
Composition and Correctness
of Heterogeneous Planning Systems

by

Nicholas Pascucci

B.A. Computer Science, Colorado College, 2012

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 23, 2019

Certified by .
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Composition and Correctness

of Heterogeneous Planning Systems

by

Nicholas Pascucci

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Autonomous systems present many new opportunities, especially for exploration in haz-
ardous environments. One technique for building increasingly capable planning systems
is to compose existing planners to enable specialization and division of subproblems.
These systems require new analysis techniques, appropriate for ensembles of planners, if
they are to be trusted with safety- and mission-critical roles in the future. Current state-of-
the-art techniques address parts of this problem—including analysis of middlewares such
as ROS and complex control systems—but have not yet provided analysis methods to ad-
dress the particular correctness needs of composite planning systems. Applying formal
methods to model the internal communications of planning architectures is a promising
way to address this gap.

In this thesis, I develop a formal modeling method which enables proofs of correct-
ness for planning system architectures which use a rich common data structure for both
their inputs and outputs. The method is demonstrated through a case study of Enterprise,
a system of planners developed at the MIT Model-Based Embedded and Robotic Systems
(MERS) group which communicate using the Qualitative State Plan (QSP). The verifica-
tion requirements of this system inform the development of a formal semantics for first
order logic, defined in terms of the common data structure, which is useful for modeling
systems of planners. Sentences in this logic can be used to express formal specifications
about a planner’s behavior, including correctness properties which are important for au-
tonomous operations of critical systems. Using the logic one can also describe systems of
planners built around this common data structure. Modeling of the Enterprise architecture
and components in the case study demonstrates the usefulness of the technique.

The analysis method allows varying the level of abstraction by permitting the assump-
tion of certain component behaviors by the architect. This allows the analysis to treat
planners as “black-box” implementations while describing the rest of the system. Systems
of planners can be described using specification composition, which enables description
of various architectures. The use of intuitionistic mathematics enables mechanization of
the logic in a variety of computer proof assistants to enable machine-checked proofs and
implementation of planners by refinement from specification. Mechanization and oppor-
tunities to extend the method to more expressive logics are discussed as future work.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

Acknowledgments

Defining, researching, and writing a thesis is not an easy task in the best of times but it is

made more so by the love and support of those around me. I want to thank all of those

who helped me get to where I am today, and those who helped me create the work you

are about to read.

To my lab-mates at the Model-Based Embedded and Robotic Systems group: thank

you for your support, insight, and feedback on a project which did not quite fit the mold,

and for putting up with my abstract nonsense. Thanks to the Scouts group for being a

great team and bringing me on many adventures.

To my girlfriend, Lauren: thank you for supporting me, understanding me, and al-

ways being there; for rubber-ducking and talking to me about abstract nonsense over

scotch.

To Ethan: thank you for sparking my interest in category theory and formal methods

and for teaching me so much about it, in addition to being a supportive and caring friend.

To all of my friends and family: thank you for helping me grow and become who I

am today. Without you I wouldn’t be here.

And finally, to Brian: thank you for giving me the chance to explore an area outside

the norm for the group, and for your advice along the way; I hope that this work opens

new horizons, as mine have been opened.

This research was funded by a grant from Exxon Mobil Research and Engineering Corporation

through the MIT Energy Initiative, Award 023730-00025.

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Approach and Innovations . 18

