LCo
1 1 0o}]o +r:oo‘-\'n
(@ ()

Figure 5-1: (a) Binary representation of the logical operation f = NAND, (b) Represen-
tation of f = NAND as an operator F on two spin—% particles, o, and a,.

Figure 5-1a shows the the schematic (top) and binary lookup-table for an 2-
input/2-output function f(p,q), both of whose outputs are the logical NAND of
its inputs.

In Figure 5-1b, two s = % quantum spins, o, and oy, represent p and ¢ quantum
mechanically. The operator F that represents f(p, q) is composed of a sum of products
of checking and lookup operators on the two-spin system. The checking and lookup
operators, in turn, are easily constructed in terms of the familiar raising and lowering
operators. For example,

~

Coo = 0'_0';'0'_0';', (56)
where we have implicitly used the association (5.1) in denoting Cy; as Cgo. Lookup
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operators such as L;; have an equally simple form,
Ly =o}a}. (5.7)

In the bottom of Fig. 5-1b, each term is a mere transliteration, using the raising
and lowering operators 0¥ and o, of one row of the truth-table for f in Fig. 5-1a.
Since the input states in the lookup table are an exhanstive set of mutually exclusive
possibilities and the basis states form a complete orthonormal basis on ngl)i” we can
think of the operator F as describing the one-step evolution of a “quantum NAND

gate”.

How is a sequence of logical operations represented?

Note, however, that because the NAND function is not invertible, the operator F
is not invertible and hence not unitary. Therefore, if we hope to use this technique
of associating spin operators with binary computations, we must restrict ourselves
to logically reversible operations. Recall from §1.1 that Fredkin and Margolus have
established that reversibility does not preclude us from attaining computation uni-
versality. If we confine ourselves to logically roversible operations, the corresponding
operators will be unitary. Since any computation on n binary variables can be accom-
plished by some sequence of logically reversible operations, any computation can be
represented as the action of some unitary “time evolution” operator U = I, Frn on
a lattice of n spin-1 particles. The operator [J describes the evolution of a quantum
computer.

The quantum computer is “programmed” by initializing it in the basis state cor-
responding to the binary inputs string. The result of the computation can in princi-
ple be read by performing appropriate measurements on the spin variables; possible
techniques for doing this are described in more detail in refs. [51, 131]. Since we are
interested here in finding a quantum-mechanically realistic description of the compu-
tation process, rather than the measurement process, we will not discuss initialization

and read-out further.
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The operator I/ was constructed solely to have a specified computational behavior.
At no point did we attempt to insure that it was physically realistic. In order to see
more clearly what kind of physical system the evolution operator U/ corresponds to,
we need to find the Hamiltonian H that has U as its Schrédinger evolution operator.
The structure of H will tell us how what kinds of interactions I/ requires, and we will

be able to compare these interactions with realistic ones.

—_~

Integrating the time-dependent Schodinger equation, the hermitian operator H
that satisfies

Uit)=1- : /0 : H(O(#)at', | (5.8)

can be identified as the Hamiltonian of the quantum computer.

So, at least formally, it is not difficult to recast models of computation in the
language of quantum mechanics. However, the burden remains on us to show that
the resulting models are not merely empty transliterations from the theory of compu-
tation, producing “cleverly chosen Hamiltonians[99])” which have little hope of being

physically realized.

Physically realistic models of quantum computation are intrinsically hard to con-
struct because the form of the Hamiltonian H depends directly on the form of the
evolution operator U. The form of { , in turn, is necessarily dictated by the form
of the computer being emulated, and not by considerations of physical realism or
simplicity.

A physically credible model of quantum computation should have virtues com-
parable to those possessed by Fredkin’s billiard ball model of classical-mechanical
computation. The model should have simple, physically realistic interactions. It
should attain its computational power from the careful choice of initial conditions,
boundary conditions, and from an apt computational interpretation of its information-
bearing degrees of freedom—not from an unnatural, concocted complexity residing

in its interactions.

Models of quantum computation can be made more physically realistic by endow-

ing their Hamiltonians with three particular properties: time-independence, locality,
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and simple few-body interactions. In this chapter we exhibit and solve a model of
quantum computation with all three properties. But first, we review the progress
made by three previous investigators: Benioff, Feynman and Margolus, on whose

efforts our own contribution is built.

5.0.2 Brief History of Quantum Computation
Prehistory

Even before the first real model of quantum computation, Benioff’s model, many
people working on r'nodels of reversible computation realized that a brute-force model
of quantum computation was possible. Any deterministic classical computer C is
completely defined by the set of all sequences of states—computational orbits—that
it traverses on all possible input programs. If all of these orbits are known ahead of
time, a quantum mechanical Hamiltonian H describing the computer can be found
as follows. Suppose the computer has a state set {s,}(n = 1,..., N). By associating a
basis state |¢,) with each state s, of the computer, it is trivial to construct a unitary
time evolution operator U that simulates C on the Hilbert space spanned by {|¢,)}.

Since U is unitary, and hence normal (i.e., commutes with its adjoint), there is some

unitary unitary operator V that diagonalizes it,

e 0 ... 0
~ ~ 0 e ... 0 R
Uvr)=vt| R (5.9)
0 0 e
If we take .

— | o
Hrfh=-V| . 7 Vi, (5.10)

then H satisfies U(r) = e~iHT/h,

However, even if the computation described by U is simple, the resulting Hisin

80



general highly nonlocal, that is, it involves couplings between distant spins. Further-
more, as Benioff[131], Bennett [95] and Margolus[113] have all pointed out, since we
need to perform all possible computations on all possible initial states before we can
even write down the hamiltonian (5.10), this construction is a look-up table rather

than a computer.

Benioff

Benioff(13, 14] was the first person to propose a model of quantum computation
that did not have to precompute all possible computational orbits. He accomplished
this by defining a quantum spin system whose evolution simulated that of a Turing

machine.

A Turing machine (Fig. 5-2) is a mathematical abstraction drawn {albeit implic-
itly) from computers whose internal mechanisms are accurately described by classical
mechanics. The abstract model consists of two parts: an infinite tape T' and a head
M. The tape is divided into discrete cells, each of which is either blank or contains
exactly one symbol from a finite set £. The head can perform four operations: read
the symbol from the cell that is directly underneath it, write a symbol in that cell,
move left or right by one cell, and change its state q to one of a finite number of
values. The time evolution of a Turing machine is specified by a table that exhaus-
tively describes what action the head takes depending upon the symbol it is currently
scanning and its own internal state. Perhaps the most significant result of the theory
of computation is that for any computation, there is some Turing machine that can
simulate it. Because it combines this powerful “universal” property with structural

simplicity, Benioff selected it as his target for constructing a quantum computer.

He proceeded by systematically translating the binary operations of a Turing ma-
chine into a unitary operator on a system of quantum spins. His model[13, 14] has the
virtue of requiring only short-range interactions but, unfortunately, the corresponding

Hamiltonian has an unnatural, concocted appearance. It has a time-dependence that
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Figure 5-2: Turing machine model[73, 118].

results from alternately turning on and off three distinct Hamiltonians

N

N
H=Y3% 35 SPOP®Pi®Pu@UM @US @ UE¥, (5.11)
leQ v k=-Nk'=1

N N
Hy=3% > > UYeU;i"®P.®PY®PS ®PL, (5.12)
q€Q k=-N k'=1

and

H;=191919BR131Q1Q, (5.13)

where (in the notation of Benioff[13]) the operators P, U and B are various projection

and permutation operators that act on the spins shown in Fig. 5-3.

IL+ o ? Ry
H—1 F R
—t S - Re

Hp
t 1 } .
1 O -
1t He
V!t
M

Figure 5-3: Benioff’s quantum-spin Turing machine[13]

In the figure, M is a small spin system whose function is to record the state of the
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head of the Turing machine. H, is a single spin that marks the position of the head
on the tape T, which is implemented as a linear array of spins. The state of each
spin corresponds to a symbol on the tape of the Turing machine. The auxiliary tapes
Ry, Re and Rp are used to keep a record of the states of M, T and the position of
the head H¢ on the tape T.

The Hamiltonian H; measures the state of the head M, the position of the head
Hc, and the tape symbol at that position and records the results of these measure-
ments on the auxiliary tapes Rp, Rp and Rc, respectively. The Hamiltonian H,
carries out the appropriate transformation of the the state of the head M, changes
the tape symbol on T', and moves the head H¢. Finally, H, shifts the record head

Hp to the next position.

Suffice it to say, Hamiltonians with the form (5.11)~(5.13) are hard to come by in

the real world.

Feynman

Feynman’s principal goal was to construct a quantum-spin computer that replaced the
awkward, three-phase, time-dependent Hamiltonian of Benioff with a time-independent
one. Unlike Benioff, who took as his evolution operator a unitary operator F that
described one step of the forward evolution he wanted, Feynman[51] made a very
different use of the unitary operator F' that describes a single forward step of his
computation. He formed the hermitian operator f-fcomp = F + Ft and took that as
the Hamiltonian of his quantum computer. Since F, which moves the computation
forward, and F'*, which moves it backward, now occur symmetrically in H (and hence
in the evolution operator), it is no longer obvious that the computation can proceed
forward any more often than backward. Superficially, at least, this looks like a model
of diffusive computation.

The problem of diffusive computation is a very serious one. At a clock rate of
1 GHz, a computation that would take 12 days on a computer making one forward

step on each cycle would take an expected 100 x 10° years to complete on a diffusive
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computer working at the same rate. Consequently, it is reasonable to question whether
diffusive computation should be considered “effectively” universal computation or not.

Feynman’s solution was to couple the part of his system that performed the com-
putation, the part described by ﬁcomp, to another subsystem, an infinite line of “clock
spins” (see Fig. 5-4) that synchronizes the computation. The interactions among
clock spins can be described by a simple one-dimensional Heisenberg Familtonian
E,:,nc. By initializing the clock spins in a magnon state with positive momentum, he

was able to drag the computation forward at a uniform, rather than diffusive, rate.

Figure 5-4: In the Feynman model{51], an upward traveling spin wave on the line of
“clock spins” (left) drags the three spins of the computational subsystem (right) through
the desired sequence of computations at a uniform rate.

Margolus

Although there are no infinite-range interactions in the subsystem performing the
computation (the group of three spins in Fig. 5-4), the range of the interactions
between the clock spins and the spins in the computational subsystem (shown as
dashed lines) beconies infinite as the length of the computation increases.

In order to make a Hamiltonian model of quantum computation that retained the
property of time-independence but had no infinite-range interactions, Margolus[112)

applied Feynman'’s clock spin idea to an intrinsically local model of computation,
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cellular automata. His two-dimensional cellular automaton model[112] succeeded in
providing a model in which the Hamiltonian is both time-independent and short-
ranged; however, the rate at which useful computation occurs is again diffusive. The
problem of diffusive computation is more serious in Margolus’s cellular automaton
model than in Feynman’s model of serial computation since there is no apparent way
to modify Feynman’s spin-wave solution so that it can be applied here.

Some progress was made on the diffusion problem for a one-dimensional version
of this quantum cellular-automaton. Margolus and I were able to show[115] that the
computation-rate operator defined in [112] commutes with the Hamiltonian. This
suggested that there might be some hope of finding of an initial state analogous to
the spin-wave solution in Feynman'’s construction, a state that would insure that the
computation progressed at a uniform rate.

However, we were not able to calculate any of the eigenvalues c.- eigenstates of
the computation-rate operator{115] or even show them to be nonzero. In the absence
of at least one positive eigenvalue, one cannot assert that the problem of diffusion
is overcome. Furthermore, one is prevented from addressing such questions as how
the maximum computation-rate ymax(M) scales with system size M, that is, how
much additional processing one obtains by adding as additional cells are added to the

cellular automaton.

In this chapter, we show how to do better. We present the first model of quantum
computation that satisfies Landauer’s criteria, stated below, for the realizability of a

model.

5.0.3 Plan of this Chapter

Most physicists would very likely be satisfied by a Hamiltonian which
has a sufficiently familiar and simple structure, e.g., a Hamiltonian for
a reversile cellular automaton which resembles an Ising lattice Hamil-
tonian. But it really is a very drastic assumption abouvt the real world

to assume that even simple Hermitean operators are physically realizable
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Hamiltonians. Landauer[99]

There are two parts to Landauer’s criteria: reasonableness and actual existence.
The first criterion, then, is that the Hamiltonian should be recognizable as some
idealized theoretical model—preferably a model originally designed to capture some
aspect of a real system.

In this chapter we present a model of quantum computation that satisfies Lan-
dauer’s first criterion—all of the long-range properties of the system are described
by a Hamiltonian ﬁ,ync identical to that of the one-dimensional XY model of Lieb,
Shultz and Mattis[104].

The model of parallel quantum computation described by ﬁ,y,,c, unlike the cellu-
lar automaton models of refs. [112] and [115], is exactly solvable in the sense that
closed-form expressions can be found for the eigenvalues and eigenvectors of both
the Hamiltonian and computation-rate operators for systems of arbitrary size. The
exact solution permits us to give the first analytical treatment of the interplay of
quantum-mechanical evolution on computation properties, such as computation rate.

We find that the maximum achievable rate of parallel computation ymax(M ) scales
linearly with system size M. However, the linear coefficient is 2/m, rather than the
ideal limit of 1. We give a simple physical argument based on a variational principle
to show that for any quantum computer the ideal limit must be unachievable.

The simplicity of the anisotropic antiferromagnetic Hamiltonian, Fsync, thus pro-
vides a model of quantum computation that possesses all three of the physical prop-
erties desired: it is spatially local, time-independent, and simple enough to be con-
sidered physically realistic. As such, it represents another step toward the goal of
making our models more physical.

By sheer good fortune, it turns out that the quantum cellular automaton pre-
sented here is not only simple and familiar; to a large extent, it also meets the second
of Landauer’s criteria, physical realizability. There appear to be real experimental
systems which, at sufficiently low T', are accurately described by our Hamiltonian.
The experimentally observed heat capacity Cv and transverse clectric susceptibil-

ity x. of both praseodymium trichloride (PrCl;) and praseodymium ethyl sulfate
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(Pr(C2HsS04)s - 9H,0,) near T = 1K agree with the theoretical values predicted by

ﬁaym to within about 1%.

5.1 The Model

5.1.1 Hamiltonian of the Quantum Cellular Automaton

As we have seen, quantum computers are defined by translating some classical model
of computation, such as a Turing machine or cellular automaton, into a Hamiltonian
H acting on a Hilbert space H. In addition to making our Hamiltonian local, we
want its interactions to be as simple as possible. One strategy for achieving this is to
make the interactions involve as few particles as possible. To this end, we base our
model of quantum computation on a 2-body automaton. Recall from Chapter 2 that
in this form of cellular automaton, cells interact at any given time with either their
left or right neighbors but never with both simultaneously. The space-time diagram
for the evolution of a 2-body cellular automaton was shown in Fig. 2-4 (reproduced

here as Fig. 5-5).

Figure 5-5: Time evolution of a 2-body CA in one dimension is identical to that of a
one-dimensional lattice gas.

The pattern of time evolution of a 2-body cellular automaton (Fig. 5-5) can easily
be translated into that of a one-dimensional lattice of spins. Suppose each cell n of

the automaton can take on one of |Q| states. Then, for any J such that 27 > |Q|, the
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state of a cell can be represented by the state of a group of J spin-% particles, 7, ;
with0<j<J-1.

In the same manner as we constructed an operator that represented the NAND
gate, any 2-body cellular-automaton rule fn having the pair of sites (n,n +1) as its
inputs and outputs can represented as a sum F, of products of raising and lower-
ing operators on the 2J quantum spins T, ;, Because cellular automata are spatially

uniform, the function f is independent of n.

