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ABSTRACT

An analytical model has been developed to predict per-

manent stresses and strains in sands under general loading and

boundary conditions. Static triaxial tests and drained cyclic

triaxial tests are required to define the model parameters. Model

predictions have been compared with experimental results from
cyclic oedometer tests and cyclic undrained triaxial tests under

various initial stresses. Good correlation was found to exist

between the predicted and measured response.

A non linear finite element model was developed to predict

permanent displacement of foundations subjected to repeated loads.

The model was used to predict the permanent displacement of the

Oosterschelde barrier under combined tidal and wave loading. The

results were compared with the displacement patterns observed during

one field test, as well as, with results from previous analyses,

yielding a good correlation. The effect of stress redistribution

and drainage conditions on permanent displacements is evaluated.
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM DESCRIPTION

Cyclic loading of structures is not an unusual situation: a

winter storm in the sea subjects offshore structures to cyclic loads

that may last several days; ground waves produced by earthquakes are

another cause of repetitive loading. Existing offshore and earthquake

experience indicates that cyclic loading results in long term

accumulation of movement of the foundation, which can be as important

as short term generation of excess pore pressure.

During October and December, 1975 the Dutch Government sponsored

in situ static and cyclic tests on a caisson at Neeltje Jans; figure

1.1 shows some aspects of the performance of the caisson [1]. To

evaluate the Engineer's ability to predict such a performance in

advance of the test, coastal experts around the world were asked to

predict the caisson's movements. Eight different methods were used

including simple empirical formulations, rigorous plasticity models,

centrifuge tests, and small- scale laboratory tests. Figure 1.lb shows

the comparison between predicted and measured response as reported by
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Lambe et al (1978) [4],who stated:

"Studying Figure VIII-2 (same as Figure 1.2b of this thesis)

enables one to draw a most important conclusion, namely: The

geotechnical engineer has difficulty in predicting with great

accuracy the deformation of a caisson subjected to a cyclic

load."

Foundation displacements may distort the supported structure in an

upredictable way and thus endager its safety. In addition to safety

problems, large unexpected deformations may force temporary or

permanent disruption of the facility operation and may damage the

environment by rupturing critical connections. Large movement of an

offshore platform for oil production for example could spill tonnes of

oil into the sea, while in the case of a nuclear power plant

radiactive wastes would be released and harm the population and the

environment.

1.2 PREDICTION METHODS

It is helpful to consider two groups of prediction methods; The

first group performs an incremental analysis in which the entire

cyclic load history is applied. This approach uses a hysteretic

stress-strain relationship, like those developed in the anisotropic

theory of plasticity ([8], [9], [10] etc.), to predict the soil
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response within each cycle of loading. The main advantage from the

use of this procedure is generality. Cyclic loading is treated as

consecutive static loadings and unloadings, requiring for its

description a few new parameters in addition to those describing

static behavior. With plasticity models formulated in terms of

effective stresses, solutions can be obtained under different drainage

conditions: fully drained, undrained, or partially drained.

Despite generality of the procedure, serious disadvantages have so

far limited its application to cyclic loading of soils. Hysteretic

constitutive laws are commonly expressed by a system of linear

equations in the respective increments of stress and strain.

Solutions with such models, therefore, would have to proceed by small

steps through each cycle of loading of a parcel that might contain

several hundreds of cycles. The solution would involve enormous

computational effort.

A second serious limitation is the strong dependence of

incremental stiffness on effective stress, direction of increments and

previous strain history. Although this dependence has been fairly

well understood for the virgin loading of soils, very little is known

when considerable preshearing has been applied, as is the case with

cyclic loading. Application of incremental hysteretic models thus

implies an accumulation of errors from incomplete knowledge that

become important within a few cycles. Van Eekelen [12] identifies

this disadvantage of the anisotropic theory of plasticity and states

that it can only reproduce some of the characteristic behavior

associated with cyclic loading. As an example he cites results
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presented by Mroz et al [10] in which the calculated pore pressure

generated by undrained cyclic loading is too small for initially

normally consolidated clays and has the wrong sign for heavily

overconsolidated clays.

Thus hysteretic models are, as yet, outside of the range of

applicability for sustained cyclic loading. Several authors ([6],

[7], [13], [14], [15], [16], [17]) present an alternative approach to

hysteretic models: only the stress and strain accumulated at the end

of one cycle of loading are modelled, while the load cycle

characteristics enter indirectly in the formulation. Typical simple

constitutive laws of this type correlate accumulated stesses, strains

and pore pressure with the number of cycles; cyclic laboratory test

results are necessary to choose the above correlations. Urzua [6]

briefly discusses representative analyses of this group.

Simplicity is the major advantage from using the cummulative

approach; the effective stress fields, average and cyclic, are

determined in advance and then only the accumulation of strains and

stresses has to be calculated. It is also possible to work with

updated effective stresses which are necessary in the case of

significant stress redistribution, or nonuniform cyclic loading

[6],[16].

As is commonly the case, the trade-off for simplicity is loss in

generality. The correlations among permanent stress, strain and

number of cycles are mostly empirical and, as such are applicable only

to stress and drainage conditions similar to those prevailing in the

laboratory tests used to define the correlations. The effects from
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different stress systems are usually considered secondary when solving

complicated problems in Geomechanics, and test results from simple

triaxial tests may be used under plane strain conditions (for example

[6],[7]). Drainage effects, however, are too important to be

overlooked; so far different sets of empirical equations have been

used to predict permanent strain accumulation for drained and

undrained cyclic loading ([5], [18] versus [17]).

Prediction of foundation performance under cyclic loading can also

be made through centrifuge tests [19], [20] and small scale laboratory

tests. Those methods, however, are experimental, and their review is

out of the scope of this thesis.

1.3 OBJECTIVE OF RESEARCH

Section 1.2 indicates that a serious disadvantage of the

cumulative strain approach is the lack of generality. The first

objective of this thesis is to improve the generality of the approach

by proposing a constitutive relation applicable to both drained and

undrained problems. The key feature of the proposed relation is that

it treats soil as a two phase material consisting of a solid phase and

a liquid phase; it further assumes that the accumulation of strain

depends on the average and cyclic effective state of stress.

Martin et al [21] conducted a fundamental study to link drained to

undrained cyclic behavior of sand. They observed that the -pore

pressure increment during one cycle of undrained loading is equal to
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the volume change that would happen during drained cyclic loading

multiplied by the appropriate bulk modulus of the soil skeleton.

Physically this means that during the undrained load cycle the

volumetric strain increment caused by nonrecoverable slip deformation

at grain contacts results in the transfer of intergranular stress to

the more incompressible water. The corresponding reduction in

effective stress results in release of recoverable volumetric strain

stored in the sand skeleton. Hadge [22] has used a similar model to

predict the pore pressure increase in cyclic triaxial tests of

saturated sand; the proposed model in this thesis uses the same

principles to link drained with undrained cyclic loading.

Effective stresses in the soil generally vary during repetitive

loading either due to internal stress redistribution or due to

external change the applied loads. To predict the rate of

accumulation of permanent strain in a consistent way, the proposed

model relates increments of strain and stress to increments of number

of cycles. Depending on the nature of the problem, the total cyclic

load history can be divided into a number of parcels of loading each

containing one or more cycles, so that the requirement for constant

effective stress is approximatelly met for each parcel.

Test data from an extensive laboratory study on cyclic behavior of

Oosterschelde sand [51,[40] were used to determine the model's

parameters and to evaluate its accuracy. The laboratory study

included drained and undrained cyclic triaxial tests, consolidated

under isotropic and non isotropic initial stresses. The model's

predictions have not been evaluated for clays so far; therefore its
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application is recommended for sands only.

The second objective of the thesis is the analytical prediction of

foundation performance under cyclic loading. The Finite Element

method (for example [24]) was chosen for this purpose mainly because

it is capable of modeling consistently the interraction between the

soil and the foundation. An existing Finite Element program [24] has

been extensively modified to meet the special requirements of the

analyses to be performed. The modifications were aimed to make the

program handle

( i) Undrained problems in addition to drained ones.

( ii) Incremental solutions.

(iii) Changing boundary conditions, loads, and soil

properties during the analysis.

( iv) Axisymmetric problems in addition to plane strain and

plane stress ones.

The need for the modifications will become clearer in the chapters

that follow.

1.4 THESIS ORGANIZATION

The thesis is organized into two parts:
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(i ) Chapters 2, 3, 4 and 5 belong in the first part which

describes the proposed consitutive relationship.

(ii ) The second part consists of chapters 6 and 7 which

describe the Finite Element formulation and present the

results of the case studies analysed.

Finally chapter 8 summarizes the major findings of the thesis and

recomends directions for future research.

1.4.1 PART I

Drained cyclic loading of granular materials results in a steady

densification together with accumulation of shear deformation;

stabilization of strain is usually reached at large number of cycles

[27]. It is possible, however, that steady dilation occurs during the

cyclic loading, or that stabilization of shear strain is never reached

[25]. Under undrained conditions excess pore pressure accumulates in

addition to shear deformation. In most cases positive excess pore

pressure reduces the average mean effective stress; large

irreversible deformation may occur suddenly within one cycle, not

necessarily the first, or the pore pressure stabilizes while shear

deformation continues to accumulate [5]. Less often negative pore

pressure accumulates followed by either shear failure or stabilization

[5], [27].

Considerable research has been aimed in developing criteria for
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gross soil behavior under cyclic loading, mainly for the prediction of

large settlements during earthquakes. Chapter 2 reviews existing

theories related to the specific problems of:

(i ) What initial conditions will lead to contraction in

volume, or dilation, during drained cyclic loading, and what

is the limiting density that can be achieved by cycling the

load.

(ii ) What initial conditions will produce positive or

negative pore pressure under undrained cyclic loading, and

what is the limiting pore pressure that can be reached.

(iii) When do large irrecoverable strains occur within one

cycle of loading.

The rate of accumulation of permanent strain is investigated in

chapter 3. Data from drained cyclic triaxial tests on Oosterschelde

Sand [5] are used to define the correlation of the rate of

accumulation and the effective average and cyclic stress. The

generality of the correlations is checked by test results reported by

other investigators who used different material and different testing

equipment.

The results of chapters 2 and 3 are used in chapter 4 to develop

an analytical model of cyclic soil behavior. Static triaxial tests

and drained cyclic triaxial tests are required for the determination

of the model's parameters.

Evaluation of the model is obtained in chapter 5 through
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comparison with cyclic one dimensional test results, where the model

predicts accumulation of vertical strain accompanied by increase of

the horizontal stress. Comparison is also done with cyclic undrained

triaxial tests, where the model predicts the excess pore pressure

increase in addition to the accumulation of shear strain.

1.4.2 PART II

Chapter 6 describes a two dimensional Finite Element computer

program that incorporates the analytical model described in chapter 4.

The Finite Element formulation is made in terms of effective stresses

and can be used under either drained or undrained conditions. The

computer program is checked by solving simple two dimensional boundary

value problems with known solutions.

In chapter 7 the Finite Element program is used to study the

permanent deformation of one of the piers of a barrier dam across the

Oosterschelde inlet, located southwest of Rotterdam, Netherlands.

Different combinations of static and cyclic loads were considered

under drained and undrained conditions. The results of these analyses

are compared with the permanent displacement patterns observed during

the model caisson test in Neeltje Jans [4], as well as, with results

obtained by Marr and Christian [7] and Urzua [6]. The effect on

permanent deformations of applied loads, soil density, stress

redistribution and drainage conditions is investigated.

Chapter 8 summarizes the results of the research and recommends
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possible extensions of the work.
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CHAPTER 2

CONTRACTION AND DILATION IN CYCLIC LOADING

2.1 INTRODUCTION

Cohesionless soils tend to change in volume during cyclic loading;

this tendency results in pore pressure development when no volume

change is allowed (i.e. Martin et al [21]). The term Contraction in

this thesis is used to denote reduction in the volume of soil during

drained cyclic loading, or development of positive pore pressure

during undrained cyclic loading. The term Dilation is used to

describe the opposite phenomenon, i.e. the increase in the volume of

soil during drained cyclic loading or the development of negative pore

pressure during undrained cyclic loading. The purpose of this chapter

is to suggest a complete set of criteria for predicting contraction

and dilation.

The literature reviewed was not particularly rich in complete

studies of contraction and dilation of sands. In fact only a set of

criteria proposed by Luong and Sidaner [25,26] 'defined clearly the

initial conditions leading to contractive and dilative behavior of

sands. Sangrey et al [29] and France and Sangrey [30] propose a
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different set of criteria applicable to clays. Later attempts by

Sangrey et al [31], to extend those criteria to cover silts and sands

were unsuccessful, since the limited amount of data on cyclic loading

of sands used in the study (Castro [28]) indicated significantly

different behavioral patterns for sands and clays.

In the following paragraphs the behavioral model suggested by

Luong and Sidaner will be reviewed, and compared with available cyclic

triaxial test results on Oosterschelde Sand [39].

2.2 THE "CHARACTERISTIC THRESHOLD" MODEL

An experimental program using the conventional axisymmentric

triaxial apparatus suggested the introduction of the concept of the

"Characteristic Threshold" for cohesionless soils. This concept

offers the framework for a set of criteria for cyclic behavior of

sands proposed by Luong and Sidaner [25,26].

2.2.1 THE CHARACTERISTIC THRESHOLD - DEFINITION

During undrained Compression Loading of a dense sand in a triaxial

test, the rate of pore pressure generation is positive initially and

then becomes negative passing through zero (fig. 2.1). Large

irreversible shear strain development corresponds to the negative rate

of pore pressure generation. During a similar drained test an initial

volume decrease is observed followed by a later increase, combined
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with large irreversible shear strain (fig. 2.2).

The stress level corresponding to either the inversion of the rate

of pore pressure generation in an undrained test, or the zero of the

volume change rate in a drained one, defines the Characteristic

Threshold (CT). This line lies below the failure envelope in the

effective stress space (fig. 2.3) and divides it to two domains, the

"surcharacteristic" and the "subcharacteris tic."

2.2.2 DRAINED LOADING

Cyclic loading of the sand within the "Subcharacteristic" domain

leads to steady densification and accumulation of permanent shear

strain. The rate of accumulation decreases gradually as the number of

cycles increases until stabilization of the shear and volumetric

strain finally occurs. Cyclic loading within the "surcharacteristic

domain," on the other hand, causes ratchet behavior and failure

because of large dilatancy.

When the average stress point lies on the CT-line and cyclic

stresses do not touch the failure line ,no irreversible volume change

occurs, while the accumulation of axial strain increases in proportion

to the logarithm of the number of cycles. During cyclic loading

crossing the CT-line, the behavior is interpolated between the three

patterns described above.

Figure 2.4 summarizes the sand behavior during drained cyclic

loading, as a function of the applied average and cyclic stress with
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respect to the CT-line.

2.2.3 UNDRAINED LOADING

Undrained cyclic loading in triaxial tests is characterized by two

distinct phases:

First pore pressure develops accompanied by a steady accumulation

of shear strain; when the average effective stress meets the CT-line

stabilization of the pore pressure occurs. For initial average

effective stress states in the "subcharacteristic domain" the

stabilized pore pressure is positive, while it is negative for initial

average stress states in the "surcharacteristic domain."

Second, during cyclic loading around the stabilized position the

pore pressure varies between two fixed values, and shear strain

accumulates more or less proportionally to the logarithm of the number

of cycles. The stabilized positon is reached asymptotically, and

large number of cycles is required to reach it, especially when the

cyclic load amplitude is small.

Test data supporting this behavioral pattern are shown in figures

2.5 and 2.6 for Contractive and Dilative sands respectively.
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2.3 CYCLIC BAHAVIOR OF SAND A

A four year testing program at M.I.T. between 1975 and 1979 on

the cyclic behavior of Dutch sands, produced 328 cyclic triaxial

tests, and 112 static tests on sand. Appendix A gives information

about the history and the objective of this program, as well as,

description of the soils tested and the testing procedures.

Oosterschelde Sand A, or briefly Sand A, was the most extensively

tested sand during this program. The present section compares cyclic

test results from Sand A, with predictions of the Characteristic

Threshold model.

2.3.1 THE CHARACTERISTIC THRESHOLD - SAND A

Static triaxial compression tests, drained and undrained, were

used to locate the CT-line for Sand A; the test data were obtained

from Document L-38 prepared by T.W. Lambe and Associates for the

Dutch Government [39]. The location of the CT-line was defined using

the procedures recommended by Luong and Sidaner [26] - described also

in . section 2.2.1 - and the results are portrayed through the

"Characteristic Threshold Angle" defined by the relation

# T sinCT sn v - h ) on CT-line
Tables 2.1 and 2.2 summarize the consolidation stresses and

porosities for the tests analysed. In addition to the "Characteristic
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Threshold Angle" in the above tables, the maximum friction angle is

also presented, as estimated by the relation:

~ma = .-l (v h
# = sinmax a v+ Crh a

The effects of porosity on both angles is shown in figure 2.7.

Despite the considerable scatter in the results the following

conclusions can be drawn:

(i ) There is no pronounced effect of the drainage conditions

- drained vs. undrained - on the estimated OCT.

(ii ) The effect of porosity on O) is considerably less than

its effect on D)

(iii) qCT increases with decreasing porosity.

2.3.2 UNDRAINED LOADING

Document L-39 [40] summarizes the results from Undrained Cyclic

Triaxial Tests on Sand A. The tests were performed under various

average stresses, isotropic or not, various cyclic stresses and

porosities. Relative to the Characteristic Threshold of Sand A all

tests belong to the subcharacteristic domain, and therefore no

information is available about the behavior of Sand A in the

surcharacteristic domain.

In all tests positive pore pressure accumulated after each cycle
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of loading, driving the effective stresses towards the failure

envelope. The rate of accumulation decreased steadily during the

cyclic loading until practically no additional accumulation occurred.

Table 2.3 summarizes the friction angle where stabilization of the

average state of effective stress occurred, for non-isotropic cyclic

triaxial tests. Figure 2.8 compares this angle with the

Characteristic Threshold angle (Q'CT) determined by static tests; the

data suggests that 'b. determined by the static tests is an upper

bound to the angle where stabilization of pore pressure occurs. This

is consistent with Luong and Sidaner's criterion stating that

equilibrium on the CT-line is asymptotic; most undrained tests on

Sand A, however, were stopped shortly after the rate of accumulation

became "practically" zero so that it cannot be determined if perfect

stabilization of the pore pressure was achieved during the test.

Figure 2.9 plots the cumulative vertical strain versus the

logarithm of the number of cycles, from several undrained cyclic tests

on Sand A. The rate of accumulation increases during each test; as

the effective state of stress approaches to the CT-line - end portion

of curves in figure 2.9 - accumulation of strain occurs approximately

proportional to the logarithm of the number of cycles. Luong and

Sidaner report the same behavior during cyclic loading back and forth

across the CT-line.

In summary it can be concluded that that the criteria proposed by

Luong and Sidaner for undrained cyclic loading of Contractive sands

agree with the general behavior of Sand A under cyclic loading.
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2.3.3 DRAINED LOADING

Drained Cyclic Triaxial Tests were also performed on Sand A and

are described in Document L-39. During all tests the average and

cyclic stresses were kept constant, inside the Subcharacteristic

domain; no tests were run on the CT-line or in the surcharacteristic

domain.

The accumulated volumetric and axial strain due to cyclic loading

are plotted in figures 2.10 and 2.11 versus the number of cycles; the

test conditions are summarized in table 2.4. In all tests the cyclic

loading caused reductions of the volume of the sand with a steadily

decreasing rate, similar to what Luong and Sidaner report. All tests

were stopped before stabilization of volume occurred, so that no

conclusions can be drawn with regard to the minimum volume that is

reached due to cyclic loading of Sand A.

2.4 EVALUATION OF THE CHARACTERISTIC THRESHOLD MODEL

Luong and Sidaner were not the first to appreciate the

significance of the CT-line for the cyclic behavior of sands.

Ishihara, Tatsuoka, and Yasuda [33] defined a similar threshold,- the

"Phase Transformation Line" which was used as an index of initial

liquefaction, and also as a criterion for beneficial preshearing in

liquefaction [34]. Its use by Luong and Sidaner as a bound between

dilative and contractive behavior has a sound experimental basis as

well.
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Although the Characteristic Threshold concept provides a complete

description of the ultimate pore pressure that can be reached with

undrained cyclic loading, it does not specify the ultimate volume that

can be reached during drained cyclic loading. Youd [27a] studied the

compaction of sands by repeated shear straining, and reports that high

densities were achieved, which sometimes exceeded those determined by

the standard ASTM prcedures. Similar results were reported by the

same researcher in a previous publication [27b].

Luong and Sidaner suggested that undrained cyclic loading in the

subcharacteristic domain will always lead to stabilization of the pore

pressure on the CT-line. Castro [78], however, shows experimental

results where, during cyclic loading in the subcharacteristic domain,

sudden failure of the sand occurred within one cycle of loading. This

behavior was observed in sands that during static undrained loading

develop a well defined peak shear strength followed by significant

strain softening. Failure during undrained cyclic loading occurred

when the maximum shear stress exceeds a critical limit, approximately

equal to the ultimate undrained strength of the sand [31].

For Sand A, which follows the same trends reported by Luong and

Sidaner, the ultimate shear strength is estimated in Appendix B as

function of the porosity. For the tests analyzed the maximum shear

was well below the ultimate strengh. Although there is no information

available about the ultimate drained strength of the sand(s) tested by

Luong and Sidaner, it is reasonable to assume that their conclusion

refers to cyclic loading at shear stress levels lower than the

undrained strength of the sand.
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Finally Luong and Sidaner's criteria do not describe behavior

during cyclic loading touching the failure line. One such case is,

for example, cyclic loading with average stresses on the CT-line and

cyclic stresses that cause failure. It is reasonable to question if

under such conditions no permanent volume change will occur and that

the axial strain will not accumulate faster than the criteria define.

To obtain a positive answer to similar questions, however, is

generally difficult because of the numerous uncertainties associated

with laboratory testing close to failure.

In the following chapters the set of criteria proposed by Luong

and Sidaner will be used to distinguish Contractive from Dilative

sands when the maximum shear stress during cyclic loading does not

exceed the ultimate undrained strength. In addition it will be

assumed that the minimum volume that can be reached with drained

cyclic loading corresponds to the maximum density of the material

determined by standard ASTM procedures. While this property is not a

basic property of the soil its determination is part of most

laboratory testing programs for sands.

Reference to Luong and Sidaner's criteria complemented by the

definition of the minimum volume, will be made thereafter by the name

"Characteristic Threshold" model,or "CT-model".



43

2.5 SUMMARY

The most complete set of criteria for contraction and dilation of

sands, reported in the literature, is that suggested by Luong and

Sidaner [26]. According to this set of criteria a sand may contract

or dilate depending on its average effective stress state compared to

the CT-line.

Data from drained and undrained cyclic triaxial tests on Sand A

were in good agreement with the set of criteria for contractive sands.

No tests were run in the surcharacteristic domain so that the validity

of the criteria for this domain cannot be evaluated.

Test results reported by Castro [78] suggest that the CT-model

does not apply to undrained cyclic loading with maximum shear stress

larger than the ultimate undrained strength of the sand. Under such

conditions stabilization of pore pressure is never reached, but sudden

collapse of the sand can occur within on cycle of loading, not

necessarily the first.

As a first approximation it was assumed that the ultimate volume

that can be reached due to drained cyclic loading corresponds to the

maximum density of the material determined by standard ASTM

procedures. Luong and Sidaner's set of criteria do not specify the

ultimate volume.
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TB$T. TEST voho na 4CT MAX

#LS TYPE ksc ksc % (0) (0)

65 CAU 1.41 1.99 44.4 28.0 30.1

67 CIU 2.00 2.00 45.1 33.7 34.1

68 CiU 5.00 5.00 45.5 29.0 30.4

74 CiU 1.00 1.00 41.4 32.0 35.0

79 CIU 2.00 2.00 45.9 28.0 31.1

90 CAU 2.50 1.50 41.1 36.0 39.2

991 CAU 2.50 1.50 41.4 32.0 35.9

9911 CAU 2.50 1.50 41.4 32.0 37.3

TABLE 2.1: Critical Threshold Angle from Undrained Tests on Sand A
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TEST TEST avo ho no CT MAX
#LS TYPE ksc ksc % (o) (o)

58

59

60

61

62

70

71

72

73

75

76

86

91

95

96

97

98

108

CID

CID

CAD

CAD

CID

CID

CAD

CID

CID

CID

CID

CID

CID

CID

CID

CID

CAD

CID

1.00

1.02

.90

1.00

1.18

1.00

1.00

3.00

.50

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

5.00

1.00

1.00

1.00

2.00

1.18

1.02

.50

3.00

.50

1.00

1.00

1.00

1.00

1.00

1.00

1.00

2.00

5.00

43.8

37.9

40.9

40.8

41.1

41.1

41.1

41.4

41.2

37.2

41.3

41.1

40.6

40.4

40.9

40.9

41.5

41.8

30.0

30.0

29.0

33.0

29.0

30.0

33.0

30.0

33.0

32.0

30.0

31.0

28.0

27.0

28.0

28.0

29.0

31.0
.1. 1 ________ _________ 1 _________ .1.

33.1

43.3

37.8

38.8

38.8

36.6

38.2

34.9

39.5

43.1

36.9

37.0

34.2

34.8

33.7

34.1

32.1

32.7

Critical Threshold Angle from Drained Tests on Sand ATABLE 2.2:
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TEST TEST av -a h no 0CT

2

#LC TYPE (ksc) (%) (o)

66

97

104

129

130

131

132

135

137

142

148

149

151

156

166

181

219

229

230

242

251

260

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

CAU

1

1

1

1

1

1

.25

.50

.50

.50

.50

.50

.75

.50

.00

.50

.25

.25

.50

.50

.00

.50

.50

.00

50

00

75

00
____ __I I _ _ _ _ _

40.40

41.26

41.90

43.50

43.20

42.90

41.40

41.20

41.30

41.70

41.10

41.40

41.40

45.00

43.30

41.30

41.60

43.20

42.20

41.90

41.10

44.30

28,

28.

28.

27.

28,

29.

28

27

28

28

25

28

29

29

28

29

29

27

30

28

26

29

TABLE 2.3: Characteristic
from Undrained
Tests on Sand A

Threshold Angle

Cyclic Triaxial
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TEST TEST avo ho cy no f

#LC TYPE (ksc) (-ksc) (ksc) (%) (%)

141 CAD 2.50 1.50 45 43.1 42.0

176 CAD 3.00 2.00 1.00 43.0 40.6

187 CAD 4.20 2.80 .38 43.2 42.9

192 CAD 4.17 2.77 .63 43.1 42.7

198 CAD 3.00 2.00 .45 45.1 44.4

257 CAD 2.57 1.57 .45 42.0 41.2

282 CAD 3.01 2.01 .45 40.6 40.4

285 CAD 5.41 3.61 .45 43.1 42.7

290 CAD 5.42 3.62 .81 43.4 42.8

295 CAD 3.02 2.02 .45 43.3 42.4

297 CAD 2.51 1.51 .45 41.8 41.4

303 CAD 3.01 2.01 .21 42.6 42.4

305 CAD 3.04 2.04 .45 42.9 41.9

308 CAD 2.55 1.55 .45 42.8 41.6

316 CAD 2.50 1.50 .24 42.9 41.7

327 CAD 2.00 3.00 .45 43.3 42.3

* Agqc= (Aav A hh ) / 2

** f : porosity at the end of cyclic loading

TABLE 2.4: Drained Cyclic Test Conditions - Sand A
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CHAPTER 3

PERMANENT STRAIN IN THE DRAINED CYCLIC TRIAXIAL TEST

3.1 INTRODUCTION

The previous chapter discussed the limit states of strain and

stress reached by cyclic loading. This chapter continues the

description of cyclic sand behavior by defining the rate of

accumulation of permanent strain in drained cyclic triaxial tests.

Research in the past ([21], [22]) has shown that this information can

lead to predictions of the performance of sand under undrained cyclic

loading as well.

Results from drained Cyclic Triaxial tests on Sand A, run at

M.I.T., will be used to derive empirical equations for the

accumulation of permanent strain; comparison with test data reported

by other researchers is aimed at ensuring more general applicability

of the proposed relations.

There are definite advantages from using drained triaxial test

results for this study:
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(i ) Since constant average effective stresses can be

maintained throughout the test, the permanent deformation

exclusively due to cyclic loading can be studied. The same

is not true, for example, for Direct Simple Shear tests; in

such tests average effective stresses change and thus

deformations are caused partly by the change in the average

effective stress and partly due to cyclic loading.

(ii) Since stresses are controlled, the dependence of the

rate of accumulation of permanent strain on the average and

cyclic state of stress can be investigated.

3.2 PERMANENT VOLUMETRIC STRAIN

Important factors that may affect cumulative volume change are the

initial porosity of the sand, the average effective stresses, the

cyclic stresses and the cyclic strains. Several researchers have

found that repetitive changes in the effective hydrostatic stress

contribute negligibly to permanent volume reduction in sand. Ko and

Scott [41] and El Shoby and Andrawes [42] claim that the behavior of

dense sand under hydrostatic stress change is nearly elastic,

producing insignificant residual strain; the same is true for loose

sands except that some permanent strain occurs during the first few

cycles of loading.

