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Abstract
Thin walled cylindrical shell structures are widespread in nature: examples
include plant stems, porcupine quills and hedgehog spines. All have an outer shell of
almost fully dense material supported by a low density, . lular core. In nature, all are
loaded in some combination of axial compression and bending: failure is typically by
buckling. Natural structures are often optimized. Here we have analyzed the elastic
buckling of a thin cylindrical shell supported by an elastic core to show that this structural
configuration achieves significant weight saving over a hollow cylinder. The results of
the analysis are compared with data from an extensive experimental program on uniaxial
compression and four point bending tests on silicone rubber shells with and without
compliant foam cores. The analysis describes the results of the mechanical tests well.
Characterization of the microstructures of several natural tubular structures with foam-
like cores (plant stems, quills and spines) revealed them to be close to the optimal
configurations predicted by the analytical model. Biomimicking of natural cylindrical
shell structures and evolutionary design processes may offer the potential to increase the

mechanical efficiency of engineering cylindrical shells,
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CHAPTER 1
INTRODUCTIO

".. I wish to discuss the strength of hollow solids, which are employed in art -
and still oftener in nature - in a thousand operations for the purpose of greatly increasing
strength without adding to weight; examples of these are seen in the bones of birds and in
many kinds of reeds which are light and highly resistant both to bending and brec. ing.
For if a stem of straw which carries a head of wheat heavier than the entire sialk were
made up of the same amount of material in solid form it would offer less resistance 1o
bending and breaking. This is an experience which has been verified and confirmed in
practice where it is found that a hollow lance or a tube of wood or metal is much
stronger than would be a solid one of the same length and weight, one which would

necessarily be thinner; men have discovered, therefore, that in order to make lances

strong as well as light they must make them hollow. ...
Galileo Galilei (1638)

Thus, Galileo concluded the chapter of "Two New Sciences" dealing with the
strength of materials, signaling the birth of the science of the strength and mechanics of
elastic bodies and materials (Timoshenko, 1953). What the skillful artisans of the
seventeenth century and their predecessors knew about the relative strengths of hollow
and solid cylinders of equal weight and length, before Galileo's attempt at a scientific
proof, was probably the result of observations of natural structures such as bones and
plant stems used in crafting artifacts. Bamboo, for example, received a wide range of
applications throughout history in weaponry, housing, utility structures and articles of
everyday use; by mimicking its hollow cylindrical structure, artisans may have found
they could produce lighter, stiffer and stronger pieces.

Nature has long been an important source of inspiration for scientists and
engineers. Recently, there has been growing interest in the newly defined,
interdisciplinary field of biomimetics which aims to analyze natural systems from an

engineering perspective, understand their function, describe their behavior, and finally,
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derive design principles that will allow the engineer to achieve a similar results by
mimicking biology. This approach is based on the premise that Nature, be it the work of
a wise Creator or the result of endless trials in biological processes over long cvolutionary
times, has achieved optimal results in solving many of the problems faced by living
creatures. This includes structural and materials problems, chemical reactions, molecular
synthesis, and thermal, electrical and sensory exchanges (Vincent and Srinivasan, 1992).

Natural materials and structural systems often have exceptional mechanical
properties (such as density, p, modulus, E, and strength, of) giving them high values of
the mechanical performance indices defined by Ashby (1992). Woods and palms have
high values of EV 2/p making them efficient materials for beams or columns (Ashby et
al., 1994). Silk (Gosline ct al., 1986; Vollrath, 1992) and skin (Mai and Atkins, 1989)
have excellent elastic and fatigue properties; their high values of the performance index
Gf2/E, and o/E, respectively, make them excellent springs and elastic hinges. And nacre
and antler are tougher than engineering ceramics by an order of magnitude (Jackson and
Vincent, 1990; Gunnison et al., 1992). Limited in the choice of biologically synthesized
polymers and ceramics, natural systems have adopted hierarchical design and
microstructuring as the key to optimised systems (Gordon, 1988; Vincent, 1990a,b). For
instance, wood and trabecular bone both combine a cellular microstructure with fibre
composite cell walls (Gibson and Ashby, 1988); the cellular structure is oriented to resist
the in vivo stresses each material sees most efficiently. Palm is made up of fibre-like
vascular bundles parenchymatous matrix; the radial and longitudinal distribution of fibre
bundles increases its mechanical efficiency (Rich, 1987; Tomlinson, 1990).

Other natural systems sport state of the art designs that contemporary engineering
has only reached in the last few decades. Grass (Vincent, 1982), wood cell wall (Mark,
1967), and insect cuticle (Gunderson et al., 1992) for example, all have an elaborate
polymeric fibre composite structure, with different fibre orientations and laminations and

treatment of points of stress concentration. Sandwich beams, an elegant solution for stiff,
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lightweight structures, are common in nature, as in, for instance, iris leaves (Gibson ct al.,
1988) and feather shatts (Purslow and Vincent, 1978) (Fig.1.1a). The internal bone of the
cuttlefish, which acts as a rigid buoyancy tank (Birchall and Thomas, 1983), has a
cellular microstructure, akin to a multilayered sandwich plate, that combines low weight
with high compressive strength,  Furthermore, its systematic compartmentalization
maximizes buoyancy and reliability in the case of compressive failure, and is not without
similarities to double-hulled supertanker designs (Fig. 1.1b and 1.1c¢).

For a structural member of a given material, the resistance to both bending
deflection and Euler column buckling can most efficiently be resisted by increasing the
cross-sectional shape factor @ (Ashby, 1992) :

b=— (1.1)

where I is the second moment of inertia and A is the arca of the cross- section. For a
cylindrical tube the shape factor is simply the ratio of the radius to the wall thickness, so
that the most efficient section is that with the largest radius and the thinnest wall. In
practice, the shape factor is limited by the onset of local buckling. Plant stems have
developed at least two mechanisms to resist local buckling: internal pressurization and
support of the shell by a foam-like core which acts as an elastic foundation (known as the
"core-rind" structure 1o biologists). The outer shell, or rind, in plant stems is made up of
sclerenchyma and collenchyma cells, with thick cell walls while the inner core is made up
of thin walled parenchyma cells. This variation in the cell wall thickness gives the stem a
dense, stiff outer shell supported by a light, compliant core. In certain plant varieties the
parenchyma fills all of the internal volume (for instance, corn (Zea mays ) and sunflower
(Helianthus)), while in others there is a central void (for instance, oat (Avena), barley
(Hordeum ) and wheat (Triticum)) (Esau, 1977) (Fig.1.2a). Porcupine quills and
hedgehog spines are also thin cylindrical shells supported by a microstructured foam core
which varies from a simple three dimensional foam core in the North American

porcupine (Erethizon) (Fig. 1.2b), to a combination of longitudinal stiffeners and a foam
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core in the crested Old World porcupine (Hystrix subcristatus ) (Fig. 1.2¢), 1o a lauice of
struts in the European hedgehog (Erinaceus Europaeus) (Vincent and Owers, 1986)(Fig.
1.2d).

Thin walled cylindrical shells are widespread in engineering, 00: examples
include civil engineering structures (tubular trusses, silos, tanks), automotive structures,
legs of offshore oil platforms, aircraft fuselages, rockets and submarines. Ranges of the
ratio of cylinder radius t wall thickness, a/t, for a variety of natural and engincering
structures is shown in Fig. 1.3. In contrast to natural cylindrical shells which have a
uniform, compliant core, engineering structures with large ratios ol a/t are typically
stiffened against buckling by circumferential and longitudinal members, known as ring
stiffeners and stringers, respectively. Biomimicking of natural cylindrical shell structures
may offer the potential to increase the mechanical efficiency of engineering cylindrical
shells.

The work presented in this thesis examines natural cylindrical structures with
compliant cores, such as plant stems and animal quills, with a view to biomimicking.
Plant stems resist axial load due to their own weight and bending loads due to wind.
They act structurally as beam columns; their axisymmetric cylindrical tube form arises
from the need to resist loads from any direction. Schwendener, in 1874, was the first to
report on the internal microstructural stiffening of the stems of monocotyledons
(Thompson, 1961). More recently, Niklas and O'Rourke (1987) have described the
contribution of internal pressure to the flexural rigidity of the chive and Niklas (1989) has
analyzed the role of pressure in stiffening plant tissues in general. Niklas (1991a,b, 1992)
has also reported on the "core-rind" design of cylindrical plant organs attempting
unsuccessfully to model its flexural rigidity.

This thesis analyzes the resistance of a cylindrical shell with a compliant core (o
local buckling, applies the results to estimate the mechanical efficiency of the natural

structures described above and suggests how the natural structures might be mimicked in
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engineering design. Chapter 2 reviews the engineering mechanics literature on the elastic
stability of cvlindrical shells, with and without a soft clastic core, under axial
compression and bending loads. In Chapter 3 we derive a simple model for the
axisymmetric buckling under uniaxial compression of a cylinder with an clastic core by
treating a longitudinal strip of the shell as a beam on a hall ¢lastic spacc. We then
analyze both the Brazier and local buckling of a cylindrical shell with a compliant core in
pure bending; both calculations account for the ovalization of the cross-section. The local
buckling moment is calculated by setting the maximum compression stress in the bent
cylinder equal to the axisymmetric buckling stress for uniaxial compression. The decay
in stress with depth into the core is also examined to determine the minimum core depth
required to resist the stresses within the core. The results are used to perform a
parametric analysis comparing the mechanical resistance of a cylinder with a compliant
core to that of a hollow cylinder of the same diameter and mass. Chapter 4 describes the
experimental program devised to verify the predictions of the analysis; uniaxial
compression and pure bending tests were performed on model silicone rubber cylinders
with either a silicone rubber foam or a flexible polyurethane foam core. Having verified
the analytical results we then, in Chapter 5, compile microstructural data on natural
cylindrical shells with compliant cores to estimate their mechanical efficiency compared
with a hollow cylinder of equal mass and diameter. The implications of these findings
for engineering design and potential applications of this research are then discussed. Our

conclusions a’e summarized in Chapter 6 along with suggestions for future work.
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Figure 1.1 Natural structures: (a) micrograph of scagull feather shaft section.
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Figure 1.1 Natural structures: (b) cuttlefish bone section .
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Figure 1.1 Natural structures: (¢) double-hulled tanker design.
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Figure 1.2 Cross sections of natural cylindrical shells with foam cores:
(a) grass (Elytrigia repens ) (b) North American porcupine (Erethizon)
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Figure 1.2 Cross sections of natural cylindrical shells with foam cores:
(¢) crested poreupine (Hysrriv) (d) hedgehog (Erinaceus)
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Figure 1.3 Radius to thickness ratio, a/t, for natural and engincering cylindrical

shells.
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CHAPTER 2

LITERATURE REVIEW

"Mechanics is the paradise of mathematical science because here we come to the
fruits of mathematics."
Leonardo da Vinci (ca. 1500)

Bringing his work on the calculus of variaticns to bear on the problem of the
buckling of a uniform column under axial compression, Leonard Euler (1744) solved the
first elastic stability problem by deriving the critical buckling load now known by his
name. He, and many other investigators, later expanded his treatment of the strength of
columns. But it wasn't until the end of the nineteenth century and the beginning of the
twentieth, as more ambitious bridges were built, larger metallic ships and submarines
were ordered by navies, and the first airplanes were constructed that the practical
importance of the elastic stability of structures was revealed (Timoshenko, 1953). The
stability of columns and beams, flat plates, curved panels, cylindrical and spherical shells

has since received extensive treatment.

2.1 Elastic stability of cylindrical shells

So much has been written about the buckling of cylindricals shells that it is
foolhardy to attempt a full review save to mention a few key contributions. In a recent
review Arbocz (1981) has counted no less than sixteen hundred references treating shell
buckling. The elastic stability of circular cylindrical shells has been analyzed under axial
compression, bending, torsion, internal and external pressure and the combined effects of

these loads. Shells reinforced with longitudinal and/or circumferential stiffeners have
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also received wide auention. A good summary and state of the art can be found in the
works of Timosenko and Gere (1961), Yamaki (1984), Kolldr and Duldcska (1984),
Calladine (1983), Kenny (1984) and Harding (1992) which arc dedicated to the topic.

The cases of elastic buckling under axial compression and bending are presented below.

2.1.1 Elastic stability under axial compression

The classical theory for the case of axial compression buckling was developed by
Lorenz (1908, 1911), Southwell (1914) and Timoshenko (1910, 1914). Using the
assumptions of small-deflection, lincar bending shell theory, the critical clastic buckling

stress Og of a long cylinder was found to be:

S
aw’3(l—v2)

where E is the modulus of elasticity of the shell, n is Poisson's ratio, and a and t are the

@2.1)

radius and wall thickness respectively. This result is obtained whether a sinusoidal
axisymmetric or a non-axisymmetric buckling mode is assumed (Timoshenko and Gere,

1961). The buckling wavelength in the longitudinal direction is given by :

L___*™ Ja 2.2)
m 2

where L is the length of the cylinder and m the number of half buckling wavelengths.
The number of circumferential buckles is dependent on the boundary conditions and the

length of the cylinder; it was later derived by de Neufville and Connor (1968).

The experimental work of Robertson (1928), Lundquist (1933), Wilson and
Newmark (1933), and Donnell (1934) gave data that were 1/5 to 1/3 of the theoretical
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values, prompting an important research effort to resolve this situation. To add to the
confusion these tests were performed on metallic specimens without clear distinction
between elastic, plastic and clasto-plastic buckling (de Neufville, 1965). Large-deflection
theories with non-linear bending were proposed to analyze buckling and postbuckling
behavior (Fliigge, 1932 and Donnell, 1934). But it wasn't until the work of von Kdrmdn
and Tsien (1941) that an approximate large deflection shell theory, the so-called Donnell-
von Kdrmdn equations, cmerged with an analysis that proved the cxistence of stable
postbuckled configurations that can be maintained at much lower loads than the critical
one. It was then postulated that initial geometric imperfections, dynamic vibrations or
any perturbation in the energy state of a compressed shell would cause it to jump
prematurely into a buckled mode. Tsicn (1942) provided a theoretical foundation to this
line of argument by showing that bifurcation actually takes place at the energy level
causing the sudden jump from onc configuration to another. Donnell and Wan (1950)
studied the effect of initial geometric imperfections in the shape of the buckling mode.
Their results showed that two types of buckling failure could occur in elasto-plastic
materials: a purely elastic one with a reduced buckling load or one in which buckling is
precipitated by local yielding due to large deformations. The minimum postbuckling load
in the case of elastic material behavior is dependent on the buckling mode and the
boundary conditions. For cylinders which are longer than their radius, end effects can be
neglected. Batdorf (1947) found the effect of length on the buckling mode of a shell to

be a function of a dimensionless number, Batdorf's parameter Z:

7= (_E)z(i)m 2.3)

a t

For Z< 2.85, the cylindrical shell buckles in axisymmetric mode only, while for 2.85 < Z
< 8.314y1-V2 (%)Zthe cylinder buckles in a chessboard/diamond pattern, and for Z =

8.3141-v? (% )ZEuler column buckling occurs. For metallic materials with elasto-

plastic behavior, elastic buckling can only occur at large enough radius to thickness
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ratios, (%), such as to have buckling before yielding. For steel this limiting condition
was found to be (% )2 300 (Timoshenko and Gere, 1961; de Neulville, 1965).

As powerful computing machines became available, the analysis of von Kdrmdn
and Tsien (1941) was refined and more complicated buckling patterns were investigated,
yielding lower and lower postbuckling loads (Leggett and Jones, 1942, Michielsen,
1948, Kempner, 1950, Almroth, 1963). Hoff and co-workers investigated the ctiect of
edge conditions on the bhuckling of thin cylinders. They also showed that, when the
buckling displacement is represented by a Fourier series with a number of terms tending
to infinity, the absolute minimum postbuckling load for long cylindrical shells, where end
conditions can be neglected, is actually zero (Hoft et al., 1966). At the limit, the buckling
pattern tends towards the Yoshimura displacement pattern (Yoshimura, 1955), involving
infinitesimal displacements as the number of circumferential buckling waves tends to

infinity.

In his doctoral thesis Koiter (1945) developed a non-linear theory of elastic
stability which he applied to the buckling of a cylindrical shell in axial compression. He
showed that the buckling load was extremely sensitive to initial deviations from the exact
cylindrical geometry. Assuming an imperfection in the form of the axisymmetric
buckling mode he derived an upper bound for the reduced buckling load based on his

general theory (Koiter, 1962):

2

P * 2 P*

T)—-||J.| = 5 (1 - ) (2.4)
cr 3\/3(1 -Vve) cr

where P* and Py are the reduced and the critical buckling loads respectively, and m is
the ratio of the amplitude of the imperfection to the wall thickness of the shell.
Hutchinson (1965a and b) refined Koiter's results and extended them to include the
effects of internal and external pressure. Assuming axisymmetric and asymmetric

imperfections in the shape of the buckling modes, he found the reductions in the buckling
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load to be more important than those predicted by Koiter. He also showed that the most
critical type of imperfection was the one in the form of the axisymmetric buckling modc.
Further refinements to Koiter's theory were introduced and the exact numerical solutions
verified by experiments on specially manufactured plastic cylindrical models with
sinusoidal, localized or random axisymmetric imperfections (Tennyson and Muggeridge,

1969, Hutchinson et al., 1971, Amazigo and Budiansky, 1972).

As the theoretical work described in the previous paragraphs proceeded, a large
number of experimental investigations were carried out to solve the practical side of the
problem and recommend design procedures to the booming defense and acrospace
industries. The main results are summarized in a the contributions by Donnell and Wan
(1950), Weingarten et al. (1965), Budiansky (1976), Kolldr and Duldcska (1984) and
Yamaki (1984). When cxperimental cylindrical specimens were manufactured with
conventional techniques, such as used in engineering structures, experimental buckling
loads were always found to fall below the theoretical predictions and to decrease with
increasing radius to thickness ratios. This was explained by the inherent geometric
imperfections that are bound to occur in any cylindrical structure in light of the
postbuckling and imperfection sensitivity analyses that were developed. This
interpretation was further supported by experiments on special near-perfect laboratory-
prepared specimens that yielded buckling loads within 10% of the classical theory
(Tennyson, 1963, 1964, 1967 and Kolldr and Duldcska, 1984). For enginecring design
purposes Weingarten et al. (1965) proposed an empirically fitted lower bound to the

elastic axial buckling stress of metallic cylinders, olower, With v=0.3:

Slower = (0. 606 — 0. 546(1 — exp(~ % )))exp(-%\/% )% (2.5)
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Note that Eq. 2.5 tends to Eq. 2.1 as (%{) tends to zero. Similar formulas for knock down

factors can be found in design codes for cylindrical structures (Kenny, 1984).

In engineering practice cylindrical shells are stiffened with longitudinal stringers
or circumferential rings or both. The use of massive stiffencrs, as in naval construction,
offshore oil platforms and airframes, subdivides the shell into curved panels that are less
sensitive to defects and achieve higher buckling loads (von Kdrman ct al., 1940,
Timoshenko and Gere, 1961, and Kenney 1984). Closely spaced stiffeners, whether
placed longitudinally, circumferentially or orthogonally are the most common (Kolldr and
Dul4cska, 1984). The close spacing of the stiffeners insures that they buckle integrally
with the skin. One or two way ribbed cylindrical shells exhibit the same types of
buckling behavior as isotropic shells with the difference that the stiffeners increase the
stretching and bending stiffnesses in the direction along which they are placed. They can
be analyzed as orthotropic shells and their buckling loads obtained accordingly. The
differential equations of this problem were established by Fliigge (1932), and tackled first
by Dschou (1935). Van der Neut (1947) analyzed the eccentric stiffening effect due to
external and internal stiffening, finding external stiffeners more efficient than internal
ones. Given the large number of geometric variables and stiffness constants involved in
the formulation of the stifi *ned shell problem, a stiffening geometry has to be assumed to
allow a numerical evaluation of the axial compression buckling load (Kolldr and
Dul4cska, 1984). This, combined with the complications that plagued the investigation of
the stability of unstiffened shells, has rendered the task of investigators even more
formidable. in a manner similar to that for unstiffened shells the postbuckling behavior
and minimum load of orthotropic cylinders was investigated by Almroth (1964).
Postbuckling and imperfection sensitivity analysis of stiffened cylindrical shells were
also performed along the lines of Koiter's theory of elastic stability (Hutchinson and

Amazigo, 1967, Hutchinson and Frauenthal, 1969, and Byskov and Hutchinson, 1977).
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More recently Ellinas and co-workers revisited the problem in depth. Previous
contributions were reviewed and a new method to determine minimum postbuckling
loads of stringer and ring stiftened cylinders was proposed based on the assumption that
the components of energy that are croded from the classical buckling load in the
postbuckling stage can be neglected (Ellinas and Croll, 1981, and Ellinas ct al., 1981).
Numerical modeling was performed for a few typical stiffening configurations o study
the imperfection sensitivity of the stiffened cylinders. In light of this new analysis the
results of more than 240 past experiments on axially compressed stringer stiffened
cylinders were re-examined (Ellinas et al., 1983); the results suggested that the observed
buckling behaviors exhibited a degree of imperfection sensitivity higher than that
previously ascribed to them.