1.3 Structure of the Text . 19

2 Related Work 21

2.1 Testing Autonomous Systems . 21

2.2 Applications of Formal Methods to Autonomous Systems 23

2.3 Verifying Internal Message Semantics of Autonomy Architectures 26

2.4 Summary . 27

3 Architectural Models & Problem Statement 29

3.1 Notational Conventions . 29

3.2 Problem Statement . 30

3.3 Modeling and Specifying Architectures . 30

4 The Enterprise System Architecture 37

4.1 Architectural Principles of Enterprise . 37

4.1.1 Common Representations . 39

4.1.2 Service Discovery and the Metadata Endpoint 40

4.1.3 State Management . 41

4.2 Application: Undersea Exploration as a Space Analog 42

4.2.1 Deployment: Au’Au’ Channel, Hawai’i 43

4.2.2 Deployment: Puntarenas Province, Costa Rica 45

4.2.3 Future Developments: Santorini and Beyond 46

7

4.3 Correctness, Validation, and Verification in the Modularized Architecture . 47

5 Logical Foundations 49

5.1 Introduction . 49

5.1.1 A note on notation . 50

5.2 Fundamentals of Intuitionistic First-Order Logic 50

5.2.1 Historical Background . 51

5.2.2 Signatures of First Order Logics . 53

5.2.3 Heyting Algebras . 55

5.3 Case Study: Qualitative State Plans (QSPs) . 61

5.3.1 Temporal Constraints . 62

5.3.2 State Constraints . 64

5.3.3 Definition of the Qualitative State Plan 66

5.3.4 Use of Constraint Systems for Models, Goals, and Solutions 68

5.3.5 The Heyting Algebra of Qualitative State Plans 70

5.3.6 Evaluating FOL Formulae in the Heyting Poset 73

5.4 Extensions: Abstraction and Refinement of Constraint Systems 74

6 Application to Modeling and an Enterprise Case Study 77

6.1 Abstract Architecture of Enterprise . 77

6.2 Modeling Activity and Path Planners . 78

6.2.1 Common Properties . 79

6.2.2 Leaf and coordinator planners . 81

6.3 Entailment of Specifications and Internal Models 84

6.4 Example: Describing Sulu . 86

6.5 Example: Describing ScottyPath . 87

6.6 Example: Specification as a Design Aid . 89

6.7 Summary . 91

7 Conclusion 93

7.1 Summary of Contributions . 93

7.2 Future Work . 94

7.2.1 Component Modeling . 94

8

7.2.2 Logical Extensions . 94

7.2.3 Flexible Architectural Models . 95

A Z3 Program to Find Pseudocomplements of a Heyting Algebra 97

9

10

List of Figures

3-1 An example system diagram showing the functional tree structure created

by an architecture. 32

3-2 Concretization of an architecture using an instantiation table. 34

4-1 The original, simplified, Enterprise system architecture. 38

4-2 The revised system architecture, as of 2019. 38

4-3 A block diagram showing the virtual machine architecture used in the

Hawai’i deployment. 44

5-1 The join {A} ∨ {C} = {A,C} and the meet {A,B} ∧ {B,C} = {B}. 57

5-2 A basic temporal constraint network consisting of two events and one con-

straint. 62

5-3 A region defined by the intersection of half planes. 65

5-4 In this illustration, an agent must remain between walls which move over

time. 65

5-5 An example QSP describing a high-level plan for a fictitious UAV. 67

5-6 The goal model QSP for the firefighting example. 69

5-7 The plant and obstacle model QSP for the firefighting example. 69

6-1 An example system containing both coordinator (A) and leaf planners (B, C). 81

6-2 A possible problem decomposition for the example architecture. 82

6-3 Commutative diagram specification for decompose, refine, and compose. . 83

6-4 Abstract architecture, instantiation table, and concrete architecture for the

leaf planner Sulu. 86

6-5 Abstract architecture, instantiation table, and concrete architecture for Scotty

paired with an “identity” planner. 87

11

12

List of Tables

5.1 The relative pseudocomplements (x → y) for all pairs of x and y in the

{A,B,C} lattice. 60

13

14

Chapter 1

Introduction

1.1 Motivation

Robotic systems are becoming increasingly capable as technology improves. Advances in

miniaturization have provided raw computational horsepower, allowing each new system

to incorporate greater levels of artificial intelligence (AI) than its predecessors. In turn,

these more capable robots are tasked with more and more difficult missions. Among

these diverse applications of AI, space exploration presents both unique opportunities

and unique challenges. Robots have cemented their role as the key agents for human

space exploration in part due to their robustness, expendability, and low cost relative to

living explorers. As our abilities to explore the solar system grow our machines are at

the vanguard, venturing into new and more hazardous destinations. To succeed at the

challenging missions we have created for them they will need to operate independently

and autonomously, and to respond to unforeseen challenges while still achieving their

mission objectives.

How best to achieve a high level of autonomy remains an area of active research,

with model-based techniques presenting a promising approach. Provided with logical

representations of their world, themselves, and their goals, these agents are able to reason

using these models to determine the best course of action available to them. Model-

based methods formed the basis of the first artificial intelligence system to control a

spacecraft independently: the Remote Agent Experiment (RAX), launched aboard the

Deep Space 1 spacecraft in 1999 [1]. As part of NASA’s New Millennium Program (NMP),

Remote Agent was intended to validate the use of AI to enhance system survivability and

15

increase the likelihood of mission success. Although the project achieved its validation

objectives [2], the vision of routine, frequent operation of fully autonomous, self-operating

spacecraft espoused by the Remote Agent team [3] has yet to come to fruition.

A handful of successor projects have incorporated advanced autonomy technology

into NASA spacecraft since, but none have reached the level of independence that pro-

ponents of the New Millennium Program had anticipated. Despite the NMP motto of

“faster, better, cheaper,” [4] NASA spacecraft remain costly to develop in both time and

money. The resulting conservatism with regard to new technologies requires that only

those deemed either low-risk or absolutely necessary for mission success are flown. New

technologies are able to make inroads when the mission parameters dictate their use—

see, for example, the limited automatic scheduling capability of the James Webb Space

Telescope [5]—but overall the use of onboard autonomous systems remains rare despite

their potential benefits. This is due in part to concerns about how to integrate these tech-

nologies into existing operational and technological structures, and in part due to a lack

of trust in autonomous systems.

Gaining trust in AI systems is difficult, largely due to the unfortunate truth that in-

creased capability generally comes at the cost of increased complexity. We require the

systems playing a leading role within complex and expensive spacecraft to meet a high

bar of quality and reliability. Standard flight control software deployed in a safety- or

mission-critical role must meet certification requirements vouchsafing its suitability for

the job. One might expect autonomous systems to be certifiable under these same guide-

lines, but due to their adaptability they are even more complex than “standard” software

and testing their correct function in more than a trifling portion of the possible states the

program may enter is next to impossible [6]. To provide a certification of correct system

function suitable for mission critical software, more powerful techniques must be used.

Formal methods provide a possible way forward. By describing systems at a higher

level of abstraction, formal analysis techniques are able to cope with the increased com-

plexity more gracefully. They also provide stronger guarantees of correct behavior in the

form of logical proofs that systems satisfy their specifications. Recent developments in

the use of “lightweight formal methods” [7] have shown that the application of rigorous

modeling and analysis techniques during the design stage is a useful tool for identifying

conceptual errors at a reduced cost, and identifies bugs that testing does not.