Cyclic shearing, therefore, is the primary cause of change in
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volume. Silver and Seed [43], Youd [27] using cyclic simple shear

tests and Badge and Marr [22b] using results from cyclic triaxial

tests on Sand A, confirm this statement. Further they conclude that

for a given initial density and cycle number, permanent volume change

is a function only of the difference between the maximum and the

minimum shear strain applied to the sample. This strain is called

"cyclic shear strain" in the remaining of the thesis. Figure 3.1

shows results reported by Silver and Seed [43] and Hadge and Marr [44]

which support a linear relationship between the logarithms of cyclic

shear strain and permanent volume change, for small levels of cyclic

shear strain (<1%) and for small number of cycles (N<1000). The slope

of the straight lines in figure 3.1 is not sensitive to changes in the

initial density of the material and the cycle number. Consequently

the relationship between the cumulative volume strain and the cyclic

shear strain can be written as

= C(nN) Y (3.1)
vol cyc

Hadge and Marr [22b] used results from Drained Cyclic Triaxial

tests on Sand A and found that under constant cyclic shear strain, a

linear relationship exists between the logarithms of the permanent

volume change and the cycle number (see figure 3.2). Their

conclusion, however, must be limited to small level of permanent

strains. According to the Characteristic Threshold model described in

chapter 2, as the maximum density of the sand is approached the rate

of accumulation of volumetric strain decreases gradually and

eventually becomes zero. For small levels of permanent volumetric
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strain equation 3.1 becomes:

b o.
vo = C(n) N Y (3.2)Vol cyc

For the narrow range of porosities tested by Hadge and Marr, no

pronounced effect of the initial porosity on the accumulation of

volumetric strain was observed; the empirical relation they propose

for contractive Sand A is

E (%) = 0.685 N 0.4 1.26 (3.3)
vol cyc

Silver and Seed [43] tested sand under a wider range of initial

densities and observed that the loose sand accumulated volumetric

strain faster than the dense one. Part of their data, shown in figure

3.3, indicate that the function C in equation 3.2 has the form

C Dr-Dr
C=C exp fc Dr (3.4)

0

where Co is the value of the function for Relative density equal to

Dro . Available test data for Sand A are not adequate to verify

equation 3.4; in the following chapters equation 3.3 will be used to

describe the cumulative volumetric strain, for contractive Sand A, at

small levels of permanent strain.
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3.3 PERMANENT VERTICAL STRAIN

Test results from drained cyclic triaxial tests are commonly

portrayed in terms of accumulated volumetric and vertical strain

versus number of cycles, since the testing system facilitates direct

measurement of these quantities. The horizontal permanent strain can

be computed as a function of the vertical and volumetric strain. In

order to complete the study of permanent strains in cyclic triaxial

tests, the accumulation of vertical strain will be examined next.

The ratio of the measured vertical to the volumetric permanent

strain for different number of cycles is summarized in table 3.1 for

twenty five drained cyclic test on Sand A. The data suggest that for

each test this ratio is approximately constant, independent of the

number of cycles.

Factors that may affect the ratio of permanent strains are the

porosity of the sand, the average effective stress and the cyclic

stress or strain. The effect of initial porosity is shown in figure

3.4 and the effect of cyclic shear strain is shown in figure 3.5.

Both factors have no pronounced effect on the ratio of permanent

strains. The effect of the average effective stress is shown in

figure 3.6 where the ratio of the vertical to the volumetric permanent

strain is plotted versus the average stress ratio (- /cc). Larger

stress ratios result in larger proportions of vertical to volumetric

permanent strain. An empirical relationship that fits the data is:
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V = 13.6 q -2 + 0.33 (3.5)

vlVooct

The test results in figure 3.6 correspond to contractive Sand A at

small levels of permanent volume strain; application of equation

(3.5 ), therefore, is restricted to small levels of permanent

volumetric strain too.

3.4 LIMITS ON PERMANENT STRAIN ACCUMULATION

3.4.1 VOLUMETRIC STRAIN

According to the CT-model described in chapter 2, a sand has no

tendency to change in volume due to cyclic loading under two

conditions:

(i ) When the average effective stress lies on the Critical

Threshold line.

(ii) When the density of the sand is equal to the maximum

density defined by standard ASTM procedures.

In section 3.1 it was shown that the accumulation of volumetric

strain of contractive Sand A can be described by an empirical

relationship, namely:

1.26 0.4 (3.3)
E -= 0.685y Y N
vol cyc

Differentiation of equation 3.3 with respect to the number of cycles
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gives an empirical equation for the rate of volumetric strain

accumulation:

0. 74 1.26 - 0.60
Evo = 0.274 Ycyc N (3.6)

Equations 3.3 and 3.6 do not satisfy conditions (i) and (ii)

above; to complete the description of permanent volume change,

equation 3.6 will be multiplied by a function f such that:

0.0 6/6 =0. 0max
f = (3.7)

1.0 6/6 = 1.0
max

where E denotes the distance of the volume and average effective

stress state of the sand from the limit states described by conditions

(i) and(ii); E denotes the maximum during the loading history

(see figure 3.7). One function with the above properties (equation

3.7) is

f = 1. - exp(-e.S) >0 (3.8)

with

6

max

The maximum distance ( is defined either as volume or -as stress

depending on the definition of the distance ( ) to which it must be

compatible.

The function f is plotted in figure 3.8 for different values of

the parameterQ. This parameter defines the extent of the influence

of the limit state and is determined through tests approaching the

limit states. No such drained tests were available for Sand A; an

estimation of the appropriate value of " " will be obtained from
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undrained cyclic triaxial tests where the average effective stress

stabilizes on the Critical Threshold line.

3.4.2 VERTICAL STRAIN

With respect to the vertical permanent strain, the behavioral

model suggests that the rate of accumulation becomes zero when the

maximum density of the sand is reached; on the CT-line, strain

accumulates in proportion to the logarithm of the number of cycles:

0.0 Dr = Dr
max

K on CT-line

The shear component of the vertical s.train rate is:

38. . Li;1.26 -0.6
S= E -ol = 3.73 q 2 Y N (3.9a)

aOct

To make this expression consistent with the behavioral model it will

be multiplied by the same function "f" used for volumetric strain (eq.

3.8). The distances and 5 , will be defined only with respect to

the minimum volume of the sand; thus equation (3.9a) becomes

Iqi

3.73 q - Y .26 N-0.6 (3.9b)
v -2 cyc

rQct

implying that

0.0 Dr = Dr
max

K 0 on CT-line
I 0.6

It is possible to modify equation 3.9 so that it will agree exactly
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with the CT-model. Such modification, however, will complicate the

empirical relation, without improving essentially its accuracy, since

cyclic loading back and forth across the CT-line is a rather extreme

situation.

3.5 CYCLIC SHEAR STRAIN IN TRIAXIAL TESTS

Earlier in this chapter it has been shown that the accumulation of

permanent deformation depends on the cyclic shear strain among other

factors. In triaxial tests the maximum shear strain is equal to the

difference between the major and the minor principal strains:

Y = E -s 3

The cyclic shear strain in equation 3.3 was defined by Hadge and Marr

[22b] as:

Ycyc = peak-to-peak shear strain = Ymax - Ymin

Ymax = shear strain at maximum shear stress

Ymin = shear strain at minimum shear stress

In the following paragraphs, two empirircal equations for the

cyclic shear strain will be presented: one proposed by Hadge and Marr

and also used by Urzua [6], and another which is based on the

hyperbolic constitutive model, and is proposed by the author.

The applicability of both models will be examined with respect to

drained and undrained cyclic triaxial tests of Sand A [62]. In the
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drained tests the average and the cyclic effective stress were kept

constant throughout the test (figure 3.9). Hadge and Marr observed

that while values of & and in equation (3.10) continually

increased with cycling, the cyclic shear strain remained relatively

constant (figure 3.9). In the undrained test total stresses are

controlled; under constant total average and cyclic stresses excess

pore pressure development changes the effective stress during the test

and results in varying cyclic shear strain (figure 3.10). For

undrained tests in the "subcharacteristic domain," the cyclic shear

strain increases as the effective stress path moves towards the

critical threshold line.

3.5.1 PEAK TO PEAK CYCLIC SHEAR STRAIN

Hadge and Marr suggest that the effects of porosity, cyclic shear

stress ratio and mean effective stress on are approximatelly

independent of each other, and proposed the following relationship for

Sand A:
Aq

Ycyc (%) -0.488 + 0.01 n (%) + 0.562 cyc + 0.016 p
p

(3.11)

Application of this relation is strictly limited to stress and

porosity conditions similar to those existed in the laboratory study:

41.0 K n% <43.6

0.06, cyc 0.28
p
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1.0 ( p K 5.0 ksc

0.15K < K 0.30
p

Aq c = Apc~cyc cyc

Badge proposed equation (3.11) for application with drained cyclic

triaxial tests where the mean stress (p) remains constant. For

undrained cyclic triaxial tests, where p continously changes, the

cyclic shear strain in one cycle of loading is computed according to

the stresses existing at the beginning of the cycle.

Figures 3.11 through 3.14 compare predictions based on equation

3.11, with measured values of cyclic shear strain from drained and

undrained tests on Sand A. The following trends can be identified:

(i) Equation 3.11 is reasonably accurate for drained cyclic

triaxial tests within the limitations described previously.

(ii) For undrained cyclic compresion tests (figure 3.12),

equation 3.11 gives satisfactory predictions for small values

of cyclic strain (6 4 .2%); for larger values it
CYC

underestimates the measured cyclic strain.

(iii) For undrained cyclic isotropic tests (figure 3.13) the

empirical model predicts reasonably well the small cyclic

strains, but it underpredicts larger ones.

(iv) For undrained cyclic extension tests (figure 3.14) the

model consistently underestimates the cyclic shear strain.
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3.5.2 THE HYPERBOLIC MODEL

3.5.2.1 DRAINED CYCLIC TRIAXIAL TESTS -

Kondner ([48], [49]), Duncan ([50], [51]) with their colleagues

have found that the plot of shear stress versus strain in Triaxial

compression tests is nearly a hyperbola. Hardin and Drnevich [45],

have shown that the same is true for isotropically consolidated simple

shear tests. In this section the cyclic shear strain will be

estimated assuming that the shear stress strain relationship for Sand

A is described by a hyperbola:

Ay = (3.12a)
o 1. - A~

Aqmax

where

0 : tangent shear modulus for q=0

A Cl: maximum change in shear stress required to reach failure

Rearrangement of terms in equation 3.12 results in a different

expression:

A 1. A__

Aq- G (3.12b)
0 'max

Equation 3.13) represents a straight line in a vs. " plot,
A9

when Go and Ac are constant (see figure 3.15).

The initial shear modulus Go is usually related to the confining

effective stress applied to the soil; in addition Duncan and Chang

[50] suggest that the initial modulus for unloading-reloading is
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different from that for first loading. Desai and Christian [ ] and

Hardin [44] suggest that during unloading-reloading the initial

modulus is approximatelly equal to the shear modulus of soil at very

small strain ( 0 + 1- ); a popular expression of this modulus

for sands has been proposed by Richart [47):
0.5

(2.973 - e)2 Oct (3.13)
Gmax = 326 pa 1 + e pa

Equation 3.13 was obtained using data from many different sands and is

followed by considerable scatter. For Sand A it will be assumed that

G 0 G max (3.14)

The calibration factor "p" will be determined from drained cyclic

triaxial test data from Sand A.

The second parameter of the hyperbola, , is related to the

shear stress required to reach failure, (Aq ). Duncan and Chang

[50] suggest that

Aq =
max Rf

with constant value of Rf between 0.70 and 0.90. To ensure a smooth

transition from the pre-peak to the post-peak behavior, Hardin [44]

suggests that Rf is a function of the shear stress which tends

asymptotically to 1.as the peak shear stress is approached.

To find the most appropriate definition of Aq ,,for Sand A the

strain in drained cyclic triaxial tests was compared with equa tion

3.12. A definition that led to consistent prediction of cyclic shear

strain for reloading and unloading is shown in figure 3.16. The
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predicted and measured strain are compared in figure 3.17. For this

comparison it was assumed that the calibration factor L in equation

3.14 is equal to one and a half.

3.5.2.2 UNDRAINED CYCLIC TRIAXIAL TESTS

Prediction of the cyclic shear strain with Hadge's model requires

knowledge of the average effective stress and the cyclic shear stress

only; according to the hyperbolic model, the direction of cyclic

effective stress path is also important. To apply this model,

therefore, to undrained loading a prediction method for the effective

stress path followed during each load cycle is necessary.

Extensive studies, concerning the deformation characteristics of a

sand under static and cyclic triaxial loading, have been performed in

the laboratory of University of Tokyo under the supervision of

Professor Ishihara ([671, [68], [69], [70], [71]). The major

findings, related to undrained stress paths are shown in figure 3.18;

in summary

(i) The line of "Phase Transformation" (PT), separates

contractive from dilative sands during static loading. This

line is essentially the same with the CT-line proposed by

Luong and Sidaner ([25],[26]) and presented in detail in

chapter 2.
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(ii) Static shearing below the PT-line (subcharacteristic

domain) results in pore pressure increase (path 1-4-7);

above the PT-line (surcharacteristic domain) dilation of the

sand occurs and decrease of the pore pressure (paths

7-8,9-10-11).

(iii) Unloading-reloading within the subcharacteristic domain

is approximately elastic with the change of pore pressure

equal to the change of the total octahedral stress (paths

2-3-4, 5-6-7). Unloading from a point within the sur

characteristic domain produces significant positive "plastic"

pore pressure in addition to the elastic one (paths 8-9,

11-12).

Figure 3.19 shows representative stress paths from undrained loading

of Sand A which agree with Ishihara's findings.

The effective stress path during unloading and reloading in the

subcharacteristic domain will be represented by a straight line

parallel to the "q" axis in a "q vs. G-,t " plot (see Figure 3.20a).

This is equivalent with assuming that unloading and reloading in this

domain are elastic. After the effective stress path crosses the

critical threshold line it changes direction, following the straight

line connecting the point of intersection with the ultimate state of

stress (see Figure 3.20b). Description of the ultimate state of

stress and volume for Sand A is presented in Appendix B. A stress

path starting within the sur characteristic domain and moving towards

the CT-line (see figure 3.20c) will follow the straight line
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connecting the initial point (A in figure 3.20c) with the point

corresponding to the average stresses at the begining of the cycle (B

in figure 3.20c). There is little physical meaning in this

assumption, but it is consistent with the observed cyclic sand

behavior as will be shown next.

In figure 3.21 the model is compared with the stress paths

observed in undrained cyclic compression, isotropic and extension

tests on Sand A; the sand propertis required by the model are

summarized in Table 3.2. To illustrate the sensitivity of cyclic

shear strain to the assumptions concerning stress paths, the

hyperbolic model was used to predict the cyclic shear strains along

the stress paths in Figure 3.21; the results are summarized in table

3.3. For eight out of the nine stress paths considered, the error in

the prediction was below 12%; for one of the stress paths the error

was 71%.

Evaluating the data in figure 3.21 and table 3.3, one has to keep

in mind that the proposed model will be used in the prediction of the

cyclic shear strain when the average effective stresses and the cyclic

shear stress are known. Further sophistication would be necessary if

the model was used directly to predict the strain and pore -pressure

accumulation due to cyclic loading (for example [70], [71], [73)).

With a method to predict the cyclic effective stress path due to

undrained loading, cyclic shear strain can be predicted through the

hyperbolic model. Figures 3.22 to 3.23 compare the predicted with the

measured cyclic shear strain in undrained triaxial tests. The

following conclusions can be drawn from the comparison:
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(i) The hyperbolic model predicts well the cyclic shear

strain in undrained compression tests.

(ii) There is considerable scater in the model's predictions

for isotropic tests; the model overpredicts the cyclic shear

strain when it is larger than 0.1% .

(iii) for undrained extension tests the model's predictions

are in good agreement with the test data for small and large

values of cyclic strain; for medium strains, between 0.10

and 0.25%, the predicted values exceed the measured ones.

3.5.3 SUGGESTED MODEL FOR CYCLIC SHEAR STRAIN

In choosing between Hadge's relation for cyclic shear strain and

the hyperbolic model, three major factors will be considered

(i) accuracy

(ii) number of parameters defining the model

(iii) computational effort required for the application of

the model

(iv) generality

Accuracy
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Review of figures 3.11 and 3.17 indicates that both models fit the

available data from drained cyclic triaxial tests equally well. The

models' predictions for undrained tests are summarized in figures 3.25

to 3.27. It is evident that the hyperbolic model is more accurate,

especially in predicting the large cyclic shear strain which,

according to figure 3.10, occurs during shearing close to the failure

envelope.

Number of parameters

To define Hadge's empirical relation (equation 3.11) four

parameters are required; they can be determined from series of

drained cyclic triaxial tests where each of the important quantities

(nYA ,p ) varies at the time and the rest are kept constant.
P
The hyperbolic model is defined through two parameters (see

equations 3.12, 3.14): the calibration factor "p' for the initial

shear modulus, and the friction angle of the soil which is used to

define the ultimate shear stress "4q To apply the model to

undrained cyclic loading the location of the phase transformation line

has to be defined as well. This line, however, has been already

defined in chapter 2 under the name "CT-line', as a distinction

between contractive and dilative sands; thus, it does not introduce

one additional parameter.

Computational Effort

The computational effort required from the two models is

summarized in table 3.4; it is evident that the hyperbolic model is
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more computationaly involved.

Generality

Hadges relation is purely empirical and contradicts two basic

concepts of soil behavior:

(i) The soil stiffness increases as the applied confining

stress increases; Hadges equation predicts instead that the

cyclic shear strain will increase if the applied mean

effective stress increases.

(ii) There is a peak shear stress that can be reached, after

which large strains occur. Hadges equation does not account

for the peak stress, and for this reason consistently

underpredicts the cyclic strain due to loading close to the

failure envelope.

The hyperbolic model is consistent with the two concepts

previously described,' and -is generally accepted as a simple but

meaningful model for the prediction of shear strain in soils (for

example [44], '[74]).

In summary, the hyperbolic model is more accurate, needs fewer

parameters and is consistent with basic soil mechanics concepts; the

only disadvantage compared with Hadge's model is that it requires

larger computational effort. In the present thesis the hyperbolic

model will be used to predict the cyclic shear strain, since it
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appears to be more advantageous, over all, than Hadge's empirical

relation.

3.6 SUMMARY

The more important findings of this chapter can be summarized as

follows:

(i) The volumetric permanent strain is drained cyclic

triaxial tests is related to the cyclic shear strain, the

number of cycles and the initial stress ratio by a log-linear

relation; for Sand A:

E (%) = M,685 y1.26 N0-4 0  (3.3)
vol cyc

(ii) The vertical permanent strain is proportional to the

volumetric with proportionality constant depending on the

initial stress ratio:

v = 13.6 q + 0.33 (3.5)

El oct

(iii) The rate of permanent volume change becomes zero when

the average effective stresses lies on the CT-line; the rate

of vertical strain accumulation, however, remains unaffected.
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(iv) The cyclic shear strain in drained and undrained cyclic

triaxial tests can be succesfully estimated, by a two

parameter hyperbolic stress strain relationship.

(v) A proposed model for the prediction of effective stress

paths during undrained cyclic loading fits sufficiently well

the data from cyclic triaxial tests on Sand A.



TEST Yyc q F- / -cycn% V vol v vol
#LC meas. %ct N=5 19 50 150 559 1050 2000 N mean

Oct f

127
141
168
169
170
171
175
177
178
179
180
196
197
212
257
261
285
290
297
303
305
308
316
321
327

0.174
0.088
0.077
0.084
0.077
0.106
0.129
0.061
0.106
0.040
0.078
0.073
0.079
0.096
0.058
0.019
0.054
0.106
0.066
0.029
0.077
0.087
0.034
0.068
0.170

0.00
0.27
0.18
0.21
0.30
0.00
0.21
0.21
0.21
0.21
0.46
0.21
0.41
0.21
0.27
0.21
0.21
0.21
0.27
0.21
0.21
0.27
0.27
0.21

-0.19

41.2
43.1
43.0
43.2
43.0
43.2
43.2
42.9
43.5
42.8
42.6
41.9
43.1
43.4
42.0
43.4
43.1
43.4
41.8
42.6
42.9
42.8
42.9
41.1
43.9

0.16
1.49
0.80
1.16
1.73
0.05
0,94
1.12
1.10
0.95
5.45

0.66
0.56
1.17
1.14
1.24
1.27
0.99
1.47
1.55
0.84

-2.69

0.18
1.45
0.80
1.12
1.56
0.11
0.89
1.08
1.07
0.97
4.77

0.60
0.51
1.19
1,08
1.12
1.13
0.94
1.34
1.35
0.86

-2.41

0.23
1.30
0.75
1.01
1.26
0.20
0.81
1.01
1.00
1.05
3.72

0,56
0.67
1.07
1.06
1.02
1.05
0.86
1.20
1.09
0.85

-1.91

0.26
1.13
0.69
0.96
0.94
0.26
0.79
1.03
0.97
1.27
3.16
0.77
1.94
0.67
0.58
0.60
0.99
1.05
1.09
1.02
0.84
1.18
1.00
0.89

-1.57

0.28
1.04
0.65
1.06
1.04
0.29
0.85
0.90
0.87
1.26
2.67
0.69
1.77
0.65
0.56
0.51
0.91
1.02
1.07
0.97
0.82
1.15
0.89
0.96

-1.36

0.28
1.01
0.79
1.14
1.13
0.36
0.84
0.88
0.78
0.74
3.06
0.69
1.72
0.71
0.56
0.68
0.89
1.01
1.05
0.90
0.82
1.14
0.86
1.04

-1.27

0.27
1.04
0.76
0.97
1.11
0.35
0.83
0.98
0.83
1.04
2.78
0.73
1.84
0.78
0.65
0.36
0.87
1.07
1.13
1.14
0.89
1.11
0.85
1.15

-1.18

0.27
1.06
0.79
0.99
1.12
0.34
0.79
0.91
0.82
1.05
2.62
1.01
1.75
0.87
0.68
0.37
0.88
1.18
1.26
1.58
0.95
1.10
0.87
1.27

-1.14

0.24
1.19
0.75
1.05
1.24
0.25
0.84
0.99
0.93
1.04
3.53
0.78
1.80
0.74
0.61
0.53
1.00
1.08
1.12
1.13
0.88
1.21
1.06
0.98

-1.69

TABLE 3.1: Ratio of Vertical to Volumetric Permanent Strain in
Tests on Sand A

Drained Cyclic Triaxial

I
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(1) Estimated in Appendix
(2) From Figure 2.7

TABLE 3.2: Summary of
Define the
Loading

Basic Parameters Required to
ESP during Undrained Cyclic

(1) (2) (1)
TEST # POROSITY S

max CT u
(%) (o) (0) (ksc)

LC-77 41.0 37 30 200

LC-73 41.3 36 30 150

LC-74 41.3 36 30 150

B
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* For Measured

TABLE 3.3: Predic
ESPs

ESP

ted y along the Estimated and Measured

* *
TEST CYCLE y y y ycyc cyc cyEc cyc

*
# NUMBER predicted y

cyc
LC- (%) (%) (%)

1 .051 .052 1.75

77 2500 .073 .052 3.95

9500 .162 .145 -11.72

1 .103 .116 +11.21

73 12 .252 .270 6.67

32 3.490 3.490 0.00

1 0.066 .071 7.04

74 10 .133 .133 0.00

60 .285 .981 70.95



HAD GE 
HYPERBOLIC

CF +a _C +2F- v h _ _ h
step 1 = 2 coct 3

step 2 Aq = v cyc h cyc G0 (eq. 3.13, 3.14)

2

step 3 , y (eq. 3.11) Effective stress path
CyC (section 3.5.2.2)

step 4 Aq (Figure 3,16)

step 5 Ycyc (eq. 3.12)

TABLE 3.4: Computational Steps Required for the Prediction of

Ycyc

HADGE HYPERBOLIC



0.

0

0

TRIAXIAL TEGT

DATA FROM
HADGE & MAR R ,1979

- ~ C

I 1.0 0.5 0.1 0.05 0.01

cy c e

FIGURE 3.1 : Pernanent Volumetric Strain versus Cyclic Shear Strain

163I0

10

10

I I
SILICA SAND No. 20-40
80
Go
45 - 10 cycles

GO

45

-300 cyc Ies%

GIMPLE GHEAR TE GT DATA

FROM G LVER & G ED, 1971

.10

.05

..

10
IO-

00

10 10

Cy *o

'01

0



1.00

0.50

0.10

EVol 0 .85N.4 00

0,2 1.2

0.05

0.01

5 10 50 100 500 1000
N
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CHAPTER 4

A CONSTITUTIVE MODEL FOR CYCLIC LOADING OF SAND

4.1 INTRODUCTION

In previous chapters 2 and 3, the accumulation of strain due to

drained triaxial cyclic loading of Sand A was studied, and empirical

relations were suggested. Prediction of the performance of

foundations under cyclic loads, however, cannot be based directly on

those relations for the following reasons:

(i) In the tests analyzed the average effective stress

remained constant during cycling and thus the measured strain

was caused exclusively by cyclic shearing. In general, the

average effective stress changes during cyclic loading due to

the displacement constrains; the final strain, therefore, is

the combined result of cyclic straining and static change in

the average effective stress:

E= :R + :Aa

R = residual strain under no displacement constraints

e A= strain due to change in average effective stresses
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A complete description of cyclic sand behavior requires

coupling of the empirical equation for cumulative strains

with a stress-strain relationship for static loading.

(ii) In chapter 3 it was found that the accumulated strain

depends on the average effective stress, the cyclic shear

strain and the straining history expressed through the number

of cycles. In the tests analyzed the effective stress, both

average and cyclic, was kept constant allowing the total

cumulative strain to be related to the number of cycles. For

general analyses it is more appropriate to assume that the

average stress remains constant during small parcels of

cycles only. For the description of cyclic sand behavior,

therefore, an incremental relation between strain and number

of cycles is required.

(iii) The proposed relations were developed for triaxial

tests where

1 2 y3 ' 1 E:2 =3

or

: = 02 3 9 1 2 3

Thus they describe the behavior of sand under cyclic loading

in terms of the major and minor principal strain and stress

only. Analysis of three dimensional problems, however,

requires a complete constitutive relation of all the

components of strain and stress.
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This chapter presents a constitutive model that fulfills the

requirements described above.

4.2 CYCLIC LOADING VERSUS CREEP

Striking similarity exists between creep and cyclic loading of

soils as described by the "cumulative strain" approach:

- for creep, under constant stress, the deformation of the

material increases as time increases

- for cyclic loading under constant average effective stress,

deformation accumulates as the number of cycles increases.

Urzua [6] observed this similarity and used series of Kelvin-Voigt

elements to predict the strain accumulation during drained cyclic

loading. Using the Boltzman's superposition principle [80], Urzua was

able to account for the effect of change of the average stresses on

the strain accumulation (equation 3.5b). Boltzman's principle,

however, applies only to material with constant compliances. This is

not true for soil, whose material properties depend strongly on the

effective state of stress; the method proposed by Urzua, therefore,

accounts only in part for the effect of stress redistribution.

A simple means to describe creep is the Maxwell Fluid model

consisting of a spring and a dashpot connected in series. Under axial

stress (a) the strain rate predicted by the model is
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de 1 da a (4.1)
dt E dt F

where

E = spring constant

F = viscosity constant

Since equation 4.1 is in incremental form, it allows for continous

updating of the model parameters E and F, and can thus include

completelly the effects of stress redistribution on strain

accumulation. The Maxwell Fluid model will be used to describe the

permanent strain accumulation due to repeated loading. The stress and

strain quantities used in the model's description are summarized in

table 4.1 for general three dimensional states and for triaxial test

conditions.

For isotropic soil two equations, similar to 4.1, are necessary;

one for the volumetric strain and stress rate and one for the

deviatoric:

- Oct oct
vol K V

(4.2)

S.. S..

ij 2G R

The spring constants, K,G, correspond to the bulk and shear

modulus and depend on the average effective state of stress; the

"viscosity constants" V and R are non-linear functions of the average

effective state of stress, the cyclic shear strain and the strain

history.

Equation 4.2b suggests that the viscosity function R is common for

all deviatoric components of strain, which is true for isotropic

materials only. Soil is not isotropic primarily because of the
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initial consolidation process and subsequent plastic flow;

application of the proposed model, therefore, will be approximate as

far as material isotropy is concerned.

4.3 DETERMINATION OF VISCOSITY FUNCTIONS

For repeated straining under constant average effective stress

(OS-g:O ) equations 4.2a and 4.2b simplify to

o = (4.3a)Vol V

S.
= j (4-3b)

ij R

For triaxial tests equation 4.3b can be expressed as

= v h
v -h R

or

v 3- vol 3 R

Substitution of the strain rates in equations 4.3a and 4.3c with the

empirical equations 3.6 and 3.9 leads to expression of the viscosity

functions for Sand A:

0
V = 1.26 -0.6 (4. 4a)

0.274 y N f
cyc

1

R = 7 jq 1.26 -0.6 (4.4b)
2.795 , cyc N 0.2 cyc

cr t

An invariant measure of shear stress for general stress conditions is
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the shear stress intensity T defined as

T = ( ) (4-5)(2)

Jz second invariant of the deviatoric stress

For triaxial tests (see table 4.1)

2 19

Substitution of equation 4.5 into equation 4.4 results in expression

of the viscosity functions only in terms of the stress invariants:

a
oct

0 = 1.26 - 0.6 (4.6a)
0.274 y N fcyc

1.
R = (4. 6b)

T 1.26
2.421 - cyc N f

0 c t

The above relations are based on data from cyclic tests with

constant amplitude, where the strain history is completely defined by

the number of cycles. In many important practical problems - such as

loading resulting from wave forces on offshore structures, or from

earthquake ground motion - the cyclic load amplitude is variable.

Such problems are usually handled by converting the irregular time

history into an equivalent number of cycles of uniform load.

There are different ways to do so depending on the objective of

the study. Annaki and Lee [531 and others [52], [54] use fatigue

concepts to define the equivalent number of cycles: for a reference

cyclic shear stress they find the number of uniform cycles that will

cause the same damage, with respect to liquefaction, as the irregular

loading. The basic premises are two:
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(i) The cyclic strength of the material is known.

(ii) The energy applied during any stress cycle has

cumulative damaging effect which is independent of where in

the time history that particular stress cycle occurs.

This procedure is meaningful for repeated loading under undrained

conditions, and has been succesfully used to determine safety against

liquefaction.

Urzua [6] applies a similar approach to irregular cyclic loading

of dry soils. For a reference cyclic shear strain he defines the

number of uniform cycles which will produce the same accumulation of

volume change as the irregular loading. This procedure, similar to

the previous one, assumes that each strain cycle has a cumulative

effect which is independent of the sequence of loading.