5.1.2 Asynchrony

The goal of keeping the Hamiltonian completely local compels us to consider asyn-
chronous computations. By asynchronous we mean that at different locations in the
cellular automaton different amounts of progress will have been made at any given
time.

In order to construct a time-independent Hamiltonian, we employ Feyrman’s
method, taking our Hamiltonian to be H = F + Ft. Since we want H to be local,
we must take the forward-step operator F' as a sum of local operators F,, each
involving raising and lowering operators for nearby spins. That is, we take F' = >on F,
rather than F' = I, F.. The F, carry out the cellular automaton rule on a single

neighborhood of the 2-body rule; that 1s, on the spins at sites n and n + 1. So the

requirements of time-independence and locality lead us to an evolution operator
0 = e/ o Pt T, Flasn, (5.14)

Expanding the exponential, we obtain a sum of products of the forward (ﬁn) and
backward (F1)/1) evolutions at various locations n. So U inevitably generates non-
vanishing amplitudes for configurations in which some regions of the cellular au-
tomaton have experienced more updates than others—-that is, configurations of an
asynchronous computation.

Many, but not all, such configurations will spoil the computation irremediably. For

example, in Fig. 5-6(a), the configuration in which a single pair has been updated
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once, and no other cells have been updated at all, is not disastrous, since neighboring
cells still have a chance to catch-up before this pair of cells changes state again.
However, if the same pair updates twice before its left and right neighbors have
updated once, as in Fig. 5-6, the computation is beyond repair since the states of each
member of the pair might well have been different if their left and right neighbor pairs
had updated first, as they would have in the synchronous computation. In short, the
pattern of interactions shown in Figs. 5-5 and 5-6, the patiern that defines a 2-body
automaton, is compatible with asynchronous computation so long as neighboring cells
differ in the net number of forward updates they have experienced by no more than
one. In Fig. 5-6 this has a simple pictorial interpretation. If the local times (solid
cells) are thought of as monomers of a polymer extending along the z-axis, then an
asynchronous configuration is allowable if the polymer is unbroken (as in Fig. 5-6a)

and unallowable if (as in Fig. 5-6b) it is broken.

A [ HAX
SO N

@ )

Figure 5-6: (a) An allowable asynchronous configuration—that is, one which preserves the
integrity of the computation, and (b) one which must be prohibited.

Fortunately, it is possible to add a constraint which will insure that U gives only
the allowable asynchronous configurations a non-zero amplitude. Toffoli[143] has
given a general technique for preserving the integrity of a computation in the face of
asynchrony by adding a few degrees of freedom to the system. In our case a single
bit per site suffices. This additional synchronization bit is represented by a spin-%

operator &, at each site. The synchronization bits are coupled to one another in such a
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way that the places that get ahead wait for their neighbors to catch up (see Fig. 5-8).
They insure that no pair of cells are updated unless they contain data corresponding
the same moment of the synchroncus computation. In operator language, they insure
that F, and F',[ annihilate any configuration unless the neighboring pair of cells they
operate on have experienced exactly the same number of net forward steps.

One can synchronize the asynchronous computation in many different ways[143].
Since all choices simulate the same synchronous computation, the choice has no effect
on what is ultimately computed. That is, the detailed choice of how we preserve
the integrity of the computation may be roughly likened to the choice of a gauge
in a system with gauge invariance, where the choice has no effect on the resulting
behavior of physical observables. And just as an apt choice of gauge can enable us
to solve an otherwise intractable problem, we will find that an apt choice of synchro-
nization “gauge” leads us to a Hamiltonian different from that considered in [115],

but computationally equivalent and exactly solvable.

% Ha
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Figure 5-7: The synchronization bit |o) € {|-),|+)} enforces a constraint on the
asynchronous configurations so that U does not corrupt the overlying computation.

The “gauge” we choose for the the synchronization bit o, is shown in Fig. 5-7.
Figure 5-7a shows a “flat” configuration, in which each cell has been updated an equal
number of times (horizontal row of solid cells). The corresponding configuration of
the synchronization spins o, is an alternating product of states with m, = +1. The

synchronization constraint is enforced by requiring the synchronization spins at sites
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(n,n+1) to be in the state |—)pn|+)ns1 before the operator F, is permitted to update

sites (n,n + 1) in the 2-body automaton.

When the update is allowed, the configuration of the synchronization spins changes

according to

|=)al+)ns1 = [+)nl]=)nt1. (5.15)

Similarly, the backward step operator F‘,I is only permitted to operate when the
corresponding synchronization spins are in the state |[+)n|—)n+1. Whenever F acts,

the configuration of the synchronizauv.on spins changes according to

[+)al=)ns1 = [=)nl+) s (5.16)

It is straightforward to verify that these rules preserve the integrity of the computation
despite the fact that U generates nonvanishing amplitudes on configurations in which

some regions of the cellular automaton have been updated more often than others.

Algebraically, the synchronization spins are incorporated into the dynamics by

taking the forward compuiation operator to be

e M-1
- + - + - B -
F= 2: O2n02m 41420 + 0204105012 Adngr = 2: OnOn1An (5.17)
n=0 n=0

where the o7, o7 are the usual lowering and raising operators for the synchronization

spin at site n. The full Hamiltonian for the quantum cellular automaton then becomes

M-1
H=3 ofo;,An+o o, Al (5.18)
n=0

5.1.3 Effective Long-range Hamiltorian

The Hamiltonian (5.18) acts on a Hilbert space H = Hgynec ® Heomp composed of
the synchronization and computation parts. Since it determines all the long-range
properties (such the computation-rate), we will mostly be concerned with the syn-

chronization part.
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The evolution on Hcomp is given by the operator F‘n that describes the cellular
automaton rule. The details of its construction and evolution are a matter of compu-
tational, but not physical, interest. In ref. [22] (see Chapter 2) we have shown that a
one-dimensional cellular automaton can perform universal computation with as few

as six bits per site[22].

The long-range properties we are interested in, like the rate of computation and
its dependence on the total energy, depend only on the evolution of the synchro-
nization system, and not on the details of the computation riding on top of it. The
evolution of the synchronization subsystem can be considered separately because its
dynamics is data blind. This can be seen from the fact that the Hamiltonian (5.18)
has a special form. Since operator products o}, ; and 0,07, in (5.18) each mul-
tiply the operators A, and ﬁfl which describe, respectively, the entire forward and
backward computations, the transitions made by the synchronization spins are com-
pletely independent of the transitions—the terms in the sum A,—experienced by the
computational degrees of freedom. Consequently, we henceforth consider only the
effective Hamiltonian on the synchronization spins. We will see that it captures all of
the effects of quantum mechanics on the computation-rate of our cellular automaton

model.

The effective Hamiltonian for the evolution on Hoync is

M-1
Hypne = Y ofonyy + 0,08, (5.19)

n=0

We recognize the effective Hamiltonian Hgync as an extremely anisotropic Heisen-

berg antiferromagnet

M-1 M-1
H=J), (0n0mp +onon) + 2 D Tn0n41 (5.20)
n=0 n=0

with exchange couplings J;, = 1 and J, = 0. This model is sometimes called the one-
dimensional XY model[104]. From the identification H= ﬁsync = ﬁlD xy we know

the energy eigenstates and eigenvalues [117]; however, in this chapter we are princi-
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pally interested in the spectrum of a different operator, an operator that characterizes

the computation rate of the quantum cellular automaton,

5.1.4 Computation Rate Operator f‘(M )
Definition

Because we wanted a time-independent Hamiltonian, we used Feynman’s method,
defining H = F + Ft. The addition of the F't term insures that H is hermitian,
but it also means that the time evolution operator {J = ¢if/h will undo parts of the
computation whenever the operator F't acts. Because of the Symmetric occurrence
of F and Ft in U, it is not obvious that the computation can occur at other than
a diffusive rate. Recall that Feynman solved this problem by adding an infinite line
of clock spins to his quantum spin computer. Each clock spin was coupled to every
spin of the quantum computer in such a way that as the clock spin moved forward,

the quantum computer took one step forward in its computation; when the it moved

initializing the line of clock spins with a spin wave of positive momentum, it was
possible to insure that the quantum spin computer made progress at a uniform rate.
This established that, despite the presence of F'f, diffusive computation was not
inevitable,

Unfortunately, in order to remove the infinite-range couplings, we are compelled

automaton with Hamiltonjan (5.18).

To address this issue, we must explicitly define an operator I’ that captures some
reasonable notion of the net raie at which the computation js moving forward. Then
we need to show that the Computation-rate operator I* hag an eigenstate |y) with a

positive eigenvalue. Finally, we need to show that as the System evolves the rate of
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computational progress does not decrease to zero. To do this, it suffices to show that
|v) is also an eigenvector of H, since the eigenvalue v > 0 is then a constant of the
motion.

To help motivate the definition of T, we define an auxiliary operator N.. On
the basis states—states in which each cell has been updated a definite number of
times—ﬁc returns the sum over all cells of the number of forward minus the number
of backward steps that have taken place relative to some arbitrarily fixed state. We

can think of the computational-rate operator as the time-derivative of this operator
N, = —[K,N,. (5.21)

So T chari erizes the net rate at which the computation runs in the forward direction.

Evaluating the commutator, we obtain

| =

M-1
L(M)=-3 otor,, —o,0%,. (5.22)

n=0

o~

The computation-rate operator characterizes two distinct aspects of how parallel

quantum computations scale: temporal and spatial scalability.

The Problem of Diffusion: Temporal Scalability

We will often contrast the undesirability of diffusive-rate computation with the de-
sirability of “uniform-rate” computation. The natural diffusive behavior can be visu-
alized as the diffusion of a closed polymer loop (representing the net computational
progress at each site of the periodic array of spins) along a tube (Fig. 5-8). By |
uniform-rate computation, we mean that after a time mT, the quanturn: computer
has made am times as much forward progress as it had made after at time T'. In terms
of the computation-rate operator f‘(M ), uniform-rate computation will be possible
if and only if T (M) has at least one positive eigenvalue. Uniform rate computation
15 more than just a convenience. Without it, many simple computations are beyond
practical reach. As we have seen in §5.0.2, a computer that makes only diffusive

progress is so unhelpful that it scarcely deserves to be considered a computer at all.

94



Figure 5-8: Diffusive evolution of the one-dimensional quanturn cellular automaton
with periodic boundary conditions can be visualized as diffusion of a closed loop on
along a tube, where z denotes the spatial extension of the automaton and N, the
amount of computational progress. I' measures the rate of change of the striped area.

Consequently, although the quantum cellular automaton model with Hamiltonian
(5.19) and computation-rate operator (5.22) is physically-realistic, until we show that
T has a positive eigenvalue, we cannot be certain it should be considered a model of

computation.

Parallel Computation: Spatial Scalability

The second kind of scalability, spatial scalability, will bring us into contact with some
notions that currently interest architects of parallel computers. Here we would like
to know how much additional useful computation we obtain as we increase the size
of our system.

If we regard each site of the quantum CA as a processor in a parallel computer, the
analog of the diffusion problem is the problem of scalability of parallel computation.
For example, if we are given a parallel computer that is M times as large as another, we
might reasonably hope to perform our old computations M times as fast; alternatively

we might expect to perform a computation M times as large in the same time Tp. If
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we discover that we can only perform a computation v/M times as large in time Tp,

then we find ourselves in a situation analogous to that of diffusive computation.

There is an extensive theory of parallel computation[101, 92], but the focus of much
of this theory has been on models which implicitly incorporate classical-mechanical
assumptions about the nature of interactions between processors. One way to see
the point of the model of quantum computation proposed here is to contrast it with
one such model, the parallel-random-access-memory (PRAM) model[59, 101]. In the
PRAM model, any processor can read the state of any part of memory without delay,
but no two processors can simultaneously change the state of the same part of memory.
The PRAM model thus abstracts out nearly all notion of the cost of communication.
This makes it a particularly useful tool for exploring the inherent parallelism of an
algorithm, because it cleanly separates retarding effects caused by non-parallelizable
segments of the algorithm from retarding effects due to communication delays in a

particular architecture.

Here our interest is just the complement. Once we have satisfied ourselves that
computation-universal algorithms of 2-body type exist (see Chapter 2), we can focus
on how the quantum couplings—the communication between cells—affect the com-
putation rate, by ignoring the particular algorithm running on the quantum cellular
automaton.

Keeping this complementarity of interest in mind, we can adopt some useful con-
cepts from the theory of parallel computation.

Nussbaum and Agarwal[127] have recently given a rigorous definition of the scal-
ability ¢ which reflects the cost of interprocessor communication in a given archi-
tecture. For an algorithm a and problem of size n, they define the scalability of

architecture R to be

PRAM n
o (n) = max (T}'Tn%)) : (5.23)

where p denotes the numnber of processors, TPR*M(n) is the execution time on a

PRAM, and T%(n, p) is the execution time on a p-processor machine with architecture

R. We consider the scaled-speedup([62], in which the size n of the problem is assumed
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to be the same as the machine size M.

To adapt this definition to our interests, we consider the best-case scenario in
which a is ideally parallelizable, thereby focusing on the cost of communication rather
than the particular algorithm «. This has two consequences. Since « is assumed
ideally parallelizable, the PRAM achieves the ideal speedup TFRAM(M) = 1/M.
Second, the maximum over p in (5.23) is equivalent to the asymptotic limit as p — oo,

so that, setting p = M,

1 . SE(M)
- R _ 1 _ o
A}T}JO¢Q(M)— h_r.réo (MTf(M)) _A}l—r»%o . (5.24)
The quantity
n= A}irréoSa(M)/M, (5.25)

the speedup achieved by M processors relative to the ideal speedup, is called the
asymptotic parallel efficiency.

For the quantum cellular automaton, the measure of parallel efficiency that cox-

responds to these classical measures is
A}im Tmax(M) /M, (5.26)

where Ymax(M) is the largest positive eigenvalue of T for a system of size M. The

spatial analog of diffusive computation corresponds to
'7max(M) ~ Mﬁ (527)

with < 1/2.
From a com»utationai puint of view, of course, the most desirable scaling exponent

is # =1, which defines uniform-rate computation. In that case we will find
7max(M) = "M (5.28)

for some coeflicient 7, equal to the parallel efficiency, 0 < n < 1. In the case n = 1,
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we say that ideal scalability is achieved.

Until now, no model of quantum computation was solvable, so it was not possible
to address any of these issues. The exact solution given below will enable us to
compute the eigenvalues and eigenstates of f‘(M ) and the scaling of ymax(M) with

system size M.

5.2 Exact Solution

Our goal then is to find the exact eigenstates and eigenvalues of f‘(M ) in systems
of arbitrary size M. In particular, we are interested in the limits of parallelism, so
we will want to find the largest eigenvalue ymax(M) of T'(M). We want to know
what state to prepare the system in to obtain the fastest possible computation-rate,
so we will want to know the eigenvector |ymax(M)). that corresponds to the largest
eigenvalue. Finally, we are interested in how much all this parallel computation will
cost us in terms of energy—we want to understand the correspondence between the
energy eigenvalues of the one-dimensional XY Hamiltonian (5.19) and the parallel
computation-rate eigenvalues.

The exact solution we obtain in this section will let us answer these questions,
but the path to that solution is a little more tedious than one might expect from the
simple form of the operators (5.22) and (5.19). Fortunately, the physical reasons for
this are easy to sce[l117].For the computation-rate operator (5.22), clearly the state
|0y = [TM, |-)n is an eigenstate with eigenvalue y = 0. Since the system is translation
invariant, single-particle states with translation eigenvalue k (such that e*M? = 1)

may be constructed as
M

k) = 3 ereat|-). (5.29)

n=0

If we try to continue by constructing two-particle states
|k, &) = |k) |K), (5.30)

we realize that the product contains terms like o;f|—) x o¥|—), where both particles
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(flipped spins) reside on the same site, in violation of the exclusion principle. Ordi-
narily, for indistinguishable fermions we would be ab)e to apply an antisymmetrizer

A to |k, k') to obtain the correct statistics. But in our case, this goes too far; the

antisymmetrizer solves the problem of multiple occupancy of an individual sjte (which

we want) but it also antisymmetrizes between siteg (which we don’t want).