16

In this thesis I demonstrate a first-order logical language aimed at this conceptual-

design niche. The logic is suitable for writing specifications of correct behavior for AI

systems built by composing several heterogeneous planners, which I term “composite

planning architectures.” This language focuses on semantic-level modeling of the com-

munications between planners, as opposed to verification of the internals of the planners

themselves or modeling of the communication channel. It is defined using a constructive

mathematical basis that makes it suitable for use in computer proof assistants and as the

starting point for correct-by-construction implementations using refinement techniques.

Combined with an architectural modeling technique that can capture architectures at a

variety of abstraction levels, we have the beginnings of a powerful tool set for designing

and verifying composite systems.

To help motivate the development of the logical foundations of this language, I will

provide examples throughout the thesis grounded in the Enterprise planning architecture

developed by the Model-Based Embedded and Robotic Systems Lab (MERS) at MIT. En-

terprise is itself a composite planning architecture, with a number of activity and path

planners communicating to solve planning problems cooperatively. These planners use a

common problem format, the Qualitative State Plan (QSP), that is both flexible enough to

describe broad classes of planning problems and useful as the basis for planner specifica-

tions.

In the following chapters I develop the logical framework needed to provide semantics

for first-order logic in terms of any data structure with the correct algebraic properties.

I characterize QSPs and the planners operating on them, demonstrate that such a logic

exists for QSPs, and how it can be used to perform analyses of the composite planning

system at an architectural level.

To set the stage for these developments, we will first need to set a common modeling

paradigm and lexicon. The next section provides definitions of the terminology used

in the thesis, including architecture, component, and specification; a brief discussion of the

modeling approach; and the formal problem statement guiding the research.

17

1.2 Approach and Innovations

Providing a useful tool for answering the specification problem involves modeling dif-

ferent aspects of the system in different ways. From a structural perspective, we require

models of system components at a level of detail that enables proofs of their behavior,

given the components they depend on, to be constructed. These proofs in turn are used

to support specifications of component behavior expressed in terms of the logical prop-

erties of the messages exchanged between components, including simple properties such

as termination or correctness with regards to constraints, and complex ones such as a

guarantee of least-commitment. Finally, at an architectural level we need to model the

concretization process and show that it maintains the invariants established by the previ-

ous work.

Scaffolding for this process is provided by the semantics imposed by the structure of

the messages exchanged between components. In following chapters I will examine what

it means for a message type to have sufficient structure for these semantics to be defined.

As an example of this approach we will examine the Qualitative State Plan (QSP) structure

deeply, demonstrating that it can support a semantics for intuitionistic first-order logic by

showing that the set of QSPs forms a Heyting algebra. I then show how sentences in

the specification logic encode specific sets of these objects that are exchanged between

planners and satisfy certain properties. These properties in turn are a useful basis for

proofs of correctness of the planners themselves as they provide both axioms and goals.

I also provide a number of worked examples demonstrating how to apply the logic to

architectural problems, using Enterprise as a case study. Alongside formal descriptions of

a common set of desirable properties, I present more detailed specifications of two plan-

ners: Sulu [8] and ScottyPath [9]. These planners are arranged into a number of example

architectures whose properties I explore, leading to an example of how to use the logic

for specification of novel systems. The logic is used during the design process to either

support the safe reuse of existing planners or to create new ones using the specifications

as a basis for implementation using correct-by-construction refinement techniques.

18

1.3 Structure of the Text

The following chapters discuss the background of research against which this work was

done, the details of the specification logic, and a case study for the Enterprise compos-

ite planning system. Chapter 2 discusses related work with a focus on the analysis of

complex spacecraft autonomy systems and existing formal approaches to modeling and

verifying them. Chapter 5 describes in detail the mathematical foundations of the veri-

fication logic, with a case study examining the Qualitative State Plan structure used by

Enterprise. Chapter 4 describes Enterprise in greater depth, motivating its design through

real-world research deployments in oceanography. Chapter 6 then discusses the intrica-

cies of modeling and a case study using Enterprise. Finally, Chapter 7 concludes the thesis

with final thoughts and possible areas for future research.

19

20

Chapter 2

Related Work

The body of knowledge regarding analysis of autonomous systems is growing rapidly, as

intelligent systems penetrate daily life and more attention is paid to certifying that these

systems behave appropriately. A variety of approaches have been taken, including model-

based and formal methods; however, the literature to date has focused primarily on either

component-level analyses or concurrency problems and not sufficiently addressed the

semantics of the internal communications of autonomy architectures in a formal way.

The limitations of previous approaches to analysis and testing of autonomous systems,

primarily the complexity of these systems and limited abstraction, are being eroded by

recent developments in lightweight formal methods. In this chapter I describe the state

of the research as of this writing, and point to gaps in the field that this thesis begins to

fill.

2.1 Testing Autonomous Systems

Artificial Intelligence systems are beginning to permeate safety-critical systems across a

number of terrestrial industries. Computer-controlled cars, planes, and factories are on

the forefront of autonomy adoption and valuable lessons have been learned from their

efforts—both successful and not. A key challenge encountered by all of these systems is

that formulating good acceptance criteria for autonomous systems is quite difficult, due

in part to the inherent complexity of software systems and in part to the necessity of

modeling the operational context in determining the behavior of an adaptive system.