Theoretical investigations and experiments on near perfect ribbed shells have
shown that ring stiffened cylinders always have a lower buckling load in axial
compression than geometrically perfect isotropic equivalent weight cylinders (Calladine
1983 and Tennyson, 1976). Stringer reinforced cylinders can be marginally more
efficient (Tennyson, 1976). Ellinas and Croll (1981) and Ellinas et al. (1981) reached the
same conclusions after an elaborate analysis; they, however, show that when imperfection
sensitivity is taken into account, the improved knock down factors for circumferentially

reinforced shells may reverse these conclusions for some stiffening ratios.

With powerful computers and finite element codes (FEM), most recent research
has concentrated on refined numerical investigations of the stability of stiffened and
unstiffened circular cylindrical shells with realistic imperfections such as those measured
in welded silos and tension legs of offshore platforms (for example, the work of Arbocz
and Williams, 1977, Rotter and Teng, 1989, Rotter and Zhang, 1990, Teng and Rotter,
1991, Chryssanthopoulos et al., 1991a,b, and Hunt and Neto, 1991).
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2.1.2 Elastic stability under pure bendin

Long cylindrical clastic tubes subjected to a bending moment can theoretically
collapse by one of two modes of failure. In the first mode the ovalization of the cross
section of the tube causes a non-linear moment-curvature relation, resulting in a
maximum moment carrying capacity. The second failure mode is a bifurcation type of
instability characterized by local buckling or wrinkling ol the compressive side of the
bent tube when local compressive stresses reach a critical value. Local buckling occurs
before the limit moment of the first mode is reached.

In a unique contribution, Brazier (1927) was the first to succeed in determining
the limit moment for an infinitely long cylindrical shell under pure bending. Assuming
an inextensional flattening of the section in the shape of an cllipse, he derived an
expression for the strain energy per unit length in terms of the change in axial curvature.
Minimizing this expression with respect to the change in curvature he obtained the limit

moment MBrazier. as :

M 2v2nEat?  0.987Eat?
Brazier = =
9\/ 1- v2 \/ 1- v2

Reissner (1962) derived a more general formulation of this problem dealing with thin

(2.6)

walled cylindrical tubes of arbitrary cross section subjected to pure biaxial bending
moments, and with it, calculated the state of stresses in the ovalized circular bent tube

(Reissner and Weinitschke, 1963).

The local buckling of thin cylindrical tubes under pure bending was first
investigated by Fliigge (1932) whose preliminary calculations showed the critical
compressive stress to be about 30% higher than that for an axially compressed cylindrical

shell. For thirty years Fliigge's result was adopted by the engineering mechanics
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community (Timoshenko, 1953 and Timoshenko and Gere, 1961). Seide and Weingarten
(1961) dispelled that misconception showing that the critical bending stress is, for all
purposes, equal to the critical compressive stress. Weingarten (1962) investigated the
effect of internal pressure on the buckling of bent circular cylindrical shells showing that,
unlike the case of pressurized cylinders under compression, the critical bending stress
increases with internal pressure. Similar to the case of axially compressed cylinders,
experimental results on cylinder under bending fell short of the theoretical predictions

and semi-empirical design procedures were proposed (Suer et al., 1958).

If a shell is considered to be short, then the prebuckling ovalization can be ignored
and the analysis of Seide and Weingarten (1961) is appropriate. For a bent intermediate
length shell the supports will hold the ends of the tube circular and hamper ovalization to
some extent. An infinitely long tube will ovalize unhampered under purc bending until
bifurcation takes place. The effects of length were first studied theoretically by Akselrad
(1965). Stephens et al. (1975) investigated numerically the effect of length for four
different specific geometries of thin walled circular tubes. Calladine (1983) re-analyzed

the problem in terms of the geometric parameter 2
1/2

Q= (E) L @.7)
a4/ a (l —v2)
For Q < 0.5 there is little ovalization and local buckling occurs as described by Seide and
Weingarten (1961); for 0.5 < Q < 2.0 the end conditions affect the ovalization behavior;
and for Q > 2.0 the behavior of the tube corresponds essentially to that of an infinite
cylinder under pure bending. The interaction of ovalization with the bifurcation behavior
was analyzed by Fabian (1977) who showed that elastic bifurcation occurs prior to
reaching the limit state. Reddy and Calladine (1978) obtained an approximate closed

form solution for :he buckling stress, the buckling mode and the critical load

combinations between bending moment and internal pressure. They found the maximum
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compressive stress at bifurcation, Gmax. to be slightly larger than the axial compressive

stress, Og:

2
Opmax = cro(l + 0.35(5)" 3) (2.8)

Further refinements to the analysis of the problem were contributed by Gellin (1982) who

found more conservative bifurcation load estimates than those previously obtained.
Taking account of the ovalization under bending of a long tube as estimated by

Brazier (1927), and using the critical axial compressive stress as a buckling criterion,

Calladine (1983) calculated the local buckling moment, Mjp, as:

Mo = 0.939Eat?
Ib="T —7%
\/ 1-v2

Comparing with Eg. 2.6, the moment required for local buckling is always slightly lower

2.9)

than the Brazier moment.

Very little experimental work was performed on the elastic ovalization of thin
walled cylinders under pure bending save for the original experiments of Brazier (1927)
on celluloid tubes and some unpublished tests on silicone rubber tubes reported by

Calladine (1983).

The problem of the beam on elastic foundation is doubly relevant to the  -ork
presented in this thesis. First, from a mathematical point of view, all axisymmetric
stability problems of cylindrical, conical, and spherical shells are amenable to treatment
by the bending theory of straight beams on an elastic foundation. Second, the role of a
soft elastic core inside a cylindrical shell, as found in natural structures, is that of an

elastic supporting medium.
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In conjunction with the analysis of railroad tracks, Winkler (1867) introduced the
assumption that the reaction forces of the foundation are proportional at every point to the
deflection of the beam at that point. This assumption allowed a practical and very
popular approximate solution to the soil reaction problem, and a rigorous solution to
problems dealing with thin shells and networks of beams. Hetényi (1946) has writien an
authoritative treatise on the theory of beams on a Winkler-type elastic foundation.

Very seldom, however, does it happen that a foundation acts as a continuously
distributed set of independent springs; in fact a foundation is typically an elastic
continuum where shear between contiguously loaded columns of material is very
important, and the interaction between vertical elements dominates the response. Biot
(1937) has provided the solution for an infinite beam resting on an elastic foundation
represented as an isotropic continuum defined by its Young's modulus and Poisson's
ratio. Reissner (1937) obtained the results of Biot in a more general way, allowing

different kinds of foundations ranging from elastic to elastic-plastic.

As early as 1913, Timoshenko derived the buckling stress, Ocr, of an infinite
beam resting on water, or a Winkler foundation, of modulus k, as (Timoshenko and

Gere, 1961):
O =2— (2.10)

where EI is the bending rigidity of the beam and A its cross sectional area. Reissner
(1937) made some progress in treating the buckling problem of the beam supported by a
two-dimensionally infinite medium. Using the results of Biot (1937), Gough et al. (1940)
have analyzed the stability of a thin sheet supported by a continuous elastic medium,
under the conditions that the surface of the medium has the same vertical displacements
as the beam and that it carries no strain parallel to the direction of the beam axis. They
obtained full solutions for the cases of a beam on an elastic half-space, a beam on an

elastic foundation of limited depth with free or rigid back, and for a sandwich
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configuration. For a perfectly bonded infinitely long sheet on an clastic halt space they

found the buckling stress, o¢r, to be:

. ; 2/3(E2E)|/3 o
(14 v )(3-ve) ¢ -

where Ec, and v are the Young's modulus and the Poisson's ratio of the foundation, and
E is the Young's modulus of the sheet or beam. The assumed buckling mode was
sinusoidal and its wavelength dependent on the relative properties of the beam and

foundation. The half buckling wavelength, I, was found to be:

Lz[(3—vc)(l+vc)]y3[_5_]% 2.12)

Tt 12 E.

where t is the thickness of the beam,

Very recently, in the context of investigating fiber microbuckling in unidirectional
fiber composites, Waas et al. (1990) have revisited the two-dimensional problem of the
beam on an infinite elastic foundation. Their generalized analysis allowed for a complete
description of the beam-foundation interface, and included boundary conditions to permit
modeling of actual conditions in fiber composites. Their results agreed very closely with

those obtained previously by Gough et al. (1940) for the infinite beam problem.
2 ility of circular cylindrical shells with an elastic cor

In the late 1950's, in the context of the cold war and the space program, a major
effort in basic research on solid propellant rocket launchers and missiles was undertaken.
The rocket motor casing is a circular cylindrical shell that contains rubbery or plastic-like
solid propellant mix. This solid propellant core may or may not contain a central bore

hole to control the burning of the propellant (Sutton, 1986). This spurred numerous
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investigations of the clastic buckling of a thin, isotropic cylindrical shell filled with a
compliant elastic core. A varicty of loading configurations have been analyzed,
including: axial load (Seide, 1962, Yao, 1962, Lu and Nash, 1964, Myint-U, 1966,
Vlasov, 1973); torsion (Weingarten, 1962); uniform radial pressure (Scide and
Weingarten, 1962, Seide, 1962, Herrmann and Forrestal, 1965, Vlasov, 1973);
circumferential band of pressure (Yao, 1965); axial load plus uniform radial pressure
(Seide, 1962; Brush and Almroih, 1962, Vlasov, 1973); axial load plus axially varying
radial pressure (Brush and Almroth, 1962) ; axial load with axially varying thermal
stresses (Zak and Bollard, 1962); axial load plus circumlerential band of pressure (Brush
and Almroth, 1962); and bending (Yabuta, 1980). More recently, the analysis has been
extended to orthotropic cylindrical shells (Holston, 1967; Bert, 1971; Vlasov, 1975; and
Malyutin et al., 1980) and to an clastic-plastic core (Babich and Cherevko, 1983). The
literature on the stability of an isotropic circular cylindrical shell under axial load and
bending is reviewed in more detail below.

Seide (1962) and Yao (1962) have analyzed the buckling under axial compression
of cylindrical shells with a soft elastic core. Using Batdorf’s (1947) modification to
Donnell's shell equations Seide (1962) treated the cases of axial compression and lateral
pressure. He considered the role of the core to be that of a spring that counteracts the
normal displacements of the shell. He neglected the shearing stresses between the core
and the cylinder and assumed the core to be stress free in the longitudinal direction in the
pre-buckling stage. He derived the spring constant of the core, with and without a central
bore hole, by treating it as a three dimensional solid and applying to its surface the
assumed buckling mode of the shell. Using Timoshenko's differential equations for a
cylindrical solid (Timoshenko and Goodier, 1970) he found the exact solution to the state
of stresses in terms of moditied Bessel functions. For any given geometry and assumed
buckling mode the spring constant of the core can be found and the axial load calculated.

Seide's calculations showed that the axisymmetric buckling mode yields lower
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compressive buckling stresses, in agreement with experimental observations. By
minimizing the compressive stress in the shell with respect Lo the axisymmetric buckling
wavelength, the critical compressive stress and the buckling wavelength are determined.
As expected, the buckling wavelength decreases, and the buckling load increases, with
increasing core stiffness. He also found that for a filled core, the solution for the uniaxial,

axisymmetric buckling stress, O¢r, can be approximated by:

o]
—L =1+ 2.13
. o (2.13)
for ¢<(0.5 and by:
3 1/3
oo =49 Ee E (2.14)

for $>3, where:

o [12(1-v2 )]” 4 [ B ][3]213 o1s)

a1-ve2) LE Lt
and E. and v are the Young's modulus and Poisson's ratio for the clastic core. The
solution for ¢>3 (Eq. 2.14) is similar to that for wrinkling of a beam on an elastc
foundation (Eq. 2.11).

Yao (1962) obtain:d a theoretical solution to the buckling load of axially
compressed cylindrical shells by a different method. His working assumptions were: a
solid core with or without a bore hole, a core modulus much lower than the shell
modulus, all compressive forces are taken by the shell prior to buckling, and there is no
relative movement between the shell and the core prior to buckling. He derived the state
of stresses in the three-dimensional core by using stress functions and the three function
theorem. Matching the displacements of the boundary of the core to those of the mid-

section of the shell he obtained a system of non-linear equations that can be solved
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numerically for the compressive stress given an assumed buckling mode. The buckling
load was numerically evaluated for v=().3, v¢=0.45, @/t ranging from 50 to 1000, and
E¢/E ranging from 2.9 to 12x10-3. Yao found that for the number of circumferential
buckling waves varying from () (axisymmetric mode) to & the critical compressive stress
converged to cssentially the same value. Yao's derivation included the shear stresses
between the core and the shell, but for the numerical range investigated his numerical
results were practically the same as Seide's. The final results of both methods (Seide,
1962 and Yao, 1962) were tound to be consistent with finite clement calculations
(Weingarten and Wang, 1976)

Lu and Nash (1964), numerically analyzed the buckling of cylindrical shells
stiffened by a core under axial compresion and bending, assuming a buckling mode
similar to those observed in experiments and a Winkler-foundation for the core effect.
Using a Galerkin procedure with a finite-deformation formulation for the shell they
showed that for an even moderately rigid foundation the increases in buckling strength of
the shell are significant.

Myint-U (1966) modeled the core as a Pasternak or a two parameter foundation
with k being the Winkler foundation modulus and g the shear layer constant. Using
Donnell's (1934) shell equations and the buckling modes assumed by von Kdrmdn and

Tsien (1941) he found the critical compressive stress of the axially loaded shell to be:

O = O 1’(”%2-},/3(1—\:2)% (2.16)

where o¢ is the buckling load of the empty shell (Eq. 2.1). The result for a Winkler
foundation can be obtained by putting g=0. Myint-U neglected the effect of the core on
the buckling wavelength of the shell and hence his results give a lower bound estimate of

the real critical buckling stress.
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Vlasov (1973), numerically solved the three-dimensional linearized cquations of
elastic stability for a/t ratios varying from 100 to 600 and E¢/E from 10-9 10 10-3, with
the Poisson ratios of the shell and core equal to 0.3. He carried out his analysis for two
cases: axisymmetric buckling and nonaxisymmeltric buckling with both longitudinal and
circumferential buckles. His results showed that nonaxisymmetric buckling appeared
only at Ec/E<lO‘5, and that the buckling load calculated for either buckling modes were

equal.

Data for the uniaxial clastic buckling stress of cylinders with a compliant core lie
significantly below Seide's (1962) cstimates, although the discrepancy decreased with
increasing ¢ (Eq. 2.15) (Kachman, 1959; Fitzgibbon, 1960; and Goree and Nash, 1962).
These experimental investigations concentrated on metallic shells (v=0.3) with a rubber
core (vc=0.5) having a/t between 250 and 700, and E¢/E between 10-6 and 10-4. Similar
to the postbuckling analyses carried out for empty shells (von-Kdrman and Tsien, 1941,
Kempner, 1954 and Almroth, 1963), a lower bound given by the minimum postbuckling
load was calculated by Almroth and Brush (1963). Obsérvations of the buckling mode
indicated that there was a transition between the classical diamond pattern for the empty
cylinders to a circumferentially elongated diamond pattern in cylinders with a very low
modulus core (E¢/E = 3 x 10-3, Kachman, 1959) to, finally, the axisymmetric mode in
cylinders with a stiffer core (E¢/E = 104, Kachman, 1959). More recently Malyutin et al.
(1980) have reported results on fiberglass cylinders with rubber cores having a/t betweem

90 and 160 with E¢/E between 10-4 and 10-3. Their results were in closer agreement

with the theoretical predictions due to the larger stiffening effect.

Local buckling arising from pure bending has been analyzed by extending Seide's
work and neglecting any ovalization of the cross-section (Yabuta, 1980) to model the

bending behavior of submarine coaxial cables whose outer conductor is a thin cylindrical



shell with an inner dielectric clastic core and an outer rubber sheath. The relationships
between the local buckling stress and E¢/E and a/t are plotted for a limited set of values.
Bend tests were performed on tour Mylar cylinders (a/t=100), two of which were empty
and two of which were filled with silicone rubber (EC/E=1()“3). The empty and filled
cylinders buckled at roughly 60% and 80% of the calculated load in a trend similar to that

reported for the uniaxial load case.

The goal of this thesis is to compare the buckling resistance of cylindrical shells
of equal mass with and without a compliant core for uniaxial compression, pure bending
and combined compression and bending. The axial buckling loads obtained by Seide
(1962), Yao (1962) and Vlasov (1973) for a three-dimensional treatment of the core are
complicated and require the simultaneous solution of a system of six non-linear equations
by numerical methods. The one-dimensional analysis of Lu and Nash (1964) and Myint-
U (1966) treated the core as a Winkler or a two parameter foundation, and can at best
give a lower bound estimate of the buckling load. The stability in bending has received a
very limited treatment (Yabuta, 1980). In the following chapter, the elastic buckling of a
thin, isotropic cylindrical shell with a compliant elastic core is re-analyzed to develop a
two-dimensional, more tractable analysis for axisymmetric buckling in uniaxial
compression and a new analytical model is derived for the ovalization, Brazier moment

and local buckling moment in pure bending.
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CHAPTER 3

ELASTIC BUCKLING OF CYLINDRICAL SHELLS WITH
ELASTIC CORES I: ANALYSIS

"For since the fabric of the universe is most perfect, and is the work of a
most wise Creator, nothing whatsoever takes place in the universe in which some relation
of maximum and minimum does not appear. Wherefore there is absolutely no doubt that
every effect in the universe can be explained as satisfactorily from final causes, by the aid
of the method of maxima and minima, as it can from the effective causes themselves."

Leonhard Euler (De Curvis Elasticis, 1744)

3.1 Introduction

Thin walled cylindrical shell structures are widespread in nature: examples include
plant stems, porcupine quills and hedgehog spines (Fig.1.2). All have an outer shell of
almost fully dense material supported by a low density, cellular core: biologists refer to
this as a "core-rind" structure (Niklas, 1992). The cellular core can be made up of either
foam-like cells (as in the parenchyma in the grass and hawthorne) or of a lattice of struts (as
in the hedgehog spine). In nature, all of these structures are loaded in some combination of
axial compression and bending: failure is typically by buckling. Natural structures are
often optimized; the results of our analysis of the elastic buckling of a thin cylindrical shell
supported by an elastic cor *, described below, suggests that this structural configuration

achieves significant weight saving over a hollow cylinder.

Thin walled cylindrical shells are widespread in engineering, too: examples include
civil engineering structures, offshore oil platforms and aircraft fuselages. Ranges of the
ratio of cylinder radius to wall thickness, a/t, for a variety of natural and engineering
structures is shown in Fig. 1.3. In contrast to natural cylindrical shells which have a
uniform, compliant core, cngineeﬁng structures with large ratios of a/t are typically

stiffened against buckling by circumferential and longitudinal members, known as ring
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stiffeners and stringers, respectively. Biomimicking of natural cylindrical shell structures
may offer the potential to increase the mechanical efficiency of engineering cylindrical
shells. As a first step in evaluating this possibility, we have analyzed the elastic buckling
of a cylindrical shell with a compliant core and compared its buckling resistance with that of
a hollow cylindrical shell of equal mass. The results suggest that a compliant core
significantly reduces the weight of a cylindrical shell. The results of the analysis are

compared with data in the following chapter.
3.2 Literature Review

We first review the elastic buckling behaviour of a thin walled, hollow, cylindrical
shell of radius, a, and wall thickness, t, made of an isotropic material of Young's modulus,

E and Poisson's ratio, v. In uniaxial compression, buckling takes place at a critical stress

of (Timoshenko and Gere, 1961):

B Et
° aa3(1 - v¥)

c 3.1

for any assumed buckling mode. Experimentally, it has been observed that thick, low
modulus shells buckle axisymmetric-ally while thin, high modulus shells tend to buckle in
a non-axisymmetric, diamond mode (Timoshenko and Gere, 1961; Kollar and Dulécska,
1984). In pure bending, the circular cross section ovalizes, reducing its moment of inertia.
As the curvature is increased, the bending moment reaches a theoretical maximum, the

Brazier moment (Brazier, 1927):

2 2
M = 2+/2nEat _ 0.987Ea2t (3.2)
941 - V2 N1 - v
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In pure bending, local buckling occurs when the stress on the compressive face of the shell
reaches the critical stress to cause axisymmetric buckling under uniaxial compression (eqn

3.1). Taking account of the ovalization of the cross section, the result is (Calladine, 1983):

. = 0-939Eat’
b = T 5
V1 - V2

The moment required for local buckling is always lower than the Brazier moment.