One solution is to apply the a,nt.isymmetrizer, and then undo the antisymmetry
between sites “by hand”. This can be done by taking appropriate boundary conditions

in place of the periodic condition ¢#*Me — 1. If we antisymmetrize, we obtajp

M M

Z Z(eikma-l-ik'na _ eikna+ik'ma)0_rt0'-l{-’0) (531)
m=0 n=0
or, equivalently
M M . N} . N}
Z Z (etkma+tk na _ etkna-l-;k ma)O’;O’:!O), (532)

m=0 m<7i<N+m

where we take ot +i = 0f. To undo the unwanted part of the antisymmetrization,
note that for two siteg (m,n), where m < < M, the transposition of sites occurs in

this sum as (n+ M, m) rather than as (nym). So the transpose contains the factor

. - . . . .
egkma-}-ak naetkMa _ etkMaelkna-Hklma' (533)

From (5.33) we see that the unwanted anticommutation between sites can be undone

by taking the antiperiodic boundary conditjon
e*Ma — 1 (5.34)

in place of the periodic boundary condition.

In general, for the P-particle states, when the particle with the largest lattice in-
dex passes through the origin to become the particle with the smajlest index, it is

equivzlent to transposing it with the P — 1 intervening particles. Since the antisym-
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metrizer treated these particles as fermions an unwanted sign (—1)?~! was acquired.
To remove it, we need to take the antiperiodic boundary condition (5.34) when p is

even and the periodic boundary condition when p is odd.

In principle, we could perform this hand symmetrization throughout, but in prac-
tice it becomes too cumbersome for computing the spectra of the operators we are
interested in. We need a more systematic way ‘o handle the mixture of commutation
and anticommutation relations that occur in our system. This is essentially what
the Jordan-Wigner fermion operators[77, 79, 91] accomplish. We will be engaged in
manipulating these operators throughout §5.2.1-5.2.4. As a result, we will obtain the

exact eigenstates and eigenvalues displayed in Table 5.1 at the end of §5.2.4.

5.2.1 Fermion Interpretation

Introducing Jordan-Wigner operators

nl ircto n-l
an<_He i i)anz(_ﬂ —0,)0,1,
1=0 1=0
(5.35)

n-1 n-1

—_ 4+ inoto™ _

d =0t T &7 =t Tl o7,

1= 1=

we see that the string of o” operators that “tie” each o* to the origin have the effect
(Fig. 5-9) of generating the required off-site anticommutation relation, since the
anticommutation of any two c¢;,¢; with 7 < j will always entail the anticommutator

{o7,07} =0, so that {¢;,¢;} = 0. Similarly, one can verify that {c;,c}} = bmn-

Using the relations

(5.36)

o’0* = +o%,
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|

n=M-1

Figure 5-9: Schematic depiction of the Jordan-Wigner operators. Each x represents
a factor of 0% and each © a factor of ¢~. The anticommutation of the operators

indicated by the dotted arrows gives the required off-site anticommutation relation
for fermions.

we find that for the non-boundary cases, » = 0,...M — 2,

+.0+ t
O, C"n+l - _c;t:cn+1,

a;an+l = CnCn41,

(5.37)

+,- . =
OnOnt1 = —CI‘C,,_H,

‘7;‘7:+1 = Cnc:r:+1-
5.2.2 Periodic Boundary Conditions

As described above, unexpected subtleties arise from the conjunction of fermion ex-
change symmetry and periodic boundary conditions.

If we were trying to understand the thermodynamic properties of this system
then, in the thermodynamic limit, the particular boundary conditions chosen would

typically affect the result by a term of order ~ 1/M, where M is the system size. For
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such purposes a convenient and harmless inconsistency can then be indulged in: ex-
pansions are done in a basis of eigenstates of the periodic botndary conditions, while
the tedious operator relations entailed by periodic boundary conditions are avoided
by (inconsistently) employing the simpler relations appropriate to a chain with free
ends. Unfortunately, the computation-rate operator and Hamiltonian cannot be di-
agonalized for the open-ended line; they can be only be simultaneously diagonalized
if periodic boundary conditions are imposéd. This unexpected distinction between

situations that are usually physically indistinguishable delayed our observation that

we could have [H,T] = 0.

The case n = M — 1 must therefore be handled with some care. We can derive

the following operator identities in the case of periodic boundary conditions

t — + M_2_ zZ\
cp-1€0 = Oip_y( 'Ho Uj)Uo
1=
(5.38)
+ M1 z\ =
= oy ]l _aj)aﬂ'
J=0
Since 0§y = —0y = —0q 0, it follows that
M-1
chi1co = —aty_yo5 I] o2, (5.39)
71=0
so that the product of operators straddling the origin is given by
. MZ" t
T ) Cjcj ~
ON_105 = —cL_lcoe 7=0 = _C}lfl—lcO(_l)NF (5.40)
where Ny is the fermion number operator. And similarly,
: Mi] '
Ly C<C'j ~
108 = —e 1=° ’ chem-1 = —(—1)Nrebenr_s. (5.41)

Armed with these identities, we can now express the compulation-rate and Hamil-
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tonian operators in terms of the true fermion operators:

~ 1Mz S =
P 1S dhens = chysen + () dowar = (<) Pehyien (5.2
n=0
and
— M2 - .
H=Y)" clenpr + cfl_l_]cn — (=)Nredenroy — (=1)VFel,_jeo - (5.43)
n=0

Note that the number of fermions present is manifestly conserved by the Hamiltonian.
For initial states capable of synchronizing the quantum cellular automaton properly,

the number of fermions is equal to M/2.

5.2.3 Parity of Fermion Occupation
In the fermion basis, we can diagonalize the computation-rate operator

~ 1
==
?

M- -
Z Cnt1 — C::+lcn + (—I)NFCJ[CM— - (= I)NFCL—lcO : (5.44)

n=0

The appearance of the number operator complicates the diagonalization of the computation-

rate operator [. It also occurs in the Hamiltonian,

M- ~ ~
=Z cnt1 + chyren = (1) ebem — (=) elyye0. (5.45)

First, define projection operators[82, 83]

~

Py = -;-(1 + (=1)Fr) (5.46)
onto the subspaces of even and odd Np. Then, since

Po(-1)Nr = £p, | (5.47)
we can split the computation-rate operator

f‘=P+f‘+P_f‘=P+f‘++P_f‘_ (548)
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into even- and odd-fermion parts I'y, where the even-fermion part is

1 M-2

f‘.,. =z 2 clc,H_l - c,TH_1 cn + c;’,cM_l - c}l{_lco (5.49)
n=0
and the odd part is
" 1 M-1
.= A Y clenyr — ¢l e (5.50)
n=0

Similarly, the Hamiltonian can be written as

—_

H=P+ﬁ+P.ﬁ=P+ﬁ++P_ﬁ_, (5.51)

where the even-fermion part is

M-2
H, =) clenyr + cf,_,_lcn — chepror — chy_ico (5.52)
n=0
and the odd part
. M=
H_ =Y cleapr +clyicn (5.53)
n=0

The operators (5.49)-(5.53) are now free of reference to Ny and can be diagonal-
ized independently. The correct spectra of ' and H must then be reconstructed
by selecting as eigenstates and eigenvalues of T’ (and H ) only those eigenstates and
eigenvectors of 'y (resp. ﬁi) that survive the corresponding projections in (5.48)

and (5.51).

5.2.4 Eigenstates and Eigenvalues

Our Hamiltonian is now seen to involve only the free propagation of fermions, and
furthermore, the number of fermions is manifestly conserved. For the initial condition
we contemplate when using this system to synchronize a quantum computation, every
other site contains a fermion. The evolution of the synchronization bits then corre-
sponds to the free propagation, with correct exchange symmetry, of these fermions

along a one-dimensional ring.
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Letting
M-1 .
ai = VIM > e'kncm
(5.54)

n=0

—lkn

a, = e

k T nZ—:O
we find
1 - (1
> CaChyr = D ” Y emhng, Y el Hingih | (5.55)

n n k k!

Consider the even-ferminn part of the computation-rate operator I';,

(5.56)

s||-—l

M-
Z C.Cnt1 — n+lcn + COCM 1= CR{ 1Co -

If we define the sets Koaa = {35:(2¢ + 1)|g = 0,%1,...} and Keven = {3772¢lq =

+1,...} , then

1 M=2 1
i E (.A_d: z:"7e’{¢:n:h‘.l ﬁ z:klel\’ocld

F+ = i
n=0
iknaale—ik’(n+l)aak' _ eik(n-&-l)aale—ik’naak,)

(5.57)

1 1
+ﬁ EkGKodd M Ek'eKodd
ik'(M—-1)a

—etkM-Dagty ., + ale ay .

ikMa — oik'Ma — _ 1 the two boundary terms can

Since for even fermion occupation, e

be combined with the sum from 0 to M — 2

I, = Y. —2sinka aley . (5.58)
kEKodd
For the odd-fermion part T'_ of the computation-rate operator
(5.59)

M-
E CnCnt1 — cn+1cﬂ .

s[p—-

Note that the limit in the sum is now M - 1, since the boundary terms are merged
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into the sum in the odd-fermion case,

-~ M-1
o= 12 (3 ZkeKeven 37 Lwek
i M Eleven M €Reven (5.60)
eiknaalfce—ik'(n+1)aakl _ eik(n+1)aa’te—ik’naak, )
Simplifying,
I = Y —2sinkaalax. (5.61)
k€Keven

The even and odd-fermion parts of the Hamiltonian are handled in the same way:
M-2

H, = Z CI;Cn+1 + cl_,,lcn - cf,cM_l - c},_lco. (5.62)

n=0

Taking the Fourier transform,

Hy = nz=:0 (H LkGKodd M Zk'GKodd
eiknaalte—ik’(n+l)aakl + eik(n.-l-1)aal'te—il:'naak,)
(5.63)
1 1
—M 2k€Koaa M Ek'eKodd
_eik(M—l)aaIak’ + aleikl(M—l)aak' .
Again, for even fermion occupation, e*M® = e*'Ms = _1 and the two boundary
terms can be combined with the sum from 0 to M — 2, yielding
H, = 3" 2coskaalay . (5.64)
k€Koad
For the odd-fermion part ﬁ_,
. M-1
H_ =" clepr + el orCn (5.65)
n=0
A = T (& Tk &5
= = M k Keven M K Keven
n=0 M € M € (566)

eiknaaze—ik’(n+l)aak' + eik(n+l)aaze—ik’naak' )
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| Operator | Allowed Wavenumbers Eigenvalues Eigenvecicﬁs__l

Ly {(2q+1) 3z 1¢=0,%1,..} | 2sin(2¢ + 1)5% aL%HIO)

| {2¢57-1¢=0,%1,..} 2sin 2q77 as,|0) \
Hy [ {(2¢+1)7519=0,41,..} | 2cos(2g+ 1) | al,410)

H. {2¢% | q¢=0,%1,...) 2 cos 29 al,|0) 3

Table 5.1: Eigenvectors and eigenvalues.

T'he odd-fermion case proceeds in complete analogy to that for the computation-rate
operator, f‘_,

H_= D 2cos ka aluy . (5.67)

ke{4=2ql9=0,%1,...}

So we see that the eigenvalues for both I'y are sums over occupied momentum
states, 2k occupied 25in ka, where k € {37-(2¢ + 1)|¢ = 0,%1,...} for Ty and k €

{35-2¢lqg = 0,%1,...} for [_. In each case, the corresponding eigenvector is given by

W)= II dllo), (5.68)

{k} occupied
where |0) is the momentum space vacuum, and the k’s are either odd or even multiples
of m/Ma for the even or odd fermion occupancy cases, respectively. Similarly for the
even and odd fermion parts of the Hamiltonian, ﬁi, except that 2cosk replaces

2sin k throughout.

5.3 Parallel Computation Rate

From the single-particle eigenstates and eigenvalues found in the previous section, we
can construct eigenstates of f‘(M ) and determine both the maximum rate of parallel
computation and the energetic cost of computing at a specified rate.

However, we must be careful about what we call the maximum computational rate;
it need not correspond to the largest eigenvalue of I'(M). Recall that the quantum
state corresponding to the initial state of the classical computation has alternate
spins up and down. Since the number of flipped spins, which is also the number of

fermions, is manifestly conserved by the Hamiltonian, all configurations will satisfy
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Ne=M /2. Therefore, a configuration of the synchronization bits is of no interest,
regardless of how big 7. in that state, if it is not also contained in the eigenspace of
N with eigenvalue M /2. We will refer this as the physical subspace.

The maximum computational velocity is therefore properly understood to mean
the largest eigenvalue Ymax(M) of T(M) such that the corresponding eigenspace L.
has a nontrivial intersection with the physical subspace. We will need to keep this

constraint in mind in the following section where we construct exact eigenvectors of

I' and in Section 5.3.2 where we use it to eliminate spurious numerical solutions.

5.3.1 Maximum Computation Rate

First, we briefly review the construction of the ground state[117]. For M — oo, the
spectra of both H and T' in Table 5.1 can be represented as a continuous plot with
respect to k as in Fig. 5-10. In actuality, only the cases where M is even produce a
2-body cellular automaton with well-defined neighborhoods. In addition, the figure
must be used with the understanding that for finite M, if M = 0 (mod 4) then
k = (29 + 1)7/(Ma), while for M # 0 (mod 4), k = (2¢)r/(Ma). At T = 0, the
ground state is obtained by filling the M/2 lowest energy single-particle states. This
procedure creates a Fermi sea in which all single-particle states with k € (—x, —7/2)

or k € (7/2,7) are occupied. The total energy in the ground state is then

_7|—/

2 —-m/2
2coska d(Mak/27) + 2coska d(Mak/27) = —2M [~ .
(5.69)

Egs. (M) = /
-
The maximum computation-rate ymax(M) can be found in a similar manner. Be-
cause we always divide by the number of sites M, rather than the number of fermions,
in order to determine the parallel efficiency, we cannot maximize the parallel efficiency
Y(M)/M = Y v by including only a few single-particle states with very large eigen-
values ;. Instead, starting from the largest positive single-particle eigenvalue /2,
we should include progressively smaller 4, until we have either included M/2 single-
particle states or we have exhausted all positive eigenvalues.

However, because the spectrum of I is symmetric about ihe k-axis, exactly half of
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Figure 5-10: Single-particle spectra of H(M) and T'(M) in the limit M — oo.

the single particle states have 4, > 0. Therefore, the physical case of half-filling (i.e.,
with M /2 single-particle states) coincides with the case that maximizes the parallel
utilization I'/M. We see that the largest (and smallest) eigenvalues of T always belong
to the physical subspace.

Because a translation/reflection symmetry connects the energy and computation-
rate spectra, there is a simple relation between the ground-state energy and the
maximum computation rate. If we reflect the spectrum of H through the k-axis and
tranclate it by —m /2, the states of lowesi energy are brought into congruence with
the states that perform parallel computation at the highest rate. Because of this
symmetry, we see that the maximum parallel computation rate is identically equal to
the negative of the ground-state energy:

(M) = lim —EAF (M) = 2M . (5.70)

Moo g T
Therefore, the asymptotic efficiency of parallel computation is predicted to be

. ymax(M) _ 2
A}llnm = (5.71)
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The convergence to this asymptotic limit can be examined for small M either by
constructing the exact solution explicitly or by obtaining the eigenvalues of T'(M)

numerically.