Software is much more difficult to validate than hardware. Unlike mechanical systems,

21

software is able to take on a practically limitless number of possible states. Exhaustive

testing of the state space is impossible for most software systems due to time and space

constraints [10] [11]. Additionally, the behavior of the system in each of these states can be

quite difficult to analyze as, due to the discrete mathematical nature of software systems,

many traditional (i.e. continuous) engineering analysis tools do not apply [12]. For model-

based AI agents, this difficulty is compounded because these systems operate at two

levels: they contain models of the agent and its environment, along with a reasoning

engine operating on those models. Models require different validation approaches from

engines and have different lifecycles [13], with the engine being reusable across multiple

models and models being tied closely to the system under control [14]. Because of this,

investments of time and resources into validation and verification of the engines have

larger payoffs over multiple missions if the engine can be reused [2].

In aerospace, these verification and validation (V&V) tasks would generally fall under

the purview of a project’s systems engineering team. To cope with the explosion in sys-

tem complexity brought on by increased hardware and software capabilities, the systems

engineering community has recently turned its attention towards their own model-based

techniques known as Model-Based Systems Engineering (MBSE) [15]. MBSE refers to

a broad set of approaches that emphasize capturing system designs and behaviors as a

set of computer models, enabling systems engineers to simulate the system and identify

problems early in the design cycle. Building the process around computable models, pro-

ponents claim, helps to expose assumptions and prevent divergence of understanding

between the different parties involved in designing a complex system [11].

One of the existing MBSE approaches for designing spacecraft control systems is the

State Analysis/Mission Data System (MDS) framework designed by researchers at the Jet

Propulsion Laboratory [16]. The framework combines a modeling and analysis method

(State Analysis) with a set of off-the-shelf software components. These pieces work syn-

ergistically to enable engineers to design sophisticated control systems by composing

well-understood parts. At its core, State Analysis/MDS is a mechanism for identifying

the possible states a system under control can be in and the possible control interfaces that

can affect that state, so that the system designer can create a control system. The uniform

approach allows techniques like MDS to provide stronger analysis results than previously

have been achievable, while operating within finite resource constraints. However, MDS

22

does not provide guarantees on the system behavior. Making models explicit within a

system architecture is a necessary step towards full verification, but it is not sufficient; in

the next section, I discuss formal approaches to verification that can provide true “for-all”

guarantees.

2.2 Applications of Formal Methods to Autonomous Systems

Taking these techniques a step further, one might consider other types of analyses that

can be performed on a system model. As I have already discussed, simulation and testing

of a software system is not sufficient to determine correctness due to the large number

of states it can be in. To get more leverage in analyzing large systems it is necessary

to abstract the system and consider many possible states at once. This is the domain of

formal methods.

At a high level, there are two major approaches to the formal analysis of software

systems: model checking and theorem proving. Model checking is a fully automatic

process that enumerates the possible state trajectories of a system model and attempts to

discover paths leading to violations of a user-provided constraint on the system behavior.

Current hybrid model checkers such as Alloy [7] are able to examine extremely large state

spaces quickly, but a fundamental limitation of the technique is that it is restricted to a

finite set of states. In many cases this may be “good enough”, and a growing body of

work in lightweight formal methods encourages the use of model checking systems as a

way to discover design errors earlier in the development process [17]. For safety-critical

applications, however, the additional guarantees provided by theorem proving may be

necessary.

Theorem proving relies on traditional mathematical techniques to produce proofs

of correct behavior for a software system within a sound logical framework. Modern

developments are generally supported by computer proof assistants such as Isabelle,

PVS, Spark, or Coq, that implement consistency checking routines and programming

languages for expressing proofs. Some systems, such as Coq and SpecWare, are designed

to support the extraction of verified routines from the proof system itself (c.f. [18], [19]).

By exploiting more powerful mathematical abstractions, proof-based techniques are able

to tackle larger state spaces than model checkers. However, they require a deeper knowl-

23

edge of both the system to be analyzed and the mathematics used to model it than model

checking, leading to a higher barrier to entry for these systems and lower adoption among

engineering teams [20].

Both techniques have been applied, with mixed results, to the verification of space-

craft software. During the course of the Remote Agent Experiment a concurrent effort

was made to develop formal models of the system and analyze them for errors. This

analysis was performed twice: once during the system development, and once following

the identification of a concurrency error during the flight. In both instances the use of

model-checking tools (in the first instance SPIN [21], in the second Java Pathfinder [22])

identified concurrency errors, including the flight error. However, these efforts were ex-

perimental and required the team to dedicate a large amount of time to modeling the

system, with a particular emphasis on reducing the program state space to make model

checking tractable. Most of the validation of Remote Agent was performed using scenario

based testing instead of formal methods, though in the final Remote Agent DS1 Technology

Validation Report the team stated:

The primary lesson is that the basic system must be thoroughly validated with

a comprehensive test plan as well as formal methods, where appropriate, prior

to model development and flight insertion. . . .

The RAX experience confirms that testing FSW is hard. The bug that was

found during flight shows that more attention and effort needs to be spent

validating the basic engines. The validation cost is well worth the effort be-

cause the engines are components that can be re-used over many missions.

[2]

The view that formal methods are useful but should be focused on slow-changing

areas of the system, is a valid one. It indicates that to get the most benefit from formal

modeling, the areas of the design that combine highest technical risk and a slow pace of

evolution should be prioritized. Towards that end, the recent pushes in formal modeling

have focused on the early design phases where mental models are not yet well developed,

and where decisions affect large parts of the system and generally remain in place for

the system’s lifetime. This is the premise behind Alloy [17] and TLA+ [23], which both

employ a form of model checking to verify lightweight specifications but do not attempt

24

to directly verify a program’s implementation.

