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Abstract

Miniaturized microwave radiometers deployed on nanosatellites in Low Earth Or-
bit (LEO) are now demonstrating the ability to provide science-quality weather
measurements. For instance, the Micro-sized Microwave Atmospheric Satellite-2A
(MicroMAS-2A) is a 3U CubeSat launched in January 2018 that provided the first
CubeSat microwave atmospheric sounder data from orbit. The goal of having cost-
effective miniature instruments distributed in LEO is to field constellations and im-
prove temporal and geospatial coverage. The Time-Resolved Observations of Precip-
itations structure and storm Intensity with a Constellation of Smallsats (TROPICS)
is a constellation of six 3U CubeSats, based on MicroMAS-2A, scheduled to no earlier
than 2020. Each CubeSat hosts a scanning 12-channel passive microwave radiometer
in W-band, F-band, and G-band. TROPICS will provide a temporal resolution of less
than 60 minutes and will provide high value investigations of inner-core conditions for
tropical cyclones [1]. Calibration for CubeSats presents new challenges as standard
blackbody targets are difficult to effectively shroud on a CubeSat platform. Instead,
internal noise diodes are used for calibration on CubeSats. The Global Precipitation
Measurement (GPM) Microwave Imager (GMI) instrument has shown noise diodes to
be stable on orbit [2], but the noise diodes have not been tested on-orbit at TROPICS
frequencies.

In order to provide state of the art calibration for CubeSats, methods must be
developed to track and correct noise diode drift. We quantitatively determine the
radiometric accuracy of MicroMAS-2A and compare it to state of the art instru-
ments to provide an assessment of CubeSat performance. Radiometric accuracy is
determined by using the Community Radiative Transfer Model (CRTM) and the
Rosenkranz Line-by-Line (LBL) Radiative Transfer Model (RTM) with inputs from
GPS radio occultation (GPSRO), radiosondes, and Numerical Weather Prediction
(NWP) models in order calculate simulated brightness temperatures that are used as
the ground truth. We perform on-orbit calibration corrections using data matchups
between MicroMAS-2A and the MicroWave Humidity Sounder (MWHS)-2, which is
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a microwave radiometer on the operational Chinese weather satellite FengYun (FY)-
3C with similar bands. Brightness temperature histograms are analyzed to calculate
an initial calibration correction; we develop a Markov Chain-Monte Carlo (MCMC)
technique that calculates calibration correction results within 1.2% of the brightness
temperature histograms method. The double difference technique is then used to com-
pare the corrected MicroMAS-2A data to the state-of-the-art microwave radiometer
Advanced Technology Microwave Sounder (ATMS) on Suomi-NPP. Double difference
results computed using both CRTM and LBL as well as atmospheric inputs from
both radiosondes and NWP models indicate MicroMAS-2A accuracies ranging from
approximately 0.05 K to 2.73 K, depending on the channel. The upper atmospheric
temperature sounding channels for which modeling and surface contamination errors
are least significant yield intercalibration accuracies better than 1.0 K.

We also develop a novel method of calibration for CubeSat constellations such
as TROPICS by incorporating solar and lunar periodic intrusions as an additional
source of information to counter noise diode drift. These lunar intrusions also occur for
existing satellites hosting microwave radiometers in sun-synchronous polar orbits, but
are much more infrequent than for the TROPICS constellation’s scanning payload.
Lunar intrusions are typically treated as an observational and calibration limiting
constraint. We develop a solar/lunar calibration algorithm and test it using ATMS
lunar intrusion data. The mean bias and standard deviation between the algorithm
and actual ATMS data falls within the expected ATMS error budget of 0.6 K to 3.9
K, showing that the algorithm is working correctly and can be applied to TROPICS.
We assess the daily variation in error that we can expect from instrument noise and
source error, and find that lunar intrusions should be analyzed weekly while solar
intrusions should be analyzed daily to track 1 K of noise diode drift.

In addition, we develop an architecture for validation matchups with TROPICS.
We determine frequencies of single difference matchups, double difference matchups
using both intra- and inter- Simultaneous Nadir Observations (SNO), and solar and
lunar intrusions. Matchup sensitivity to orbital parameters is studied and we find
that changes in true anomaly and Right Ascension of Ascending Node (RAAN) do
not decrease the number of SNO matchups that are within our filter criteria of 60
minutes.
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Title: Associate Professor of Aeronautics and Astronautics

Thesis Committee Member: Sara Seager
Title: Professor of Planetary Science and Physics

Thesis Committee Member: Bill Blackwell
Title: Associate Group Leader, MIT Lincoln Laboratory
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Chapter 1

Introduction

1.1 Introduction

The rapidly advancing capabilities of small satellite systems and science instrument
miniaturization provides an opportunity to use CubeSats as a cost effective weather
monitoring platform that can provide increased spatial and temporal resolution over
current weather satellites. Passive microwave radiometers use wavelengths that allow
sensing through clouds, and they provide temperature, water vapor, and cloud ice data
that are crucial to weather forecasts [12]. Improving the revisit time of microwave
radiometers would significantly improve weather forecasting, as stated in the NASA
Earth Science Decadal Survey [15]. A constellation of six CubeSats with microwave
radiometers such as the Time-Resolved Observations of Precipitations structure and
storm Intensity with a Constellation of Smallsats (TROPICS) mission would provide
a rapid refresh rate of better than 60 minutes [16], which nears the threshold of a
revisit of 15-30 minutes that would have a transformational impacts on forecasting.
A rapid revisit rate is crucial to characterizing tropical cyclones’ inner cores, which
are the leading source of early forecast intensity errors [17].

1.2 Problem Statement

In order to use a constellation of CubeSats effectively as a weather monitoring plat-
form, the instrument sensors must be well-calibrated to provide consistent measure-
ments. Technology developments in calibration must take place in order for CubeSats
to fully reach their potential [18]. The Size, Weight, and Power (SWaP) constraints
imposed on nanosatellites create calibration challenges, as the typical blackbody cali-
bration source used for microwave radiometers on large satellites is difficult to shroud
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and couple effectively with a radiometer antenna beam within the volume constraints
of a CubeSat. For instance, a typical blackbody pyramidal target has a diameter of
33 cm with a 4:1 pyramid height to base aspect ratio [19]; this is too large to fit on
a typical 3U CubeSat.

CubeSats can instead use noise diodes, which are much smaller at a size of ap-
proximately only a few mm3 [6]. Noise diodes have been flown and characterized on-
orbit through missions such as Jason-1 and the Global Precipitation Mission (GPM)
Microwave Imager (GMI). GMI used noise diodes for it’s low frequency channels
(10.65-34.64 GHz), and the noise diodes showed long term stability within 0.1 K [2];
however, noise diodes have not been tested at TROPICS frequencies (89 - 206 GHz).
Calibration and radiation validation techniques must be applied in order to track and
correct for noise diode drift at TROPICS frequencies.

1.3 Motivation and Background

1.3.1 Mission Context

This thesis work is motivated by CubeSats with miniaturized microwave radiome-
ters previously developed and launched by MIT and MIT Lincoln Laboratory, as
well as the future CubeSat constellation TROPICS. Figure 1-1 shows a roadmap
to an operational CubeSat microwave radiometer constellation. MicroMAS-1 was
released from the ISS in 2015, but its antenna failed to deploy properly and no pay-
load data was downlinked [20]. The next CubeSat mission, Microwave Radiometer
Technology Acceleration (MiRaTA), was launched in November 2017 and had a sim-
ilar miniaturized microwave radiometer on board as well as a Compact TEC (Total
Electron Count)/Atmosphere GPS Sensor (CTAGS) sensor to provide concurrent
GPSRO measurements for calibration. Although engineering data was downlinked,
mission anomalies resulted in no recovered payload data. MicroMAS-2A/B are the
next generation MicroMAS missions, with improved 10-channel microwave radiome-
ters that make measurements in four bands to measure water vapor, temperature, and
humidity. MicroMAS-2A was launched in January 2018 and payload data has been
recovered and is used in this work; meanwhile, MicroMAS-2B is scheduled for launch
in late 2019. The TROPICS constellation is based on the MicroMAS-2 design and
includes six CubeSats with two each in three orbital planes to provide a revisit rate of
better than 60 minutes. TROPICS will provide global measurements to characterize
tropical cyclone inner core conditions and is planned for launch NET 2020 [1]. In this
work, we focus on calibration and validation for MicroMAS-2A data, developing new
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Figure 1-1: Roadmap to a CubeSat Microwave Radiometer Constellation: From
MicroMAS-1 to TROPICS [3]

calibration methods, and developing a validation architecture to track noise diode
drift for TROPICS. In Sections 1.3.2 to 1.3.5, we present background information on
topics pertinent to this research.

1.3.2 Microwave Radiometers

Microwave radiometers measure thermal emission from the target at millimeter to
centimeter wavelengths. Atmospheric contributions also must be taken into account,
as the atmosphere attenuates the signal and contributes its own radiative energy to the
signal. Atmospheric attenuation is primarily through absorption by H2O and O2 [21].
Microwave frequencies are chosen based on remote sensing applications; for instance,
1-2 GHz is useful for studying soil moisture while 150-190 GHz is used for profiling
atmospheric moisture [12]. Table 1.1 shows microwave radiometer frequency bands
and their applications. Microwave radiometers can generally be classified as imagers
or sounders. Imagers monitor surface, cloud, and precipitation through channels in
the window region of the spectrum, while sounders profile temperature and water
vapor outside of window channels [12].

Microwave radiometers have key advantages for remote sensing. At operating fre-
quencies of 1-300 GHz, the wavelengths can sense through most non-precipitating
clouds. Because atmospheric absorption is frequency dependent, channels can be
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Table 1.1: Common Microwave Radiometer Remote Sensing Frequency Bands [12]

Band Frequency
(GHz)

Application

L 1-2 GHz Soil moisture, water salinity
C 4-8 GHz Sea surface temperature (SST), soil moisture
X 8-12 GHz Sea surface wind, SST
K 18-26.5 GHz Precipitation, atmospheric water vapor, cloud water,

sea surface wind
Ka 26.5-40 GHz Precipitation, water vapor, cloud water, sea surface

wind
V 50-75 GHz Atmospheric temperature profile
W 75-110 GHz Precipitation over land, cloud water, cloud ice
F 90-140 GHz Atmospheric temperature and moisture profile
G 150-190 GHz Atmospheric moisture profile

placed around absorption features at different frequencies in order to probe different
altitudes, as shown in Figure 1-2 [4]. The ability to sense through clouds and profile
the atmosphere allows microwave radiometers to contribute data useful for weather
forecasting that cannot be observed using a traditional visible or infrared (IR) sen-
sor. This is particularly important for severe weather systems. Hail, flooding, and
hurricanes often occur underneath opaque clouds that block the view of visible and
IR sensors [18]. Microwave radiometers provide critical information to characterize
these extreme weather events and provide data to help understand weather processes
and dynamics.

1.3.3 Nanosatellites for Remote Sensing

Small satellites have become more capable and prolific, with 236 CubeSats launched
in 2018 alone [22]. Small satellites are generally defined as less than 500 kg; satellite
size categories are defined in Table 1.2. CubeSats are a type of nanosatellite that are
based on the 1U form factor, which is 10 cm by 10 cm by 10 cm. The majority of the
CubeSats launched in 2018 were 3U satellites [22]. State of the art technologies in
miniaturization have led to the possibility of small satellites accomplishing the same
mission as larger satellites with a significant reduction in cost [23]. Commercial off the
shelf (COTS) components and electronics are often used for small satellites, reducing
the overall cost with a tradeoff in reliability [23]. Aerospace industry has taken notice,
with companies such as Planet and Spire leading the way for using nanosatellites for
Earth observation.
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Figure 1-2: Microwave radiometers place channels in and around absorption lines in
order to measure atmospheric parameters at different altitudes. [4]

Table 1.2: Small Satellite Categories [13]

Category Size (kg)
Mini-satellite <1000 kg
Micro-satellite <100 kg
Nano-satellite <10 kg
Pico-satellite <1 kg
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In the future, analysts expect the trend in miniaturization will continue [23].
Plug and play technologies will further reduce cost for small satellites, and 3D print-
ing will allow components to be fabricated faster [23]. Concepts such as Wafersats
are being developed that exploit Micro-ElectroMechanical Systems (MEMS) industry
techniques in order to provide some of the same capabilities as a CubeSat in a stan-
dard 8 inch, 250 g wafer form factor [24]. There is also momentum towards the 6U
CubeSat platform, which has more volume and mass than 3U CubeSats, leading to
more available power. Thirty-six 6U CubeSats (15% of total 2018 CubeSat launches)
were launched in 2018. [22].

Miniaturization of technologies has allowed small satellites to become promising
platforms for constellations with remote sensing capabilities. A feasibility assessment
by Selva and Krejci identified the following remote sensing technologies as favorable
for CubeSat missions: atmospheric sounders, Earth radiation budget radiometers,
gravity instruments, lightning imagers, magnetic field instruments, ocean color instru-
ments, and precision orbitographers [25]. In addition to those, commercial industry
has shown the feasibility of using small satellites for persistent imaging. For instance,
Planet has developed 3U CubeSat constellations that can provide imagery with daily
revisits and a spatial resolution of 3-5 m. Planet launched 145 CubeSats in 2017
alone [22]. Meanwhile, Spire Global has developed a constellation of 3U CubeSats
to measure atmospheric properties using GPSRO, and launched 36 of these small
satellites in 2018 [22].

1.3.4 Motivation for Microwave Radiometers on CubeSats

Microwave radiometers in particular are well-suited for use on a constellation of small
satellites. Blackwell et al. in 2011 demonstrated that advances in technology with new
frequency multiplexing techniques improves atmospheric profiling accuracy, thus en-
abling miniaturized microwave radiometers [26]. Since then, miniaturized microwave
radiometers using these techniques have flown on multiple CubeSat missions, includ-
ing the MicroMAS-1, MiRaTA, and MicroMAS-2A missions. MicroMAS-2A payload
data has been shown to be comparable to the much larger microwave radiometer
ATMS in swath width, footprint size, and resolution [27]. Due to the lower cost
of CubeSats compared to traditional larger satellites, the potential exists to create
constellations of small satellites with miniaturized microwave radiometers.

Constellations provide an improved revisit rate due to the increased number of
observations and expanded orbit geometry. For instance, TROPICS will demonstrate
a better than 60 minute revisit rate with six CubeSats [16]; this is a substantial
improvement over the 9.9 hour revisit rate of a single polar orbiting satellite such
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Figure 1-3: Increasing the number of observations for Numerical Weather Prediction
models improves applications such as weather forecasts, climate modeling, character-
izing the ocean surface, natural hazards, and tropical cyclones.

as NOAA-20 carrying ATMS. Improving the revisit rate with a constellation in this
manner can provide transformational improvements in weather forecasting, and will
improve characterization of extreme weather events such as hurricanes and tropical
cyclones [15]. In Figure 1-3 we show inputs and outputs of Numerical Weather Pre-
diction models. Satellite observations are global in nature and thus are especially
important for Numerical Weather Prediction (NWP) models. Improving temporal
resolution is useful for NWP applications such as characterizing the ocean surface,
natural hazards, and tropical cyclones. For instance, inner core conditions of tropical
cyclones change rapidly and increased observations are critical in order to improve
tropical cylone forecasts [17]. In this research, we analyze the TROPICS constellation
which has the mission of tropical cyclone characterization.

1.3.5 Calibration for Microwave Radiometers

Microwave radiometers typically use a two point calibration scheme, with a "cold"
point and a "warm" point. Calibration is used to determine the transfer function from
raw counts to brightness temperature [28]. Deep space (2.7 K) is typically used as the
cold point for calibration as the instrument scans [28]. Weather satellite microwave
radiometers such as ATMS and the Advanced Microwave Sounding Unit (AMSU) use
blackbody calibration targets, shown in Figure 1-4, as the warm calibration point.
The targets are composed of pyramid metal structures that are 1 cm across and 4
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Figure 1-4: The AMSU blackbody calibration target shown has a 33 cm diameter
and is used as a typical warm load for calibration. [5]

cm high, and the targets can include over 100 pyramid structures [5]. A typical
calibration target is 33 cm in diameter [19], and this size makes them difficult to fit
on CubeSats. A smaller scale calibration target that is approximately 7.6 cm by 10
cm has been developed for the 6U CubeSat mission Temporal Experiment for Storms
and and Tropical Systems Technology Demonstration (TEMPEST-D) [29]; however,
this is still too large for use with a 1U constrained payload volume such as TROPICS.

Noise diodes are another option for the warm calibration point. They provide a
known source brightness temperature that can be coupled into the system [28]. Noise
diodes are commonly used for ground and airborne based microwave radiometers;
although they can drift over time, laboratory techniques are used to compensate for
the stability [28]. However, these techniques for ground and airborne noise diode drift
correction cannot always be used in the space environment. The Jason Microwave
Radiometer (JMR) was the first satellite to use a noise diode for calibration in 2007,
and analyses over four years determined that the long term stability was between 0.2
- 3.0% which correlates to an excessive temperature drift of 0.4 - 6.0 K [30]. However,
the more recent mission GPM has shown noise diodes to have a long term (over
four years) stability within 0.1 K [2]. In contrast, the blackbody calibration target
on ATMS is assessed to have a worst-case temperature error of 0.14 K for warm
calibration [31].

Since blackbody calibration targets are typically too large to use on CubeSats, the
miniature microwave radiometers flown on MicroMAS and MiRaTA use noise diodes.
An image of the noise diode module flown on MicroMAS-1 is shown in Figure 1-5.
In contrast to blackbody calibration targets, noise diodes are miniaturized, and the
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Figure 1-5: The RF preamplifier/noise diode is the third block on the right in the
MicroMAS receiver front-end electronics. The mass of the whole assembly is less than
100 g.[6]

noise diode used for MicroMAS fits in the microwave radiometer receiver front-end
electronics package that is less than 6.5 cm in length and with a mass of less than 100
g [6]. TROPICS is based on the MicroMAS-2 design and also uses noise diodes for
warm calibration; these noise diodes are similar in technology to the noise diodes flown
on GMI. However, since these noise diodes have not been tested on-orbit at TROPICS
frequencies, we will need to use calibration and validation methods in order to track
and correct for noise diode drift. This thesis is aimed at developing techniques in
order to trend noise diode drift and show that CubeSat microwave radiometers can
provide well-calibrated data.

1.4 Thesis Contributions

In this thesis, we address the calibration and validation gap for CubeSat microwave
radiometers by (1) developing on-orbit calibration correction methods for MicroMAS-
2A, (2) performing radiance validation of MicroMAS-2A data and comparing to state-
of the art instrument ATMS, (3) developing a new method of calibration for TROPICS
using solar and lunar intrusions, and (4) creating a validation architecture for trend-
ing and correcting TROPICS noise diode drift.

Contribution #1: On-orbit calibration corrections for MicroMAS-2A are de-
rived from matchups with the MicroWave Humidity Sounder (MWHS-2) on the Chi-
nese weather satellite FengYun(FY)-3C. We use brightness temperature histograms
in order to provide an initial calibration correction, and we also develop a Markov
Chain-Monte Carlo (MCMC) technique to calculate calibration corrections.
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Contribution #2: Radiance validation of MicroMAS-2A on-orbit data is per-
formed using the Community Radiative Transfer Model (CRTM) and the Rosenkranz
Line-by-Line (LBL) Radiative Transfer Model (RTM) with inputs of atmospheric
profiles from GPS Radio Occultation (GPSRO), radiosondes, and National Weather
Prediction (NWP) models. We use the double difference technique in order to show
intercalibration between MicroMAS-2A and state-of-the-art ATMS.

Contribution #3: A novel calibration method is developed that utilizes solar
and lunar intrusions as an additional data source to track noise diode drift. Lunar
intrusions occur as well for existing satellites hosting microwave radiometers in polar
orbits, but they occur much more frequently with the TROPICS constellation’s 30
rpm scanning payload. We develop a new algorithm, loosely based on ground sun-
tracking microwave radiometry, and test the algorithm using ATMS lunar intrusion
data. We assess the error budget for ATMS lunar intrusions. It is then determined
how to apply the solar and lunar calibration to TROPICS in order to track noise
diode drift.

Contribution #4: A validation plan for tracking TROPICS noise drift is de-
veloped. We identify the sources and frequencies of validation matchups that will be
available and we provide recommendations for operational radiance validation. The
TROPICS Space Vehicle’s (SV) Simultaneous Nadir Overpass (SNO) sensitivity to
orbital parameters is studied to determine if changes in true anomaly or Right As-
cension of the Ascending Node (RAAN) constellation spacing affect the frequency of
matchups.

1.5 Thesis Outline

In Chapter 2, we discuss microwave radiometer principles and review calibration and
validation for spaceborne microwave radiometers. We present the current state of the
art, and we review how solar and lunar intrusions affect microwave radiometers on
orbit. Chapter 3 describes calibration methods used for CubeSats with microwave
radiometers. We show that on-orbit correction methods using matchups with a refer-
ence satellite (in this case, MWHS-2) can provide initial calibration corrections and
mitigate the effect of limited TVac data. Chapter 4 presents our radiation valida-
tion method. Our model and process is described, and we show double difference
results between MicroMAS-2A and ATMS. In Chapter 5 we develop our algorithm
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for using solar and lunar intrusions as a calibration source. We present testing results
using ATMS lunar intrusion data, and show that this new technique is feasible as
a calibration method for TROPICS. Chapter 6 describes the TROPICS architecture
for trending noise diode drift. We describe frequency of radiance validation oppor-
tunities and analyze sensitivity to orbital parameters. Chapter 7 summarizes thesis
contributions, and identifies future work.
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Chapter 2

Principles of Microwave Radiometer
Calibration and Validation

2.1 Microwave Radiometers

In this section we describe the history of microwave radiometers, their methods of
operation, and we review the state of the art for spaceborne microwave radiometers.

2.1.1 History of Microwave Radiometers

Microwave radiometers were first studied in the 1940s in order to measure the ra-
diation of space objects [32]. In 1962, Robert Dicke at the Massachusetts Institute
of Technology (MIT) developed a circuit that reduced the effect of internal ampli-
fier noise for total power radiometers [12]. Dicke also showed that microwave ra-
diometers could be used to measure atmospheric absorption at different frequencies
[33]. Microwave radiometers were incorporated soon after into remote sensing satel-
lites. Mariner-2 hosted a microwave radiometer for its flyby of Venus in December
1962, and the U.S.S.R. was the first to use a microwave radiometer for Earth remote
sensing in 1968 [34]. Today, microwave radiometers are commonly used on weather
satellites, with instruments such as the Advanced Microwave Sounding Unit (AMSU)
[35], ATMS [31], the Special Sensor Microwave Imager/Sounder (SSMIS) [36], the
Global Precipitation Measurement (GPM) Microwave Imager (GMI) [37], and the
MicroWave Humidity Sounder (MWHS)-2 [38] providing operational measurements.
In Table 2.1 we show a summary of current microwave radiometer instruments.
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2.1.2 Principles of Microwave Radiometers

Passive microwave radiometers measure thermal emission from a target that is depen-
dent on the product of the target’s emissivity and temperature [21]. The atmosphere
between the radiometer and the target contributes its own radiated energy to the mea-
surement and attenuates the signal [21]. The primary absorbers in the atmosphere
that attenuate the signal are H2O and O2 [21].

The main parameter that microwave radiometers measure is the brightness tem-
perature, which is the temperature of a blackbody that has the same brightness as
the measured object [21]. The total amount of energy radiated by a blackbody can
be described by Planck’s law, which is stated as:

𝐵𝑣(𝑇 ) =

(︃
2ℎ𝑐2𝑣3

exp
(︀
ℎ𝑐𝑣
𝑘𝑇

)︀
− 1

)︃
(2.1)

where ℎ is the Planck constant (6.626 ·10−34 J s), 𝑘 is the Boltzmann constant
(1.381 ·10−23 J/K), 𝑐 is the speed of light (3.0 ·108 m/s), and 𝑣 is the wavenumber
(1/𝜆, where 𝜆 is the wavelength cm−1). By substituting 𝐶1 for 2ℎ𝑐2 and 𝐶2 for
(ℎ𝑐)/𝑘 (where 𝐶1 is 1.1909 ·10−8𝑊/𝑚2/𝑠𝑟/𝑐𝑚3 and 𝐶2 is 1.4388 𝑐𝑚/𝐾) we can
rewrite Planck’s law as the following:

𝐵𝑣(𝑇 ) =
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(2.2)

We can express the exponential term in Planck’s law as a Taylor series by assum-
ing that (𝐶2𝑣)/𝑇 is much less than 1, which is a reasonable approximation in the
microwave region of the electromagnetic spectrum [21].
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By making a first order approximation, we can reduce Equation 2.3 to the follow-
ing:

𝐵𝑣(𝑡) =

(︂
𝐶1𝑣

2

𝐶2

)︂
𝑇 (2.4)

Equation 2.4 is referred to as the Rayleigh-Jeans approximation. The accuracy
of the Rayleigh-Jeans approximation varies with frequency and temperature, and the
error increases with higher frequencies and lower temperature. For instance, at a high
frequency of 190.3 GHz and a temperature of 100 K, there is a 4.5% error in radiance
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[12].
The Rayleigh-Jeans approximation shows that temperature is directly propor-

tional to the radiation received from an object, which allows us to work in tempera-
tures instead of power or brightness. Recognizing that emissivity reduces an object’s
brightness, we can define an equivalent brightness temperature as

𝑇𝐵 = 𝑇 · 𝐸 (2.5)

where 𝑇 is the kinetic temperature and 𝐸 is the emissivity [21].