(3.3)

The elastic buckling of a thin, isotropic cylindrical shell filled with a compliant
elastic core has been analyzed for a variety of loading configurations including: axial load
(Seide, 1962; Yao, 1962; and Myint, 1966); uniform radial pressure (Seide and
Weingarten, 1962; Seide, 1962; Herrmann and Forrestal, 1965); circumferential band of
pressure (Yao, 1965); axial load plus uniform radial pressure (Seide, 1962; Brush and
Almroth, 1962; Vlasov, 1972); axial load plus axially varying radial pressure (Brush and
Almroth, 1962) or temperature (Zak and Bollard. 1962); axial load plus circumferential
band of pressure (Brush and Almroth, 1962); and bending (Yabuta, 1980). More recently,
the analysis has been extended to orthotropic cylindrical shells (Holston, 1967; Bert, 1971;
Vlasov, 1975; and Malyutin et al., 1980) and to an elastic-plastic core (Babich and
Cherevko, 1983). Natural cylindrical shell strucures are typically loaded uniaxially and in

bending; we consider the results for these two cases here.

The uniaxial load case has been solved by using the differential equations for
equilibrium of the shell, modified to account for the spring constant of the compliant core
(Seide, 1962) and by the use of stress functions (Yac, 1962). Both methods assume that
the shell is thin and that the core modulus is lower than the shell modulus. Both treat the
core as a three-dimensional solid and allow the core to be hollow. And both methods allow
for both longitudinal and circum-ferential buckling of the shell. The final results of both

methods, which must be solved numerically, are similar and are consistent with finite
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element calculations (Weingarten and Wang, 1976). As expected, the buckling wavelength
decreases, and the buckling load increases, with increasing core stiffness. Seide (1962)
notes that for a filled core the axisymmetric buckling mode gives the lowest buckling load.
He also notes that for a filled core, the solution for the uniaxial, axisymmetric buckling

stress, Ocr, can be approximated by:

% 21+ ¢ (3.4)
o

for $<0.5 and by:

2 13
o <o E _YI_E (3.5)
oAl =) -V

for ¢>3, where:

¢ (3.6)

s (o
- o4(1-v2) E\t
and Ec and v¢ are the Young's modulus and Poisson's ratio for the elastic core. The

solution for ¢>3 is similar to that for wrinkling of the compressive face of a sandwich beam

(Allen, 1969).

Data for the uniaxial elastic buckling stress of cylinders with a compliant core lie
significantly below Seide's (1962) estimates, although the discrepancy decreases with
increasing ¢ (Kachman, 1959; Fitzgibbon, 1960; and Goree and Nash, 1962). A lower
bound on the data is given by the minimum postbuckling load calculated by Almroth and
Brush (1963). Observations of the buckling mode indicate that there is a transition between
the classical diamond pattern for the empty cylinders to a circumferentially elongated

diamond pattern in cylinders with a very low modulus core (E¢/E =3 x 10-3, Kachman,
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1959) to, finally, the axisymmetric mode in cylinders with a stiffer core (E¢/E = 10-4,

Kachman, 1959).

Local buckling arising from pure bending has been analyzed by extending Seide's
work and neglecting any ovalization of the cross-section (Yabuta, 1980). The relationships
between the local buckling stress and E¢/E and a/t are plotted for a limited set of values.
Bend tests were performed on four Mylar cylinders, two of which were empty and two of
which were filled with silicone rubber (E¢/E = 10'3). The empty and filled cylinders
buckled ~ roughly 60% and 80% of the calculated load in a trend similar to that reported

for the uniaxial load case.

Our goal is to compare the buckling resistance of cylindrical shells of equal mass
with and without a compliant core for uniaxial compression, pure bending and combined
compression and bending. We reanalyze the elastic buckling of a thin, isotropic cylindrical
shell with a compliant elastic core to develop a simplified, more tractable analysis for
axisymmetric buckling in nniaxial compression and for the ovalization, Brazier moment and
local buckling moment in pure bending. We then compare the buckling resistance of
hollow cylindrical shells to that of cylindrical shells with a compliant core to evaluate
mechanical efficiency. F'nally, we describe the potential for biomimicking of natural

cylindrical shells in engineering design.
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3.3 Analysis

Axial compression - axisymmetric buckling

A circular cylindrical shell of radius, a, and wall thickness, t, with a compliant
elastic core is shown in Fig. 3.1. The shell has a density, p, a Young's modulus, E, and a
Poisson's ratio, v; the core has a density, pc, a Young's modulus, Ec, and a Poisson's
ratio, ve. We define coordinate x, y, and z axes as shown with corresponding
deformations u, v, and w. We calculate the critical stress for axisymmetric elastic buckling
under uniaxial compression by modifying Timoshenko and Gere's (1961) results for the
symmetric deformation and axisymmetric buckling of a hollow cylindrical shell to account
for the compliant core as a two-dimensional elastic foundation stabilizing a longitudinal
strip of the shell. The differential equation for bending of a strip mn of the shell subject to
uniaxial tension or compression, N, and a uniformly distributed internal pressure, g, is

(Timoshenko and Gere, 1961):

d'w 1 d’w
D——=q+—VN — —Et+ Nx
dx* dx? (3.7)

where D is the flexural rigidity of the shell (D=Et3/ 12( l—v2)). For the shell with the

compliant core the internal pressure arises from the deformation of the core and

q=-kew (3.8)
where ke is the spring constant for the compliant core;
Following Timoshenko and Gere's (1961) analysis of the critical buckling stress we
measure the displacement w from the middle surface of the shell after uniform compression
requiring replacement of w by w + (VNxa)/(Et). Taking Nx as positive in compression

leads to the result:

d'w d’w
D7 + N, e + s (Ee+k.al =
dx4 xdx.? (E + a ) (3.9)
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Assuming that the radial displacements during buckling can be written:

W = Wy sin.(ﬂl—z) (3.10)

we find:

12=O

4 -
-0() + (1) - (Bevkea)g (3.11)

The critical buckling stress is simply Nx/t; for a constant value of ke, independent of

buckling wavelength, the minimum value is:

Et a’k
L= | £ 3.12
O (1\/3(l—v2) “ * tE ( )

Note that for zero spring stiffness this reduces to the result for a hollow cylindrical shell.

Assuming that the shell thickness is much smaller than its radius, the spring constant ke can
be found from the result for the stress in the z direction for an elemental flat strip on an
elastic foundation undergoing 2 sinusoidal displacement in the z direction (Gough et al.
1940, Allen, 1969):

2TE,

w
- = - —_ N
=9 (3-v)1+v)1 G139

where I' is one half the buckled wavelength = I/m. Setting

A=lmn=1/n (3.14)

and
o = fe (3.15)
E

we find:



2E 1
ke = = - 3.16
T (3= Vv N1+ vo) A (310
Substituting in eqn (3.11) gives:
N, = Do + 252 4 2 EQh (3.17)
F PR TEY TG ov ) rv) T

The minimum buckling load is found by taking the derivative of Nx with respect to A:

oN 1 2Et 2 EQ
X = 2D =% + —= =0 3.18
TR R R FRmviy | SRy G.18)

The root A¢r can be solved for using a numerical procedure such as Newton-Raphson for
given values of a, t, o and E: it is plotted in Fig. 3.2. Note that for (a/t)2(E¢/E)<0.1, Acr

is given by the result for an empty cylinder:

1/m = r (at)

[12(1 - vz)] 1

or

Ao 1 (3)%
Wlt

[12(1 - v?) ] ’

For (a/t)(Ec/B)>10, Acr is given by the result for wrinkling of a flat sheet on an elastic

foundation (Allen, 1969):

1

Mr_V3-%x1+%qALEF

£ 12(1 - v2)

The critical buckling stress can then be found from equ (3.17). Alternatively, noting that

Ocr=Nyx/tand D = Et3/ 12(1—v2) we can write the critical buckling stress in the shell as:
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.. = 3(1 - v*)o,f, (3.19)

£ = 1 ase (/) 20 )(AC%J(%)

12(1 - v*) (A, / tY al/t (3 = v )(1 + v

where O is the buckling stress for the hollow cylinder (eqn 3.1). The total axial buckling
load, Pcr, found by assuming that the core has to deform along with the shell in
compression prior to buckling, and neglecting any other interaction prior to buckling is

then:

P = 21tat0'cr(l + = —2) (3.20)

Pure bending- the Brazier effect

In pure bending, the cross section of a hollow cylindrical shell ovalizes, decreasing
the moment of inertia and flexural rigidity of the section (Fig. 3.3). The moment carrying
capacity of the cross-section reaches a maximum at the Brazier moment, MBraziar (Brazier,
1927). The Brazier moment can be calculated by writing the strain energy, U, of the
cylinder in terms of the c\ rvature, C, and the degree of ovalization, €, noting that for a
given curvature the degree of ovalization is that which minimizes strain energy (i.e. du/dg
= 0) and finding the maximum moment by taking dU/dC = 0. Using this procedure for a

hollow cylindrical shell, Calladine (1983) finds:

M. = 0.987 Ear’®
Brazier — —W

The degree of ovalization, {, at MBrazier is 2/9. Here, we use the same procedure for

calculating the Brazier moment for a cylindrical shell with a compliant core.
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The strain energy per unit length of a hollow cylindrical shell under a pure bending
moment is (Calladine, 1983):

1.2 5 3 5,2 JETN
u=sCEra’t(1- 54+ 30 ) + gnEzh ¢

2 (3.21)

where

(5]

l-v

and
£=0/a

The first term describes the contribution of longitudinal stretching to the strain energy while
the second describes that of circumferential bending. For a cylindrical shell filled with a
compliant core, the strain energy is increased by the energy of ovalization of a circular disk
of foam core and the energy to counter Poisson's effects due to bending of the foam core.
The moment of inertia of the cross-section is also increased by the presence of the
compliant core. Each of these effects is calculated in the Appendix. The final result for the

strain energy of the cylindrical shell with a compliant core is:

U

Il

1.2 3 oa _ 3, 5,2 3 L. 22 = LIPS B W
sc'Ema’t(1+ ) (1 L+ 20) + 3nEZh'C + ;0B A’ + 75 ap'EC a
(3.22)

where o = E¢/E,

Vi (5-2v,)
(1 + v, )(1-2v,)

3 - 5v,
1+ v, )(1-2v,)

|3=( and B’ =

For a given curvature C the ovalization that minimizes strain energy is (neglecting the term

% C? ineqn 3.22):
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3 en” (3.23)

Substituting this value in eqn (3.22) and taking 02U/9C2=0M/dC=0 we obtain the Brazier

moment:

372
1

172 ' -
_ 22 2 npa ( oa aﬂa) oa
sroster = n:Eath(l+ 3chh"‘) L+t —— ) (1+ 32

(3.24)
At the Brazier moment the ovalization is:
L. = 2|1+ —2Es (3.25)
[
4t
The maximum compressive stress in the shell at the Brazier moment is:
o. = Eca(l-2¢,.) (3.26)

brazier

at the Brazier moment it is:

3

20pa’ (1 - VZ)T”

(1
Et 1/2

0 = — 1 —

Brazier  avVl — V2 (e ) Cr) (1 oa )1/2

(3.27)

Pure bending- local buckling
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True local buckling corresponding to a bifurcation point occurs if the normal stress
in the compressive side of the cylindrical shell reaches the critical stress for axisymmetric
buckling calculated above. Following Calladine's analysis for an empty cylindrical shell

we observe that (Calladine, 1983):

O e = O (1-3C) (3.28)
where Ocr is the uniaxial compresssive stress for axisymmetric buckling. Substituting eqns

(3.19) (3.23) (3.26) we obtain:

oa \?
1 1 :
-V (- s0) 20p2°(1 - v*) ]’
1+ S0

which can be solved numerically for the ovalization at which local buckling occurs, (|p or
using the nomograph in Fig. 3.4. The critical moment for local buckling is found by
substituting the result of eqn (3.29) in (3.22) and (3.23) and writing M =gU/dC. Writing

the moment in terms of the ovalization at which local buckling occurs we obtain:

nEat? \[C,, agta 3 20pa’ 172 o )2
Mlb =-———-——2—- 1+-—ag glb (l-i' ) (1+——)
VI-v 1+22 2

4t

(3.30)

The moment to cause local buckling is always lower than the Brazier moment.

Combined axial load and bending moment

Local buckling can also take place under the combined action of an axial load, P,

and a bending moment, M. The combined load at any section of the core filled cylinder can
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be replaced by an axial load applied with an eccentricity, e, with respect to the axis of the
cylinder, with M=Pe. Local buckling will take place when the maximum compressive
stress in the shell reaches the axisymmetric axial compression buckling stress. The
maximum compressive stress is the sum of the stress due to the axial load and that due to
bending. Noting that the curvature is given by C=M/EI, ar1 replacing M and I by their

values we find:

P
C = € (3.31)

mEa’t(l — 2801+ 32

Using eqn (3.23) the ovalisation can be solved numerically from:

o)
Pe - 1
{(1 - 3207 = ( ) . (3.32)
Eath aa 2(1[3&
mEath/ (1 4+ $2)(1 + 355

The stress due to bending is :

c = Pea(l — §) (3.33a)
bending 1ta3t(1—%§)(1+ 2‘2) .
and that due to axial compression is:
P

attal = omat(l + 2
Summing the two stresses, equating them to the axisymmetric buckling stress (eqn 3.19)

and solving for P we get:

(3.34)
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For a given eccentricity, e, this equation can be solved for the critical axial load, Pcr.
Conversely, given the load Pcr, the maximum eccentricity can be obtained by

simultaneously solving eqn (3.32).

Stress decay within the core

The buckling analyses described above treat the core as an elastic foundation
resisting buckling of the shell. The normal and shear stresses developed in the core are
maximum at the interface between the shell and the core (z=0) and decay within the core
with increasing z. The decay of normal and shear stresses within the core can be closely
approximated using the solution for a buckled flat strip supported by an elastic half-space

(Fig. 3.5). The normal stress in the z direction and the shear stress in the xz plane are

given by Allen (1969) as:
o, = 2n Ec w sin(E)[l +(1+ VC)F—Z—] exp(—lt—z)
21 (B )(rHve) " 1 2 1 1
(3.35a)
and
E. (1
Tyy = z e ve) W, sin(——}.{) L4 | 2 Ve | 22 exp(—zt—.z—)
1 (3= v )(1+ ve) 1 - v,
(3.35b)
Normalizing 0z and Txz by 0z (z=0) and txz (z=0), respectively, we obtain:
G, = Oz  _~ [l + (1 + Ve ) 1‘—?] exp(— E.E) (3.36a)
cz/z:O 2 1 1
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and

Tz = —xz o=l 4 (l * VC)E—‘.Z- exp(— -’57‘-) (3.36b)
Tyz/z=0 1-ve )1 1

Both stresses are plotted as a function of (% z/l) in Fig. 3.6, for v¢ =0 and v¢ = 0.5. We
observe that the stresses decay to about 5% of their maximum value at 7t z/l'=5,orata
depth of 1.6 half wavelengths, Similar results are found for a strip supported by an elastic
foundation of finite thickness. Core material at z>1.6 I does not resist any load and can be
removed without reducing the axisymmetric buckling stress in uniaxial compression or the

local buckling stress in bending.

The buckling resistance of the cylindrical shell with a compliant core of thickness, ¢
> 1.6, with a central bore hole of radius, b, is obtained by modifying the previous resuits.
The uniaxial compressive stress at which axisymmetric buckling occurs remains
unchanged. The Brazier moment is modified as follows. The moment of inertia of the

cross-section becomes:

Setting b = a-c and ¢ = 5l gives:

4
I = made|1 + 2o 2 1-[1—%—/—5) (3.37)
E 4¢ a/t

The strain energy of ovalization for the core becomes:
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T 2( .2 2 n 2_2 57~cr/t)2
Us== - b?) = = afE 1 -1 ==
; OBEC? (a ) 4aﬁga[ ( = ]
(3.38)

And the strain energy due to Poisson's effect becomes:

4 4
U = % opEcat| 1 - 94_ ] (1 Ty t)
16 , a 16 a/t

(3.39)

The moment at which local buckling moment occurs is found, as before, by setting
the moment equal to the derivative of the strain energy with respect to curvature, using the
ovalization at which local buckling occurs. The prodedure is identical to the previous
analysis with the strain energy of the core modified by eqn (3.37, 3.38, and 3.39). The

ovalization at which local buckling occurs is given by the solution to:

_ 3 Eo o)
, S 1-C - £ (1+4 E t
_ y2 _ - 1
1 Vol 3€ Ec 7"0 -5 kcr/t):l/z

2
1+8.74(3) Ze
t)] E ¢t a/t

The solution can be found numerically or by using the nomograph in Fig. 3.7 (for v = v¢ =

i
N
2]

(3.40)
0.3). The moment at which local buckling occurs is then given by eqn (3.30) using the

value of {={)p that satisfies the above equation and the modificiations given in eqns (3.37-

3.39).
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Combined buckling of shell and core

The above analysis for the stress decay within the core assumes that the core
continues to function as an elastic foundation. In practice, if the core thickness is
sufficiently reduced, the core will deform sinusoidally, as a unit, along with the shell. The
buckling load is that given for a hollow cylinder by '(imoshenko and Gere (1961) with D
and t replaced by values for the transformed section, D' and t'. The moment of inertia for a

unit circumferential length of shell and core is:

giving the equivalent bending rigidity of the section as:

( E ) a'‘c’ + t’ ( t )2 (
D'= > — |+ttt - -y, | TOQC|lY, —
1 -V 12 2

where yo is the location of the centroid of the section measured from the free face of the

N0
N
o
—_—

core,and v, = V.

The equivalent thickness of t'ie section is:

t'=t + oc

The generalized buckling stress is then:

6, = — JED' € (3.41)
at'

68



3.4 Comparison of buckling resistance of thin walled cylindrical shells

with_and without a compliant elastic core

The performance of a thin walled cylindrical shell with a compliant elastic core can
be evaluated by comparing its buckling resistance to that of an empty shell of equal
diameter and mass (Fig. 3.8). The outer cylindrical shells both have a density, p, a
Young's modulus, E, and a Poisson's ratio, v. The elastic core properties are: density, pc,
Young's modulus, Ec, and Poisson's ratio, vc. The elastic core has a central bore-hoie of

radius, b, removing the stress-free core material, and leaving a core thickness, c, equal tc

1.6 times the buckling half wavelength. The thickness of the empty shell, teq, at equal

mass, is:

r, = :[1 +-29t-%(2—§)] (3.42)

Noting that ¢ = SI/t =5A¢r we obtain:

teq = t[l +5 Mi(l - 2.5 &EE/—t)] (3.43)
tp a/t

where, as before, Acr is the buckling wavelength for axisymmetric buckling under a

uniaxial load (Fig. 3.4).

The ratio of the uniaxial buckling stress for the cylinder with the core to that without
the core is then given by dividing eqn (3.19) by eqn (3.1) and setting the thickness of the

empty cylinder equal to teq (eqn 3.43). We obtain, assuming v = ve=0.3:
2
aje , (Ree/t) Ec

a
6., _ 10.9(A/t) a/t Et t
(%0)eq 0.605[1 45 ter 9—9(1 - 2.5 M)]
t p a/t
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£ (3.44)

- A

\ er/ ]
0.60501 + 5 ex Peiy _ 5 5 Lt

t p

The uniaxial buckling load for the empty cylinder is found by multiplying the critical
buckling stress (eqn 3.1, by the shell area 2mateq. That for the cylinder with the core 1s
found by multiplying the critical buckling stress by the shell area plus E¢/E times the core

area. The resulting ratio of critical buckling loads with and without the core is (for v =

Vc=0.3)2
[1 +5 23;— E[::— (1 _ 2.5t //tg)]fl
Gy S O
0 0.605[1+5-}\-’i‘— 9—1(1—2.5 /E)]
t p a/t

The ratio of critical buckling loads for uniaxial loading is plotted in Fig. 3.9. The plots
have been made assuming that the ratio of the core to shell Young's moduli vary as the ratio
of the core to shell density raised to a power one or two, corresponding to a honeycomb or

foam core supporting a shell made from the same solid material. Support of the shell by a

core following E¢/E = Pc pleads to substantial increases in the axial buckling load,
2
especially at large a/t. Support of the shell by a core following Ec/E = (P%) shows

increases in the axial buckling load only for dense cores at high a/t.