An alternative approach is to push the verification further back in the development

cycle and embed a runtime monitoring system that can check the execution of the pro-

gram against a specification. Because the system only needs to examine a single run of

the program, the specifications are generally easier to write, and when combined with

a provably-correct recovery system gives more confidence that the system will not enter

erroneous states in an unrecoverable manner. These techniques can also be combined

with testing to perform verification in the design loop [24], though they do not provide

the same design guidance as the other techniques mentioned previously because they are

performed a posteriori.

Ultimately the difficulty in using formal methods lies in how best to use abstractions

to reduce the scope of the analysis. Design-time approaches deal with larger blocks of

the system where implementation details are ignored. Runtime monitoring focuses on a

single execution, rather than all possible executions. Both of these approaches are helpful,

because they exploit modularity properties of the system to reduce complexity.

To be useful for analysis of large, complex systems, formal modeling techniques need

to be made modular. Mixed-and-matched modeling techniques, applied where appropri-

ate at various levels of abstraction, likely present the best balance between automation

and confidence that the system contains no errors [20]. Within the robotics community

both model checking and theorem proving have been applied to a number of verification

domains ranging from probabilistic validation of system models [13] to analysis of middle-

ware channels in ROS-based architectures [25]. Whether the problem can be formulated

in such a way that a given technique can be applied is a major factor in determining the

tools to use.

In the following section, I describe a particular domain that has been under-examined

and will be the focus of the analyses in this thesis: semantic-level modeling of com-

munications between planners, as opposed to verification of the planners themselves or

modeling of the communication channel properties. This approach enables the use of ei-

ther theorem proving tools or model checkers for verification, and addresses the question

of correctness from a new perspective that is synergistic with other analysis methods.

25

2.3 Verifying Internal Message Semantics of Autonomy Architec-

tures

Given the finite resources available for V&V, it is important to consider carefully where

to apply them in order to get the greatest benefit. The current trend in robotics software

design is towards component-based architectures where systems are built by connecting

a set of reasoning components together using a middleware system such as the Robot

Operating System (ROS). The majority of the verification done on this type of system

focuses either on the components or on the middleware. Component verification involves

showing that a given piece of software is compliant with a specification—for example, that

a planner will not violate a risk bound by design [26] or that a planning system is free of

runtime errors [14]. Analysis of the middleware linking these components tends to focus

on the concurrency properties of the communications channel itself such as messaging

latency, queue behaviors, and timeouts [25].

These approaches, either alone or combined, are not sufficient to fully characterize

the behavior of the system. This is due in part because they are performed at a level of

abstraction similar to that of the system itself. As Leveson argues in [10], to understand

a system holistically one must take a higher-level perspective of it—one that both encom-

passes the system and enables reasoning about it using tools not present in the system

itself. This is primarily because interactions between components are the driving factor of

system-level behavior, and reasoning about these interactions holistically requires looking

at the system from the outside. Emergent behaviors, those which arise from the interac-

tions between components in a given system rather than from the individual components

in isolation, are invisible unless the system is examined in this way [10].

One implication of this line of reasoning is that there is no singular approach to for-

malize this type of meta-analysis that applies in all situations. The existing analysis

methods are incomplete; among the missing pieces, the robotics community lacks a sys-

tematic method for analyzing the communications that occur between components at

a semantic level—i.e. what do the messages mean, within the problem domain—as a

distinct perspective from looking at the properties of the communications channels car-

rying those messages. This perspective is desirable because while failures in the com-

munications channel may ripple out through the architecture, semantic mismatches in

26

the inter-component communications can have direct effects on system behavior even in

the absence of component failure [10]: consider the scenario where a high-level plan-

ner dispatches sub-problems to child planners in a way that does not respect constraints

between the sub-problems. Describing the communications flows at this level gives us

another powerful viewpoint on systems of reasoning components that we did not have

before.

This thesis describes an approach to connect the logical semantics of these messages

to a symbolic language, enabling the system designer to write high-level specifications of

planner behavior in terms of the messages exchanged with other planners. As a construc-

tive mathematical approach, it is suitable for use in model checkers and theorem provers;

and, with the help of a suitable tool set such as SpecWare, can enable the refinement and

extraction of planner implementations from specifications [19]. Focusing on the logical

properties of the messages is a novel approach to formal specification that has not yet

taken hold in the planning community, and that can augment existing approaches to give

a holistic view of the system under analysis.

2.4 Summary

Showing that a given software system is free of errors and satisfies its specification is a

very challenging problem. AI systems make it even more difficult due to the very proper-

ties that make them useful, such as their adaptability and context-sensitivity. Model-based

approaches are gaining adoption for the decomposition and analysis of complex systems,

and for the task of verifying software the most appropriate models give formal properties

that can be verified automatically. The current trend in the application of formal methods

is towards earlier, design-time checking of high level system models and specifications.

Theorem proving and model checking are the two major approaches to this verifi-

cation, each having different trade-offs; while model checking is easier to use for the

non-specialist, theorem proving offers greater expressive power and abstraction enabling

analysis of larger systems. Both of these techniques have been applied to robotics prob-

lems, largely in either demonstrating that components meet their specifications individ-

ually or that communications channels do not introduce system errors. Within the plan-

ning community, there does not yet exist an approach to modeling the communications

27

between reasoning components that can describe the planning problems and solutions

exchanged. The approach outlined in this thesis leverages the mathematical semantics

of the data structures used to communicate this information between planners to enable

architectures to be modeled precisely enough for model checking or theorem proving to

be applied.