2.1.3 Radiative Transfer

Radiative transfer models use a radiative transfer equation (RTE) to numerically solve
the propagation of radiation through the atmosphere as it interacts with gas, clouds,
aerosols, and the surface [39]. As radiation hits a particle in the atmosphere, it can
either be absorbed, emitted, or scattered. Transmittance is related to the absorption
coefficient by the following:

𝑌 (𝑧) = exp(−
∫︁ ∞

𝑧

𝜅(𝑣, 𝑧)

𝑢
𝑑𝑧) (2.6)

where 𝑌 is the transmittance, 𝜅 is the volumetric absorption coefficient, 𝑧 is
altitude with respect to the top of the atmosphere (TOA), and 𝑢 = cos 𝜃 where 𝜃

is the observing angle. In order to determine the absorption coefficient, we sum the
contributions over all lines in a given spectral interval.

The primary absorbers in the atmosphere at microwave frequencies are O2 and
H2O. Absorption of O2 is influenced by the interaction of the molecule’s magnetic
field (caused by the molecule’s orbital angular momentum) with the molecule’s mag-
netic dipole [12]. Meanwhile, the absorption spectrum of H2O is created by rotational
transitions caused by the interaction of the molecule’s electric-dipole moment with
external fields. Figure 1-2 shows the atmospheric transmittance spectrum over mi-
crowave frequencies and shows the absorption lines due to O2 and H2O. Microwave
radiometer channels are selected away from an absorption line in order to measure
radiance near the surface or bottom of the atmosphere; channels selected near the
absorption line measure radiance from the top of the atmosphere. Using multiple
sub-bands per channel reduces noise [12]. In Figure 2-1, an example is shown of how
channels can be selected around the absorption line in order to build a temperature
profile.

Scattering can be modeled using Mie and Rayleigh theory. Mie scattering assumes
the size of the particle is comparable to the wavelength, while Rayleigh scattering
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Figure 2-1: Frequencies can be chosen around the peak of an absorption line in order
to build an atmospheric profile.

assumes the particles are much smaller than the wavelength. For clear sky conditions,
scattering can be ignored in the radio frequency (RF) and microwave regions [40].

Line-by-line (LBL) radiative transfer models are accurate, and calculate absorp-
tion and transmittance for each individual absorption line; however, they are com-
putationally expensive and can take up to an hour to calculate a single channel [41].
Band models such as MODTRAN are fitted to LBL models but only over a narrow
spectral window [41]. Fast radiative transfer models have been developed to speed
up calculations by parameterizing absorption and scattering. Fast models provide a
statistical fit to LBL models and their calculations take on the order of a millisecond
to complete [41]. The Community Radiative Transfer Model (CRTM) was developed
by the Joint Center for Satellite Data Assimilation (JCSDA) and is an example of a
fast radiative transfer model that uses parameterizations and look up tables in order
to quickly calculate simulated radiances [42]. CRTM is discussed in more detail in a
Section 2.2.2.

2.1.4 State of the Art Satellite Microwave Radiometers

In this section we describe state of the art satellite microwave radiometers. The
key parameters of size, mass, power, Noise Equivalent Delta Temperature (NEDT),
bands, and channels are shown in Table 2.1. NEDT is a performance metric for ra-
diometric sensitivity and is defined as the standard deviation of the radiometer in
Kelvin when a 300 K uniform target is viewed.

Advanced Microwave Sounding Unit (AMSU): The AMSU instrument has
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Table 2.1: Summary of Operational Microwave Radiometer Missions

Instrument Size
(m2)

Weight
(kg)

Power
(W)

NEDT
(K)

Chan-
nels

Freq
Bands

AMSU-A 0.42 104 99 0.25-1.2 15 K, Ka, V,
W

AMSU-B 0.19 50 90 0.37-1.06 5 W, G
ATMS 0.17 75 100 0.25-1.95 22 K, Ka, V,

W, G
GMI 2.5 153 141 0.57-1.5 13 X, K, Ka,

W, G
MWHS-2 60 116 1.0-3.6 15 W, F, G
SSMIS 96 135 0.4-2.4 24 K, Ka, V,

F, G

been included on several satellites, and was most recently launched on NOAA-19 in
2009 and on MetOp-A and MetOp-B in 2006 and 2012, respectively. AMSU has
two variants, AMSU-A and AMSU-B. AMSU-A has 15 channels between 23.8 and 89
GHz, while AMSU-B has five channels between 89 and 183.3 GHz. AMSU-A is pri-
marily used for temperature sounding while AMSU-B is primarily used for moisture
sounding [43]. The NEDT of AMSU-A varies from 0.25 to 1.2 K per channel, while
the NEDT of AMSU-B varies from 0.37 to 1.06 K [43].

Advanced Technology Microwave Sounder (ATMS): The ATMS instrument
has been most recently launched on Suomi-NPP in 2011 and JPSS-1, or NOAA-20, in
November 2017. ATMS is a follow on to the AMSU instruments and incorporates all
the channels of AMSU-A and AMSU-B in one instrument with reductions in mass,
power, and volume [44]. ATMS includes 22 channels from 23 GHz through 183 GHz
and provides both temperature and moisture profiles. The NEDT of ATMS varies
from 0.25 to 1.95K per channel [9].

Feng Yung MicroWave Humidity Sounder (MWHS-2): MWHS-2 was launched
on FY-3C, a Chinese weather satellite, in 2013. MWHS-2 has 15 channels that range
from 89 GHz to 183 GHz, and it is the first on-orbit microwave radiometer with
channels near the 118 GHz oxygen absorption line [45]. The channels at 183 GHz will
measure humidity, while the channels near 118 GHz are sensitive to temperature and
clouds [38]. The NEDT of FY-3C varies from 0.3 to 2.5K per channel [38].

Global Precipitation Measurement (GPM) Microwave Imager (GMI): GMI
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Table 2.2: Summary of CubeSat Microwave Radiometer Payloads [14]

Mission Payload
Size

Weight
(kg)

Power
(W)

Bands Chan-
nels

PolarCube 1.5U 2.0 1 (F) 8
MicroMAS-1 1U 0.95 2.5 1 (W,F) 9
MicroMAS-2 1U 1.0 4 4 (W,F,G) 10
MiRaTA 1.5U 1.02 4 3 (V,G) 12
TROPICS 1U 1.0 4 (W,F,G) 12
RACE 1.5U 1.5 <1.5 1 (G) 3
IceCube 1.3U 1 11.2 1 (sub-mm) 1
TEMPEST-D 4.0U 3.0 <8.0 1 (W,G) 5

is an instrument on GPM, which is a joint mission between JAXA and NASA that
was launched in February 2014 as a follow-on to the Tropical Rainfall Measuring
Mission (TRMM). GMI has a conical scan geometry and 13 channels from 10 GHz
to 183 GHz that were selected to measure precipitation, water vapor, and cloud ice
[46]. The NEDT of GMI varies from 0.57 to 1.5K per channel [46].

Special Sensor Microwave Imager Sounder (SSMIS): SSMIS is a follow-on
to previous instruments SSM/I, SSM/T-1, and SSM/T-2 and has been launched on
the Defense Meterological Satellite Program (DMSP) spacecraft F-16, F-17, F-18,
and F-19 [47]. SSMIS has 24 channels with center frequences from 19 GHz to 183
GHz to measure water vapor and temperature profiles [47]. The NEDT of SSSMIS
varies from 0.4 to 2.4K per channel [47].

Several CubeSat missions have flown or are planning to demonstrate miniaturized
microwave radiometers, including PolarCube [48], MicroMAS-1 [6], MicroMAS-2 [49],
MiRaTA [49], TROPICS [1], RACE [50], IceCube [51], and TEMPEST-D [29].[14] In
Table 2.2 we show a summary of these CubeSat missions. For this research, we focus
on MicroMAS-2A and TROPICS:

Micro-sized Microwave Atmospheric Sounder (MicroMAS)-2A/B: MicroMAS-
2A/B is a set of two twin 3U CubeSats with scanning cross-track miniaturized mi-
crowave radiometers that are a technology demonstration for TROPICS. MicroMAS-
2A/B have ten channels covering four bands at 89 GHz, 118 GHz, 183 GHz, and 206
GHz; however, Channel 10 (at 206 GHz) was unusable on orbit due to EMI so we an-
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alyze in this work Channels 1-9 only. MicroMAS-2A launched in January of 2018 and
successfully downloaded payload data that showed resolutions and spot sizes com-
parable to the much larger ATMS microwave radiometer [27]. Only limited payload
data was downlinked due to a loss of communication with the radio. MicroMAS-2B
is scheduled for launch in 2019.

Time-Resolved Observations of Precipitation structure and storm Inten-
sity with a Constellation of Smallsats (TROPICS): TROPICS is a constellation
of six 3U CubeSats with two each in three LEO orbital planes that will each host a
miniaturized microwave radiometer. TROPICS will provide a median refresh rate of
better than 60 minutes. The miniaturized radiometer includes seven channels near
the 118.75 GHz oxygen absorption line, water vapor profiles near the 183 GHz water
vapor absorption line, and imagery in a single channel near 90 GHz [1]. TROPICS
will measure on a global scale tropical cyclone inner-core conditions. TROPICS is
planned for launch NET 2020. TROPICS heritage is shown in Figure 1-1.

2.2 Calibration and Validation for Microwave Ra-
diometers

Calibration and validation are used to ensure that instruments provide accurate and
precise data, and are defined as follows:

∙ Calibration quantitatively defines how the instrument responds to a controlled
input [52].

∙ Validation determines the quality of the data product compared to other
sources [52].

2.2.1 Calibration

Microwave radiometers typically use a two-point calibration with a cold and a warm
source. Satellite microwave radiometers use deep space at 2.7 K as the standard for
the cold calibration point, and a blackbody calibration target is the standard for the
warm calibration point. Using two points allows a linear relationship to be established
between the brightness temperature and detected voltages of the radiometer [32].
Non-linearities are measured before launch and corrected for as part of the calibration
algorithm.
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Figure 2-2: The GMI electronics bay with noise diode assemblies, which are used for
the GMI low frequency channels at 10.65 GHz - 34.64 GHz. [2].

Blackbody calibration targets used for instruments AMSU and ATMS are very
stable; however, due to volume constraints they are difficult to implement and effec-
tively shroud on CubeSats [14]. Noise diodes are increasing in popularity as a warm
calibration source on spaceborne microwave radiometers due to their lower mass and
volume [2]. Noise diodes work by injecting a weakly-coupled noise source into the
receiver chain past the antenna waveguide [30]. JASON-1 was the first space-borne
instrument to use a noise diode for calibration, and analysis by Brown characterized
the long term stability of the noise diodes as from 0.2-3.0% (0.4-6 K) [28].

The Global Precipitation Measurement (GPM) Microwave Imager (GMI) was
launched more recently in 2014 and included a dual-calibration system that uses a
conventional blackbody target as well as noise diodes for warm calibration [2]. Figure
2-2 shows the GMI electronics bay with the noise diode assemblies; the noise diodes
are used for the GMI low frequency channels (10.65 GHz - 34.64 GHz). The GMI
noise diodes show high stability, within 0.1 K over four years [2]. Draper et al. noted
that variability in noise diode drift occurs even between seemingly identical parts [2].
TROPICS will use similar noise diode technology as GMI, but the noise diodes have
not been tested on-orbit at TROPICS frequencies. In order to meet the calibration
requirement of <2 K for TROPICS, we will need to trend and correct for any noise
diode drift.

Several common calibration corrections are implemented for microwave radiome-
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ters. Non-linearities in the transfer function are measured before launch and cor-
rected. Additionally, lunar and/or solar intrusions are flagged and corrected if the
moon or sun appears in the field of view (FOV) of the sensor during cold calibration.
This is further discussed in Section 2.3.2. Mirror scan angle and temperature can
also introduce erroneous measurements and should be corrected in the calibration al-
gorithm. The AMSU calibration algorithm does not account for antenna reflectivity,
which results in a cold bias for quasi-vertical (QV) polarized channels and a warm
bias for quasi-horizontal (QH) channels [53]. ATMS calibration techniques correct
emission from the reflector, along with an additional striping mitigation to reduce
channel noise [54].

One method for on-orbit calibration corrections for microwave radiometers is
through vicarious calibration, which makes use of ground sites for post-launch cal-
ibration [55]. For instance, one technique used by the GPM XCAL team is to use
vicarious cold and warm scenes for inter-calibration. Over ocean, clear sky obser-
vations with little wind are used as a stable cold reference, and depolarized highly
vegetated areas such as the Amazon rain forest are used for the warm scenes [56]. We
use a form of vicarious calibration for our on-orbit calibration technique, as described
further in Chapter 3.

Ground-based microwave radiometers also use a two point calibration technique.
Noise diodes are commonly used as the warm calibration point, as drift can eas-
ily be accounted for using ground laboratory techniques [28]. The cold calibration
point is provided either by a liquid nitrogen cooled blackbody or with a clear-sky
zenith measurement [57]. While spaceborne radiometers avoid or correct for lunar
intrusions, ground-based sun tracking microwave radiometry techniques instead in-
tentionally measure the sun in order to retrieve atmospheric path coefficients [58].

2.2.2 Validation

Radiance validation compares satellite data to other measurements in order to de-
termine the quality of the instrument data product. Radiative transfer models are
used to calculate simulated radiances, which are then compared to actual radiances
in order to quantitatively determine biases.

Radiative Transfer Models

Radiative transfer models (RTMs) were first discussed in Section 2.1.3. By using a
radiative transfer model, simulated radiances can be calculated based on known atmo-
spheric conditions in order to provide a comparison to measured satellite radiances.
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Fast models are the main radiative transfer methods used for satellite radiance vali-
dation due to their speed and ability to ingest large amounts of satellite observations
[39]. The two main fast models for satellite data assimilation are CRTM [42] and the
Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV) [59]. CRTM
is maintained by National Oceanic and Atmospheric Administration (NOAA) and is
operationally used by National Centers for Environmental Prediction (NCEP), while
RTTOV is operational at the European Centre for Medium-range Weather Forecasts
(ECMWF), the UK Met-Office, and several other offices in Japan and China [39].
Both CRTM and RTTOV have proved their ability to ingest radiances in all-sky
conditions in the microwave region [39].

For this research, we use CRTM as our fast RTM. CRTM uses a set of Fortran
functions, with structure variables that are used as input and output variables. Co-
efficient data of the sensor, which includes the satellite’s spectral response function
(SRF), is created at the Joint Center for Satellite Data Assimilation (JCSDA) at
NOAA. These coefficents are then loaded when CRTM is first initialized. The user
inputs atmosphere profiles as well as surface characteristics and scan angle; from this,
CRTM calculates the simulated radiances.

We also use the Rosenkranz Line-by-Line (LBL) RTM for our analyses. The
LBL model has similar inputs of atmospheric profiles, surface characteristics, and
scan angle; however, the user inputs the satellite’s SRF directly into the RTM. The
outputs of both of these models is the simulated brightness temperature that is then
used as ground truth. Figure 2-3 shows a block diagram of CRTM and LBL inputs
and outputs.

RTM Atmospheric Profile Inputs

The atmosphere profiles used as inputs can be taken from sources such as radiosondes,
NWP models, and GPS Radio Occultation (GPSRO). GPSRO measures the amount
of refraction that takes place when a GPS signal travels through the atmosphere; this
refraction can then be analyzed to provide basic atmospheric properties [60]. We
pull GPSRO wet retrievals from Constellation Observing System for Meteorology,
Ionosphere and Climate (COSMIC), which only has one fully functional satellite in a
500 km, 72 degree inclination orbit. COSMIC will be replaced with COSMIC-2a, a
constellation of six satellites in a 720 km, 24 deg inclined orbit [61] that is scheduled
for launch in 2019 [62]. GPSRO measurements are very accurate, with global mean
differences of approximately 0.65 K between COSMIC and high quality analysis at
altitudes between 8 and 30 km [63]. Although GPSRO is considered a "gold standard"
for radiance validation, the measurements are sparse compared to other sources.
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Figure 2-3: Atmosphere profiles, surface information, and satellite characteristics are
input into CRTM/LBL. Brightness temperature outputs are used in this work.

Radiosondes are instruments carried on weather balloons in order to measure
atmospheric properties and transmit the data back to the ground. The National
Weather Service in the U.S. launches radiosondes from 92 stations in North Amer-
ica and the Pacific Islands [64]. For our analysis, we use the Global Climate Ob-
serving System (GCOS) Reference Upper-Air Network (GRUAN), which is designed
as a reference measurement network to provide highly accurate measurements [7].
Radiosonde simulated brightness temperatures generally are only within <2.0 K of
measured brightness temperatures; this is due in part to errors in the ability of ra-
diosondes to accurately measure water vapor [65]. Additionally, radiosonde daytime
data has radiation biases that also negatively affect results [65]. In Figure 2-4, we
show the GRUAN radiosonde network [7].

Numerical Weather Prediction (NWP) models are another source of in-
formation for atmosphere profiles. NWP mathematical models use current weather
conditions to predict weather, and these models can also be used to simulate oper-
ational data for calibration purposes. For this research, we use ERA5. ERA5 is a
publicly available atmospheric reanalysis dataset produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF) that provides estimates of atmo-
spheric, land, and oceanic climate variables at one-hour intervals [66].
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Figure 2-4: The Global Climate Observing System (GCOS) Reference Upper-Air
Network (GRUAN) is a reference measurement network that provides highly accurate
radiosonde measurements [7].

Double Difference Approach

In order to provide radiance validation between non-identical cooperative satellite
microwave radiometers, double-differencing is used [67]. The double difference method
is a common technique for inter-calibrating microwave radiometers that is used for
missions such as the Global Precipitation Measurement (GPM) constellation. Since
the GPM constellation includes several dissimilar radiometer instruments on different
platforms, inter-calibration is key to its mission to ensure consistency across sensors
[67].

By using a double difference technique, we subtract out the radiative transfer
model error and first order difference between bands to find the inter-calibration
between sensors. The inter-calibration serves as a performance metric in order to
show how well the sensors perform compared to each other. The double difference
is found from subtracting the single differences of each sensor and radiative transfer
model. The single difference is defined as shown in Equation 2.7, where SD is the single
difference, 𝑇𝑏actual is the actual measured brightness temperature, and 𝑇𝑏simulated is
the radiative transfer model simulated brightness temperature.

𝑆𝐷 = 𝑇𝑏actual − 𝑇𝑏simulated (2.7)
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The double difference is then found by subtracting the single differences from each
other. In Equation 2.8, 𝐷𝐷 is the double difference, 𝑆𝐷1 is the single difference of
the first sensor, and 𝑆𝐷2 is the single difference of the second sensor.

𝐷𝐷 = 𝑆𝐷1 − 𝑆𝐷2 = (𝑇𝑏actual1 − 𝑇𝑏simulated1) − (𝑇𝑏actual2 − 𝑇𝑏simulated2) (2.8)

When comparing satellite measurements with the double difference approach, the
data should be close in time, distance, and near nadir. Nadir observations ensure
that the sensors view the scene with the same geometry. Overpasses that meet this
criteria are referred to as Simultaneous Nadir Overpasses (SNO). The GPM
XCAL team uses distance criteria of within a 1∘ grid box and time within 30-60
minutes for SNO comparisons [56]. Other researchers use criteria of within 50 km
and one hour [65]. Divakarla found no appreciable change in bias for validation when
using matchups within 100 km/3 hours versus 50 km/1 hour [68]. For this research,
we use filters of 50 km and one hour for SNO observations.

Inter-sensor double differencing refers to using the double difference approach be-
tween dissimilar sensors; for instance, in our case comparing TROPICS or MicroMAS-
2A to sensors such as ATMS and MWHS-2. Intra-sensor double differencing uses the
double difference approach between similar space vehicles (SV) in a constellation; for
instance, comparing measurements from one TROPICS SV to another TROPICS SV.
We will discuss both of these approaches in more detail in Chapter 6.

2.3 Solar and Lunar Intrusions

In this next section, we discuss lunar and solar intrusions and correction procedures.
Intrusions occur when the sun or moon appear in the sensor field of view when
the instrument is performing cold calibration. The brightness temperature of the
moon or sun causes an increase in effective brightness temperature in the scan, thus
introducing calibration errors. Typical polar orbiting instruments such as AMSU and
ATMS have lunar intrusion events only several times a year, and these intrusions are
discarded or corrected to remove the moon data. However, the TROPICS scanning
radiometer sees periodic intrusions every orbit which provides a unique opportunity
to use the intrusions for calibration purposes instead of discarding the data. This will
be discussed further in Section 3.2.
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Figure 2-5: The solar and lunar beta angles are plotted for a representative 550 km,
30 deg inclination orbit for the year of 2019. Beta angles affect the range of solar and
lunar intrusions for a sensor.

2.3.1 Geometry of Intrusions

The position of the sun and/or moon in the sensor FOV can be predicted by deter-
mining the solar and lunar beta angles. The beta angle is defined as the the angle
between the orbital plane of the spacecraft and the vector to the third body (i.e. sun
or moon). The solar beta angle is dependent on the Earth’s 23.5∘ axial tilt to the
ecliptic and the spacecraft’s inclination. Regression of the nodes from the Earth’s
oblateness causes the right ascension of the ascending node (RAAN) to regress west-
ward for a prograde orbit and eastward for a retrograde orbit, which additionally
affects the beta angle seen by the spacecraft. The sun’s declination ranges from a
maximum of +23.5∘ on the June solstice to a minimum of -23.5∘ on the December
solstice [69]. Fig 2-5 shows an example of solar beta angle plotted over 2019 for a
550 km, 30 degree inclination orbit. At 30 degrees inclination, we would expect the
maximum solar beta angle to be +53.5∘ at June solstice and a minimum of -53.5∘ at
the December solstice, which is shown in Fig 2-5.

Similarly, the lunar beta angle is also dependent on the Earth’s axial tilt and
the satellite orbit inclination. The moon’s orbit is inclined at 5.14∘ with respect to
the ecliptic; however, the direction of this inclination changes from -5.14∘ to +5.14∘

over the course of a 18.6 year cycle. The lunar standstill is used to define how the
moon’s declination changes with respect to the ecliptic. At a minor lunar standstill,
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the moon’s declination will vary from ± 18.5∘, while at a major lunar standstill 9.3
years later the moon’s declination will vary from ± 28.5∘. Fig 2-6 shows a diagram
of the major and minor lunar standstill. The moon’s declination completes a cycle
once every 27.2 days, which is the moon’s nodal period [69]; this affects the lunar
beta angle. As Fig 2-5 shows, the lunar beta angle cycles per nodal period. Fig 2-5
is plotted for the year of 2019, which occurs during a midpoint of lunar major and
minor standstill. Thus, during this timeframe maximum and minimum lunar beta
angles will be near identical to the sun’s maximum and minimum beta angles.

Solar and lunar intrusions can be determined by finding the separation angle
between antenna boresight and the vector to the sun or moon. The separation angle
is defined as the angle between the antenna boresight and the orbital plane summed
with the angle between the orbital plane and the third body, or beta angle.

The cold calibration pointing angle for microwave radiometers is chosen in order
to minimize contamination from sources such as the spacecraft, atmosphere, and
the Earth [70]. AMSU-A, a cross-track scanner used on NOAA and EUMETSAT
MetOp satellites, has four different space view positions (SV1, SV2, SV3, SV4) that
are located at 83.3∘, 81.67∘, 80.0∘, and 76.67∘ from nadir, respectively. AMSU-A
typically uses either SV1 or SV2 from nadir for its cold space calibration in order to
reduce contamination [70]. At these angles, solar intrusions do not occur; however,
lunar intrusions happen several times a year. It has been shown that 40 extra cold
counts due to lunar contamination results in an error of 1.2 K for AMSU Channel 1
when measuring ocean brightness temperature [70].