5.3.2 Numerical Results

The Hilbert space H(M) for the M site space is H(M) = @M H,. In the ba-

sis consisting of the 2™ tensor products {®M3! |m.)n | m. - : £1}, ordered from

QM |=)n to @MY |+),, the T(M ) are sparse Hermitian matrices which have a self-

similar structure along the diagonal. For M = 4 and M = 6, they are shown in Figs.

5-11 and 5-12.

- +
+ -
- +
+ -
+ - - +
+ -
- +
- +
+ -
- + + -
+ -
- +
+ -
- +

Figure 5-11: Form of f‘(4) Nonzero elements are all +:.
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Figure 5-12: Form of ['(6).

The eigenvalues and eigenvectors were found by iterating the Jacobi transformation([133].
Figures (5-13)-(5-15) show the spectral distribution obtained by diagonalizing '(M)
for M = 4,6, and 8 numerically.

In each case, the single-particle spectrum is concentrated around v = 0, with the
greatest spectral weight at exactly ¥ = 0. Consequently, it is far from obvious that

one can construct any M/2-particle state whose computation rate satisfies the spatial
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Figure 5-13: Spectrum of T (M) for M = 4. Degeneracy g versus eigenvalue .
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Figure 5-14: Spectrum of f‘(M) for M = 6.
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Figure 5-15: Spectrum of T'(M) for M = 8.

scaling relation ymax(M) > MP with an exponent f larger than the diffusion-like
B =1/2.

Numerical and exact analytic solutions will show that in fact ymax(M) ~ MP with
B = 1. That is, the quantum automaton attains linear spatial scalability. Consider the
construction of the maximum computation-rate eigenvalue for the simplest nontrivial
case, M = 4. From Table 5.1, the allowed values of ka are £7/4 and £37/4. The
corresponding single-particle eigenvalues are 4% = 2sin(ka). That is yirq = £V/2

and Yiar/a = +v/2. We need to choose the two largest, so we obtain
"Ymax(4) = 2\/5 (572)
Numerically we find ymax(4) = 2.82843.

The eigenstate corresponding to Ymax(4) = 2v/2 can be obtained from Table 5.1

by calculating the coefficients of the product basis when the two single-particle states
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ka = 7 /4 and £37 /4 are included. We find

2v2) = ~V2——++H) il -+ -H)+ V2t - - )

- . _ (5.73)
FIV2 -4 -) A -+ ) - V2 - ).

12 | | | | |
10 -NUMERI\C}AL -
8 I oM/T — _
M —

FYmax 6 | :
i -
2 N ol !

(1l 1 . J B |
0 2 4 o : . J

Figure 5-16: Comparison of numerical results for maximum parallel computation
velocity and exact value of asymptotic M -— oo behavior of —E:.E . Linear and
square root scaling is shown for comparison.

Both numerical and analytic solutions for M = 4,6, and 8 indicate that the
asymptotic efficiency of parallel computation 2M/x is attained even for the smallest
possible values of M (see Fig. 5-16). From the spectra of T' and H (Fig. 5-10),
we see that, in order to attain the maximum computation rate, an excitation energy
AE = 2M/n must be supplied. Since this equals half the maximum possible energy
of the system, this is a relatively large excitation. Now we would like to explore
the question of how fast the parallel quantum cellular automaton can compute with

smaller excitation energies.
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5.3.3 Relation Between Energy and Computation Rate

When the system is in its ground state, the computation rate 4 vanishes because
the energy spectrum is symmetric and the computation-rate spectrum antisymmetric
about k£ = 0. In fact, we can see from Fig. 5-17 that the computation rate v vanishes
whenever the system is in thermal equilibrium at any finite 7. This follows from
the fact that the computation-rate spectrum (thin solid line) is symmetric about the
Fermi surface at k = £7/2, so that the finite-temperature Fermi distribution function

(bold line) cannot change y(M) from its T = 0 value, which is v(M) = 0.

]

3

]
w3
(e
A -
3N

Figure 5-17: Temperature dependence of the computation rate. The Fermi distribu-
tion function f(k) (solid bold line) at the finite temperature 8 = 10 illustrates why
(7) = 0 at all finite temperatures.

Although it is not possible to compute faster than diffusively when the system is
in thermal equilibrium[17], the quantum cellular automaton can attain a substantial
fraction of its maximum possible computation rate with surprisingly little excitation
energy.

To show this, we must first identify the state with the largest computation rate
among those of a given energy. Alternatively, we can achieve the same end by iden-

tifying the state with minimum energy among those with a given computation rate.
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States of many different total energies can have the same parallel computation-rate.
For a given 4o < Ymax = 2M/7, we would like to find the minimum energy at which
7o can be achieved. From the spectra of H and T (Fig. 5-10), we see that to obtain a
given 7o at a minimum energy cost we should shift the ground state configuration of
the Fermi sea to the left until 4 has increased from its ground state value of zero to
0. This follows from the fact that the spectra of H and [ are shifted by 7/2 along
the k-axis, and therefore the left shift adds the k states with the largest available
eigenvalues of T' and smallest positive energy (near k = = /2), while simultaneously
vacating the states of least negative energy and most regative computation-rate (near
k= —m/2).

For example, assume M (mod 4) # 0, so that e*M? = 1, and therefore k,a =

2rn/M. From Table 5.1, the single-particle eigenvalues in this case are

2sin25n  (for I,

. (5.74)
2cos2yrn. (for H).

When M is large, the full M/2-particle eigenvalues of I' and H can be approximated
by integrals over occupied single-particle states. If éka = € denotes the amount by

which the Fermi sea has shifted toward the left, then

€ M 2M -
v(e) = 2./) 2 cos kagd(ka) = ——sine (5.75)
and
ce. ..M d4M | , €
E(e) = 2 /0 2sin ka3 —d(ka) = —sin’ .. (5.76)

From these, we can express the maximum computation rate obtainable at energy E,

4M_

HE) = \[B(= - B). (5.77)

Figure 5-18 shows the maximum computation rate per site that can be attained for
a given energy density (i.e., energy per site). The parallel computation rate is normal-

ized to the maximum attainable at any energy. The maximum parallel computation
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rate Ymax(M) occurs when the energy density is equal to half the maximum energy
density the system can possess. Note that near the ground-state, a small excitation
energy can produce a relatively large increase in the computation rate. An excitation
energy AE = 0.1 x Epax one can yield a parailel computation rate ¥ = 0.6 X Ymax. In
contrast, as the maximum computation rate is approached, relatively large increments
to the energy of the system are unable to produce much additional computation rate.
Beyond an excitation energy equal to half the maximum energy content of the system,

additional excitation energy actually reduces the computation rate.

Y(E)/Yma / \

0 0.5 1
E [ Emax

Figure 5-18: Maximum computation rate per site as a function of excitation energy
per site.

5.4 A Quantum Limit on Parallel Computation

What are the ultimate limits imposed on the computational process,
as a result of the fact that computation is inevitably done with physical

degrees of freedom, subject to the laws of physics. Landauer([99]

In equation (5.71) of the previous section, we have seen that the maximum parallel

computation rate ymax(M) scales linearly with the size M of the system. And, at
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least for the one-dimensional 2-body automaton, the coefficient of proportionality
was ) = 2/x.

In this section, we want to explore the physical origin of the linear scaling coef-
ficient. We show that the result 7 = 2/7 is a particular example of a more general
limit, 7 < 1. That is, the efficiency 7 = ymax(M)/M of parallel computation is strictly
less than 1 for any nontrivial computational system whose computing elements are
governed by quantum mechanics. The more general result can be obtained using
an argument akin that use by P. W. Anderson[3] to set bounds on the ground state
energy of antiferromagnets.

Recall the variational technique for obtaining upper bounds on the actual ground
state energy E of a quantum-mechanical Hamiltonian H that acts on wavevectors in
a Hilbert space H. By restricting attention to a parametrized family {|(&))} C H of
test wavevectors, we evaluate E(&) = (¢(&)|H|(&)), vary & to obtain the minimum
E(Gmin) of E(Q). Implicit in this procedure is the observation that E(&min) > Eo
because the parametrized set {|i)(&))} always constrains, rather than enlarges, the
possible wavevectors in H.

‘The argument that will be used here depends crucially en this notion of constraint,
so we refer to it as the “constraint argument”. However, what we want to obtain
here is not an upper bound on the ground state energy, but an upper bound on the
maximum eigenvalue of I'. This is analogous to obtaining a lower bound to the ground
state energy FEy.

Our argument will be seen to apply whenever the operator whose eigenvalues we
want to bound has two properties: it should be of N-body form; that is, it should
consist of a sum over clusters of terms that involve no more than N degrees of freedom.
Secondly, the operator should be a normal operator!.

The twist is that, instead of applying the constraint argument to the actual ground
state on one hand and a relatively constrained parametrized wavefunction on the
other, the role of the parametrized wavefunction is played by the actual state | Ymax)

with maximum computation-rate, while the role of the actual ground state is now

1That is, if the commutator [[, T'n] vanishes.
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played by a tensor product of states, each of which maximizes the computation rate

of an individual non-interacting cluster.

In analogy to the observation that |1)(&)) is constrained by the parametrization,
we observe that |ymax) is constrained, relative to the case of non-interacting clusters,
by the requirement that it be maximum for the entire system of interacting clusters.
From this, it follows that the sum over non-interacting clusters of their individually
attainable maximum computation rates is an upper bound to the computation rate
attainable by the interacting system. From the computational point of view, this is
simply the statement that when processors need to communicate with one another,
the computation rate decreases. Physically, the communication between processors

corresponds tec the interactions between clusters.

As an example, suppose the exact solution were not available and we wanted to
obtain an upper bound on the largest eigenvalue of the operator I for the quantum

cellular automaton model. Note that

. M-1 1 M-1 .
=% ;[cj,.:n+1 —cach]l = Y T (5.78)
n=0 n=0

can be written as a sum of local two-body operators [, involving creation and an-
nihilation only on sites n and n + 1. Strictly speaking, of course, I, is an operator
on the full M-site Hilbert space H, but it can be straightforwardly identified with its
restriction f‘;; to the four-dimensional space H, ® H,4+1. In the occupation number

basis on sites n and n 4+ 1 we find

00 00O

-, 1100 -1 0
I,=- (5.79)

tfo0 1 00

00 0G

which has eigenvalues, 'y}") € {-1,0,0,1}.

Letting |Ymax(M)) denote an eigenvector corresponding to the maximum eigen-
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value of T for a system of M sites, we can use (5.78) to write

Ymax(M) = ('Ymax(M)lfl'YmAX(M))
(5.80)

= E <7max(M)|f‘n|7mhx(M)) .

n=0

We will obtain the desired bound on ymax(M) by applying the constraint argument
in order to obtain a bound on each (7max(M)|f‘n]'ym“(M)) forn=0,..,M—1.

The full Hilbert space can be decomposed in two distinct ways corresponding to

the two clusterings of the 2-body automaton: either as

H=Ho®H1) Q@ (H2QH3)® - ® (Hanr—1 ® Has1) (5.81)

or as

=(HM-1®@Ho) @ (H1 @ H) ® - -+ ® (®@Hrm-3 ® Hu—2). (5.82)

If we choose to decompose H according to (5.81) then, since the ', are Hermitian
(and hence normal), we can form a complete basis for H by taking tensor products
of the eigenstates {|'y_§"))| 1 < j < 4} of the T, for n even. Similarly, if we chose
to decompose ‘H according to (5.82) we can form a complete basis for H by taking

tensor products of {|’y}"))| 1 £ j <4} for n odd.

In order to obtain a bound on (Ymax(M)|T's|Ymax(M)) for n even, we chose the

decomposition (5.81) and write

[Ymax(M)) = 3 2c<"')|71"’> . (5.83)

n/ even j=1

The constraint argument applied to the operator

igig - el 9101 (5.84)



in the state |ymax(M)) then immediately gives us
4
(7maX(M)|Fn|’Ymax(M)) = Z |0§n)|2’71(-") < mJ?'x{')’;('n)} =1 (5.85)
i=1

Upon substitution into (5.80), (5.85) gives the desired bound on 7,

')'max(M )

= <l1. .
n M <1 (5.86)

The equality in (5.86) only holds if |ymax(M)) is in fact also an eigenstate of (the
extension of ) each local operator [',.. In other words, only if the actual state [Ymax(M))
is in fact just a simple tensor product of the “local states” |y{®) (M)). This can

be the case only if the global system is merely a collection of non-interacting local

subsystems.

Since any non-trivial computation requires communication between sites and since
communication is inevitably realized by physical interactions, the equality in (5.86)
never holds:

Tmax(M) < M. (5.87)

The generality of this result is somewhat greater than may appear. For instance,
it does not depend on the dimensionality of the space. It depends only on the ability
to decompose the appropriate computation-rate operator into a sum of local cluster
operators I, as in (5.78). In order to apply the constraint argument, we must be able
to compose an orthonormal basis for the entire Hilbert space by taking products of the
eigenstates of the I',. If T, is normal, then its eigenvectors form an orthonormal basis
for the space on which I', is defined and we can construct the required orthonormal
basis for the entire Hilbert space. The class of normal operators is fairly broad; it
includes many commonly encountered types: unitary, hermitian, anti-unitary, anti-
hermitian. It is therefore reasonable to expect that, in the absence of severe pathology,

f‘n will often bz normal.
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5.5 Experimental Realizations

In Section 5.1.3 we have shown that the long-range synchronization of the one-

dimensional quantum cellular automaton is governed by the Hamiltonian

M-1
Hoyne = Z cr:a;H + a;a;:'_'_l, (5.88)

n=0

which we identified as a type of one-dimensional XY model[104]. Elsewhere[22] we
have shown that this form of cellular automaton requires no more than six bits per
site to achieve universal computation. Together, these suffice to show that quantum
computation need not involve unphysical, highly-contrived Hamiltonians. Instead,
the arbitrarily defined part of the Hamiltonian can be restricted to act on a local
computational subsystem Hcomp involving no more than six spins[22]. The long-
range synchronization of these subsystems is mediated by the simple, physically-
realistic XY Hamiltonian. However, the ultimate standard of realism is not simplicity
alone, but what Nature has seen fit to include in its repertoire. In this section, we
review the experimental search for real systems governed by the one-dimensional XY
Hamiltonian Hgync.

The search for experimental attention has focused on certain rare earth compounds
because both thecretical arguments based on crystal symmetry[l] and EPR (electron
paramagnetic resonance) studies[150] indicated that they were likely candidates. The
two systems that have been investigated most extensively are praseodymium trichlo-
ride (PrCl3) and praseodymium ethyl sulfate (Pr(CyH5S04)s - 9H;0, or PrES). In
both crystals, the Pr®* ions have the trigonal point group Cs, as shown in Fig. 5-
19 for PrES. Paramagnetic resonance experiments[150] have shown that for isolated
Pr®* ions in yttrium ethyl sulphate the resonant absorption transition is primarily
due to electric rather than magnetic dipoles associated with the ions. But a simple
parity argument shows that the presence of the o, symmetry operation (reflection
through the plane perpendicular to the z-axis) forbids the existence of any electric
dipole moment along the z-axis[l, p.661]. Since the chains of Pr®" ions along the

z-axis are known to order antiferromagnetically, the net interaction between a rhain
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of spins and its neighboring chains may be small. So we might reasonably expect
the electric dipoles associated with the Pr®* ions to interact via a Hamiltonian of the

form

M
H=7% Ji(onon,, + OmOmy1) + J:0007 1, (5.89)

m=0
with J 1> Jz.
In the extreme anisotropic limit J, = 0 this Hamiltonian has precisely the form

of Hyyyc, the Hamiltonian that synchronizes the quantum cellular automaton.