A different way of treating irregular loading is to describe the

cyclic history with a strain measure. This approach is widely used to

describe monotonic loading of soils though classical plasticity ([9],

[10] etc.) and endochronic models ([55], [56] etc.). Martin, Finn and

Seed [56] propose that the accumulation of strain or pore pressure due

to one cycle of loading depends,among other factors,on the permanent

volume that would have occurred prior to this cycle if free drainage

hade been allowed. This method, in contrast to the two previously

described, takes into account the sequence of the irregular loading;

in addition it is applicable to both drained and undrained loading.

Martin et al used this method with success to study the effect of the

membrane penetration and the partial saturation on the results of
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cyclic undrained triaxial tests.

The effect of cyclic history on equation 4.6 will be introduced

with the method of Martin et al. If at the begining of one cycle of

-loading the permanent volume change that would have occured under

R
drained conditions and no other displacement constraints is Evot , and

the cyclic shear strain applitude of the cycle is cyc then the

equivalent number of cycles with uniform amplitude v is

R 2.50

N = V .2 (.4.7)
0.685 y1.26

cyc

The number of cycles N, in equation 4.6 has to be replaced with Neq to

make the equation applicable to irregular cyclic loading; if the

amplitude of cyclic shear strain remains constant during the loading

period the equivalent number of cycles is equal to the true one.

4.4 DETERMINATION OF SOIL MODULI

The change in strain due to an average effective stress increment

can be predicted with different degree of accuracy depending on the

soil model used and the kind of loading. Linear elastic is the

simplest model that can be used, since it requires the definition of

two parameters only: The Young's modulus and the Poisson's ratio, or

any other equivalent pair. Soil, however, is highly non linear and

application of linear elasticity must be restricted to problems where

small change of stress is expected.

Improved predictions of stress-strain behavior can be achieved if
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the elastic parameters are related to the effective stress. One

example of this category is the widely used hyperbolic model ([48],

[49], [50] etc.) which uses five parameters to define the variation of

the elastic soil properties. Simplicity is the major advantage from

using those models; their application, however, is limited to stress

paths not significantly deviating from the laboratory tests used to

fit the model parameters [58]. The description with such models of

the post-peak behavior of soils with strain softening requires the

introduction of large number of parameters which complicates the model

[74].

Recent application of plasticity and viscoplasticity concepts to

soil mechanics produced models able to predict characteristic features

of soil behavior such as: strain softening, change in volume due to

shearing and anisotropy effects. Models, however, which are also

realistic in predicting those features quantitativally are usually

defined through a large number of parameters (for example Prevost [8],

[9]), and also require relatively large computational effort.

The use of an endochronic or a plasticity model to describe the

soil moduli in equations 4.2 would rather complicate the proposed

model. Instead simple relationships of the soil moduli to the

effective state of stress can yield sufficiently accurate predictions,

since:

(i) simple aspects of the pre-peak response of sands is of

primary interest here
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(ii) the stresses in the foundation can be estimated in

advance so that appropriate stress conditions can be used in

the laboratory to define the stress-strain relations.

4.4.1 SREAR MODULUS

Since the deviatoric stresses and strains are related through the

shear modulus:

e Sije..
2G

the same will be true for their invariants. A non linear elastic

relation will be assumed between the shear stress and the shear strain

intensities (see definitions in table 4.1):

' T

2G

with tangent shear modulus, G , defined as

G=G 
(4.8)

G50 = Secant Modulus for T = 1/2 T f.

It is worth noting that the definition of shear modulus is

independent of the direction of load increment as far as loading and

unloading is concerned; this characteristic considerably simplifies

the numerical application of the model. The proposed modulus is not

affected by the applied shear stress; consequently possible stress

redistribution in the foundation cannot be modeled for the case of

local failures due to monotonic or cyclic loading.
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Christian and Marr [59] report the following approximate

relationship between Youngs modulus confining stress and porosity, for

Sand A:

E 5 = (6507.0 - 134.0 n) p oct(4.9)

where n = porosity in.%

pm = atmospheric pres~ure

The shear modulus can be computed from equation 4.9 as

- 0.5

G = (6507.0 - 134.0 n) a C(4.10
50 2(1+v) pOt

= Poisson's ratio

Figure 4.1 compares equation 4.9 with the general relation for the

shear modulus at small strains (G,,) proposed by Richart [47]

(equation 3.12) for a wide range of initial void ratios. The

correlation of the expressions depends on the void ratio of the sand;

for the range of porosities tested by Christian and Marr it is

approximately

G = 0.35 G50 max (4.11)

4.4.2 BULK MODULUS

From theory of elasticity the Bulk and the Shear moduli are

related by the equation

K = 2(1 + v G
3(1 - 2v)

with values of Poisson's ratio smaller than 0.5. This relation,
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however, is realistic at small strains only, when the stress-strain

relationship of the soil is approximatelly elastic. When plastic

strain starts developing, the above equation is not valid any more and

the Bulk modulus must be determined indepentendly from the Shear

modulus using results from appropriate laboratory tests (e.g.

[50,51]).

Duncan et al [511 suggest that the Bulk Modulus of sands is

related to the minor effective stress in triaxial tests by the

equation m

K = B (a )

Duncan based his conclusions on isotropically consolidated triaxial

tests where the minor effective stress is also equal to the initial

hydrostatic effective stress. Similar to the proposed relation for

the shear modulus, the Bulk Modulus will be expressed in terms of the

hydrostatic effective stress which is an invariant quantity:

- m

K_= B p oct (4.12)

Duncan and Chang [50] accept that the parameter B must be related to

the porosity of the soil but they avoid proposing any empirical

relation due to lack of experimental data. The same researchers

suggest that B for reloading and unloading is different than B for

primary loading, but the exponent m is the same. Duncan and Chang

express concern over the effective stress path followed in triaxial

compression tests; it is very likely that the direction of loading

has to be added to the factors affecting the Bulk Modulus. Due to
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those complexities, it is recommended that the appropriate values for

the parameter B and m in equation (4.13) be estimated through

laboratory tests along effective stress paths similar to those

expected during cyclic loading.

4.5 EVALUATION OF MODEL'S PARAMETERS

This section summarizes the laboratory tests required for the

determination of the model's parameters. The tests will be grouped

according to the parameter(s) they are used to evaluate.

Strength Characteristics

Drained and Undrained static triaxial tests are required to

determine the maximum friction angle and the undrained shear strength

of the soil (Appendix B). It is desirable that those tests cover a

wide range of initial porosities since both the friction angle and the

undrained shear strength are related to porosity.

Limits on Permanent Strain Accumulation

In chapter 2 the boundary between contractive and dilative

behavior due to cyclic loading was defined by the CT-line and the

minimum void ratio of the soil. The static triaxial tests run to

determine the strength characteristics of the soil can also be used to

define the CT-line, in the way described in chapter 2. The minimum

void ratio must be determined from vibratory compaction tests
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according to ASTM D-2049-69 requirements.

Viscosity Functions

In section 4.3 it was shown that two empirical relations are

required to describe the viscosity functions V and R; one for the

volumetric and one for the vertical strain accumulation. Those

relations must be derived from two series of drained cyclic triaxial

tests:

- one where the initial state of stress is kept constant and the

cyclic stress amplitude varies

- a second where the initial stresses vary

For the second series of tests it is important to run tests

varying the distance from the CT-line systematically, so that the

function expressing the effect of limit state on permanent strain

accumulation (see section 3.3) can be determined.

For both series a large number of cycles of loading (N>1000) must

be applied.

Soil Moduli

The soil moduli G and K are used by the model to determine the

permanent strain resulting from stress redistribution during cyclic

loading. For their evaluation, therefore, stress-strain data are

required from static tests run along stress paths simulating the

expected stress redistribution. Sample evaluation of soil moduli are
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presented in the following chapter, which compares the model's

predictions with data from test where the average state of stress

changes during cyclic loading.

4.6 SUMMARY

A constitutive model was developed which relates the change in

cumulative strain to the change of the number of cycles and to the

change of the average effective state of stress. The most important

features of the model are listed below:

(i) It is formulated in terms of six components of stress and

strain and can thus be applied under general loading and

boundary conditions

(ii) It is formulated in terms of the effective state of

stress and applies to both drained and undrained analyses

(iii) It is incremental and can thus account effectively for

the effects of stress redistribution on permanent strain

accumulation

(iv) It assumes isotropic material properties

(v) Relatively simple laboratory tests are required to

determine the model's parameters, which include static

triaxial tests and drained cyclic triaxial tests.
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CHAPTER 5

EVALUATION OF MODEL'S PREDICTIONS

5.1 INTRODUCTION

So far it has been shown that the model fits the behavior of Sand

A under drained cyclic triaxial test where the average effective

stress and the cyclic shear strain remained constant throughout the

test. Those tests, however, are not representative of the stress

conditions in a foundation subjected to repeated loading, as has been

already discussed in chapter 4. In the following paragraphs the

applicability of the proposed model will be evaluated through

comparison with results from cyclic oedometer tests and undrained

cyclic triaxial tests.

5.2 CYCLIC OEDOMETER TESTS
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5.2.1 TEST RESULTS

Wooten [60] reports test results from cyclic oedometer tests on

Sand A where the applied vertical stress varied between two fixed

limits; the stress and porosity conditions for the tests are

summarized in table 5.1. The ratio of the horizontal to the vertical

stress, and the accumulated vertical strain, measured in all of the

tests are portrayed in Figure 5.1.

Similar as in drained cyclic triaxial tests, permanent vertical

strain in oedometer tests accumulates at a decreasing rate with

respect to number of cycles. The mangnitude of permanent strain,

however, is smaller in oedometer tests than in drained triaxial tests

(see Figure 5.2). At small numbers of cycles (N<40) the log strain

log number of cycles plot for the oedometer test is slightly shallower

than that corresponding to triaxial test under the same stress and

porosity conditions; the plots become approximatelly parallel at

larger numbers of cycles (N>40). In all tests a small increase, up to

9%, in horizontal stress is observed during the first cycles of

loading (N<40). Thereafter the horizontal stress either remains

constant or decreases.

Measurements of the horizontal stress during cyclic oedometer

tests of Ottawa sand reported by Finn [61], are shown in Figure 5.3.

For normally consolidated samples (Dr=45%) cyclic loading increased

the horizontal stress by 50%; for overconsolidated samples (oc= 4 )

cyclic loading decreased the applied horizontal stress by 30%. The

results show that the ratio of the horizontal to the vertical stress



125

tends to a limiting value approximatelly equal to 0.63. For initial

stress ratios smaller than the limiting value, cyclic loading will

increase the horizontal stress, while it will have the opposite effect

when the value of initial stress ratio is larger than the limiting

value.

The normally consolidated Ottawa sand tested by Finn has similar

density and initial stress ratio to Sand A tested by Wooten. Finn,

however, reports a much larger increase in horizontal stress than

Wooten does. In addition his results suggest a steady increase of the

horizontal stress towards a limiting value, in contrast to the initial

increase followed by decrease in horizontal stress observed by Wooten.

In interpreting his results, Wooten considered three possible

factors to account for the measured decrease in horizontal stress:

(i) Measurement errors

(ii) Equipment characteristics

(iii) Actual soil behavior

He concluded that the test results reflect actual soil behavior.

There are reasons, however, to believe that measurement errors and

equipment characteristics may play a more significant role. In Figure

5.4 the ratio of the vertical to the volumetric permanent strain in

the oedometer tests is plotted versus the average stress ratio

(q/60); in the same figure data from drained cyclic triaxial tests

on the same sand are shown for comparison. It is evident that the

sand behavior observed in the triaxial tests is not compatible with
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the results from the oedometer tests.

5.2.2 MODEL PREDICTION

Under constant average vertical stress (.,= 0) and no lateral

strain (&h=o) equations 4.2 take the form:

_ 2 h + aOct
v 3 K V

h +V h
v 2G R

Solution of this system of equations yields the expressions for the

two unknowns 6 h and 8,:

~h = a R ah Oct 2 + (5.1)CTh R V_ 3K 3G

= v h Oct ( 1 + 3 K )+ oct (5.2)
E:V R V 4 G +V(52

The results reported by Wooten and Finn show that during cyclic

loading under one-dimensional conditions of Sand A will increase the

average horizontal stress, and will decrease the volume of the sand.

As it is shown in Figure 5.5 the average stress and volume state of

Sand A will move away from the "Virgin compression line" (VCL) where

it originally belonged. The appropriate moduli in equations 5.1 and

5.2, then, are those corresponding to unloading and reloading.

Paragraph 4.4.1 describes completely the shear modulus for Sand A.
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Data from 1-D monotonic loading and unloading of the same sand are

reported by Wooten (60]; it is suggested (see Figure 5.6) that the

Bulk Modulus can be estimated from the following expression:

1.70

t )53
K = 2250.0 p ( (5.3)

Figure 5.7 summarizes characteristic predictions of the model for

two cyclic oedometer tests with different initial stress ratios. In

both cases the horizontal stress changes until a limiting value of the

stress ratio is reached; thereafter the average effective stress

remains constant and the vertical permanent strain equals to the

volumetric since no lateral deformation is allowed. The limit stress

ratio then can be defined from the empirical equation 3.5a as

2
EVq

= 13.6 + 0.33 = 1.0
vol 6ct

or

v 3 1 -K

S1-3.6 2K + 0.33 = 1.0 (5.4)
E:Vol 2l+2 54

Solution of equation 5.4 yields the limiting stress ratio for Sand A

Klimit = 0.66 (5.5)
v limit

When the initial stress ratio is larger than the limiting value, the

average horizontal stress decreases due to cyclic loading, but it

increases when the initial stress ratio is smaller than the limiting

value. This behavioral pattern is in good agreement with the test
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results reported by Finn [611 and shown in Figure 5.3. Comparison of

the limiting values of the stress ratio measured by Finn and predicted

by the model, 0.63 and 0.66 respectivelly, shows a remarkably good

agreement.

Vertical strains in Figure 5.7 accumulate continously at a

decreasing rate. For small initial stress ratio the slope of the log

strain-log N plot is initially small and increases as the number of

cycles of loading increases; the same reponse is reported by Wooten

[60] (see Figure 5.2). In the case with large initial stress ratio

the opposite reponse is predicted. At a large number of cycles the

strain rates of both cases become similar.

Figure 5.8 compares measured horizontal stress and vertical

permanent strain in cyclic oedometer tests on Sand A with the model

predictions. The model predicts larger changes in horizontal stress,

and a smaller accumulation of vertical strain. To examine the

sensitivity of the predictions to the value of Bulk Modulus, a modulus

equal to one tenth of that defined by equation 5.3 was used to predict

the cyclic response; the results are summarized in Figure 5.9.

Although the comparison with the measured reponse has been improved,

especially at small number of cycles, still the model predicts larger

horizontal stress and smaller vertical strain.

Earlier in section 5.2.1 it was shown that there are reasons to

believe that testing errors may have altered the measured response.

One assumption that seems to explain the divergence between the

predicted and measured behavior is that testing conditions in the

cyclic oedometer tests are not purely one dimensional. Lateral
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flexibility of the stress measuring ring, or dilation caused by

temperature increase during the test, may have allowed horizontal

strain, thus leading to small change in horizontal stress and large

vertical deformation.

To check the validity of this assumption, predictions of cyclic

response were made, allowing free lateral strain. Figure 5.10

compares the test data with model predictions under both assumptions

of no lateral strain and free lateral strain; the results reported by

Wooten [60] correspond to an intermediate situation. It is

reasonable, then, to believe that despite the great care taken by

Wooten to maintain one dimensional conditions throughout the test,

some lateral strain developed during cyclic loading.

5.2.3 SUMMARY

Comparison of the model's prediction presented with test results

from cyclic oedometer tests reported by Finn [61] and Wooten [60].

The model was able to predict all the basic trends reported by the two

researchers:

(i) There is a limiting value of the ratio of horizontal to

vertical stress that can be reached with cyclic loading.

(ii) When the initial stress ratio is smaller than the

limiting one cyclic loading results in increase of the

horizontal stress. The effect of cyclic loading on
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horizontal stress is opposite when the initial stress ratio

is larger than the limiting value.

(iii) When the initial stress ratio is lower than the

limiting one the slope of log strain-log N plot is smaller at

small number of cycles than it is in large number of cycles.

Model predictions overestimate the stress and underestimate the

strain measured by Wooten. Evidence has shown that lateral expansion

of the testing device used by Wooten resulted in conditions different

than one dimensional, as the model assumes.

5.3 UNDRAINED CYCLIC TRIAXIAL TESTS

5.3.1 MODEL'S PREDICTION

Undrained cyclic triaxial tests on Sand A were run at M.I.T. as

part of research on the behavior of Oosterschelde soils, sponsored by

the Government of the Netherlands. The test conditions and procedures

are summarized in reference [62].

The total average stresses were kept constant throughout each test

(6= 0. ); this condition when combined with the volume

incompressibility ( LVeg0) and equation 4.2a yields an expression for

the rate of accumulation of pore pressure:

K oct (5.6)
V

Equation 4.2b or its simplified version 4.3b defines the vertical
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strain accumulation rate:

_ 2 V h (5.7)v 3 R

The bulk modulus in equation 5.6 must be estimated according to

stress-strain data from laboratory tests along the path followed by

the average state of stress during undrained cyclic loading.

For initial stress conditions in the subcharacteristic domain,

positive pore pressure will develop due to cyclic loading, reducing

the octahedral effective stress under constant shear stress. Hadge

and Marr [22b] measured the volume increase of Sand A, in static tests

along just such a stress path. Their results are presented in Figure

5.11 in terms of the tangent bulk modulus and the effective octahedral

stress; a simple relation that fits the data is

K = 280.0 a (5.8)
oct(.)

Equation 5.8 overestimates the modulus for effective octahedral

stress smaller than 1.20 ksc. For most of the cyclic triaxial tests

on sand A (see table 5.2), however, the initial octahedral stress is

larger than this value. In addition typical data from undrained

triaxial tests (e.g. figure 5.13) show that the rate of pore pressure

accumulation is larger during the initial stages of cyclic loading

than it is later. For both reasons it is preferable to fit the

experimental data over the range of effective octahedral stresses

larger than 1.20 ksc.

It is possible that initial stresses and volume conditions affect

the bulk modulus. The analyzed tests, however, cover a limited range
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of porosities and initial shear stress ratios:

41.1' ( n% < 43.8

0.21 (- ( 0.36
oct

and do not permit evaluation of those effects.

One parameter of the model that has not been determined so far is

the parameter "I" in the expression for the effect of the Cyclic limit

state on permanent strain accumulation (see section 3.3). The value

of " must be determined from series of drained cyclic tests with

varying distance away from the CT-line. Such tests, however, were not

available for Sand A and a crude estimation of the value of "t will

be made through test data from a representative undrained cyclic

triaxial test in compression.

Figure 5.12 compares predicted pore pressures and vertical strains

with values measured in test LC-104. A wide range of values was

considered to determine the sensitivity of the model's predictions to

this parameter. It can be concluded that:

(i) both strain and pore pressure predictions are sensitive

to the value of ' "

(ii) the effect of "Q" is more pronounced at large number of

cycles as the effective state of stress moves close to the

CT-line due to the increase in pore pressure
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(iii) values of between 0.40 and 2.50 provide a

reasonably good fit of the data. In the following sections a

value equal to 1.0 is used to predict the cyclic response of

Sand A.

5.3.2 PREDICTED VERSUS MEASURED RESPONSE

To evaluate the model's validity under undrained conditions, the

predicted and measured response was compared for twenty eight

undrained cyclic triaxial tests: ten of the tests are in compression

(s66h), eleven are isotropic, and seven are in extension (674"G).

The initial stress and porosity conditions for all tests are

summarized in table 5.2.

CYCLIC COMPRESSION TESTS

Figure 5.13 presents typical results for vertical strain, pore

pressure and mean effective stress versus number of cycles. Positive

pore pressure accumulates at a continously decreasing rate until

stabilization occurs. Compressive vertical permanent strain develops

at an initially increasing rate. After stabilization of pore pressure

the rate of accumulation remains more or less constant as the number

of cycles increases. The model's predictions for the same test are

shown in Figure 5.14; the predicted strain and pore pressure

accumulation are in very good agreement with the trends identified in

Figure 5.13.
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A summary of the quantitative comparison between predicted and

measured values of pore pressure and residual permanent strain is

shown in Figure 5.15; the model's predictions generally agree with

the average measured response. The scatter in the prediction is

larger for strain than it is for pore pressure; also the scatter in

pore pressure prediction is independent of the number of load cycles,

while for permanent strains, it increases with the number of load

cycles.

CYCLIC ISOTROPIC TESTS

Typical values of residual strain, pore pressure and effective

octahedral stress versus number of cycles for isotropic triaxial tests

are shown in Figure 5.16. According to the test results pore pressure

increases and mean effective stress decreases at an approximatelly

constant rate during most of the test. Close to the end of the test,

pore pressure starts accumulating rapidly, and finally stabilizes at a

value equal to the total confining stress; the corresponding value of

the average mean effective stress is equal to zero.

Practically no residual vertical strain accumulates during most of

the test; at the final stage of the test and in parallel with the

rapid accumulation of pore pressure, extension strains start

developing.

The model's predictions for the same test described above are

presented in Figure 5.17; there is striking similarity between all

aspects of predicted and measured response. The only qualitative

difference lies in the extension residual vertical strains measured
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before the effective stresses become zero. Castro [79], however,

suggests that those strains are not realistic but have been caused by

the non-uniform density and displacement distribution in the sample

developing during cyclic loading close to failure. Cassagrande and

Rendon [781 also present results supporting this view.

Quantitative comparison between the predicted and measured values

of residual pore pressure and vertical strain is summarized in Figure

5.18. Permanent strains developed in the final stage of cyclic

loading are not included in the comparisons for reasons explained

above. The magnitude of predicted pore pressure and vertical strain

is in very good agreement with the test measurements.

CYCLIC EXTENSION TESTS

Typical measured results from cyclic extension tests are

summarized in Figure 5.19. According to the test results positive

pore pressure develops due to cyclic loading, followed by residual

extensive strain. The pore pressure accumulation initially increases

with the number of load cycles, then levels off and finally decreases

slightly. Hedberg [5] attributes the observed decrease to dilatancy,

as well as, possible decrease in strength of the sample. The rate of

vertical strain accumulation continously increases with the number of

load cycles throughout the test.

A summary of model predictions for the same test is presented in

Figure 5.20. The model predicts the development of positive pore

pressure and extensive residual vertical strain. The way the rate of

accumulation of both quantities changes with the number of cycles is
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also predicted correctly except for the observed decrease of pore

pressure at the end of cyclic loading.

Quantitative predictions of pore pressure and residual vertical

strain values are compared in Figure 5.21; the model consistently

predicts smaller pore pressure and strain values than those measured

in the tests. The pore pressure is underpredicted by an average

amount of 70%. To eliminate this difference either the Bulk modulus

(K) has to be increased by 70% or the volumetric viscosity function

(V) has to be decreased by the same amount (see equation 5.6).

Figures 5.22 and 5.23 summarize the model's predictions for increased

Bulk modulus and decreased viscosity function respectively. The

elimination of the consistent difference between the predicted and

measured value of pore pressures, results in significant improvement

of the prediction for residual vertical strain as well. Among the two

ways suggested to improve the predictions, reduction of the volumetric

viscosity constant gave better predictions of vertical permanent

strain.

The fact that different model parameters must be used for

extension tests than for isotropic and compression tests implies that

the tested sand is not isotropic material as the model assumes, but

anisotropic. Hedberg [5] confirms also the anisotropic nature of Sand

A, presenting data from static and cyclic triaxial tests.

The model's parameters were determined primarily through data from

drained triaxial tests either isotropic or in compression, due to lack

of similar data from extension tests. To be able to fit the cyclic

response in extension, data from drained cyclic and static triaxial
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tests in extension are required.

-5.3.3 SUMMARY

Test results from undrained cyclic triaxial tests on Sand A were

compared with predictions made by the proposed model. It was found

that the model successfully predicts the basic trends identified in

the test results. Namely,

(i) During cyclic compression tests positive pore pressure

accumulates with continously decreasing rate until

stabilization occurs. In parallel compressive vertical

strain accumulates during the tests at an initially

increasing rate

(ii) During cyclic isotropic tests positive pore pressure

accumulates at an approximatelly constant rate;

stabilization of pore pressure occurs at zero effective

octahedral stress following a rapid increase of the

accumulation rate. The permanent vertical strain accumulated

due to cyclic loading is practically zero

(iii) In cyclic extension tests positive pore pressure builds

up at a decreasing rate. In parallel residual extension

strains accumulate with an increasing rate per cycle

throughout the test.
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The model is also successful in predicting the magnitude of the

accumulated pore pressure and vertical permanent strain for cyclic

isotropic and compression tests. The scater in the predictions is

larger in compression than in isotropic tests.

Permanent pore pressure and vertical strain are underpredicted in

cyclic extension tests. Increase of the value of the Bulk modulus or

decrease of the value of the volumetric viscosity function

significantly improve the fit of the data.

The fact that good quantitative prediction of cyclic behavior in

extension tests cannot be made with the same parameters used for

compression and isotropic tests implies that the tested Sand A is not

isotropic, as the model assumes, but anisotropic.

5.4 CONCLUSION

In chapter 4 a constitutive model has been proposed to describe

behavior of sand during cyclic loading. The required parameters are

determined from drained cyclic triaxial compression tests under

constant static and cyclic stresses. The objective of this chapter

has been to examine whether the proposed model can also predict cyclic

response under boundary constraints, which partially prevent permanent

strain accumulation and lead to change in the static and/or cyclic

stresses.

Comparison of the model's predictions were presented with test

data from cyclic oedometer tests and from cyclic undrained triaxial
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tests in compression, in extension and with isotropic average states

of stress (compression and extension stress change). In the cyclic

oedometer tests no lateral displacement is allowed while in the cyclic

undrained tests no volume change is permitted.

The model is able to predict the basic trends that strain and

stress accumulation followed in both the cyclic oedometer tests and

the undrained cyclic triaxial tests. It also gave generally good

quantitative predictions for permanent strain and pore pressure in

undrained cyclic triaxial tests in compression and

compression/extension.

The model's quantitative predictions do not agree well with one of

the two sets of test data from cyclic oedometer tests, and with the

test data from undrained cyclic extension tests. Evidence shows that

testing errors may have seriously affected the test results from one

of the sets of cyclic oedometer tests. For undrained cyclic extension

tests the difference between measured and predicted response is

attributed to the anisotropic nature of the sand, which is not taken

into account by the model.

After reviewing all comparisons presented in this chapter, one

concludes that the proposed model works reasonably well for cyclic

loading under various boundary constraints. This feature of the model

makes it a valuable tool for analyzing the behavior of foundations

under cyclic loading conditions, either drained or undrained.
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Monterey Sand: e = 0.852, e . = 0.564 (Ref. 60 )

A = Sand A

M= Monterey Sand

*Sample Preparation Series

K08
K09
KO 10
K011

3 layers, tamped moist, tested wet
3 layers, rodded dry, tested wet
6 layers, tamped moist, tested wet
3 layers, tamped dry, tested dry

TABLE 5.1 : Summary of Cyclic Oedometer Test Conditions - Sand A

TEST SAND n v K n Dr V V 0

(ksc) (ksc) % %

KOl A 1.019 0.298 0.380 43.2 28.1

K02 A 2.021 0.282 0.411 42.8 31.9

K03 A 2.030 0.592 0.400 43.0 30.0

K06 A 2.031 0.894 0.405 42.9 31.0

K07 M 2.020 0.595 0.413 43.4 29.6

K08* A 2.023 0.600 0.398 42.9 31.0

K09* A 2.017 0.596 0.485 43.2 28.1

KO1O* A 2.021 0.601 0.398 42.9 31.0

KO11* A 2.013 0.594 0.409 42.0 39.4
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TEST a a h a n REMARKS

LC- (ksc) (ksc) Cksc) %

104 2.50 1.50 0.90 41.90 COMPRESSION

129 2.50 1.50 0.50 43.50 COMPRESSION

130 2.50 1.50 0.70 43.20 COMPRESSION

132 3.00 1.50 0.90 41.40 COMPRESSION

135 3.00 2.00 0.90 41.20 COMPRESSION

142 2.50 1.50 0.70 41.71 COMPRESSION

143 2.50 1.50 1.10 43.20 COMPRESSION

152 3.00 1.50 1.20 41.41 COMPRESSION

294 3.03 2.03 0.90 43.60 COMPRESSION

299 3.01 2.01 0.90 42.80 COMPRESSION

61 1.01 1.01 0.60 41.10 ISOTROPIC

63 0.99 0.99 0.60 40.80 ISOTROPIC

73 3.00 3.00 1.20 41.20 ISOTROPIC

78 0.50 0.51 0.20 41.20 ISOTROPIC

123 1.00 1.00 0.80 38.60 ISOTROPIC

138 1.00 1.00 0.40 41.40 ISOTROPIC

139 2,00. 2.0.0 0.80 41.50 ISOTROPIC

144 2.50. 2.50 0.90 41.40 ISOTROPIC

231 4.03 4.03 0.90 43.30 ISOTROPIC

241 4.02 4.02 0.90 42.20 ISOTROPIC

273 4.00 4.00 0.90 44.20 ISOTROPIC

71 1.00 1.30 0.40 41.20 EXTENSION

74 1.00 1.50 0.40 41.30 EXTENSION

79 1.00 1.81 0.40 41.20 EXTENSION

136 3.00 4.50 1.20 39.90 EXTENSION

147 3.00 4.50 1.20 40.00 EXTENSION

240 3.50 4.50 0.90 42.10 EXTENSION

250 3.49 4.49 0.86 40.30 EXTENSION

TABLE 5.2 Summary of Test Conditions for Undrained Cyclic

Triaxial Tests - Sand A
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FIGURE 5.8 Comparison between Predicted and Measured Cyclic Response

for Oedometer Tests on Sand A
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CHAPTER 6

FINITE ELEMENT MODELING OF CYCLIC LOADING OF FOUNDATIONS

6.1 INTRODUCTION

Previous chapters describe a constitutive model of the

stress-strain accumulation in Sand A due to cyclic loading. This

chapter presents the application of the constitutive model to the

prediction of foundation performance due to repeated loading, through

the finite element method.