ATMS is another cross-track scanning microwave radiometer that is used on
Suomi-NPP and NOAA-20. ATMS has four cold space calibration beam groups
located at 76.7∘, 80.0∘, 81.7∘, and 83.4∘ from nadir [71]. Cold space is sampled four
times consecutively within each beam group, 1.11∘ apart, and those four samples are
referred to as SPV1, SPV2, SPV3, and SPV4 [71]. Current ATMS operations use
the 83.4∘ beam group for calibration [71]. Uncorrected lunar contamination causes
ATMS to have about a 1 K error in K-band, a 6 K error in V/W-bands, and a 24-K
error in G-band [71].

2.3.2 Correcting for Intrusions

Several methods have been developed for correcting corrupted counts from lunar
intrusions. Mo and Kigawa [70] developed an algorithm to detect and remove lunar
contamination from AMSU measurements. The algorithm detects contamination by
finding when the separation angle between the moon and the antenna space viewing
direction is less than 4∘ [70]. A least squares fit is then used to remove the lunar
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Figure 2-6: The minimum and maximum declination of the moon changes are shown
for a major and minor lunar standstill.
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contamination spikes. The original ATMS Operational Algorithm Document (OAD)
mitigated lunar intrusions by averaging cold calibration views over 10 scans and
excluding the scan if three "good" cold target samples were not present [31]. The
lunar mitigation process was then updated in 2013 to instead ignore pixels that were
corrupted by the moon and replace them with previous unaffected data [31]. This
method has errors within 0.1 K in the worst case when all pixels are contaminated
[31].

Yang and Weng (2016) developed an algorithm for ATMS that corrects for the
lunar intrusion instead of discarding the corrupted pixels [71]. The lunar intrusions are
corrected by first flagging instances where the scan may have picked up an intrusion
from the moon based on whether 𝛽′ is between zero and 1.25 multiplied by the
beamwidth, where 1.25 is used to take into account the main beam efficiency [71]. 𝛽′

is defined as the apparent angle of the moon subtracted from the separation angle
between the Moon vector and the space view vector. The flagged scan is corrected by
calculating a lunar radiation term using the antenna gain, solid angle of the moon,
and the brightness temperature of the moon and applying it to the corrupted data
[71]. The brightness temperature of the moon is stable, and Mo and Kigawa first
showed that it could be parameterized based on the separation angle, 𝜃, between
the moon and sun [70]. This method was implemented and validated in Yang and
Weng’s offline calibration system, and mitigates data gaps from simply removing the
contaminated data [71].

Yang (2018) updated Mo and Kigawa’s parameterization of the moon’s brightness
temperature by using Diviner Lunar Radiometer Experiment (DLRE) observations
from 2009 to 2015, and he developed Equation 2.9 [11]. Figure 2-7 shows the effective
brightness temperature of moon by phase angle (𝜃) as defined by Equation 2.9.

𝑇moon = 100.89 + 85.65(1 − cos 𝜃) − 0.24(1 + cos(2𝜃)) (2.9)

Yang (2018) calculated the brightness temperature increment that is caused by
lunar intrusions by the following formula:

∆𝑅moon = Ωmoon *𝐺ant * 𝑇𝐵diskmoon (2.10)

𝐺 is the antenna response function, Ωmoon is the solid angle of the moon, and
𝑇𝐵diskmoon is the average brightness temperature of the moon’s disk [11]. The an-
tenna response is approximated by a one-dimensional Gaussian function as shown in
Equation 2.11, and the solid angle is calculated by Equation 2.12 [11].
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Figure 2-7: The effective brightness temperature of the moon is stable and can be
parameterized by moon-sun angle.

𝐺(𝛽) = 𝑒
−(𝛽2)

2𝜎2 (2.11)

Ω𝑚𝑜𝑜𝑛 =
𝜋 · ( 𝑟𝑚𝑜𝑜𝑛

𝐷𝑚𝑜𝑜𝑛
)2∫︀∫︀

𝐺(𝜃, 𝜑)𝑠𝑖𝑛(𝜃)𝑑𝜃𝑑𝜑
(2.12)

In the equations above, 𝛽 is defined as the separation angle between the antenna
boresight and moon-in-view vector and 𝜎 is the antenna parameter, defined as the
the full width half maximum (FWHM) divided by 2 2

√︀
2 ln(2) [72]. The symbol 𝑟moon

represents the radius of the moon, and 𝐷moon represents the distance between the
spacecraft and the moon.

We use these methods to develop a solar/lunar calibration algorithm for TROP-
ICS, as described in Chapter 5.

2.3.3 Sun-tracking Ground Microwave Radiometry

Similar algorithms have not been developed for solar intrusions, as the typical sun-
synchronous weather satellite orbits do not have to contend with solar intrusions in the
same way as lunar intrusions. However, sun-tracking ground microwave radiometers
use the sun as source of radiation that can be used to retrieve atmospheric properties
[58]. Sun tracking microwave radiometry is also used as a calibration tool for ground
microwave radiometers and can be used to determine boresight pointing errors as well
as the noise temperature of the receiver [58]. Although the solar cycle variability has
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not been well-characterized at TROPICS frequencies [73], sun-tracking microwave
radiometry has found that the sun appears as a constant uniform disk at frequencies
above 10 GHz (apart from multiple year solar cycles) [58]. Mattioli used two separate
sun-tracking techniques to determine an average estimate of the effective brightness
temperature with the sun in the FOV; both techniques provided similar results [58].

Mattioli defines the radiometer antenna main beam normalized pattern as a Gaus-
sian shape as defined in Equation 2.13, where 𝜃ML is the half power beamwidth of the
antenna main beam.

𝐹nML(𝜃, 𝜑) = 𝑒(− ln 2)[(2𝜃)/(𝜃ML)
2)] (2.13)

𝐹nML is then integrated and divided by 𝜂ML, the antenna main beam efficiency,
in order to find Ω𝑎𝑛𝑡. Instead of approximating the sun’s solid angle based on the
radius of the sun and the distance to the sun as in Yang 2018, Mattioli integrates the
radiometer antenna beam as shown in Equation 2.15 [58].

Ωant =

∫︀∫︀
4𝜋
𝐹𝑛𝑀𝐿(𝜃, 𝜑)𝑑Ω

𝜂𝑀𝐿

(2.14)

Ωsun =

∫︁ 2𝜋

0

∫︁ 𝜃sun
2

0

𝐹nML(𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 (2.15)

We leverage Mattioli’s method (with atmospheric considerations removed from his
ground-based application) for the development of our lunar and solar algorithm for
TROPICS.
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Chapter 3

Calibration Corrections for
MicroMAS-2A Data

3.1 Approach

In this section, we describe the approach used to determine on-orbit calibration cor-
rections for MicroMAS-2A. Stray radiation during pre-launch thermal vacuum (TVac)
testing resulted in the data not being usable except for non-linearity corrections, ne-
cessitating the use of on-orbit techniques. MicroWave Humidity Sounder (MWHS)-2
matchups are used as a calibration reference since MWHS-2 has channels in the same
bands as MicroMAS-2A.

On-orbit correction factors are derived by using vicarious calibration with two
different methods [55]. The first method uses brightness temperature histogram
matchups between MicroMAS-2A and MWHS-2 channels to derive noise diode tem-
perature corrections. The second method uses a statistical Markov Chain-Monte
Carlo integration to estimate a probability density function for the value of the noise
diode temperature. For both of these methods, we use the results to update the
calibration of the MicroMAS-2A data.

3.1.1 Matchups with MWHS-2

MWHS-2 is a four frequency, 15-channel cross-track microwave sounder on the China
Meteorological Administration’s (CMA) FengYun (FY)-3C polar orbiting weather
satellite. MWHS-2 is the first space-borne instrument to have sounding channels
centered around the 118 GHz oxygen band [74]. MWHS-2 has a calibration reso-
lution of less than 2.0 K for all channels, which is higher than the <0.4 K shown
by ATMS [75]. Additionally, an ECMWF analysis of the monthly-averaged MWHS-
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Table 3.1: Summary of MicroMAS-2A and MWHS-2 Channel Characteristics

Channel MM-2A Center
Freq (GHz)

MM-2A
Band-
width
(GHz)

MWHS-2 Center
Freq (GHz)

MWHS-2
Band-
width
(GHz)

1 93.6 1.0 89.0 1.5
2 116.16 0.48 118.75 ± 0.08 0.02
3 116.68 0.4 118.75 ± 0.2 0.1
4 117.29 0.46 118.75 ± 0.3 0.165
5 117.95 0.48 118.75 ± 0.8 0.2
6 118.64 0.42 118.75 ± 1.1 0.2
7 183.31 ± 1 0.5 118.75 ± 2.5 0.2
8 183.31 ± 3 1.0 118.75 ± 3.0 1.0
9 183.31 ± 7 2.0 118.75 ± 5.0 2.0
10 150.0 1.5
11 183.31 ± 1 0.5
12 183.31 ± 1.8 0.7
13 183.31 ± 3 1.0
14 183.31 ± 4.5 2.0
15 183.31 ± 7 2.0

2 mean observational-bias (O-B) showed <3.0 K compared to <0.8 K for ATMS
[74]. Although MWHS-2 does not meet the calibration performance of ATMS, the
instrument does have channels at 118 GHz that we can use for comparison with the
MicroMAS-2A 118 GHz channels. We therefore choose to use MWHS-2 as an on-orbit
calibration reference since it has channels in the same bands as MicroMAS-2A. ATMS
is used as our validation comparison using the double difference technique (described
in more detail later in Chapter 4).

In Table 3.1 we show a summary of MicroMAS-2A and MWHS-2 channel center
frequencies and bandwidths. MicroMAS-2A Channels 7, 8, and 9 are identical to
MWHS-2 Channels 11, 13, and 15, respectively. Identical matches do not exist for
MicroMAS-2A Channels 1–6.

In order to find the closest matching channels from MHWS-2 for MicroMAS-2A
Channels 1–6, we next compare weighting functions. Weighting functions (WF) are
used to show the sensitivity of the channel at different altitudes in the atmosphere.
By comparing the weighting function peaks between the dissimilar sensors, we can
quantitatively determine how well the channels match each other. In Figure 3-1 we
show the weighting functions of MicroMAS-2A Channels 1-6 and MWHS-2 Channels
1–9.
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Figure 3-1: Weighting functions show the sensitivity of each channel at different
altitudes in the atmosphere. MicroMAS-2A weighting functions are shown in solid
and the MWHS-2 weighting functions are in the dashed lines. Both plots assume a
boxcar Spectral Response Function (SRF).
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Table 3.2: Channel Matchups with Weighting Function Peaks

MM-
2A
Chan-
nel

MM-2A
WF Peak
(hPa)

MM-2A
WF Peak
(delta
tau/delta ln
px)

MWHS-
2
Chan-
nel
(GHz)

MWHS-2
WF Peak
(hPa)

MWHS-
2 WF
Peak (delta
tau/delta ln
px)

1 986.1 0.2972 1 986.1 0.2847
2 986.1 0.5818 7 986.1 0.5829
3 891.8 0.5343 7 986.1 0.5829
4 802.4 0.4534 6 & 7 650.1 0.5557
5 247.4 0.5727 5 247.4 0.5725
6 852.8/56.13 0.2972/0.1597 6 & 7, 3 650.1/66.1 0.5557/0.5632
7 478 1.97 11 478 1.97
8 639.1 1.522 13 639.1 1.522
9 898.6 1.476 15 878.6 1.476

It can be seen from the weighting functions that MicroMAS-2A Channel 1 matches
MWHS-2 Channel 1, and MicroMAS-2A Channel 5 matches MWHS-2 Channel 5.
MWHS-2 Channel 7 is the best match for both MicroMAS-2A Channels 2 & 3. In
order to find a match for MicroMAS-2A Channels 4 and 6 it is necessary to average
MWHS-2 Channels together. We find the optimal MWHS-2 channels to average to-
gether in order to match the weighting function peaks of the MicroMAS-2A channels.
In Table 3.2 we show WF peaks and the channels we use to match each channel (for
Table 3.2, we use MicroMAS-2A WF peaks from the actual SRF, as discussed further
in Chapter 4).

We next show the data segments that we use for the calibration corrections.
MicroMAS-2A provided the first CubeSat microwave atmospheric sounder data from
orbit, and achieved its mission objectives. However, only limited data segments were
downlinked due to challenges communicating with the ground station and an anomaly
with the on-board radio. In Table 3.3, we show a summary of the six total pay-
load data segments, which includes the Radiometer Front End (RFE) temperature,
date/time, nadir Two-Line-Element (TLE) location, and geolocation status. For the
initial calibration and validation, we use the three geolocated data segments and refer
to them as Segment 1, Segment 2, and Segment 3. Data segments 1 & 2 are approx-
imately 5 minutes long and are geolocated in a northern polar region near Alaska,
while data segment 3 is located near Madagascar. All three segments of data were
taken on 6 April 2018. Segment 1 takes place from 05:17-05:22 Z, Segment 2 takes
place from 02:12-02:17 Z, and Segment 3 takes place from 05:46-05:55 Z. Figure 3-2
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Table 3.3: MicroMAS-2A Data Segment Summary (6 April 2018)

Segment RFE Tem-
perature
(C)

GMT
Date/Time

Nadir TLE Loca-
tion

Geolocated

1 19.4 05:12:12-
05:22:03

Alaska/Arctic Yes

2 11.0 02:11:59-
02:21:51

Arctic/NE Russia Yes

3 26.5 05:42:16-
05:52:05

Indian Ocean/
Madagascar

Yes

4 21.6 02:42:07-
02:21:51

Indian Ocean off
Australia

No

5 24.4 07:12:26-
07:22:20

Red Sea No

6 20.8 08:14:06-
08:22:24

N. Pacific Ocean
Between Hawaii
and Alaska

No

Table 3.4: Data Segment Comparisons between MicroMAS-2A and MWHS-2

MM-2A
Data Seg-
ment

Date
(MM/DD/
YYYY)

MM-2A
Time

MWHS-2
Time

Time Dif-
ference
(min)

1 4/6/2018 05:17-05:22 Z 05:02-05:07 Z 15 min
2 4/6/2018 02:12-02:17 Z 03:24-03:39 Z 72 min
3 4/6/2018 05:46-05:44 Z 05:32-05:39 Z 14 min

shows the satellite track of Segments 1, 2, & 3.
We find MWHS-2 data segments that take place as close in distance and time

possible to the MicroMAS-2A data segments. All matching MWHS-2 segments are
from 6 April 2018. We use a MWHS-2 data segment from 05:02-05:07 Z to match
MicroMAS-2A data segment 1, a MWHS-2 data segment on 03:24-03:39 Z to match
MicroMAS-2A data segment 2, and a MWHS-2 data segment on 05:32-05:39 Z to
match MicroMAS-2A data segment 3. Table 3.4 shows a summary of the data segment
date and times that we use for our calibration corrections.

3.1.2 Brightness Temperature Histogram Approach

In order to complete the histogram matchups, we first plot the brightness tempera-
tures of the MicroMAS-2A and corresponding MWHS-2 data segments. The MWHS-2
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Figure 3-2: Plots of Segment 1 (6 Apr 2018 05:17-05:22Z), (a), Segment 2 (6 April
2018 02:12-02:17Z), (b), and Segment 3 (6 April 2018 05:46-05:55Z),(c). The red point
depicts the nearest radiosonde stations used for our analysis for radiance validation
(Barrow, Alaska, U.S., Segment 1 & 2, and La Reunion, France, Segment 3).
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data segments are masked in order to match as closely as possible the MicroMAS-2A
data segments. In Figure 3-3, we show an example of the MicroMAS-2A data seg-
ment images (left) compared to MWHS-2 data segment images (right). MicroMAS-2A
Channel 7 is compared to MWHS-2 Channel 11 in the example images, which show
Segment 1 (a), Segment 2 (b), and Segment 3 (c). It can be seen in the images that
there is a clear difference in brightness temperatures over similar features.

We then plot histograms of the brightness temperatures of both of the images.
The MicroMAS-2A brightness temperature measured over each data segment is used
to generate a histogram, which is compared to the corresponding MWHS-2 brightness
temperature histogram at each channel matchup (see Table 3.2). Both histograms
are generated with 200 bins from 200 to 300 K and normalized such that the sum of
the bar heights is equal to one. This normalization allows a more accurate histogram
comparison between segments with a differing number of total points. We then sweep
through adjustments to the noise diode temperature until we find the noise diode
temperature value corresponding to the minimum value of the square root of the sum
of the differences between histogram bins squared.

An example is shown for MicroMAS-2A Channel 7 and MWHS-2 Channel 11 for
Segment 1. In Figure 3-4 (a), the histogram of brightness temperatures is compared
prior to the calibration correction. The MicroMAS-2A histogram is shown shifted to
the left from the MWHS-2 histogram. We then adjust the noise diode temperature
until the MicroMAS-2A histogram curve matches the MWHS-2 histogram curve, as
shown in Figure 3-4 (b). The shift in noise diode temperature is then recorded as the
calibration correction for that channel. Figure 3-5 shows a comparison of Segment
1 MicroMAS-2A Channel 7 without a correction (a) and after the correction (b)
compared to MWHS-2 Channel 11 (c). It can be seen that the calibration correction
improves the matching of the image features.

3.1.3 Markov Chain-Monte Carlo Approach

Background

We next apply a calibration approach using a Markov Chain-Monte Carlo (MCMC)
statistical technique. MCMC is a Bayesian approach that finds the posterior distri-
bution by simulating draws from a complex distribution [76]. Markov chains are a
sequence of random variables that only use the previous value to randomly generate
the next value [76]. After a sufficient burn-in period, the Markov chain reaches a
stationary distribution.

We use the Metropolis algorithm with the MCMC approach [76]. The Metropolis
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Figure 3-3: Brightness temperature images are compared between MicroMAS-2A
Channel 7 and MWHS-2 Channel 11 before corrections. Segment 1 is shown in (a),
Segment 2 is shown in (b), and Segment 3 is shown in (c). There is a difference in
brightness temperature over similar features.
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Figure 3-4: In Figure 3-4(a), we show a comparison of the MicroMAS-2A and MWHS-
2 histograms before a correction. Figure 3-4(b) shows the histograms after a noise
diode correction is applied.

Figure 3-5: In these images, we compare Segment 1 MicroMAS-2A Channel 7 before
the calibration correction (a) and after the calibration correction (b) to MWHS-2
Channel 11 (c). The image features match after the correction is applied.
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Figure 3-6: We plot MicroMAS-2A data at -42∘ zenith angle (red) compared to
MWHS-2 data at -42∘ zenith angle (blue) over Segment 2 and find an intersecting
point. We repeat this at varying angles to build 39 data points that we can use for
the MCMC analysis.

algorithm selects candidate points using a jumping distribution; the ratio of the den-
sity is then compared between the new point and the prior point [76]. If the density
is increased, then the new point is accepted; otherwise, the new point is discarded
[76]. In this manner, a chain of random variables is established that approaches a
stationary distribution.

Point Selection

In order to implement the MCMC approach, we select points from the MicroMAS-2A
and MWHS-2 data segments by finding intersecting points between similar zenith
angles for both sensors. Segment 1 & 3 had dissimilar zenith angles between the two
sensor segments, so we only analyze Segment 2 for the MCMC approach. Figure 3-6
shows an example of finding an intersecting point at -42∘ zenith angle. Using this
approach, we find 39 points that we can use for the MCMC analysis. We then pull
the cold counts, hot counts, and scene counts from MicroMAS-2A for each of the
intersecting points, as well as the MWHS-2 brightness temperature at the selected
points.
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Table 3.5: MicroMAS-2A Non-linearity Coefficients by Channel

Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Ch 7 Ch 8 Ch 9
44.54 -0.30 -0.05 -0.29 -0.23 -0.11 0.08 -28.17 1.73

Algorithm Development

We then create a log-likelihood function using the MicroMAS-2A calibration equa-
tion (Equation 3.1). 𝑇s is the scene brightness temperature, 𝑇c is the cold calibration
temperature, 𝑇h is the hot calibration temperature, 𝑔 is the gain as defined in Equa-
tion 3.2, 𝐶s is the scene counts, 𝐶c is the cold counts, and 𝑁𝐿 is the non-linearity
correction, as defined in Equation 3.3.

𝑇s = 𝑇c + 𝑔 * (𝐶s − 𝐶c) + 𝑁𝐿 (3.1)

𝑔 =
(𝑇h − 𝑇c)

(𝐶h − 𝐶c

(3.2)

𝑁𝐿 = −𝑇NL · (1 − 4 · (
𝐶s − 𝐶c

𝐶h − 𝐶c

− 0.5)2) (3.3)

𝑇𝑁𝐿 is the non-linearity coefficient for each channel, and it was determined using
TVac pre-launch data. Table 3.5 shows the non-linearity coefficients.

We parameterize the equation in order to use the MCMC algorithm, which is used
to create a distribution of 𝑇c and 𝑇h. 𝐶c, 𝐶s, and 𝐶h are pulled from the MicroMAS-
2A intersection points. We can then calculate our log-likelihood function by finding
𝑇𝑎model using the MCMC samples and compare to 𝑇a, the MWHS-2 brightness tem-
perature, assuming Gaussian random noise (see Equation 3.4). 𝜎 in Equation 3.4 is
the NEDT, which we set at 3.0 K.

𝑦 =
−0.5

𝜎2
* Σ(𝑇a − 𝑇model)

2 (3.4)

We then use a normal distribution as our jumping distribution with a mean value
of 0 and a standard deviation of 5 K. Because the deep space brightness temperature
is very stable, we constrain 𝑇c using a strong prior centered at 2.7 K. The benchtop
noise diode temperature (derived from ground testing) is used as the 𝑇h initial value
for each channel. The algorithm then builds a Markov chain based on our initial
estimates. Equation 3.5 is used to select each point in the chain, where 𝑦1 is the new
log-likelihood and 𝑦0 is the log-likelihood calculated from the previous point. If the
random point, 𝑡, from the normal distribution passes the condition set in Equation
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Figure 3-7: Plot (a) shows the MCMC histogram of 𝑇c, while plot (b) shows the
MCMC histogram of 𝑇h for Channel 1.

3.5, then we accept the random point for the Markov Chain. After a burn-in period
the chain reaches a stationary distribution. We plot a histogram of the distribution,
and the value with the highest probability is chosen as the corrected value of 𝑇h.

𝑡 < 𝑒𝑦1−𝑦0 (3.5)

Figure 3-7 shows an example of the results. We show the histogram of 𝑇c and 𝑇h

for MicroMAS-2A Channel 1 using the MCMC approach. All channel results using
the MCMC method are shown in Appendix C.

3.2 Results

3.2.1 Brightness Temperature Histogram Results

In Table 3.6 we show the pre-launch noise diode calibration and the correction fac-
tors for Segment 1, 2, & 3 that we calculated through the brightness temperature
histogram comparison method. The calibration correction factors we found for each
segment using this method were generally close to each other, but each segment had
outliers (identified in italics in 3.6) that exceeded 30% from the average of the other
two segments and did not match the trends expected from TVac noise diode stability
data.

In order to analyze further, we took a more detailed look at instrument tempera-
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Table 3.6: Calibration corrections found using brightness temperature histogram
method. Italicized corrections are outliers; outliers exceed 30% from the average of
the other segment corrections and do not match the trends expected from the Tvac
noise diode stability data.

MM-2A
Channel

Pre-launch
(K)

Seg 1 (K) Seg 2 (K) Seg 3 (K)

1 1945 +160 +175 +107
2 226 -3.8 -2.9 -3
3 223 -6.0 -4.9 -1.4
4 206 -4.7 -2.8 -2.8
5 188 -9.5 -9.1 -14.7
6 205 -10.7 -9.4 -22.0
7 309 +7.6 -11.2 +0.9
8 827 -119 -85 -115
9 499 +5.7 +4.0 +0.6

ture versus noise diode temperature stability plots. The instrument temperature was
at 19∘C for Segment 1, 11∘C for Segment 2, and 26.5∘C for Segment 3. We trended
TVac chamber instrument temperature versus noise diode temperature data in order
to determine if the calibration corrections differed due to the instrument temperature.

Our initial analysis did not show a clear correlation between the calibration cor-
rections and instrument temperature, with the exception of Channel 5. The Channel
5 Tvac data (Figure 3-8) shows that we should expect Segment 3 at 26.5∘C to have a
correction factor that is 5 K lower than the Segment 1 correction factor at 19.4∘C;
our correction factor was 5.2 K lower for Segment 3 than Segment 1 (see Table 3.6).