28

Chapter 3

Architectural Models & Problem

Statement

In order to address the modeling problem formally, we will require a method for repre-

senting architectures in a way that makes them easy to analyze. This chapter outlines

the modeling technique used throughout the thesis, and uses it to articulate the formal

problem statement.

3.1 Notational Conventions

Throughout the text, I will refer to the following constructs using a common set of iden-

tifiers reflecting those used in this chapter.

• T is the generic type of the data structure used to express system models, mission

goals, and planning solutions. When the type of an object may be ambiguous I

will annotate types using the convention x : U, where x is the name of an object or

variable and U is its type. The type T × T should be read as a pair of T ’s.

• A “fat” arrow, =⇒ , represents implication within the “meta-logic” used to define

specification logic terms.

• A “skinny” arrow, →, has different interpretations depending on the context in

which it used. In a type definition, such as for f : X → Y, it represents the type of

a function from type X to type Y. Otherwise, it represents implication within the

29

specification logic.

• The object m : T is a model of the system under control.

• The object g : T is a specification of the goal state that the system must achieve.

• The object p : T is the output of a planner.

• Planners are represented as functions of the type T × T → T , where the arguments

are the model and goal specifications. In general I will use the symbol s to represent

these functions. Function application is written as s(m,g).

• The names of functions within equations and concrete implementations of T are

typeset in Roman type (for example, calls(x,y) or x : QSP). In text they are set in a

monospaced font, such as calls(x, y).

3.2 Problem Statement

The goal of this thesis is to show how to model software architectures so that they can be

analyzed. The following section describes how these models are constructed and imbued

with logical specifications in order to allow the designer to reason about their system at

all stages of the design process from initial concept to final implementation.

Stated formally, the problem statement is as follows:

Definition 1 (Architectural Correctness Problem). Given a model of a software system com-

prised of an initial architecture A, a set of concrete components C, an instantiation table I,

a set of component specifications Sc, and a system specification Ss, determine if the most

concrete child architecture of A under I satisfies Ss.

3.3 Modeling and Specifying Architectures

To describe a system’s architecture formally, and to write specifications about it, we

need a way to make a model of it. This model must capture the salient aspects of the

architecture—namely, the components involved in the design and their relationships with

each other—while retaining an appropriate level of abstraction. It should make analysis

tractable and not unnecessarily restrict the possible implementations of the system.

30

All of the components for the architectures in this thesis will be planning systems.

They interact by passing planning problems to each other in a synchronous, hierarchi-

cal calling style. There are several possible implementations of this architectural style,

ranging from a single process that only uses its language’s built-in procedure calling

mechanisms, to a fully distributed planning architecture that uses network protocols to

connect clusters of planning systems together. This modeling approach can be applied

whenever the details of how the planners are connected can be safely ignored and only

the semantics of the messages passed between planners are considered.

Once we have a model of the architecture, we can write specifications for how the

pieces of the model must behave which are encoded in a suitable logic. In this section

I explain how models are built, and how specifications are assigned to components in

the model. Chapter 5 will provide a deeper treatment of the logic used to write these

specifications.

Let us begin from the top, with an architecture.

Models of System Architectures and Components

Definition 2 (Architecture Model). An architecture model is a connected tree structure with

directed edges, whose nodes are contained in a set of abstract components A and a set of concrete

components C. The edges are defined by a binary relation calls(a,b). When calls(a,b) is true, the

component a is able to call on the component b to solve planning problems; diagrammatically this

is represented with an arrow from a to b.

The component models represent both planners and systems of planners as mathe-

matical functions. These functions are arranged by their calling relationships into a tree

structure, as shown in figure 3-1. In this figure, we see a function join_title which calls

two other functions: concat and capitalize?. In this example, we have a function for

joining two strings together, and we know that we need a way to capitalize strings but

we don’t know how to do so yet. Sometimes we won’t know which specific implemen-

tation of a component to use in a given part of the architecture and will need to defer

the decision until later. A typical programming approach to this problem is to create a

higher order function which can accept another function as an argument, but because the

specification logic used in this thesis is first order, we will need another solution.

31

join_title

concat

join_title

capitalize?

Figure 3-1: An example system diagram showing the functional tree structure created by an architecture.

Instead of allowing higher order functions which would make the logic more com-

plex and difficult to analyze, the modeling framework allows parameterization of compo-

nents through the use of an “abstract” component. These are named placeholders, like

capitalize?, within the functional model of a component that can be bound to different

“concrete” component. Binding a concrete component to an abstract component can be

thought of in a similar way to the linking stage of compilation. This abstraction allows

the structure of the system to be described independently of the components chosen to

fill each role.

Definition 3 (Abstract Component). An abstract component is an atomic identifier, unique

within the architecture, that represents the use of another component whose implementation is

not yet known. A given abstract component ca may be used within the function definition of a

component model cb only when the relation calls(cb, ca) is true.

Definition 4 (Concrete Component). A concrete component is a model of a distinct software

component. In this thesis these models represent planning systems and are expressed as functions of

two arguments, having type T × T → T , where T is the type of the planning problem representation.

32

Concrete components have a body which defines the details of how its operational behavior is

implemented.