Figure 5-19: Location of Pr34 jons (solid dots) in praseodymium ethyl sulphate
(Pr(CzH35S0,); - 9H,0). Paramagnetic resonance experiments[150] strongly suggest
that along the chains nearest neighbors are coupled by electric dipole interactions
with J, <« J, = J,, while interactions between chains are negligible.

The effective values of J L and J, between pairs of Pr®t jons can be determined
experimentally via ESR (electron spin resonance). To determine J, and J in PrCl3,
a crystal of LaCl; is doped with enough Pr** to produce a significant number of
nearest neighbor pairs along the z-axis. Since the spin-spin interaction between the
Pr’* jons shifts the location of the resonance peaks in the ESR experiment, J, and
J: can be determined by comparing the location of the peaks with their location in a
similar experiment on a crystalline sample containing only isolated Pr®t ions. Simi-
larly, the value of J, and J, in praseodymium ethyl sulphate (Pr(C,H3S0,); - 9H,0,
abbreviated PrES) can be determined from ESR experiments on Pr** pairs in LaES.

In a series of such experiments, Culvahouse et al.(37, 36, 38, 52] have measured the
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PrCls PrES
J./kp | 2.85% 0.14K | 0.6720% 0.0010K
J./kp | 0.11% 0.14K | 0.0105+ 0.0004K
T/, 25.9 64.0

Table 5.2: Experimentally measured coupling constants between Pr’* ions in
praseodymium trichloride and praseodymium ethyl sulphate[37, 36, 38, 52] deter-
mined from electron spin resonance (ESR) absorption.

values shown in Tabie 5.2.

Since the transverse coupling constant J, is greater than the longitudinal coupling
J» by one to two orders of magnitude in both PrES and PrCls, these measurements
indicate that the effective Hamiltonians of these crystals is of nearly the same 1D

XY form as the Hamiltonian that governs the quantum cellular automaton.

This suggests that other experimentally meusurable quantities may agree with
predictions derived from the 1D XY Hamiltonian. Unfortunately, the occurrence of
the exponentiated fermion-number operator Np throughout the theory has made it
difficult for theorists to use the exact solution of the 1D XY Hamiltonian (5.43) to
predict the values of most experimentally accessible observables. However, theoreti-
cal expressions for two observables, the specific heat Cy and the transverse electric

susceptibility xxx have been derived by Katsura[82] and Capel[27], respectively.

For the PrCls system, Harrison et al.[65] measured both the specific heat and
transverse susceptibility at temperatures of 1K — 10K. Folinsbee et al.[52] measured
the same two quantities in the PrES system. All four measurements show remark-
able agreement between theory and experiment. Data from Refs. [52] and [65] are

reproduced below.

The experimental evidence clearly suggests that the effective Hamiltonian gov-
erning the dynamics of Pr®* ions in crystalline PrCls and PrES is the same as the
Hamiltonian (5.43) that governs the synchronization of the one-dimensional quantum

cellular automaton.
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5.6 Discussion

In this chapter we have attempted to address some of the well-placed criticism[99] that
has been lodged against Hamiltonian models of quantum computation, principally the
criticism that the Hamiltonians are so physically artificial that the physical relevance
of the models themselves is brought into question. Here we have presented a quantum
cellular automaton all of whose important long-range properties are described by a
simple one-dimensional anisotropic antiferromagnet—the one-dimensional XY model.
But the XY model is more than just a simple, realistic-looking Hamiltonian. It
predicts many low-temperature properties of the rare earth compounds praseodymium
trichloride and praseodymium ethyl sulphate that have been experimentally verified.

Some artificiality remains in ﬁcomp, which describes the internal short-range dy-
namics of each cell of the cellular automaton. But even if we require the quantum
cellular automaton to be computation-universal, the artificiality is confined to a uni-
formly repeated unit cell of no more than six spins[22). It is 2amusing to note that the
Can symmetry of the praseodymium compounds gives each Pr®* ion exactly this many
nearest reighbors. If the dynamics of the small but arbitrary unit cell could ever be
realized, something completely unexpected will have come to pass. The Gedanken
computers of Benioff and Feynman will have become real physical systems.

But even if (as seems likely) this never occurs, the quantum cellular automaton
presented here can serve as an analytically solvable yet physically realistic model of
quantum computation. It may also help open an experimental window to understand-
ing how two flourishing theoretical enterprises rooted in the early twentieth century
—quantum theory and the implicitly-classical theory of computation—will ultimately

be reconciled.

127



128



Chapter 6

Ballistic Computation in an Array

of Quantum Dots

Few-body automata can also guide us in finding ways that—at least in principle—let
us extract universal cornputational behavior from realistic models of nanostructures.
This chapter is adapted from a paper that described the first computation-universal
cellular automaton that used realistic effects in a quantum dot array as the basis of its
computational dynamics. In particular, it is based on the quantum dot structure pro-
posed by Obermayer, Teich and Mahler[130, 129, 140, 128, 108], and the interactions
between nearby dots that they have predicted.

Growing concern about the future o device miniaturization (43, 152, 42, 134, 66]
has recently led a number of device physicists 11, 10, 28, 50, 68, 53] to take a fresh look
at one of the oldest! paradigms for computation, cellular automata. Unfortunately,
as we mentioned briefly in Sec. 2.6, conventional cellular automata (CA), such as the
well-known “Game of Life”[20], are not readily adaptable to serve as an architectural
paradigm for arrays of submicron devices. Our purpose in this chapter is two-fold.
First, we explain why the conventional form of CA is not suitable for the purposes
device physicists contemplate. Secondly, we show how few-body cellular automata

overcome the limitations of conventional CA and, in some circumstances, can provide

1Cellular automata were introduced around 1950 by Ulam[146], von Neumann[147] and Zuse[158).
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a physically realistic model for submicron device arrays. But before we approach
these issues, we should understand the trends that are leading some device physicists
to revisit the venerable concept of cellular automata.

Two kinds of limits to the continued down-scaling of device dimensions are ap-
parent: limits to scaling individual MOS devices and limits imposed by the presence
of long interconnections.

The scaling of individual MOS devices is limited by the range of achievable mate-
rials properties. In order to maintain reliability in the face of thermal fluctuations and
manufacturing variations, operating voltages must be kept above a certain minirnum.
Unfortunately, since the range of achievable dielectric constants is limited, as one
continues to operate progressively smaller devices at this minimum voltage, one in-
evitably produces larger electric fields within the device. As these fields increase, the
physical assumptions on which the logical operation of MOS-type devices is based will
eventually break down, and the scaled device will become computationally useless.

Because improved materials (and the ingenuity of designers) play some role, it
is impossible to give a precise limit to the scaling of MOS devices, but a number
of careful analyses[42, 134, 66, 11] suggest that channel lengths below about 0.1
would require techniques so extraordinary as to be uneconomical. In an effort to
continue miniaturization past this point, many researchers are investigating novel,

nanometer-scale devices based on qualitatively different physical principles[135, 90].

The second barrier to continued downscaling, the interconnect problem, is not
fundamentally a physical limit, but an architectural one. Combinatorial analyses[45)
have shown that current architectures produce a distribution of wire lengths contain-
ing so many long wires that their clock speed would ultimately be limited by Tgc, the
approximate time scale required to charge or discharge long wires when transmitting
a signal. However, the length of the longest wires is not a reliable metric. If an
architecture requires only a few long wires, special techniques can be employed to
alleviate their delays. A better indicator of the limiting clock speed of a circuit is
based on the average length (I) of its wires.

The average length can be related to a simple architectural property, the so-called
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Rent exponent, which characterizes how the number P of input/output ports required
by a circuit scales with the number of gates G. For a wide variety of circuits, the

function P(G) has been found to follow “Rent’s rule”:
P = kG’ (6.1)

where k is a constant and the Rent exponent p is typically between 1/2 and 1.
Consider the architectural assumptions that lead to those two extremal cases. If
every gate had its own connection to the outside world, tlLen clearly we would be
in the p = 1 limit. At the other extreme, in a two-dimensional array of gates with
area A < G, only nearest neighbors are connected, so input/output ports only occur
along the perimeter, and therefore the two-dimensional array has a Rent exponent
p = 1/2. Current architectures for gate arrays exhibit Rent exponents of p ~ 0.6-0.7
[138, 100, 34]. Because p is an exponent, this excess over the id_al limit p = 1/2
becomes significant for large enough arrays.

The Rent exponent can be related to the average wire length, which in turn limits
the maximum speed of the system. Donath[45, 48] has shown that the average wire

length (I) depends on the gate count G and the Rent exponent p as?

-1 . .
(1) ~ Gz Tfp > 1/2 (6.2)
co if p<1/2

where ¢y is a constant. Modeling a wire as a transmission line with resistance R

and capacitance C per unit length yields a simple diffusion equation with solutions

characterized by a time delay mc ~ (I)2. This time scale then sets the scale for the
maximum clock speed.

Letting & = p — 1/2, we see from (6.2) that if § > 0, then Trc ~ G eventually

diverges as the circuit complexity G grows. As the size G of the circuit increases, the

maximum system speed decreases. However, we could prevent interconnection delays

2 Actually, for p exactly equal to 1/2, Donath finds {I) ~ log G, but the distinction is insignificant
for our purposes.
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from limiting overall system speed if we were able to achieve p < 1 /2. By eq. (6.2),
this corresponds to the case of fixed interconnect length. This line of reasoning has
led some device physicists to consider modes of computing that require only short

local interconnections; that is, cell. _ar automata.

Several groups(11, 10, 28, 50, 68, 53, 9, 49, 148] have noted the formal similarities
between regular arrays of interacting nanometer-scale devices and two-dimensional
CA . In existing cellular automata machine architectures[126, 144, 145, 116], the
CA evolution is determined by an external lookup table, and requires additional
circuitry and interconnections beyond that needed to store the state of the cells.
If instead of a lookup table the existing physical interactions between neighboring
devices could somehow be used directly to produce the dynamics of a computation
universal cellular automaton, then the logical operation of each cell would require
only local interconnections.

Over the past decade, device physicists have expended considerable effort in ex-
ploring the variety of interactions present in nanostructures (see[135, 90, 49]). But
CA researchers have thus far not made a reciprocal effort aimed at exploring the
question, “What form must a cellular automaton take when its dynamics is produced
not from an arbitrarily definable lookup table, but directly from known physical in-
teractions?”

To answer this question, we must first enlarge the abstract notion of CA to
include a new kind of physical CA ; that is, cellular automata whose structure reflects

important properties of physical interactions, such as their range of interaction.

If we try to take the mathematical definition of conventional von Neumann (or
Moore) neighborhood CA as a literal prescription for a physical implementation, we
are immediately faced with serious problems. If we simply arrange nanometer-scale
devices in a dense rectangular array, the device cells may interact with each other,
but we have given up all control over which cells interact with which neighbors, and
when they interact. In general, the state of a cell at any given time will depend on the
states of a multitude of nearest, next-nearest, and further neighbors at a multitude

of times, depending on the effective range of the interaction. The resulting dynamics
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may be of interest in its own right, but it has little more than its spatial discreteness
in common with cellular automata. Its range of computational utility will likely be
limited to the simulation of a few systems that coincidentally possess a dynamics

similar to its own.

If there is to be any hope of performing more general-purpose computation with
these arrays, we need a less literal interpretation of what it means to impose the struc-
ture of a cellular automaton on a physical system composed of interacting nanometer-
scale subsystems. We need an interpretation that recognizes certain common proper-
ties of physical interactions—in particular, that their strength varies smoothly, often
with some characteristic screening length .. Furthermore, this interpretation should
provide enough structure to give us some control over both (a) which devices interact

as neighbors and (b) when these interactions occur.

In this chapter we present an alternative line of reasoning that leads to few-body
automata. In the viewpoint introduced here, we proceed by finding a simple way
of endowing the class of partitioning cellular automata[126, 110] (a generalization of
lattice-gas automata[110, 46, 56, 64, 63]) with the two desired properties properties
described above. Because this transformation entails replicating each cell, we call
this special case of few-body cellular automata replice CA and the transformation
itself is called the replication transformation; the PCA from which the replica CA
1s generated will be called its progenitor. We illustrate the utility of replica CA by
using a (4-body) replica CA to solve a previously posed problem: that of finding a
computation-universal cellular automata architecture that uses an idealized form of
the single-electron quantum-dot device proposed by Obermayer et al.[130, 129, 140,
128, 108]. For a number of practical reasons not relevant to the present discussion,
the resulting construction is not easily amenable to error-correction 2 (or even to
fabrication), but it will serve us well enough as a simple example of how replica CA

might be applied to more realistic nanoscale devices.

3Zurek[157) has shown that the effective phase space of the classical billiard ball model doubles
at every collision.
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6.1 Partitioning Cellular Automata

Partitioning automata (PCA ) are characterized by the fact that, unlike conventional
von Neumann automata[146], their neighborhoods can be regarded as time-dependent
clusterings of cells, each cluster being completely isolated from every nther.

In a von Neumann automaton, the next state of a cell is determined by its own
state and by the current state of a time-independent set of neighbors (a typical neigh-
borhood in two dimensions consisting of N, S, E and W neighbors). In contrast, a
two-dimensional partitioning automaton begins by partitioning the entire space into a
large number of non-overlapping clusters of cells; the cells of each cluster then evolve
to a new state that depends only on the current state of cells in that cluster. That
is, each cell belongs to one and only one neighborhood at any given time. At the
next discrete time, a different partition, or clustering, may be used. Cells that were
neighbors (i.e., in the same cluster) at the previous time-step are typically no longer
neighbors; cells that were not neighbors previously may become neighbors in the new
partition.

This seemingly inelegant clustering mechanism has had an important benefit to
lattice-gas theorists: the global conservation laws that produce hydrodynamics at
large length scales can be incorporated into the dynamics of a simulation simply by
ensuring that within each cluster the corresponding local conservation law is obeyed.
Fig. 6-1 shows the form of a two-dimensional PCA where the clusters are 2x2 squares

of cells, and where two distinct clusterings (partitions) are used.

6.1.1 Tilings, Partitions, and Clusters

In order to describe the construction and operation of replica CA we will first need to
characterize ordinary, unreplicated PCA a little more formally. Since our principal
application is to planar arrays, we can define two-dimensional PCA in the notation
of tiling theory[61]; this notation will also give us a concise way to describe some of
the less familiar lattices generated by the replication transformation. The relation

between tilings and PCA is intuitive: we associate individual tiles with the cells of
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cluster of Py

cluster of Py

Figure 6-1: Partitioning CA with 2 x 2 cluster neighborhoods.

the CA , and each partition of a PCA will be regarded as a coarser tiling of the
plane by the clusters.

A tiling is defined as a countable family of closed sets with pairwise-disjoint in-
teriors, called tiles, whose union is the entire plane. Although both PCA and the
replication transformation can be extended to general tilings, for simplicity we con-
sider only regular? tilings, where each tile is a regular n-gon. Three such tilings of
the plane exist: by equilateral triangles, by squares and by regular hexagons; these
will suffice to illustrate the replication concept. Generalization to both higher and
lower dimensions, and to irregular tilings is straightforward, and will not be discussed

further.

Definition. A partition, P(7), of a tiling 7 is itself a tiling of the plane such that

each tile of P(7), known as a cluster, contains an integral number n > 2 of tiles of 7.

4This use of the term “regular” is, of course, totally unrelated to that in Sec. 2.2, where it
referred to the behavior of interactions at r = 0 and r — co.
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In partitioning automata, clusters play the role of neighborhoods. To obtain a
nontrivial dynamical system, more than one partition must be employed. When the
cells of the PCA are clustered according to the m* partition, it is said to be in its

m*® phase.

Definition. A n m-phase k-state partitioning cellular automaton is an (m + 1)-
tuple, m > 2,
[T’ (pl(T)’ 01)7 seey (Pm(T)) Um)],

where 7 is a tiling of the plane, each P;(7) is a distinct partition of 7, and the
functions o; : Z;* — Z;* are the i*"-phase evolution operators; n; is the number of

tiles contained in each cluster of P;(7), and Z; denotes the integers modulo k.