The outliers (italicized in Table 3.6) could be due to several different factors. For
instance, noise diode testing on TROPICS has shown some G-band noise diodes to
have state changes at different temperatures, and jumps have been seen to occur for
the F-band noise diodes. It could be that the noise diodes on MicroMAS-2A are
similarly experiencing state changes or jumps at different temperatures.

Other sources of errors could be due to the matchups used for the histograms.
For instance, the time difference between MicroMAS-2A and MWHS-2 is less than
20 minutes for Segment 1 and Segment 3, but the time difference is over an hour
for Segment 2. Weather changes in this hour timeframe could induce errors for the
calibration corrections for Segment 2. The MWHS-2 images used for Segment 1 and
Segment 3 matchups also have a larger scan angle than the MicroMAS-2A images, so
scan angle error could be contributing to the difference in calibration corrections.

In order to determine the calibration correction for our analysis, we found the
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Figure 3-8: Channel 5 TVac data plots the stability of the noise diode temperature
versus the instrument temperature. As can be seen in the plot, the Segment 3 calibra-
tion correction to the noise diode should be approximately 5 K below the correction
required for Segment 1. Our correction factors in Table 3.6 match the Tvac data.

average of the correction factors for each segment (excluding outliers italicized in
Table 3.6), and then applied this correction factor for each of the three segments of
data prior to radiance validation. The correction factors we used for our analysis are
shown in Table 3.7.

3.2.2 Markov Chain-Monte Carlo Results

We also determine the calibration corrections using the MCMC method. Due to the
differences in zenith angle, we only use this method for Segment 2. For each channel,
we run the MCMC algorithm and then plot a histogram of the results (see Figure 3-7
for an example). The highest probability noise diode temperature in the histogram
is chosen as the proper correction factor. Table 3.8 shows a comparison between our
results using the previous brightness temperature histogram method and the MCMC
approach. The noise diode temperature results between the two methods are within
1.2% of each other. Although in this case with limited data we were only able to use
the MCMC method to analyze data segment 2, we have shown that it is a promising
method that could be used for future mission MicroMAS-2B, as well as TROPICS.
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Table 3.7: Calibration Correction Factors used in our Analysis

MM-2A
Channel

Pre-launch
(K)

Correction
Factor (K)

1 1945 +167.5
2 226 -3.2
3 223 -5.5
4 206 -2.8
5 188 -10.7
6 205 -10.1
7 309 +4.3
8 827 -117
9 499 +4.9

Table 3.8: Comparison between BT Histogram and MCMC Correction Factors for
Segment 2

MM-2A
Channel

BT Hist Cor-
rection (Seg 2)
(K)

MCMC Cor-
rection (K)

Percent Dif-
ference

1 2123 2108 0.7%
2 226.1 225.7 0.2%
3 221.1 220.7 0.2%
4 206.2 205.8 0.2%
5 181.9 182.2 0.2%
6 198.6 199.3 0.4%
7 300.8 301.7 0.3%
8 745 737.1 1.1%
9 506 511.3 1.0%
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Chapter 4

Radiance Validation of
MicroMAS-2A Data

4.1 Approach

As discussed in Chapter 2, we complete radiance validation of MicroMAS-2A data
using CRTM and LBL Radiative Transfer Models (RTMs) with atmospheric inputs
of GPSRO, radiosondes, and ERA5. The double difference technique is used to com-
pare MicroMAS-2A to Advanced Technology Microwave Sounder (ATMS) data and
provide a metric of performance. We first describe our model and validation with
the RTMs. We then discuss channel matchups with ATMS, the MicroMAS-2A spec-
tral response function (SRF), and the point selection used for the double difference
approach.

4.1.1 CRTM Methodology for Validation

4.1.2 CRTM Analysis

CRTM uses atmospheric profile data, surface data, satellite coefficients, and scan
angles to determine simulated brightness temperatures. We use atmospheric profiles
from GPSRO, radiosondes, and NWP models as inputs to CRTM, as shown in Figure
2-1. The process we developed for generating simulated brightness temperatures is
shown in Figure 4-1. We developed MATLAB code to read in reports, filter matchups
based on environmental and performance metrics, and convert the data into the
proper format for CRTM.

The process was validated using Suomi-NPP ATMS actual brightness tempera-
tures compared to CRTM generated simulated brightness temperatures from GPSRO,
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Figure 4-1: Process for developing simulated brightness temperatures using CRTM.
Dashed lines depict contributions from this work.

radiosonde, and NWP inputs. ATMS data was downloaded from the Goddard Earth
Sciences (GES) Data and Information Services Center (DISC) [77]. The results are
then compared against other analyses that have determined ATMS radiometric bias
using CRTM.

ATMS and CRTM Comparisons

First we compare CRTM simulated brightness temperatures to ATMS actual bright-
ness temperatures using GPSRO. GPSRO wetPrf profiles from COSMIC are down-
loaded from the COSMIC Data Analysis and Archive Center (CDAAC) [78] and
filtered based on being within 60 minutes and within the 55 degrees FOV of ATMS
observations. Profiles are also filtered to ensure acceptable quality of data and that
the occultations took place in clear sky and over water. Varying surface emissivity
causes less accurate simulated brightness temperatures over land, and clouds affect
the brightness temperature of sounding channels. The most accurate radiometric
biases are developed by using profiles that take place in clear sky and over water
[8]. Channels 6-13 are weighted at elevations between 8 and 30 km, where GPSRO
profiles and high quality analyses are estimated to have global mean differences of
0.65K [63]. We therefore only compare GPSRO simulated brightness temperatures to
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Figure 4-2: Comparison of GPSRO CRTM-ATMS biases between our method, Zou’s
analysis [8], and STAR ICVS [9].

ATMS Channels 6-13. The delta differences in brightness temperatures are compared
to previous analyses by Zou, Lin, and Weng for January 2011 [8], as well as compared
to the National Environmental Satellite, Data, and Information Service (NESDIS)
Center for Satellite Applications and Research (STAR) Integrated Calibration and
Validation System (ICVS) ATMS-GPSRO biases for January 2018 [9]. Although the
analyses take place at different times, the resulting biases are within 0.5 K of each
other and validate that our process is providing expected results (see Figure 4-2). Fig-
ure 4-3 shows scatter plots of Channels 6-13 for all unfiltered CRTM-GPSRO profiles
in January 2018.

We also compare ATMS measured brightness temperatures to CRTM simulated
brightness temperatures using radiosondes for atmospheric inputs. We use the Global
Climate Observing System (GSOC) Reference Upper-Air Network (GRUAN) for ra-
diosonde profiles, which is a long-term, high quality network of radiosonde sites that
is used internationally [7]. Sites of Barrow, Graciosa, and Ny-Alesund were chosen
for this analysis due to their proximity to water, and they are shown in Figure 4-4.
For the month of January, only five radiosonde profiles at the three stations were
located within 60 minutes and 55 degrees FOV of ATMS observations, and only one
of those profiles took place during clear sky conditions. For the clear sky profile in
Ny-Alesund on January 23rd, the delta brightness temperatures for Channels 5-11
and Channels 18-22 were less than 1.2 K. This compares favorably to other analyses
by Moradi that showed <2.0 K delta brightness temperatures using radiosondes [65]
and Lin who showed a <2.6 degree bias with radiosondes [79].

We next compare CRTM simulated brightness temperatures with ERA5 profiles as
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Figure 4-3: GPSRO-CRTM vs ATMS scatter plots show a slight hot bias for channels
7-9 and a slight cold bias for channels 6 and 10-13. This matches previous analyses
by Zou, Lin, and Weng [8].
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Figure 4-4: GRUAN radiosonde stations Barrow, Ny-Alesund, and Graciosa (circled
in red) were used for CRTM comparisons to ATMS.

inputs to actual ATMS brightness temperatures for Jan 1-7, 2018. ERA5, a reanalysis
dataset available from ECMWF [66], provides atmospheric pro.files at hourly intervals
from global latitudes and longitudes. We choose ERA5 profiles at ATMS latitude and
longitudes on the hour. After filtering all 168 possible profiles (24/day), there are 17
profiles that can be used for radiance validation. The majority of the channels show
less than 1 K of difference, except for the ATMS window channels (Channels 1-4,
16-17) that are negatively affected by the variability of emissivity. This compares
favorably to the ATMS IC/VS website, which shows up to 3 K of difference using
RTTOV in January 2018.

In Table 4.1, we show a summary of our results using GPSRO, radiosondes, and
ERA5. GPSRO comparisons are used for Channels 6-13 since GPSRO measurements
are most accurate from 8-30 km in the atmosphere [63]. Radiosonde comparisons are
used for Channels 5-11 and 18-22, as radiosondes generally burst near 20 km altitude
and the variability of surface emissivity causes larger biases for window channels
[65]. ERA5 reanalysis provides data from the surface to 1 hPa, so we show ERA5
comparisons for all ATMS Channels 1-22.

4.1.3 LBL Methodology

The Rosenkranz LBL model has already been validated at MIT Lincoln Laboratory
(MIT LL), and the majority of the scripts used for LBL were developed at MIT
LL. The passbands representing the actual SRF were also developed by MIT LL.
Our research developed one extra script to convert the atmospheric profiles from the
CRTM format and units to the LBL format and units.
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Table 4.1: Average Delta Brightness Temperature (K) between ATMS and CRTM
for GPSRO, Radiosonde, and ERA5 inputs

ATMS Channel GPSRO (K) Radiosonde (K) ERA5 (K)
1 -4.36
2 -2.52
3 -3.10
4 -1.77
5 0.43 -0.61
6 0.01 0.90 -0.18
7 0.24 0.34 -0.07
8 0.31 0.46 0.49
9 0.47 1.19 0.73
10 -0.21 -0.22 -0.07
11 -0.24 -0.57
12 -0.46 -0.95
13 -0.59 -0.55
14 0.31
15 0.04
16 -3.36
17 -3.11
18 0.05 0.31
19 -0.10 0.20
20 -0.07 0.08
21 -0.29 -0.24
22 -0.33 -0.92
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4.1.4 Matchups with ATMS

In order to compute the double differences, we use ATMS as our reference sensor.
ATMS is a state-of-the art cross-track scanner microwave radiometer that is used on
Suomi-NPP and NOAA-20. ATMS is the newest generation of microwave sounders
and was designed to provide significant enhancements over prior instruments such as
AMSU-A and the Microwave Humidity Sounder (MHS). For example, ATMS pro-
vides a faster scan and sampling, additional sounding channels, improved reliability,
and reduced size, weight, and power (SWaP) from previous sensors [31]. The ATMS
on-orbit radiometric accuracy requirements are <1.0 K for Channels 1,2, and 16-22
and <0.75 K for Channels 3-15 [31]. The on-orbit performance has been measured
to be well within these requirements at <0.4 K radiometric accuracy for all chan-
nels [31]. Although ATMS is state-of-the-art for microwave radiometers, it does not
have channels at 118 GHz for comparison to the MicroMAS-2A 118 GHz channels
(Channels 2-6).

Table 4.2 shows a comparison of the frequencies and passbands of the MicroMAS-
2A and ATMS. MicroMAS-2A Channels 7, 8, and 9 are identical to ATMS Channels
22, 20, and 18. Identical matches do not exist for MicroMAS-2A Channels 1-6.

Similar to our approach with MWHS-2 channel matchups, we next consider the
instrument weighting functions in order to determine ATMS channel matches for
MicroMAS-2A Channels 1-6. In Figure 4-5, we show a plot of MicroMAS-2A weight-
ing functions for Channels 1-6 and ATMS weighting functions for Channels 1-17. It
can be seen from the weighting functions that MicroMAS-2A Channel 1 is similar to
ATMS Channel 16. ATMS Channel 4 matches reasonably well with MicroMAS-2A
Channel 2, ATMS Channel 5 matches reasonably well with MicroMAS-2A Channel
3, and ATMS Channel 8 matches reasonably well with MicroMAS-2A Channel 5. In
order to find a match for MicroMAS-2A Channels 4 and 6 it is necessary to average
ATMS Channels together. In 4.3 we show WF peaks and the channels we use to
match each channel (for this table, we use MicroMAS-2A WF peaks from the actual
SRF, as discussed further in Section 4.1.5).

4.1.5 Spectral Response Functions

The weighting functions shown in Figure 4-5 assume a boxcar approximation for
the sensors’ Spectral Response Functions (SRFs). However, we found during our
analysis that the boxcar approximation is not necessarily a good approximation for
the MicroMAS-2 channels, particularly in F-band. Figure 4-6 shows the MicroMAS-
2A SRFs for G-band, and Figure 4-7 shows the SRFs for F-band. For the G-band
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Table 4.2: Summary of MicroMAS-2A and ATMS Channel Characteristics. The
bolded MicroMAS-2A channel frequencies have identical matches with ATMS chan-
nels. The italicized channel frequencies require averaged channel matches with ATMS
channels. The remaining MicroMAS-2A channels have similar matches to ATMS
channels.

Channel MM-2A Cen-
ter Freq
(GHz)

MM-2A
Band-
width
(GHz)

ATMS Center Freq
(GHz)

ATMS
Band-
width
(GHz)

1 93.6 1.0 23.8 0.27
2 116.16 0.48 31.4 0.18
3 116.68 0.4 50.3 0.18
4 117.29 0.46 51.76 0.4
5 117.95 0.48 52.8 0.4
6 118.64 0.42 53.596 ± 0.115 0.17
7 183.31 ± 1.0 0.5 54.4 0.4
8 183.31 ± 3.0 1.0 54.94 0.4
9 183.31 ± 7.0 2.0 55.5 0.33
10 57.290 0.155
11 57.290 ± 0.217 0.078
12 57.290 ± 0.322 ± 0.048 0.036
13 57.290 ± 0.322 ± 0.022 0.016
14 57.290 ± 0.322 ± 0.010 0.008
15 57.290 ± 0.322 ± 0.0045 0.003
16 88.2 2.0
17 165.5 1.15
18 183.31 ± 7.0 2.0
19 183.31 ± 4.5 2.0
20 183.31 ± 3.0 1.0
21 183.31 ± 1.8 1.0
22 183.31 ± 1.0 0.5
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Figure 4-5: Weighting functions show the sensitivity of each channel at different
altitudes in the atmosphere. MicroMAS-2A weighting functions are shown in solid
and the ATMS weighting functions are in the dashed lines. Both plots assume a
boxcar Spectral Response Function (SRF).
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Table 4.3: Channel Matchups with Weighting Function Peaks

MM-2A
Channel

MM-2A
WF Peak
(hPa)

MM-2A
WF Peak
(delta
tau/delta ln
px)

ATMS
Channel

ATMS
WF Peak
(hPa)

ATMS WF
Peak (delta
tau/delta ln
px)

1 986.1 0.2972 16 986.1 0.2834
2 986.1 0.5818 4 986.1 0.6156
3 891.8 0.5343 5 931.5 0.6538
4 802.4 0.4534 4 & 6 812.6 0.6045
5 247.4 0.5727 8 260 0.5099
6 852.8/56.13 0.2972/0.1597 16 & 6, 11 812.6/47.2 0.4384/0.5691
7 478 1.97 11 478 1.97
8 639.1 1.522 13 639.1 1.522
9 898.6 1.476 15 878.6 1.476

channels, the boxcar approximation (depicted in the dashed lines) is a fairly good
approximation for the SRF. However, the as-measured F-band SRFs show multiple
frequency contributions outside of the desired bandwidth. Because MicroMAS-2A was
a technology demonstration with a limited schedule and budget, the F-band channels
were not optimized prior to launch. It should be noted that a different Intermediate
Frequency (IF) filter greatly improved the F-band SRF for the follow-on mission
TROPICS, resulting in near-negligible responses out of band (Figure 4-8).

To determine the impact of using the boxcar approximation, we plotted the
MicroMAS-2A weighting functions for both the boxcar assumption and the as-measured
SRFs, as shown in Figure 4-9. The boxcar SRF is shown in the solid line, while the
as-measured SRFs are shown in the dashed line. It can be seen that Channel 6 has
extra peaks in its weighting function, which correlates to the out-of-band frequency
measurements in F-band shown in Figure 4-7. Channel 4 also shows a significantly
different weighting function peak for boxcar versus as-measured. Due to these dif-
ferences, our analysis moved to using the Rosenkranz Line-by-Line (LBL) radiative
transfer model (RTM). Using the LBL RTM allowed us to input the as-measured SRF
when we calculate the simulated brightness temperatures for our radiance validation.
We later received updated CRTM satellite coefficients from JCSDA at NOAA for
MicroMAS-2A with the updated actual SRFs instead of the boxcar approximation,
which allowed us to find double differences using both RTMs.
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Figure 4-6: The MicroMAS-2A G-band (Channels 7-9) SRF is compared to the
boxcar approximation. The boxcar approximation (dashed lines) is a reasonable
comparison to the actual SRFs (solid lines).

Figure 4-7: Due to MicroMAS-2A being a technology demonstration, its F-band
SRFs (Channels 2-6) were not able to be optimized prior to launch. Contributions
from frequencies are seen outside their desired bandwidth.
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Figure 4-8: Improved IF filter technology was used for TROPICS F-band SRFs.
Qual unit testing shows that there are negligible out of band contributions.

Figure 4-9: MicroMAS-2A weighting functions for boxcar (solid) and as-measured
(dashed) SRFs.
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Table 4.4: Summary of Points Selected from Segments 1, 2, & 3

Sensor Time Apart Distance Apart Scan Angle Clear Sky
Segment 1

MM-2A N/A N/A 6.75 deg Points 1-5, 7-9
ATMS 8 hr+10 min prior 2-10 km 7.24-8.37 deg Points 1-4, 6-7, 9, 11

Segment 2
MM-2A N/A N/A 0.75-9.75 deg Points 6-9
ATMS 6 hr+45 min prior 1-41 km 0.61-8.37 deg Points 2-9

Segment 3
MM-2A N/A N/A 0.75-3.75 deg Points 1-6, 10-15
ATMS 8 hr+15 min prior 0.5-12 km 1.61-4.95 deg Points 3-5

4.1.6 Double Difference Point Selection

In order to complete radiance validation, we analyze MicroMAS-2A data segments
1, 2, and 3 with the updated calibration from Chapter 2.2.1. We choose MicroMAS-
2A points selected >160 km apart, which ensures that each point we analyze is in a
different 1∘ grid and thus uses a different ERA5 profile for simulation. We then choose
matching ATMS points from passes that are as close as possible in time and distance
from the MicroMAS-2A points. Scan angle is filtered to less than 10.0 deg, distance is
limited to less than 50 km, and time is chosen as close as possible with less than one
hour apart considered ideal. However, the closest ATMS pass for our comparisons
is 6-8 hours prior to the MicroMAS-2A data segments (see Table 4.4) so we were
unable to meet the desired one hour time filter. The most accurate radiometric biases
are developed by using profiles that take place in clear sky and over water; varying
surface emissivity causes less accurate simulated brightness temperatures over land,
and clouds affect the brightness temperature of sounding channels. Thus, all points
are screened for over water and clear sky. Figure 4-10 shows the points chosen for
Segments 1, 2, & 3. The red points depict MicroMAS-2A, the blue points are ATMS,
and grey points are cloudy points. Six points from Segment 1, four points from
Segment 2, and three points from Segment 3 pass our filters, which gives us 13 points
to use for our double difference analyses. Table 4.4 shows a summary of the matchup
points between MicroMAS-2A and ATMS.

Clear sky is determined by using cloud masks obtained from the Visible Infrared
Imaging Radiometer Suite (VIIRS) on Suomi-NPP and the Visible and Infrared Ra-
diometer (VIRR) on FY-3C. The Suomi-NPP VIIRS cloud mask is a data product
available from the Atmosphere Science Investigator-led Processing System at the Uni-
versity of Wisconsin-Madison Space Science and Engineering Center [80]. The VIIRS
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Figure 4-10: Selected points for Segment 1, 2, and 3. Red shows MicroMAS-2A
points, blue shows ATMS points, and grey shows cloudy points.
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Table 4.5: Bit Values for VIIRS Cloud Mask

Bit Value Meaning Cloud Mask Value
00 Cloudy 0
01 Uncertain 1
10 Probably Clear 2
11 Confident Clear 3

cloud mask product determines if each pixel is cloudy (0), probably cloudy (1), prob-
ably clear (2), or confidently clear (3). The FY-3C VIRR cloud mask is available from
the National Satellite Meteorological Center (NSMC) FENGYUN Satellite Data Cen-
ter [81]. The VIRR cloud mask product provides a number from 1-256 for each pixel.
That number is converted into binary, and we then read out bit fields 1 and 2 and
convert the values to 0-3 to match the VIRR cloud mask, as shown in Table 4.5. The
VIRR cloud mask is used to determine clear sky for the MicroMAS-2A points, since
the FY-3C pass is within one hour and 30 minutes of MicroMAS-2A for all segments.
The VIIRS cloud mask is colocated with Suomi-NPP and is thus used to determine
clear sky for the ATMS points. The points used in our analysis are assessed to be in
clear sky if they have cloud mask values of 2 (probably clear) or 3 (confidently clear).
The cloud masks for Segments 1, 2, and 3 are shown in Figure 4-11.

4.2 Results

4.2.1 Double Differences

We next use the double difference technique to compare MicroMAS-2A and ATMS
for the points selected for each data segment. The calibration correction listed in
Table 3.7 has been implemented for the MicroMAS-2A data. We compute double
differences using CRTM and the LBL RTM, with both ERA5 and radiosonde inputs.
The Barrow, Alaska GRUAN radiosonde station is used for Segments 1 & 2, while
the La Reunion, France radiosonde station is used for Segment 3.

Table 4.6 shows a summary of the average double differences for each radiative
transfer model and atmospheric input. The double difference results are fairly con-
sistent (<0.5 K) across each RTM and atmospheric profile, and the average double
differences for all channel comparisons range from 0.05 K to 2.73 K. In Figure 4-12,
we show a plot of the results from Table 4.6. It can be seen visually that the double
difference results are consistent between models and inputs.
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Figure 4-11: Cloud Masks for Segments 1, 2, and 3. The VIRR cloud mask is shown
on the left, and the VIIRS cloud mask is shown on the right.

86



Table 4.6: Double Difference average results for all three data segments using LBL
and CRTM with either ERA5 or radiosondes as inputs.

MM-2A
Channel

ATMS
Channel

ERA5/
LBL (K)

ERA5/
CRTM
(K)

Rad/
LBL (K)

Rad/
CRTM
(K)

Average
(K)

1 16 2.26 1.68 1.60 1.53 1.77
2 4 2.56 2.21 2.28 2.08 2.28
3 5 2.51 2.12 2.85 2.62 2.53
4 4 & 6 2.55 2.39 2.95 2.01 2.73
5 8 0.39 -0.41 0.41 -0.20 0.05
6 11; 16& 6 0.21 0.40 -1.06 0.08 -0.09
7 22 -0.47 -0.47 -1.71 -1.47 -1.03
8 20 -1.05 -1.03 -1.23 -0.91 -1.06
9 18 1.41 1.25 3.03 2.99 2.17

Figure 4-12: Double Difference average results for all three data segments using LBL
and CRTM with either ERA5 or radiosondes as inputs.
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4.2.2 Analysis of Results

Although most of the results between RTMs and inputs are within 0.5 K of each
other, there are a few double difference results that are outside those bounds, which
we discuss in this section. Channel 1 shows a difference of 0.58 K between ERA5/LBL
and ERA5/CRTM, which is due to a larger variation in the Segment 3 data points;
this variation is caused by differences in emissivity models. Segment 1 & Segment
2 are both in ice covered regions, and both LBL and CRTM use a default value of
0.92 for ice emissivity. However, Segment 3 is not ice-covered, and for water regions
LBL uses the emissivity model FASTEM2 while CRTM uses the emissivity model
FASTEM6.

Channel 6 has over a 1 K difference between Radiosonde/LBL and Radiosonde/CRTM.
As shown in Figure 4-9, the SRF for MicroMAS-2A has two peaks, with the top
peak weighted at 56.13 hPa (which correlates to over 30 km altitude). Radiosondes
typically burst around 20 km altitude, which causes inaccuracies using radiosondes
for simulated radiances when the channel is weighted above 20 km. These inac-
curacies are assessed to have caused the differences between Radiosonde/LBL and
Radiosonde/CRTM for Channel 6.

It can also be seen that Channels 7 & 9 have an increased double difference for
the radiosondes versus the ERA5 atmospheric inputs. The Vaisala radiosondes, which
are used at the radiosonde stations we used for our analysis, have a known dry bias
in water vapor [65] which makes them less accurate for water vapor channels. This
explains the higher double differences in the water vapor channels using radiosondes
versus ERA5 as the input.