Component bodies are not explicitly represented in the architectural model, but in-

stead are given in a separate model (c.f. Section 6.3). The component’s body may refer

to abstract components, but may not quantify over them or accept them as parameters in

order to keep the specification logic first-order.

Note that the type given here for a concrete component differs from the typical one for

a planner. A more common representation allows separate types for the initial state, plant

model, environment model, and goal model. The approach used here unifies the initial

state and goal state into a single state evolution objective, combines the plant model and

environment model into a single object representing the invariant constraints of the sys-

tem, and represents all of these pieces using the same type. This simplifies the mathemat-

ics considerably without sacrificing expressivity in the input representations. Subsection

5.3.4 justifies this choice in more detail; for now, we will defer this discussion and return

our attention to the architectural modeling framework.

Making Abstract Architectures Concrete

We now have a mechanism for arranging concrete components, i.e. those we know how to

implement, and abstract components, which we have not yet chosen an implementation

for, into a hierarchical calling structure. Naturally we may find ourselves with architec-

tures that have varying mixes of these two component models, ranging from entirely

concrete models to entirely abstract ones. Usually a design will start with a very abstract

model. As we discover more information during the design process we will want to be

able to make abstract designs more concrete by binding the abstract components to con-

crete implementations. This process is called concretization, and uses an instantiation table

to tell us which abstract components are bound to which concrete ones.

Definition 5 (Abstract and Concrete Architecture). When an architecture’s set of abstract

components A is non-empty the structure is called an abstract architecture; when A is empty,

the architecture is a concrete architecture.

Definition 6 (Instantiation Table). The instantiation table is a mapping from abstract compo-

nents to concrete components, defining how each abstract component should be instantiated. The

33

Abstract
Architecture

S

B

A

C

A ↦ Kirk

B ↦ Sulu

C ↦ Scotty

…

Instantiation Table

+ ⇒

Concrete
Architecture

S

Sulu

Kirk

Scotty

Figure 3-2: Concretization of an architecture using an instantiation table.

table must map every abstract component to at most one concrete component.

The process of converting abstract architectures to concrete ones with an instantiation

table is illustrated in figure 3-2. Each abstract component is replaced with a concrete

component in an iterative process, each step of which yields a child architecture under the

instantiation table. When there are no remaining abstract components to replace, the child

architecture is fully concrete.

If an abstract component does not have a matching concrete component in the in-

stantiation table, the configuration cannot be fully concretized by that table; the result-

ing architecture is another abstract architecture that has been partially concretized. This

might happen if an architect can’t commit to a particular implementation of an abstract

component—for example, it may not exist—but can make decisions about others. This

flexibility is an important feature of the modeling technique, because it enables modeling

to occur at all stages of the architecture’s implementation, from conceptual design to final

implementation.

Because the instantiation table maps each abstract component to at most one concrete

component, we can see that the “most concrete” child architecture is the (unique) fixed

point of the concretization operation under a given instantiation table, if it exists. When it

does not exist the architecture cannot be instantiated; this may occur if there exist cycles

within the dependency graph encoded by the instantiation table. This places a restriction

on the types of architectures that can be modeled in this formulation.

Our definition of a model, and of the process of concretizing it, is restrictive in the

sense that it does not permit circular calling patterns or heterogeneous subtrees that

require binding the same symbol to different components. This is primarily a pragmatic

consideration for the purposes of the thesis; more expressive formalisms are possible but

34

require more structure from the specification logic.

Adding Specifications to Architectural Models

Our ultimate goal is to be able to construct a formal proof of correctness for the systems

we are modeling. Beyond modeling the structure of an architecture and the components

in it, we will also need to be able to attach logical specifications that restrict the behaviors

of the components and of the overall system. These specifications will be written in a

first order logic, and capture the properties of the components by describing the planning

problems that they send to each other.

Definition 7 (Specification). A component specification is a first-order logical formula of the

form ∀(mg : T), f(m,g) = x → □, where f is the name of a component (planning over type T)

that may be either abstract or concrete, m and g are the system model and goal specification to be

planned for, and □ is a placeholder for a sentence in first-order logic defining the properties of the

planner solution.

Definition 8 (Specification Set). Several specifications can be combined into a specification set.

Each specification may name a different component (f in the definition above), and restricts that

components behavior.

Generally an architecture will have a specification set which provides the desired

behaviors of its components, and a concrete component will have a specification set that

describes the actual properties imposed by its particular implementation.

The core of this thesis is dedicated to showing how the semantics of these specifica-

tions is defined. The particulars of the logic are discussed in greater detail in the following

chapters. For the purposes of this section, it is sufficient to describe when a component

“satisfies its specification under a given specification set”.

Satisfaction of a specification set in this context means that we can demonstrate that

when the component is used in a certain architecture it behaves correctly, assuming that

the components it depends on also behave correctly. To do this we need to build a proof

demonstrating that the truth of the sentence forming the specification of our component

is a logical consequence of the component’s implementation. The behaviors of the other

components (as given by the specification set) are taken as assumptions or axioms for

this proof. Reasoning from these axioms using a model of the component, we are able to

35

decide whether or not the component will behave correctly in all situations. This process

is described in more detail in Chapter 6.

Even if each component meets its own specification in isolation, it may not be the

case that the system as a whole does. We must also demonstrate that the top-level com-

ponent, the root of the call tree, satisfies its specification given a set of conforming child

components.