To solve a boundary value problem in continuum Mechanics, the

following field equations need to be satisfied:

- equilibrium equations

- stress-strain relationship

- strain-displacement relations satisfied on the surface

of the body.

Closed form solutions under those requirements are possible for very

simple problems only; for most problems the solution is achieved by

using different numerical techniques. The most popular among them is

the discretization of the continuum into a number of finite elements

([64], [65]).
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The field equations for cyclic loading of foundations and their

solution by the finite element method are described in sections 6.1

and 6.2 respectivelly. The computer implementation of the solution is

described in section 6.3 and its accuracy is evaluated in section 6.4.

6.2 PRINCIPLE OF VIRTUAL WORK

6.2.1 DEFINITION

External forces that may act on a three-dimensional body include

the surface tractions f , body forces f and concentrated forces F .

These forces have three components corresponding to the three

coordinate axes x, y and z:

fS f B F
x x x

fS S . B f B F F

y 'j; y y

S B F
z z z

The displacements are:

U T = fu, U IU
x y z

the strains corresponding to U are:

x yy' zz' xy' yz' zx

and the stresses corresponding to E are:

T x yy' zzz' xy' ayz' azx

The principle of Virtual Work states that the equilibrium of the

body requires that for any compatible, small virtual displacement

imposed into the body, the total internal virtual work is equal to the
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total external virtual work (Bathe and Wilson [631).

f6ETadV = f6UTfBdv + f6UTfSdS + ISU F (6.1)

The internal virtual work is given on the left side of equation 6.1

and is equal to the actual stress times the virtual strains (E6) that

correspond to the imposed virtual displacements; the external work is

given on the right side of the equation and is equal to the actual

forces times the virtual displacements (EU). Equation 6.1 is the

cornerstone for the calculation of the displacements (U) via the

finite element method.

6.2.2 VOLUME INCOMPRESSIBILITY

Applying the finite element method to equation 6.1 directly, is

appropriate only when compressible materials are considered. For

nearly incompresible materials, as is soil under undrained condition,

the Poisson's ratio, , approaches one-half, and certain terms in the

total stress-strain relationship tend to infinity. Tthis results in

loss in accuracy of the finite element method.

The first step to overcome this difficulty is to replace the total

stress (G) in equation 6.1 by the sum of the effective stress (6) and

the pore pressure (u):

PcT adV + ETudV =6UT fBdV + )UT SdS + Z6U F1 (6.2)

The pore pressure vector is defined as
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U = {u, u, u, 0, 0, 01 = u I

where
T
I = {I, 1, 1, 0, 0, 01

so that it will be compatible with the stress and strain definiton.

In equation 6.1 the unknown quantities are the diplacements (U)

since total stress is function of displacement. Equation 6.2,

however, includes additional unknowns which are the pore pressures

(u). Condensation of the additonal unknowns is achieved using the

incompressibility condition:

T
vol = (6.3)

To avoid numerical instabilities during the solution of the system of

equations 6.2 and 6.3 it is often assumed that a very small change in

volume occurs, equal to a change in volume of the pore fluid (Penalty

Method):

T u
Evol K 6.4)

P

The inverse of Kp will be called hereafter the "Penalty Constant"; Kp

must be chosen much larger than the drained Bulk Modulus of the soil

but is otherwise arbitrary.

It is worth noting that there is no physical meaning of the

"Penalty Method" and that the constant Kp is not equal to the Bulk

Modulus of water. It will be shown in later paragraphs that, with the

appropriate solution technique and finite element discretization

direct solution of equations 6.2 and 6.3 can be achieved for an

infinite value of Kp.
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6.3 FINITE ELEMENT IMPLEMENTATION

The finite element method approximates a continuous body as an

assemblage of discrete finite elements, interconnected at nodal

points. The unknown quantities, displacements and pore pressures in

the present case, vary within each element according to a predefined

function of the spatial coordinates. Usually polynomial expansions

are assumed with coefficients determined from the values of the

unknown quantities at the nodes of the element. It is evident that

the order of the expansions of the unknowns and the number of nodal

points per element are directly related.

In choosing the appropriate order polynomials for displacements

and pore pressures, the following considerations were made:

Stresses are proportional to the first derivatives of

displacements and consequently their polynomial expansion is

always one order lower than the displacement expansion.

Stresses and pore pressures are additive quantities and it is

desirable to be estimated with the same order of accuracy.

Consequently the expansion of pore pressures must be also one

order lower than that of displacements.

Linear expansion will be assumed for the pore pressures and quadratic

for the displacements; this requires specification of pore pressures

in four nodes per element and specification of displacement in eight

nodes [63], [64], [65]. For element "m":

Um = Nm(x, y, z) qm



170

u = N (x, y, z) p

q nodal displacement vector for element (m)

p " nodal pore pressure vector for element (m)

The strain can be expressed as the first derivative of displacement:

Em = D Nm(x, y, z) qm = Bm(x, Y, z) qm

Equation (6.2) can now be rewritten as

T T

6q T( fB m adV + BmT Nn pmdV) =

T -T

6q JNinBdv +fNi SdV + NF (6.8)

-MV - S

For cyclic loading the total strain (S) is the sum of three components

Aa R

sEs + E +c

where

E : strain due to change in average effective stress

: cumulative strain due to cyclic loading

: initial strain

The effective stress - is related to the total strain as

R o

a = C E = C ( - - E) (6.9)

The matrices C and 6 are completely defined by the constitutive

model described in chapter 4. Combining equations 6.7, 6.8 and 6.9

finally gives:

T
K q + H p = R (6.10)

where
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,-T

K = B m C B dV~=~.J~ C~dV(6.11)

, TH = B I N dVf dV (6.12)

f BdV + NM V B R dV) (6.13)

Substitution of equation 6.6 and 6.7 into the volume

incopressibility equation 6.4 yields

T 1 *
I B q - K Np 0 (6.14)

p
multiplication by N and integration over the volume of the

continuum finally gives:

H q + G p = 0 (6.15)

G J NNdV (6.16)

p yM

Equations 6.10 and 6.16 can be written in compact form as

K H Tq R

(6. 17)
H G p 0

Cyclic loading under drained conditions can be solved as a

special case of undrained cyclic loading if the nodal pore

pressures in equation 6.17 are constrained. The nodal

displacements in that case will be described by the following

relation:

K q = R

The matrices K, H, G, R are known functions of the soil

properties the geometry of the continuum and the applied loads;

a more detailed description of their structure is given in

Appendix B, for plane strain, plane stress and axisymmetric

problems.
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6.4 A COMPUTER PROGRAM FOR FINITE ELEMENT ANALYSIS

The basic steps in any finite element solution are:

(i) To read the input data provided by the user and store

them, so that they can be used in later steps.

(ii) For every element "m" to compute the arrays K , H ,G

R (see section 6.2) and add them to the total arrays.

(iii) To solve the resulting system of equation (equation

6.17)

(iv) To print the computed values of the unknowns

Each of the steps is, in practice, subdivided in smaller steps which

are executed separatelly by subprograms connected with the main

program.

The numerical solution of the finite element equation 6.17 is

based on a computer program written by Taylor and described in detail

in reference [65]. According to Taylor the program is "written

specifically as a research and educational tool in which the various

'modules' can be changed or added to as desired. Indeed quite

different combinations of the subroutines for purposes which may even

today not be obviously needed are possible."

This flexibility of the program makes it appropriate for the

present study, since extensive modifications and additions were

necessary as is described next. In the following paragraphs, the

original program will be refered to as FEAP, abbreviation for Finite
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Element Analysis Program, and the modified version as FEAP-CYC.

The first major modification applied to FEAP was aimed to make it

capable of handling undrained loading of soils in addition to drained

ones. According to the "Penalty Method" described in section 6.1.2,

undrained loading of soil is governed by the system of equations:

-; Tr~~:R
K H T q R

H G p 0

FEAP was built for the analysis of compressible materials where only

the stiffness matrix K and the loading vector R need to be calculated.

In FEAP-CYC the coupling matrix H and the pore pressure matrix G are

computed in addition to K and R.

The loading vector R for cyclic loading, has in general the

following components (see equation 6.13):

R= RB +RS +R +R0

R = nodal loads due to body forces

5
R = nodal loads due to surface tractions

R = nodal loads due to cumulative strain

R 0  = nodal loads due to initial displacement

FEAP was intended to solve static and transient problems and

consequently it computes all loading components except from the cyclic

one. FEAP-CYC computes the cumulative strain for each element

according to the proposed constitutive relation, and then finds the

equivalent nodal forces (R ) required to prevent those strains. This
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is a method commonly used to compute the equivalent loading in finite

element analyses, when the material tends to strain itself due to

either change in temperature or creep [651.

In modeling the cyclic behavior of Sand A it was assumed that it

greatly depends on the applied average and cyclic effective stress.

This requires that the finite element solution follows all the major

events of the life of the foundation (see figure 6.1):

(i) Geostatic conditions

(ii) Installation

(iii) Static loading

(iv) Cyclic loading

The effective stresses at the end of each event are used to compute

the soil properties for the following event and have to be saved. In

addition different drainage conditions may prevail during the events,

so that the boundary conditions of the problem have to be changed

between two consequent steps of the solution; those options are not

available in the original program. FEAP-CYC can perform many analyses

in sequence, and keep the solution of each of them in the memory; at

the end of each analysis all or part of the input data can be changed,

except for those defining the finite element discretization.

Except for the calculation of the geostatic effective stresses the

solution for all the major events described previously needs to be

obtained incrementaly due to nonlinearity of the soil. In modeling
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the installaton of the foundation and its static loading with FEAP-CYC

a load increment has to be specified; when modeling the cyclic

loading the definition of a cycle number increment is necessary

instead. An option of variable cycle step is available which permits

the use of small cycle steps at the begining of the solution when

strain rates are high.

The static stiffness of the soil can be computed according to

stresses anywhere between the initial and the final state of stress of

each step according to the user's preference. Since only the initial

stresses are known a priori, iterations within each step are necessary

during the solution. The iterations follow the "Predictor-Corrector"

method:

if for a step "n" the initial stresses are 6n and the final

then for the next step n+1 the first estimation of the final

stress - "Predictor" - is:

a T + +(a -
~n+1 _n _n -n-1

correction of this value - "Corrector" - is done iteratively.

The version of FEAP described in Reference [65] can handle linear

elastic problems under plane stress and strain; FEAP-CYC can analyze

axisymmetric problems as well. A problem is axisymmetric when both

the geometry of the structure and the applied loads are symmetric

about one axis; an example of this category is the axial loading of

vertical piles.

A complete listing of FEAP-CYC is provided in Appendix E. For

detailed information about the computational techniques used by the
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program - solution of the system of equations, numerical integration

etc. - the reader is refered to the description of FEAP by Taylor

[65].

6.5 CHECKING THE FINITE ELEMENT PROGRAM

To ensure the correctness of the proposed computer program

FEAP-CYC, simple problems for which closed form solutions are

available, were solved numerically. Figure 6.2 summarizes the

boundary conditions and the loads for the static problems considered,

as well as their exact solution. Plane strain and axisymmetric cases

were analyzed under drained and fully undrained conditions. The load

was applied either as a uniform boundary pressure, or as a uniform

boundary displacement. In all cases the agreement between the

numerical and the closed - form solution was exact.

In addition to the static tests, four cyclic tests were run with

FEAP-CYC, which are summarized in figure 6.3. They simulate plane

strain and triaxial cyclic laboratory tests under drained and

undrained conditions. The analytical solutions for all cases have

been obtained in chapter 4 in conjunction with the evaluation of the

proposed constitutive relation and also in Appendix D. The numerical

solution followed two steps: first the initial stresses were computed

due to static drained loading and, second, the effects of cyclic

loading under drained or undrained conditions were estimated. As with

the "static" cases, the agreement between the numerical and the
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analytical solution for all "cyclic" cases was exact.

Undrained loading was simulated by the "Penalty Method" (see

section 6.1.2) assuming that the Penalty Constant (1/K in equation

6.16) is equal to zero. This is equivalent to the assumption that

saturated soils are perfectly incompressible or that the Poisson's

ratio for a total stress analysis is equal to one half. In the left

hand side of the finite element equation

- T-
K H q

H G p 0

the assumption of perfect volume incompressibility makes the elements

of matrix G equal to zero. Solution of equation (6.17) however is

obtained by the Gaussian Elimination technique [64], [65], and the

zero terms are gradually replaced by nonzero ones as the solution

proceeds. A solution will be impossible only if the first diagonal

term in equation 6.17 is zero; this happens, for example, when all

displacement degrees of freedom for the first node number are

constrained.

The finite element method is approximate for two main reasons:

(i) The variation of the unknowns - nodal displacements and

pore pressure here - is approximated by a polynomial

expansion within each element
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(ii) The element matrices are usually computed by numerical

integration over the volume of each element which may not be

exact.

In the examined static and cyclic cases the displacements and the pore

pressure were uniformly distributed so that the previous

approximations were, in fact, exact. For this reason the agreement

between the numerical and the analytical solution was perfect within

the numerical accuracy of the computer. The purpose of the analyses,

however, was not to evaluate the finite element method but to check

the computer program FEAP-CYC; the applicability of the method in

solid mechanics has been thoroughly investigated by different

researches (for example [651) and further evaluation of it is out of

the scope of the present research.

6.6 SUMMARY

This chapter formulated the solution of cyclic loading of

foundations using the finite element method and the constitutive model

proposed in chapter 4. The formulation of undrained problems followed

the Penalty Method of incompressibility which allows for the

calculation of pore pressure and effective stresses in the soil in

addition to displacements.

A computer program FEAP-CYC was described which combined with the

suggested constitutive model predicts the performance of foundations

under repeated loads. The program was checked against simple static
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and cyclic loading problems where an analytical solution is available.
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CHAPTER 7

CASE STUDY: THE OOSTERSCHELDE BARRIER

7.1 INTRODUCTION

The Netherlands government has the responsibility to design a

barrier dam across the Oosterschelde inlet located southwest of

Rotterdam. The closure which links with dikes must allow tidal flow

during normal sea states and resists storm tides and waves [7]. The

design chosen consists of large gates resting on reinforced concrete

piers. Figure 7.1 portrays a pier section with base plan dimensions

of 25m wide and 50m long. The piers are being constructed on shore,

floated into position, sunk into a dredged trench, and ballasted.

Erosion of the foundation materials will be prevented by placing a

protective cover or sill.

The foundation materials consist of fine to medium sand of uniform

gradation over most of the closure. The upper part, of an average

depth of 20 meters, has been deposited in the Holocene epoch and is

loose to medium dense. The underlying sand, deposited in the

Pleistocene epoch, is medium dense to very dense.
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The objective of this chapter is to predict the performance of one

of the piers, for four different load combinations, under drained or

fully undrained soil conditions. The results will be evaluated

through the following comparisons:

(i) Comparisons with the trends predicted by one model test

sponsored by the Dutch government, and presented by Lambe et

al [4]

(ii) Comparison with analytical predictions presented by Marr

and Christian [7] and Urzua [6]

(iii) Comparison with approximate solutions used in the past

Table 7.1 presents the four combinations of loads which will be

considered. Case A is the combination of head loss and wave loading

predicted from hydraulic studies. In case B, the design static load

has been increased by one half of the design cyclic load; the cyclic

wave load is one half of the design cyclic load. In case C the design

static head loss load is one half of the design static load and the

cyclic load consist of the remaining half of the design static load

plus the design cyclic load. Thus case B has the total load heavily

biased toward the cyclic component. In case D, there is no static

head loss load and the cyclic load has the design value.
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7.2 CAISSON TESTS AT NEELTJE JANS, THE NETHERLANDS

The Dutch government sponsored and directed a series of tests on a

caisson - 15 meters by 27.7 meters by 10 meters high - resting on the

sea bottom in 7 meters of water, at Neeltje Jans, Netherlands. A plan

view and a section view of the test caisson is shown in Figure 7.2.

The foundation soils at the test'site consist of sands similar to

those met in the Oosterschelde basin interspersed with layers of silt;

tests were run on a natural untreated foundation soil as well as on a

foundation densified by a vibrational method. The test results were

extensively presented by Lambe et al (4]; in this section only the

most important aspects of the observed behavior will be summarized.

The loading program in one of the tests is shown in Figure 7.3;

six consecutive parcels of horizontal cyclic loading were applied in

which the magnitude of the average and the cyclic component of loading

were increased gradually. The movement of the caisson is shown in

Figure 7.4. The following trends can be identified:

(i) The caisson moved both in the horizontal and vertical

directions.

(ii) The horizontal movement was in the direction of the

applied average horizontal load.

(iii) The caisson tipped toward the load with the base moving

more horizontally than did the top.

Densification of the foundation greatly improved its behavior.
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The movement of the caisson on the densified foundation reached only

1/10 of the movement of the caisson on the undensified foundation.

Pore pressure below the caisson changed within each cycle of

loading but it remained unaffected by the number of cycles; no

accumulation of pore pressure was measured. Analytical studies on the

accumulation of pore pressure due to cyclic loading of Oosterschelde

soils (for example, Christian and Audibert [76])have shown that only

small values of excess pore pressure are likely to develop because of

the large permeabilities of the soils.

7.3 PREDICTED RESPONSE OF OOSTERSCHELDE BARRIER

Figure 7.5 shows the finite element mesh used for the calculations

and indicates material types and locations. The elastic soil

parameters used for the foundation materials are summarized in table

7.2.

The shear modulus of the loose Holocene sand and the densified

Pleistocene sand are related to the porosity of the materials and the

applied effective octahedral stress by equation 4.12. The Poisson's

ratios are those used by Marr and Christian [7] and Urzua [6]. The

bulk moduli are related to the applied effective octahedral stress by

equation 3.13; the two factors (B,m) appearing in the equation were

determined using the values of the shear modulus and the Poisson's

ratio.

For the artificial materials a constant value of the Young's
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modulus and Poisson's ratio was specified equal to those used by Marr

and Christian [7] and Urzua [6]. The modulus for concrete was

adjusted to reflect the difference in moment of inertia between the

actual pier section and that of the solid concrete section used in the

analysis.

The model caisson tests in Neeltje Jans, as well as.,, the

consolidation analysis done by Christian and Audibert, both presented

in the previous section, suggest that in the actual case drained

conditions should prevail. Thus as a first step the performance of

the pier under drained conditions will be studied.

Figure 7.6 shows the predicted permanent displacements of the pier

for the four different load combinations (case A - case D) described

in section 7.1; in all cases 5 cycles of maximum wave load were

applied to the pier.

In cases A, B and C the pier settled vertically and also moved

horizontally in the direction of the applied static horizontal force

similar to what has been observed during the model caisson test in

Neeltje Jans. In case D, where no horizontal static force was

applied, no permanent horizontal displacement occured.

In cases A and B the pier tipped slightly with the base of the

pier moving horizontally less than the top of the pier . In case C

the pier tipped in the opposite direction with its base moving

horizontally more than its top; a similar behavior has been observed

during the model test in Neeltje Jans. The predicted settlement for

case D was symmetric.

Comparing the predicted permanent displacements for the different
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combinations of loads and soil densities, one can observe the

following trends:

(i) The cyclic load controls the magnitude of average

permanent settlement.

(ii) The static horizontal force controls the direction of

the horizontal displacement of the foundation.

(iii) The magnitudes of the horizontal permanent displacement

and differential settlement are controlled by both the static

and the cyclic applied horizontal load.

To evaluate the effect of densification of the foundation on

predicted permanent displacement, an analysis was done assuming that

the top layer of Holocene sand has been densified. The properties

used for the densified Holocene sand are the same with the properties

of the Pleistocene sand. Comparison of the results for loading case A

are shown in Figure 7.7. Densification of the soil reduces the

horizontal displacement by an average factor of 4.3, and the vertical

displacements by an average factor of 1.7. A similar effect of

densification on permanent displacement was observed during the model

test in Neeltje Jans.
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7.4 STRESS REDISTRIBUTION DUE TO CYCLIC LOADING

The cyclic oedometer test results described in chapter 5 have

demonstrated that when permanent displacement is prevented the

effective stress changes to counteract the accumulation of permanent

strain. The same behavior was observed during undrained cyclic

triaxial tests where the effective octahedral stress decreased to

balance the tendency for volume decrease. During drained cyclic

loading of the pier, changes in the stresses applied to the

underlaying soil are expected mainly because:

(i) The plane strain assumption restricts any deformation

along the long axis of the pier (y direction).

(ii) The pier is considerably stiffer than the soil,

partially preventing permanent displacements in its

neighborhood.

The proposed method takes into account the stress redistribution

in the computation of permanent displacements. The objective of this

section is to evaluate the effect of stress redistribution on the

prediction of permanent displacement of'the pier due to drained cyclic

loading.

In the previous section permanent deformations were predicted for

five cycles of the load combinations A, B, C and D. Five increments

of the number of cycles were used, each equal to one cycle. To

evaluate the importance of stress redistribution, predictions were

also made using one increment equal with five cycles. Comparison of
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the results obtained with the two approaches are portrayed in Figure

7.8 and tables 7.3 and 7.4. Neglecting the effect of stress

redistribution overestimates the permanent displacement. The error in

the prediction of vertical settlement ranged between 7.1% and 13.7%;

the error was larger in the prediction of horizontal displacement

where it ranged between 13.1% and 40.9%.

Figure 7.9 shows the stresses applied in the soil four meters

below the base of the pier, before and after the cyclic loading for

case A. Although no additional load was applied to the pier a change

in the stresses is predicted due to cyclic loading. The horizontal

stress increased by 12 - 50 %, while the vertical and shear stresses

decreased and increased locally by a smaller amount. The

corresponding stress paths for three elements below the pier are shown

in Figure 7.10.

Figure 7.11 presents the contours of change in octahedral stress

in the soil due to cyclic loading for case A of loading. The

octahedral stress increases in the Holocene sand layer and also in the

Pleistocene sand layer below the center of the pier; the octahedral

stress decreases in the rest of the sand. The magnitude of the change

in the octahedral stress is reduced as the radial distance away from

the pier increases; no significant stress redistribution occurs at

radial distance approximately larger than the base of the pier.

Figure 7.12 shows the contours of change in the maximum shear

stress in the soil due to cyclic loading. Reduction of the maximum

shear stress occurs in the Holocene sand layer and also in the

Pleistocene sand away from the base of the pier. Increase in the
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maximum shear stress occurs in the Pleistocene sand below the

foundation. Significant changes in maximum shear stress occur within

a radial distance from the pier equal to the length of its base.

The direction of the stress paths resulting from stress

redistibution for the soil below the Oosterschelde pier are shown in

Figure 7.13 for loading case A..

The results presented in this section allow one to draw the

following conclusions, with respect to drained cyclic loading of the

pier:

(i) Neglecting the effect of stress redistribution results in

overestimation of the permanent displacements.

(ii) The relative effect of stress redistribution is larger

on the predicted horizontal displacement than on the

predicted vertical displacement, but the vertical

displacements are much larger in any case.

(iii) The magnitude of stress redistribution decreases as the

radial distance away from the foundations increases. No

significant stress redistribution occurs at radial distance

from the foundation larger than the width of the foundation.
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7.5 COMPARISON WITH PREVIOUS ANALYSES

Prediction of the performance of the pier for the four different

load combination were previously done by Marr and Christian [71 and

Urzua [6]. As in the proposed approach both previous analyses model

the cumulative effect of cyclic loading on stresses and strains. The

Finite element discretization used in both analyses is very similar to

that shown in Figure 7.5; the soil parameters are also similar to

those used by the author.

Figure 7.14 compares the permanent vertical displacements of the

foundation predicted with the three approaches. Settlements predicted

with the proposed method are in good agreement with the settlements

predicted by the two other analyses, particularly with that by Marr

and Christian.

Figure 7.15 compares the permanent horizontal displacement

predicted by the three methods. The proposed method predicts less

horizontal displacements than the two others. Marr and Christian's

predictions are larger by an average factor of two, while Urzuas are

larger by an average factor of 5.7.

The predicted differential settlements are compared in Figure

7.16. The proposed method predicts little differential settlement

compared with the two other methods. It also predicts that tilting of

the foundation will not always occur in the direction of the applied

static moment, as the two other methods predict. Tilting in the

opposite directions is also possible depending on the combination of

the static and the cyclic horizontal loads. The tilting occured
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during the model test in Neeltje Jans (see section 7.2) is one example

of tilting opposite to the direction of the applied static moment.

The differences between the predictions can be partly explained by

considering the differences between the methods used in the three

analyses to estimate the static initial stresses in the foundation, as

well as, the permanent strain acc~umulation in the soil.

Marr and Christian [7] used the computer program FEECON (Simon et

al [77]) to calculate the initial stresses before the application of

the repeated wave loading. In their approach they simulated the

excavation, the construction of the caisson, and the application of

the head loss load in the computation of initial stresses. Their

computation included the effects of stress redistribution due to soil

nonlinearity. In Urzua's approach none of the construction processes

is modelled and stresses are computed using an elastic analysis. In

the proposed approach the stresses are computed in three steps: one

to compute the initial geostatic stresses, one to simulate the

construction of the caisson, and one to simulate the application of

the head loss load. A linear elastic analysis is performed in each of

the two last steps, with elastic soil properties consistent with the

stresses computed at the end of the previous step. It is very likely

that the three different procedures yielded different estimations of

the applied stress in the foundation before cyclic loading, thus

affecting the prediction of permanent displacements.

Even though the three models are based on essentially the same

soil data, differences exist in the way these data were synthesized

for input to the computer. Marr and Christian followed the work by
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Hedberg [5] and Urzua followed the work by Hadge [22a]. The proposed

approach, also follows the work by Hadge, but extensive modifications

were applied to make it applicable to cyclic loading close to failure.

For the present case study soil elements under the edges of the pier

and especially under the heel, are very close to failure due to the

weight of the pier and the static head loss.

Finally the three approaches account in different degree for the

effects of stress redistribution discussed in section 7.3. Marr and

Christian include no effect of stress redistribution while Urzua

partially accounts for it. The proposed approach takes full account

of the effect of stress redistribution.

A detailed comparative study of the results of the three

approaches is necessary in order to evaluate the degree in which each

of the above differences affects the quantitative prediction of

permanent displacements. In conclusion, however, it is worth noticing

that despite all the differences of the three methods the predicted

trends in the gross accumulation of permanent displacement of the pier

are in good agreement.

7.6 UNDRAINED CYCLIC LOADING

In the previous sections the assumption was made that drained

conditions would prevail during the static and the cyclic loading of

the Oosterschelde barrier. It is usefull, however, to examine the

differences in the performance of the barrier when undrained cyclic
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loaidng is considered. In this section the performance of the barrier

will be predicted assuming that no dissipation of excess pore pressure

occurs during the repeated wave loading.

Predicted Permanent Displacements

The predicted permanent displacement of the pier for load

combinations A, B, C, and D are shown in Figure 7.17. For all cases

it was assumed that first the maximum tide force was applied to the

pier under drained conditions, followed by five cycles of undrained

repeated loading with the maximum wave load. The following trends are

identified:

(i) The vertical settlements are controlled by the magnitude

of the applied wave load.

(ii) The static horizontal force controls the direction of

the horizontal displacement of the foundation, as well as the

direction of the differential settlement.

(iii) The magnitude of the horizontal displacements and the

differential settlement is controlled by both the applied

static and cyclic horizontal loads.

Comparison with Displacements from Drained Cyclic Loading

Figures 7.18, 7.19 and 7.20 compare the displacements of the

center of the pier's base predicted for drained and fully undrained

cyclic loading. The vertical settlements due to undrained cyclic
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loading are four to five times smaller than the settlements due to

drained cyclic loading. The effect of drainage conditions on

horizonatl permanent displacements is not significant; horizontal

displacements due to drained and due to undrained cyclic loading are

approximately equal. Finally, the differential settlement due to

undrained cyclic loading is up to six times larger than that predicted

for drained cyclic loading, and has always the direction of the

applied static moment.

Displacements, like strains, have two components: the volumetric

and the shear-deviatoric-component. During undrained loading only the

shear component is present because no change in volume is allowed

while during drained loading both components are present.

The large reduction of vertical settlement under undrained

conditions implies that the largest part of the vertical settelement

predicted for drained cyclic loading is due to permanent volume

reduction. The opposite must be true for the horizontal displacement;

since the different drainage conditions have little effect on the

predicted displacement, the shear component of displacement must

dominate in the horizontal direction. Finally, the increase of

differential settlement under undrained conditions, implies that

volume reduction and shear distortion contribute in opposite ways to

the differential settlement due to drained cyclic loading. The shear

component tends to tilt the pier in the direction of the applied

static moment, and the volumetric component tends to tilt it in the

opposite direction. For loading under drained conditions the

volumetric and shear components approximatelly cancel each other,
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resulting in very small differential settlement. Under undrained

conditions when only the shear component is present tilting occurs in

the direction of the applied static moment.

Predicted Pore Pressure Accumulation

Figure 7.21 presents the stress paths followed during Undrained

cyclic loading by a soil element four meters below the heel of the

pier for loading case A. Cyclic loading decreases the maximum shear

stress applied to the element, increases the total octahedral stress

and decreases the effective octahedral stress. Excess pore pressure

is generated equal to:

Au = cOct -Oct (7.1)

Since the analysis performed is elastic, the excess pore pressure due

to stress redistribution (Au ) is equal to the change in the total
s

octahedral stress:

Au = Aa (7.2)
s oct

The pore pressure in excess of Au is due to contraction of the sand
5

under cyclic loading (Au c):

Au = Au - ac (7.3)
c Oct

The cyclic component of excess pore pressure is positive when the

average effective state of stress belongs to the subcharacteristic

domain and it is negative when it belongs to the surcharacteristic

domain (see definitions in chapter 2). The component due to stress

redistibution may be positive or negative depending on the direction
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of the total stress path. The total excess pore pressure is the sum

of the two components and may be either positive or negative.