We also calculate the standard deviation and standard error for each channel, and
take the average of the standard deviation and standard error for each RTM/input
to provide the overall average standard deviation and standard error, which is shown
in Table 4.7. The standard deviation is calculated using Equation 4.1, where 𝜎 is the
standard deviation, 𝑥𝑖 is the sample value, 𝑥𝑚 is the sample mean, and 𝑛 is the number
of samples. Standard error (SE) is calculated by dividing the standard deviation by
the square root of the sample size (Equation 4.2). The standard deviation gives an
assessment of how accurately the mean represents the sample data, while the standard
error describes how far the sample mean is likely to be from the population mean [82].

𝜎 =

√︂
Σ(𝑥𝑖 − 𝑥𝑚)

𝑛− 1
(4.1)

𝑆𝐸 =
𝜎√
𝑛

(4.2)
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Table 4.7: Standard Deviation and Standard Error for Double Differences

MM-2A
Channel

ATMS
Channel

Standard De-
viation (K)

Standard
Error (K)

1 16 3.14 0.87
2 4 1.18 0.33
3 5 0.89 0.25
4 4 & 6 1.31 0.36
5 8 2.42 0.67
6 11; 16 & 6 1.50 0.42
7 22 5.92 1.64
8 20 4.80 1.33
9 18 4.65 1.29

The average standard deviation for all channels varies from 0.89 K (Channel 3)
to 5.92 K (Channel 7). The standard deviation is significantly worse for the water
vapor channels (7-9) than Channels 1-6. Water vapor changes quickly compared to
temperature and surface features (Channels 1-6), so we expect that double differences
found using ATMS matchups within a closer timeframe would improve the water vapor
channel standard deviation. Analysis by Sun et al. showed that at mid- to high
latitudes, standard deviation increases 0.4 K per every three hours of time mismatch.
Because our matchups with ATMS were within 6-9 hours apart, we can expect 0.8-
1.2 K of standard deviation caused just by the time differences [83]. Divakarla also
showed that high latitudes from 50∘N to 90∘N have significantly higher standard
deviations [68], and the MicroMAS-2A Segments 1 & 2 are located in polar regions.
The standard error for all channels is less than 1.7 K; the standard error could be
improved by increasing our small sample size.

4.2.3 MCMC Double Difference Results

We next determine MCMC calibration correction double differences for Segment 2.
Since we only used the MCMC calibration approach for Segment 2, we compare the
MCMC double difference results to the brightness temperature histogram results from
just Segment 2 (see Table 4.8). The double difference results using MCMC were within
3 K of using the brightness temperature histogram method; however, it can be seen
that the MCMC approach performed quite a bit better for the water vapor channels.
For instance, the brightness temperature histogram approach had double differences
of less than 4.4 K for Channels 7-9, while the MCMC approach had double differences
of less than 2.7 K for Channels 7-9. The improvement in water vapor channels could
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Table 4.8: Segment 2 MCMC Double Difference Comparison using ERA5/LBL

MM-2A
Channel

DD BT His-
togram (K)

DD MCMC
(K)

Difference (K)

1 0.73 2.40 1.67
2 3.01 3.44 0.43
3 2.64 3.08 0.44
4 3.38 3.84 0.46
5 0.78 0.40 -0.38
6 0.54 0.54 0.00
7 3.43 2.70 -0.73
8 -4.39 -1.91 2.48
9 2.16 -0.48 -2.64

be due to using only selected points at the same latitude and longitude and scan
angle for the MCMC approach, instead of comparing the whole segment of data. The
improvement in water vapor channels shows that the MCMC method is promising for
future CubeSat missions such as MicroMAS-2B and TROPICS.

4.2.4 Lessons Learned

Many lessons were learned when computing the double differences between MicroMAS-
2A and ATMS. When we first began, we were using the benchtop hot noise diode
temperatures which had been calibrated using external targets on the ground. At
this point, the double differences were up to 20 K for some channels. The original
plan was to update the MicroMAS-2A calibration with the TVac data and then re-do
the analysis; however, the TVac data was unusable except for non-linearity correc-
tions. We employed the brightness temperature histogram corrections in place of
using the TVac data, and we incorporated the non-linearity correction. At this point,
the double differences had improved to less than 5 K of double difference, except for
Channels 4 & 6 which we determined was due to the boxcar approximation we were
using for the SRF. The SRF was updated (by using LBL first, and later through
updated CRTM coefficients) and that improved the double differences for Channels
4 &6 to less than 5 K. We then studied our filters for the points selected from each
data segment. Points used in the double difference calculations were selected as close
as possible to 160 km apart (which correlates to a 1 deg grid), and we averaged the
points by weighting all points equally instead of averaging the averages of each data
segment. Filter conditions were updated to allow scan angles of up to 10 degrees, but
to tighten distance conditions down to less than 50 km.
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The brightness temperature histogram approach was updated to use the square
root of the sum of the differences in histogram bins squared in order to determine
the calibration correction. Finally, we updated our calibration approach to use the
average of the brightness temperature histogram correction factors for each data seg-
ment, without the outliers (the outliers are shown in Table 3.6). With all of these
improvements, the average double differences of each channel was reduced to 0.05 -
2.73 K using both RTM’s and radiosonde/ERA5 for atmospheric inputs.

4.2.5 Improving Results and Future Work

Our double difference results could be improved by using ATMS points that are closer
in time to the MicroMAS-2A data segments. Our ATMS passes are 6-8 hours prior
to the MicroMAS-2A passes, which increases errors. Closer passes would especially
improve Channels 7-9, which measure water vapor, as water vapor conditions change
more quickly in the atmosphere then temperature profiles (Channels 2-6) and surface
conditions (Channel 1). However, the limited data segments we have for validation
make it infeasible to find ATMS and MWHS-2 passes that would meet the goal time
criteria of less than one hour between points. Our results can also be expanded by
geolocating additional data segments and including them in the analysis. Including
more data segments would improve the standard error of our results.

Future work will continue improving these results. We are geolocating three ad-
ditional MicroMAS-2A data segments to use with our radiance validation. Future
data segments may take place within a closer timeframe to ATMS passes, which is
expected to improve our double difference calculations. MicroMAS-2B is scheduled to
launch in 2019, and the methods and models developed in this work will be applied
to MicroMAS-2B data in the near future. Lessons learned from MicroMAS-2A/B
calibration and validation will be applied to the future constellation TROPICS.
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Chapter 5

Solar and Lunar Calibration for
TROPICS

5.1 Approach

Lunar intrusions occur for existing satellites hosting microwave radiometers in polar
orbits, but they are infrequent and inconsistent. Solar intrusions do not occur for these
satellites due to their sun-synchronous orbit and the use of a sun shield. However, the
TROPICS mission dual-spinner configuration provides a unique opportunity for solar
and lunar calibration, as solar and lunar intrusions are periodic and occur every orbit.
In Figure 5-1 we show a comparison of the frequency of solar and lunar intrusions
between TROPICS and ATMS from 10 November 2019 to 10 November 2020. Over
the year period, the TROPICS satellites have lunar intrusion events fifteen times a
day, with intrusions occurring once every orbit. However, ATMS only has 44 total
lunar intrusions for the entirety of the year, and these 44 intrusions occur over only
six days during the year. Typical microwave radiometers such as ATMS either discard
or correct the measurements that occur with intrusions. Instead, we will use use the
solar and lunar measurements as a known reference in order to track noise diode drift.

5.1.1 Modeling Solar and Lunar Intrusions for TROPICS

An analysis was completed to determine the geometry of solar and lunar intrusions for
the TROPICS CubeSat constellation. A satellite in a 550 km, 30 degree inclination
orbit was modeled in STK with a dual spinner configuration. The instrument was
modeled to scan at 30 rpm. The results are shown in Figure 5-2, where we plot
elevation angle of the solar (red) and lunar (blue) intrusions per epoch day over the
course of the year. In this case, elevation angle is defined as the angle from zenith
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Figure 5-1: TROPICS lunar intrusions take place fifteen times a day over the course
of a year, while ATMS lunar intrusions only occur 44 times total during six days over
the same timeframe.

in the plane that is perpendicular to the orbital plane, with zenith defined as 90∘

elevation angle. Over the course of the year timeframe, solar and lunar intrusions
take place at varying elevation angles from 33∘ to 90∘.

Because the TROPICS instrument scans in a plane perpendicular to the orbital
plane of the spacecraft, the intrusions are dependent on the solar and lunar beta
angles. The analysis of intrusions takes place from the simulated launch of November
2019 to November 2020. During this time, the lunar standstill is halfway between
the major and minor standstills so the lunar beta angle maximum and minimum
is effectively the same as the solar beta angle maximum and minimum. Nominal
calibration for TROPICS will prevent intrusions by avoiding measurements of deep
space for cold calibration in a sector that is ± 57∘ from zenith in the plane that is
perpendicular to the orbital plane. It should be noted that for each year that the
launch slips to the right (up to lunar major standstill in 2025), the moon’s declination
will increase by approximately one degree; thus, the lunar exclusion zone will increase
by ± 1∘. The solar exclusion zone will remain the same.

An analysis is also completed to determine the solar and lunar intrusions over
one day as shown in Figure 5-3. We show the elevation angle for the solar and lunar
intrusions versus epoch hour over the course of a day. It can be seen that both lunar
and solar intrusions occur periodically every orbit. As the sensor scans around the
spacecraft, intrusions occur every two seconds during the intrusion event. In order to
characterize the intrusions further, a single lunar intrusion event is plotted as shown
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Figure 5-2: TROPICS solar and lunar intrusions plotted over the course of year.

in Figure 5-4. The sensor picks up the lunar intrusion in its field-of-view (FOV) every
two seconds for a total of 46 seconds. For this sample intrusion event with a 3∘ FOV,
there are 23 intrusions at elevation angles ranging from 82.3∘ to 82.5∘.

We modeled lunar intrusions using STK and MATLAB. The MATLAB model is
used to simulate the lunar or solar intrusions in the field of view. Figure 5-6 shows the
microwave radiometer Full-Width Half Maximum (FWHM) FOV outline as depicted
by the red circle. The blue circles depict the moon in the sensor FOV. The multiple
blue circles represent the position of the moon in the sensor FOV as the sensor samples
at 1.5∘ increments. The position of the moon first appears on the far right of sensor
FOV, and as the sensor scans the moon is sampled every 1.5∘ from the top of the
sensor FOV to the bottom of the sensor FOV. Every two seconds, the moon appears
again in the sensor FOV at a location that is 0.126 degrees to the left of the previous
position. Due to this shift in the FOV, the number of intrusions per intrusion event
will vary from 11-23 per channel (see Table 5.1). An illustration of the TROPICS
cross-track scan pattern is shown in Figure 5-5. Spots are in the cross-track direction
and scans are in the along-track direction.

Figure 5-6 shows sampling of the moon at the same point in time for W-band,
F-band, and G-band. The W-band has a FWHM of 3 degrees, the F-band has a
FWHM of 2.4 degrees, and the G-band has a FWHM of 1.4 degrees. As shown, the
moon takes up a larger percentage of the FOV in the G-band FOV than the W-band
FOV and thus a higher effective brightness temperature is expected to be measured
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Figure 5-3: TROPICS solar and lunar intrusions plotted over the course of a single
day. Each line depicts multiple scans with intrusions.

Figure 5-4: TROPICS solar and lunar intrusions are shown over one intrusion event
for W-band. Every two seconds as the sensor scans around it picks up the intrusion
for 46 seconds total.
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Figure 5-5: Here we shown an illustration of the TROPICS cross-track scan pattern.
Spots are in the cross-track direction and scans are in the along-track direction.

Table 5.1: Intrusion Event Characterization by FWHM FOV

FWHM FOV Number of Intrusions Duration (s)
3.0 (W-band) 23 46
2.4 (F-band) 19 38
1.4 (G-band) 11 22
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in the G-band than the W-band.

Model Implications for Calibration

As shown from our models, we have determined that each TROPICS orbit has an
event that is made up of intrusions occurring every two seconds as the sensor sweeps
at 30 rpm. The MATLAB intrusion simulation shows that we can expect 1-2 samples
for each intrusion. We can expect 11 to 23 intrusions per event by channel (see Table
5.1), so we would expect 23-46 intrusion samples for W-band, 19-38 intrusion samples
for F-band, and 11 intrusion samples for G-band over every orbit. The number of
samples means statistical techniques can be used to reduce noise, and the periodicity
allows for intrusions to be used for calibration every orbit (96 minutes), allowing us
to track and correct noise diode drift effectively.

5.1.2 Algorithm Development

We develop our algorithm loosely based on sun-tracking ground radiometry techniques
[58]. Sun-tracking radiometry takes measurements when the antenna is pointing
alternatively on and off the Sun, and combines the on and off Sun measurements to
determine the antenna noise temperature difference. Similarly, we can combine on and
off intrusion measurements in order to determine ∆𝑇𝐴, the brightness temperature
difference. For the initial development of the algorithm, we assume that the only two
contributions to antenna temperature are from the intrusion and from deep space.
Future analysis will investigate the contribution of the Earth’s brightness temperature
in the antenna pattern sidelobes. We also assume that the intrusion is not in the
antenna pattern sidelobes for the "off-intrusion" measurement. We will endeavor to
take the "on-intrusion" and "off-intrusion" measurements as close as possible, but
at a far enough position that the intrusion does not appear in the antenna pattern
sidelobes.

For the "off-intrusion" measurement (Equation 5.1), we assume that the only
contribution to the antenna temperature is 𝑇cos, which is the brightness tempera-
ture of the cosmic background (2.73 K). It should be noted that the Rayleigh-Jeans
approximation can induce errors for brightness temperature measurements at cold
temperatures and high frequencies. For instance, the cosmic temperature corrected
for the frequency 183 GHz (G-band) is 4.7 K. Future work will correct the cosmic
temperature used in the solar/lunar calibration algorithm for frequency.

𝑇Aoff
= 𝑇cos (5.1)
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Figure 5-6: TROPICS intrusion FOV comparisons are shown below for W-band (3.0
deg FOV), F-band (2.4 deg FOV), and G-band (1.4 deg FOV). The x-axis depicts
along scan, while the y-axis depicts along spot. The distance between the intrusion
circles (blue) is due to the TROPICS 1.5 deg sampling. 1-2 intrusion samples will
occur per scan for each band.
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For the "on-intrusion" measurement, we add the additional antenna temperature
caused by the sun or moon in the FOV to 𝑇cos. We also subtract 𝑇cos from the area
in the FOV where the intrusion occurs so that it is not double counted. To account
for the fact that the moon or sun does not fill up the antenna FOV, we use 𝑓Ω, or
the beam-filling factor. The beam-filling factor 𝑓Ω is defined as the ratio between the
intrusion radiation pattern solid angle, either sun or moon, (ΩPint) and the antenna
beamwidth radiation-pattern solid angle (ΩPant) (Equation 5.2) [58].

𝑓Ω =
ΩPint

ΩPant

(5.2)

Combining these together, we find that the antenna temperature for an "on-
intrusion" measurement is the following:

𝑇Aon = 𝑇cos + 𝑓Ω · 𝑇𝑏int − 𝑓Ω · 𝑇cos (5.3)

where 𝑇𝑏int is the brightness temperature of the intrusion (either sun or moon). We
then subtract 𝑇Aoff

from 𝑇Aon in order to determine the change in antenna tempera-
ture, ∆𝑇A.

∆𝑇A = 𝑓Ω · 𝑇𝑏int − 𝑓Ω · 𝑇cos (5.4)

Equation 5.4 can be simplified to the following:

∆𝑇A = 𝑓Ω · (𝑇𝑏int − 𝑇cos) (5.5)

In order to account for the position of the intrusion in the FOV, we multiply Equation
5.5 by the antenna response function, 𝐺ant, which is modeled as a 1-D Gaussian as
shown in Equation 5.6. 𝛽 is the angle between the moon vector and the antenna
boresight, and sigma is defined in Equation 5.7.

𝐺(𝛽) = 𝑒
−(𝛽2)

2𝜎2 (5.6)

𝜎 =
0.5 · 𝜃3dB√

2 · log 2
(5.7)

With this we now have our final solar lunar calibration algorithm, Equation 5.8.

∆𝑇A = 𝐺ant · 𝑓Ω · (𝑇𝑏int − 𝑇cos) (5.8)

The beam filling factor, 𝑓Ω, is the ratio of ΩPint and ΩPant. In order to calculate ΩPint

and ΩPant, we follow Mattioli’s method and make an assumption that the main beam
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of the radiometer follows a Gaussian shape as shown in Equation 5.9. 𝜃 is the zenith
angle, 𝜑 is the azimuth, and 𝜃ML is the half power beamwidth of the antenna main
beam.

𝐹nML(𝜃, 𝜑) = 𝑒(− ln 2)(2𝜃/𝜃2ML) (5.9)

We then integrate the main beam of the radiometer in order to find ΩPint and ΩPant,
as shown in Equations 5.10 and 5.11, where 𝜃s is the zenith plane angle subtended by
the sun or the moon and 𝜂ML is the antenna main beam efficiency.

ΩPant =

∫︀∫︀
4𝜋
𝐹nML(𝜃, 𝜑)𝑑Ω

𝜂ML

(5.10)

Ωint =

∫︁ 2𝜋

0

∫︁ 𝜃s
2

0

𝐹nML(𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 (5.11)

Our developed algorithm will be updated for TROPICS by replacing the Gaussian
approximation of the main beam of the radiometer with the actual ground-tested
antenna pattern. Future work will modify the algorithm to include TROPICS specific
antenna information.

5.2 Testing Results

We next test the solar and lunar calibration algorithm on actual data. Because the
ATMS instruments do not experience solar intrusions, we can only test with lunar
intrusions. Our testing data includes images of ATMS lunar intrusions during a pitch
over maneuver, as well as lunar intrusion data from 2013 and 2017. Our model
assumes a main beam efficiency 𝜂ML of 0.967 (an assumption from Mattioli [58]). We
use 0.52∘ for 𝜃s, which is the average angle subtended by the moon [84]. Channel
beamwidths and emissivity values used for the model are shown in Table 5.2. The
channel beamwidths are the center of the ATMS ground measured values [31], while
the emissivity values per channel are used from Yang 2018 [11] and were derived from
ATMS data. We also show the measured NEDT values per channel for the ATMS
intruments on Suomi-NPP and NOAA-20 [31] [85].

5.2.1 Lunar Calibration Image Testing

Our first test compares our algorithm results to NOAA-20 ATMS full disk images of
the moon taken during a pitch up maneuver on 31 January 2018 [86]. During this
maneuver, the phase angle, which is the angle between the sun and moon, was 180
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Table 5.2: Channel Beamwidths, Lunar Emissivity, and NEDT

ATMS
Channel

Beamwidth
(Degrees)

Lunar
Emissiv-
ity

NEDT (K):
Suomi-NPP

NEDT (K):
NOAA-20

1 5.415 0.9040 0.25 0.24
2 5.415 0.9083 0.31 0.28
3 2.285 0.9557 0.37 0.33
4 2.305 0.9529 0.28 0.23
5 2.31 0.9573 0.28 0.23
6 2.27 0.9585 0.29 0.25
7 2.25 0.9598 0.27 0.23
8 2.285 0.9664 0.27 0.23
9 2.27 0.9670 0.29 0.25
10 2.215 0.9551 0.43 0.34
11 2.215 0.9588 0.56 0.48
12 2.215 0.9614 0.59 0.50
13 2.215 0.9598 0.86 0.76
14 2.215 0.9558 1.23 1.05
15 2.215 0.9649 1.95 1.73
16 2.15 0.9738 0.29 0.20
17 1.17 0.9221 0.46 0.32
18 1.12 0.9458 0.38 0.36
19 1.12 0.9452 0.46 0.36
20 1.12 0.9463 0.54 0.42
21 1.12 0.9433 0.59 0.44
22 1.12 0.9442 0.73 0.61
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Figure 5-7: Here we show a depiction of the lunar phase angle [10], which is the angle
between the sun and moon.

degrees (see Figure 5-7 for a depiction of lunar phase angles). We compare Channel
1 (5.2 FWHM), Channel 3 (2.2 FWHM), and Channel 17 (1.1 FWHM). It should
be noted that the ATMS lunar intrusion images plot brightness temperature versus
spot and scan, while our modeled images plot the expected brightness temperature
based on where the intrusion occurs in the FOV. In Table 5.3 it can be seen that
the brightness temperature scales match between the image; in fact, the peaks of the
brightness temperature for the model and the actual image are within 1 K of each
other. Our algorithm does not take noise into account; the actual ATMS observations
have instrument noise, which is described by the Noise Equivalent Delta Temperature
(NEDT) and is shown in the NEDT columns of Table 5.2. Figures 5-8, 5-9, and 5-
10 show a comparison of our modeled images to the actual ATMS lunar intrusion
images. The modeled images can be used to determine what increment in effective
brightness temperature should be expected based on where the intrusion occurs in
the FOV. If the intrusion is in the center of the FOV, the brightness temperature
reaches its peak; as the intrusion moves away from the center, the effective brightness
temperature decreases.
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Figure 5-8: The modeled brightness temperature for Channel 1 (left) is compared
to an actual ATMS lunar intrusion (right). The peak brightness temperature of
the model is 4.26 K, while the peak brightness temperature of the ATMS image for
Channel 1 is 3.95 K.

Figure 5-9: The Channel 3 model (left) is compared to the ATMS lunar intrusion
data (right). The peak brightness temperature of the model is 11.49 K compared to
12.40 K for the actual image for Channel 3.
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Figure 5-10: The peak brightness temperature of the model (left) for Channel 17 is
33.39 K, while the peak brightness temperature of the actual ATMS intrusion (right)
for Channel 17 is 33.43 K.

Table 5.3: Modeled vs ATMS Lunar Intrusion Comparison

ATMS
Channel

Model Peak
BT (K)

Actual Peak
BT (K)

Difference
(K)

1 4.26 3.95 0.31
3 11.49 12.40 0.91
17 33.39 33.43 0.04
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Table 5.4: ATMS Lunar Intrusion Data used for Algorithm Testing

Platform Date
Suomi-NPP 20 Mar 2013
Suomi-NPP 21 Mar 2013
Suomi-NPP 22 Mar 2013
Suomi-NPP 19 Apr 2013
Suomi-NPP 20 Apr 2013
Suomi-NPP 21 Apr 2013
Suomi-NPP 18 May 2013
Suomi-NPP 19 May 2013
Suomi-NPP 20 May 2013
Suomi-NPP 12 Nov 2013
Suomi-NPP 10 Dec 2013
Suomi-NPP 11 Dec 2013
Suomi-NPP 12 Dec 2013
NOAA-20 28 Dec 2017

5.2.2 Lunar Calibration Intrusion Data Testing

We next test the model using 13 days of lunar intrusion data from Suomi-NPP in 2013
and one day of data from NOAA-20 in 2017. The data was provided from Dr. Hu
Yang at the University of Maryland Earth System Science Interdisciplinary Center
(ESSIC). Table 5.4 summarizes the data we used for the algorithm testing.

The ATMS lunar intrusion data includes the moon-sun phase angle, the observed
brightness temperature by channel, the minimum lunar angle, and the maximum
lunar angle. As described in Chapter 2, ATMS uses its 83.4 deg beam group for
cold space calibration; each beam group is composed of four different space view
(SV) pixels. The maximum and minimum lunar angles correspond to the maximum
and minimum magnitude of lunar radiation in the four SV pixels during the lunar
intrusion events. The observed brightness temperature is the difference in brightness
temperature between the pixels with the minimum and maximum lunar angle. For
most cases, the maximum lunar angle is clear of the lunar intrusion. We screen for
any lunar intrusions that occur in the maximum lunar angle and filter those out from
our analysis. We additionally screen out any data points that do not show a lunar
intrusion in the minimum lunar angle. After screening, we use the observed brightness
temperature from the data file as our ∆𝑇A, since the value is now the difference
between an on-intrusion and off-intrusion. We can now compare the actual ∆𝑇A to
our modeled ∆𝑇A and determine the difference between our model and datasets.