The Brazier moment for a cylindrical shell with a compliant core is given by the

second derivative of eqn (3.22) modified by eqns (3.37-3.39). Setting v =v¢ = 0.3 we
obtain the ratio of the Brazier moment for a cylindrical shell with a compliant core with a

central bore hole to that of a hollow cylindrical shell of equal radius and mass:
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[l + 1.747(3)3 Eg Sher/t (2 - 57Lcr/t_J]
- t/ E a/t a/t

Mprazier — .
(MBrazier )eq L 5h.r Pc - 5Aqr/t
Lt p 2alt
a\132
[1+-5-3‘—‘—E £0.0952 %] - ——Sx‘ff/t)”
4 ¢t E t E a/t
e 5 E, ’

g
4 E

(3.46)
The ratio of Brazier moments is plotted in Fig. 3.10, again for cores obeying Ec/E = pc/p
and E¢/E = (pc/p)z. The cores are much more effective in resisting Brazier buckling than
uniaxial compression: both plots suggest an increase in Brazier moment of several fold for
even the medium density core at a/t > 20. But in practice, local buckling precedes Brazier

buckling, and it is the improvement in local buckling resistance that is most significant.

The ratio of the moments at which local buckling occurs for a cylindrical shell with

and without a core is found from:

B 011952%—
Cr _= -
(1+125E )1+ B 2§(1 )f,
" 1+1.255¢
i “)> = E 5 (3.47)
10 Jeq 0.312[1+5&9£p—°(1—2.5M)] (1-0)
t p alt

where f] is given by eqn (3.19) and { by eqn (3.40) or Fig. 3.7, for v = v¢ = 0.3. The
ratio of the local buckling moments is plotted in Fig. 3.11, again for cores obeying Ec/E =
pc/p and E¢/E = (pc/p)z. Cores following the linear relationship produce large increases

in local buckling resistance, even for low relative densities and low ratios of a/t. Cores
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following the square relationship give rise to increases in local buckling resistance only at

high relative densities.

Uniaxial compression and four point bending tests have been performed on silicone
rubber cylindrical shells with and without a compliant core. The above analysis describes

the results, detailed in the following, chapter, well.

3.5 Implications for engineering design: biomimicking

In nature, cylindrical shells are commonly stabilized by a compliant core. The
theoretical analysis described here shows that the presence of a compliant core increases the
buckling resistance in both axial compression and bending over that of a hoilow cylinder of
equal mass and radius. Honeycomb cores are more effective than foam cores. For the
natural structures shown in Fig. 1.2, we estimate the increase to be a factor of between 1.5

and 4.

Cylindrical shells are used in a variety of engineering applications (Fig. 1.3). In
practice, the measured elastic buckling loads are always less than the theoretical due to
unavoidable geometric cnd material defects that cause premature loss of stability
(Timoshenko and Gere, 1901, Kolldr and Duldcska, 1984). In design clastic buckling
loads are reduced by safety factors, termed "knock down" factors, to 30 to 40% of
theoretical predictions (Kolldr and Duldcska, 1984, Kenney 1984). A compilation of
published experimental results (Fig. 3.12) and more recent ones (see Chapter 4) show a
consistent trend of cylinders with a compliant core achieving close to 100% of their
theoretical strength as the core stiffness and the radius to thickness ratio increase. This
dirference in knock down factors further increases the elastic buckling resistance of

cylinders with a compliant core relative to equivalent hollow cylinders.
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In practice engineers stiffen cylindrical shells with longitudinal stringers or
circumferential rings or both. The use of massive stiffeners, as in naval construction,
offshore oil platforms and airframes, subdivides the shell into curved panels that are less
sensitive to defects and achieve higher buckling loads (Timoshenko and Gere, 1961,
Kenney 1984). In some cases where high reliability is required such as in aircraft design,
the ribs supporting the shell may be designed to carry most of the external loads with the
shell reduced to the role of an enclosure (Kolldr & Duldscka, 1984) While this is a safe
design it requires more material and is heavier than an unreinforced shell. A better way of
reinforcing shells is with closely spaced longitudinal, circumferential or orthogonal
stiffeners (Kolldr and Duldcska, 1984): the close spacing of the stiffeners insures that they
buckle integrally with the skin. One or two way ribbed cylindrical shells exhibit the same
types of buckling behavior as isotropic shells with the difference that the stiffeners increase
the stretching and bending stiffnesses in the direction along which they are placed. Their

buckling loads can be obtained by analyzing them as orthotropic shells.

For the case of buckling in axial compression and the associated local buckling
problem in bending, theoretical investigations and experiments on near perfect ribbed shells
have shown that ring stiffened cylinders have always a lower buckling load in axial
compression than isotropic equivalent weight cylinders (Calladine 1983, Tennyson, 1976).
Stringer reinforced cylinders can be marginally more efficient (Tennyson, 1976). Ellinas
and Croll (1981) and Ellinas et al. (1981) reached the same conclusions after an elaborate
analysis, they however show that when imperfection sensitivity is taken into account, the
improved knock down factors for circumferentially reinforced shells may reverse these

conclusions for some stiffening ratios.
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The thinner and deeper the stiffeners are, the higher the bending stiffness of the
shell and hence the efficiency of the reinforcement. The depth of the stiffeners can be
increased until local buckling of the stiffeners becomes the controlling failure mechanism.
In the most general case an optimal reinforcing geometry would be one with both
longitudinal and circumferential stiffeners equally distributed. The efficiency of this
orthogonal reinforcement can be improved by making the stiffeners deeper and thinner,
local buckling being prevented by the bracing provided by the closely spaced orthogonal
elements. This optimisation scheme can be pursued until such a point where the orthogonal
stiffening cannot buckle integrally with the shell, but instead becomes akin to a square
honeycomb foundation stabilizing it. Honeycomb cores have Young's modulus
proportional to density; their efficiency is given by the plots in Figs. 3.9a, 3.10a and

3.12a.

Metal honeycombs, made by the expansion of adhesively bonded sheets of foil,
have been widely used in lightweight structural sandwich panels in the aerospace industry.
Recently, higher density metal honeycombs have been made by spot welding thicker sheets
of material together. Metal foams are becoming more common; a low cost, 270kg/m3,
closed cell, aluminum foam is currently being tested by Alcan (Alcan International Ltd.,
Kingston, Ontario, Canada) and the Dnepropetrovsk Metallurgical Institute (DM1) in
Ukraine is producing a range of metal honeycombs and foams (copper, iron, nickel,
aluminum) with cell sizes from 10m to 5Smm in relative densities from 0.3-0.9 (Walukas,
1992). The DMI materials can be made as laminates of alternating fully dense and cellular
layers. Of particular interest, solid cylindrical shells with either a honeycomb or foam core
can be produced as a single monolithic unit. The development of such engineering
materials opens up the possibility of biomimicking of the natural structures shown in Fig.

1.2,
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3.6 Conclusions

The simplified analysis of the buckling in axial compression of core filled
cylindrical shells captures the most important elements of the full 3-D analysis and provides
excellent analytical predictions in a tractable mathematical form. The axial buckling stress
was used as a criterion for local buckling to develop a general solution for the elastic
stability in pure bending of cylindrical shells with an elastic core including Brazier's
ovalisation and Poisson's ratio effects in the core. The analysis of stress decay in the core
showed that the stresses in the core are negligible at a depth of roughly 1.6 half buckling
wavelengths; the removal of core material beyond this depth does not affect the buckling
stress of the shell. A parametric analysis showed that cylinders with this core depth have

higher buckling loads than equivalent hollow cylinders.

The results of the analysis suggest that there is great potential for biomimicking of
natural structures in engineering. A uniform honeycomb or foam foundation can become a
more efficient substitute for stiffened shells; in addition to offering improved theoretical
buckling resistance shells with a compliant core offer reduced sensitivity to imperfections.
The recent development of denser honeycomb materials, foamed metals and monolithic
metal cylindrical shells with metal honeycomb or foam cores opens up the possibility of

biomimicking of the natural structures shown in Fig. 1.2.
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Appendix

The total strain energy of the cylindrical shell with the compliant core is the sum of
the strain energies of the hollow cylindrical shell and of the compliant core. The strain
energy of the hollow cylindrical shell is the sum of the energy to ovalize the circular cross-
section and that to bend the ovalized tube: it is given by eqn (3.21). The strain energy of
the compliant core is the sum of the energy to ovalize the circular cross-section of the core,
bend the ovalized core and to maintain the ovalized cross-section against Poisson ratio
effects. Each of these terms is derived below. In calculating the strain energy terms we
assume that the cylinder is long in comparison with its radius, producing plane strain
conditions. We also assume that the cylindrical shell is much stiffer than the core so that it
will fully restrain against Poisson ratio effects that tend to distort the core: i.e., the core will

maintain the ovalized shape of the shell.
Strain energy associated with ovalization of compliant core.

The radial and tangential displacements, u and v respectively, of a hollow

cylindrical shell ovalized by { are (Calladine, 1983):

u=r{cos206 and v=:2—rl;sin29

Assuming that the compliant core ovalizes to the same shape the radial and circumferential

strains are, then:

£, = a%r= {cos20

e = ULV
8 r rof
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Ju ov v ,
Yo = 30 +5_r__; = -2 sin 26

The corresponding components of stress are:

E

o, = : - v )e, + veg | = (- v )E,
r )[(1 c) r c e] (

1+ v, )(1-2v,)

T+ v.)(-2v. 6 cos 20

Eq _ VE.
% = (T vl —avoy L7 Vet + ver] = o Ty S 2

Eq -E.{ sin 20

LT vc)Yre T+ ve)

The strain energy per unit length in the ovalized core is:

U= j g _[:(Grer + O4€y + Ty¥,q Jrdrdd

2 J0

Substituting for the stresses and strains we obtain:

nE?a? (3 - 5v)

T T T )T - 2ve)

Strain energy associated with bending of the core filled cylinder

The strain energy per unit length to bend a member of flexural rigidity EI to a

curvature C is;
1
U = = EIC?
2
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For a hollow tube with ovalization £ the moment of inertia is (Calladine, 1983)
3 3 5 2)
I =mnmat{l-—-C+ —
[1-3ex 3

And for a circular shell filled with a compliant core of modulus Ec this becomes

4

E 3 5 E 3
I =|male + 22 Zc (1———(,+—§2) = na3r_(1+_9__a_)(1__§+_5_(;2)
4 E 2 8 E 4t 2 8

Strain energy associated with Poisson's effects due to bending

Here we calculate the radial and circumferential strains that would be induced in a
beam of circular cross-section deforming freely in pure bending (Fig. 3.A1). We then
calculate the strain energy required to maintain the circular cross-scction.

The strain in the longitudinal (z) direction is simply:

g, = —Cy = —Crsin®

while the strains in the radial and circumferential directions are:

€, = € = —Vc€, = V.Crsin @
Noting that
_
Y or
and
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e, =2 1oV
® T " roe

we find
V —
u=?CCr2sin6andv= &
Substituting in
yoa =L ¥ _ v
- raod Jdr r
gives

Y, = —V.Cr cos6

The strain energy per unit length of cross-section to maintain the circular cross-section is

then (noting that €, = €gand G, = Oy):

1

U=z I _[jn (20,8, + T,9Y,p Jrdbdr

3 .[,[ ( 2VECr?* sin’ @ | VIEC’r? cos®

+ rdOdr
L+ v, ){1-2v,) 2(1 + v,)

2 —
_ T ve(5 - 2v) B.C?a’
16 (1 + v )(1 = 2v,)
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Notation

a = radius to mid-plane of thickness

b = radius of bore hole

¢ = core thickness

C = curvature of cylinder in bending

3

D = flexural rigidity of shell = —I::-t———g—
12(1 - v

E = Young's modulus of shell

Ec = Young's modulus of core

t

1 - v?

[ = moment of inertia

ke = spring constant for compiiant core

1 = length of shell

I' = half the buckling wavelength = I/m

m = longitudinal wave number

MBrazier = Brazier moment

Mi]p = local buckling moment

Nx = uniaxial compression per unit circumferential length
Po = axial compressive buckling load of hollow shell

Pcr = axial compressive buckling load of shell with compliant
q = uniform internal pressure inside shell

t = thickness of shell

teq = equivalent thickness of a hollow shell of equal mass and
compliant core

u, v, w = deformations along x, y, z directions

U = strain energy per unit length
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wm = maximum sinusoidal di-placement in z-direction

3 - 5v.
1+v.)(1-2v.)

. v. (5 - 2v,.)
(1 + v.)(1-2v.)

S = maximum radial displacement under ovalization
. N o
{ = degree of ovalization = —
a

Cer = degree of ovalization at MBrazie

{1b= degree of ovalization at local buckling
, 1
A = buckling wavelength parameter = -

Acr = value of | minimizing Ny

v = Poisson's ratio of shell

vc = Poisson's ratio of core

p = density of the shell

pc = density of the core

0o = Theoretical buckling stress in uniaxial compression of a hollow shell

Ocr = axisymmetric buckling stress of shell with compliant core under uniaxial
compression

Omax = maximum normal stress in bent cylinder

Oz = stress in the z-direction

C,

-~

6;: normalized normal stress in z direction =
c z2/2=0
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Txz = Shear suress in the x-z plane

- T
Txz = normalized sheer stress in xz plane =
T

XZ

xz/z=0
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Figure 3.1 A thin-walled cylindrical shell with a compliant, elastic core.
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Figure 3.2 The normalized axisymmetric buckling wavelength parameter, A/t, for a
cylindrical shell plotted against radius to thickness ratio, a/t, for various values of E¢/E.
Each curve can be approximated by a bilinear relationship. A is the buckling half

wavelength divided by .
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Figure 3.3(a) A hollow cylindrical shell in pure bending.
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Figure 3.3(b) Ovalization of the initially circular cross-section. The degree of ovalization is

= d/a.
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Figure 3.3(c) A cylindrical shell of modulus E filled with a compliant core of modulus Ec.
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Figure 3.4 Nomograph for solution of { |p for cylindrical shell with compliant core.
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Figure 3.5 A buckled flat strip on an elastic half-space.
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Figure 3.6(a) Decay of normal stress in the z direction with normalized depth into the core,
nz/l',
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Figure 3.6(b) Decay of shear stress in the xz plane with normalized depth into the core,

nz/l'.
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Figure 3.7 Nomograph for solution of { |p for cylindrical shell with compliant core with

central bore hole.
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Figure 3.8(a) Thin walled cylindrical shell (no core).
(b) Thin walled cylindrical shell with a compliant core of depth ¢ of equal radius and mass
as shell in (a).
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Figure 3.9 The ratio of the elastic buckling load for uniaxial loading of a cylindrical shell
with an elastic core to that without a core plotted against the ratio of shell radius o
thickness for the shell with the core. (a) E¢/E = pc/p.
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Figure 3.9 (b) Ec/E = (pc/p)2.
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Figure 3.10 The ratio of the Brazier moment for a cylindrical shell with an elastic core to
that without a core plotted against the ratio of shell radius to thickness for the shell with the
core. (a) Ec/E = pe/p.
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Figure 3.10 (b) E¢/E = (pc/p)2.
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Figure 3.11 The ratio of the local buckling moment of a cylindrical shell with an elastic core
to that without a core plotted against the ratio of shell radius to thickness for the shell with

the core. (a) E¢/E =

Local buckling moment ratio,
hd] b/ (Ml b) eq (')

pc/p.
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Figure 3.11 (b) Ec/E = (pc/p)2.
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Figure 3.12 Uniaxial compression buckling stress ratio, o¢r/Go plotted against the
dimensionless stiffening parameter, (a/t)3/2(E¢/E) comparing our simplified analysis with
the theoretical results of Seide (1962) and Yao (1962), the finite element analysis of
Weingarten and Wang (1976) and data.
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Figure 3.Al(a) A beam of circular cross-section in pure bending with coordinate axes
defined. (b) The distortion of the circular cross-section of the beam due to Poisson's ratio

effects.
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CHAPTER 4

ELASTIC BUCKLING OF CYLINDRICAL SHELLS WITH
ELASTIC CORES II: EXPERIMENTS

"The principle which makes this development possible is hidden 10 the eyes
but not to the mind; but whether such a development must necessarily come about is
completely unknown to us. We know that the principle which makes it possible is in the
very nature of body, but there is no clear evidence in that body that there is a principle

by which it must necessarily take place.”
St.Augustine (ca. 400)

4.1 Introduction

In nature, thin cylindrical shells are often supported by a compliant elastic core.
In the previous chapter, we analyzed the local buckling under axial compression and
bending of a thin walled cylindrical shell with a compliant core. The results indicated
that such shells can be designed to have a higher buckling resistance than hollow shells of
equal mass. The results were used to suggest that the elastic core in natural cylindrical
shells gives rise to increased buckling resistance. In this chapter we describe experiments
to measure the elastic buckling response of silicone rubber shells with and without a
compliant core under uniaxial compression and four point bending. The experimental

results are well described by the analysis of the previous chapter.

4.2 Experimental Methods

Silicone rubber cylindrical shells with and without compliant foam cores were
tested in uniaxial compression and four point bending. The uniaxial compressive
buckling strength was first measured on hollow cylindrical shells with no compliant core.
The shells were then filled with a compliant core and retested. Each specimen was then

cored to produce a central bore hole and retested; this procedure was then repeated for
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incrementally larger diameter bore holes. The local buckling strength in bending was
measured on hollow cylinders and on cylinders partially filled with a compliant core.

Typical uniaxial compression and four point bend specimens are shown in Fig. 4.1,

Uniaxial compression specimens

Silicone rubber cylindrical shells with nominal shell radius to wall thickness
ratios, a/t, of 4.3, 10, 22, 31, 48 were made. The two thickest shells (a/t = 4.3 and 10)
were made by mixing liquid rubber (RTV 3110, Dow Corning Corp. Midiand, Michigan)
with a slow acting catalyst, de-airing with a vaccuum pump for three to five minutes, and
pouring the mixture into concentric plexiglass molds for curing. The thinner shells (a/t =
22, 31 and 48) were made by mixing the liquid rubber with a fast acting catalyst, pouring
it into a cylindrical mold and rotating the mold around its longitudial axis at 500 rpm
until curing was complete. This spin casting technique does not require de-airing as
centrifugal force collapses all entrapped air bubbles and ensures nearly perfect thin
walled cylinders. Each shell was 150 mm long. Three cylinders of each a/t ratio were
made. A detailed tabular description of the specimens is given in Table 4.A1 of the
appendix. Three tensile dogbone specimens were cast from each batch of silicone rubber
for subsequent measurement of Young's modulus and Poisson's ratio.

The wall thickness of each cylinder was measured at three circumferential
locations at two positions siong the length using a spring loaded, weighted micrometer
accurate to within 0.025 mm (Ames S-4325, B.C.Ames Co., Waltham, MA). Only
cylinders with a coefficient of variation of wall thickness of less than 5% were used in
subsequent mechanical tests. The mass of each cylinder was measured using an
electronic balance (Sauter-E49, Ebingen, Germany), allowing the density of the silicone
to be calculated.

After initial testing of the hollow shells in uniaxial compression each shell was

filled with a compliant core of foamed silicone rubber (RTV 3-6548, Dow Corning Corp.,
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Midland, Michigan) with a nominal relative density of 0.3. The rubber was foamed in
place to ensure a good bond between the foam and the shell. The shells were supported
in a split cylinder plexiglas mold during the foaming process to minimize distortions to
the shell due to foam expansion. Four twenty millimeter cubes of foam cut from blocks
cast in the same batch were used to determine its Young's modulus. Four rectangular
strips 127mm x 32mm x 10mm were used to determine Poisson's ratio of the foam. Foam
densities were calculated from volume and weight measurements on four small
rectangular block specimens (140mm x 32mm x 20mm). The dimensions were measured
with an electronic digital caliper (Max-Cal, Japan) and the weights measured on the
Sauter-E49 balance. After testing the filled cylinders in uniaxial compression a central
cylinder of foam was removed using a hole saw in a drill press. The cylinder was then
retested in uniaxial compression, the central bore hole diameter increased by some
increment and the cylinder retested. This procedure was repeated for bore hole diameters
between 25mm and 102mm for each cylinder.