Figure 7.22 shows contours of excess pore pressure below the pier

- for loading combination A. Positive pore pressure develops in most of

the foundation soil; negative pore pressure is restricted to one

narrow area twenty meters below the corners of the pier, and in one

area at large depth below the center of the pier. Comparing figure

7.11 and 7.22, note that the two zones of volumetric expansion in the

drained case correspond closely to the two areas of reduced pore

pressure in the undrained case. The magnitude of the excess pore

pressure generally decreases as the radial distance away from the pier

increases.

Comparison with Simplified Prediction of Pore Pressure Accumulation

A simplified method that has been used in the past for the

prediction of excess pore pressures from cyclic loading follows two

basic steps:

(i) Use an elastic finite element analysis to estimate the

average and cyclic state of stress in a number of soil

elements below the foundation.

(ii) Use the results from undrained cyclic laboratory tests

to compute the excess pore pressure for each element.

Excess pore pressures appearing in the paper by Marr and Christian [7]

were computed with this method; the results from undrained cyclic
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triaxial tests presented by Hedberg [5], were used for the analysis.

Figure 7.23 presents excess pore pressure contours below the pier

for loading case A, computed with the simplified approach. The model,

described in chapter 4, was used to reproduce the results from

undrained cyclic triaxial tests under constant static total stresses.

Comparison of Figures 7.22 and 7.23 shows that the two approaches

yield significantly different patterns of pore pressure development.

Close to the pier the simplified method underpredicts the pore

pressure as much as five times.

The observed differences are explained from the fact that the

simplified method computes only the cyclic component of pore pressure

(Au ) and totally neglects the component due to stress redistribution

(Au s). From Figure 3.21 it is realized that this component is a

significant part of the total accumulated pore pressure and cannot be

neglected. Thus it is concluded that use of the simplified method

must be avoided when stress redistribution due to cyclic loading

occurs.

7.7 SUMMARY

Two dimensional analyses were performed to evaluate the permanent

displacement of the Oosterschelde barrier due to the combined action

of rising tide and sea waves. The most important findings of the

analyses are summarized below:
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(i) The predicted displacement patterns under drained loading

agree with trends observed during the model caisson test at

Neeltje Jans.

(ii) Redistribution of stresses in the foundation occur

during drained cyclic loading. Displacement predictions

neglecting this redistribution overestimated displacements by

a maximum of 40% ; this error, however, applies to the

smallest displacements.

(iii) The trends predicted by the proposed method for drained

cyclic loading, agree with previous analyses by Marr and

Christian [7] and Urzua [6]. The predicted magnitude of

permanent settlement also agrees in the three analyses. The

two previous analyses, however, predict larger horizontal

displacement and differential settlement than the proposed

approach.

(iv) Drainage conditions have a significant effect on

predicted average and differential settlements: undrained

cyclic loading yield five times less average settlement than

drained cyclic loading, and two to six times larger

differential settlement. The effect of drainage conditions

on predicted horizontal displacement was not significant.
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(v) The undrained analyses show that excess pore

develops during cyclic loading for two reasons:

shearing and change in the average state of stress,

to as stress redistibution

(vi) Simplified methods for thE

accumulation, by direct use

neglect the pore pressure

redistribution and may lead to

prediction of pore pressure

of laboratory test results,

component due to stress

wrong predictions.

pressure

repeated

referred
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MAXIMUM LOADS

(10 6N)

MAX HEAD LOSS

MAX WAVE LOAD

76.8

70.2

CYCLIC WAVE LOAD

Magnitude (10 6N) Number of Waves

15.9
25.3
36.5
48.7
61.8
70.2

284
187
90
31
9
2

LARGE MAX HEAD LOSS 8.0 284
TIDE +1/2 MAX WAVE 111.9 12.7 187

18.3 90

1/2 MAX WAVE 35.1 24.5 31
30.9 9
35.1 2

LARGE 1/2 MAX HEAD LOSS 38.4 24.6 284

WAVE 39.1 187
MAX WAVE 108.6 56.5 90

+1/2 MAX HEAD 75.3 31

LOSS 95.6 9
108.6 2

NO
TIDE

NO HEAD LOSS

MAX WAVE

0.0

70.2

15.9
25.3
36.5
48.7
61.8
70.2

284
187
90
31
9
2

TABLE 7.1 ; Static Head Loss and Cyclic Wave Load Combinations

CASE

DESTGN



MATERIAL n E vy k
2 't3 0

% (t/2 (t/my

HOLOCENE SAND 41.0 0.30 2.00 0.5

PLEISTOCENE 39.4 0.45 2,00 1.0
SAND

SLAG 9950 0.45 1.00 -

SILL 1990 0.20 1.00 -

CONCRETE - 300000 0,20 2.50 -

TABLE 7.2 : Material Properties for Oosterschelde Soils and Oosterschelde

Closure

N.)
0
U)



204

DISPLACEMENT (mm) AT THE CENTER OF THE PIER'S BASE

WITH STRESS WITH NO STRESS DIFFERENSE
REDISTRIBUTION REDISTRIBUTION %

CASE A 2.53 2.71 7.1

CASE B 0.93 0.97 4.3

CASE C 4.73 5.38 13.7

CASE D 2.56 2.75 7.4

TABLE 7.3 Effect of Stress Redistribution on Predicted Settlement

DISPLACEMENT (mm) AT THE CENTER OF THE PIER'S BASE

WITH STRESS WITH NO STRESS DIFFERENSE
REDISTRIBUTION REDISTRIBUTION %

CASE A 0.85 1.10 29.4

CASE B 0.61 0.69 13.1

CASE C 0.66 0.93 40.9

CASE D -

TABLE 7.4 ; Effect of Stress Redistribution on Predicted Horizontal

Displacement
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DIFFERENTIAL SETTLEMENT (TOE-HEEL) (mm)

WITH STRESS WITH NO STRESS

REDISTRIBUTION REDISTRIBUTION

CASE A 0.16 -0.09

CASE B 0.08 0.02

CASE C -0.09 -0-40

CASE D -

TABLE 7.5 : Effect of Stress Redistribution on Predicted

Differential Settlement



VERTICAL SETTLEMENT ((mm) HORIZ. DISPLACEMENT (mm) DIFFERENTIAL SETTLEMENT (mm)

(TOE-HEEL)

D 01 U (-2) U/D D U U/D D U U/D

CASE A 2.53 0.43 0,17 0.85 1.00 1.18 0.06 0.41 6.83

CASE B 0,93 0.15 0.16 0.61 0.67 1.10 0.09 0.24 2.63

CASE C 4.76 0.82 0.17 0.66 0.86 1.30 -0.09 0.41 -4.55

CASE D 2.56 0.47 0.18 - - - - -

(1) DRAINED CYCLIC LOADING
(2) UNDRAINED CYCLIC LOADING

(3) AT BASE CENTER

TABLE 7.6 : Effect of Drainage on Predicted Permanent Movement of the Pier

N



4 11.00

A

01GAT E ---- -. -.

OOSTERSCHELDE
T

000/3000 kpm SORTED STONE
60/300 Om POCTED SOTONE

GRADED SEA GRAVEL
STEEL SLAGS

STONE ASPHALT

ot- 10 TO" STONE$

SOT TOM PROTECTION
L- FOUNDATION SLAG

COARSE GRAVEL
PIIOS0II0nUS STONE

STONE ASPIIALT

SECTION A-A'

METERS

FIGURFE 7.1. THE OOSTERSCHELDE BA P.FIEF

I
A'

... O -

SECTION B-B'

# tor

c

4

W
-5
hi NQ2,

-'--I

SE A

.4d

.- - f 111.00



208

1500m

F -c>
F - c

AV

E

VA'

A. PLAN OF TEST CAISSON

SoiC

.. Fp0.30 m""E n,

B. SECTION AA' -OF TEST CAISSON

FIGURE 7..2

*-



I I

209

-J
LU
0

.4
Q.

-J
LU

-J
LU
0

.4
a

"-LI'

LU

--F max

min

KF m

-j
LU
0

CL

LU
0

Li

400

300

200

100

0.00

-100

FIGURE 7.3 : Loading Schedule : TEST 1A

15.00 m

I I

0
II .23 4 5

II' 0 f13 145
11 1

PARCEL No.

L4~ -I

CENTER GECTION

Permanent Movement : TEST 1A

500 L

0

0

LU

- I.i

10 20 30 40 50 60 70 80 O 100 110 120

ELAIPGED TIME (min)

F

0
0

I I

FIGURE 7.4 ;:



5

LEGEND
I.HOLOCENE SAND
2. PLEISTOCENE SAND
3. SLAG
4. SILL

5. CONCRETE

I Ir --

HEADLOSS
WAVE

[-I- -I-..
3

I II I I I _ _ _ _

C
1 I t 1-t-t-t-t-t~ rt111t1t I I
I I t I-t-t-----d-+-+-I-f-I-I-~-I-4 t I

36-

20-

7-
0-
-77

-20-
-25

-50-

-75-

L ____________ I L.......j1.1.....A11L11L1....L....1.1 __________ j '80-

9
C,
E

z
0

-4

w
-J
w

0

FINITE ELEMENT MESH FOR THE OOSTERSCHELDE
BARRIER

Q.
V)

0 QD W
U)

0
0

I I I
I H N T

HORIZONTAL DIGTANCE FROM

FIGURE 7.5 :

0 t) 01

8
c'j

meters

I -A -%-.

,I



211

HORIZONTAL
STAT IC
FORCE

>

N 'N~' 4

CASE B

CASE D

I I CASE A

CASE C

Imm

Imm
DISPLACEMENT
SCALE

FIGURE 7.6 Predicted Permanent Displacement of the Oosterschelde
Barrier

I



212

CASE A

HORIZONTAL
STATIC FORCE

A:

DENSE

CASE A LOOSE

Imm

I mm DISPLACEMENT SCALE

FIGURE 7.7 ; Effect of soil Densification on Predicted Permanent
Movement



213

HORIZONTAL
STATIC FORCE

NO STRESS REDISTRIBUTION

CASE A

CASE B

NO STRESS REDISTRIBUTION

K \ \ N \ \ CASE C

NO STRESS REDISTRIBUTION

I

NO 31TRESS REDI*S-TRIBUTION

FIGURE 7..8 :Effect of Stress Redistribution on Predicted Permanent
Movement

CASE D



214

HORIZONTAL
STATIC FORCE

HORIZONTAL DICTANCE m

-40 -30 -20 -10 0 10 20 30 40

N=5

N=O
N10 - 1

N 20

- 40>

0.

NCO

-- -J

-\- - 1(/

E

-- I)

/ ~ w
/ -/ - C

FIGURE 7. 9 ; Stresses Applied 4m below the Base of the Pier

(CASE A)



215

F

ELEMENT A B C

0

0

0ir1*

)
3

0

0

0
- 4

0

0

ELEMENT A

3
2

0

10 20

ELEMENT

30

B

ELEMENT C
T o c t (t/m2)

0-1 GEOSTATIC STRESSES

1-2 WEIGHTOF PIER

2-3 STATIC HORIZONTAL FORCE
3-4 STRESS REDISTRIBUTION DUE TO CYCLIC

FIGURE 7.10 : Typical Stress Paths below the Base of the Pier

T (t/m)

10

0

T(t/m?

T (t/m2

2

0

LOADING

low. a :N

I

I

I



- - -0.00 100 0.50 HOLOCENE SAND
-0.000- SAN

-0.,50
-0.50 Uoct PLEISTOCENE SAN

FIGURE 7.11: Contours of Change in Octahedral Stress due to Stress
Redistribution (CASE A)

D



-0.50 - - .--- -, HOLOCENE SAND

PLEISTOCENE SAND
0150

FIGURE 7.12 Contours of Change in Maximum Shear Stress due to Stress

Redistribution (CASE A)



HOLOCENE SAND

PLEISTOCENE LE E N
SAND LEGEND

T

.,SPo

T

FIGURE 7.13 ; Stress Paths due to Stress Redistribution



219

7.0

6.0 - _ MARR &CHRISTIAN

I .0 ---- URZUA
5.0 - PROPOSED APPROACH

z 4 .O

\ 
'I

-

.0

04 
0

U () (n

FIGURE 7.14 : Predicted Settlement of the Center of the Pier's Base



220

MAPR & CHRISTIAN

--- URZUA
PROPO)ED APPROACH

-0

w
(I)
4
0

C)

wi

a

w

FIGURE 7.15 : Predicted Horizontal Displacement of the Center of

the Pier's Base -

E
E

z
-W
Hw

z o
0

0-
MI0

4.0

3.0

0

4

w
U.)
4
0

2.0

L.0



221

E

3.0 - - MARR & CHRISTIAN
.. URZUA

PROPOSED APPROACH

0
1- 2.0

-w
:5 z

LLH

0.0

a) 0~ 0
wj LUI wL

FIGURE 7.16 : Differential Settlement of the Base of the Pier



222

HORIZONTAL

STATIC FORCE

-----.... _CASE B

CASE D CASE A

CASE C

I mm

I nm

DISPLACEMENT
SCALE

FIGURE 7.17 ; Permanent Movement of the Pier due to Undrained

Cyclic Loading



223

-- DRAINED

-- UNDRAINED

I I

LUJ
0)
.4
0)

C.)

w
C,)

.4
0

0

w

FIGURE 7.18 Permanent Settlement of the Center of the Pier's Base
- Effect of Drainage

6.0

5.0

4.0

3.0

2.0

1.0

0.0

E

z

i-

-
(n
Hr

K
K

w
V,)



224

-.- DRAINED

UNDRAINED

I I I

w
(U

w
Q0

4

0

w
VI)

.4
Q

.4

wU

FIGURE 7.19 Permanent Horizontal Displacement of the Center of the
Pier's Base - Effect of Drainage

E

E

Z

uw
w

Ua
-J

5.01

4.0

3.0

2.0

1.0

0.0

->

Z
0

0
M

O --0-



-- DRAINED

UNDRAINED

P..-

0

w
MI.

FIGURE 7.20 : Permanent Differential Settlement of the Base of the Pier

-Effect of Drainage

225

1.00

z
w

w

w

z
w

w
'i-
LL

E
E

w
w

w
0

0.80

0.O0

0.40

0.20

0.001

w
(M

LUJ
()

0

w

0

73



226

T(t/m~) 20 EFFECTIVE STRESS PATH

TOTAL STRESS PATH

10

Auc

0

Auc EXCESS PORE PRESSURE DUE TO CYCLIC LOADING

A Ur. EXCESS PORE PRESSURE DUE TO STRESS REDISTRIBUTION

0-1 GEOSTATIC STRESSES

1-2 INSTALLATION OF PIER
2-3 TIDE FORCE

3-4 STRESS REDISTRIBUTION DUE TO CYCLIC LOADING

FIGURE 7.21 Stress Paths 4 m below the Heel of the Pier during
Undrained Cyclic Loading (CASE A)



STAT IC.

14ORJZ. FORCE

U (4m 2)

FIGURE 7.22 Excess Pore Pressure Contours due to Cyclic
Loading (CASE A)



S T A TIC
H ORI?. FORCE

FIGURE 7.23 Excess Pore Pressure Contours due to Cyclic Loading -

Simplified approach (CASE A)



227

CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 SUMMARY

An anlytical method was developed to predict the permanent

displacement of soils that results from cyclic loading under drained

and undrained conditions. The basic characteristic of the method is

that it focuses on the stress and strain accumulated at the end of one

cycle of loading instead of predicting the soil response within the

cycle.

The method is based on two empirical relations between permanent

strain and number of cycles in drained cyclic triaxial compression

tests: one for the permanent volumetric and one for the permanent

vertical strain. For Sand A the relations proposed by Hadge [22] and

Wooten [ 60] were used as a starting point. Major modifications were

necessary in order to:
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(i) Include the effects of the direction of the cyclic stress

path

(ii) Cover cyclic loading with a negative mean shear stress

(iii) Cover irregular cyclic loading

(iv) Distinguish between contraction and dilation due to

cyclic loading.

To be able to analyze cyclic loading under general boundary and

loading conditions, the modified relations were used to define the

viscosity constants of a three dimensional, isotropic Maxwell Fluid

model where time has been replaced by the number of cycles. The

elastic moduli appearing in the model are defined as functions of the

effective octahedral stress, soil porosity and stress path direction.

The resulting constitutive model is in incremental form, being thus

able to account for changes in the average and cyclic state of stress,

as well as in the soil properties during cyclic loading.

The model is evaluated by comparison with results from cyclic

oedometer tests, and undrained cyclic triaxial tests in compression,in

extension, and isotropic; those tests provide boundary conditions

different from drained cyclic triaxial tests used to determine the

required parameters.

The model predicted correctly the basic trends that stress and

strain accumulation followed in the cyclic oedometer tests and the

undrained cyclic triaxial tests. The magnitude of the predicted

strain, pore pressure and stress accumulation was in good agreement



229

with values measured in part of the oedometer tests, and in all the

undrained triaxial compression and isotropic tests

The model's quantitative predictions did not agree well with one

of the two sets of oedometer test data and with cyclic undrained

extension test data. Evidence was presented that testing errors may

have seriously affected the test results from the cyclic oedometer

tests. For undrained cyclic extension tests the differense between

predicted and measured response is attributed to material anisotropy

not taken into account by the model.

Two dimensional analyses were performed to predict the permanent

displacement of the Oosterschelde barrier due to drained and undrained

cyclic loading. The predicted permanent movement under drained

conditions agrees well with the trends observed during a model caisson

test in Neeltje Jans [4], as well as with results from previous

analyses of the same structure [6], [7]. Displacement predictions

neglecting the effect of stress redistribution around the foundation

were generally conservative.

Permanent settlements predicted for undrained cyclic loading were

five times less than for drained cyclic loading, while differential

settlement was two to six times larger. The effect of drainage

conditions on predicted horizontal displacement was not significant.

Finally it was found that neglecting the effect of stress

redistribution on pore pressure accumulation may lead to considerably

wrong predictions.
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8.2 CONCLUSIONS

Three major conclusions result from the presented analysis:

(i) The "cumulative strain" approach offers a rational means

of solving the difficult problem of predicting permanent

displacements from cyclic loading

(ii) Permanent displacements under various boundary

conditions and drained or undrained constraintscan be

predicted by a simple model, fitted to the results of common

static tests and relatively simple drained cyclic triaxial

tests

(iii) Combination of the proposed model for cyclic sand

behavior with the finite element method provides the means

for the prediction of the permanent deformation of

foundations due to cyclic loading.

8.3 FUTURE RESEARCH

Four different categories of research are recommended for the

future: numerical analyses with the computer program FEAP-CYC,

experiments, soil modeling and numerical modeling.

NUMERICAL ANALYSES

Use the computer program FEAP-CYC to evaluate the performance of
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two dimensional foundations under various loading and drainage

conditions. Earth dams under earthquake loading and tension or

compression piles under cyclic axial loading are two examples of case

studies of practical interest.

The proposed method can be also used to "calibrate" simple models

for the prediction of permanent displacements of foundations, where

soil is modelled by springs and dashpots. Such models cannot give

much insight into the interaction of the different factors governing

permanent displacement, but they are relatively simple and inexpensive

to use.

EXPERIMENTS

Cyclic laboratory tests on sand are recommended to give

information about the following aspects

- Shear and volumetric strain accumulation for stress states near

the CT-line

- Minimum volume reached by drained cyclic loading

- Permanent strain accumulation in the surcharacteristic domain

Static laboratory tests on sand are necessary to define better the

dependency of elastic soil moduli, on soil properties and stress path

characteristics.

Cyclic and static laboratory tests on clays and silts are

recommended for the extension of the model presented in the thesis to

cover clay materials. The objectives of this laboratory program

should be:
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- To establish a general behavioral pattern for the cyclic

behavior of clays similar to that described in chapter 3 of the

thesis

- To define an empirical relation between permanent volumetric

strain and number of cycles, and also to define a similar relation

for shear strain

- To relate elastic soil moduli with soil properties, stresses and

stress path characteristics.

SOIL MODELLING

To improve the predictive capability of the model presented here

modifications are necessary in order to

- include the effects of anisotropy on the cyclic behavior of sand

- obtain better predictions of the response of the sand due to

static stress changes

The extension of the model to clays and silts will also require a

major modelling effort because the cyclic response of clays and silts

isin some aspects, different than the response of sands [29,30,31].

NUMERICAL MODELLING

The Finite Element program FEAP-CYC can solve two dimensional

problems only. Many practical problems, however, are three

dimensional and cannot be realistically idealized as two dimentioanl

ones. One such example is the displacement of laterally loaded piles.

To solve similar problems FEAP-CYC has to be extended to cover three
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dimensional stress and strain conditions.

The cyclic stresses for each element of the foundation are

computed using a static analysis. When cyclic loading has high

frequency, the cyclic stresses are generally different than those

predicted by a static analysis, due to inertia effects. To account

for such effects FEAP-CYC has to be exteded to solve dynamic in

addition to static problems.

The proposed analysis applies to cyclic loading under drained or

fully udrained conditions. Partially undrained conditions, however,

are also common in practice due to the long duration of some

categories of cyclic loads (i.e. storms). Introduction of

consolidation occuring in parallel with the cyclic loading would

increase the practical value of the program.

Finally the analysis presented here treated the foundation with

the underlying soil as a continous medium. When the stiffness of the

foundation is significantly different from the stiffness of the soil,

slippage or "gap" may develop in the foundation soil interface. To

account for the effects of such discontinuities on the prediction of

permanent deformations, special contact elements must be added to the

program.
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APPENDIX A

DESCRIPTION OF SAND A

The following description covers grain size

distribution, mineralogy, relative density and specific

gravity of Oosterschelde Sand A. The information were

obtained from an M.I.T. Research Report of Cyclic Triaxial

Testing on Oosterschelde Sand A 162].

Oosterschelde Sand A (previously called Oosterschelde

Fine Sand) comes from samples taken at Neeltje Jans in the

Oosterschelde Bay entrance, off the coast of southern

Holland. Sand A has a uniform grain size as shown in Figure

A.1 with a mean grain size, d 5 0 , of 0.17 mm, and a d jo of

0.13 mm. The coefficient of uniformity (u=d 6o/cio) of 1.4

indicates a uniform sand. Sand A has less than 0.5% fines

content (percent by weight passing *200 sieve). Sand A, was

sieved through #10 sieve prior to testing and grain size

analysis to remove large shell fragments and clay lumps.

The removed material equaled about 1.5% of the sand by

weight.

Observation of Sand A particles under magnification by

an electron microscope shows the grains to be subrounded.

X-ray diffraction of Sand A indicates 65% quartz, 5%

calcite, and remainder dolomite, feldspars and argonite.

The soil passing the 10 sieve contained no detectable clay.

X-ray diffraction of the clay lumps not passing the #10
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sieve indicates their composition as 30% calcite, 25% clay,

20% quartz and less abundant arogonite and feldspars. The

clay itself is an illite-smectite with some chorite and/or

kaolinite. Limit determinations on the clay gave a plastic

limit of 18.6%, a liquid limit of 45.4% and a plastic index

of 26.8%.

The presence of numerous aggregates in the +460 sieve

material comprise a major feature of untested Sand A. These

aggregates break down under cyclic loading. Detailed

dispersive X-ray analysis shows the aggregates as quartz and

feldspar grains cemented by calcium carbonate. The -#60

material contained between untested material and material

subjected to cyclic testing in the finer sand fraction.

Aggregates made up less than 2% of the total sand samples.

Relative density determination on Sand A adhered to ASTM

D-2049-69 with three exceptions. Instread of oven drying

prior to testing as specified in the standard, we air dried

the sand. The cylinder on top of the 1/2 inch funnel was 3

inches in diameter and 30 inches high. The Soil Test

vibratory table used for maximum density determination

deviates slightly from ASTM requirements for velocity and

acceleration. Table A.1 lists the results of the relative

density tests.

Specific gravity determinations adhered to Lambe [66).

A determination performed on an unwashed sample, where salt

present in the sand dissolved in the water thus increasing
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its unit weight, gave a specific gravity G = 2.62. Two

other determinations, using sand carefully washed through

filter paper to remove salt without loss of any sand

fractions, gave G = 2.646 and G = 2.643 for an average

specific gravity G = 2.64.



G d d d C e. e n. n
G 10 50 90 u min max min max

(mm) (mm) (mm) (%) (%)

*
2,64 0.13 0,17 0,25 1.4 0.527 0.852 34.5 46.0

*
from modified ASTM procedure

TABLE A-I ; Summary of Basic Characteristics of Sand A

(A
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APPENDIX B

STRENGTH CHARACTERISTICS OF SAND A

In chapter three it was shown that knowledge of the

ultimum strength of the material is necessary in order to be

able to predict its response under cyclic loading. In this

appendix the strength characteristics of Sand A will be

estimated using data from static triaxial tests.

Hedberg [5] used data from drained static triaxial tests

to determine the maximum friction angle ( max) of Sand A;

is defined through the relationship:

sin 1a rh(B.1)

maxa+

v +h maximum

Figure B.1 plots m versus the initial porosity of the
max

sand as it was reported by Hedberg.

Estimation of the undrained strength of Sand A was done

using undrained static triaxial tests. The initial

conditions for the examined tests are summarized in table

B.1; the test results are plotted in figure B.2 in terms of

porosity and confining pressure. The results permit a

rather crude estimation of the confining pressure at

failure, as a function of porosity.

The undrained shear strength for Sand A can be computed

from Figure B.2 through the equation

qf = sin max p (B. 2)
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The resulting qf as a function of porosity is plotted in

Figure B.3.

Figures B.1 and B.3 define completely the strength of

Sand A under both drained and undrained conditions.
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TEST TYPE avo Cho n

LS- (ksc) (ksc) %

66 CIU 1.99 2.00 44.7

67 CIU 1.99 2.00 45.1

74 CIU 1.00 1.02 41.4

77 CIU 2.00 2.00 46.6

80 ciU 1.00 1.00 41.3

90 CAU 2.50 2.50 41.1

93 CIU 2.00 2.00 46.3

100 CIU 2.00 2.00 45.9

101 CIU 2.00 2.00 45.6

103 CIU 2.00 2.00 46.2

104 CIU 5.00 5.00 45.2

105 CIU 1.00 1.00 46.2

TABLE B.1 : Summary of Undrained Triaxial Tests on Sand A
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APPENDIX C

IMPORTANT MATRICES FOR FINITE ELEMENT FORMULATION

This appendix describes the structure of the Finite

Element matrices for three different problems in two

dimensions: plane strain, plane stress, and axisymmetric.

The notation used here is the same that appears in section

5.2 where the Finite Element implementation is described.

N 0 N 2  0. , N8

0 N 1 0 N2 0 N8

N (x,y): Shape functions for 8-node isoparametric ele-
ment. See Ref. 64 pp. 161-181

*m-* * * *

*m
N = N N 2 N 3 N }

N (x,y): Shape function for 4-node isoparametric ele-
ment. See Ref. 64 pp. 161-181

T

q q1x q ly q 2x q2y q8x q8y)

q .: nodal displacements i + local node number

j + coordinate axis
See Figure 5.1

P 1 P2 p3  p4

p nodal pore pressure i + local node number

For the three categories of problems examined in this thesis
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the general stress and strain vectors (section 6.1.1) are

reduced as

xx yy'

T
xx yy

T
- rr

rr' Cee

zz xy

zz xy

E6z' z rz I

zz' rz

>}
plain strain

and
plane stress

axisymmetric

The differential operator D is defined as:

b/Cx 0

0 0
vne

plat& strain D = 0

00

plane stress D - 0

'6 /r 

I / V

0

0

axisymetric
0
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The stress-strain stiffness matrix is:

E
(1+v) (1-2v)

The Young's Modulus (E)

related to the Bulk

following relations:

and the Poisson's ratio (v) are

(K) and Shear (G) moduli through the

9KG
3K + G

_ 3K - 2G
6K + 2G

The unit matrix I is defined as

IT = 0]3

The stiffness matrices K, H, G and the load vector R can be

described from the previous Finite Element matrices; close

form calculation of their elements, however, is too involved

and for this reason all calculations are performed

numericallly.

1-v

0

V

1-v

0

V

V

1-V

0

0

0

0

1-2v
2
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APPENDIX D

ANALYTICAL SOLUTION FOR CYCLIC LOADING UNDER

PLAIN STRAIN CONDITIONS

In this appendix the analytical solution for cyclic

loading under plane strain condtions will be presented, for

uniform applied stresses. The basic assumptions are as

follows:

(i) No deformation is allowed in the y direction,

implying that

E E = = 0'.
yy xy zy -

(ii) No shear stresses are applied (xz = 0.)

(iii) The average total stresses in the x and z

directions are kept constant during the cyclic

loading (- = a = 0.)
xx zz

The analytical solution depends on the drainage conditions,

and thus, Drained and Undrained Cyclic loading will be

considered separatelly.

DRAINED CYCLIC LOADING The strain rate in the y direction is

written as:

= + (D.1)
yy yy 3 vol
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Combining equations D.1, 4.2 and assumption (i) yields

S S
17ot+ ct+ y+ -y 0.

3 K V 2G R

where

St (a3 +a + )/ 3.

and 1
S = (2a
yy 3 yy

(D.4)a* - r )xx zz

Due to the assumption (iii) the above equations in rate form

are written as:

Oct 3 yy

S = -
yy 3 yy

(D.5)

(D.6)

Substitution of the stress rates

equation (D.5) and (D.6), and

in equation (D.2) from

solution of the resulting

equation for & gives:
yy

SS
- _ t - + -)

yy 3V R 9K 3G

(D.2)

(D.3)

(D,7)
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The strain rates in the directions x and z are expressed as:

O S S
1 OCt oct + xx+ xx (D.8)

xx 3 K V 2G R

1 ++oct oct zz + zz (D.9)
zz 3 K V 2G R

where

=1S =-
xx 3

1
zz 3

(2

(2a

- -- Cry - r ) zyy zz

- -
xx yy

(D.10)

(D. 11)

The above equations yield the following deviatoric stress

rates in x and z directions:

S = -- axx 3 yy

S 3-yy
zz 3 yy

(D.12)

(D.13)

Back substitution into equations (D.8) and (D.9) result in

expressions of the strain rates in the x and z directions in

terms of the applied state of stress, and the stress rate in
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the y direction:

aS
Oct + xx

xx 3V R

a S
S Oct+ zz

zz 3V R

+ - 1 ) yy

+ 6 k

Numerical integration of equations (D.7), (D.14), and (D.15)

is necessary for the calculation of the corresponding

quantities.