We plot the model ∆𝑇A (in blue) versus the actual ∆𝑇A (in orange) for all channels
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Table 5.5: Mean Bias and Standard Deviation of Model

ATMS
Channel

Mean Bias
(K): 2013

Standard
Deviation
(K): 2013

Mean Bias
(K): 2017

Standard
Deviation
(K): 2017

1 0.37 0.18 0.05 0.04
2 0.48 0.23 0.05 0.04
3 0.96 0.32 0.27 0.19
4 1.01 0.25 0.31 0.23
5 1.02 0.25 0.31 0.24
6 1.02 0.27 0.30 0.21
7 1.03 0.28 0.30 0.20
8 1.03 0.27 0.31 0.22
9 1.04 0.30 0.30 0.21
10 1.12 0.38 0.32 0.21
11 1.12 0.46 0.34 0.23
12 1.10 0.48 0.35 0.23
13 1.13 0.62 0.37 0.26
14 1.23 0.77 0.39 0.28
15 1.49 1.05 0.46 0.34
16 1.51 0.37 0.49 0.30
17 3.42 2.00 2.14 1.92
18 3.32 1.89 2.14 2.03
19 3.33 1.88 2.13 2.02
20 3.35 1.88 2.16 1.98
21 3.37 1.90 2.14 2.01
22 3.35 1.94 2.16 2.03

in the datasets. In Figures 5-11, 5-12, and 5-13 we show a comparison plot for
Channels 1, 3, and 17 for 19 April 2013; in Figures 5-14, 5-15, and 5-16 we show a
comparison plot for Channels 1, 3, and 17 for the 28 Dec 2017 dataset. Channel 1 is
shown as representative of performance at 5.2∘ FWHM (Channels 1 & 2), Channel
3 is shown as representative of the performance at 2.2∘ FWHM (Channels 3 through
16), and Channel 17 is shown as representative of the performance at 1.1∘ FWHM
(Channels 17-22). Appendix D shows the results for Channels 1, 3, and 17 for all
datasets.

We also calculate the mean bias and standard deviation for each channel in all
datasets (Table 5.5). The mean bias is calculated by finding the mean of the difference
between the model and the ATMS actual observations for each point, and the average
standard deviation is calculated to quantify the variation in the bias. For the 2013
data, the K/Ka-band channels (Channels 1 & 2) have a mean bias of less than 0.5
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Figure 5-11: Modeled ∆𝑇A for Channel 1 (blue) is compared to the ATMS ∆𝑇A

(orange) for the 19 Apr 2013 dataset.

Figure 5-12: Modeled ∆𝑇A for Channel 3 (blue) is compared to the ATMS ∆𝑇A

(orange) for the 19 Apr 2013 dataset.
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Figure 5-13: Modeled ∆𝑇A for Channel 17 (blue) is compared to the ATMS ∆𝑇A

(orange) for the 19 Apr 2013 dataset.

Figure 5-14: Modeled ∆𝑇A for Channel 1 (blue) is compared to the ATMS ∆𝑇A

(orange) for the 28 Dec 2017 dataset.
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Figure 5-15: Modeled ∆𝑇A for Channel 3 (blue) is compared to the ATMS ∆𝑇A

(orange) for the 28 Dec 2017 dataset.

Figure 5-16: Modeled ∆𝑇A for Channel 17 (blue) is compared to the ATMS ∆𝑇A

(orange) for the 28 Dec 2017 dataset.

110



Table 5.6: Filtered Mean Bias and Standard Deviation of Model G-band

ATMS
Channel

Mean Bias
(K): 2013

Standard
Deviation
(K): 2013

Mean Bias
(K): 2017

Standard
Deviation
(K): 2017

17 2.59 1.15 1.53 1.21
18 2.69 1.22 1.44 1.18
19 2.70 1.22 1.45 1.19
20 2.72 1.25 1.48 1.20
21 2.73 1.25 1.45 1.19
22 2.70 1.29 1.45 1.18

K and a standard deviation of less than 0.25 K. The V/W-band Channels (Channels
3-16) have a mean bias of less than 1.52 K with a standard deviation of 1.1 K, while
the G-band Channels (Channels 17-22) have a mean bias of less than 3.5 K with a
standard deviation of less than 2.0 K. The 2017 data shows a mean bias of 0.05 K
and standard deviation of 0.04 K for K/Ka-band, a mean bias of less than 0.5 K and
standard deviation of less than 0.4 K for V/W-band, and a mean bias of less than
2.2 K and standard deviation of less than 2.1 K for G-band. The differences between
the 2013 and 2017 data is due to differences in the antenna response function and
pointing error between the ATMS instruments on Suomi-NPP and NOAA-20.

The mean bias and standard deviation of G-band is approximately 2 K worse than
for K/Ka-band and V/W-band. Several factors cause this. For instance, G-band is
much more sensitive to antenna pointing error; additionally, the G-band antenna
pattern for ATMS has a much higher noise [11]. The surface temperature of the
moon also has a 4 - 10 K standard deviation from the parameterized model used
in our algorithm, and G-band is more sensitive to the temperature change since the
moon takes up a larger portion of the FOV [11]. Several peaks in the G-band data
show more than 5.0 K of difference between modeled and actual. We assess this is
due to pointing error, and filter out all G-band data that shows more than 5 K of
difference. The updated mean bias and standard bias for G-band with this filter
condition is shown in Table 5.6. The mean bias is less than 2.7 K and standard
deviation is less than 1.3 K for the 2013 data, and the mean bias is less than 1.6 K
and standard deviation is less than 1.25 K for the 2017 data.

Figure 5-19 compares the measured NEDT of Suomi-NPP and NOAA-20 to our
model’s standard deviation with the 2013 (Suomi-NPP) and 2017 (NOAA-20) datasets.
Our modeled standard deviation is lower than the channel NEDT for all channels ex-
cept for G-band, which is impacted more by pointing error, lunar surface temperature
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Figure 5-17: The mean bias and standard deviation is shown for the 2013 datasets.

Figure 5-18: The mean bias and standard deviation is shown for the 2017 dataset.
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Figure 5-19: The modeled standard deviation is lower than the ATMS (Suomi-
NPP and NOAA-20) NEDT, with the exception of G-band which is affected more by
pointing error, lunar surface temperature variation, and a noisy antenna pattern.

variation, and a noisy antenna pattern.

5.2.3 Error Budget for ATMS Lunar Intrusion Testing

In this section we document the expected errors for testing our model with ATMS
lunar intrusion data (summarized in Table 5.7). The sources of error for the modeling
can be divided into instrument errors and source errors. Instrument errors can be
caused by instrument noise as well as instrument modeling errors. ATMS random
noise is characterized by the NEDT, which varies from 0.25-1.95 K for Suomi-NPP
and from 0.23-1.73 K for NOAA-20 (Table 5.2). Instrument modeling errors include
knowledge of the antenna pattern and half power beamwidth, knowledge of the intru-
sion solid angle, and main beam efficiency variation. These can all be approximated
through ground testing. Both Mattioli and Yang assume a worst case scenario of
a 10-11% error; this corresponds to a 0.13 K model simulation bias for the 5.2 deg
beamwidth channels, but up to as large as 3 K bias for the G-band 1.1 deg beamwidth
channels [58] [11]. The intrusion solid angle varies slightly with the Θ𝑖𝑛𝑡, which is the
angle subtended by the sun or moon. Θ𝑖𝑛𝑡 varies with Earth-sun or Earth-moon dis-
tance. The angle subtended by the sun has a maximum variation of 0.02∘, while the
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Table 5.7: Error Sources for ATMS Lunar Intrusions

Error Source Reference Value Type Notes
Instrument

Instrument noise NEDT varies from 0.25-1.95
K (Suomi-NPP) or 0.24-
1.73 K (NOAA-20)

Random

Instrument Modeling
Main antenna
lobe solid angle

10% error; up to 3 K model
bias in G-band

Systematic Ground testing

Intrusion solid
angle

Sun angle varies 0.02 deg
and moon angle varies 0.06
deg; causes 0.01 - 0.2 K of
error

Systematic Changes slowly
with orbit

Main beam effi-
ciency variation

Uncertainty up to 0.05
causes 0.001 - 0.08 K error

Systematic Ground testing

Beam offset
(pointing) error

Up to 1 K model bias Systematic Mitigated
through coast-
line and lunar
scans

Source Modeling: Moon
Surface Temp of
Moon

4-10 K variation causes
0.02-1.14 K model error

Random

Phase lag of
moon’s BT

Up to 45 deg lag Systematic

angle subtended by the moon has a maximum variation of 0.06∘ [84]. This varia-
tion leads to an error of 0.01 K at K/Ka bands and up to 0.2 K at G-bands. Main
beam efficiency variation can also induce small uncertainties, and an uncertainty of
5% causes an error of 0.001 K at K/Ka bands and 0.08 K at G-bands. Main beam
efficiency and knowledge of the antenna pattern can be improved through highly accu-
rate ground testing, while errors induced from changes in the intrusion solid angle can
be mitigated by adjusting Θ𝑖𝑛𝑡 based on the distance from the Earth to the intrusion
source.

Another significant source of error for the algorithm is pointing error. Pointing
error can be caused by beam misalignment, mounting error, and launch; additionally,
thermal changes on-orbit could also cause pointing errors [11]. Mattioli characterized
pointing error as causing up to 0.5 K of error at K and Ka-band and up to 1 K at W
and V-band [58]. However, Yang has determined that pointing error can be mitigated
with coastline and lunar scan methods [11].
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Source characteristics from the surface of the moon also contribute to the algo-
rithm’s error budget. The surface temperature of the moon has a 4-10 K standard
deviation from the parameterized model used in our algorithm, and this can cause up
to 1 K of error for G-band [11]. Previous studies have also shown that the maximum
microwave emission from the moon lags up to 45∘ behind the surface temperature
[11]. However, due to a lack of data samples at different lunar phase angles the phase
angle lag is not currently accounted for in our equations for the brightness temper-
ature of the moon. ATMS has a fairly steady moon-sun angle at around 100-110
degrees during intrusions, so the phase angle lag can be ignored as a source of error
for our error budget with ATMS intrusions [11].

In Table 5.7 we summarize the sources of errors for testing our algorithm with
ATMS lunar intrusion data. The top four model sources of error for lunar intrusions
are the instrument NEDT, antenna main beam modeling, pointing error, and the
surface temperature of the moon. We assume a worst case scenario and that the
sources of error are independent, and we take the square root of the sum of the four
error sources squared. The results are up to 0.6 K of error at K/Ka-band, up to 2.4
K at W/V-band, and up to 3.9 K of error at G-band. This matches the results that
we found with the lunar calibration algorithm. Our model had mean biases of under
0.5 K for K/Ka-band and under 2.75 K for G-band, which shows that our algorithm
is working correctly to model lunar intrusions and that it can now be applied to
TROPICS.

5.3 Application to TROPICS

5.3.1 TROPICS Error Sources

For TROPICS, we plan to use solar and lunar calibration to track noise diode drift.
In this case, instead of characterizing the overall offset from the model and the actual
measurement, it is necessary to track how error sources affect the solar and lunar
measurements on a daily scale. The error sources from Table 5.7 that vary from time
must be considered; these include instrument NEDT, intrusion solid angle, surface
temperature of the moon, and phase lag of the moon’s brightness temperature. The
TROPICS instrument NEDT requirements are shown in Table 5.9. The intrusion
solid angle varies with distance between the instrument and the sun/moon, but this
will not affect error on a daily basis and is thus ignored. Error sources from the sun
also must be considered. The solar cycle shows daily and annual variability, but the
variability has not been characterized at TROPICS microwave frequencies. However,

115



Figure 5-20: MicroMAS-2A captured solar intrusions during its tumble phase. These
images can be used in future work to further test the algorithm.

Table 5.8: Error Sources for TROPICS Lunar and Solar Intrusions

Error Source Error Type Value
Instrument NEDT Varies from 0.7-1.1 K
Moon Surface temperature

of the moon
4-10 K variation
causes 0.18-0.9 K
model error

Moon Phase lag of moon’s
BT

Not characterized;
mitigate by com-
paring other SV
measurements

Sun Solar cycle daily vari-
ability

Not characterized;
mitigate by compar-
ing measurements
within one hour

ground-based sun tracking microwave radiometry has shown that at frequencies above
10 GHz the sun appears as a uniform disk and daily variation due to solar activity
has little effect [58]. Table 5.8 shows the sources of error taken into consideration for
TROPICS.

MicroMAS-2A captured solar intrusions during its tumble phase. The intrusions
are shown in Figure 5-20. At 3.0∘, the effective brightness temperature was 150 K.
At 2.4∘, the effective brightness temperature was 225 K, and at 1.6∘ the effective
brightness temperature was 375 K. This shows that the solar intrusions have a much
larger dynamic range than lunar intrusions.
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Table 5.9: TROPICS Channel Characteristics

TROPICS
Channel

Center Fre-
quency (GHz)

Beamwidth NEDT Re-
quirements
(K)

1 91.656 ± 1.4 3.0 0.8
2 114.50 2.4 1.0
3 115.95 2.4 0.9
4 116.65 2.4 0.9
5 117.25 2.4 0.9
6 117.80 2.4 0.9
7 118.24 2.4 1.1
8 118.58 2.4 0.7
9 184.41 1.5 0.7
10 186.51 1.5 0.7
11 190.31 1.5 0.7
12 204.8 1.35 0.7

Table 5.10: TROPICS Effective Brightness Temperature Error due to Moon’s Surface
Temperature Deviation at 4 K and 10 K

TROPICS
Channel

Beamwidth
(deg)

Eff BT Error
due to 4 K (K)

Eff BT Error
due to 10 K
(K)

1 3.0 0.07 0.18
2-8 2.4 0.11 0.28
9-11 1.5 0.30 0.74
12 1.35 0.36 0.9

Moon Error Sources

Yang (2018) developed the paramaterization for the moon’s brightness temperture
using datasets from the Diviner Lunar Radiometer Experiment (DLRE) onboard
the Lunar Reconaissance Orbiter (LRO) [11]. The global surface temperature was
averaged at different moon phase angles, and the mean and standard deviation was
calculated by Yang as shown in Figure 5-21 [11]. The standard deviation varied from
4-10 K, with the largest standard deviation occurring at full moon (0∘ phase angle).
We determine the error impact of a standard deviation at 4 K and 10 K for each
channel as shown in Table 5.10.

Moon phase angle effects could be ignored for the algorithm testing with ATMS
data since the ATMS lunar intrusions only occur between a phase angle range of 110
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Figure 5-21: Yang calculated the mean and standard deviation of the moon’s surface
temperature over phase angle [11].

± 5 degrees [11]. However, because TROPICS has a scanning payload the phase angle
(combination of solar and lunar beta angles) can vary from -100 deg to +100 deg, as
shown in Figure 5-22. On a daily basis, the phase angle for TROPICS only changes
approximately 10 degrees and can be ignored. However, over longer periods of time
the phase angle lag will need to be taken into account.

We can mitigate the impact of lunar phase angle on TROPICS by characterizing
the impact of phase angle lag on lunar brightness temperature with MicroMAS-2B,
or by characterizing the phase angle lag during the first month of TROPICS oper-
ations. Once the lag between brightness temperature and surface temperature has
been modeled, we will update our algorithm equation for the brightness temperature
of the moon.

Sun Error Sources

The sun’s brightness temperature does not have a phase lag; however, other challenges
exist with solar calibration. The solar cycle has daily and annual variability, and this
variability has not been determined in the microwave frequency range [73]. The short
timeframe in which we will compare solar intrusions between space vehicles (within
one hour) mitigates the impact of the sun’s daily and annual variability. Additionally,
data from MicroMAS-2B or the first month’s worth of data from TROPICS can be
used to characterize and correct for the sun’s daily variability.
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Figure 5-22: The moon-sun angle (yellow) is a combination of the solar (orange)
and lunar (blue) beta angles, and will vary from approximately -100∘ to +100∘ for
TROPICS.

A solar brightness temperature parameterized model does not exist at TROPICS
frequencies. Because a model does not exist, solar intrusions will be used as relative
calibration between TROPICS spacecraft in the constellation. Data from MicroMAS-
2B or the first month’s worth of data from TROPICS can be used to determine the
average surface temperature of the sun’s disk and standard deviation.

5.3.2 Tracking Noise Diode Drift

In order to track noise diode drift, we need to show that the brightness temperature
changes due to noise diode drift can be detected over the sources of error. Differences
between modeled and actual intrusion measurements are caused by instrument noise,
source variation, and noise diode drift (Figure 5-23).

For lunar intrusions, we assume the moon phase angle lag can be ignored. The two
major contributions to error are then the instrument NEDT and the moon surface
temperature. We find the square root of the sum of standard deviations to find
the total expected standard deviation, and then calculate the standard error using
Equation 4.2 to find number of measurements required in order to track noise diode
drift.
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Figure 5-23: Differences between modeled and actual intrusion measurements are
caused by instrument noise, source variation, and noise diode drift.

We find that lunar intrusion analysis should be completed on a weekly basis in
order for the standard error to be less than the change in error caused by 1 K of noise
diode drift. Results are summarized in Table 5.11. Lunar intrusions will not be an
effective way to track noise diode drift for Channel 1, since 1 degree of noise diode
drift only causes 0.002 K change to effective brightness temperature. This is due to
Channel 1’s larger FOV and higher noise diode temperature. Solar intrusions have a
higher dynamic range and can be used to track drift for Channel 1.

If the weekly mean bias between the model and actual measurements varies by
more than three sigma of the standard error, then the measurements will be flagged
for noise diode drift. The phase lag for the moon’s brightness temperature can only be
ignored on a daily basis. If the SV is flagged for noise diode drift, then the other SVs in
the constellation should be checked as well. If all TROPICS SVs show the same drift,
then it may be due to the moon’s brightness temperature phase lag. Additionally,
flagged noise diode drift should be confirmed using other sources such as validation
with GPSRO, radiosondes, and NWP models.

A similar analysis is performed for solar intrusions. Because we are comparing
relative effective brightness temperature measurements between spacecraft, we will
not be using the model to mitigate the effects of the intrusion occurring in different
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Table 5.11: Lunar Intrusion Weekly Standard Error by Channel

TROPICS
Channel

Beamwidth
(deg)

Error
(NEDT
+ moon)
(K)

Intrusions
/week

Weekly
SE (K)

Error
from 1 K
ND drift
(K)

1 3.0 0.82 2415 0.017 0.002
2-8 2.4 1.14 1995 0.026 0.040
9-11 1.5 1.02 1155 0.030 0.099
12 1.35 1.14 1050 0.035 0.099

Table 5.12: Solar Intrusion Daily Standard Error by Channel

TROPICS
Channel

Beamwidth
(deg)

Error
(NEDT)
(K)

Intrusions
/day

Daily SE
(K)

Error
from 1 K
ND drift
(K)

1 3.0 1.13 345 0.061 0.197
2-8 2.4 1.56 285 0.092 0.899
9-11 1.5 0.99 165 0.077 1.19
12 1.35 0.99 150 0.081 1.19

places in the FOV. However, by setting the same sample angles for all TROPICS
space vehicles we can ensure that we are comparing solar intrusions that occur in
a relatively similar place in the FOV. We assume that the solar daily variability
will be mitigated due to comparing measurements within one hour of each other, so
we only take the instrument noise into account. Since we are comparing two space
vehicles, we find the square root of the sum of the NEDT from each SV to find the
expected standard deviation. The daily standard error is shown in Table 5.12. For
solar intrusions, the change in error caused by 1 degree of noise diode drift is between
3-15 times greater than the daily standard error, which shows that we can use daily
analysis for solar intrusions.

Similar to the approach for lunar intrusions, we will flag the measurements for
noise diode drift if the daily mean bias between the TROPICS space vehicles changes
by more than three sigma of the daily standard error. The measurements should
checked for outliers that may be due to variability in the sun’s brightness temperature.
Additionally, the mean of all SV measurements should be tracked in order to develop
a sun model for the algorithm. Validation from multiple sources should be used to
confirm flagged noise diode drift.
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Figure 5-24: ∆𝑇A is compared between the actual satellite measurement and the
simulated ∆𝑇A from our algorithm. Differences will be trended over time to track
noise diode drift.

5.3.3 Incorporating into TROPICS Calibration Scheme

Figure 5-24 shows the proposed algorithm process for lunar and solar calibration.
The microwave radiometer will be set into an additional data collection mode during
intrusions and will sample every 1.5 degrees as the microwave radiometer scans. Every
two seconds, the intrusion will shift 0.126 deg left in the FOV. Figure 5-25 and Figure
5-26 show examples of the sample points during an intrusion event for TROPICS
Channels 2-8 (2.4 deg beamwidth). In the best case scenario, the intrusions would
fall near the center of the FOV as shown in Figure 5-25. In the worst case, the
intrusions would fall on either side of the center of the FOV as shown in Figure 5-26.

These samples will then be downlinked to the ground station for processing, where
they will be compared with off-intrusion measurements in order to find ∆𝑇A. For
lunar intrusions, we will use the developed algorithm to determine modeled ∆𝑇A.
The mean difference between actual and modeled ∆𝑇𝐴 will be used to track noise
diode drift over time. For solar intrusions, we will compare the mean ∆𝑇A between
different TROPICS SV’s to track noise diode drift over time.

We may be able to reduce noise by combining multiple intrusions with techniques
such as linear and non-linear regression, optical centroiding, and the Backus-Gilbert
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Figure 5-25: Samples during an intrusion are modeled for TROPICS Channels 2-8
(2.4 deg beamwidth) with the intrusions passing directly through the center of the
FOV. The white circles show the intrusion’s position in the FOV.

Figure 5-26: Samples during an intrusion are modeled for TROPICS Channels 2-8
(2.4 deg beamwidth). In this case, due to the 1.5 deg sampling the intrusions do not
pass through the center of the FOV. The white circles show the intrusion’s position
in the FOV.
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technique. The Backus-Gilbert technique was demonstrated by Poe as a method
to interpolate imaging microwave radiometer data [87], and has also been used in
microwave radiometer applications such as extracting vertical temperature profiles
and matching resolutions of data taken from different sensors [88]. Future work will
investigate the use of these techniques to reduce noise.

The solar and lunar calibration process we have developed shows great promise for
future applications. For instance, the large dynamic range in effective brightness tem-
perature of measurements of the solar intrusions means that they could potentially
be used to characterize noise diode non-linearities on-orbit; currently, non-linearities
are only characterized pre-launch in Tvac. The sun has not been completely charac-
terized at microwave frequencies, so the intrusion data would be a new dataset that
could be useful to the microwave radiometer community. Solar intrusions could even
potentially be used to cross-calibrate a variety of microwave radiometers in the future.
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Chapter 6

Validation Architecture for TROPICS

6.1 Approach

We next describe a validation architecture for TROPICS using the techniques that
have been discussed in previous chapters. The main sources we have to trend noise
diode drift for TROPICS are shown in Figure 6-1. We divide the sources into three
main categories: single differences, double differences, and solar and lunar calibra-
tion. The single differences compare the TROPICS SV measurements to simulated
brightness temperatures found using GPSRO, radiosondes, and NWP models. The
double differences use Simultaneous Nadir Overpasses (SNO) between different sen-
sors to trend noise diode drift; we study inter-sensor (between TROPICS and other
instruments such as ATMS) and intra-sensor (between TROPICS SVs). The impact
of orbital parameters on SNO matchups is quantified. Solar and lunar calibration is
the third main category we study for validation. For all of these validation meth-
ods, we use Systems Tool Kit (STK) and MATLAB to determine the frequency of
matchups available and make recommendations for operational radiance validation.

6.2 Results

6.2.1 Single Differences

We analyze the frequency of matchups using single differences with GPSRO, radioson-
des, and ERA5. ERA5 is a global dataset that is gridded at one degree and provides
hourly observations [66]. Assuming we would try to find matchups every 160 km, or
one matchup per grid point, we would have matchups about every 20 seconds between
our TROPICS SV and ERA5. This would provide 4320 matchups a day. However,
we then need to filter the number of matchups by clear sky and over water to reduce
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Figure 6-1: The main validation sources we have to trend TROPICS noise diode
drift are single differences, double differences, and solar and lunar calibration.

Table 6.1: Comparison of NWP models

Name Owner Type Time Avail-
able

Time De-
lay

Resolution

ERA5 ECMWF Re-analysis Hourly 3 months 31 km
HRES ECMWF Operational Every 6 hours Real-time 9 km
GFS NOAA Operational Every 6 hours Real-time 28 km

RTM uncertainties. For our analysis, we assume that 67% of the Earth’s surface is
typically covered by clouds [89], and that 71% of the Earth’s surface is covered by
water [90]. Taking those percentages into account, we can assume that we will have
about 1012 matchups/day between TROPICS and ERA5 that are clear sky and over
water. With this amount of matchups, the NWP model should be used to trend
TROPICS noise diode on a daily basis. One aspect to take into account for TROP-
ICS is that ERA5 is a reanalysis dataset that is only available from the Climate Data
Store (CDS) three months after the observations. If it is desired to use a real-time
dataset, then the TROPICS team would need to move to either NOAA’s Global Fore-
cast System (GFS) [91] or ECMWF’s high resolution (HRES) operational datsets for
single difference analysis with a NWP [92]. In Table 6.1, we show a comparison of
ERA5, GFS, and HRES numerical weather prediction models [66] [93] [92] [94] [91].