In addition, four pairs of hollow and partially filled cylinders of equal mass were
made to compare their buckling resistance. The shells were made from silicone rubber
while the cores were made of polyurethane foam. The core:shell modulus ratio was

0.013; the core depth was equal to ~1.6 half buckling wavelengths.

Four point bending specimens.

Four point bending tests were performed on hollow silicone rubber cylinders and
on silicone rubber cylinders partially filled with a compliant core. The cylindrical shells
were spun in the same manner as uniaxial compression specimens using a larger mold
operating at a higher speed (1200 rpm). The cylindrical shells had a length of 889 mm,
an outside diameter of 146 mm and had radius to wall thickness ratios of a/t= 17.6, 22,
23, 32, 34, 40, 42, and 55. Two cylinders were made with a/t=23 and a/t = 32; a single

cylinder was made for each of the remaining a/t ratios. A detailed tabular description of
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these specimens is given in Table 4.A2 of the appendix. Each cylinder was then cut
longitudinally and bonded to a 25.4 mm thick flat sheet (889 mm long by 458 mm wide)
of flexible polyurethane foam (p = 15 kg/m3) using a thin layer of freshly mixed silicone
rubber. The composite silicone rubber shell lined with the polyurethane foam sheet was
then wrapped around a cylindrical mandrel, inserted into a split cylinder mold and
bonded together along the seam line with more liquid silicone rubber to form a
cylindrical shell with a compliant core. The thickness of the silicone rubber shells was
measured in the same manner as the uniaxial compression shells while the shell was cut
into a flat sheet. Measurements were made at 152 mm intervals across the sheet; only
sheets with coefficients of variation of less than 10% were used in subsequent mechanical
tests. The weight of the rubber used to bond the foam to the shell and to bond the
longitudinal seam was measured by weighing the different components of the foam-core
cylinder as it was made. This weight was then added to the initial weight of the empty
rubber tube and a corrected cylinder thickness calculated. Three 25.4 mm cubes of the
flexible polyurethane were cut to determine its density and Young's modulus. Nine strips
152mm x 25.4mm x 13mm were cut along each of three mutually perpendicular planes in

the sheet to determine Poisson's ratio.

Mechanical tests

The Young's modulus and Poisson's ratio of the solid rubber was calculated from
data from tensile tests on dog-bone specimens using a universal testing machine (Instron
Model 4201, Instron, Corp. Canton, MA). Three specimens from each batch were used to
measure Young's modulus and one specimen from each batch was used to measure
Poisson's ratio. One batch, from which a single cylindrical shell was made, was
represented by only one dogbone specimen. The load was monitored through a 50N load
cell. The longitudinal and transverse displacemcnts were monitored using a travelling

optical microscope (Titan Tool Supply Co., Buffalo, NY) over a 51 mm and 12.7 mm
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gage lengths, respectively; the gauge lengths were marked by either steel pins or by a
thin strip of rubber glued to the specimen. Both load and displacements were measured
at increasing increments of crosshead displacement.

The Young's moduli of the silicone rubber and polyurethane foams were
calculated from compression tests on cubic specimens using the same Instron testing
machine. The load was measured with the SON cell and the displacement was taken as
that of the crosshead. The Poisson's ratio of the silicone rubber foam was calculated from
longitudinal and transverse elongations monitored with the travelling microscope over
gauge lengths of 38 mm and 28 mm, respectively, in tensile tests on thin strips. The
Poisson's ratio of the polyurethane foam was measured in a similar fashion, with
longitudinal and transverse gage lengths of 25mm, respectively.

The uniaxial compression tests on the cylindrical shells were also performed using
the Instron Model 4201 testing machine. The hollow shells were tested first. The top and
bottom edges of the shells were fitted into a grooved platen to maintain their circular
cross-section at the ends. The top platen had two holes drilled into it to allow air inside
the specimen to escape, preventing any internal pressure buildup. The specimens were
centered along the loading axis of the machine using the special jig shown in Fig. 4.2.
The load, applied through a steel ball centered to within 3mm, was recorded from the
load cell while displacements were measured using the crosshead displacement
transducer in the machine. The load-deflection data was obtained on an x-y plotter and
recorded digitally by a data acquisition system (Hewlett-Packard HP 3497A, Data
Control Unit) connected to a personnal computer (Hyundai PC-XT). After buckling each
test was stopped and the buckling pattern photographed.

On completion of the tests on empty cylinders, the specimens were filled with
silicone rubber foam and retested using the same procedure. Central bore-holes of

increasing diameter were then made in the specimens. After each boring, the cylinders
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were again retested. Each buckling test was performed three times to verify the
repeatability of the results.

While the axial compression tests followed an established and widely accepted
procedure (Tennyson, 1963, 1964, 1967; Weingarten et al., 1965a and 1965b; de
Neufville, 1965; and Yamaki, 1983), there is no consensus on how to test thin walled
tubes in bending. In order to study the moment-curvature relationship and buckling
phenomena, a uniform bending moment has to be applied to all or part of the cylinder and
maintained to relatively large deflections. Conventional four point bending is the
simplest way to achieve a constant bending moment (Rhodes and Harvey, 1971), but at
large deflections the loads transmitted through the vertical loading knives apply a
drawing action on the rotated specimen (Cimpoeru and Murray, 1993) resulting in
undesirable end restraints (Sherman, 1976). In the original work of Brazier (1927) and
later Sherman (1983) a pure moment was applied at the ends of specimens rigidly
attached to a rotating fixture; the prevention of axial movement of the fixtures caused
unwanted axial teusile forces to develop at large deflections. Mclvor et al. (1977) used a
modified four-point bending set up that was suitable for large deflections but prevented
the horizontal translation of the specimen, also leading to axial tensile forces. Reddy
(1979) developed a modified four point test restraining the ends of the specimens by
spring steel strips that allowed relatively large deflections and partial axial movement.
Kyriakides and Shaw (19£2, 1987) used a unique experimental rig that maintained
constant force, direction and moment arm at large deflections while allowing some axial
specimen movement. In their rig the specimen ends are inserted into two wheels each
carrying two points of a four point loading set up. The wheels are rotated in opposite
directions by shortening a chain running around them, applying a uniform bending
moment to the tube in between the wheels. Cimpoeru and Murray (1993) proposed
additional improvements on this set up to eliminate friction and the development of

tensile forces at very large deflections. Given the requirements of our experimental
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program (large beam curvatures, free rotation at the supports, free axial movement,
special grips to transmit loading to the beams) we have found it necessary to design and
build a modified four point testing rig that can be used with conventional testing
machines and yet provide the required characteristics.

The specially built loading rig, designed to be used in the Instron testing machine,
is shown in Fig. 4.3. The specimens were gripped at the ends with a closely fitting
external cylinder and a tapered conical insert. Each specimen had two 3mm diameter
holes drilled into it near the end grips to allow air inside the specimen to escape,
preventing any internal pressure buildup. The end grips were extended by solid hardened
steel rods fitted into linear bearings, allowing free axial movement in and out of the block
supports. Each block support rested on two rotational bearings allowing free rotation in
the plane of loading. The load was applied through a universal joint at the midpoint of a
loading beam with rollers at {ixed locations at its ends. The self-equilibrating loading
beam splits the load applied by the machine into two equal forces applied to the end grips
at a constant horizontal distance, d, from the center of the support blocks. Sliding
counterweights were fitted to the steel rods extending beyond the supports allowing an
initial constant moment to be applied to the specimen if needed.

The load was measured using a SOON load cell while the curvature of the beams
was monitored with an angular displacement transducer (Model 0605, Transtek Inc.,
Ellington, CT) measuring the rotation at the supports (Fig. 4.3). The load cell and
rotation transducer were both connected to the computerized data acquisition system
described above. The bending stiffness of the grips and extension rods was designed to
be much larger ( about 2.5x103) than that of the specimens tested so as to concentrate all
deformation in the free spanning part of the cylinder. By adjusting the free span of the
cylinder, 1, and the moment arm, d (Fig. 4.3) in the loading set up the magnitude of the

moments and curvatures applied can be widely varied while keeping the support rotations
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small and the loading geometry constant. For small end rotations, 6 < 15°, the curvature

of the cylinder, C, and the moment, M, due to the applied load are given by :

4.1)

where q is in radians.

Under their self weight, the cylinders deflect, rotating the ends. This initial end
rotation was then reduced to zero by setting the counterweights appropriately. At the
beginning of the test, then, the cylinder was in a fixed-fixed end condition with zero
rotation and curvature at the supports. At this point, the cylinder was subject to its own
dead weight between the grips and the end moment from the counterweights causing an
initial moment, Md], and curvature, Cd, at the midspan of the beam. The cylinders were
then loaded to failure using the Instron Model 4201 with a crosshead speed of Smm/min.
Under these conditions the cylinders buckled locally in the middle away from t! . end
grips. Failure was defined as the loss of moment carrying capacity.

In a separate series of tests, the ovalization of the midspan of the beams was
measured with the travelling microscope for fixea bending moments applied by the
counterweights. The rotation at the support was measured with the angular rotation

transducer.

4.3 Experimental Results

The measured density, Young's modulus and Poisson's ratio of the solid silicone
rubber, foamed silicone rubber and foamed polyurethane used in the experimental
program are listed in Table 4.1. The ratio of the core to shell moduli for the rubber foam

is Ec/E = 0.1, while for the polyurethane foam it is Ec/E = 0.01.
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Under uniaxial compression, the hollow cylinders buckled in a diamond pattern
showing buckling wavelengths in both the circumferential and longitudinal directions,
while the cylinders with the compliant core buckled in the axisymmetric mode with only
longitudinal wavelength (Fig. 4.4). The longitudinal buckling wavelength of the hollow
cylinders was, as expected, several times that of the foam core cylinders. For a given
cylinder with a compliant core, increasing the bore-hole diameter had little effect on the
buckling wavelength until the core became very thin (core to shell ratios, c/t, of about 5).
At this point the shell and underlying foam acted as an equivalent isotropic shell and
buckled together as a unit. Typical load deflection curves for two hollow cylinders are
shown in Fig. 4.5. The normalized uniaxial buckling stress, o¢r/E, for the hollow
cylinders is plotted against the ratio of shell radius to wall thickness, w/t, in Fig. 4.6. Each
point represents the average buckling load of tests on three cylinders; the vertical lines
represent the maximum and minimum buckling loads. The buckling load for each
cylinder was obtained by averaging three repeated buckling measurements; the variation
in single cylinder measurements did not exceed 5%. The calculated buckling load, given
by eqn (3.1) in Chapter 3, is represented by the solid line in the figure: the theory
describes the data well. The load deflection curves for the fully and partially filled
cylinders show several distinct behaviors (Fig. 4.7). In the thicker walled cylinders (a/t =
4.3, 10) buckling causes a decrease in load; if the core is sufficiently deep it can carry
additional load at reduced stiffness after buckling of the shell (Fig. 4.7a). This behavior
is consistent with the numerical predictions of Almroth and Brush (1963) for the
postbuckling behavior of core-stabilised cylinders. At a/t = 22 there is a transition in
behaviour: cylinders with thick cores show bilinear behaviour with reduced slope at
higher loads while the cylinders with thin cores show a maximum load at which buckling
occurs (Fig. 4.7b). And the thinnest walled cylinders (a/t = 31, 48) all show a bilinear
load deflection curve (Fig. 4.7c). Axisymmetric buckling was observed to occur at the

peak load in curves with a maximum or at the point at which the slope of the load-
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deflection curve reduced in the bilinear curves. Data for the uniaxial buckling loads are
plotted against the core to thickness ratio, c/t, in Fig. 4.8. The measured buckling loads
are normalized by the theoretical buckling load for the hollow cylinder of the same a/t.
Each point represents the average buckling load of tests on three cylinders; the vertical
lines represent the maximum and minimum buckling loads. The leftmost point on each
plot represents the hollow cylinder (c/t=0), while the rightmost point represents the fully
filled cylinder (c/t = a/t-1/2). Intermediate points at increasing c/t correspond to
increasing core thickness. The value of ¢/t for which the stresses within the core decay to
a negligible level is indicated by (c/t),.

In Fig. 4.9, the number of axisymmetric buckling wavelengths for the fully filled
tubes is plotted against the radius to shell thickness ratio, a/t. The solid line represents
the number of wavelengths calculated from eqn (3.14) of the previous chapter based on
the initial length of the cylinder while the dashed line respresents that based on the actual
shortened length of the cylinder at the instant of buckling. Figure 4.10 shows the uniaxial
buckling stress for the fully filled cylinder of given a/t divided by the buckling stress of a
hollow cylinder of same a/t, G¢/C,, plotted against the dimensionless core stiffening
parameter suggested by Seide (1962), (a/t)3/2(E./E), comparing our results with
theoretical predictions and a compilation of data from the literature.

Four pairs of hollw and partially filled cylinders of equal mass were tested in
uniaxial compression to compare their buckling resistance. The cores of the partially
filled cylinders were made of polyurethane foam with a core:shell modulus ratio of 0.013;
the core depth was equal to 1.6 buckling half wavelengths. The buckling loads are
compared in Table 4.2. The partially filled cylinders had measured buckling loads
ranging from 1,35 to 3.70 times those of the hollow cylinders of equal weight, in
comparison to theoretical buckling load ratios of 1.8 to 5.22.

The results of the four point bend tests are shown in Figs. 4.11-4.15. Figure 4.11

shows photographs of local buckling of the compressive face and final collapse of a
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partially filled cylinder. Figure 4.12 shows moment-curvature relationships for typical
hollow and partially filled cylinders. The two measurements shown on each graph are
made with the seam of the tube at the neutral axis rotated either plus or minus 180e; the
local buckling moment was taken to be the maximum moment capacity of the beam and
was calculated from the average of the two measurements. The initial offset arises from
the initial dead load, as described in the methods section. The average local buckling
moment for the hollow cylinders is plotted against the shell radius to wall thickness ratio,
a/t, in Fig. 4.13a. The degree of ovalization of one of the hollow cylinders is plotted
against curvature in Fig. 4.13b. The degree of ovalization of the partially filled cylinders
was measured to be less than 1.5% for curvatures up to 0.6 m~!, which we took to be
negligible. The average local buckling moment of the partially filled cylinders is plotted
against the shell radius to wall thickness ratio, a/t, in Fig. 4.14. Figure 4.15 plots the ratio
of the measured local buckling moments of the partially filled cylinders to the theoretical
local buckling moment of hollow cylinders of equal weight. Superimposed on the figure
are the ratios predicted from the analysis of the previous chapter (eqn 3.47). Table 4.3
compares the theoretical and experimental local buckling moments of four pairs of
partially filled and hollow cylinders of equal weight. The partially filled cylinders had
measured buckling moments ranging from 2.43 to 4.84 times those of the hollow
cylinders of equal weight, in comparison to theoretical buckling load ratios of 2.15 to

2.99.

4.4 Discussion
Uniaxial compression

The load deflection curves for the hollow cylinders in uniaxial compression show
a well-defined maximum load at which buckling occurs (Fig. 4.5). The measured
buckling loads are described well by the analysis of the previous chapter (eqn 3.1) (Fig.

4.6). The excellent agreement between the analysis and data is due to the near perfect
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specimens produced by the spin-casting manufacturing technique (Tennyson, 1963, 1967)
and to the relatively small radius to thickness ratios used.

Data for the effect of increasing the central bore hole diameter on the uniaxial
buckling load are compared with the analysis in Fig. 4.8. The solid line represents the
calculated normalized buckling load, using eqn (3.1, 3.20 and 3.42) of the previous
chapter. For values of c/t < (c/t), (that is, core thicknesses less than that required for the
stresses in the core to decay to a negligible value) the modulus of the elastic foundation

ke, was modified as follows (Gough et al., 1940):

2E, sinh($)cosh(3) - ¥

(4.2)
A (3= Vo)l +ve)sinh? (£) + (14 ) ($)7 +4

Ke

where the variables are defined in the previous paper. The dashed lines describe
combined buckling of the shell and core (eqn (3.41) of the previous chapter). The mean
buckling load is indicated by the filled diamond points with a vertical line representing
the range. The theory describes the data well for a/t = 4.3 and 10, confirming the use of
the analysis for stress decay within the core. For a/t = 22 and 48, the mean measured
buckling loads are about 75% of the expected. And for a/t = 31, they are about 50% of
the expected. The discrepancies arise from imperfections in the thinner walled shells and,
Cat very low c/t, due to accumulated damage, namely shell-core debonding, from repeated
coring and testing. Imperfections arose from internal pressure in the core during the
foaming process causing barrelling of the thinner shells such that an originally straight
longitudinal strip of the shell bowed out slightly. Profile measurements of the thicker
walled shells (a/t=4.3 and 10) (Fig. 4.Ala) showed negligible barreling with maximum
magnitudes of between | and 2 mm, corresponding to one tenth to one third of the shell
thicknesses. Some of the thinner walled shells (a/t=22, 31 and 48) (Fig. 4Alb), on the
other hand, gave an approximately sinusoidal profile with a maximum amplitude varying

between 3 and 5 mm, or one to three times the shell thickness. The profiles fit the
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equation z = zmaxsin(® x/152) with a correlation factor R > 0.92, where z is the outward
displacement, zmax is the maximum barreling amplitude in mm given in the appendix
(Table 4.A3), x is the distance in mm along the length and z and x are measured in mm.
Given the long wavelength of the imperfection it seems that the decrease in the buckling
load is dependent on the maximum amplitude of the barreling. For the profiles measured,
specimens D4 (a/t=31), D5 (a/t=31) and E2 (a/t=48) showed the most barreling along
with the highest reduction in the buckling stress.

Previous investigations indicated that for an axisymmetric imperfection in the
shape of the buckling mode of amplitude equal to the thickness of the shell, the buckling
load of a hollow shell is reduced by 75% (Koiter, 1963). The presence of relatively small
internal pressures can reduce the drop in the buckling loads to less than 30% (Hutchinson,
1965): the effect of the compliant core in our specimens is similar to that of internal
pressure, reducing the effect of initial imperfections.

To verify that barreling was the correct cause of the decrease in buckling loads
three "quasi-perfect” cylinders of a/t=22,31,48 whe "¢ made and tested (Table 4.A1). The
cores were separately foamed in rigid molds, precisely machined to the inside dimensions
of the empty shells, then slipped in and bonded with a minimal amount of liquid rubber.
The effect of the bonding rubber was included in the analysis similarly to the bending
specimens. These specimen showed almost no barreling (Table 4.A3, Fig. 4Alc). The
buckling loads of these special specimens are represented in Figs.4.8¢,4.8d and 4.8e, by
the open diamond symbols showing very good agreement with the theoretical predictions.

The contribution of the foam core in resisting axial compression results in a stable
postbuckling regime, If serviceability is taken as the failure criterion, then the load
carried by the imperfect buckled cylinder at the deflection predicted by the linear
classical solution should be substituted for the bifurcation load. This will result in higher
failure loads for the imperfect cylinders and improved agreement with theoretical

predictions.
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The number of axisymmetric buckling wavelengths for the filled cylinders is
plotted against a/t in Fig. 4.9. The solid line represents theoretical values based on the
initial length of the cylinder while the dashed line takes account of the axial shortening of
the cylinder in the linear elastic range before buckling occurs. Agreement is good.

The data from this study are compared with those of previous studies and with
various theoretical models in Fig. 4.10. The new results, with the exception of the points
corresponding to the most barreled specimens with a/t=22,31,and 48, agree well with the
theoretical predictions and extend the range of experimental verification by about one log

cycle.

Local buckling
Typical moment curvature relationships for the four point bend specimens are
presented in Fig. 4.12. The theoretical moment curvature relationship can be derived

from the results of the companion paper as:
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with the variables defined as the companion paper, and b and b' modified to account for
the central bore hole of radius b. Note that in Fig. 4.12 the experimental moment
curvature curves start with ;,n offset equal to the initial conditions caused by the dead
load. The experimental plots of the partially filled cylinders are linear up to about half of
the theoretical critical curvature, C,, and then become nonlinear, reaching a maximum.
The initial linear behavior is slightly stiffer than expected due to an increase in the

gripping area of the conical inserts of the bending jig as the curvature increases; this

117



increased stiffness is most pronounced in the most compliant tubes with high a/t ratios.
The last part of the plots shows a small plateau corresponding to stable local buckling
which is usually followed by the localization of one buckle, the formation of an elastic
hinge and the collapse of the bent cylinder (Fig. 4.11b). In the unique case of the
cylinder with a/t=40, collapse did not take place and the tests were stopped when the
maximum range of the x-y plotter was reached. The measured buckling wavelength was
found to be between 25 and 32mm, close to the theoretical buckling wavelength of
3Imm.