The operation of a PCA corresponding to the square tiling of the plane is shown
in Fig. 6-1. The clusters of the two partitions, P; and P,, are indicated by the heavy
dashed and heavy solid lines, respectively; the tiles of the underlying cellular array are
drawn with light dotted lines. The two evolution operators, o; and o5, are indicated
by circles; both are binary-valued functions o; : Z3 — Zj. The lowest level of the
figure depicts an initial clustering P, of cells into 2x2 clusters. Each cluster then
evolves according to o7, the new states (not shown in the figure) replacing the old as
time advances to to + 1. At fp + 1, the cells are again grouped in 2x2 clusters, but
with clusters defined by the partition P;. The clusters of P; evolve according to the
operator ;. At time ¢y + 2 the P, clustering is again in force. This two-phase cycle
repeats indefinitely. The replica CA architecture we will describe for the charge-
transfer quantum dot device has as its progenitor a PCA with the form shown in

Fig. 6-1.

6.1.2 Ballistic Computation

In order to show that the quantum dot system of Obermayer et al. is capable of univer-
sal computation in two-dimensions, we must focus on some particular computation-
universal cellular automaton rule. One of the simplest schemes for performing uni-

versal computation with a physically-inspired (though highly idealized) interaction is
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Figure 6-2: Computation universality of Fredkin’s billiard ball model. A ball will be
present in each output stream if and only if the indicated conditions on the input
streams, A and B hold.

Fredkin’s billiard ball model (or BBM) [55].

The billiard ball model is a classical-mechanical model of digital computation
obeying the reversible equations of motion for a gas of finite diameter, infinitely hard
billiard balls confined within a hard-walled container. The computational interpreta-
tion of its dynamics is straightforward. Streams, consisting of balls and gaps, play the
role of wires carrying 1s and 0Os in a digital circuit. The locus of a possible collision
between two balls is interpreted as a two-input/four-output logic gate (Fig. 6-2) that
computes the nonlinear, nonmonotonic Boolean functions fi(A, B) = AA B (meaning,
A AND (NOT(B))) and f3(A,B) = B A A. The rigid walls redirect the ball streams
so that the output of one logic gate can become the input to another. According to
a classical theorem[120] of switching theory, if one is given access to constant sources
of 1s and 0s along with the ability to form arbitrary interconnections, then any non-
monotonic nonlinear element suffices to synthesize all computable Boolean functions.
Therefore, by using these components to construct digital circuits, the evolution of
a meticulously arranged initial state of the gas of billiard balls can be interpreted as
the operation of a computer (see Fig. 6-2).

From this computation-universal but spatially continuous model, it is possible to
define a computation-universal CA . Because Fredkin’s BBM is both reversible and

and particle-conserving, efforts to implement it directly as a conventional von Neu-
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Figure 6-3: The transition table for the billiard ball CA .

mann CA only produced unwieldy constructions that required large neighborhoods
and many states per cell[110]. However, by introducing PCA , Margolus[110, 114]
was able to define a simple reversible and computation-universal cellular automaton
that is based on Fredkin’s BBM. In the PCA version, a single finite-diameter billiard
ball is represented by a train of two tokens separated by at least one empty cell; the

length of the train reflects the finite diameter of the ball.

The transition rule, which is the same for both phases (i.e., o1 = 03), is shown in
Fig. 6-3, where the black squares represent a token and white squares empty space.
The rule is invariant under 90° rotations of the 2x2 cluster, so it is completely defined
by its action on the six rotationally inequivalent cluster configurations shown. (For
example, the second row of Fig. 6-3, implies three additional symmetry-related cases:

an isolated token in any of the four cells moves diagonally.)

It is easy to verify that this CA faithfully reproduces the logic of Fredkin’s model,

and thus inherits both its reversibility and its computation universality.
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6.2 Spatial Replication Method

The ease with which PCA can incorporate physically conserved quantities makes
them useful for simulating physical systems with conservation laws. But, like von
Neumann CA , a direct translation of their mathematical definition still does not
provide a usable geometry for implementing parallel nanoscale computation for at

least two distinct reasons:

1. The cluster neighborhoods of PCA are even more physically unrealistic than
the nearest-neighbor-only neighborhoods of von Neumann CA . Physical inter-
actions (e.g. the Coulomb interaction) are generally strongest between nearest
neighbors, weaker between next-nearest neighbors, and so on. In contrast, at
any given time a cell of a PCA interacts only with others in the same clus-
ter, even if these are not its nearest neighbors. Simultaneonsly, the cell ignores
all cells in other clusters, even though some of them are in fact its nearest

neighbors,

2. Because they vary arbitrarily from one time-step to the next (in general, o; #
0i31), the PCA evolution operators appear to make unrealistic assumptions
about the physical interactions between device cells. Few interactions avail-
able at the nanometer scale can be made to exhibit arbitrary time-dependent

behavior.

Replica CA overcome these problems by incorporating the formal notion of what
we have termed a ‘cluster’ as an actual, spatially localized structure. Once localized,
the cells in each cluster can in principle be screened from the influence of cells in
other clusters. If such screening is possible in practice, we will see that the clustering
structure of replica CA enables us ‘o control which cells interact, and when they
interact. In addition, since the replicas of a cell will be localized in distinct regions, we
will be able to tailor their immediate environs differently, thereby making it possible
to achieve different local evolution operators (i.e., o; # 0i41) without resorting to

unrealistic time-dependent interactions.
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6.2.1 Replication Transformation

The essential idea of spatial replication is this: each cell of an m-partition PCA
is replaced by m distinct replica cells. The replica cells are linked into a ring® by
auxilliary cells whose sole function is to shuttle data from one replica to the next.
Any computation that would have occurred during the m'® phase at cell (i, ;) of the
progenitor PCA will instead occur in the replica CA at the locus of the m*? replica
of site (z, j).

Like conventional CA , PCA possess a notion of contiguity, but not distance
between cells; in particular, PCA lack a notion of the distance between the clusters
of its partitions. Replica CA are specifically constructed to possess a well-defined
intercluster distance, so that we can simultaneously obtain strong intracluster interac-
tions and weak intercluster interactions. A replica CA is produced from a progenitor
PCA by the three-step replication process R: replication, dilation, and relinking,
depicted in Fig. 6-4. The case shown, replication of a square lattice employing the two
partitions of Fig. 6-1, is the one we will use for the array of charge-transfer quantum
dots.

In Fig. 6-4, the first arrow indicates the combined replication and dilation steps
of the transformation. Fach cell is replicated a number of times equal to the number
of partitions (in the case shown, twice). The resulting doubled array is then dilated
by moving the replicated clusters apart in space. The magnitude of dilation required
will depend on the raiuge of the particular physical interactions between cells. The
result is a disjoint collection of clusters, each cell having a single replica in any cluster
to which its progenitor cell in the PCA belonged. For example, the progenitor cells
€, ¢, k, and A at the top of Fig. 6-4 each belong to an even-phase cluster (2x2 solid
squares) and an odd-phase cluster (2x2 dashed squares). Therefore, in the center and
bottom of the figure they have even-phase replicas: €, ¢, &, and X, and odd-phase
replicas: €, ¢, £, and A.

The second arrow represents the final step of the transformation, which relinks the

SIf the progenitor PCA has two phases, as will be the case in our quantum-dot example, the
ring degenerates into a segment.
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Figure 6-4: The replication transformation R applied to a 2-phase partitioning CA
on the square lattice (top). The corresponding replica CA is shown at bottom. In the
general case, R introduces m physical replicas of each site of the abstract automaton,
where m is the number of partitions in the progenitor PCA .
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replicas of each cell so that, for example, the data that occupy cell ) of the progenitor
PCA can propagate between the two corresponding replica cells, A and ) in the
replica CA . This requires the addition a minimum of m — é,,, cells (shown as dotted
rectangles in the bottom part of the figure) to link all replicas of the cell. Since m = 2

here, only a single cell is needed to relink the two replicas.

6.2.2 Time Evolution

At time ¢, only the clusters of (£ mod m)t* replicas will be occupied by data, and this
is precisely the data needed to perform the m*® phase of the PCA evolution. Once
this phase of the evolution (specified by 0,,) is complete, the relinking cells transport
the new state of each cell of the cluster to the respective locations of their (m + 1)t
replicas, so that the next phase of the evolution can be performed. For example, at the
bottom of Fig. 6-4, once data in the cluster containing €', ¢', «’, and X', has evolved,
the resulting contents of the cells are transported via the intervening relinking cells
to the cells labelled ¢, @, &, and A, which reside in four different clusters. In those
clusters the data again evolves, this time according to gy4;.

We can now see how replica CA :lleviate the first problem described above, that
of eliminating the unwanted influence of neighbors in other clusters. During the m!"
phase, data occupying the m'-phase clusters is literally clustered together in space.
Because of this, we can reduce the effect of cells in other clusters by increasing the
separation between the m'™'-phase clusters. In effect, the structure of replica CA
permits us to treat the intercluster separation as a parameter; it can be increased
until physical isolation of clusters is obtained, while simultaneously preserving the
logical operation of the evolution within the clusters.

For many physical couplings, there is some screening length Asc beyond which
changes in the state of more distant cells have negligible effect. This is the class of
interactions to which replica CA can be sensibly applied. By increasing the interclus-
ter separation D until D > Asc, we can insure that our logical model, based on PCA

, reflects physically realistic assumptions about the couplings used to implement it.
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Figure 6-5: Spatial replication of 3 phase partitioning automata on triangular and
hexagonal lattices.

Of course, many screenable interactions between nanoscale devices would require a
value of D so large that construction of the resulting arrays would be technologically
infeasible.

Moreover, the second obstacle enumerated above is simultaneously alleviated: the
spatial clustering of cells at each phase allows us to implement rules that vary from
phase to phase (o; # 0i41). To do so just entails finding a suitable static tailoring of
the spatial environment around all s*" phase and (i 4 1)** phase clusters, rather than

the substantially more daunting task of finding a suitable time-dependent interaction.

One can see that the replication transform R is applicable t¢ any partitioning
automaton. The result of applying it to three-phase PCA on the other two regular
tilings: the triangular tiling (which is denoted (3%) in the tiling literature[61], to
indicate that each vertex is the juncture of 6 regular 3-gons), and the hexagonal

tiling (denoted (6°)) is shown in Fig. 6-5.

On the left of the figure, the outlines of representative clusters of each of the
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three partitions are shown; for the (3°) tiling, the clusters contain two triangular
cells; for the (6%) tiling, they contain six hexagonal cells. The right side of figure
shows the location of the three replicas of the shaded cell on the left. The relinking
cells are shown on the right side of the figure as dotted cells. The resulting replicated
tilings have two and three different vertex types, respectively. In the notation of tiling
theory, the results of the replication transform on the tilings shown in Fig. 6-5 can

be summarized

R : (3°) — (3% 3%.6), (6.3)
R : (6%) — (6°;6%.3%; 3°) (6.4)

where, by convention (see [61, p.66]), the subscript indicates the second so-called

enantiomorphic (i.e., mirror image) form of the tiling.

6.3 Charge-transfer Quantum Dot

In the preceding sections, we have introduced the replication transform R, which sys-
tematically transforms abstract partitioning cellular automaton rules into the phys-
ically realizable form of a replicsa CA possessing a well-defined spatial structure.
Below, we will illustrate the application of replica CA by generating a computation-
universal CA architecture that employs a type of charge-transfer quantum dot device.
This device was proposed and analyzed in substantial detail by Obermayar et al.[130].

In this section, we briefly review the essential features of their device.

6.3.1 Geometry

The geometry and energy-level structure of the charge-transfer quantum dot device
are depicted in Fig. 6-6a. In the form investigated by Obermayer et al., the device
consists of two 4 nm wide quantum dots of GaAs separated by a 12 nm Ga;_,AlAs
barrier. The charge-transfer mechanism depends on the fact that the lowest conduc-
tion level and highest valence levels can be made to have radically different localization

characteristics.
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Because the effective mass in the conduction band is smaller than that in the
valence band, a given band-offset produces a smaller effective barrier in the conduction
band than in the valence band. For a small range (0.8 < 8 < 1.8) of values of the

band-oifset parameter
Byt — B~

P = Egy— B

(6.5)

the effective barrier in the valence band is large enough to localize the two highest
valence band states (denoted V By, and V BR) in the left- and right-hand wells respec-
tively, whereas for the same £, the corresponding barrier in the conduction band is
not sufficient to localize the lowest conduction state (denoted C B), which therefore
remains delocalized over both wells and the barrier, as shown in Fig. 6-6b. In the
remainder of this chapter, we will consider only these three states, and only in the
case that (as indicated by the Fermi level, er) a single electron populates one of the
three levels. Computationally, the quantum dots will each represent a particular cell
of a replica CA , and the presence of a single electron in one of the valence states will
represent a bit.

Since we are using the charge-transfer device solely te illustrate the use of replica
CA , we will henceforth ignore such important (and difficult) practicalities as how one
might initialize an array of singly occupied quantum dots (or maintain its operation
in the presence of significant sources of error); instead, we focus on applying replica

CA to a fault-free array of ideal charge-transfer devices.

6.3.2 Single Device Dynamics

Obermayer and his co-workers proposed a switching dynamics based on the observa-
tion that, for certain geometrical and materials parameters, optically induced transfer
of the single electron from one dot to the other is possible. The process is shown
schematically in figures 6-7a—c. The upper part of each figure represents a top view
of the double-dot device; the shaded area indicates roughly where the corresponding
electronic wavefunction has appreciable amplitude. The lower part of each figure

shows the corresponding energy level diagram for the two valence levels, V By, and

145



4nm 12nm 4nm
(@
GaAs Gag Al, As  |GageAlg A
X
E
Bl Tl e
(o)
//—\
VB oo O— \ E
e oI VB F
X

Figure 6-6: The charge-transfer quantum dot device. (a) Geometrical structure, (b)
Confinement structure of two highest valence band and lowest conduction band states.

V Bg, and the conductance band level C B; electron occupancy is indicated by the
small solid dot.

Suppose that initially the electron is localized in the left dot, as shown in Fig.
6-7a. Illumination with optical radiation tuned to the transition frequency w of
VB, — CB induces a transition to the delocalized conduction band level (Fig. 6-
7b). This state has lifetime 7, and quickly decays to either V Bg, as shown in Fig.
6-7c, or back to VBy.

Obermayer et al. point out that two time scales characterize this process: 7., the
time it takes to decay from the transient state back to one of the states localized
in the dots, and 74, the time for phonon-assisted tunneling through the barrier from
one dot to the other. On the latter time scale, information is irretrievably lost and
the system eventually comes to a computationally uninteresting thermal equilibrium.
Since the fastest possible switching time 7, is equal to the fastest relaxation time 7,

a necessary prerequisite[130] for the system to be computationally useful is 7, < 7q.

Fortunately, the authors of refs. [128, 130] have shown that this particular device
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Figure 6-7: Switching dynamics of an isolated charge-transfer quantum dot.

exhibits the necessary hierarchy of time scales, so that there exists an illumination
time 7, satisfying

T < T, K T4. (6.6)

For the double quantum-dot illuminated on resonance, the authors apply a rotating-
wave approximation to solve the Pauli master equation that governs the dynamics
of the reduced density matrix for this system. Solutions for the diagonal elements,
which give the population p;; of each dot, indicate that if the system is illuminated
by monochromatic light at frequency ws; = Ecg — Evp, for a time 7, = 10783, then
the electron is transferred to the opposite dot with probability p_.r > 0.99 (see esp.
Fig. 6a of [128]).
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Figure 6-8: Conditional switching of the charge-transfer quantum dot device. Due
to Coulomb effects, the laser frequency needed to transfer an electron from the left
dot to the right dot, w(N;, N;), depends on the numbers N; of nearest and N, of
next-nearest neighbor dots that are occupied.