GPSRO matchups are studied for a spacecraft in a TROPICS orbit (550 km, 30∘

inclination) for a sample week from 1 Feb 2019 to 7 Feb 2019. COSMIC-1 is used as the
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Figure 6-2: For our example case on 1 Feb 2019, only three GPSRO matchups (circled
in red) passed the distance (<50 km) and time (<1 hr) filters.

source for this analysis (future work will update this analysis with additional GPSRO
constellations COSMIC-2, Spire, PlanetIQ and CICERO). GPSRO measurements are
most accurate at altitudes from 8-30 km [63], so they should be used as a validation
source for TROPICS channels that have weighting functions that are sensitive at those
altitudes (Channels 6-8). We use a filter criteria of 50 km distance and one hour apart.
In Figure 6-2, we plot example results from 1 Feb 2019, where three GPSRO matchups
passed the filters (circled in red). The matchups are plotted by time difference from
the spacecraft and distance from the spacecraft nadir location. Over the week time
period, we find 8 total GPSRO profiles that meet the filter criteria (see Table 6.2).
It is not necessary to use the land filter criteria for the GPSRO matchups since they
are not used for channels weighted below 8 km. Assuming that 67% of the Earth’s
surface is covered by clouds, we could expect 2-3 clear sky matchups per week to use
for validation. Based on the low frequency of matchups, this validation source would
be best to be used on a monthly analysis timeframe for TROPICS.

We also find radiosonde matchups for the simulated spacecraft in the TROP-
ICS constellation. We use the Global Climate Observing System (GCOS) Reference
Upper-Air Network (GRUAN) network, which is a network of high quality, well cal-
ibrated radiosonde stations [7]. The radiosonde stations need to be roughly within
30∘S and 30∘N based on the TROPICS constellation inclination of 30∘; we also select
radiosonde sites that are near water. The five following radiosonde stations meet the
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Table 6.2: GPSRO profiles that meet filter for 1-7 Feb 2019

Date Number of Matchups
1 Feb 2019 3
2 Feb 2019 0
3 Feb 2019 4
4 Feb 2019 0
5 Feb 2019 0
6 Feb 2019 0
7 Feb 2019 1

Total 8

criteria: Darwin, Australia; La Reunion, France; Minamitorishima, Japan; Singapore,
Singapore; and Tenerife, Spain. Figure 6-3 shows those stations circled in red. The
GRUAN network often has delays on the radiosonde data appearing on its website of
up to one month, so it is recommended to contact the radiosonde station directly to
get access to profiles in a more timely manner.

To determine frequencies of radiosonde matchups, we assume that weather bal-
loons are launched from the radiosonde stations twice daily. We simulate all six
TROPICS SV’s in STK. The three orbital planes are spaced apart 120∘ in Right
Ascension of the Ascending Node (RAAN), and the two spacecraft that share an
orbital plane are spaced out 180∘ in true anomaly (𝜈), as shown in Table 6.3. We
then find the number of accesses between the six spacecraft and each of the five ra-
diosonde stations over the course of a year. In Table 6.4 and Figure 6-4 we show the
results for matchups with all five radiosonde stations by month by SV over the course
of year; the results per individual radiosonde station can be found in Appendix E.
Figure 6-5 shows the average number of matchups per all space vehicles for all five
radiosonde stations; the average matchups was the lowest at Singapore, with about
8-10 matchups per SV per month, while the average matchups was the highest at
Tenerife, Spain with 17-21 average matchups per SV per month.

Each TROPICS SV had between 55 to 64 nadir matchups with the five radiosonde
stations over 30 days. However, the matchups need to occur ± one hour from the
radiosonde balloon. Assuming there are 4 hours out of every day that would meet
the time criteria (one hour before launch/one hour after launch for two launches per
day), and that only 33% of the matchups are clear sky, we are now left with about 3-4
matchups per month per SV. Due to the small number of matchups, we recommend
monthly analysis for TROPICS using radiosondes as validation. Future work can
update this analysis by finding typical times of launches at each radiosonde station.
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Figure 6-3: The five GRUAN radiosonde stations that we analyze for matchups
with TROPICS are Darwin, Australia; La Reunion, France; Minamitorishima, Japan;
Singapore, Singapore; and Tenerife, Spain (stations circled in red).

Table 6.3: Orbital Parameters used for TROPICS SV Simulation

TROPICS
SV

Altitude
(km)

Inclination
(deg)

RAAN
(deg)

True Anomaly
(deg)

SV1 550 30 0 0
SV2 550 30 120 0
SV3 550 30 240 0
SV4 550 30 0 180
SV5 550 30 120 180
SV6 550 30 240 180
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Table 6.4: Total Number of Geographic Matchups between TROPICS Constellation
and Radiosonde Stations by Month

Month SV1 SV2 SV3 SV4 SV5 SV6
1 64 58 63 56 61 58
2 55 62 59 61 59 60
3 62 60 58 58 58 60
4 56 56 61 61 60 61
5 59 61 55 60 59 60
6 62 58 63 58 62 58
7 57 62 62 62 58 60
8 63 61 58 56 58 58
9 59 54 59 63 60 60
10 57 61 56 58 61 61
11 60 56 61 59 61 59
12 58 64 60 64 56 61

Total 717 713 715 716 713 716

Figure 6-4: The total monthly number of geographic matchups per SV varied from
55 to 64.
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Figure 6-5: The average matchups between TROPICS SV’s and the five ra-
diosonde stations varied from a low of 8-10/month at Singapore, and up to 17-21
matchups/month at Tenerife, Spain.

6.2.2 Double Differences

We next analyze double difference matchups that can be used for the TROPICS
constellation. These can be divided into inter-sensor comparisons between TROP-
ICS SVs and sensors such as ATMS, AMSU, MWHS-2, and GMI, and intra-sensor
comparisons between each SV in the TROPICS constellation. For these matchups,
we look for simulataneous nadir overpasses (SNO) that are within clear sky, over
water, and within 50 km distance and one hour. Nadir overpasses ensure that the
instruments look through the same atmosphere with the same geometry. Our collo-
cation metrics of 50 km distance and one hour of time difference for SNO matchups
are derived from GPM XCAL (30-60 minutes, 1 deg gridded) [56], Moradi’s com-
parison between ATMS and SAPHIR (1 hour, 50 km) [65], and Divakarla’s analysis
with radiosondes and NWP models (1 hour/50 km, 3 hour/100 km) [68]. In order
to determine SNO matchups, we model the TROPICS constellation and each of the
comparison sensors in STK (see Figure 6-6). We output the latitude and longitude
of each sensor’s track and then compare them against each other in Matlab. When
the latitude/longitude/time of the points are within 60 minutes and 50 km, a SNO
has occurred.
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Figure 6-6: STK analysis is used to find inter- and intra-satellite SNOs.

Inter-Sensor Double Differences

For the inter-sensor double difference analysis, we compare the SNOs from 1 Feb
2021 to 7 Feb 2021 between a TROPICS SV and the following microwave radiometer
payloads: ATMS on Suomi-NPP, ATMS on NOAA-20, MWHS-2 on FY-3C, AMSU
& MHS on NOAA-19, AMSU & MHS on MetOp-C, and GMI. (It should be noted
that other validation opportunities also exist for AMSU & MHS on MetOp A & B,
and MWHS-2 is located on FY-3D and future planned FY missions as well)[95]. The
spacecraft we compare TROPICS to are in polar sun-synchronous orbits, except for
GPM which is in a 60 degree inclination orbit. SNOs occur approximately 27-29
times per day between TROPICS and the microwave radiometer payloads, except for
GMI where the SNOs occur at 30-32 times per day (see Table 6.5). Assuming 33%
clear sky and 71% of the Earth’s surface covered by water, that leaves 6-8 matchups
per day per sensor in clear sky and over water. Due to the number of matchups, we
recommend weekly analysis for inter-sensor double difference validation.

In order to complete double difference comparisons between TROPICS and other
instruments, it is necessary to determine which channels should be used as com-
parisons. In Table 6.6, we summarize TROPICS channels and which channels match
from each instrument [1] [31] [96] [45]. Although there are several matches for TROP-
ICS Channels 1 and 9-11, only MWHS-2 has channels in the 118 GHz band, and no
sensors have matches for TROPICS Channel 12 at 204.8 GHz.
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Table 6.5: Inter-sensor Matchups between TROPICS SVs and other Microwave Ra-
diometer Payloads

Date ATMS/
Suomi-
NPP

ATMS/
NOAA-
20

MWHS-2
/FY-3C

AMSU/
MHS/
NOAA-19

AMSU/
MHS/
MetOp-C

GMI/
GPM

1 Feb 2021 28 28 29 28 27 31
2 Feb 2021 28 28 27 28 27 31
3 Feb 2021 29 29 27 27 29 32
4 Feb 2021 27 28 28 28 28 30
5 Feb 2021 27 28 28 28 29 31
6 Feb 2021 28 28 28 29 28 30
7 Feb 2021 28 28 28 27 27 31
Total/Week 195 197 195 195 195 216

Table 6.6: Channel Comparisons to TROPICS

TROPICS
Channel

Center
Freq

Channel Matches

1 91.656 ±
1.4

ATMS Ch 16, AMSU-B Ch 16, MHS Ch 1,
MWHS-2 Ch 1, GPM Ch 8-9

2 114.50 MWHS-2 Ch 9
3 115.95 MWHS-2 Ch 8
4 116.65 MWHS-2 Ch 7
5 117.25 MWHS-2 Ch 6
6 117.80 MWHS-2 Ch 6
7 118.24 MWHS-2 Ch 5
8 118.58 MWHS-2 Ch 3
9 184.41 ATMS Ch 22, AMSU-B Ch 18, MHS Ch 4,

MWHS-2 Ch 11
10 186.51 ATMS Ch 20, AMSU-B Ch 19, MHS Ch 4,

MWHS-2 Ch 13, GPM Ch 12
11 190.31 ATMS Ch 18, AMSU-B Ch 20, MHS Ch 5,

MWHS-2 Ch 15, GPM Ch 13
12 204.8 None
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Table 6.7: Number of Intra-sensor SNO Matchups between TROPICS Space Vehicles

Date TROPICS
SV2

TROPICS
SV3

TROPICS
SV4

TROPICS
SV5

TROPICS
SV6

1 Feb 2021 30 30 30 30 30
2 Feb 2021 29 30 30 30 30
3 Feb 2021 29 29 30 30 30
4 Feb 2021 30 30 30 30 30
5 Feb 2021 30 30 30 29 29
6 Feb 2021 30 30 30 29 30
7 Feb 2021 29 30 29 30 30
Total/Week 207 209 209 208 209

Intra-Sensor Double Differences

We next compare the SNO opportunities between SV in the TROPICS constellation.
TROPICS SV1 is used as the reference vehicle, and we find the SNOs between the
other TROPICS SV’s and TROPICS SV1 for 1-7 Feb 2021. Table 6.3 shows the
orbital parameters used for each SV in the constellation, and Table 6.7 shows the
number of the SNOs for the intra-sensor matchups. Intra-sensor matchups occur at
29-30 times a day, or 207-209 times per week. Once again, after taking into account
metrics for clear sky and over water, we can expect 6-7 matchups per day per SV.
Similarly to inter-sensor, we recommend that intra-sensor analysis be completed for
TROPICS weekly.

6.2.3 SNO Sensitivity to Orbital Parameters

The TROPICS requirement for RAAN between the orbital planes is 120∘ ± 30∘, while
a requirement does not exist for true anomaly to be controlled during operations. We
thus study how changes in RAAN and true anomaly from the nominal parameters
that we studied in the previous section affect opportunities for SNO matchups. The
number of matchups between the satellites will stay the same at approximately twice
per orbit, since the TROPICS satellites have the same orbit altitude and period.
However, changes in RAAN and true anomaly will affect the time difference between
SNOs.

First, we vary the TROPICS SV2 RAAN from 60∘ to 190∘ and compare the
time difference between matchups with TROPICS SV1 (0∘ RAAN, 0∘ true anomaly).
Figure 6-7 shows an STK image of the two orbits we are comparing at 60∘ RAAN
apart and 180∘ RAAN apart, and Figure 6-8 plots shows time difference in minutes
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Figure 6-7: We analyze the time difference between SNO matchups as we vary RAAN
from 60∘ to 180∘.

versus RAAN of TROPICS SV2. It can be seen that the maximum time difference of
51.7 minutes is at 180∘ RAAN. At the TROPICS RAAN requirements of 90∘ to 150∘,
the time difference varies from 23.2 minutes to 41.8 minutes. The time difference at all
RAANs is well under the 60 minute filter that we are applying for the SNO matchups;
thus, changing RAAN will not affect the number of SNO matchups available.

We follow a similar approach to determine the effect of true anomaly on SNO
time difference. We compare TROPICS SV1 to TROPICS SV4, and we vary the
TROPICS SV4 true anomaly from 120∘ to 240∘. Figure 6-9 shows examples of true
anomaly at 120∘ and 240∘, while Figure 6-10 plots the SNO time difference in minutes
versus true anomaly of TROPICS SV4. The maximum time difference of 50.5 minutes
occurs at the nominal true anomaly value of 180∘; thus, all true anomaly values meet
our filter requirement of less than 60 minutes. This shows that differences in true
anomaly will not affect SNO matchup opportunities.

6.2.4 Solar and Lunar Calibration

Solar and lunar calibration events occur every single orbit, or 15 times a day. As
detailed in Chapter 5, each intrusion event includes intrusions occurring every two
seconds for the duration of the event. The previous analysis showed that lunar in-
trusions should be analyzed on a weekly basis, but solar intrusions can be analyzed
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Figure 6-8: The time difference between SNO matchups varies from 23.2 minutes to
41.8 minutes at the TROPICS RAAN requirements envelope of between 90∘ and 150∘
RAAN.

Figure 6-9: True anomaly is varied at increments of 10∘ from 120∘ to 240∘ .
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Figure 6-10: The time difference between SNO matchups varies from 34.5 minutes
to 50.5 minutes as the true anomaly is varied from 120∘ to 240∘.

on a daily basis. This is because the effective brightness temperature of the moon
is much lower than the sun, so the change in noise diode drift has a smaller effect
on the effective brightness temperature for lunar intrusions than the solar intrusions.
To effectively track the noise diode drift, we need more measurements for the lunar
intrusions so that the noise diode drift is distinguishable from the instrument and
source errors. Table 6.8 shows a summary of the different matchup opportunities for
TROPICS.

6.2.5 Automating for TROPICS

When the validation process is implemented for TROPICS, it will be necessary for
the process to be automated and streamlined. As an initial step, we have identified
four major steps that can each be automated individually. These steps were described
in our work earlier in Chapter 4. The first step ("Point Selection") propagates the
TLE of the TROPICS SV’s and reference vehicles, determines when SNOs occur,
selects points within the SNO for comparisons, and filters those points for clear sky
and over water. The output is the latitude and longitude of the selected points along
with their observations. The next step is to prepare for the RTM. NWP atmospheric
profiles and surface characteristics are downloaded for each selected point from step 1,
and the properties at each point are formatted into the correct output for the RTM.

137



Table 6.8: Validation Matchup Summary for TROPICS

Data
Source

Frequency Type Analysis
Timeframe

NWP Model 1000 matchups per SV
per day

ERA-5/HRES/
GFS

Daily

GPSRO 2-3 times/week COSMIC-1 Monthly
Radiosondes 3-4 per SV per month GRUAN Monthly
Inter-satellite 6 times/day per SV ATMS/AMSU/

MWHS-2/GMI
Weekly

Intra-satellite 6 times/day per SV TROPICS SV Weekly
Solar/Lunar 165-345 times/day for

both solar and lunar
Sun, Moon Lunar weekly,

Solar daily

The third step is the RTM analysis. This step inputs the atmospheric profiles and
surface characteristics from step 2, and outputs the simulated brightness temperature.
The fourth step reads in the actual and simulated brightness temperatures and then
computes the double differences. The process is shown below in Figure 6-11.

6.2.6 Future Work

We have developed an architecture for radiance validation of TROPICS. Future work
could improve the automation. For instance, our analysis has propagated orbits
through STK. Future work could instead propagate TLE’s through MATLAB and find
SNO opportunities automatically in order to reduce the user workload. Additionally,
python scripts could be implemented to automatically download the satellite data
that is used as a comparison with TROPICS.
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Figure 6-11: The automated process for validation of TROPICS can be divided into
four main steps, as shown in the block diagram.
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Chapter 7

Summary and Future Work

In this thesis, we have established a framework for calibration and validation of Cube-
Sat microwave radiometers (Contributions #1-2, Chapters 3, 4). A novel calibration
method has been developed and tested that could potentially have a significant impact
on the microwave radiometer community (Contribution #3, Chapter 5), and we have
developed an architecture for validation matchups for a constellation of CubeSats
(Contribution #4, Chapter 6). Our results show promise to use CubeSats as opera-
tional weather platforms: with an average double difference of between 0.05 - 2.73 K
for all channels compared to state-of-the art ATMS, we have shown that CubeSats
can approach the performance of traditional weather satellites. With the benefits
of a reduced mass and cost (for instance, TROPICS costs $32 million compared to
NOAA-20 which cost $1.6 billion dollars), constellations of these CubeSats can be
flown with improved revisit rates that would enable transformational improvements
to our current weather forecasting ability [15].

7.1 Summary of Thesis Contributions

Contribution #1: Calibration for CubeSat Microwave Radiometers We
have developed two techniques in order to provide on-orbit calibration corrections
for MicroMAS-2A, both which use matchups with the MicroWave Humidity Sounder
(MWHS-2) on the Chinese weather satellite FengYun(FY)-3C. These techniques can
be used on any microwave radiometer mission to supplement TVac calibration data.
Brightness temperature histograms between matching data segments are compared
in order to derive an initial calibration correction to the noise diode temperature.
Selected points from the matching data segments are also used as part of a Markov
Chain-Monte Carlo (MCMC) statistical technique that uses Monte Carlo integration
to estimate a probability density function for the value of the noise diode tempera-
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ture. Both independent calibration techniques calculate calibration correction results
within 1.2% of each other. The calibration corrections are applied to the MicroMAS-
2A data in preparation for the validation step (i.e., next contribution).

Contribution #2: Validation for CubeSat Microwave Radiometers We
have performed radiance validation of MicroMAS-2A on-orbit data using the Com-
munity Radiative Transfer Model (CRTM) and the Rosenkranz Line-by-Line (LBL)
Radiative Transfer Model (RTM) with inputs of atmospheric profiles from radiosondes
and National Weather Prediction (NWP) models. We studied the impact of Spectral
Response Function (SRF) boxcar approximations in CRTM, and found that CubeSat
missions that do not have optimized SRFs (i.e., weighting function peaks are more
than 50 hPa in difference between boxcar approximation and actual SRFs) should
use the actual SRFs in the RTM. Matching data points between MicroMAS-2A and
ATMS are used with the double difference technique for validation in order provide an
assessment of CubeSat performance compared to state-of-the-art microwave radiome-
ters. We have shown that the intercalibration between MicroMAS-2A and ATMS is
between 0.05 - 2.73 K for all channels, using both RTM’s and atmospheric inputs.
The upper atmosphere temperature channels for which modeling and surface contam-
ination errors are least significant yield accuracies that would meet the radiometric
accuracy requirement for ATMS (<1.0 K).

Although the MCMC calibration technique could only be used on one data seg-
ment due to scan angle differences, our double difference results calculated using
MCMC calibration corrections for Segment 2 show an improvement of up to 2.5 K
for water vapor channels from the brightness temperature histograms method. This
shows that the MCMC calibration technique has promise for future CubeSat missions
such as MicroMAS-2B and TROPICS.

Contribution #3: Solar and Lunar Calibration Algorithm We have devel-
oped a new calibration method that utilizes solar and lunar intrusions as an additional
data source to track noise diode drift. These lunar intrusions occur as well for existing
satellites hosting microwave radiometers in polar orbits, but they occur much more
infrequently as the TROPICS spinning payload allows it to see behind the spacecraft.
We developed a new algorithm, loosely based on ground sun-tracking microwave ra-
diometry, and tested the algorithm using ATMS lunar intrusion data. Our algorithm
shows a mean bias and standard deviation that is within the expected error found
in our ATMS error budget, which validates our model for use with TROPICS. Daily
sources of error were analyzed in order to track noise diode drift on TROPICS, and
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we showed that lunar intrusions should be used on a weekly basis and solar intrusions
should be used on a daily basis. Not only will solar and lunar calibration allow us
to track noise diode drift for TROPICS, but the data collected with this algorithm
will enable characterization of lunar brightness temperature phase lag, as well as a
method to model solar brightness temperature variability at microwave frequencies.

Contribution #4: Architecture for Validation of TROPICS Validation
matchups for use operationally with TROPICS are studied, and we have identified
the sources and frequencies of matchups that will be available. It has been shown that
multiple methods exist for daily, weekly, and monthly validation analysis. Matchup
sensitivity to orbital parameters is studied and we have shown that changes in true
anomaly and the Right Ascension of the Ascending Node (RAAN) do not negatively
effect opportunities for validation. With this analysis, we have shown that sufficient
validation opportunities exist to track TROPICS noise diode drift. By having several
different ways of tracking noise diode drift, we can holistically confirm trends across
several sources in order to prove that the drift exists.

7.2 Future Work

Contribution #1: Calibration

Future work for calibration includes updating the non-linearity correction factor. The
non-linearity correction for this analysis is based on the pre-launch noise diode tem-
peratures, but this could be updated with the corrected noise diode temperatures
found in this analysis. The MCMC calibration method could also be updated to
include the non-linearity corrections as an additional parameter. MCMC residual
analysis can also be completed to better understand the channel performance. Ad-
ditionally, the cold calibration temperature was constrained at 2.7 K; this should be
updated based on frequency for each channel.

Contribution #2: Validation

Validation results for MicroMAS-2A can be expanded by geolocating and then analyz-
ing data segments 4-6. Additionally, future work will apply these validation methods
to MicroMAS-2B and TROPICS.
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Contribution #3: Solar/Lunar Calibration

We have developed and tested the solar/lunar calibration algorithm with ATMS lu-
nar intrusion data. We could further test the algorithm using a rooftop setup with
the TROPICS qualification unit, which would provide valuable insight into future
operational use of the algorithm with TROPICS. The main beam antenna pattern is
modeled as a Gaussian shape, but updating this assumption for the actual TROPICS
antenna pattern and pointing offsets that are determined from ground testing would
reduce model error. Our model has also assumed that there are negligible sidelobe
contributions; future work should explore this assumption further and determine ways
to mitigate any possible sidelobe effects. We have shown the large quantity of solar
and lunar intrusion measurements (up to 345/day); statistical techniques should be
studied in future work to determine how to best combine these measurements and
reduce noise.

Once the lunar/calibration algorithm is implemented on orbit, several other areas
of future work will exist. For instance, on-orbit coastline data and lunar maps could
be used to improve the pointing offset that is incorporated in the model for each SV.
Lunar data that is downlinked for use in the algorithm could be used to characterize
and then improve phase angle modeling, which would reduce model error. Addition-
ally, the solar cycle daily and annual variability has not been adequately characterized
at microwave frequencies [73]; our solar intrusion data could be used to derive a new
model of brightness temperature variability at microwave frequencies, which would
be valuable to the ground based sun-tracking microwave radiometry community as
well. Another area for future work for solar intrusions is studying the possibility of
using solar intrusions to derive non-linearity corrections for microwave radiometers.
Currently, these corrections are only derived pre-launch in TVac. The large dynamic
range of the sun and the use of multiple measurements of the sun in different places
in the FOV could potentially be used to simulate performance of the microwave ra-
diometer at different blackbody temperatures and then be used to derive on-orbit
non-linearity corrections.