The measured local buckling moments of the hollow tubes are plotted against the
radius to thickness ratio, a/t, in Fig. 4.13a. The data lie between 70-95% of the
theoretical values represented by the solid line. The discrepancies are caused by the
variability in the thickness of the long bending specimens. The buckling moment is
proportional to the square of the thickness of the tube; some individual thickness
measurements deviated from their average by up to 15%. The ovalization-curvature
relationship for hollow tubes was well described by theory (eqn (3.23) of the previous
chapter) with stable ovalizations of up to 8% measured (Fig. 4.13b).

The local buckling moments of the silicone rubber tubes with flexible
polyurethane foam cores are well described by the analysis of the previous chapter (eqns
3.30 and 3.37 to 3.40) (Fig. 4.14). With one exception all of the data points lie slightly
below the expected values; the discrepancies are due to local imperfections and
eccentricities. The buckling load for a/t = 40 exceeded predictions by about 15%. This is
within the statistical variability of the different experimentally measured properties,
especially the modulus of the rubber which showed a standard deviation of around 10%.
The measured ovalizations of the partially filled four point bend tubes were found to be
less that 1.5% at 80% of the critical curvatures for buckling.

Yabuta (1980) used the results of Seide (1962) for axial compression as the local

buckling criterion for cylindrical shells under buckling, neglecting any ovalisation or
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Brazier buckling. His limited data for Mylar cylinders filled with an elastic silicone
rubber core are within 20% of the numerical predictions, consistent with our observation
that ovalization can be neglected in a cylindrical shell with a compliant core. But his data
for hollow cylinders are less than 60% of the predicted loads as a result of neglecting the
ovalization at local buckling. Accounting for ovalization ({|b=0.145) the theoretical
buckling stress is reduced to (1-3Cb) = 56% of its axial compression value bringing the
theory into good agreement with the data.

In Fig. 4.15 the ratios of the measured local buckling moment of the partially
filled cylinders to the theoretical local buckling moment of hollow cylinders of equal
weight, show gains of 50 to 400% in strength for a/t = 20 to 50. The data points show the
same increasing trend with increasing a/t that the theory predicts, falling at most 25%
below predictions. The range of a/t are characteristic of plant stems and grasses, which

have a/t ratios from 10 to 70.

4.5 Conclusions

'The uniaxial compression data for the buckling load, the effect of core depth and
the buckling wavelength are well described by the analysis of the companion paper. The
measured buckling stresses of foam filled cylinders fell along the trend compiled from the
literature and have substantially extended the experimental verification range of the
theoretical predictions (Fig. 4.10). Cylinders with foam cores showed a reduced
sensitivity to imperfections caused by the manufacturing process and displayed a stable
postbuckling behavior, both missing characteristics in conventional hollow shells.

The elastic buckling of both hollow and partially filled cylindrical shells in pure
bending was shown to be well described by combining an axial buckling stress criterion
with Brazier's ovalisation analysis. The presence of a foam core reduced the ovalisation
at incipient local buckling from 15% for an empty tube to less than 1.5%. The measured

moment curvature relationships showed a nonlinear behavior while the analysis predicted
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an almost linear relationship. The discrepancy was found to be due to gripping friction
and premature local buckling. The critical buckling loads and bending moments of
partially filled cylinders increased by up to 400% above those of equivalent hollow
cylinders, as suggested by the analysis in Chapter 3.

The results suggest that biomimicking of natural cylindrical shells such as plant

stems may lead to improved design of engineering cylindrical shell structures.
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Table 4.1 Material Properties

Property Solid Foam Foam

Rubber Rubber Polyurethane
Density (Mg/m3) 1.17(0.022)T  0.40(0.01) 0.015(0.002)
Young's
modulus (MPa) 2.2" 0.20(0.024) 0.028(0.0032)
Poisson's
ratio (-) 0.48(0.009) 0.32(0.073) 0.45(0.10) 17

t number between parenthesis is the standard deviation

* Values for the Young's modulus varied between 1.41 and 2.39 GPa, depending on the
type of catalyst and the amount of thinner used. The theoretical buckling loads and local
bending moments were calculated using the value of E corresponding to the batch from
which each cylinder was made (see Appendix Table 4.A1 and 4.A2).

1 The polyurethane foam showed anisotropic with Poisson's ratios averaging 0.3, 0.46
and 0.55 along three orthogonal axes. In the numerical model,nc was set to 0.3. Both 0.3
and 0.45 give negligible ovalisations, and the use of 0.45 instead of 0.3 for the local
buckling stress results in an overestimate of the buckling stress of less than 5%.
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Table 4.2 Uniaxial Compression Buckling Loads for Hollow and Partially Filled

Cylinders of Equal Weight
Pexpd(N)

Mass
(g)

228
218

157
150

671
710

352
350

Notes:

at
32.5
22

40
26

c/t

12.5

160
104

73
54

290
119

85
23

166
92

108
54

400
133

235
45

P Iheory(N )

Peore/Pempiy(-)

(expt)

1.54

1.35

2.44

3.70

Peore/Pem

ty(-)
(th zeorvf

1.80
2.00
3.01

5.22

Cylinders had solid silicone rubber shells with a flexible polyurethane core with c/t=1.6
buckling half wavelengths
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Table 4.3 Local Buckling Moments for Empty and Partially Filled Cylinders of Equal
Weight

Mass a/t c/t Mp  Mp M core/Mib empry M core/Mip empty
(g) expt(Nm) theo(Nm) expt (-) theo (-)
1971 20 7 5.10 6.34 2.43 2.15

1976 176 - 2,10 295

1566 25 8.7 420 4.66 3.00 2.77

1550 23 - 1.40 1.68

1505 27 9.5 5.50 4.16 2.50 2.48

1540 23 - 1.40 1.68

1172 40 14 305 260 4.84 2.99

1101 32 - 0.63 0.87
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Appendix : Dimensions and Properties of the Specimens Used in the Experimental
Program

Table 4.A1.Elastic Moduli of the Solid Rubber Hollow Uniaxial Compression Specimens

Specimen D(mm) t (mm) a/t(-)ft E (Mpa)
Designation

A2(S 10%,nd) 113 11.80 4.3 1.97 (0.126) 1t
A3(S 10%,d) 113 11.90 4.3 2.204 (0.023)
A4(S 10%,d) 113 11.82 4,3 2.197 (0.022)
B3(S 10%,nd) 133 6.23 10 1.97 (0.126)
B4(S 10%,d) 133 6.30 10 2.204 (0.023)
B5(S 10%.d) 133 6.28 10 2.197 (0.022)
CI(S 10%,sp) 132 2.77 22 2.197 (0.022)
C2(FT 10%,sp) 132 292 22 1.412 (0.078)
C3(F 10%,sp) 132 2.83 22 2.388 (0.144)
C4*(F 10%,sp) 132 3.02 22 2.388 (0.144)
D3(F 10%,sp) 132 2.02 31 233 -
D4(F 10%,sp) 132 2.12 31 2.388 (0.144)
D5(F 10%,sp) 132 2.05 31 2.388 (0.144)
EI(FT 10%,sp) 132 1.37 48 1.412 (0.078)
E2(F 10%,sp) 132 1.26 48 2.388 (0.144)
E3(F 10%,sp) 132 1.46 48 2.388 (0.144)
"Quasi-perfect" specimens

C5(F 10%, sp) 132 2.565 22 2.110 (0.090)
D7(F 10%, sp) 132 2014 31 "

ES(F 10%, sp) 132 1.338 48 "

Note: in the specimen designation, S stands for slow catalyst, F for fast catalyst, FT for
fast catalyst and thinner, nd, d and sp for not de-aired, de-aired and spun respectively

1 a/t ratios are the mean values of the actual a/t ratios calculated from the outer diameter,
D, and the measured thicknesses, t, of the shell as a/t=(D-t)/2t, for the five size groups

T+ numbers between parenthesis are standard deviations

* cylinder C4 was kept empty
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Table 4.A2.Elastic Moduli of the Solid Rubber Hollow Four Point Bending Specimens

Specimen ! a/t alteor. E
Designation (mm) (-)t (-)1f (Mpa)
C7(F 10%,sp) 1.73 42 29 2.2 (0.204)**
C8(F 10%,sp) 1.32 55 40 "
CI9(F 10%,sp) 2.25 32 25 "
C11*%(F 10%,sp) 2.25 32 - !
C12(F 10%,sp) 1.83 40 28 !
C13(F 10%,sp) 2.16 34 27 "
C15(F 10%,sp) 3.28 22 19 "
C16(F 10%,sp) 3.12 23 20 "
C17*(F 10%,sp) 3.12 23 - !
C18*(F 10%,sp) 4.15 17.6 - "

Note: in the specimen designation, F stands for fast catalyst,and sp for spun

t a/t ratios are calculated from the outer diameter, D=146mm, and the measured
thicknesses, t, of the shell as a/t=(D-t)/2t

1 (a/t)cor.are the a/t ratios of the foam filled cylinders corrected to account for the
additional solid rubber used to bond the foam and seal the shell

* cylinders C11, C17 and C18 were kept empty

** numbers between parenthesis are standard deviations
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Table 4. A3.Maximum amplitude of profile barreling in axially
a foamed in place core

Specimen Maximum barreling Zmax/t (-)
desi:, nation amplitude (mm)

A4 1.25 0.1
BS5 2.0 0.3
C3 4.03 1.4
D4 4.95 2.3
D5 4,11 2.0
El 3.68 2.7
E2 5.0 3.9

"Quasi-perfect” specimen, core not foamed in place

C5 .15 04
D7 1.65 0.8
ES 115 0.9
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Figure 4.1: a) hollow b) fully filled and c) partially filled uniaxial compression
specimens; and d) bending specimen.

(a)
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Figure 4.1: (b)
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Figure 4.1: (c)
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Figure 4.1: (d)
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Figure 4.2: Centering jig for uniaxial compression tests.
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Figure 4.3: Four-point bending rig a) schematic of end fixture b) schematic of test set-up
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Figure 4.3: c) photograph of test set up.




Figure 4.4: Buckling patterns of cylinders in uniaxial compression a) a/t=22, c/t=0
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Figure 4.4: b) a/t=22, c¢/t=21.5
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Figure 4.4: c) a/t=22, c/t=13.5
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Figure 4.4: d) a/t=48, c/t=0
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Figure 4.4: e) a/t=48, c/t=47.5
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Figure 4.4: f) a/t=48, c/t=28.5
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Figure 4.5: Load-axial shortening curves for hollow cylinders in uniaxial compression.
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Figure 4.6: Normalized buckling stress o¢/E plotted against radius to wall thickness
ratio, a/t, for hollow cylinders loaded in axial compression.
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Figure 4.7: Load-axial shortening curves for foam filled cylinders, a) a/t=10
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Figure 4.7: b) a/t=22
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Figure 4.7: c) a/t=31

Load (N)

800

600

400

200

= a/t=31; Ec/E=O.l

cft=30.5

-
-
o
s
o
h
p
=
o
o
-
-
ad
po-

Axial shortening (mm)

146



Figure 4.8: Measured buckling load in uniaxial compression normalized by the
theorectical buckling load of a hollow cylinder of the same a/t plotted against the core to
shell thickness, c/t. a) a/t=4.3
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Figure 4.8: b) a/t=10
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Figure 4.8: c) a/t=22
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Figure 4.8: d) a/t=31

e theoretical predictions

N
(7]

LIS B B B LB BN M - "n?a?c' shell+core bUCkl.ing
[ ]
a/t=31; E /E=0.1 = + experimental results (mean)

o min
log

[\
o

"quasi-perfect” specimen

[um—y
W

¢

§3§§

(c/h)
llll'll*lllolllIlllllllllllllll.llll
0 5 10 15 20 25 30 35
Core depth to thickness ratio, c/t (-)

Normalized buckling load, P r/P0 )
S

150



Figure 4.8: ) a/t=48
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Figure 4.9: Number of axisymmetric buckling wavelengths for foam filled cylinders in
axial compression plotted against radius to shell thicks.ess ratio, a/t.
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Figure 4.10: Uniaxial buckling stress ratio plotted against Seide's dimensionless stiffening
parameter.
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Figure 4.11: a) Photograph showing short wavelength buckling on the compressive side
of the beam (a/t=28, c/t=10)
b) Photograph showing final collapse of the same beam.
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Figure 4.12: Moment-curvature curves for cylinders in four-point bending. The
theoretical critical curvature at which local buckling initiates is indicated by the arrow.
a) hollow cylinder, a/t=23
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Figure 4.12: b) partially filled cylinder, a/t=25, ¢/t=8.7
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Figure 4.13: a) Local buckling moment for hollow cylinders plotted against radius to
thickness ratio, a/t.
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Figure 4.13: b) Ovalisation-curvature relationship for a hollow cylinder, (a/t=17.0).
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Figure 4.14: Local buckling moment for partially filled cylinders plotted against radius to
wall thickness ratio, a/t.
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Figure 4.15: Ratio of measured local buckling moment of partially filled cylinders to
theoretical predictions for empty cylinders of equal weight plotted against a/t for the
partially filled cylinders.
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Figure 4.Al: Profile deviation from original straight shape for uniaxial compression
specimens, (a) a/t=4.3, foamed in place core
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Figure 4.A1: (b) a/t=48, foamed in place core
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Figure 4.A1: (c) a/t=48, "quasi-perfect" specimen, machined core.
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CHAPTER 5

NATURAL TUBULAR STRUCTURES,
DESIGN AND BIOMIMETICS

"Very different from human art, whose productions are only dead works,
Nature is herself a work perpetually alive, an active and never ceasing operator who
knows how to employ every material, and, though always labouring on the same
invariable plan, her power, instead of being lessened, is perfectly inexhaustible."

George-Louis de Buffon (Histoire Naturelle, 1764)

In light of the theoretical and experimental work presented in the previous
chapters, the microstructure of different plant stems and animal quills and spines was
characterized and their resistance to buckling estimated. The geometry of these tubular
structures was measured from optical and scanning electron micrographs. The elastic
moduli of the core was estimated from measurements of its relative density using models
for cellular solids (Gibson and Ashby, 1988). Data from our own specimens were
supplemented by measurements on micrographs taken from the published literature on
the microstructure of stems and quills. The measured core depth was compared to that
predicted by the stress decay analysis of Chapter 3. The mechanical efficiency of the
natural structures was evaluated by calculating the ratios of the axial buckling load, the
Brazier moment and the local buckling moment, to those of a hollow cylinder of equal

radius and mass. Potential biomimetic applications of these structures are described.
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5.1 Materials and methods

Fully grown live plant specimens were collected from the natural wild growth in
the New England area and identified at the Herbarium of Harvard University (Stevens,
1993). Stem cross sections were obtained from the lower quarter of the stems by
sectionning with a sharp razor blade. Measurements of the microstructure of the larger
specimens were performed with an electronic caliper (Max-Cal, Japan) and a direct
measurement optical microscope with a precision glass reticle (Edmund Scientific Co,
Barrington, New Jersey). Smaller specimens were gold coated, examined and
photographed in the scanning electron microscope (SEM) (Cambridge Instruments,
Model S240).

North American porcupine quills, 50 to 60 mm long, were obtained from live
animals at the Franklin Park Zoo in Boston while English hedgehog spines, 15 to 20 mm
long, were obtained from recently sacrificed animals at the Zoology Department of
Harvard University. We also obtained, from the Museum of Comparative Zoology at
Harvard University, conserved quill specimens for three other species: Hystrix Galeata,
Hystrix Subcristata and Tachyglossus Aculeatus , of lengths 235, 360 and 35 mm
respectively. Sections were prepared by freezing in liquid nitrogen and sectionning with a
sharp razor blade. Specimens were then gold-éoated and prepared for examination in the
SEM. Geometric property measurements were made on cross sections obtained from the
central part of the quills where the diameter is more or less constant along the length,

The recent botanical and zoological literature was also surveyed for micrographs
of plant stems and animal quills from which microstructural measurements could be
made ( Esau, 1977, Cenci et al., 1984, Vincent and Owers, 1986, Dunn and Briggs, 1988,
Ueno et al., 1989, Wilson et al. 1989).

The radius, shell thickness and core depth of each natural tubular structure were
measured either by direct optical microscopy, or on SEM micrographs. The solid

fractions, or relative densities of the outer shell and of the inner core were obtained by the
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classical stereological method of point counting: the relative density was found from the
ratio of the number of grid points that fell on solid material to the total number of grid
points falling in the observed region (Underwood, !970). In the case of the optical
measurements, the glass reticle grid was used as a reference while in the case of the

micrographs a grid was overlain on top of the micrograph.

5.2 Microstructure and material properties of natural cylindrical shells with
compliant cores

Microstructures

The porcupine quills and hedgehog spines all had a dense outer shell with a more
compliant inner core; their geometrical measurements are listed in Table 5.1A. Four
types of core microstructure were observed. The simplest microstructure, a foam-like
core filling the outer shell, was observed in the North American porcupine (Erethizon),
(Fig. 5.1), in the Brazilian tree porcupine (Coendou prehensilis) (Vincent and Owers,
1986), and in one of the two specimens of the echidna (Tachyglossus Aculeatus) that
were investigated (Fig. 5.2a-c). The other echidna specimen was hollow (Fig. 5.2d). The
cell wall thickness is uniform over the cross section while the cell size decreases from the
center of the cross section to the outer shel'l; resulting in a radially increasing relative
density, (Figs. S.1a-c). The foam relative density reported in Table 5.1A is an average
across the section.

The second core microstructure resembled the first, but with additional thin, solid,
longitudinal stiffeners running radially from the outer shell of the quill towards the
center; this microstructure was observed in the Old World porcupine quills Hystrix
Subcristata (Fig. 5.3), H. Galeata, (Fig. 5.4), and H. Indica x Cristata, (Vincent and
Owers, 1986). The stiffeners decrease in thickness as they converge at the central axis.
The foam filling the remaining core stabilizes both the outer shell and the thin stiffeners

(Figs. 5.3c,d). The volume fraction of the cross section occupied by the stiffeners was
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reported as the core relative density due to the ribs and it was obtained by dividing the
area occupied by the solid ribs by the tota! area of the section. The three dimensional
foam relative density was reported separately (Table 5.1A).

In the third microstructure the outer shell is stabilized by closely spaced
longitudinal and radial stiffeners; this structure was observed in the spines of the
hedgehog (Erinaceus Europaeus) (Vincent and Owers, 1986) (Fig. 5.5) and the spiny rat
(Hemiechinus spinosus) (Vincent and Owers, 1986). The longitudinal stiffeners do not
fully extend into the center of the cross section (Figs. 5.5a,b). The radial ring stiffeners
span the spaces between the longitudinal stiffeners; at the radius at which the
longitudinal stiffeners end, every three to four ring stiffeners converge to form a thin
diaphragm or septum that spans across the open central core (Figs. 5.5¢,d). This
configuration acts as a square honeycomb supporting the inside surface of the shell (Figs.
5.5d,e). The relative density of the honeycomb reported in Table 5.1A does not include
the central septa.

The fourth microstructure type was observed only in the tenrec (Setifer) spine
which has a filled foam core exclusively made out of thin closely spaced septa (Vincent
and Owers, 1986).

The plant stems surveyed (Table 5. lB~)- had a microstructure with a foam like core
similar to the first type observed in the porcupine quills. They could however be divided
into two main groups depending on the location of the vascular bundles in the stem. In
the first group,( Avena, Eleocharis, Elytrigia, Hordeum, and Secale), the outer shell was
made of close to cylindrical sclerenchyma and collenchyma cells, aligned along the main
axis (Fig. 5.6). The cells in the core were elongated parenchyma cells that are much
shorter, more equiaxed and of less regular geometry than the sclerenchyma and
collenchyma cells making up the outer shell (Esau, 1977). The cells in the outer shell
layer have small diameters, very thick walls and virtually no lumen, while those in the

core have thinner walls and much larger diameters resulting in a clear density change
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(Fig. 5.6a,b). The vascular bundles (xylem and phloem) through which water and
nutrienis circulate, and the stiff bundle sheath enclbsing them, are part of the core and
were included in its estimated density. All of the specimens surveyed in this first group
had a central hole.