UNDRAINED CYCLIC LOADING

Under undrained conditions the volumetric component of

strain is equal to zero, and consequently only deviatoric

strains occur. The plane strain assumption combined with

equation 4.2 is written as:

S S
SYY + Y = 0

yy 2G Rt
(D.16)

The stress deviator, Syy, is expressed in terms of the total

stresses as

(D.17)S = (2a - a -a )
yy 3 yy xx zz

or after differentiation: 5 = 2 (D.18)
yy 3 yy

(D.14)

(D. 15)
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Substitution of equation (D.18) into (D.-16) leads to the

expression for the total stress rate in the y direction

S
a =-3G -7 (D.19)
yy R

According to equation (4.2) the volumetric strain rate is:

a oct + 
(D.20)

vol K V

The effective octahedral stress can be expressed in terms of

total stresses and the pore pressure:

-a = xx yy ZZ - (D.21)
a Oc 3(D21
Oct3

Differentiation of equation D.22 yields

a oct= 0/ -- u (D.22)
Oct yy/

Since the volumetric strain is zero, equations (D..22),

(D.20) and (D.21) can be combined to give the rate of pore

pressure accumulation:

S
ii =-G + K 6 -oct (D.23)

R V

.The strain rates in the x and z coordinates is
S

xx + XX (D.24)
xx 2Ct R

S

zz + zz (D.25)zz 2G R
t
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and the corresponding stress deviators are

S =- (2a
xx 3 xx

S =- (2a
zz 3 zz

- a - a )
zz yy

xx yy )

or after differentiation

' 1;
S = - -a (D.28)
xx 3 yy

1 .
S =--a D.29)
zz 3 yy

Substitution of equations (D.28) and (D.29) into (D.24) and

(D.25) respectively yields expressions for the strain rates

in terms of the average state of stress, and the number of

cycles:

= ( +s ) - (D.30)
xx 2 xx R

i = + S (D.31)
zz 2 zz R

Numerical integration of equations (D.19), (D.23), (D.30)

(D.26)

(D.27)
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and (D.3j) with respect to the number of cycles will give

the variation of the corresponding quantities due to cyclic

loading.
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APPENDIX E

LISTING OF FINITE ELEMENT PROGRAM FEAP-CYC

C.....MASTER MINIFEM
C.....SET PROGRAM CAPACITY * MAX MUST AGREE WITH DIMENSION OF M

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMon m(400000)
COMMON/PSIZE/ MAX
MAX=400000
CALL PCONTR
STOP
END

SUBROUTINE PCONTR

C
C.....FINITE ELEMENT ANALYSIS PROGRAM (FEAP) FOR SOLUTION OF GENERAL
C.....PROBLEM CLASSES USING THE FINITE ELEMENT METHOD. PROBLEM SIZE
C.....IS CONTROLLED BY THE DIMENSION OF BLANK COMMON AND VALUE OF MAX
C.....AS SET IN MAIN PROGRAM. ALL ARRAYS MUST RESIDE IN CENTRAL MEMORY.

C
C.....PROGRAMMED BY PROF. TAYLOR, DEPARTMENT OF CIVIL ENGINEERING
C.....UNIVERSITY OF CALIFORNIA, BERKELEYCALIFORNIA 94720,U.S.A
C.....MODIFIED TO COMPUTE PERMANENT DEFORMATIONS OF FOUNDATIONS
C.....DUE TO CYCLIC LOADING BY G.BOUCKOVALAS, DEPARTMENT OF CIVIL
C.....ENGINEERING, M.I.T, CAMBRIDGE,MASSACHUSETTS, 02138,U.S.A

C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
LOGICAL PCOMP
COMMON/CDATA/O,HEAD(20),NUMNP,NUMEL,NUMMAT,NEN,NEQ,IPR
COMMON/LABEL/ PDIS(6),A(6),BC(2),DI(6),CD(3),TE(3),FD(3)
COMMON M(1)
DIMENSION TITL(20),WD(4)
DATA WD/4HFEAP,4HMACR,4HSTOP,4HGO /

C.....READ A CARD AND COMPARE 4 FIRST COLUMNS WITH MACRO LIST
1 READ(5,1000) TITL

IF(PCOMP(TITL(1),WD(1))) GO TO 100
IF(PCOMP(TITL(1),WD(2))) GO TO 200
IF(PCOMP(TITL(1),WD(3))) RETURN
IF(PCOMP(TITL(1),WD(4))) GO TO 300
GO TO 1

C..... READ AND PRINT CONTROL INFORMATION
100 DO 101 I=1,20
101 HEAD(I)=TITL(I)

READ(5,1001) NUMNP,NUMEL,NUMMAT,NDM,NDF,NEN,NAD



262

WRITE(6,2000) HEAD,NUMNPNUMEL,NUMMAT,NDM,NDF,NEN,NAD
C.....SET POINTERS FOR ALLOCATION OF DATA ARRAYS

PDIS(2)=A(NDM)
NEN1=NEN+l
NST=NEN*NDF+NAD
NSC=NDM*( NDM-1) /2+3
NO=i+NST*2*IPR
Ni=NO+NEN*NDM*IPR
N2=Ni+NEN*IPR
N3=N2+NST
N4=N3+NST*IPR
N5=N4+NST*NST* IPR
N6=N5+NUMMAT
N7=N6+35*NUMMAT* IPR
N8=N7+NDF*NUMNP
N9=N8+NDM*NUMNP* IPR
N1O=N9+NEN1*NUMEL
Nl l=N1O+NDF*NUMNP*IPR
N12=N11+NUMNP*IPR
N13=N12+NSC*NUMEL* IPR
N14=N13+NSC*NUMEL*IPR
Ni 5=N14+NSC*NUMEL* IPR
N16=N15+NSC*NUMEL*IPR
N17 =N 16+NUMEL* IPR
N18=N17+NUMEL*IPR
N19=N18+NUMEL*IPR
N20=N19+NDF*NUMNP

C.....CHECK THAT SUFFICIENT MEMORY EXISTS
300 CALL SETMEM(N20)

CALL PZERO(M,Nll)
C.....CALL MESH INPUT SUBROUTINE TO READ AND PRINT ALL MESH DATA

III=0
CALL PMESH(M,M(N2),M(N3),M(N4),M(N5),M(N6),M(N7),M(N8),M(N9),M(N1O
1 ),M(N11),NDF,NDM,NEN1,NSTIII)

C.....ESTABLISH PROFILE OF RESULTING EQUATIONS FOR STIFFNESS, MASS, ETC
CALL PROFIL(M(N19),M(N7),M(N9),NDF,NEN1,NAD)

C.....SET POINTERS FOR SOLUTION ARRAYS* CHECK FOR SUFFICIENT MEMORY
N20=N19+NEQ
N21=N20+NEQ*IPR
N22=N21+NEQ*IPR
NE=N22+NUMNP*NDF*IPR
CALL SETMEM(NE)
GO TO 1

C.....CALL MACRO SOLUTION MODULE FOR ESTABLISHING SOLUTION ALGORITHM
200 CALL PMACR(M,M(NO),M(N1),M(N2),M(N3),M(N4),M(N5),M(N6),M(N7),M(N8)

1 ,M(N9),M(N1O),M(Nll),M(N19),M(N20),M(N22),M(N12),M(N13),M(N14),
2 M(N16),M(N17),M(N18),M(N15),M(N21),M(NE),NDF,NDM,NEN1,NSC,NST,

3 NE)
GO TO 1

C.....INPUT/OUTPUT FORMATS
1000 FORMAT(20A4)
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1001 FORMAT(16I5)
2000 FORMAT(lH1,20A4//5X,30HNUMBER OF NODAL POINTS =, 6/5X,30HNUM

IBER OF ELEMENTS =,16/5X,30HNUMBER OF MATERIAL SETS .
2=,16/5X,30HDIMENSION OF COORDINATE SPACE=,16/5X,30HDEGREE OF FREED

30MS/NODE =,16/5X,30HNODES PER ELEMENT (MAXIMUM) =,I6/5X,30HE
4XTRA D.O.F. TO ELEMENT =,16)

END

BLOCK DATA
IMPLICIT DOUBLE PRECISION(A-HO-Z)
COMMON/CDATA/O,HEAD( 20) ,NUMNP,NUMEL,NUMMAT,NEN,NEQ,IPR

COMMON/LABEL/PDIS(6),A(6),BC(2) ,DI(6),CD(3) ,TE(3),FD(3)
DATA A/2H,1,2H,2,2H,3,2H,4,2H,5,2H,6/,CD/4H COO,4HRDIN,4HATES/

DATA TE/4H TEM,4HPERA,4HTURE/,FD/4H FOR,4HCE/D,4HISPL/
DATA PDIS/4H(IlO,2H, ,4HF13.,4H4, ,4H6E13,4H.4) /
DATA BC/4H B.C,2H. /,DI/4H DIS,2HPL,4H VEL,2HOC,4H ACC,2HEL/

DATA O/lHO/,IPR/2/
END
SUBROUTINE GENVEC(NDM,X,CD,PRT,ERR)

C
C.....GENERATE REAL DATA ARRAYS BY LINEAR INTERPOLATION
C

IMPLICIT DOUBLE PRECISION(A-HO-Z)
LOGICAL PRT,ERR, PCOMP
COMMON /CDATA/ O,HEAD(20) ,NUMNPNUMEL,NUMMAT,NENNEQ,IPR

DIMENSION X(NDM,1),XL(7),CD(2)
DATA BL/4HBLAN/
N=O
NG=O

102 L=N
LG=NG
READ(5,1000) NNG,XL
IF(N.LE.O.OR.N.GT.NUMNP) GO TO 108
DO 103 I=1,NDM

103 X(I,N)=XL(I)
IF(LG) 104,102,104

104 LG=ISIGN(LG,N-L)
LI=(IABS(N-L+LG)-1)/IABS(LG)
DO 105 I=1,NDM

105 XL(I)=(X(I,N)-X(I,L))/LI
106 L=L+LG

IF((N-L)*LG.LE.0) GO TO 102
IF(L.LE.O.OR.L.GT.NUMNP) GO TO 110

DO 107 I=1,NDM
107 X(I,L)=X(I,L-LG)+XL(I)

GO TO 106

110 WRITE(6,3000) L,(CD(I),I=1,3)
ERR=.TRUE.
GO TO 102

108 DO 109 I=1,NUMNP,50

IF(PRT) WRITE(6,2000) 0,HEAD,(CD(L),L=1,3),(L,CD(1),CD(2),L=1,NDM)
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N=MINO(NUMNP,I+49)
DO 109 J=I,N
IF(PCOMP(X(1,J),BL).AND.PRT) WRITE(6,2008) N

109 IF(.NOT.PCOMP(X(1,J),BL).AND.PRT) WRITE(6,2009) J,(X(L,J),L=1,NDM)
RETURN

1000 FORMAT(215,7F10.0)
2000 FORMAT(A1,20A4//5X, 5HNODAL,3A4//6X,4HNODE,9(I7,A4,A2))
2008 FORMAT(IlO,32H HAS NOT BEEN INPUT OR GENERATED)
2009 FORMAT(Il0,9F13.4)
3000 FORMAT(5X,43H**FATAL ERROR 02** ATTEMPT TO GENERATE NODEI5,3H IN

1 ,3A4)
END
SUBROUTINE PMESH(UL,IDL,P,S,IE,DID,X,IX,F,T,NDF,NDM,NEN1,NST,III)

C
C....DATA INPUT ROUTINE FOR MESH DESCRIPTION
C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
LOGICAL PRT,ERR,PCOMP
COMMON /CDATA/ 0,HEAD(20) ,NUMNP,NUMEL,NUMMAT, NENNEQ,IPR
COMMON /ELDATA/ DM,N,MA,MCT,IEL,NEL
COMMON /LABEL/ PDIS(6),A(6),BC(2),DI(6),CD(3),TE(3),FD(3)
DIMENSION IE(1),D(35,1),ID(NDF,1),X(NDM,1),IX(NEN1,1),XHED(17)
1 ,UL(1),IDL(6),XL(3),F(NDF,1),FL(6),T(1),WD(10),VA(2),P(1),S(NST,
2 1),ECS(6),CSI(6),CSTR(6),PECS(6)
DATA WD/4HCOOR,4HELEM,4HMATE,4HBOUN,4HFORC,4HTEMP,4HEND ,4HPRIN,
1 4HNOPR,4HPAGE/,BL/4HBLAN/,VA/4H VAL,2HUE/,LIST/10/,PRT/.TRUE./

C..... INITIALIZE ARRAYS
ERR=.FALSE.
IF(III.LT.0) GO TO 10
DO 101 N=1,NUMNP
DO 100 I=1,NDF
ID(I,N)=O

100 F(IN)=0.
101 T(N)=O.
10 READ(5,1000)CC

DO 20 I=1,LIST
20 IF(PCOMP(CCWD(I))) GO TO 30

GO TO 10
30 GO TO (1,2,3,4,5,6,7,8,9,11),I
C.....NODAL COORDINATE DATA INPUT
1 DO 102 N=1,NUMNP
102 X(1,N)=BL

CALL GENVEC(NDM,X,CD,PRT,ERR)
GO TO 10

C.....ELEMENT DATA INPUT
2 L=O

DO 206 I=1,NUMEL,50
IF(PRT) WRITE(6,2001) 0,HEAD,(KK=1,NEN)
J=MINO(NUMEL, 1+49)
DO 206 N=I,J
IF(L-N) 200,202,203
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200 READ(5,1001) LLK,(IDL(K),K=1,NEN),LX
IF(L.EQ.0) L=NUMEL+1
IF(LX.EQ.0) LX=1
IF(L-N) 201,202,203

201 WRITE(6,3001) L,N
ERR=.TRUE.
GO TO 206

202 NX=LX
DO 207 K=1,NEN1

207 IX(K,L)=IDL(K)
IX(NEN1,L)=LK
GO TO 205

203 IX(NEN1,N)=IX(NEN1,N-1)
DO 204 K=1,NEN
IX(K,N)=IX(K,N-1)+NX

204 IF(IX(KN-1).EQ.0) IX(K,N)=O
205 IF(PRT) WRITE(6,2002) N,IX(NEN1,N),(IX(K,N),K=1,NEN)
206 CONTINUE

GO TO 10
C.....MATERIAL DATA INPUT
3 WRITE(6,2004) O,HEAD

DO 300 N=1,NUMMAT
READ(5, 1002) MA,IEL,XHED
WRITE(6 ,2003)MA,IEL,XHED
IE(MA)=IEL

300 CALL ELMLIB(D(1,MA),UL,XIX,TS,P,ECS,CSI,CSTR,CVOL,CVI,SO,PECSTIME,
1 DT,NDF,NDM,NST,1,IFLAG,O)
GO TO 10

C.....READ IN THE RESTRAINT CONDITIONS FOR EACH NODE
4 IF(PRT) WRITE(6,2000) 0,HEAD,(I,BC,I=1,NDF)

III=1
.N=O
NG=O

402 L=N
LG=NG
READ(5,1001) N,NG,IDL
IF(N.LE.O.OR.N.GT.NUMNP) GO TO 60
DO 51 I=1,NDF
ID(I,N)=IDL(I)

51 IF(L.NE.0.AND.IDL(I).EQ.O.AND.ID(IL).LT.0) ID(IN)=-1
LG=ISIGN(LG,N-L)

52 L=L+LG
IF((N-L)*LG.LE.0) GO TO 402

DO 53 I=1,NDF
53 IF(ID(IL-LG).LT.0) ID(IL)=-1

GO TO 52
60 DO 58 N=1,NUMNP

DO 56 I=1,NDF
56 IF(ID(I,N).NE.0) GO TO 57

GO TO 58
57 IF(PRT) WRITE(6,2007) N,(ID(I,N),I=1,NDF)
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58 CONTINUE
GO TO 10

C.....FORCE/DISPLACEMENT DATA INPUT
5 CALL GENVEC(NDF,FFD,PRT,ERR)

GO TO 10
C.....TEMPERATURE DATA INPUT
6 CALL GENVEC(1,TTE,PRT,ERR)

GO TO 10
7 IF(ERR) STOP

RETURN
8 PRT=.TRUE.

GO TO 10
9 PRT=.FALSE.

GO TO 10
11 READ(5,1000) 0

GO TO 10
1000 FORMAT(A4,75X,Al)
1001 FORMAT(1615)
1002 FORMAT(I5,3X,I2,17A4)
2000 FORMAT(A1,20A4//5X,17HNODAL B.C. //6X,4HNODE,9(I7,A4,A2)/1X)
2001 FORMAT(A1,20A4//5X,8HELEMENTS//3X,7HELEMENT,2X,8HMATERIAL,

1 14(I3,5H NODE)/(20X,14(I3,5H NODE)))
2002 FORMAT(2Il0,14I8/(20X,14I8))
2003 FORMAT(/5X,12HMATERIAL SETI3,17H FOR ELEMENT TYPE,I2,5X,17A4/lX)
2004 FORMAT(A1, 20A4//5X,19HMATERIAL PROPERTIES)
2005 FORMAT(A,20A4//5X,17HNODAL FORCE/DISPL//6X,4HNODE,9(I7,A4,A2))
2006 FORMAT(I10,9E13.3)
2007 FORMAT(I10,9113)
3001 FORMAT(5X,20H**ERROR 03** ELEMENT,15,22H APPEARS AFTER ELEMENT,15)

END

SUBROUTINE SETMEM(J)
C
C.....MONITOR AVAILABLE MEMORY IN BLANK COMMON
C

COMMON M(1)
COMMON /PSIZE/ MAX
K=J
IF(K.LE.MAX) RETURN -
WRITE(6,1000) K,MAX
STOP

1000 FORMAT(5X,49H**ERROR 01** INSUFFICIENT STORAGE IN BLANK COMMON/
1 17X,11HREQUIRED =,18/17X,11HAVAILABLE =,I8/)

END

SUBROUTINE PMACR (UL,XL,TL,LD,P,S,IE,D, IDX,IX,F,T,JDIAG,B,DR,
1ECS,CSI,CSTR,CVOL,CVI,SO,PECS,DRS,CT,NDF,NDM,NEN1,NSC,NST,NEND)

C
C.....MACRO INSTRUCTION PROGRAM
C
C.....CONTROLS PROBLEM SOLUTION AND OUTPUT ALGORITHMS
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C ..... BY ORDER OF SPECIFYING MACRO COMMANDS IN ARRAY WD.

C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
LOGICAL AFR,BFR,CFR,AFL,BFL,CFL,DFL,EFL,FFL,GFLPCOMP
COMMON M(1)
COMMON /CDATA/ O,HEAD(20),NUMNP,NUMEL,NUMMAT,NEN,NEQ,IPR
COMMON /LABEL/ PDIS(6),Z(6),BC(2),DI(6),CD(3),TE(3),FD(3)
COMMON /PRLOD/ PROP
COMMON /TDATA/ TIME,DT,C1,C2,C3,C4,C5
DIMENSION WD(19),CT(4,1),CTL(4),LVS(9),LVE(9),JDIAG(1),

1 UL(1),XL(1),TL(1),LD(1),P(1),S(1),IE(1),D(1),ID(1),X(1),
2 IX(1),F(1),T(1),B(1),DR(1),ECS(1),CSI(1),CSTR(1),PECS(1),DRS(1)
3 ,CVOL(1),CVI(1),SO(1)
DATA WD/4HTOL ,4HDT ,4HSTRE,4HDISP,4HTANG,4HFORM,4HLOOP,4HNEXT,

1 4HDATA,4HTIME,4HCONV,4HSOLV,4HMESH,4HUTAN,4HREAC,4HCHEC,
2 4HSTRT,4HADD ,4HWEIG/
DATA NWD/19/,ENDM/4HEND /,NVNC/1,1/

C..... SET INITIAL VALUES OF PARAMETERS
DT=O.
PROP=1.0
RNMAX=0.0
TIME=0.0
TOL=1.E-9
UN=0.0
AFL=.TRUE.
AFR=.FALSE.

BFL=.TRUE.
BFR=.FALSE.

CFL=.TRUE.
CFR=.FALSE.

DFL=.TRUE.
EFL=.TRUE.
FFL=.FALSE.
GFL=.TRUE.
NE=NEND
NNSC=NUMEL*NSC
NNEQ=NDF*NUMNP
NPLD=O
CALL PZERO(B,NEQ*IPR)
CALL PZERO(DRNNEQ*IPR)
CALL PZERO(DRS,NEQ*IPR)
WRITE(6,2001) O,HEAD

C ..... READ MACRO CARDS
LL=1
LMAX=16
CALL SETMEM(NE+LMAX*4*IPR)
CT(1,1)=WD(7)

CT(3,1)=1.0
100 LL=LL+1

IF(LL.LT.LMAX) GO TO 110
LMAX=LMAX+16
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CALL SETMEM(NE+LMAX*4*IPR)

110 READ(5,1000) (CT(JLL),J=1,4)
WRITE(6,2000) (CT(J,LL),J=1,4)
IF(.NOT.PCOMP(CT(1,LL),ENDM)) GO TO 100

200 CT(1,LL)=WD(8)
C.....SET LOOP MARKERS

NE=NE+LMAX*4*IPR

LX=LL-1
DO 230 L=1,LX
IF(.NOT.PCOMP(CT(1,L),WD(7))) GO TO 230

J=1
K=L+1
DO 210 I=K,LL
IF(PCOMP(CT(1,I),WD(7))) J=J+1

IF(J.GT.9) GO TO 401
IF(PCOMP(CT(1,I),WD(8))) J=J-1

210 IF(J.EQ.0) GO TO 220
GO TO 400

220 CT(4,I)=L
CT(4,L)=I

230 CONTINUE
J=0
DO 240 L=1,LL
IF(PCOMP(CT(1,L),WD(7))) J=J+1

240 IF(PCOMP(CT(1,L),WD(8))) J=J-1

IF(J.NE.0) GO TO 400

C.....EXECUTE MACRO INSTRUCTION PROGRAM
LV=0
L=1

299 DO 300 J=1,NWD
300 IF(PCOMP(CT(1,L),WD(J))) GO TO 310

GO TO 330
310 I=L-1

IF(L.NE.1.AND.L.NE.LL)
1WRITE(6,2010) I,(CT(K,L),K=1,4)
GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19) ,J

C.....SET SOLUTION TOLERANCE
1 TOL=CT(3,L)

GO TO 330
C.....SET TIME INCREMENT
2 DT=(CT(3,L)**CT(4,L)+TIME**CT(4,L))**(1./CT(4,L))-TIME

GO TO 330
C.....PRINT STRESS VALUES

3 ISW=CT(4,L)

LX=LVE(LV)
IF(DMOD(CT(3,LX),DMAX1(CT(3,L),1.DO)).EQ.0.0)
1 CALL PFORM(ULXL,TL,LDP,S,IED,IDX,IX,F,TJDIAGDRDRDR,
2 ECS,CSI,CSTR,CVOL,CVI,SO,PECS,TIME,DT,NDF,NDM,NEN1 ,NSCNSTISW

3 ,B,M(NV),.FALSE.,.FALSE.,.FALSE.,.FALSE.,IFLAG)
GO TO 330

C.....PRINT DISPLACEMENTS
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4 LX=LVE(LV)
IF(DMOD(CT(3,LX),DMAX1(CT(3,L),1.DO)).NE.O.0) GO TO 330
WRITE(6,2003) 0,HEAD,TIME,PROP
CALL PRTDIS(ID,DX,B,F,NDM,NDF)
GO TO 330

C.....FORM TANGENT STIFFNESS
14 IF(CFL) CALL PSETM(NCNEJDIAG(NEQ)*IPRCFL)

CALL PZERO(M(NC),JDIAG(NEQ)*IPR)
CFR=.TRUE.

5 IF(J.EQ.5) CFR=.FALSE.
IF(GFL) CALL PSETM(NA,NEJDIAG(NEQ)*IPRGFL)
CALL PZERO(M(NA),JDIAG(NEQ)*IPR)
CALL PFORM(UL,XL,TL,LD,P,S,IE,D,ID,X,IX,F,T,JDIAGDR,M(NA),M(NC),
2 ECS,CSI,CSTR,CVOLCVI,SO,PECS,TIME,DT,NDF,NDM,NEN1,NSCNST,3
3 ,B,M(NV),.TRUE.,.FALSE.,CFR,.FALSE.,IFLAG)
AFR=.TRUE.
GO TO 330

C.....FORM OUT OF BALANCE FORCE FOR TIME STEP/ITERATION
6 CALL PLOAD(ID,FDR,NNEQ,PROP)

CALL PFORM(ULXL,TL,LD,P,S,IED,ID,X,IX,F,T,JDIAG,DR,DR,DRECS,
2 CSICSTR,CVOL,CVI,SO,PECS,TIME,DT,NDF,NDMNEN1 ,NSC,NST,6 ,B,
3 M(NV),.FALSE.,.TRUE.,.FALSE.,.FALSE.,IFLAG)
BFR=.TRUE.
GO TO 330

C.....SET LOOP START INDICATORS
7 LV=LV+1

LX=CT(4,L)
LVS(LV)=L
LVE(LV)=LX
CT(3,LX)=1.
GO TO 330

C.....LOOP TERMINATOR CONTROL
8 N=CT(4,L)

CT(3,L)=CT(3,L)+1.0
IF(CT(3,L).GT.CT(3,N)) LV=LV-1
IF(CT(3,L).LE.CT(3,N)) L=N
GO TO 330

C . READ COMMAND
9 READ(5,1000) (CTL(I),I=1,4)

IF(.NOT.PCOMP(CT(2,L),CTL(1))) GO TO 402
IF(PCOMP(CTL(1),WD(1))) TOL=CTL(3)
IF(PCOMP(CTL(1),WD(2))) DT=CTL(3)
GO TO 330

C.....INCREMENT TIME
10 TIME=TIME+DT

RNMAX=O.O
UN=0.0
GO TO 330

C.....COMPUTE CONVERGENCE TEST

11 RN=0.0
UN=O.O
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DO 121 N=1,NEQ
UN=UN+DR(N)**2

121 RN=RN+(DR(N)-DRS(N))**2
UN=DMAX1(UN,RN)

CN=SQRT(UN)
RN=SQRT(RN)
WRITE(6,2002) TIMECNRN,TOL
LX=LVE(LV)
LO=LVS(LV)
IF(RN.LE.CN*TOL) CT(3,LX)=CT(3,LO)
IFLAG=1.
DO 122 N=1,NEQ

122 DRS(N)=DR(N)
CALL PZERO(DRNNEQ*IPR)
GO TO 330

C.....SOLVE THE EQUATIONS
12 IF(CFR) GO TO 121

CALL ACTCOL(M(NA),DR,JDIAG,NEQ,AFR,BFR)
GO TO 132

131 CALL UACTCL(M(NA),M(NC),DR,JDIAGNEQ,AFRBFR)
132 AFR=.FALSE.

IF(.NOT.BFR) GO TO 330
BFR=.FALSE.
IF(CT(3,L).NE.O.) GO TO 330
DO 133 N=1,NEQ

133 B(N)=B(N)+DR(N)
GO TO 330

13 I=-i
CALL PMESH(ul,1d,P,S,IE,DIDX,IX,F,T,NDF,NDM,NEN1,NST,I)
IF(I.GT.0) GO TO 404
GO TO 330

C.....COMPUTE REACTIONS AND PRINT
15 CALL PZERO(DR,NNEQ*IPR)

CALL PFORM(UL,XLTL,LD,P,S, IE , D, ID,X,IX,F,T,JDIAG,DR,DR,DR,ECS,
1 CSI,CSTR,CVOL,CVI,SO,PECS,TIME,DT,NDF,NDM,NEN1,NSC,NST,6,B,
2 M(NV),.FALSE.,.TRUE.,.FALSE.,.TRUE.,IFLAG)

CALL PRTREA(DR, NDF)
GO TO 330

16 CALL PFORM(UL,XL,TL,LD,P,S,IE,D,ID,XIX,F,T,JDIAG,DR,DR,DR,ECS,
1 CSI,CSTR,CVOL,CVI,SO,PECS,TIME,DT,NDF,NDM,NEN1,NSC,NST,2,B,F,
2 .FALSE.,.FALSE.,.FALSE.,.FALSE.,IFLAG)
GO TO 330

C.....SET DISPLACEMENT INCREMENT TO ZERO,DEFINE PREDICTOR PROCEDURE
17 CALL PZERO(DR,NNEQ*IPR)

IFLAG=-1

GO TO 330
C.....ADD STRESS AND DISPLACEMENT INCREMENTS TO TOTAL VALUES
C.....ADD CYCLIC VOLUMETRIC STRAIN INCREMENT TO TOTAL VALUE
18 DO 500 N=1,NEQ

500 B(N)=B(N)+DRS(N)
CALL PZERO(DRS,NEQ*IPR)
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DO 550 N=1,NNSC
STORE=ECS(N)
ECS(N)=PECS(N)

550 PECS(N)=STORE
DO 560 N=1,NUMEL

560 CVOL(N)=CVOL(N)+CVI(N)
GO TO 330

C..... COMPUTE GEOSTATIC STRESSES AND ADD THEM TO THE 'ECS' ARRAY
19 CALL PFORM(UL,XL,TL,LD,P,S,IE,D,ID,X,IX,F,T,JDIAG,DR,DR,DR,ECS,