6.3.3 Interaction Between Meighboring Devices

Since it occurs regardless of the state of any other quantum dot, the electron trans-
port mechanism described in the previous section is not yet sufficient to implement
universal computation. Obermayer et al. also identified and analyzed an interaction
mechanism. That is, they identified a charge transport mechanism that depends on
the state of nearby dots and can therefore, in principle, provide the basis for CA -like
computation. The interaction they propose for this purpose is the Coulomb interac-
tion between electrons localized in nearby dots, which shifts the energy levels slightly

(typically Aw/w = .01) depending on how many neighboring dots are occupied.
The conditional transfer effect is depicted schematically in Fig. 6-8. Figures 6-

8a—c show the energy levels of two charge-transfer devices lying next to each other.
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The frequency w(0,0) indicates the frequency needed to excite an electron in dot C
to the transient conduction level when neither the nearest-neighbor dot, B, nor the
second-nearest neighbor dot, A, is occupied.

Part (b) of the figure shows the relative shift of the valence levels of the righthand
device for the cases of one nearest, zero next-nearest neighbor dots occupied, and part
(c) shows the case of zero nearest, one next nearest dot occupied.

In order for a device to support universal computation, it must have two simple
properties: nonlinearity, the property that its output is not merely the superposition
of its inputs, and nonmonotonicity, the property that its output is not a strictly in-
creasing function of its inputs[120]. In addition, it must be possible to connect the
output of one device to the input of another. Since it can be shown that the condi-
tional charge transfer mechanism is a nonlinear and nonmonotonic logical function on
the states of the quantum dots, its ability to support universal computation is highly
plausible.

However, to describe a computation-universal CA. based on this mechanism re-
quires more; it requires us to explicitly define both a geometrical arrangement of
quantum dots and an illumination sequence; the sequence should specify the order
and frequency of the optical pulses that induce precisely those charge transfers needed
to simulate the evolutior of a universal CA . The geometrical arrangement is given

in sections 6.4 and 6.5.1; the illumination sequence is specified in section 6.5.2.

6.4 Planarization of Ballistic Computation

Unfortunately, even with the aid of the replication transformation the billiard ball
rule of Fig. 6-3 appears to be incompatible with the single-electron transfer mech-
anism described in section 6.3. The problem stems from the difficulty of crossing
stgnals in two dimensions, a difficulty that arises when we try to permit the diagonal
propagation of isolated particles for all four possible incident directions (see row 2 of
Fig. 6-3). Since there is only one valence level in each dot, if two electrons try to cross

paths they will be attempting to occupy a single available valence state; therefore,
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the billiard ball CA shown in Fig. 6-3 cannot be used. We must “planarize” the rule.
That is, we must modify it so that signals never need to cross, but without losing its

computation-universality.

The original billiard ball model CA though developed independently, was closely
related to the HPP (Hardy-dePazzis-Pomeau) lattice gas[64, 63), which has o; =
o2. As it turns out, we can planarize this model simply by starting from the TM
(Toffoli-Margolus) lattice gas[126, 145] instead. The resulting billiard ball CA is still
computation universal, but has o; # 0, (as mentioned above, this poses no problem
for physical implementations based on replica CA ). In this variant, tokens propagate
parallel to the z and y directions of the square lattice, rather than diagonally as in
the HPP lattice gas and in the billiard ball model of Fig. 6-3). The remainder of
the rule is constructed consistent with this requirement and with the action of the
original billiard ball model. At a linear cost in both space and time efficiency, it has

been shown that such variants can always be constructed[110, p. 91].

The construction consists of taking the transition table shown in Fig. 6-3 and
rotating the updated clusters (righthand sides of the arrows) in the clockwise direction
for the even partition (i.e, the clustering which holds on the even time-steps), and
in the counter-clockwise direction for the odd clustering. The resulting evolution

operators 07 and o, are shown in Fig. 6-9.

We see that for the even partition, the evolution o3 consists of rotating the states
in the clockwise direction for the majority of the cases. The two exceptions are
a counter-clockwise evolution when a single cell in the cluster is occupied (second
row), and no rotation at all when a diagonal is occupied. When the odd partition is
in effect, all rotational directions are reversed: cluster configurations with two non-
diagonal or three occupied cells rotate their occupied cells counter-clockwise, while the
single occupied cell rotates clockwise. The diagonally occupied states again remain
stationary.

It is important to note that for both oy, and o2 we can describe all three classes
of behaviors: ‘rotate counter-clockwise’, ‘rotate clockwise’ and ‘no change’, solely

in terms of the number of nearest and next-nearest neighbors ocrupied by a 1s bit.
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Figure 6-9: The complete transition table for the odd (left) and even (right) cluster-
ings of the TM-variant of the Billiard Ball CA, up to rotations of the neighborhood
cluster.

Consider ;. If an occupied cell has neither nearest nor next-nearest neighbors occu-
pied, the bit is alone in its cluster: move counter-clockwise; if a cell has no nearest
neighbors and one next-nearest neighbor, diagonal cells are occupied: do not move;
if an occupied cell has any other combination of occupied nearest and next-nearest
neighbors, its bit moves clockwise. It is easy to see that o has the same property.

This abstract ccruputational property strongly resembles the nearest and next-
nearest neighbor dependence of the Coulomb shift of energy levels described in section
6.2. We will take advantage of this resemblance by applying the replica transformation
to this TM-variant of Fredkin’s billiard ball model.

6.5 Construction of the Quantum Dot Automaton

6.5.1 Geometrical Arrangement

Now that the planarization constraint has been dealt with, the geometrical arrange-
ment follows almost directly from the definition of replica CA . Since the PCA in
Fig. 6-9 is a 2-phase rule on a square tiling, in order to derive the geometrical arrange-
ment of quantum dots (shown in Fig. 6-10), we start with the replicated tiling at

the bottom of Fig. 6-4. The unshaded solid polygons and narrow dotted rectangular
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regions separating them in Fig. 6-10 represent quantum dots and barriers respectively
(as in Fig. 6-6a and Fig. 6-7Ta—c). The role of the large shaded octagons is described
later. The principal difference between the replica CA of Fig. 6-4 and that of Fig.
6-10 is the addition of the small square regions that convert the cluster of four tri-
angular quantum dots in Fig. 6-4 into an octagonal cluster of triangular and square
quantum dots.

These intermediary square dots function as “latching cells” when transferring elec-
trons during the updating of the cluster. They prevent undesired multiple transitions
that would occur because the optically-induced transfer process does not take place at
a perfectly well-defined instant. By the analysis in ref. [130], if neighboring dots are
illuminated on resonance, charge transfer is guaranteed to have occurred with very
high probability after time 7, < 74. But there is nothing to prevent it from occurring
as quickly as the shortest relaxation time 7,. Without the intermediate latching cells
to buffer the charge-transfer transitions, charges would often make several consecu-
tive transfers within the allowed switching time time 7,, consequently arriving at an
unintended location. Unless we break the transition into two latched steps to prevent
this, the intended computation of the cellular automator. rule would be irrevocably
corrupted 6.

The function of the remaining unshaded regions is the same as in Fig. 6-4. The
triangular regions correspond to the replicated, triangular cells of the tiling depicted
at the bottom of Fig. 6-4. Triangular regions in the even rows of octagonal clusters
(labelled by a o3 at the ceater of the cluster) correspond to the even replicas of cells
in the progenitor PCA . The triangular regions in the rows labelled ‘o’ correspond
to the second complete replica of cells of the original, square cellular array, and are
used to compute the new state of the automaton on the odd-numbered time-steps.
The larger square cells represent additional quantum dots that correspond to the
relinking cells. They provide a connecting stepping-stone to shuttle charge back and
forth between the two triangular quantum dots that physically implement its even

and odd replicas.

6Since the billiard ball model is logically reversible, it has no intrinsic fault-tolerance.
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Figure 6-10: The geometrical layout of the proposed automaton. Three even rows
and two odd rows, each containing two octagons, are shown.

The role of the remaining regions, the large shaded octagons, is more passive, but
no less important: they maintain the logical isolation of the clusters by screening
interactions that would otherwise cause the state of cells in one cluster to depend on
the states of cells in other clusters. Since replica CA are a valid computational model
only if each cluster evolves independently, it is essential to maintain the physical
validity of this assumption by reducing the effects of inter-cluster interactions to
negligible magnitudes.

In fact, whenever replica CA are used, the issue of screening must be considered.
Replica CA can legitimately be applied to only those systems in which intercluster
effects on the computational degrees of freedom can be effectively screened. We
briefly describe how a satisfactory degree of screening between clusters might plausibly
be achieved for the array of charge-transfer quantum dots interacting by Coulomb
renormalization of the three energy levels in Fig. 6-8. In principle, the level shifts
depend on the position of charges in every cluster; however, if the shaded region

contains a free electron gas, all but nearest and second-nearest neighbors (i.e., the

153



intracluster neighbors) will be exponentially screened.

If the electron gas is deep enough that it is no longer effectively two-dimensional,
we can get a rough idea of what density is required for effective screening. In the
static long-wavelength limit, the full three-dimensional Lindhard dielectric function
yields the same expression for the screening length ) as the elementary Thomas-Fermi

result

ATF = \/hme(q, =0) (6.7)

\/47rez
Inverting, we find the required density of the electron gas as a function of screening

length ,
n(Arr) = % ((_zm) (6.8)

By definition, replica CA have the property that the closest possible approach
between two charges not occupying the same cluster (i.e., the third-nearest neigh-
bor distance) is D (Fig. 6-10). For Arp &~ D/10 = 10nm, the required density,
n(Arr) = 2.05 x 10%m™3, is in the range of attainable values.

Since we can then neglect any level shifts caused by third-closest neighbors, the
optical illumination frequency w(Ny, Np) required to induce a charge-transfer process
can be written as a function of just two arguments, the number N, of nearest neighbors

and the number N, of second-nearest neighbors.

6.5.2 Optically-induced Evolution

Finally, to complete the description of the quantum dot cellular automaton we need
to describe the sequence of illumination frequencies that will induce the arrangement
of quantum dots in Fig. 6-10 to exhibit the alternating (o4, o) evolution of the replica
CA billiard ball model in Fig. 6-9.

At the end of section 6.4 we noted that both the o and o, parts of the replica CA
billiard ball model evolution have a specia.i property: their behavior depends only on
the number of nearest and next-nearest neighbors. Since thg Coulomb interaction

responsible for the conditional charge-transfers also depends only on the distance

'
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between neighbors, we will see that something remarkable occurs: The lookup table
can be broadcast by sequentially illuminating the array.

Each frequency in the sequence induces the appropriate transfer for one particular
case (N, N;) of the number of nearest and next-nearest neighbor dots occupied. (In
practice, of course, it would be very difficult to provide illumination sufficiently stable
and with sufficiently narrow bandwidth to keep the cases distinct.) Granted this, the
illumination sequence can now be data-blind; that is, the illumination source does not
need to have any knowledge of which quantum dots are actually occupied. It merely
serves as an elaborate external clocking mechanism for the computation taking place

in the array.

For the geometric arrangement of quantum dots in Fig. 6-10, the arguments
(N1, N2) now denote the number of nearest and next-nearest neighbor cells of the
same polygonal type (i.e., triangular, small square or large square) for which the va-
lence level is occupied. Different polygonal types are never simultaneously occupied
for times greater than 7,.

As described in section 6.5.1, in order to prevent undesirable multiple hops, each
transfer is broken into a latched, two-step process. In describing the illumination
sequence, we denote the optical frequency that induces the second step of each two-
step process by a bar over the frequency corresponding to the first step. It can be made
distinct from every other frequency by imposing some static, but spatially varying
conditions, such as dopant concentrations established at fabrication time[129]. The
actual numerical values of the illuminating frequencies are not important, only the
fact that distinct frequencies exist for each necessary operation is essential.

If the charges initially occupy only dots in the o, clusters in the quantum-dot array
depicted in Fig. 6-10, then we can verify that the o, evolution of the computation-
universal CA in Fig. 6-9 will be induced by irradiating the array with the following
sequence, where (n — n + 1) denotes the transition from frame n to n + 1 in Fig.

6-11:

Frames (1 — 2)

w(0,0) — When a single electron (no nearest neighbors, no next-nearest neighbors)
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occupies any one of the four triangular dots of a o; cluster, illumination with frequency
w(0,0) activates an electron transfer from the triangular region to the latching site in

the clockwise direction.

Frames (2 — 3)

@(0,0) — Ilumination with this frequency activates transfers from the latching sites
to the clockwise triangular region, thereby completing the transition in the second
row of the first column (o) of Fig. 6-9. At this point in the cycle, all o, clusters of
the automaton which began with a single occupied dot have now completed their o,
updating for this step. So long as the remainder of the sequence consists of sufficiently
narrow-band iliumination, all such clusters will be far enough off-resonance that they
will not satisfy any of the transition conditions used in the remainder of this step,

and so will remain stationary.

Frames (3 — 4)

w(1,0) and w(1,1) — Ilumination with w(1,0), (one nearest neighbor, no next-nearest
neighbors) activates the first hop (triangular to counter-clockwise latching site) of
the two step process that implements the case shown in the fourth row and first
column of Fig. 6-9. Transitions are induced in all o, clusters occupied by exactly two
electrons in non-diagonal dots. Similarly, w(1, 1) activates the first hop of the transfer

corresponding to the evolution operator o; in all clusters with three dots occupied

(row 5 of Fig. 6-9).

Frames (4 — 5)
@(1,0) and @(1,1) — Illumination with these frequencies activates the second and
final charge-transfer hops, thereby completing the update of all o; clusters that satisfy
the fourth and fifth row cases of Fig. 6-9.

At this point, each cluster has undergone its appropriate update according to o;.
Now, the data must be transferred to the locations where it will undergo an update

by 0s.

Frames (5 — 6)

wyr — [llumination with wy, activates the transfer of charge from all triangular regions,
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Figure 6-11: Time evolution of the automaton array.

regardless of their neighborhood environment, to the relinking sites (large squares)
- that will carry the data in each replica cell (triangular cell) to its replica in the
corresponding o2 cluster.

[llumination with &, completes the process of transferring all results of the oy

evolution to the corresponding replica cell of the o3 clusters.

The entire oy evolution (left half of Fig. 6-9) is now complete for every cluster
in the entire array, and the resulting data are now gathered in clusters of the o,
partition, where a similar process occurs.

Repetition of this two-phase cycle of illumination, (each phase consisting of the
above sequence of six illumination frequencies) induces the pattern of occupied dots to

evolve according to the universal billiard ball cellular automaton of Fig. 6-9. If it were
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somehow possible to meticulously program the initial pattern of dot occupancies, any
Boolean circuit could in principle be simulated (under the interpretation described in
section 6.1.2). Hence, any computable function could be conputed by the array of

quantum dots.

6.6 Discussion

In this chapter, we have addressed the question, “What form .nust a cellular automa-
ton take when, rather than being at liberty to define an arbitrary lookup table, we are
constrained to make direct use of existing physical interactions between cells?” We
have argued that the most obvious form, namely rote translation of the regular array
of the abstract von Neumann CA into a regular array of device structures, suffers
from serious drawbacks: for realistic interactions, one loses all ability to influence im-
portant properties of the dynamics, such as which cells interact (i.e., are neighbors),
and when they interact. The resulting dynamical system has randomly fluctuating,
long-range couplings between the cells. Consequently, the goal of attaining the dy-
namics of a cellular automaton becomes unreachable. This problem is what originally
suggested the need to consider a new class of CA whose form is more amenable to
physical realization, a class we have called few-body cellular automata.