Contribution #4: Validation Architecture for TROPICS

The analysis for validation matchups for TROPCIS could be updated by model-
ing future GPSRO constellation opportunities, and by finding the expected time of
launches at each radiosonde station. Future work can also automate and optimize our
processes further in order to reduce user workload. For instance, orbits can be propa-
gated in MATLAB instead of STK and Python can be implemented to automatically
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download satellite data.
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Appendix A

List of Acronyms

ATMS Advanced Technology Microwave Sounder

BT Brightness Temperature

CRTM Community Radiative Transfer Model

DD Double Difference

ECMWF European Centre for Medium-Range Weather Forecasts

EMI Electromagnetic Interference

FOV Field-of-View

FWHM Full Width Half Maximum

FY-3C FengYun-3C

GFS Global Forecast System

GMI Global Precipitation Measurment (GPM) Microwave Imager

GPSRO GPS Radio Occultation

GRUAN Global Climate Observing System (GCOS) Reference Upper-Air Net-
work

HRES Atmospheric Model High Resolution

LBL Line-by-line

MCMC Markov Chain – Monte Carlo

MM-2A Micro-sized Microwave Atmospheric Sounder (MicroMAS) - 2A

MWHS-2 MicroWave Humidity Sounder – 2

MWR Microwave Radiometer

ND Noise Diode
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NEDT Noise Equivalent Delta Temperature

NWP Numerical Weather Prediction

RAAN Right Ascension of the Ascending Node

RTM Radiative Transfer Model

SNO Simultaneous Nadir Overpass

SRF Spectral Response Function

SV Space Vehicle

TROPICS Time-Resolved Observations of Precipitation structure and storm
Intensity with a Constellation of Smallsats

Tvac Thermal Vacuum

148



Appendix B

Markov Chain-Monte Carlo Channel
Histograms

In this Appendix, we show the MCMC calculated cold calibration (Tc) and hot cali-
bration (Th) temperatures for each channel.
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Figure B-1: The MCMC approach calculates a Tc of between 2.82 and 2.85 K, and
a Th of 2108 K for Channel 1.

Figure B-2: The MCMC approach calculates a Tc of between 2.67 and 2.7 K, and a
Th of 225.7 to 225.8 K for Channel 2.
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Figure B-3: The MCMC approach calculates a Tc of between 2.67 and 2.7 K, and a
Th of 220.7 K for Channel 3.

Figure B-4: The MCMC approach calculates a Tc of between 2.7 and 2.73 K, and a
Th between 205.8 and 205.9 K for Channel 4
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Figure B-5: The MCMC approach calculates a Tc of between 2.7 and 2.73 K, and a
Th of 182.2 K for Channel 5.

Figure B-6: The MCMC approach calculates a Tc of between 2.67 and 2.7 K, and a
Th of 199.3 K for Channel 6.
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Figure B-7: The MCMC approach calculates a Tc of between 2.7 and 2.73 K, and a
Th between 301.7 and 301.8 K for Channel 7.

Figure B-8: The MCMC approach calculates a Tc of between 2.7 and 2.73 K, and a
Th of between 737 and 737.2 K for Channel 8.
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Figure B-9: The MCMC approach calculates a Tc of between 2.67 and 2.7 K, and a
Th between 511.2 and 511.4 K for Channel 9.
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Appendix C

Markov Chain-Monte Carlo Channel
Code

In this appendix we include the MCMC MATLAB scripts. The first script is used to
select the points for the analysis, and the second script is the MCMC algorithm. The
MCMC function scripts are also included.
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MCMC Point Selection Script 

 

close all 

clear all 

clc  

  

%worldmap([55 90],[-180 -110]); %Segment1 

worldmap([70 90],[-180 180] ); %Segment2 

%worldmap([-30 30],[30 70] ); %Segment3 

load coastlines 

  

%Load mat values with counts, lat/lon, and brightness 

temperatures 

load('cc_seg2_fixed'); 

load('ch_seg2_fixed'); 

load('cs_seg2_fixed'); 

load('lat_mm2a_seg2'); 

load('lon_mm2a_seg2'); 

load('lat_mwhs_seg2_fixed'); 

load('lon_mwhs_seg2_fixed'); 

load('bt_mwhs_seg2_fixed'); 

  

%Find closest point per scan angle  

%Try one scan angle at a time  

%  

% for k=40 

%     lat1=lat(k,:); 

%     lon1=lon(k,:);    

%     scatterm(lat1,lon1,5,'r*') 

% end 

%  

% hold on 

% for l=40 

%     lat_mwhs1=lat_mwhs(l,:); 

%     lon_mwhs1=lon_mwhs(l,:); 

% scatterm(lat_mwhs1,lon_mwhs1,5,'b') 

% end 

%  

% plotm(coastlat, coastlon,'k','LineWidth',2) 

% title({'MM-2A and MWHS-2 Segment 2','Example Case -42 deg',' 

'}) 

  

%Filter based on distance (Note lat2 is mm-2a, lat is mwhs) 

for k=1:53 

    lat1=lat(k,:); 

    lon1=lon(k,:); 

    lat_mwhs1=lat_mwhs(k,:); 



    lon_mwhs1=lon_mwhs(k,:); 

     

    for i=1:153 

        for j=1:2391  

            dlat=lat1(i)-lat_mwhs1(j); 

            dlong=lon1(i)-lon_mwhs1(j); 

            

c=(sind(dlat/2)).^2+cosd(lat_mwhs1(j)).*cosd(lat1(i)).*(sind(dlo

ng/2)).^2; 

            d=2*atan2(sqrt(c),sqrt(1-c)); 

            distance(j)=6378*d; 

        end 

        [a,b]= minmat(distance); 

        a_pos(i)=a; 

        b_pos(i)=b; 

        distance2(i)=distance(a,b); 

    end 

   b_all(k,:)=b_pos; 

   distance3(k,:)=distance2; 

end 

  

for l=1:53 

    [e,f]=min(distance3(l,:)); 

    e_total(l)=e; 

    f_total(l)=f; 

end 

  

  

load 'clocktime_seg2.mat' 

for m=1:53 

    lat_mm2a_match(m)=lat(m,f_total(m)); 

    lon_mm2a_match(m)=lon(m,f_total(m)); 

    count_scene_match(m,:)=count_scene(m,f_total(m),:); 

    count_cold_match(m,:)=count_cold(f_total(m),:); 

    count_hot_match(m,:)=count_hot(f_total(m),:); 

    clock_match(m,:)=clock_time(f_total(m),:);     

    lat_mwhs_match(m)=lat_mwhs(m,b_all(m,f_total(m))); 

    lon_mwhs_match(m)=lon_mwhs(m,b_all(m,f_total(m))); 

    bt_mwhs_match(m,:)=bt_mwhs(m,b_all(m,f_total(m)),:); 

end 

  

Z_Ch6=[count_cold_match(:,6)'; count_hot_match(:,6)'; 

count_scene_match(:,6)']; 

%Ta_Ch9=[bt_mwhs_match(:,15)']; 

%  

% % Ta_Ch4_one=[bt_mwhs_match(:,6)']; 

% % Ta_Ch4_two=[bt_mwhs_match(:,7)']; 



% % Ta_Ch4=(Ta_Ch4_one+Ta_Ch4_two)/2; 

% Ta_Ch6_one=[bt_mwhs_match(:,6)']; 

% Ta_Ch6_two=[bt_mwhs_match(:,7)']; 

% Ta_Ch6_three=(Ta_Ch6_one+Ta_Ch6_two)/2; 

% Ta_Ch6_four=[bt_mwhs_match(:,3)']; 

% Ta_Ch6=(Ta_Ch6_three+Ta_Ch6_four)/2; 

  

%Plot selected points 

% for y=1:53 

% scatterm(lat(y,:),lon(y,:),5,count_scene(y,:,1)) 

% end 

% colorbar 

% caxis([14500 16000]) 

% plotm(lat_mm2a_match(1:39),lon_mm2a_match(1:39), 'r.') 

% %plotm(lat_mwhs_match,lon_mwhs_match,'k.') 

% plotm(coastlat, coastlon,'k','LineWidth',2) 

% title({'MM-2A Scene Counts Ch 1',' '}) 

  

%Ta_model for all MM-2A, using mparams 

%z1 is count_cold, z2 is count_hot, z3 is count_scene 

mparams=[2.81,2107]; 

Tnl=[44.54  -0.30 -0.05 -0.29 -0.23 -0.11 0.08 -28.17 1.73 

3610.43]; 

y=1;     

for k=1:53 

    for j=1:153 

Ta_model1(k,j)=(mparams(1)+((mparams(2)-

mparams(1))./(count_hot(j,y)-

count_cold(j,y))).*(count_scene(k,j,y)-count_cold(j,y))); 

Ta_model=Ta_model1-(Tnl(y)*(1-(4*(((count_scene(k,j,y)-

count_cold(j,y))/(count_hot(j,y)-count_cold(j,y)))-

0.5)^2))); 

    end 

end 

  

for y=1:53 

scatterm(lat(y,:),lon(y,:),5,Ta_model1(y,:)) 

end 

 

colorbar 

caxis([170 270]) 

plotm(coastlat, coastlon,'k','LineWidth',2) 

title({'Ta_m_o_d_e_l MM-2A Ch 1',' '}) 

plotm(lat_mm2a_match(1:39),lon_mm2a_match(1:39), 'r.') 

 

 

 



MCMC Algorithm Script 

 

close all 

clear all 

clc 

  

%Load variables 

z1=load('Z_Ch9_fixed.mat'); 

z2=struct2cell(z1); 

z=z2{1,1}; 

z=z(:,1:39); 

  

Ta1=load('Ta_Ch9_fixed'); 

Ta2=struct2cell(Ta1); 

Ta=Ta2{1,1}; 

Ta=Ta(:,1:39); 

  

nsamples=20000; %number of samples 

ndata=53; 

ndimdata=3; 

ran=randn(1,20000); 

num_param=2; 

samples=zeros(num_param,nsamples); 

%Define an initial value 

samples(:,1)= [2.7,2100];  %Best estimate of Tc and Th   

b1=0.5;  

b2=5;  

paramtrial=zeros(2,1); 

paramzero=zeros(2,1); 

x=0; 

y=zeros(1,nsamples); 

ntries=zeros(1,nsamples);  

y(1,1) = loglikelihood( samples(:,1), z, Ta 

)+logprior(samples(:,1)); 

  

% Implementation of Metropolis  

  

for n=2:nsamples 

    param0 = samples(:,n-1);  

    y0 = loglikelihood(param0, z, Ta)+logprior(param0);  

    sampling = true;  

    nt = 0;  

    while sampling 

        x = randn(2); 

        nt = nt + 1;  

        param1 = [param0(1,1)+b1*x(1); param0(2,1)+b2*x(2)];  

        y1 = loglikelihood(param1,z,Ta)+logprior(param1); 



        t = rand(1);       %  Test for acceptance/rejection of 

param1 

        if t < exp(y1-y0) 

            samples(:,n) = param1;  

            ntries(1,n) = nt; 

            y(1,n) = y1; 

            sampling = false;  

        end 

    end 

end 

  

% plot(samples(2,:)) 

% title('Ch 3 Th vs Samples','FontSize',16) 

% xlabel('Samples','FontWeight','bold','FontSize',14) 

% ylabel('Temperature (K)','FontWeight','bold','FontSize',14) 

  

% histogram(samples(1,:)) 

% title('Ch 1 Tc Histogram','FontSize',16) 

% xlabel('Temperature (K)','FontWeight','bold','FontSize',14) 

% ylabel('Number','FontWeight','bold','FontSize',14) 

  

  

%Calculate sigma 

i=9; %Choose channel 

Tnl=[44.54  -0.30 -0.05 -0.29 -0.23 -0.11 0.08 -28.17 1.73 

3610.43]; 

burnin=1000; 

mparams=[mean(samples(1,burnin:nsamples)), 

mean(samples(2,burnin:nsamples))]; 

Ta_model1=(mparams(1)+((mparams(2)-mparams(1))./(z(2,:)-

z(1,:))).*(z(3,:)-z(1,:))); 

Ta_model=Ta_model1-(Tnl(i)*(1-(4*(((z(3,:)-z(1,:))/(z(2,:)-

z(1,:)))-0.5)^2))); 

diff=Ta-Ta_model; 

test=sum(diff.^2); 

new_sigma=sqrt(sum(diff.^2)) 

  

% plot(Ta_model,'x') 

% hold on 

% plot(Ta,'x') 

% title('Ta vs Ta_m_o_d_e_l') 

% xlabel('Samples') 

% ylabel('Brightness Temperature (K)') 

% legend('Model','Actual') 

% axis([0 60 225 275]) 

  

param_array_1=zeros(1,39); 



param_array_2=zeros(1,39); 

for j=1:39 

    param_array_1(j)=mparams(1); 

    param_array_2(j)=mparams(2); 

end 

  

% Residual plots 

% plot(z(3,:),Ta(:),'kx') 

% %hold on 

% plot(z(1,:),param_array_1,'bx') 

% plot(z(2,:),param_array_2,'rx') 

% title('Residuals Plot Channel 9') 

% xlabel('Counts') 

% ylabel('Brightness Temperature (K)') 

% line_y=[mparams(1),mparams(2)]; 

% line_x=[mean(z(1,:)),mean(z(2,:))]; 

% line(line_x,line_y) 

  

% load 'clock_match.mat' 

% clock=clock_match(1:39,:); 

% clock1=datenum(clock); 

% change=[z(2,1)-z(1,1) z(3,1)-z(1,1)] 

% plot(clock1,z(1,:),'bx') 

% hold on 

% plot(clock1,z(2,:)-change(1),'rx') 

% plot(clock1,z(3,:)-change(2),'kx') 

% legend('Cold Counts','Hot Counts','Scene Counts') 

% title('Counts vs Time for Channel 9','FontSize',14) 

% xlabel('Serial Date Number 

(Days)','FontWeight','bold','FontSize',12) 

% ylabel('Counts','FontWeight','bold','FontSize',12) 

  

  

%More residual plots 

% zenith=[-41.93 -40.23 -38.53 -36.84 -35.17 -33.49 -31.83 -

30.17 -28.51 -26.86 -25.22 -23.58 -21.94 -20.30 -18.67 -17.04 -

15.41 -13.78 -12.16 -10.53 -8.91 -7.29 -5.67 -4.05 -2.43 -0.8 

0.81 2.43 4.05 5.67 7.29 8.91 10.53 12.16 13.78 15.41 17.04 

18.67 20.30 21.94 23.58 25.22 26.86 28.51 30.17 31.83 33.49 

35.17 36.84 38.53 40.23 41.93 43.64]; 

% zenith=zenith(1:39); 

% plot(zenith,diff,'x') 

% title('Residuals vs Zenith Angle','FontSize',16) 

% xlabel('Zenith Angle','FontWeight','bold','FontSize',14) 

% ylabel('Ta - Ta_m_o_d_e_l 

(K)','FontWeight','bold','FontSize',14) 

  



% load('lat_mm2a_match.mat') 

% load('lon_mm2a_match.mat') 

% lat_mm2a_match=lat_mm2a_match(1:39); 

% lon_mm2a_match=lon_mm2a_match(1:39); 

% plot(lon_mm2a_match,diff,'x') 

% title('Residuals vs Longitude','FontSize',16) 

% xlabel('Longitude 

(degrees)','FontWeight','bold','FontSize',14) 

% ylabel('Ta - Ta_m_o_d_e_l 

(K)','FontWeight','bold','FontSize',14) 

  

% load('clock_match.mat') 

% time=datenum(clock_match); 

% time=time(1:39); 

% plot(time, diff, 'x') 

% title('Residuals vs Time','FontSize',16) 

% xlabel('Serial Date Number','FontWeight','bold','FontSize',14) 

% ylabel('Ta - Ta_m_o_d_e_l 

(K)','FontWeight','bold','FontSize',14) 

 

 

MCMC Functions 

 

function y=loglikelihood(params,z,Ta) 

  

sigma=3; %NEDT estimate 

i=9; 

Tnl=[44.54  -0.30 -0.05 -0.29 -0.23 -0.11 0.08 -28.17 1.73 

3610.43]; 

Ta_model1=(params(1)+((params(2)-params(1))./(z(2,:)-

z(1,:))).*(z(3,:)-z(1,:))); 

Ta_model=Ta_model1-(Tnl(i)*(1-(4*(((z(3,:)-z(1,:))/(z(2,:)-

z(1,:)))-0.5)^2))); %two parameter 

y=(-0.5/(sigma^2))*sum((Ta-Ta_model).^2); 

 

 

function z=logprior(params) 

z=(-0.5*(params(1)-2.7)^2)/(0.2^2); 

 



Appendix D

Solar and Lunar Calibration
Algorithm Testing

In this Appendix we show the solar/lunar calibration algorithm test data from all
datasets (Table D.1). Channel 1 is shown as an example of 5.2∘ FWHM channels,
Channel 3 is shown as an example of the 2.2∘ FWHM channels, and Channel 17 is
shown as an example of the 1.1∘ FWHM channels. The lunar intrusion datasets from
20-22 March 2012 do not have lunar intrusions in all channels.
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Table D.1: ATMS Lunar Intrusion Data used for Algorithm Testing

Platform Date
Suomi-NPP 20 Mar 2013
Suomi-NPP 21 Mar 2013
Suomi-NPP 22 Mar 2013
Suomi-NPP 19 Apr 2013
Suomi-NPP 20 Apr 2013
Suomi-NPP 21 Apr 2013
Suomi-NPP 18 May 2013
Suomi-NPP 19 May 2013
Suomi-NPP 20 May 2013
Suomi-NPP 12 Nov 2013
Suomi-NPP 10 Dec 2013
Suomi-NPP 11 Dec 2013
Suomi-NPP 12 Dec 2013
NOAA-20 28 Dec 2017

Figure D-1: Model vs. ATMS Channel 1 Lunar Intrusion Data from 20 March 2013
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Figure D-2: Model vs. ATMS Channel 1 Lunar Intrusion Data from 21 March 2013

Figure D-3: Model vs. ATMS Channel 1 Lunar Intrusion Data from 22 March 2013
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Figure D-4: Model vs. ATMS Channel 3 Lunar Intrusion Data from 22 March 2013

Figure D-5: Model vs. ATMS Channel 1 Lunar Intrusion Data from 19 April 2013
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Figure D-6: Model vs. ATMS Channel 3 Lunar Intrusion Data from 19 April 2013

Figure D-7: Model vs. ATMS Channel 17 Lunar Intrusion Data from 19 Apr 2013
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Figure D-8: Model vs. ATMS Channel 1 Lunar Intrusion Data from 20 Apr 2013

Figure D-9: Model vs. ATMS Channel 3 Lunar Intrusion Data from 20 Apr 2013
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Figure D-10: Model vs. ATMS Channel 17 Lunar Intrusion Data from 20 Apr 2013

Figure D-11: Model vs. ATMS Channel 1 Lunar Intrusion Data from 21 Apr 2013
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Figure D-12: Model vs. ATMS Channel 3 Lunar Intrusion Data from 21 Apr 2013

Figure D-13: Model vs. ATMS Channel 17 Lunar Intrusion Data from 21 Apr 2013
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Figure D-14: Model vs. ATMS Channel 1 Lunar Intrusion Data from 18 May 2013

Figure D-15: Model vs. ATMS Channel 3 Lunar Intrusion Data from 18 May 2013
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Figure D-16: Model vs. ATMS Channel 17 Lunar Intrusion Data from 18 May 2013

Figure D-17: Model vs. ATMS Channel 1 Lunar Intrusion Data from 19 May 2013
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Figure D-18: Model vs. ATMS Channel 3 Lunar Intrusion Data from 19 May 2013

Figure D-19: Model vs. ATMS Channel 17 Lunar Intrusion Data from 19 May 2013
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Figure D-20: Model vs. ATMS Channel 1 Lunar Intrusion Data from 20 May 2013

Figure D-21: Model vs. ATMS Channel 3 Lunar Intrusion Data from 20 May 2013
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Figure D-22: Model vs. ATMS Channel 17 Lunar Intrusion Data from 20 May 2013

Figure D-23: Model vs. ATMS Channel 1 Lunar Intrusion Data from 12 Nov 2013

175



Figure D-24: Model vs. ATMS Channel 3 Lunar Intrusion Data from 12 Nov 2013

Figure D-25: Model vs. ATMS Channel 17 Lunar Intrusion Data from 12 Nov 2013
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Figure D-26: Model vs. ATMS Channel 1 Lunar Intrusion Data from 10 Dec 2013

Figure D-27: Model vs. ATMS Channel 3 Lunar Intrusion Data from 10 Dec 2013
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Figure D-28: Model vs. ATMS Channel 17 Lunar Intrusion Data from 10 Dec 2013

Figure D-29: Model vs. ATMS Channel 1 Lunar Intrusion Data from 11 Dec 2013
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Figure D-30: Model vs. ATMS Channel 3 Lunar Intrusion Data from 11 Dec 2013

Figure D-31: Model vs. ATMS Channel 17 Lunar Intrusion Data from 11 Dec 2013
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Figure D-32: Model vs. ATMS Channel 1 Lunar Intrusion Data from 12 Dec 2013

Figure D-33: Model vs. ATMS Channel 3 Lunar Intrusion Data from 12 Dec 2013
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Figure D-34: Model vs. ATMS Channel 17 Lunar Intrusion Data from 10 Dec 2013

Figure D-35: Model vs. ATMS Channel 1 Lunar Intrusion Data from 28 Dec 2017
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Figure D-36: Model vs. ATMS Channel 3 Lunar Intrusion Data from 28 Dec 2017

Figure D-37: Model vs. ATMS Channel 17 Lunar Intrusion Data from 28 Dec 2017
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Appendix E

Radiosonde Station Matchups with
TROPICS

In this Appendix, we show radiosonde station geometry matchups with the TROPICS
constellation for the five radiosonde stations used in our analysis: Darwin, Australia;
La Reunion, France; Minamitorishima, Japan; Singapore, Singapore; and Tenerife,
Spain.
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Table E.1: Total Number of Matchups between TROPICS Constellation and Darwin,
Alaska Radiosonde Station by Month

Month SV1 SV2 SV3 SV4 SV5 SV6
1 11 9 10 8 8 8
2 7 10 10 10 8 10
3 11 9 8 7 10 8
4 7 8 11 11 9 9
5 9 10 7 9 10 11
6 10 8 10 9 9 8
7 8 9 10 10 8 10
8 11 10 9 6 10 8
9 8 8 10 11 8 8
10 9 10 7 8 10 11
11 9 8 9 10 9 8
12 8 9 9 11 8 11

Total 108 108 110 110 107 110

Table E.2: Total Number of Matchups between TROPICS Constellation and La
Reunion, France Radiosonde Station by Month

Month SV1 SV2 SV3 SV4 SV5 SV6
1 10 9 11 12 13 10
2 11 11 10 10 9 11
3 10 11 11 11 10 11
4 11 10 10 10 11 11
5 10 11 10 10 9 10
6 10 9 11 12 13 10
7 11 12 11 11 9 11
8 10 10 10 10 11 10
9 11 10 10 10 11 11
10 11 11 11 10 10 10
11 9 10 10 11 12 12
12 11 13 11 11 9 10

Total 125 127 126 128 127 127
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Table E.3: Total Number of Matchups between TROPICS Constellation and Mina-
mitorishima, Japan Radiosonde Station by Month

Month SV1 SV2 SV3 SV4 SV5 SV6
1 14 13 13 11 12 11
2 11 11 12 14 13 13
3 12 13 13 11 11 12
4 12 11 11 12 11 13
5 11 11 12 12 13 12
6 13 14 13 10 12 11
7 11 11 12 14 13 13
8 13 14 13 11 11 12
9 12 11 10 14 12 12
10 10 11 12 11 13 12
11 13 13 13 11 12 11
12 12 12 11 14 12 12

Total 144 145 145 145 145 144

Table E.4: Total Number of Matchups between TROPICS Constellation and Singa-
pore, Singapore Radiosonde Station by Month

Month SV1 SV2 SV3 SV4 SV5 SV6
1 10 8 10 7 9 8
2 7 9 8 9 9 9
3 10 9 8 9 8 8
4 8 9 10 8 8 8
5 8 9 7 9 9 10
6 10 8 10 9 9 8
7 7 9 8 9 9 9
8 9 9 8 9 8 8
9 10 7 10 8 8 9
10 8 9 7 9 9 9
11 10 8 10 8 9 7
12 7 9 8 10 8 11

Total 104 103 104 104 103 104
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Table E.5: Total Number of Matchups between TROPICS Constellation and Tenerife,
Spain Radiosonde Station by Month

Month SV1 SV2 SV3 SV4 SV5 SV6
1 19 19 19 18 19 21
2 19 21 19 18 20 17
3 19 18 18 20 19 21
4 18 18 19 20 21 20
5 21 20 19 20 18 17
6 19 19 19 18 19 21
7 20 21 21 18 19 17
8 20 18 18 20 18 20
9 18 18 19 20 21 20
10 19 20 19 20 19 19
11 19 17 19 19 19 21
12 20 21 21 18 19 17

Total 231 230 230 229 231 231
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