1 CSI,CSTR,CVOL,CVI,SO,PECS,TIME,DT,NDF,NDM,NEN1,NSC,NST,5,B,F,
2 .FALSE.,.FALSE.,.FALSE.,.FALSE.,IFLAG)

330 L=L+1
IF(L.GT.LL) RETURN
GO TO 299

400 WRITE(6,4000)
RETURN

401 WRITE(6,4001)
RETURN

402 WRITE(6,4002)
RETURN

403 WRITE(6,4003)
404 WRITE(6,4004)

RETURN
1000 FORMAT(A4,1X,A4,1X,2F5.O)
2000 FORMAT(10X,A4,1X,A4,1X,2G15.5)
2001 FORMAT(A1,20A4//5X,18HMACRO INSTRUCTIONS//5X,15HMACRO STATEMENT,5X

1,10HVARIABLE 1,5X,10HVARIABLE 2)
2002 FORMAT(5X,29HDISPLACEMENT CONVERGENCE TEST,10X,14HCYCLE NUMBER =,F

I 10.2/1OX,7HUNMAX =,G15.5,5X,7HUN =,G15.5,5X,7HTOL =,G15.5)
2003 FORMAT(A1,20A4,1OX,4HTIME,G13.5//5X,17HPROPORTIONAL LOAD,G13.5)

2004 FORMAT(5X,4HCN =,G12.5,5X,4HDN =,G12.5,5X,4HUN =,G12.5,5X,4HAG =
1 ,G12.5,5X,4HAC =,G12.5)

2005 FORMAT(5X,22HFORCE CONVERGENCE TEST/10X,7HRNMAX =,G15.5,5X,
1 7HRN =,G15.5,5X,7HTOL =,G15.5)

2010 FORMAT(2X,19H**MACRO INSTRUCTIONI4,13H EXECUTED** ,2(A4,2X), 6H.
lvi = ,G13.4, 8H , V2 = ,G13.4)

4000 FORMAT(5X,46H**FATAL ERROR 10** UNBALANCED LOOP/NEXT MACROS )
4001 FORMAT(5X,45H**FATAL ERROR 11** LOOPS NESTED DEEPER THAN 8)
4002 FORMAT(5X,57H**FATAL ERROR 12** MACRO LABEL MISMATCH ON A READ COM

iMAND)
4003 FORMAT(5X,63H**FATAL ERROR 13** MACRO EXCD MUST BE PRECEDED BY LMA

1S AND FORM)
4004 FORI4AT(5X,84H**FATAL ERROR 14** ATTEMPT TO CHANGE BOUNDARY RESTRAI

INT CODES DURING MACRO EXECUTION )
END
SUBROUTINE PFORM(ULXL,TL,LD,P,S,IE,D,IDX,IX,F,T,JDIAG,B,A,C,
1ECS,CSI,CSTR,CVOL,CVI,SO,PECS,TIME,DT,NDF,NDM,NEN1,NSC,NST,ISW,U,
2UD,AFL,BFL,CFL,DFL,IFLAG)

C
C.....COMPUTE ELEMENT ARRAYS AND ASSEMBLE GLOBAL ARRAYS
C
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IMPLICIT DOUBLE PRECISION(A-H,O-Z)
LOGICAL AFL,BFL,CFL,DFL
COMMON /CDATA/ OHEAD(20),NUMNPNUMELNUMMATNENNEQIPR
COMMON /ELDATA/ DM,N,MA,MCT,IEL,NEL
COMMON/PRLOD/ PROP
DIMENSION XL(NDM,1),LD(NDF,1),P(1),S(NST,1),IE(1),D(35,1),ID(NDF,1
1),X(NDM,1),IX(NEN1,1),F(NDF,1),JDIAG(1),B(1),A(1),C(1),UL(NDF,1)
2 ,TL(1),T(1),U(1),UD(NDF,1),ECS(NSC,1),CSI(NSC,1),CSTR(NSC,1)
3 ,PECS(NSC,1),CVOL(1),CVI(1),SO(1)

C.....LOOP ON ELEMENTS
IEL=0
DO 110 N=1,NUMEL

C.....SET UP LOCAL ARRAYS
DO 108 I=1,NEN
II=IX(I,N)
IF(II.NE.0) GO TO 105
TL(I)=O.
DO 103 J=1,NDM

103 XL(JI)=O.
DO 104 J=1,NDF
UL(JI)=O.
UL(J,I+NEN)=O.

104 LD(J,I)=0
GO TO 108

105 IID=II*NDF-NDF
NEL=I
TL(I)=T(II)
DO 106 J=1,NDM

106 XL(J,I)=X(J,II)
DO 107 J=1,NDF
K=IABS(ID(J,II))
UL(J, I)=F(J , II)*PROP
UL(J,I+NEN)=UD(J,II)
IF(K.GT.0) UL(J,I)=0.
IF(K.GT.O.AND.ISW.NE.6) UL(J,I)=C(K)
IF(DFL) K=IID+J

107 LD(J,I)=K
108 CONTINUE
C.....FORM ELEMENT ARRAY

MA=IX(NEN1,N)
IF(IE(MA).NE.IEL) MCT=O
IEL=IE(MA)
CALL ELMLIB(D(1,MA),UL,XL,IX(1,N),TL,S,PECS(1,N),CSI(1,N),CSTR(1,
iN),CVOL(N),CVI(N),SO(N),PECS(1,N),TIME,DT,NDF,NDM,NST,ISW,IFLAGN)

C ..... ADD TO TOTAL ARRAY
IF(AFL.OR.BFL.OR.CFL) CALL ADDSTF(A,B,C,S,P,JDIAGLDNST,NEL*NDF,

1 AFL,BFL,CFL)
110 CONTINUE

RETURN
END



273

SUBROUTINE ELMLIB(D,U,X,IX,T,S,P,ECS,CSI,CSTR,CVOL,CVI,SO,PECS,
1 TIMEDT,I,J,K,ISW,IFLAG,LMNT)

C
C.....ELEMENT LIBRARY
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON /ELDATA/ DM,N,MA,MCT,IEL,NEL
DIMENSION P(K),S(K,K),D(1),U(1),X(1),IX(1),T(1)

DIMENSION ECS(1),CSI(1),CSTR(1),PECS(1)
IF(IEL.LT.-2.OR.IEL.GT.2) GO TO 400

IF(ISW.LT.3) GO TO 30
DO 20 L=1,K
P(L)=O.O
DO 20 M=1,K

20 S(LM)=O.O
30 GO TO (1,2),IABS(IEL)
C.....ELMT01----> PLANE STRAIN CYCLIC ELEMENT
C.....ELMT02----> AXISYMMETRIC CYCLIC ELEMENT
1 CALL ELMT01(D,U,X,IX,TS,P,ECS,CSI,CSTRCVOLCVI,SO,PECS,TIME,DT,

1 1,JK,ISWIFLAG,LMNT)
GO TO 10

2 CALL ELMT2(D,U,X,IX,T,S,P,ECS,CSI,CSTRCVOL,CVI,SOPECS,TIMEDT,
1 IJ,K,ISW,IFLAG,LMNT)

10 RETURN
400 WRITE(6,4000) IEL

STOP
4000 FORMAT(5X,39H**FATAL ERROR 04** ELEMENT CLASS NUMBERI3,6H INPUT)

END

SUBROUTINE MODEL(ECS,CSI,CSTRCVOL,FI,SO,D,TDT,I,LMNT,LINT)

C ..... THIS SUBROUTINE 1)ESTIMATES THE TANGENT SHEAR AND BULK MODULUS
C..........OF THE SOIL AS FUNCTIONS OF THE EFFECTIVE STATE OF STRESS

C..........2) ESTIMATES THE CYCLIC STRAIN INCREMENT
IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DIMENSION ECS(4),CSI(4),D(1),CSTR(4),P(4),S(3),EPS(3)
C.....INITIAL STATE OF STRESS

DO 10 L=1,3
10 S(L)=ECS(L)

CALL PSTRES(S,P(),P(2),P(4))
P(3)=ECS(4)
SOCT=(P(1)+P(2)+P(3))/3.

IF(SOCT.GE.O.) GO TO 400
DO 20 L=1,3

20 S(L)=P(L)-SOCT
TAU=1.224744871*SQRT(S(1)*S(1)+S(2)*S(2)+S(3)*S(3))
TGM=-6.*SIN(D(11))/(3.-SIN(D(1l)))
IF(TGM.NE.O..AND.(TAU/SOCT).LT.TGM) SOCT=0.95*TAU/TGM
IF(ECS(1).NE.ECS(3)) TAU=TAU*(ECS(1)-ECS(3))/ABS(ECS(1)-ECS(3))
SO=DMAX1 (-SOCT, SO)
D(30)=DMAX1(D(30),D(14))
TAUF=TGM*SOCT
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IF(D(13).GT.O.) TAUF=D(13)

GO TO(30,50),I
C......................................................................
C.....TANGENT SOIL MODULI..............................................
C......................................................................
30 BULK=D(20)*D(16)*(-SOCT/D(16))**D(21)

SHEAR=.23*D(17)*(D(18)-D(14))**2./(1.+D(14))*D(16)*(-SOCT/D(16))
1 **D(19)

IF(T.EQ.0..AND.LMNT.NE.0)
1 WRITE(10,3000) LMNTECSCSI,SOCT,TAUTAUF

3000 FORMAT(' N',15,' ECS',4F9.3,' CSI',4F9.3,' SOCT'
1' TAU',F1O.4,' TAUF',F10.4)
IF(ABS(TAU).GT.TAUF.AND.LMNT.NE.0) WRITE(6,2000)
1 TAUF

2000 FORMAT('***LOCAL FAILURE*** ELEM=',15,' SOCT='

,F10.4,

LMNT,SOCT,TAU,

,F10.5,' TAU=',
1F1O.5,' TAUF=',F1O.5)
D(10)=(3.*BULK-2.*SHEAR)/(6.*BULK+2.*SHEAR)
E=9.*BULK*SREAR/(3.*BULK+SHEAR)
D(1)=E*(l.+(1.-D(7))*D(10))/(l.+D(10))/(l.-D(7)*D(10))
D(2)=D(10)*D(1)/(l.+(I.-D(7))*D(10))
D(3)=E/2./(1.+D(10))
RETURN

C......................................................................
C.....CYCLIC STRAIN INCREMENT..........................................
C......................................................................
50 IF(DT.EQ.O..OR.D(23).EQ.0.) GO TO 400

...STEP 1 : CYCLIC SHEAR STRESS............
DSOCT=(CSI(1)+CSI(3)+CSI(4))/3.
S(1)=CSI(1)-DSOCT
S(2)=CSI(3)-DSOCT
S(3)=CSI(4)-DSOCT
DTAU=1.224744871*SQRT(S(1)*S(1)+S(2)*S(2)
IF(S(1).NE.S(2))DTAU=DTAU*(S(1)-S(2))/ABS
IF(DTAU.EQ.0.) GO TO 400
IF(TAU.LT.O.) DTAU=-DTAU
TAU=ABS(TAU)

+S(3)*S(3)+CSI(2)*CSI(2))
(S(1)-S(2))

IF(DTAU.GT.0.) GO TO 40.
DSOCT=-DSOCT
DTAU=-DTAU

.... ............................................................

.. STEP 2 CYCLIC STRESS PATH DIRECTION
TGL=-6.*SIN(D(12))/(3.-SIN(D(12)))
IF(D(13).EQ.0.) GO TO 60
TC=SOCT*TGL
TE=-TC
SOCTL=SOCT
SOCTU=SOCT
SOCTF=D(13)/TGM
IF((TAU+DTAU).LE.TC) GO TO 65
CALL INTERPOL(TC,SOCT,D(13),SOCTF,(TAU+DTAU),SOCTL)

C..
C..

C..
C..
40

.

.

........................ # & 0 0
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IF(TAU.GT.TC) CALL INTERPOL(TAU,SOCT,D(13),SOCTF,(TAU+DTAU),SOCTL)
CALL INTERSECT(TAU,SOCT,(TAU+DTAU),SOCTL,-TGL,TE,SE)
CALL INTERPOL(TE,SE,-D(13),SOCTF,(TAU-DTAU),SOCTU)
IF((TAU-DTAU).GE.TE) CALL INTERPOL(TAU,SOCT,TE,SE,(TAU-DTAU)
1 ,SOCTU)
GO TO 65

60 SOCTL=SOCT+DSOCT
SOCTU=SOCT-DSOCT

C.......................................................................
C.....STEP 3 : CYCLIC SHEAR STRAIN....................................
65 TAUL=SOCTL*TGM-TAU+DTAU

TAUU=SOCTU*TGM+TAU+DTAU
GO=D(17)*(D(18)-D(14))**2./(1.+D(14))*D(16)
GO=GO*(-SOCT/D(16))**D(19)/100.
HYP=DMAX1(.O1DO,1.DO-2.DO*DTAU/TAUL)
GPPL=DTAU/GO/HYP
HYP=DMAX1(.01DO, 1.DO-2.DO*DTAU/TAUU)
GPPU=DTAU/GO/HYP
GPP=GPPU
IF(ECS(1).LT.ECS(3)) GPP=GPPL
IF(GPP.LT.l.E-3) GO TO 400

C........................... ............................................
C.....STEP 4 : EFFECT OF CYCLIC LIMIT STATE...........................

DMAX=SO+TAU/TGL
DELT=-SOCT+TAU/TGL
IF(DELT.GE.DMAX) DELT=.9*DMAX
SUN=DELT/(DMAX-DELT)
DMAX=D(30)-D(15)
DELT=D(14)-D(15)
IF(DELT.GE.DMAX) DELT=.9*DMAX
SDR=DELT/(DMAX-DELT)
SS=DMIN1(SUN,SDR)
EFCT=1.-EXP(-D(22)*SS)
EFCT=DMAX1(EFCT,0.DO)
IF(LINT.EQ.1) WRITE(10,4000)LMNT,SOCT,DSOCT,TAU,DTAU,TAUU,TAUL,

1GPPL,GPPU,GPP,EFCT
4000 FORMAT(' N',13,' S',F9.3,' DS',F9.3,' T',F9.3,' DT',F9.3,

1' TU',F9.3,' TL',F9.3,' GPL',F1O.5,' GPU',F1O.5,' GP',F1O.5,
2' ECT',F8.5)

C......................................................................
C.....STEP 5 : CYCLIC STRAIN INCREMENT IN PRINCIPAL DIRECTIONS........

TS=(-CVOL/(D(23)*GPP**D(25)))**(1./D(24))
FI=-D(23)*GPP**D(25)*((TS+DT)**D(24)-TS**D(24))
F=FI*EFCT
IF(TAU.EQ.O..OR.FI.EQ.0.) GO TO 90
R=-D(26)*(TAU/2.)**(D(27)-1.)/(-SOCT)**D(27)*FI
R=1.3333333333333333/R
DO 70 L=1,3
S(L)=P(L)-SOCT

70 EPS(L)=S(L)/R+F/3.
GO TO 80
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DO 95 L=1,3
EPS(L)=F/3.

..... ............................................................

.... STEP 6 CYCLIC STRAIN INCREMENT IN NATURAL COORDINATES
THETA=P(4)
CO=COS(THETA*.0174532925)
SI=SIN(THETA*.0174532925)
CSTR(1)=EPS(1)*CO*CO+EPS(2)*SI*SI
CSTR(3)=EPS(1)*SI*SI+EPS(2)*CO*CO
CSTR(2)=CO*SI*(EPS(1)-EPS(2))
CSTR(4)=EPS(3)
RETURN

400 DO 450 L=1,4
450 CSTR(L)=O.

FI=O.
RETURN
END
SUBROUTINE ELMTO1(D,UL,XL,
1 PECS,TIME,DT,NDF,NDMNST,

IX,TL,S,P,ECS,CSI,CSTR,CVOL,CVI,SO,
ISW,IFLAG,LMNT)

C
C.....PLANE NON-LINEAR CYCLIC ELEMENT ROUTINE

C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)

COMMON /CDATA/ 0,HEAD(20),NUMNP,NUMEL,NUMMATNEN,NEQIPR
COMMON /ELDATA/ DM,N,MA,MCT,IEL,NEL

DIMENSION D(1),UL(NDF,1),XL(NDM,1),IX(1),TL(1),S(NST,1),P(1)
1 ,SHP(3,9),SHPP(3,9),SG(9),TG(9),WG(9),SIG(7),EPS(4),WD(2)
DIMENSION ECS(1),CSI(1),CSTR(1),PECS(1),EECS(4)
DATA WD/4HRESS,4HRAIN/

C.....GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,4,5,4,4,4,4), ISW

C.....INPUT MATERIAL PROPERTIES
I READ(5,1000) E,XNU,D(4),L,K,I,D(8)

IF(I.NE.0) 1=1
IF(I.EQ.0) I=2
D(1)=E*(1.+(1-I)*XNU)/(I.+XNU)/(1.-I*XNU)
D(2)=XNU*D(1)/(1.+(1-I)*XNU)
D(3)=E/2./(1.+XNU)
L=MINO(3,MAXO(1,L))
D(5)=L
K=MINO(3,MAXO(1,K))
D(6)=K
D(7)=I
LINT=O
WRITE(6,2000) WD(I),E,XNU,D(4)
D(9)=1.
D(10)=XNU
READ(5,1600) (D(NI),NI=11,27)

PHI1=D(11)*57.29577951
PH12=D(12)*57.29577951
WRITE(6,2003) PHI1,PHI2,(D(NI)

,L,K,D(8)

,NI=13,27)

90
95
C.
C.
80
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RETURN
2 RETURN
3 L=D(5)

IF(L*L.NE.LINT) CALL PGAUSS(L,LINT,SG,TG,WG)
C....FAST STIFFNESS COMPUTATION, COMPUTE INTEGRALS OF SHAPE FUNCTIONS

NPP=NEL/2
NPP1=NPP+1
IF(IEL.LT.0) NPP1=1
DO 325 L=1,LINT

CALL SHAPE(SG(L),TG(L),XLSHPXSJ,NDM,NELIX,.FALSE.)
XSJ=XSJ*WG(L)

C...LOOP OVER ROWS
J1=1
DO 320 J=1,NEL
Wll=SHP(1,J)*XSJ
W12=SHP(2,J)*XSJ

C...LOOP OVER COLUMNS (SYMMETRY NOTED)
K1=J1
DO 310 K=J,NEL
S(Jl ,K1 )=S(Jl ,K1 )+Wll*SHP(1,K)
S(Jl ,Kl+1)=S(J1 ,Kl+1)+Wll*SHP(2,K)

S(Jl+I,K1 )=S(J1+1,K1 )+W12*SHP(1,K)
S(J1+1,Kl+1)=S(J1+1,Kl+1)+W12*SHP(2,K)

310 Kl=K1+NDF
320 J1=Jl+NDF

CALL SHAPE(SG(L),TG(L),XL,SHPP,XSJP,NDM,NPP,IX,.FALSE.)
DO 322 J=NPP1,9
DO 322 JJ=1,3

322 SHPP(JJ,J)=O.
DO 325 J=1,NPP
JB=J*NDF
DO 325 K=1,NEL
KB=K*NDF-2
S(KB ,JB)=S(KB ,JB)+D(9)*SHPP(3,J)*SHP(1,K)*XSJ
S(KB+1,JB)=S(KB+1,JB)+D(9)*SHPP(3,J)*SHP(2,K)*XSJ
S(KB+2,JB)=S(KB+2,JB)+D(8)*SHPP(3,K)*SHPP(3,J)*XSJ
S(JB,KB )=S(KB ,JB)
S(JB,KB+1)=S(KB+1,JB)

325 S(JB,KB+2)=S(KB+2,JB)
C.....ASSEMBLE THE STIFFNESS MATRIX FROM INTEGRALS AND MATERIAL PROPS.

NSL=NEL*NDF
CALL EXTRA(ECS,PECS,EECS,IFLAG)

C WRITE(6,1550) (ECS(J),J=1,4),(PECS(J),J=1,4),EECS,IFLAG-
IF(IEL.GE.0) CALL MODEL(EECS,CSI,CSTR,CVOL,CVI,SO,DTIMEDT,1,
1 LMNT,1)

C WRITE(6,1500) (ECS(J),J=1,4),(PECS(J),J=1,4),EECS,(CSTR(J),J=1,
4 )

DO 330 J=1,NSL,NDF
DO 330 K=J,NSL,NDF
Wll=S(JK)
W12=S(JK+1)
W21=S(J+1,K)
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W22=S(J+1,K+1)
S(J ,K )=D(1)*WII+D(3)*W22
S(J ,K+1)=D(2)*W12+D(3)*W21
S(J+1,K )=D(2)*W21+D(3)*W12
S(J+1,K+1)=D(1)*W22+D(3)*Wll

C.....FORM LOWER PART BY SYMMETRY
S(K,J)=S(JK)
S(K,J+1)=S(J+1,K)
S(K+1,J)=S(J,K+1)

330 S(K+1,J+1)=S(J+1,K+1)
RETURN

4 L=D(6)
IF(ISW.EQ.6) L=D(5)
IF(L*L.NE.LINT) CALL PGAUSS(LLINT,SG,TG,WG)

C.....COMPUTE ELEMENT STRESSES, STRAINS, AND FORCES
DO 600 L=1,LINT

C.....COMPUTE ELEMENT SHAPE FUNCTIONS
NPP=NEL/2
NPP1=NPP+1
IF(IEL.LT.0) NPP1=1
CALL SHAPE(SG(L),TG(L),XL,SHPXSJ,NDM,NEL,IX,.FALSE.)

C.....COMPUTE STRAINS AND COORDINATES

DO 410 1=1,4
410 EPS(I)=O.O

XX=0.0
YY=0.0
DO 420 J=1,NEL
XX=XX+SHP(3,J)*XL( 1 ,J)
YY=YY+SHP(3,J)*XL(2,J)
EPS(1)=EPS(1)+SHP(1,J)*UL(1,J)
EPS(3)=EPS(3)+SRP(2,J)*UL(2,J)

420 EPS(2)=EPS(2)+SHP(1,J)*UL(2,J)+SHP(2,J)*UL(1,J)
IF(ISW.EQ.4) GO TO 427

CALL EXTRA(ECS,PECS,EECS,IFLAG)
IF(ISW.NE.6) GO TO 422
CALL MODEL(EECS,CSI,CSTR,CVOLCVI,SO,D,TIME,DT,2,LMNT,L)

422 DO 425 I=1,4
425 EPS(I)=EPS(I)-CSTR(I)
C.....COMPUTE STRESSES

IF(IEL.GE.0.) CALL MODEL(EECS,CSI,CSTR,CVOLCVI,SO,D,TIME,
1 DT,1,O,1)
SIG(1)=D(1)*EPS(1)+D(2)*EPS(3)+D(2)*EPS(4)
SIG(3)=D(2)*EPS(1)+D(1)*EPS(3)+D(2)*EPS(4)
SIG(2)=D(3)*EPS(2)
SIG(4)=D(2)*EPS(1)+D(2)*EPS(3)+D(1)*EPS(4)
IF(ISW.EQ.6) GO TO 620
IF(ISW.EQ.7) GO TO 630

IF(ISW.EQ.8) GO TO 640
IF(ISW.EQ.9) GO TO 650

427 DO 428 I=1,3
428 SIG(I)=ECS(I)
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CALL PSTRES(SIG,SIG(4),SIG(6),SIG(7))

SIG(5)=ECS(4)
C.....OUTPUT STRESSES AND STRAINS

MCT=MCT-2
IF(MCT.GT.0) GO TO 430
WRITE(6,2001) OHEAD
MCT=50

430 WRITE(6,2002) NMAXX,YY,SIG
GO TO 600

C.....COMPUTE AVERAGE CONSOLIDATION STRESS
630 DO 635 I=1,4
635 ECS(I)=ECS(I)+SIG(I)/LINT

DO 636 I=1,4
636 PECS(I)=ECS(I)

GO TO 600
C....
640
645

. COMPUTE AVERAGE CYCLIC STRESS INCREMENT
DO 645 I=1,4
CSI(I)=CSI(I)+SIG(I)/LINT
GO TO 600

650 DO 655 I=1,4
655 PECS(I)=ECS(I)+SIG(I)/LINT
1500 FORMAT(/' ECS :',4F10.3,' PECS

1 ',4E15.5/)
1550 FORMAT(/' ECS :',4F10.3,' PECS

1,15/)
GO TO 600

C.....COMPUTE INTERNAL FORCES
620 CALL SRAPE(SG(L),TG(L),XL,SlPP

DO 618 I=NPP1,9
DO 618 II=1,3

618 SHPP(II,I)=O.
DV=XSJ*WG(L)

:',4F10.3/' EECS:',4F10.3,'

:',4F10.3/' EECS:',4F10.3,'

,XSJP,NDM,NPP,IX,.FALSE.)

PPLD=O.
DO 615 J=1,NPP

615 PPLD=PPLD+SHPP(3,J)*UL(3,J)*D(9)
PWF=O.
DO 611 J=1,NEL

611 PWF=PWF+(SHP(1,J)*UL(1,J)+SRP(2,J)*UL(2,J))*D(9)+SHPP(3,J)*UL(3,J)
1 *D(8)
J1=1
DO 610 J=1,NEL
P(Jl)=P(Jl)-(SHP(1,J)*SIG(1)+SHP(2,J)*SIG(2))*DV-SHP(1,J)*PPLD*DV
P(Jl+1)=P(J1+1)-(SHP(1,J)*SIG(2)+SHP(2,J)*SIG(3))*DV-SHP(2,J)*PPLD
1 *DV
P(J1+2)=P(Jl+2)-SHPP(3,J)*PWF*DV

610 Jl=Jl+NDF
GO TO 600

C.....COMPUTE GEOSTATIC CONSOLIDATION STRESS
5 CALL SHAPE(O.,O.,XL,SHP,XSJ,NDM,NEL,IX,.FALSE.)

CKO=D(10)/(1.-D(10))
YY=O.

CSTR:

IFLAG:'
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DO 700 I=1,NEL
700 YY=YY+SHP(3,I)*XL(2,I)

DECS=YY*D(4)
DECS=-ABS(DECS)
ECS(1)=ECS(1)+DECS*CKO
ECS(3)=ECS(3)+DECS
ECS(4)=ECS(4)+DECS*CKO
DO 710 I=1,4

710 PECS(I)=ECS(I)

600 CONTINUE
RETURN

C.....FORMATS FOR INPUT-OUTPUT
1000 FORMAT(3F10.0,3I5,F10.0)
1600 FORMAT(6F10.5)
2000 FORMAT(/5X,8HPLANE ST,A4,26H NON LINEAR CYCLIC ELEMENT//

11OX,12HYOUNG'S MOD.,E15.5,10H (CONST.)/10X,13HPOISSON RATIO,F8.5/
210X,11HUNIT WEIGHT,E18.5/1OX,13HGAUSS PTS/DIR,I3/10X,10HSTRESS PTS
3,I6/,10X,14HPENALTY CONST.,F7.5)

2001 FORMAT(Al,20A4//5X,16HELEMENT STRESSES//20H ELEMENT MATERIAL
1 ,4X,7H1-COORD,4X,7H2-COORD,3X,9Hl-STRESS,3X,9H12-STRESS,3X,
2 9H22-STRESS,3X,8H1-STRESS,3X,8H2-STRESS,3X,8H3-STRESS,2X,5HANGL
3E)

2002 FORMAT(2Il0,2Fll.4,3E12.4,3Ell.4,F7.2)
2003 FORMAT(10X,14HFRICTION ANGLE,F8.2/10X,14HCYC. LMT STATE,F8.2/

11OX,14HUNDR. STRENGTH,F8.2/10X,10HVOID RATIO,FlO.3/1OX,14HMIN VOID
2 RATIO,F1O.3/1OX,11HATM. PRESS.,F10.2/10X,13HSHEAR MODULUS,3F15.5/
310X,13HBULK MODULUS,2F15.5/1OX,13HCYC. LMT EFCT,F13.5/lOX,15HCYC.
4 VOL. STIF.,F12.5,2F15.5/10X,15HCYC. DEV. STIF.,F10.5,F15.5)
END
SUBROUTINE ACTCOL(A,B,JDIAGNEQAFACBACK)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
LOGICAL AFAC,BACK
COMMON/ENGYS/ AENGY
DIMENSION A(1),B(1),JDIAG(1)

C
C.....ACTIVE COLUMN PROFILE SYMMETRIC EQUATION SOLVER
C
C.....FACTOR A TO UT*D*U, REDUCE B

AENGY=0.0
JR=O
DO 600 J=1,NEQ
JD=JDIAG(J)
JH=JD-JR
IS=J-JH+2
IF(JH-2) 600,300,100

100 IF(.NOT.AFAC) GO TO 500
IE=J-1
K=JR+2
ID=JDIAG(IS-1)

C.....REDUCE ALL EQUATIONS EXCEPT DIAGONAL
DO 200 I=IS,IE
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IR=ID
ID=JDIAG( I)
IH=MINO(ID-IR-1,I-IS+1)
IF(IH.GT.0) A(K)=A(K)-DOT(A(K-IH),A(ID-IH),IH)

200 K=K+1
C.....REDUCE DIAGONAL TERM
300 IF(.NOT.AFAC) GO TO 500

IR=JR+1
IE=JD-1
K=J-JD
DO 400 I=IRIE
ID=JDIAG(K+I)
IF(A(ID).EQ.0.0) GO TO 400
D=A(I)
A(I)=A(I)/A(ID)
A(JD)=A(JD)-D*A(I)

400 CONTINUE
C.....REDUCE RHS
500 IF(BACK) B(J)=B(J)-DOT(A(JR+1),B(IS-1),JH-1)
600 JR=JD

IF(.NOT.BACK) RETURN
C.....DIVIDE BY DIAGONAL PIVOTS

DO 700 I=1,NEQ
ID=JDIAG( I)
IF(A(ID).NE.O.0) B(I)=B(I)/A(ID)

700 AENGY=AENGY+B(I)*B(I)*A(ID)
C.....BACKSUBSTITUTE

J=NEQ
JD=JDIAG(J)

800 D=B(J)
J=J-1

C IF(J.LE.0) WRITE(6,5000) (B(I),I=1,NEQ)
IF(J.LE.0) RETURN
JR=JDIAG(J)
IF(JD-JR.LE.1) GO TO 1000
IS=J-JD+JR+2
K=JR-IS+1
DO 900 I=IS,J

900 B(I)=B(I)-A(I+K)*D
1000 JD=JR

GO TO 800
CONO FORMAT(/,' DISPLACEMENT',/,8F9.5)

END

SUBROUTINE ADDSTF(A,B,C,S,P,JDIAG,LD,NSTNEL,AFLBFLCFL)
C
C.....ASSEMBLE GLOBAL ARRAYS
C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
LOGICAL AFLBFL,CFL
DIMENSION A(1),B(1),JDIAG(1),P(1),S(NST,1),LD(1),C(1)
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DO 200 J=1,NEL

K=LD(J)
IF(K.EQ.0) GO TO 200
IF(BFL) B(K)=B(K)+P(J)
IF(.NOT.AFL.AND..NOT.CFL) GO TO 200
L=JDIAG(K)-K
DO 100 I=1,NEL
M=LD( I)
IF(M.GT.K.OR.M.EQ.0) GO TO 100.
M=L+M
IF(AFL) A(M)=A(M)+S(I,J)
IF(CFL) C(M)=C(M)+S(JI)

100 CONTINUE
200 CONTINUE

RETURN
END

FUNCTION DOT(AB,N)
C
C.....VECTOR DOT PRODUCT
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION A(1),B(1)
DOT=0.0
DO 100 I=1,N

100 DOT=DOT+A(I)*B(I)
RETURN
END

SUBROUTINE NORM(XY,N)
C
C..... NORMALIZE VECTOR Y TO UNIT VECTOR X
C

IMPLICIT DOUBLE PRECISION(A-HO-Z)
DIMENSION X(1),Y(1)
SCALE=SQRT(DOT(Y,Y,N))
DO 100 I=1,N

100 X(I)=Y(I)/SCALE
RETURN

END

LOGICAL FUNCTION PCOMP(A,B)
PCOMP=.FALSE.