In the second group the outer shell, again made up of elongated cells, contained
the vascular bundles while the core was made up of foam-like, roughly equiaxed
parenchyma cells (Fig. 5.7). Most specimens in this groups had fully filled cores.
Examples include Artemisia, Cenchrus Ciliaris, Latuca Biennis and Phytolacca
Americana.

The dimensionless geometrical parameters needed for the analysis of mechanical
efficiency were calculated from the information in Tables 5.1A and 5.1B and are
presented in Tables 5.2A and 5.2B. along with the required material properties. The
radius to thickness ratio, a/t, was obtained from the outer radius and shell thickners
measurements by subtracting half the thickness from the outer radius and dividing the
result by the thickness. The core to shell density ratio, r ¢/r, was obtained as the ratio of
the core relative density to that of the shell. The core depth to thickness ratio, c/t, was
cai..ulated as the ratio of the measured values. In the case of a foam-like core filling the

shell ¢/t = a/t-1/2.

Material properties
It the shell and the core are assumed to be made of the same material, the ratio of

the Young's modulus of the core to that of the shell, E¢/E, can be estimated from the core
to shell density ratio, p ¢/p, as (pc/p)R, where the exponent a depends on the geometry of
the cellular core as described by Gibson and Ashby (1988). Spines and porcupine quills
have no physiological function and are essentially modified hairs made of alpha keratin

(Vincent and Owers, 1986). Here we assume, like Vincent and Owers (1986), that the
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solid material in the shell and the core has the same mechanical properties, We also make

the same assumption for the plant stems.

In the analysis of Chapter 3, it was assumed that the shell and core were both
made of an isotropic material. The shells of the quills and spines are made of lay ups of a
fibre reinforced composite which most likely has its keratin microfibrils oriented to resist
stresses in the most efficient way, as was observed, for example, in the bessbeetle cuticle
(Gunderson et al., 1992). The shells of the plant stems, consisting of longitudinally
oriented, thick walled fibres, are obviously anisotropic to some degree (Niklas, 1992).

Due to the lack of published information on this topic and for the sake of
analytical simplicity, we assume the shell material in the observed natural structures to be
isotropic. On the other hand, the properties of the cores are dependent on their
microstructure which in some cases is clearly anisotropic.

Figure 5.9 shows schematically the different microstructures surveyed and the
models used to estimate the core to shell stiffness ratio, Ec/E. For the echidna and the
porcupine quills with a simple, isotropic, closed-cell foam-like core microstructure,

classified as type | microstructure (Coendou, Erethizon, and Tachyglossus Aculeatus)

(5)(), -2 (3)

as suggested by Gibson and Ashby (1982,1988) for similar synthetic foams. In this

(Fig. 5.9a):

model the major contribution to the stiffness of the foam was assumed to come from the
solid material accumulated at the edges of the packed cells neglecting the bending rigidity
of the walls themselves. Under loading these walls also undergo stretching which can

increase the stiffness significantly. This increase is a function of the fraction of solid
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material in the edges, ¢, and the walls, 1-¢, and can be represented in a refined form as

(Gibson and Ashby, 1988):

o] ool

A conservative estimate of the foam stiffness will be used in the following analysis,
neglecting the wall stretching contribution.

The second type of microstructure, exhibited by the Old World porcupines
(Hystrix Galeata, Subcristatus and Indica x Cristata, Fig. 5.9b), has an isotropic foam
core with longitudinal rib stiffeners, producing orthotropic properties. Their relative
modauli in the longitudinal and radial dircctions, x and z, can be estimated from an upper

bound rule of mixtures, as:
2
BEL __(B_] +[1_(9_) ](e_)
EJx VE/z \P Jrips P Jribs A P /foam

and the relative modulus in the circumferential direction, y, can be conservatively

estimated by:

~—
m

D Tk
y (I_E&]ribs]( )

where (pc/p)ribs and (pc/p)foam represent the relative density of the ribs and foam,
obtained by dividing the solid cross sectional area occupied by the ribs and the foam

respectively over that of the total cross section (Table 5.1A).

In the case the third type of microstructure, typified by the hedgehog spines
(Erinaceus and Hemiechinus) (Fig.5.9c), the square honeycomb core has a radial relative
stiffness equal to its relative density, while the longitudinal and circumferential
stiffnesses are equal to half that value because only half the core material is oriented in

those directions:
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{2),4%) -5, -2)

The last type of core microstructure observed in the spines is that of the tenrec
(Setifer) (Fig. 5.9d). Its circumferential and radial relative stiffnesses are equal to its

relative density while its longitudinal stiffness is negligible.

The cores of the plant stems consist mainly of parenchymatous tissue which can
be considered as an isotropic material (Niklas, 1992), (Fig. 5.9¢). They are treated
similarly to the procupine quills of type 1 microstructure. The relative stiffness of these

cores can be conservatively estimated as:
2
(Be) =(5e) (%) - (p_)

neglecting the water pressure (turgor pressure) and wall stretching effects.

5.3 Mechanical Efficiency of Natural Structures

The analysis of Chapter 3 can be used to describe the mechnical efficiency of
natural cylindrical shells in a number of ways. Most obvious, the ratio of the buckling
load (under axial compression) or buckling moment (under pure bending) of a natural
shell with a compliant core to that of an equivalent hollow shell can be calculated. In
addition, the core depth can be compared with that required for the core stresses to decay
to 5% of the value at the shell during local buckling, (c/t)o.

From the estimated geometrical and material properties, the theoretical core depth
required for the core stress to decay to 5% of the value at the shell during local buckling,
(c/t)o, were calculated according to the analysis of Chapter 3 (eqns 3.18) and are listed in
Tables 5.2A and 5.2B. The theoretical values are compared with the measured values of
c/t in Figure 5.10. The results of Chapter 3 (eqns 3.18) were obtained by treating the core

as a two dimensional elastic foundation with isotropic properties in the x-z plane. The
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core resists the movements of the shell by extension-compression in the z-direction and
by shearing in the x-z plane. This analysis is exact for the case of the natural structures
with isotropic cores of type | microstructure (quills and all plant stems), and is equally
valid for the quills and spines of microstructures of types 2 and 3 . It is however not
applicable to type 4 microstructures (Setifer spines) where the foundation cannot provide
any shearing resistance due to its longitudinal discontinuity in the x-direction. The Setifer

spine specimen was therefore dropped from the following analysis.

The efficiency of the natural cylindrical microstruc-tures was evaluated by
comparing their failure loads to those of equivalent hollow sections of the same radius

and total mass. Assuming the Poisson's ratios of both the cores and the shells to be equal

to 0.3, the ratios of the buckling stress, O¢; /(G )eq, the axial buckling load, Per /(Py)eq
the Brazier moment, Mppyier/(MBragier)eq» and the local buckling moment,

M. /(M]p )eq, Were all calculated. The type 1,2, and 3 microstructures were analyzed

by modifying the equations of Chapter 3 (eqns 3.44 3.47) to account for the transversely

isotropic properties of the cores and their measured depth as follows:
- in the elastic foundation calculations of the critical buckling parameter,A, /t, and the

function f] (eqns 3.18 and 3.19) the radial §tiffness modulus ratio,(E, /E)Z, was used.

The spring constant of the foundation was claculated according to eqn 4.2 accounting for
the depth of the foundation.

- in the terms correcting for the axial load carried by the core (eqn 3.20) and for the
increase in the moment of inertia due to the core (Appendix Ch.3) the longitudinal
stiffness modulus ratio,(Ec /E)x, was used.

- in the equations giving the ratios of buckling load or moment of the shell with the core

to that without the core (eqns. 3.4 to 3.47), the core depth needed for 95% stress decay,
(c/t), = SAcc/t, was replaced by the measured core depth c/t.

172



- the radial stiffness modulus ratio,(E¢/E),, was used in the calculations of the

ovalisation of the core and the Poisson effect (Appendix Ch.3). The effect of the lower
circumferential stiffness modulus ralio,(Ec/E)y,in the case of type 2 and 3 core
microstructures (Fig. 5.9b and c¢) was neglected. The error resulting from this
simplification affects only the amount of ovalisation due to Brazier's effect which for all
good purposes falls below 2% and is negligible for any stiffness modulus ratio in the
range considered.

Carrying out all the modifications described above the following equations are

obtained:
oy __ \B30-V) _f, 5.1)
(Go)eq 1+ £ Pe (2_?_/_[_)
2t p % |
V3l -v?) l+2%a'[2—%]]
Pcr = L 2l fl (5.2)
(Po)leq [ ( y)]
1+ Bep 2
20 p 3/
4 2
|
312 , C |
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where the ovalisation at the local buckling moment, § |p, is obtained similarly to eqn.

3.40 from:

1+%—'%{1-(1-§§-J4J%

Ew ) 18w |_
(1—\;2](1-3&1[») [1+ (- v)aB( )3]

fy (5.5

ol

f1 was calculated from eqn. 3.19 with A ¢/t taken from Tables 5.2A and 5.2B; and the

parameters o, o' , 3, and B' defined as follows:
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B'=O.762{1-—(1—;§:—]4J

These failure load ratios are presented in Tables 5.3A and 5.3B, and Figures 5.11,

5.12 and 5.13.

5.4 Discussion

In Figure 5.10, the measured core depth to thickness ratio, c/t, is plotted versus the
depth required for 95% stress decay, (c/t)o , for the quills and spines on one hand and the
plant stems on the other. The data for the plant stems falls consistently along, but slightly
below, the c/t = (c/t)g line. It is fitted with a high correlation, R=0.96, by a line of a slope
of 0.95, which is very close to 1.0 and can be practically considered equal to it. The data
for the quills and spines does not fall along the c/t = (c/t)o line. However, it does show a
very clear trend of its own, best fitted by a line of slope 2.9, with a high correlation factor
of R=0.94, The growth or development of the reinforcing foam cores of the plant stems
seems clearly driven and controlled by the stresses generated in the core at impending
local buckling of the shell. The decay of stresses away from the shell reduces the amount
of material needed to resist them causing a continuous foam density reduction (Fig.5.6b);
at ¢/t = (c/t)o , the foam core is simply stopped and no more material is needed as no
more stresses are felt, The spines of Erinaceus and Hemiechinus are the only ones in
the animal group that have a core only partially spanning the inside of the shell. They do

however contain thin widely spaced diaphragms, The data points corresponding to their
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cores fall at the intersection of the c/t = (c/t)g line and the quills and spines trend.
Though fully filled, the quills of the porcupines ( Hystrix, Erethizon, Coendou) all show
a marked decrease in the core density towards the center (Fig. 5.1a, 5.2a and 5.3a)
supporting the stress controlled growth hypothesis. The purely theoretical measure of the
stresses in the core at local buckling, (c/t)o, derived in the analysis of Chapter 3, is shown
to be one, but possibly not the only, major variable controlling the growth of foam cores
in quills and spines. Physiological and physical conditions, not investigated in this

analysis may well explain the need for fully filled cores or cores with diaphragms.

Figures 5.11 shows the failure load and moment ratios for the quills and spines to
those of a hollow cylinder of equal mass and radius. Figure 5.11a shows P /(P )eq for
the different species investigated. Only the hedgehog spines, with the square
honeycomb-like cores which have a stiffness proportional to their density are above the
1.0 line showing more than 50% improved performance under axial load. Figure 5.11b
shows the Brazier moment ratio, Mprazier/(MBrazierJeq» With all surveyed species
showing improvements between 100 and 900%, except of course for the hollow
Tachyglossus Aculeatus specimen. Although in practice, local buckling precedes Brazier
buckling, this does imply that the Brazier o;alization and associated loss of moment of
inertia aretotally prevented. Figure 5.11c presents the improvements in local buckling
resistance under bending, M, /(M| )eq- The best improvements, over 300%, are
achieved again by Erinaceus and Hemiechinus because of their square honeycomb
cores. The Hystrix family reaches modest results ranging from nothing to about 40%.
Tachyglossus Aculeatus, Erethizon, and Coendou fail to realize any improvements in
local buckling moment resistance, and actually decrease that resistance by as much as
30% (Table 5.3A). Note that the model used in the analysis to estimate the stiffness of
the foam core for the porcupine quills of type 1 microstructure (Fig. 5.9a) neglected the

wall stretching effect and may have been overconservative. Figure 5.8¢c shows the cell
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walls of Erethizon's foam core to contain a substantial fraction of the total solid material.
A more involved microstructural investigation would have been required in order to
correctly account for this stiffening effect.

All animal quills and spines succeed in controlling the mode of failure by
eliminating Brazier ovalization. The improvements in local buckling resistance under
axial load or bending moment are mixed, with most species achieving some improvement
in local buckling moment resistance (Fig. 5.11c). The function of the quill or spine may
dictate the level of performance, The short spines of the hedgehog (Erinaceus ) and the
spiny rat (Hemiechinus ) are required to act as shock absorbers as much as armour and
protection to discourage predators, hence the high structural efficiency requirement and
the need to delay local buckling until the internal stresses have almost reached material
failure limits (Vincent and Owers, 1986). The longer quills of the porcupines may only
be needed to act as a deterrent to predators with less of a mechanical shock absorbing
function (Vincent and Owers, 1986). The efficiency ranking of the species surveyed
varies little from one measure to another in Figs 5.11a through 5.11c. This ranking could
possibly be used to establish the relative positions of these animals along the evolutionary
scale and the effect of geography on their development. Both Coendou and Erethizon
are New World porcupines, Hystrix is the farﬁily of Old World porcupines, Tachyglossus
Aculeatus is an echidna native to Australia, Tasmania and New Guinea. The tenrec
(Setifer ) is found in Madagascar and the hedgehog (Erinaceus Europaeus ) is of course a

European insectivorous mammal.

Figures 5.12 summarizes the results for the ratios of axial buckling load, Brazier
moment, and local buckling moment for the plant stems. Losing axial stiffness because
of the three dimensional core, plant stems have their axial buckling resistance reduced
between 10 and 40% (Fig. 5.12a). Brazier moment resistance is improved increasingly

with increasing aft, ratios, up to 900% at a/t=60 (Fig. 5.12b). Local buckling moment

177



resistance is nearly without improvements at a/t ratios below 20, but manages a
significant 20 to 50% improvement at higher a/t ratios (Fig. 5.12c). The apparently
poorer performance of stems with pithy parenchymatous cores is due to the fact that in
this analysis the relative density of the foam was used to estimate its relative modulus of
stiffness neglecting the effect of turgor pressure. Parenchyma cells are living cells with a
protoplast. They fulfill many physiological functions among which water storage, and
act as stacked pressurized containers in the core. The pressurized protoplast stiffens the
cell walls against bending and acts as an elastic foundation (Niklas, 1992). The impact of
this water pressure (or turgor pressure) on the effective stiffness properties of plant stems
and other tissues has been investigated by Niklas and O'Rourke (1987) and Niklas (1989)
showing its impurtance, In the case of species occupying wet habitats (hydrophytes)
mechanical support is mainly provided by hydrostatic tissues (Niklas, 1992).
Experimental investigations have showed the turgor pressure to increase the effective
stiffness of chive (Allium schoenoprasnum ) leaves by threefeld (Niklas and O'Rourke,
1987) and that of parenchyma plugs from potato tubers by fivefold (Niklas, 1992).
Nilsson et al. (1958) derived a formula that predicts the apparent clastic modulus of
parenchyma for any turgor pressure, and Gibson and Ashby (1988) proposed a similar
one for pressurized synthetic foams, Both models show the increase in the relative
stiffness ratio, E¢/E, to be proportional to p/E, where p is the internal cell pressure. If the
internal pressure effect was included in the previous analysis it would have introduced an
important stiffening of the parenchymatous cores and would have resulted in a marked
improvement in mechanical performance. Measurements of this pressure and estimates
of the pressurized parenchyma apparent modulus were however beyond the scope of this

study.

The plant stems show more consistent results than the animal quills and spines.

For a porcupine or a hedgehog the quills and spines represent & fraction of their total
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weight and perform a limited and very specific function that depends on the specie and
that may or not be critical for survival. This does not impose a very high evolutionary
stress on the animal to develop the most efficient and adapted structure. The spines
density was estimated from the hide of one of the sacrificed hedgehogs that furnished the
spine specimens, to be as high as 114 spines per cm2. The average spine weight was
measured to be aroung 5.4 mg. Treating the hedgehog as a spheroid covered with spines,
the weight of the spines was estimated to be of the order of 10% of the total weight of the
animal. This is a relatively important fraction of the hedgehog weight and it can explain
the higher mechanical efficiency of its spines.

On the other hand the stem of a plant is its most important biomass investment,
providing structural support and carrying lifelines from the roots to the leafs and
reproductive organs. It is critical for survival. In a competition for sun light and
exposure, the plant able to minimize its structural weight for the required strength, will
maximize its growth rate, attaining greater heights in shorter times, and hence securing its

evolutionary niche and insuring its perpetuation.

Finally, Figure 5.13 compiles the calculated ovalisation at local buckling under
bending, & |b, for the quills, spines and stems. It is plotted versus a/t showing the
dramatic decrease in ovalisation from 0.145 for a hollow tube to less than 0.01. This
decrease is more important at higher a/t ratios. This ovalisation measure can be used as a
single parameter to compare and rank, albeit approximately, both the Brazier moment

and local moment resistances of different natural foam core cylindrical structures.

5.5 Engineering design and biomimetics

The theoretical and experimental analysis of foam core cylinders in Chapters 3

and 4, inspired from natural structures, have suggested new avenues of research and new
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configurations that optimize the use of materials. The survey and analysis of natural
tubular structures in this chapter has identified some well designed and complicated
structures. The solutions achieved by natural organisms also have to meet many other
requirements imposed by growth and phvsiological function that could not have possibly
been included in our analysis.

More so than by blindly copying a final solution from nature, the engineer can
learn by mimicking in design the evolutionary process. Take the quills and spines, for
example. These are modified hairs whose original dimensions, utility and density, may
have been determined by a minimum heat transfer condition (Bejan, 1992). Their main
function is a structural beam-column with loading stresses caused typically by an
eccentrically applied compressive force on the free end (Vincent and Owers, 1986). The
mechanical design problem can be stated as follows: for a given length, the spine or quill
has to meet or exceed a set of stiffness and strength requirements keeping the mass to a
minimum. At the scale of the quill, the mechanical constraints are: global bending
stiffness to resist bending and Euler buckling and bending strength to avoid failure under
the expected loads.

Figure 5.14 presents a set of sketches illustrating the development of increasingly
mechanically efficient structures. Starting with a solid hair, or a rod, the first stey. to
improve material efficiency is to go to a hollow cylinder of some radius to thickness
ratio, a/t, that meets the bending stiffness requirement without increasing the mass (Fig.
5.14a). When that a/t ratio is attained, the section becomes more sensitive to Brazier
ovalization. This jeopardizes the bending stiffness at high curvatures and compounds the
problem of local buckling which becomes the controlling mechanism of failure. The
design problem is now taken one step further to the level of the cross section. Brazier
ovalisation can be thought of as a distributed pressure load acting in the plane of the cross

section trying to change its shape. To counteract this distributed load un isotropic foam
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core is introduced providing for nniform suppori with a minimum amount of material
(Fig. 5.14b).

At this stage local buckling of the shell becomes the next problem to solve in
order to meet the strength requirement. The problem of local buckling under bending is
in fact that of a thin sheet on an elastic foundation under axial compressive stresses. One
way to improve the resistance to local buckling is to provide for immediate support of the
shell in the most efficient way, which is to align some core material radially. This radial
reinforcement can be provided in the form of longitudinal, circumferential or orthogonal
stiffeners (Fig. 5.14¢). If these stiffeners are massively built they can also resist Brazier
ovalization and the isotropic foam core can be dispensed of (Fig. 5.14d). Finally a stiff
efficient core microstructure (such as a sg:1are honeycomb) is reached and local buckling
is adequately resisted the depth of the material in the central part of the core can be
removed without affecting the mechanical performance (Fig. 5.14e).

The different quill and spine microstructures surveyed in this study support this
design evolution scenario. Plant stems design can be deduced from a different scenario as
proposed by Niklas (1992) that involves in addition physiological factors.