Starting with lattice-gas cellular CA rather than von Neumann CA , we have
defined shown how certain few-body cellular automata, “replica CA ”, can be gener-
ated from lattice-gas cellular automata by replicating cells. Replica CA inherit the
computational characteristics of lattice-gas CA , including their potential to perform
universal computation. The most significant attribute of replica CA is that, for a
large class of interactions between cells, they let us regain enough control to impose
a genuinely CA -like dynamics on the array of interacting device structures.

The class of interactions to which replica CA apply can be characterized by
two properties. First, the interactions between cells must possess a screening length
D, which will determine the minimum separation between clusters (see Fig. 6-9).

Screening lets us reduce the task of imposing a CA -like evolution on the array to
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one of imposing a CA -like evolution on a collection of non-interacting few-body
systems, the clusters. Secondly, it must be possible to transport the information-
bearing degrees of freedom between the replica sites, also separated by a distance of
order D, without changing their logical state,

We have used the construction of a two-dimensional, computation-universal replica
CA composed of idealized quantum-dot devices as an illustration of how replica CA
might be applied to more realistic nanometer-scale devices. The substantial obstacles
that separate such idealized constructions from genuinely feasible computers have
already been extensively investigated by R. Landauer[97] and others [89, 85, 84, 87,
88, 86, 67]. Among the issues that any practical implementation must successfully
address are error correction in the presence of various noise sources, tolerance to
fabrication variation among cells, and power-dissipation limits. Nevertheless, the
class of interactions to which replica CA can be applied has many members. Among
these we may be fortunate enough to find one for which these obstacles can eventually
be overcome, thereby enabling us to build a new generation of cellular automata

machines at nanometer scales.
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Chapter 7

Concluding Remarks

In this thesis, we have tried to understand computation as a physical process by
noting the analogy between a computational model: a reversible N-input/N-output
logic gate, and a physical model: the N-body S-matrix. In §2.1-2.2, we have worked
out explicit physical limits that determine the class of physical interactions for which
the notion of an N-input/N-output logic gate is physically valid.

For that class of interactions, we have defined few-body automata, a form of
cellular automaton that takes into account a property of real physical interactions
not captured by previous models of computation: their finite range. Using few-body
automata, we were able to make some progress on one fundamental and one more
practically-oriented problem of physical computation. The latter was described in
Chapter 6, Ballistic Computation in an Array of Quantum Dots, where we used few-
body automata to solve a problem posed by Obermayer, Teich and Mahler[130], the
problem of describing a computation-universal cellular automaton based on Coulomb
interactions between the quantum dot structures that they proposed.

The more fundamental result was presented in Chapter 5, Parallel Quantum Com-
putation. Responding to Landauer’s criticism that previous models of quantum com-
putation entailed Hamiltonians so contrived as to be physically irrelevant, we showed
that the few-body form leads to a model of quantum computation in which most of
the contrived character of the Hamiltonian is removed. In particular, the part of this

model that determines the computation rate is governed by the one-dimensional XY
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model of Lieb, Shultz and Mattis, a model whose physical realism is attested to by the
fact that it accurately predicts the heat-capacity and transverse electric susceptibil-
ity of the rare earth compounds praseodymium trichloride and praseodymium ethyl
sulphate. Finally, we found exact solutions for the eigenstates and eigenvectors of the
computation-rate operator. This enabled us, for the first time, to analyze informa-
tional properties—such as the dependence of the computation-rate on the excitation

energy—using the established tools of quantum mechanics.
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Appendix A

Computation in Coulomb Blockade

Arrays

This section presents another illustration of how the concept of few-body automata,
gives us a framework for associating physical interactions with computation. A Fred-
kin gate is a nonlinear and nonmontonic element with three inputs and three outputs.
Therefore, it can be regarded as a single cell of a computation-universal three-body
automaton. Coulomb blockade effects govern the physical interactions of electron
tunneling in linear arrays of tunnel junctions. Where two linear arrays cross, the
conductivity of one junction depends on the state of a neighboring junction. This
interaction can be nsed for computational purposes we impose appropriate geometric
constraints on the arrangement of junctions at the intersection.

Likharev has already proposed a NOR gate whose operation depends on these
effects. Since NOR is logically complete, this demonstrates that the Coulomb block-
ade effects can be used to compute. His NOR construction has several undesirable
features: one of the two outputs—a leftover input really—must always be dumped,
and the inputs are time multiplexed—in computing fnor(A, B), the input A must
always arrive one clock before B.

The Fredkin gate construction is able to overcome some of these because its
form—the few-body form—is more congruent with the form of the underlying phys-

ical effects—the “scattering” of charge in one linear array from that in another. In
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Figure A-1: Coulomb blockade occurs when the energy acquired by e in dropping
from Vs to V7 is not sufficient to compensate for the energy ¢2/2C required to charge
the small capacitance of the island.

the Fredkin gate implementation presented below, inputs to each logical gate arrive

on the same clock and it is not necessary to dump any outputs to the substrate.

A.1 Coulomb Blockade Effects

A.1.1 Classical origin of Charging Effects

Consider a tunneling experiment where the turneling from source to drain must take
place through a small conducting island surrounded by insulator as in Fig. A-1. In
such an arrangement, tunneling can be prohibited even if Vs > V;. The condition
for an electron to tunnel is not —e(Vs — V1) < 0, as one might expect. Instead, an
additional “charging energy” must be taken into account when the total capacitance
C of the island becomes very small. An electron can tunnel from the source electrode
to the island only when AE = —eV +€?/2C < 0. This effect was first observed almost
thirty years agc—albeit indirectly, since the tunneling occurred through many islands
in parallel— in granular metallic films (Zeller and Giaever[155]). The correct classical
explanation for the observed reduction in tunneling through small grains was given at
that time. During the resurgence of interest in the 1980s, this effect was named the
“Coulomb blockade effect”. And a tunnel junction is said to be Coulomb blockaded
whenever the potential V acrocs the junction satisfies —eV + €2/2C > 0.

The Coulomb blockade effect can only be observed when the temperature T and

junction resistance R fall in a narrow range. The development of cryogenic and
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Technology Junction | Junction | Characteristic | Time
Area | Capacitance | Temperature | Scale
(nm?) 10718 F To(K) RC(ps)
State-of-the-art[57] 30 x 30 30 30 3
Nanolithography limit { 10 x 10 3 300 0.3
Molecular day dream 3x3 0.3 3000 0.03

Table A.1: Likharev’s Single Electron Logic Family[5, 105]. In order to reduce the
rate of logically erroneous tunneling events to a manageable level, the actual operating
temperature is estimated(5] to be of order Ty x 1072,

nanofabrication technology has only recently made it practical to observe Coulomb
blockade effects in single junctions. The dependence on T is easy to understand. If the
thermal energy kpT exceeds the charging energy e%/2C responsible for the Coulomb
blockade, then the blockade effect will not be observed because the tunneling electrons
will be able to “steal” the necessary energy from the heat bath. A characteristic

temperature[4] Tp for observing the effect can be defined by

To = ¢*/2kgC. (A.1)

The dependence on junction resistance is almost as simple; it follows from the
uncertainty principle and can be thought of as the lifetime energy broadening of
states on the island. The energy of quantum fluctuations across a junction with
resistance R and capacitance C is §E = h/RC. Unless §F < €?/2C, the picture of
electron tunneling sequentially through a state localized on the island electrode is not
quantum-mechanically valid. Instead, electrons tunnel by “borrowing” the required
energy from quantum fluctuations, and the Coulomb blockade effect is not observed.

So, in addition to the requirement 7' <« Tp, we must have

R> 2hC/e%. (A.2)

Likharev[105] has summarized the magnitudes of the relevant quantities for soft
metal oxide junctions, where the capacitance per unit area and junction resistance

are estimated to be 3 x 107 F/cm? and 100k(, respectively.
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Figure A-2: Soliton in a linear array (adapted from [4]). The soliton extends over 3
neighboring junctions.

A.1.2 Spatial correlation: Wires

If we consider configurations consisting of a one-dimensional array of islands separated
by thin, insulating barriers, the Coulomb blockade effect can cause the single-electron
tunneling events to become spatially correlated. Consider a linear array of junctions
biased from both ends in such a way that the potential drop across all junctions is
below the tunneling threshold. If the potential across the array is raised, eventually
the potential across one of the junctions, say the leftmost, will exceed the threshold
e/2C and a tunneling event will occur onto the first island. For appropriate values
of the voltage bias and capacitance of the first island, this tunneling event can raise
the potential drop across the second junction above its threshold, thereby inducing a
second tunneling event, and so on until the tunneling electron exits the other end of
the array. This correlated sequential tunueling can be utilized as a discrete wire for

single-electron logical circuits.

The charge disturbance that actually propagates in the linear array is not com-
pletely localized on a single island. Rather, it is a charge soliton composed of a
core containing the single electron along with the induced polarization of charge on
nearby junctions (Fig. A-2). Bakhvalov et al. have shown that the charge of these
solitons decays exponentially with a screening length of about 1/ cosh™'(1 + C,/2C)
islands, where C' is the junction capacitance and Cj the stray capacitance of each
island. Typical screening lengths are 3-5 islands[41]. The propagation of the charge
solitons is dispersionless—that is, they maintain their shape—but not dissipatiornless.
To move them along the one-dimensional array requires a voltage bias, the energy

being supplied by the voltage sources.
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Figure A-3: Capacitively coupled single-electron transistor (CSET[4]).

A.1.3 Capacitively-coupled Single Electron Transistor (CSET):
Logic Gates

Likharev[105] has pointed out that if an island is capacitively coupled to a gate
electrode (in addition to source and drain electrodes, Fig. A-3), the effect of the
Coulomb blockade can be used to produce a single-electron transistor (SET). If we
let Vs = V = —Vp and let Vi denote the gate voltage, it is straightforward to show
that the potential of the island is controlled by the gate voltage,

Vi = V(Cs1 — Cpr) + Ca1Vs
Cst+Cpr+Car

(A.3)

By varying the gate voltage Vg, it is possible to continuously vary the potential of
the island, thereby controlling whether or not tunneling from source electrode to
island is Coulomb blockaded or not. The expected behavior has been observed in the
laboratory. Fulton and Dolan[57] were the first to observe this effect. They made
three Al-Al junctions, each with area about 30nm x 30nm, on an Al bar of length 1
pm. Kastner[81] and co-workers have also made extensive investigations on single-
electron transistors ir GaAs systems, in which the island is formed by the electrostatic

patterning of a two-dimensional electron gas.
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A.1.4 Single electron OR

Likharev[105] also noted that if Vi can be produced by single electron charge on a
neighboring junction, rather than a large external electrode, then it may be possible

to produce single-electron logic circuits in complete analogy to MOSFET circuits.

Figure A-4 shows the arrangement of junctions proposed by Likharev([4] as a single-
electron OR gate. The two input signals to the gate are represented by single-electron
solitons propagating along the linear array of junctions labelled Data In. A logical
value of 1 is represented by the presence of an electron soliton and a logical 0 by its
absence. A regular array of clock pulses, also represented as a sequence of solitons, is
incident from the left on the lower linear array. Each junction is initially biased so that
an incident data soliton tunnels via the spatial-correlation effect along 1 — 2 — 3 — 6
where it is trapped in a memory cell formed by the capacitance C’ and the junctions
6 and 7.

Voltage biases and junction capacitances are designed in such a way that the
presence of the trapped soliton repels any subsequent soliton incident along Data
In—shunting it along the alternate path 1 — 2 — 3 — 4 — 5.

Finally, a clock pulse incident along 8 — 9 becomes lodged at island 9 where it
acts as a gate electrode, opening the CSET transistor composed of junctions (6, 7,9).
This frees the ‘rapped soliton from the memory cell. The clock pulses is dissipated
into the substrate through resistor R, while the freed soliton propagates to Output 2.
Since a soliton will be preseat at Output 2 if and only if at least one of the two input
signals on Data In contained a soliton, the logical value of Output 2 is easily seen to

be that of an OR gate. The value of Output 1 is dumped.

A.2 Fredkin Gate via Coulomb Blockade

Using the techniques Likharev employed in the single-electron OR, we can avoid two
of its objectionable features: dissipating the clock into the substrate and dumping

the logical value of one of tke outputs. To do so, we
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Figure A-4: Single-electron NOR gate (Likharev[4]).
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Table A.2: Fredkin gate.

A.2.1 Fredkin Gate

The Fredkin gate[54] is a reversible logic gate that is as computationally powerful as
the (irreversible) NAND gate. It has three inputs A, B and F, and three outputs
A', B' and F'. The input F and the output I are distinguished by the fact that they
function as control, rather than data, signals. Its logical operation is quite simple:
IfF =1, A = B and B' = A, otherwise the value of an output is the same as
the value of the corresponding input (See Table A.2). Note that the gate is also
bit conserving—the number of 1s that occur among the inputs is the same as the
number that occur among the outputs. Bit conservation is an important property
for Coulomb blockade logic, since the creation and destruction of charge solitons is
energetically expensive.

Since the Fredkin gate is less well-known than the NAND gate, we wiil show
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Figure A-5: Lattice representation of the output A’ for a Fredkin gate.

that, like the NAND gate it is computation-universal, or, more accurately, it has the
property of weak logical completeness. A gate G is (weakly) logically complete if, for
any computable Boolean function f, a circuit that computes f can be constructed by
interconnecting copies of G. It is known from classical switching theory[120] that a

gate is logically complete if it is both nonlinear and nonmonotonic.

Using the diagrammatic notation developed in Chapter 3, it is straightforward to
determine whether any specified gate posseses these properties. Figure A-5 shows the
partially-ordered lattice representation of output A’. Open nodes indicate A" = 0,
solid nodes indicate A’ = 1. The nonmonotonic character of A’ is evident from the
transition, (shown as a directed bold line) as input (ABF') goes from (100) to (101).
The nonlinear character of A’ is apparent from the fact that input (011) yields nonzero
input even though both of the inputs of which it is a superposition, namely (010) and
(001) yield output zero.

Therefore, the Fredkin gate is computationally universal in the sense of weak
completeness. This is also demonstrated more concretely in Figure A-6, where a

composition of two Fredkin gates is shown to produce a NAND gate.

170



p A A
qQ F F 1 p NAND q
0 B B’

0

Figure A-6: Building a NAND gate from two Fredkin gates. The Fredkin gate is
logically reversible, but the NAND is not. Notice the use of constants 0 and 1.

A.2.2 Construction and Operation

The logical behavior of a Fredkin gate—if F' = 1, then interchange A and B to
produce A’ = B and B’ = A—is, in principle, as easy to implement as Likharev’s
single-electron OR. To do so, we only need to arrange the junctions in such as way
that a soliton on the control line F' acts to deflect incident solitons on the A and B
lines so that they take alternate paths, crossing at a “junction-overpass”, and then
merging into the other line to complete their interchange. The mechanism for doing
this can be adopted from Likharev’s OR gate, where junction biases were arranged
in such a way that the first inciJent soliton raised the potential enough to deflect the
propagation of the following soliton (if any) onto an alternate track.

Figure A-7 shows one arrangement of junctions for achieving this. For simplicity,
we only show the junctions necessary to deflect input A to B’ under the influence
of control signal F'. A symmetric arrangement is required to implement the part of
the Fredkin gate behavior that deflects the input B to output A’. Initially, junctions
are biased in such a way that A — A’ and B — B’. When a soliton is present on
F, an incident soliton arriving at island « is deflected to island B rather than to the
linear array leading to output A’. The biasing of the overpass array 4 propagates the

soliton to output B’

171



Figure A-7: Arrangement of junctions for one of the Fredkin gate crossovers. Each

polygonal region is a conducting island, and each small gap between islands a tun-
neling junction.
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