C.....IT MAY BE NECESSARY TO REPLACE THE FOLLOWING ALPHANUMERIC
C..... COMPARISON STATEMENT IF COMPUTER PRODUCES AN OVERFLOW

IF(A.EQ.B) PCOMP=.TRUE.
RETURN
END

SUBROUTINE PLOAD(ID,F,B,NNP)
C
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C.....FORM LOAD VECTOR IN COMPACT FORM
C

IMPLICIT DOUBLE PRECISION(A-HO-Z)
DIMENSION ID(1),F(1),B(1)
DO 100 N=1,NN
J=ID(N)

100 IF(J.GT.0) B(J)=F(N)*P
RETURN
END

SUBROUTINE PROFIL (JDIAG,ID,IX,NDF,NEN1,NAD)
C
C..... COMPUTE PROFILE OF GLOBAL ARRAYS
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON /CDATA/ 0,READ(20),NUMNPNUMEL,NUMMATNENNEQIPR
DIMENSION JDIAG(1),ID(NDF,1),IX(NEN1,1)

C.....SET UP THE EQUATION NUMBERS
NEQ=0
DO 50 N=1,NUMNP
DO 40 I=1,NDF
J=ID(I,N)
IF(J) 30,20,30

20 NEQ=NEQ+1
ID(I,N)=NEQ
JDIAG(NEQ)=0
GO TO 40

30 ID(I,N)=O
40 CONTINUE
50 CONTINUE
C.....COMPUTE COLUMN HEIGHTS

DO 500 N=1,NUMEL
DO 400 I=1,NEN
II=IX(IN)
IF(II.EQ.0) GO TO 400
DO 300 K=1,NDF
KK=ID(K,II)
IF(KK.EQ.0) GO TO 300
DO 200 J=1,NEN
JJ=IX(J,N)
IF(JJ.EQ.0) GO TO 200
DO 100 L=1,NDF
LL=ID(L,JJ)
IF(LL.EQ.0) GO TO 100
M=MAXO(KK,LL)

JDIAG(M)=MAXO(JDIAG(M),IABS(KK-LL))
100 CONTINUE
200 CONTINUE
300 CONTINUE
400 CONTINUE
500 CONTINUE
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C.....COMPUTE DIAGONAL POINTERS FOR ARRAYS
NAD=1
JDIAG(1)=1

IF(NEQ.EQ.1) RETURN
DO 600 N=2,NEQ

600 JDIAG(N)=JDIAG(N)+JDIAG(N-1)+1
NAD=JDIAG(NEQ)
RETURN
END

SUBROUTINE PROMUL(A,B,C,JDIAGNEQ)
IMPLICIT DOUBLE PRECISION(A-HO-Z)
DIMENSION A(1),B(1),C(1),JDIAG(1)

C
C.....ROUTINE TO FORM C = C + A*B WHERE A IS A SYMKETRIC SQUARE MATRIX
C.....STORED IN PROFILE FORM,BC ARE VECTORS,AND JDIAG LOCATES THE
C.....DIAGONALS IN A
C

JS='
DO 200 J=1,NEQ
JD=JDIAG(J)
IF(JS.GT.JD) GO TO 200
BJ=B(J)
AB=A(JD)*BJ

IF(JS.EQ.JD) GO TO 150
JB=J-JD
JE=JD-1
DO 100 JJ=JSJE
AB=AB+A(JJ)*B(JJ+JB)

100 C(JJ+JB)=C(JJ+JB)+A(JJ)*BJ
150 C(J)=C(J)+AB
200 JS=JD+1

RETURN
END

SUBROUTINE PRTDIS(ID,D,X,B,F,NDM,NDF)

C
C.....OUTPUT NODAL VALUES
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
LOGICAL PCOMP
COMMON/PRLOD/ PROP
COMMON /CDATA/ OHEAD(20) ,NUMNPNUMELNUMMATNENNEQIPR
COMMON /LABEL/ PDIS(6),A(6),BC(2),DI(6),CD(3),TE(3),FD(3)
COMMON /TDATA/ TIME,DT,C1,C2,C3,C4,C5
DIMENSION X(NDM,1),B(1),UL(6),ID(NDF,1),F(NDF,1),D(1)
DATA BL/4HBLAN/
DO 102 II=1,NUMNP,50
WRITE(6,2000) 0,HEAD,TIME,(I,CD(1),CD(2),I=1,NDM),(IDI(1)
1 ,DI(2),I=1,NDF)
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JJ=MINO(NUMNP,II+49)
DO 102 N=II,JJ

C IF(ABS(X(1,N)).GT.90..OR.ABS(X(2,N)).GT.50.) GO TO 101
IF(PCOMP(X(1,N),BL)) GO TO 101
DO 100 I=1,NDF
UL(I)=F(I,N)*PROP
K=IABS(ID(I,N))
IF(K.GT.0) UL(I)=B(K)

100 IF(I.EQ.3.AND.K.GT.o) UL(I)=B(K)*D(9)
WRITE(6,PDIS) N,(X(I,N),I=1,NDM),(UL(I),I=1,NDF)

101 CONTINUE
102 CONTINUE

RETURN
2000 FORMAT(Al,2OA4//5X,19HNODAL DISPLACEMENTS,5X,4HTIME,E13.5//

1 6X,4HNODE,9(I7,A4,A2))
END

SUBROUTINE PRTREA(R,NDF)
C
C.....PRINT NODAL REACTIONS
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION R(NDF,1),RSUM(6),ASUM(6)
COMMON /CDATA/ OHEAD(20),NUMNP,NUMELNUMMATNENNEQIPR
DO 50 K=1,NDF
RSUM(K)=0.

50 ASUM(K)=O.
DO 100 N=1,NUMNP,50
J=MINO(NUMNP,N+49)
WRITE(6,2000) 0,HEAD,(K,K=1,NDF)
DO 100 I=N,J
DO 75 K=1,NDF
R(K, I)=-R(K, I)
RSUM(K)=RSUM(K)+R(K,I)

75 ASUM(K)=ASUM(K)+ABS(R(KI))
100 WRITE(6,2001) I,(R(K,I),K=1,NDF)
C.....PRINT STATICS TEST

WRITE(6,2002) (RSUM(K),K=1,NDF)
WRITE(6,2003) (ASUM(K),K=1,NDF)
RETURN

2000 FORMAT(Al,20A4//5X,15HNODAL REACTIONS//6X,4HNODE,
1 6(I9,4H DOF))

2001 FORMAT(I10,6E13.4)
2002 FORMAT(/7X,3HSUM,6E13.4)
2003 FORMAT(/3X,7HABS SUM,6E13.4)

END

SUBROUTINE PSETM(NA,NE,NJ,AFL)
C
C.....SET POINTERS FOR ARRAYS
C
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LOGICAL AFL
NA=NE
NE=NE+NJ
AFL=.FALSE.
CALL SETMEM(NE)
RETURN
END

SUBROUTINE PZERO(V,NN)

C
C.....ZERO REAL ARRAY
C

DIMENSION V(NN)
DO 100 N=1,NN

100 V(N)=O.O
RETURN
END

SUBROUTINE UACTCL(AC,B,JDIAGNEQAFACBACK)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
LOGICAL AFACBACK
DIMENSION A(1),B(1), JDIAG(1),C(1)

C
C.....UNSYMMETRIC, ACTIVE COLUMN PROFILE EQUATION SOLVER

C
C..... FACTOR A TO UT*D*U, REDUCE B TO Y

JR=O
DO 300 J=1,NEQ
JD=JDIAG(J)
JH=JD-JR
IF(JH.LE.1) GO TO 300
IS=J+1-JH
IE=J-1
IF(.NOT.AFAC) GO TO 250

K=JR+1
ID=O

C.....REDUCE ALL EQUATIONS EXCEPT DIAGONAL
DO 200 I=ISIE
IR=ID
ID=JDIAG(I)
IH=MINO( ID-IR-1 ,I-IS)

IF(IH.EQ.0) GO TO 150
A(K)=A(K)-DOT(A(K-IH) ,C(ID-IH) ,IH)

C(K)=C(K)-DOT(C(K-IH),A(ID-IH),IH)
150 IF(A(ID).NE.O.0) C(K)=C(K)/A(ID)

200 K=K+1
C....REDUCE DIAGONAL TERM

A(JD)=A(JD)-DOT(A(JR+1),C(JR+1),JH-1)
C.....FORWARD REDUCE THE R.H.S
250 IF(BACK) B(J)=B(J)-DOT(C(JR+1) ,B(IS),JH-1)

300 JR=JD
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IF(.NOT.BACK) RETURN
C.....BACKSUBSTITUTION

J=NEQ
JD=JDIAG(J)

500 IF(A(JD).NE.O.0) B(J)=B(J)/A(JD)
D=B(J)
J=J-1
IF(J.LE.0) RETURN
JR=JDIAG(J)
IF(JD-JR.LE.1) GO TO 700
IS=J-JD+JR+2
K=JR-IS+1
DO 600 I=IS,J

600 B(I)=B(I)-A(I+K)*D
700 JD=JR

GO TO 500
END

SUBROUTINE PGAUSS(L,LINT,R,Z,W)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)

C
C.....GAUSS POINTS AND WEIGHTS FOR TWO DIMENSIONS
C

DIMENSION LR(9),LZ(9),LW(9),R(1),Z(1),W(1)
DATA LR/-1,1,1,-1,O,1,O,-1,O/,LZ/-1,-1,1,1,-1,O,1,OO/
DATA LW/4*25,4*40,64/
LINT=L*L
GO TO (1,2,3),L

C...l..Xi INTEGRATION
1 R(1)=0.

Z(1)=O.
W(1)=4.
RETURN

C.....2X2 INTEGRATION
2 G=1./SQRT(3.)

DO 21 I=1,4
R(I)=G*LR(I)
Z(I)=G*LZ(I)

21 W(I)=1.
RETURN

C..... 3X3 INTEGRATION
3 G=SQRT(O.6)

H=1./81.
DO 31 1=1,9
R(I)=G*LR(I)
Z(I)=G*LZ(I)

31 W(I)=H*LW(I)
RETURN
END

SUBROUTINE PSTRES(SIG,Pl ,P2,P3)



MITLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

MISSING PAGE(S)

p.288



289

C
C.....COMPUTE PRINCIPAL STRESSES (2 DIMENSIONS)
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION SIG(3)

C.....STRESSES MUST BE STORED IN ARRAY SIG(3) IN THE ORDER
C TAU-XX,TAU-XY,TAU-YY

XI1=(SIG(1)+SIG(3))/2.
X12=(SIG(1)-SIG(3))/2.
RHO=SQRT(XI2*XI2+SIG(2)*SIG(2))
Pl=XI1+RHO
P2=XI1-RHO
P3=45.0
IF(XI2.NE.O.0) P3=22.5*ATAN2(SIG(2),XI2)/ATAN(1.0)
RETURN
END

SUBROUTINE SHAPE(SS,TT,X,SHP,XSJ,NDM,NEL,IX,FLG)
C
C.....SHAPE FUNCTION ROUTINE FOR TWO DIMENSIONAL ELEMENTS
C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
LOGICAL FLG
DIMENSION SHP(3,1),X(NDM,1),S(4),T(4),XS(2,2),SX(2,2),IX(1)
DATA S/-0.5,0.5,0.5,-0.5/,T/-0.5,-0.5,0.5,0.5/

C.....FORM 4-NODE QUADRILATERAL SHAPE FUNCTIONS
DO 100 I=1,4
SHP(3,I)=(0.5+S(I)*SS)*(0.5+T(I)*TT)
SHP(1,I)=S(I)*(0.5+T(I)*TT)

100 SHP(2,I)=T(I)*(0.5+S(I)*SS)
IF(NEL.GE.4) GO TO 120

C.....FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER
DO 110 I=1,3

110 SHP(I,3)=SHP(I,3)+SHP(I,4)
C.....ADD QUADRATIC TERMS IF NECESSARY
120 IF(NEL.GT.4) CALL SBAP2(SS,TTSHP,IXNEL)
C.....CONSTRUCT JACOBIAN AND ITS INVERSE

DO 130 I=1,NDM
DO 130 J=1,2
XS(I,J)=0.O
DO 130 K=1,NEL

130 XS(I,J)=XS(I,J)+X(I,K)*SHP(J,K)
XSJ=XS(1,1)*XS(2,2)-XS(1,2)*XS(2,1)
IF(FLG) RETURN
SX(1,1)=XS(2,2)/XSJ
SX(2,2)=XS(1,1)/XSJ

SX(1,2)=-XS(1,2)/XSJ
SX(2,1)=-XS(2,1)/XSJ

C.....FORM GLOBAL DERIVATIVES
DO 140 I=1,NEL
TP =SHP(1,I)*SX(1,1)+SHP(2,I)*SX(2,1)
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SHP(2,I) =SHP(1,I)*SX(1,2)+SHP(2,I)*SX(2,2)
140 SHP(1,I)=TP

RETURN
END

SUBROUTINE SHAP2(S,T, SHP,IX,NEL)
C
C.....ADD QUADRATIC FUNCTIONS AS NECESSARY
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DIMENSION IX(1),SHP(3,1)
S2=(1.-S*S)/2.
T2=(I.-T*T)/2.
DO 100 I=5,NEL
DO 100 J=1,3

100 SHP(JI)=0.O
C.....MIDSIDE NODES (SERENDIPITY)

IF(IX(5).EQ.0) GO TO 101

SHP(1,5)=-S*(l.-T)
SHP(2,5)=-S2
SHP(3,5)=S2*(1.-T)

101 IF(NEL.LT.6) GO TO 107
IF(IX(6).EQ.0) GO TO 102
SHP(1,6)=T2
SHP(2,6)=-T*(1.+S)
SHP(3,6)=T2*(1.+S)

102 IF(NEL.LT.7) GO TO 107
IF(IX(7).EQ.0) GO TO 103

SHP(1,7)=-S*(1.+T)
SHP(2,7)= S2
SHP(3,7)=S2*(1.+T)

103 IF(NEL.LT.8) GO TO 107
IF(IX(8).EQ.0) GO TO 104
SHP(1,8)=-T2
SHP(2 ,8)=-T*(1.-S)
SHP(3,8)=T2*(1.-S)

C.....INTERIOR NODE (LAGRANGIAN)
104 IF(NEL.LT.9) GO TO 107

IF(IX(9).EQ.0) GO TO 107
SHP(1,9)=-S*T2
SHP(2,9)=-T*S2
SHP(3,9)=4.*S2*T2

C.....CORRECT EDGE NODES FOR INTERIOR NODE (LAGRANGIAN)

DO 106 J=1,3
DO 105 I=1,4

105 SHP(J,I)=SHP(J,I)-0.25*SHP(J,9)
DO 106 I=5,8

106 IF(IX(I).NE.0) SRP(J,I)=SHP(J,I)-.5*SHP(J,9)
C.....CORRECT CORNER NODES FOR PRESENCE OF MIDSIDE NODES
107 K=8

DO 109 1=1,4
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L=I+4
DO 108 J=1,3

108 SHP(J,I)=SHP(JI)-.5*(SHP(J,K)+SRP(J,L))
109 K=L

RETURN
END

SUBROUTINE ELMT02(DULXL,IX,TL,S,P,ECS,CSICSTR,CVOL,CVI,SO,
1 PECS,TIMEDTNDF',NDM,NSTISW,IFLAG,LMNT)

C
C.....AXISYMMETRIC NON-LINEAR CYCLIC ELEMENT ROUTINE
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON/CDATA/OHEAD(20),NUMNPNUMELNUMMAT,NENNEQIPR
COMMON/ELDATA/DM,N,MA,MCT, IEL,NEL
DIMENSION D(1),UL(NDF,1),XL(NDM,1),IX(1),TL(1),S(NST,1),P(1),
1SHP(3,9),SHPP(3,9),SG(9),TG(9),WG(9),SIG(7),EPS(4)
DIMENSION ECS(1),CSI(1),CSTR(1),PECS(1),EECS(4)

C..O.. GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,4,5,4,4,4,4),ISW

C.....INPUT MATERIAL PROPERTIES
I READ(5,1000) E,XNU,D(4),LK,ID(8)

D(1)=E*(1.-XNU)/(1.+XNU)/(1.-2.*XNU)
D(2)=D(1)*XNU/(1.-XNU)
D(3)=E/2./(1.+XNU)
L=MINO(3,MAXO(1,L))
D(5)=L
K=MINO(3 ,MAXO(1,K))
D(6)=K
D(7)=2
LINT=O
WRITE(6,2000) E,XNUD(4),L,K,D(8)
D(9)=1.
D(10)=XNU
READ(5,1600) (D(NI),NI=11,27)
PHI1=D(11)*57.29577951
PH12=D(12)*57.29577951
WRITE(6',2003) PHI1,PHI2,(D(NI),NI=13,27)
RETURN

2 RETURN

3 L=D(5)
IF(L*L.NE.LINT) CALL PGAUSS(L,LINT,SG,TG,WG)

C.....FAST STIFFNESS COMPUTATION
CALL EXTRA(ECS,PECS,EECS,IFLAG)
IF(IEL.GE.0) CALL MODEL(EECS,CSI,CSTR,CVOL,CVI,SO,D,TIME,DT
1 ,1,LMNT,1)

C WRITE(6,1500) (ECS(I),I=1,4),(PECS(I),I=1,4),EECS
NPP=NEL/2
NPP1=NPP+1
IF(IEL.LT.0) NPP1=1
DO 325 L=1,LINT
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CALL SHAPE(SG(L),TG(L),XL,SHP,XSJ,NDM,NEL,IX,.FALSE.)
XX=o.
DO 330 J=1,NEL

330 XX=XX+SHP(3,J)*XL(1,J)
XSJ=6.2831852*XX*WG(L)*XSJ

C.....LOOP OVER ROWS
J1=1
DO 320 J=1,NEL

C.....LOOP OVER COLUMNS (SYMMETRY NOTED)
K1=J1
DO 310 K=JNEL
S(J1 ,K1 )=S(J1 ,K1 )+D(1)*(SHP(1,J)*SHP(1,K)+SHP(3,J)*SHP(3,K
1 )/XX/XX)*XSJ+D(2)*(SHP(3,J)*SHP(1,K)+SRP(l,J)*SHP(3,K))*XSJ/XX+
2 D(3)*SHP(2,J)*SHP(2,K)*XSJ
S(J1 ,Kl+1)=S(J1 ,Kl+1)+D(2)*(SHP(1,J)+SHP(3,J)/XX)*SHP(2,K)*XSJ
1 +D(3)*SHP(2,J)*SHP(1,K)*XSJ
S(J1+1,K1 )=S(J1+1,K1 )+D(2)*(SHP(1,K)+SHP(3,K)/XX)*SHP(2,J)*XSJ

1 +D(3)*SHP(1,J)*SHP(2,K)*XSJ
S(J1+1,Kl+1)=S(J1+1,Kl+1)+D(1)*SHP(2,J)*SRP(2,K)*XSJ+D(3)*SHP(1,J)

1 *SHP(1,K)*XSJ
310 Kl=Kl+NDF
320 J1=J1+NDF

CALL SHAPE(SG(L),TG(L),XL,SHPP,XSJP,NDM,NPP,IX,.FALSE.)
DO 322 J=NPP1,9
DO 322 JJ=1,3

322 SHPP(JJ,J)=O.
DO 325 J=1,NPP
JB=J*NDF
DO 325 K=1,NEL
KB=K*NDF-2
S(KB ,JB)=S(KB ,JB)+D(9)*SHPP(3,J)*(SHP(1,K)+SHP(3,K)/XX)*XSJ
S(KB+1,JB)=S(KB+1,JB)+D(9)*SHPP(3,J)*SHP(2,K)*XSJ
S(KB+2,JB)=S(KB+2,JB)+D(8)*SHPP(3,K)*SHPP(3,J)*XSJ
S(JB,KB )=S(KB ,JB)
S(JB,KB+1)=S(KB+1,JB)

325 S(JB,KB+2)=S(KB+2,JB)
C.....FORM LOWER PART BY SYMMETRY

NSL=NEL*NDF
DO 340 J=1,NSLNDF
DO 340 K=J,NSL,NDF

DO 340 JJ=1,2
KK=JJ-1
S(K+KK,J)=S(J,K+KK)

340 S(K+KK,J+1)=S(J+1,K+KK)
RETURN

4 L=D(6)
CALL EXTRA(ECSPECS,EECSIFLAG)
IF(ISW.NE.6) GO TO 405
L=D(5)
CALL MODEL(EECS,CSI,CSTR,CVOL,CVI,S0,D,TIME,DT,2,LMNTL)

405 IF(L*L.NE.LINT) CALL PGAUSS(L,LINTSG,TG,WG)
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C.....COMPUTE ELEMENT STRESSES AND FORCES
DO 600 L=1,LINT

C.....COMPUTE ELEMENT SHAPE FUNCTIONS
NPP=NEL/2

NPP1=NPP+1
IF(IEL.LT.0) NPP1=1
CALL SHAPE(SG(L),TG(L),XL,SHP,XSJ,NDM,NELIX,.FALSE.)

C.....COMPUTE STRAINS AND COORDINATES
DO 410 I=1,4

410 EPS(I)=O.O
XX=0.0
YY=0.0
DO 415 J=1,NEL
XX=XX+SHP(3,J)*XL(1,J)

415 YY=YY+SHP(3,J)*XL(2,J)
IF(ISW.EQ.4) GO TO 427
DO 420 J=1,NEL
EPS(1)=EPS(1)+SHP(1,J)*UL(1,J)

EPS(3)=EPS(3)+SHP(2,J)*UL(2,J)
EPS(4)=EPS(4)+SHP(3,J)*UL(1,J)/XX

420 EPS(2)=EPS(2)+SHP(1,J)*UL(2,J)+SHP(2,J)*UL(1,J)
DO 425 I=1,4

425 EPS(I)=EPS(I)-CSTR(I)
C.....COMPUTE (EFFECTIVE) STRESSES

IF(IEL.GE.0) CALL MODEL(EECS,CSI,CSTR,CVOL,CVI,SOD,TIME,DT,1,
1 0,1)
SIG(1)=D(1)*EPS(1)+D(2)*EPS(3)+D(2)*EPS(4)
SIG(3)=D(2)*EPS(1)+D(1)*EPS(3)+D(2)*EPS(4)
SIG(4)=D(2)*EPS(1)+D(2)*EPS(3)+D(1)*EPS(4)
SIG(2)=D(3)*EPS(2)
GO TO(620,630,640,650),(ISW-5)

427 DO 428 I=1,3
428 SIG(I)=ECS(I)

CALL PSTRES(SIG,SIG(4),SIG(6),SIG(7))
SIG(5)=ECS(4)

C.....OUTPUT STRESSES
MCT=MCT-2
IF(MCT.GT.0) GO TO 430
WRITE(6,2001) O,HEAD -
MCT=50

430 WRITE(6,2002) N,MA,XX,YYSIG
GO TO 600

C.....COMPUTE AVERAGE EFFECTIVE INITIAL STRESSES
630 DO 635 I=1,4

ECS(I)=ECS(I)+SIG(I)/LINT
635 PECS(I)=ECS(I)

GO TO 600
C.....COMPUTE AVERAGE CYCLIC STRESS INCREMENT
640 DO 645 I=1,4
645 CSI(I)=CSI(I)+SIG(I)/LINT

GO TO 600



294

C.....COMPUTE AVERAGE EFFECTIVE STRESSES AT TIME 'T + DT'
650 DO 655 I=1,4
655 PECS(I)=ECS(I)+SIG(I)/LINT

GO TO 600
C.....COMPUTE INTERNAL FORCES
620 CALL SHAPE(SG(L),TG(L),XL,SHPP,XSJPNDM,NPPIX,.FALSE.)
C.....COMPUTE PORE PRESSURE

DO 618 I=NPP1,9
DO 618 11=1,3

618 SHPP(II,I)=O.
PPLD=O.
DV=6.2831852*XX*WG(L)*XSJ
DO 615 J=1,NPP

615 PPLD=PPLD+SHPP(3,J)*UL(3,J)*D(9)
PWF=O.
DO 611 J=1,NEL

611 PWF=PWF+((SHP(1,J)+SHP(3,J)/XX)*UL(1,J)+SHP(2,J)*UL(2,J))*D(9)
1 +SHPP(3,J)*UL(3,J)*D(8)

C.....COMPUTE TOTAL STRESSES
SIG(1)=SIG(1)+PPLD
SIG(3)=SIG(3)+PPLD
SIG(4)=SIG(4)+PPLD

C.....COMPUTE INTERNAL FORCES
J1=1
DO 610 J=1,NEL
P(J1 )=P(J1 )-(SHP(1,J)*SIG(1)+SHP(3,J)/XX*SIG(4)+SHP(2,J)*SIG(2

))*DV
P(Jl+1)=P(J1+1)-(SHP(2,J)*SIG(3)+SHP(1,J)*SIG(2))*DV
P(J1+2)=P(J1+2)-SHPP(3,J)*PWF*DV

610 J1=J1+NDF
600 CONTINUE

RETURN
C.....COMPUTE GEOSTATIC STRESSES
5 CALL SHAPE(O.,O.,XL,SRP,XSJ,NNDM,NEL,IX,.FALSE.)

CKO=D(10)/(1.-D(10))
YY=O.
DO 700 I=1,NEL

700 YY=YY+SRP(3,I)*XL(2,I)

DECS=YY*D(4)
DECS=-ABS(DECS)
ECS(1)=ECS(1)+DECS*CKO
ECS(3)=ECS(3)+DECS
ECS(4)=ECS(4)+DECS*CKO
DO 710 I=1,4

710 PECS(I)=ECS(I)
RETURN

C.....FORMATS FOR INPUT-OUTPUT
1000 FORMAT(3F10.0,3I5,F10.0)
1500 FORMAT(/' ECS=',4F10.3,' PECS=',4F10.3/' EECS=',4F10.3,' CSTR=',

1 4E15.5/)
1600 FORMAT(6F10.5)
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2000 FORMAT(/5X,12IAXISYMMETRIC,26H NON LINEAR CYCLIC ELEMENT//
1 1OX,12HYOUNG'S MOD.,E15.5,10H (CONST.)/10X,13HPOISSON RATIO,F8.5
1/1OX,11HUNIT WEIGHTE18.5/1OX,13HGAUSS PTS/DIR,I3/1OX,10HSTRESS PT
2S,I6/1OX,14HPENALTY CONST.,E15.5)

2001 FORMAT(AI,20A4//5X,16HELEMENT STRESSES//20H ELEMENT MATERIAL,4X
1,7H1-COORD,4X,7H2-COORD,3X,9Hll-STRESS,3X,9H12-STRESS,3X,
29H22-STRESS,3X,8H1-STRESS,3X,8H2-STRESS,3X,8H3-STRESS,2X,5HANGLE)

2002 FORMAT(2Il0,2FI1.4,3E12.4,3Ell.4,F7.2)
2003 FORMAT(10X,14HFRICTION ANGLE,F8.2/1OX,14HCYC. LMT STATE,F8.2/10X,

114HUNDR. STRENGTHF8.2/10X,10HVOID RATIO,F10.3/10X,14HMIN VOID RAT
210,F1O.3/1OX,11RATM. PRESS.,F1O.2/1OX,13HSHEAR MODULUS,3F15.5/1OX,
313HBULK MODULUS,2F15.5/1OX,13HCYC. LMT EFCT,F13.5/1OX,15HCYC. VOL
4. STIF.,F12.5,2F15.5/l0X,15HCYC. DEV. STIF,F10.5,F15.5)
END

SUBROUTINE EXTRA(Al,A2,AO,I)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION Al(1),A2(l),AO(1)
THETA=0.0
THETA=THETA*I
DO 100 N=1,4

100 AO(N)=Al(N)*(1.-THETA)+A2(N)*THETA

RETURN
END

SUBROUTINE INTERPOL(Ql,SlQ2,S2,Q,S)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
SLOPE=(Ql-Q2)/(Sl-S2)
S=S2+(Q-Q2)/SLOPE
RETURN
END

SUBROUTINE INTERSECT(Q1,1SQ2,S2,SLOPEQS)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
SLOPS=(Ql-Q2)/(Sl-S2)
S=(Ql-SLOPS*S1)/(SLOPE-SLOPS)
Q=SLOPE*S
RETURN
END