The iterative engineering design process is similar to the hierarchical design
process proposed for quills and spines. In ii‘cating tubular structures, we have moved
from solid to hollow sections, then from hollow to reinforced hollow sections. The
manufacturing problems encountered in making orthogonally reinforced metallic shells
with thin deep stringers and rings have prevented the improvement of our designs.
Metallic honeycombs can today bridge this technological gap and may provide new ways
of manufacturing reinforced shells inspired from natural structures. The use of foams .8
stabilizing foundations has been recently introduced to reinforce the honeycomb cores of
sandwich panels against local buckling. Recent advances in materials microstructuring

processes such as foaming, are giving the engineer the same operating power as nature to
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produce better designs by following a hierarchical design optimization process at ever

smaller scales, going from struciure to microstructrue to nanostructure,

5.6 Conclusio.* =

The characterization of several natural tubular structures (quills, spines and plant
stems) revealed them to be close to the optimal configurations predicted by the analytical
model. The analysis of their mechanical efficiency has improved our understanding of
their function and design cvolution; it did not however account for physiological and
growth requirements.

Engineering design can benefit at two levels; at the level of outright biomimicry,
copying a given su :cesstul design such as that of the hedgehog spines, or at the level of
the design process, following a h'-varchical approach, satisfying optimally the most

immediate mechanical constraint at the scale under consideration.
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Table 5.1A. Section properties of animal quills and spines

Animal Information  Quter Shell Shell Core Core depth,
Genus/Specie Source radius, thick relative  relative ¢ (mm)
(common (mm) -ness density, density,
name (mm) P () pe (=)
Type 1: isotropic three dimensional foam core
*Coendou Vincent and 0.48 0.033 1.0 0.2 foam filled
prehensilis Owers core
(Brazilian (1986)
Porcupine)
*Erethizon, SEM 0.89 0.048 1.0 0.1-0.15  foam filled
(North investigation core
American
porcupine)

sTachyglossus SEM 1.34 0.48 1.0 0.11 foam filled
Aculeatus,  investigation core
specimen |

(echidna)

*Tachyglossus SEM 0.90 0.33 1.0 0.0 empty thick
Aculeatus,  investigation walled tube
specimen 2

(echidna)
Type 2: longitudinal solid ribs with isotropic three dimensional
foam core
*Hystrix SEM 1.34 0.074 1.0 0.037 foam filled
Galeata investigation ribs, core
(porcupine) 0.10
foam
*Hystrix Vincent and 1.33 0.133 1.0 0.03 ribs, foam filled
Indica- Owers 0.15 core
Cristata (1986) foam
(porcupine)
*Hystrix SEM 1.25 0.12 1.0 0.07 ribs, foam filled
Subcristatus  investigation 0.11 core
(porcupine) foam

Type 3: orthogonal longitudinal and circumferential stiffeners in
a square honeycomb
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*Erinaceus SEM 0.36
Europaeus  investigation
(hedgehog)

*Erinaceus  Vincentand  0.52
Europaeus Owers
(hedgehog) (1986)

eHemiechinus Vincent and .53
spinosus Owers
(spiny rat) (1986)

Type 4: closely spaced thin septa

*Setifer Vincent and 2.65
(tenrec) Owers
(1986)

0.025

0.04

0.04

0.53

185

1.0

1.0

1.0

0.1

0.1

0.1

0.1

0.17

0.285

0.21

filled core



Table 5.1B. Section properties of plant stems

Plant name Information  Quter Thick Shell Core Core depth,
(description) Source radius, -ness relative  relative ¢ (mm)
(mm) (mm) density,  density,
p(-) pe (-)
Group 1: vascular bundles in core
*Avena, Esau, (1977) 3.82  0.06-0.08 0.95-1.0 0.1 0.824
(oat) without
vascular
bundles
eEleocharis  Ueno et al. 0.35 0.016 09 0.2 0.1
(sedge grass) (1989)
*Elytrigia SEM 0.97 0.036 0.9-1.0 0,13 0.285
repens, investigation (0.2 with
specimen | vascular
(grass) bundles)
*Elytcigia SEM 1.17 0.05 0.9-1.0 0.13, 0.4
repens, investigation (0.2 with
specimen 2 v.b)
(grass)
*Hordeum Dunn and 1.5-2.0 0.03-0.09 08-1.0 0.1-0.2 0.3-0.68
vulgare, Briggs
(barley) (1989)
*Secale, Esau, (1977) 2.90 0.06 0.8 0.075 0.704
(rye) '
Group II: vascular bundles in shell
*Ariemisia, SEM 1.6 0.381 09-1.0 0.1-0.3 foam filled
specimen 1  investigation
*Artemisia, SEM 2.55 0.762 1.0 0.2 foam filled
specimen 2 investigation
eCenchrus Wilson et al. 0.83 0.14 0.8 0.2 foam filled
Ciliaris (1989)
(buffel grass)
eLatuca Optical 7.5 0.127 1.0 0.07-0.10 1.54
Biennis, microscopy
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*Phytolacca Optical 7.75 041 0.95 0.03 5.0
Americana,  microscopy
(wild-berry

type)
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Table 5.2A. Dimensionless material and geometrical properties of animal quills and

spines
Animal Radius Core to Core c/t ratio Buckling Radial Longitu-
Genus/Specie to thick-  shell depthto for95% wave core to dinal
{common ness density thicknes stress length shell core (o
name ratio ratio s ratio decay para- stiffness shell
at pe/p c/t (c/t)o  metert falio stifﬁ]ess
-) -) (-) ) Acr/t (Ec/E)z ratio
(-) () (Ec/E)x
()
*Coendou 14.0 0.2 13.5 8.25 1.65 0.04 0.04
prehensilis
(Brazilian
Porcupine)
*Erethizon, 18.0 0.125 17.5 10.50 2.10 0.0156 0.0156
(North
American
porcupine)
*Tachyglossus 23 0.11 1.8 4.15 0.83 0.012 0.012
Aculeatus,
specimen 1
(echidna)
eTachyglossus  2.20 0.0 0.0 4.08 0.0 0.0 (.0
Aculeatus,
specimen 2
(echidna)
*Hystrix 17.6 0.137 17.1 ' 8.40 1.68 0.047 0.047
Galeata
(porcupine)
oHystrix 9.5 0.18 9 7.24 1.45 0.052 0.052
Indica-
Cristata
(porcupine)
*Hystrix 10.0 0.18 9.5 6.77 1.35 0.081 0.081
Subcristatus
(porcupine)

*Erinaceus 13.7 0.10 6.8 6.86 1.37 0.10 0.05
Europaeus
(hedgehog)
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eErinaceus 12.5 0.10
Europaeus
(hedgebog)

eHemiechinus  12.75 0.10
spinosus
(spiny rat)

Setifer 4.5 0.1
(tenrec)

fthe ratio of the critical buckling wavelength parameter to the thickness, A¢r/t, was

calculated form eqn 3.36
T+tNA: not applicable

7.

4

1

5.25

189

6.75

6.75

NATt

1.36

1.36

NA

0.10

0.10

0.10

0.05

0.05

0.0



Table 5.2B. Dimensionless material and geometrical properties of plant s.ems

Group I
*Avena,

(oat)

eEleocharis
(sedge grass)

*Elytrigia
repens,
specimen |
(grass)

*Elytrigia
repens,
specimen 2
(grass)

*Hordeum
vulgare,
(barley)

eSecale,
(rye)

Group I1
*Artemisia,

specimen 1

*Artemisia,
specimen 2

eCenchrus
“Ciliaris
(buffel grass)

eLatuca
Biennis,
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Radius  Core to Core ¢/t ratio Buckling Radial Longitu-
to thick-  shell depthto for95% wave core to dinal

ness relative thicknes  stress length shell core 1o
ratio density  sratio decay para- stiffness shell

t pelp c/t (c/t)o metert ratio  stiffness
-) (-) (-) (-) Acr/t (Ec¢/E)z, ratio

) -) (Ec/E)x

(-)

54 0.10 12 14.01 2.85 0.01 0.10
21.4 0.22 6.35 8.645 1.729 0.05 0.22
26.4 0.22 7.9 8.78 1.76 0.05 0.22
229 0.22 8 8.70 1.743 0.05 0.22
28.7 0.17 9 10.02 2.007 0.03 0.17

48 0.094 11.7 14 2.80 0.009 0.094

3.7 0.22 32 5.06 1.015 0.05 0.05
2.84 0.20 2.3 4,53 0.908 0.04 0.04

54 0.25 49 5.84 1.169 0.0625 0.0625

58.6 0.10 12.1 14.5 2.892 0.01 0.01



*Phytolacca 18.4 0.032 12.2 11.7 2.347 0.001 0.001
Americana,
(wild-berry
type)
tthe ratio of the critical buckling wavelength parameter to the thickness, do¢/t, was
calculated form eqn 3.36
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Table 5.3A. Failure load ratios for animal quills and spines

Animal Buckling Axial Brazier Local Ovalisatio
Genus/Specie stress buckling moment buckling n.atlocal
(common ratio load ratio ratio moment buckling
name Ger/(Go)e Fer/(Podeq  MBr/ ratio Elb
) q © ) (MBr.)eq M/ (=)
(-) (-) (Mibeq
-)

*Coendou 091 0.51 2.76 0.77 0.0074
prehensilis
(Brazilian
Porcupine)

eErethizon, 0.74 0.40 3.00 0.73 0.0054
(North
American
porcupine)

eTachyglossus N.91 0.82 0.89 0.88 0.134
Aculeatus,
specimen 1
(echidna)

sTachyglossus 1.00 1.00 1.00 1.0 0.145
Aculeatus,
specimen 2
(echidna)

*Hystrix 1.14 0.73 5.26 1.27 0.0055
Galeata
(porcupine)

sHystrix 0.87 0.55 2.57 0.96 0.0134
Indica-
Cristata

(porcupine)

*Hystrix 1.14 0.85 4.02 1.44 0.0125
Subcristatus
(porcupine)

sErinaceus 2.05 1.70 10.04 3.25 0.0107
Europaeus
(hedgehog)

*Erinaceus 1.90 1.58 9.07 2.98 0.0109

Europaeus
(hedgehog)
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*Hemiechinus 2.06 171 9.38 3.36 0.0129
spinosus
(spiny rat)
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Table 5.3B. Failure load ratios for plant stems

Plant name Buckling Axial Brazier
(description) stress buckling  moment
ratio load ratio ratio
ocr/(Go)e  FPer/(Podeq  MBr/
°r q o (-) (MBr.)eq
(-) {-)
Group |
*Avena, 1.31 0.70 8.41
(oat)
*Eleocharis 1.396 0.81 5.22
(sedge grass)
*Elytrigia 1.48 0.80 5.82
repens,
specimen |
(grass)
*Elytrigia 1.32 0.72 5.05
repens,
specimen 2
(grass)
sHordeum 1.28 0.69 5.71
vulgare,
(barley)
*Secale, 1.19 0.66 7.60
(rye)
Group IT
*Artemisia, 0.84 0.66 1.24
specimen 1
*Artemisia, 0.86 0.71 1.01
specimen 2
eCenchrus 0.83 0.58 1.66
Ciliaris
(buffel grass)
eLatuca 1.39 0.74 9.06
Biennis,
*Phytolacca 0.83 0.66 2.06
Americana,
(wild-berry
type)
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Local Ovalisatio
buckling  n at local
moment  buckling

ratio E,lb

Mip/ )
(Mlbeq

-)

1.36 0.0024
1.54 0.0084
1.52 0.0068
1.35 0.007

1.31 0.005

1.28 0.0026
0.96 0.0667
091 0.0989
0.96 0.0334
1.44 0.0024
1.15 0.0297



Figure 5.1: Micrographs showing North American porcupine quill (Erethizon) (a) and (b)
cross section
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Figure 5.1: (¢) and (d) longitudinal section
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Figure 5.2: Micrographs showing echidna (Tachyglossus Aculeatus) quills: (a), (b)
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Figure 5.2: (d) cross sections and (¢) longitudinal section
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Figure 5.3: Micrographs showing Hystrix Subsristata quill : (a) and (b) cross section
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Figure 5.3: (¢) and (d) longitudinal section
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Figure 5.5: Micrographs showing hedgehog (Erinaceus Europaens) spine: (a) and (b)
Cross section ,
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Figure 5.5: (¢), (d) longitudinal sections
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Figure 5.5: (e) longitudinal section, core as seen from inside of shell
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Figure 5.6: Micrographs showing grass (£/yvirigia repens) stems (a) and (b) cross sections
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Figure 5.7: Micrographs showing stem (Arremisia) : (a) and (b) cross seetions
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Figure 5.8: Micrographs showing North American porcupine quill (frethizon) @ (a) high
magnification of solid shell material showing fibrous structure (b) three dimensional
foam core microstructure
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Figure 5.8: (¢) high magnification of foam core cell wall
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Figure 5.9: Microstructural core types and stiffness models:(a) Type 1 quills and plant
stems (b)Type 2,quills

(a) Type 1 porcupine quill and
plant stem microstructure:

(Ec /E)x = (Ec /E)y = (Ec/B)z =(pc/p) *

(b) Type 2 porcupine quill microstructure;
(Ec /E)x = (Ec /[E)z =

2
(pc /p)ribs +[1-(pc /p)ribs](pc /p) foam core

(Ec /E)y = { (pc /p) foam core /[1~(pe /p)ribs] }2
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Figure 5.9: (c) Type 3, spines (d)Type 4, spines

(c) Type 3 hedgehog spine microstructure:
2(Ec /E)x =2(Ec /E)y = (Ec /E)z = (pc/p)

(d) Type 4 tenrec spine microstructure:
(Ec /E)y = (Ec /[E)z = (pc/p)

(Ec [E)x=0
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Figure 5.10: Measured core depth to thickness ratio, c/t, versus core depth to thickness
ratio required for 95 % stress decay, (c/t)o
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Figure 5.11: Ratio of the failure loads of animal quills and spines to those of the no core
cylinder with equal radius and mass: (a) Axial buckling !oad
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Figure 5.11: (b) Brazier moment
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Figure 5.11: (c) local buckling moment
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Figure 5.12: Ratio of the failure loads of plant stems to those of the no core cylinder with
equal radius and mass: (a) Axial buckling load
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Figure 5.12: (b) Brazier moment
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Figure 5.12: (c) local buckling moment
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Figure 5.13: Ovalisation at local buckling versus radius to thickness ratio, a/t, for quills,
spines and stems.
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Figure 5.14: (a) to () Evolutionary design process in animal quills and spines
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS
FOR FUTURE WORK

"You believe in a God who plays dice, and I in complete law and order"
Albert Einstein (letter to M. Born, ca. 1930)

6.1 Conclusions

To investigate the mechanical efficiency of natural tubular structures with a
cellular core an analytical model was developped to describe their elastic stability under
axial compression, Brazier's ovalisation, and local buckling under bending. Treating the
shell as a beam on an elastic half space, a simplified analysis of the buckling under axial
compression was developed. It captures the most important elements of more
complicated models and provides excellent predictions of the increase in buckling stress
in a tractable mathematical form. The axial buckling stress was used as the local buckling
criterion to derive a general solution for the stability in pure bending of cylindrical shells
with a soft elatic core, including Brazier's ovalisation of the shell and core, and the
Poisson's ratio effects ir. the core due to bending.

The analysis of the stress decay showed that at a depth of 1.6 half buckling
wavelengths, the stresses in the core drop to less than 5% of the maximum value they
reach at or near the shell. The removal of the material beyond this depth does not affect
the buckling stress of the shell. A parametric analysis showed that cylinders with this core

depth can reach higher buckling loads than hollow cylinders of equal mass and radius.
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An extensive experimental program was carried out on uniaxial compression and
four point bending specimens of silicone rubber shells with and without foam cores. The
data for uniaxial compression buckling loads, the effect of core depth, the buckling
wavelength, local buckling moments and Brazier's ovalisation are well described by the
analytical model. Foam core cylinders under axial compression showed a reduced
imperfection sensitivity and a stable postbuckling behavior. The axial compression results
fell along the trend compiled from literature and extended substantially the experimental
verification range of the theoretical models. The presence of a foam core practically
eliminated ovalisation at local buckling in bending. The critical bending moments of
partially filled cylinders achieved improvement of up to 400% over equivalent hollow

cylinders as suggested by the analysis.

The analytical and experimental results suggest that their is a great potential for
biomimicking of natural structures in engineering. Recent developments in materials
manufacturing and microstructuring technologies have opened the door to new
configurations such as cylindrical shells stabilized by a uniform honeycomb or a foam
foundation instead of traditional stiffening. In addition to improved buckling resistance
this may offer higher reliability due to reduced imperfection sensitivity and stable

postbuckling behavior.

The characterization of 11 different animal quill and spine specimens and another
11 plant stem specimens revealed their microstructure to be close to the optimal
configurations predicted by the analysis. Their structure seemed to be directed towards
resisting applied bending loads in the most efficient way and with the least amount of
material, The hierarchical design of these natural tubular structures can be mimicked in
the engineering design process and microstructuring adopted to achieve optimal materials

use on every scale.

221



On a broader perspective, the work described in this dissertation has presented a
good example of a structural biomimetic study. It validates the applicability of the
biomimetic approach to designing better structural and materials systems. An integrated
interdisciplinary research effort, combining sound engineering knowledge with biological
and evolutionary observations can speed the improvement of engineering designs and
suggest a few new ones while providing the biological sciences with a rationale for its

observations.

6.2 Suggestions for future work

On the particular problem of the cylindrical shells with a foam core, more detailed
analytical and experimental work are needed before moving to engineering applications.
The model developed has to be extended to treat non linear material behavior in shells
and cores, especially elasto-plastic behavior in view of its applications (eg automotive
anc' aerospace) to metallic engineering structures . The model can also be generalized to
the case of a fully orthotropic shell and core to model more accurately natural structures
and to allow a higher degree of optimization in engineering design by the use of advanced
composites (fibre reinforced plastics and metal matrix composites) with properties
tailored in each direction towards meeting the applied stresses.

The problem of the debonded shell, or the "zero tension foundation" problem,
needs to be investigated in view of assessing the efficiency of an unbonded core and to
determine the strength decrease caused by partial or total debonding.

Of all structures prone to elastic buckling (struts, plates, shells), cylindrical shells
are among the ones that dangerously and dramatically lose their load carrying capacity
after buckling. The presence of a core can prevent that and even provide for a stable

increasing load deflection behavior beyond buckling as the experimental results of this
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study have suggested. The analytical investigation of the postbuckling behavior is one of
the most pressing extensions of this work, and can be of utmost importance in the use of
foam stabilized thin sections in automotive frames that are designed to optimize their
crashworthiness.

In the course of this investigation the core depth effect was only investigated with
respect to resisting local buckling of the shell. And the parametric analysis carried out for
configurations with the core depth necessary to achieve 95% stress decay. Only axial
load, bending moment and their cornbination have been treated being the ones that
pertain most to the function of the natural structures investigated. A general optimization
procedure can be developed to identify the configurations and the material properties that
will meet any combination of mechanical constraints (axial load, bending moment,
stiffness, external or internal pressure, impact etc...) for a minimal weight, Requirements
such as crashworthiness and reliability, and the plastic behavior of the shell or core may
suggest totally different optimal configurations than the ones identified from the elastic

analysis of natural tubular structures.

Other closed thin sections, such as tubes of square and rectangular cross section,
common in engineering structures, can benefit from a stabilizing foam core; the same

simple analytical model used for circular cross sections can be adapted to those shapes.

On a more general note, the extension of the derivations developed in this work to
model more closely natural materials (pressurized core, orthotropic shell and core
properties) can help in the understanding of the biological evolution of these different
structures; for example the evolution of plants from water based environments to land
based environments of varying dryness. The problem of barley (Hordeum vulgare)
varieties selection to maximize lodging resistance offers an immediate application for the

model presented in this work. Lodging in barleys is caused by local buckling failure
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under wind induced bending in the lower two internodes of the stem. So far botanists and
agricultural engineers have not been able to formulate a comprehensive scientific method
to select the most resistant variety, besides trial plots and actual planting, for lack of
accurate mechanical models. This problem may represent the first practical challenge to

our work.

Finally, the biomimetic analysis of natural structures other than cylindrical shells
with a foam core, such as palm stems, feather shafts and cuttlefish bone (described in
Chapter 1), promises to yield interesting results. Further more the extension of the
structural biomimetic approach to include not only single structural elements, but the
whole structural system such as the "tiered” system of the feather (rachis, vanes, barbs) or
the "branched network" of the tree, holds great promise in introducing the engineer not

only to efficient solutions but also to elegant methods of design.
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