We can say that an architecture satisfies a specification set if, for any choice of instanti-

ation table whose concrete components individually satisfy their respective specifications

in the set, the root component satisfies its specification. Because an architecture may be

totally abstract or totally concrete, this definition gives us flexibility in modeling differ-

ent structures and assessing the impact on the system’s correctness when using different

components.

36

Chapter 4

The Enterprise System Architecture

Before discussing a case study in applying the logic to a real system, it will be helpful to

understand the origins and design of our exemplar. MIT’s Model-based Embedded and

Robotic Systems (MERS) group has iteratively improved on a common system for a num-

ber of years. This system, known as Enterprise, integrates multiple reasoning components

within a unified framework to address planning and execution problems, with an eye

towards spacecraft applications. In this chapter I will describe the principles guiding En-

terprise’s development and discuss undersea exploration as an application of the system,

setting the stage for the case study in Chapter 6.

4.1 Architectural Principles of Enterprise

In its original conceptual form Enterprise was described as a layered architecture as shown

(figure 4-1), with human-facing components handling plan relaxation and negotiation at

the top, a layer of executives and high-level planners in the middle, and a set of lower-

level planners and diagnostics systems at the base [27]. This approach was straightfor-

ward conceptually, but in 2017 the implementation of the system had expanded to the

point that it needed a renewed focus on the interfaces between planners. The existing ap-

proaches to integration tended toward tight coupling between components and difficulty

incorporating new components as they became mature.

To give the system more flexibility, enable faster integration of new reasoning com-

ponents, and simplify field deployments in 2018 the MERS group redesigned the system

around a small number of well-defined application programming interfaces (APIs), as

37

Spock
Adaptive Science

Uhura
User Interaction

Kirk
Activity Planning

ScottyPath
Path Planning

Figure 4-1: The original, simplified, Enterprise system architecture.

Planner
CLI

API API

Problem
Def’nWeb

Browser

Map
Database

Problem
Database

GUI
Server

Planner API

HTTP API

Cook

External
Data Feed

State
Listener

State
Database

Script
Compiler

Spock
(Explore)

Planner API

pSulu

Planner API

ScottyPath

Planner API

Kirk

Planner API

Planner API

FOX

Planner API

Figure 4-2: The revised system architecture, as of 2019.

shown in figure 4-2. Reasoning components meeting these specifications would be mod-

ular and able to serve a variety of roles both inside and outside a deployed Enterprise

instance. Components could be easily substituted for each other, leading to faster testing

and validation cycles and enabling researchers to take advantage of common infrastruc-

ture. User interfaces and other auxiliary systems would consume the same APIs as the

rest of the system, giving them greater utility and a better return on the time and effort

invested in building them.

38

Achieving this level of modularity required that we adopt a common representation

for environment, action, and state models; that we provide a way to signal important

properties of planning systems (e.g. risk awareness) in a composable way; and that we

manage state within the system explicitly.

4.1.1 Common Representations

A common representation for planning problems, system models, and environments

forms the communications fabric connecting all of the planners within Enterprise. Prior

to the redesign effort various planners would consume and produce related structures

in different encodings, making it difficult to integrate systems pairwise1. For example,

the pSulu risk-aware path planner [26] used an in-memory problem representation imple-

mented as a set of Lisp objects, while the ScottyPath continuous-time planner [9] read a

Qualitative State Plan (QSP) represented in the YAML text format from disk. Our main

activity planner, Kirk [28], acted as the architectural glue holding together the various

reasoning components and performing impedance matching between their interfaces. An

expected consequence of this approach is that Kirk quickly grew in complexity and be-

came tightly coupled to the other planners.

To alleviate this problem we required a common representation to be used for planing

problems, and for their solutions. For this purpose we adopted the Chance Constrained

Qualitative State Plan (CC-QSP) that adds chance constraints2 to the QSP structure dis-

cussed in Chapter 5. The CC-QSP was a good fit as it has several desirable properties:

it is a superset of the most common plan representations in use among the Enterprise

components; it allows expressing constraints on time, location, and risk; and it is easy

to represent in a language-independent format. In addition, as I show in Chapter 5, it is

possible to give precise semantics to the deterministic (i.e., non-chance constraint) portion

of the CC-QSP, which aids in analyzing the system for correctness.

Models of the system under control and of the environment can, in principle, also be

encoded as constraints within a Qualitative State Plan. In practice this is encoding is too

1Various standard problem formats have been used in Enterprise over time, including the Temporal Plan
Network (TPN) and Reactive Model Based Programming Language (RMPL). As various planners advanced
they implemented their own extensions and diverged from a common representation.

2Chance constraints are limits on the probability of constraint violation, given a stochastic model of the
system under control. A good example of their use is to limit the chance that an underwater vehicle collides
with terrain, given unknown currents and model errors.

39

“final” to provide the flexibility desired; instead, we use a more “initial” representation

that encodes vehicle dynamics as Linear Time-Invariant systems within a matrix format

and obstacles as GeoJSON geometry. These formats are also well defined, and the ability

to model them as QSPs again simplifies analysis of the system.

While the CC-QSP is the current de facto plan representation, the system is able to

support multiple formats in a standard way. This is enabled by the metadata system de-

scribed in the next section, which gives each Enterprise component the ability to broadcast

its own input and output formats and adapt to those of its peers.

4.1.2 Service Discovery and the Metadata Endpoint

To protect the modularity of the system it is necessary to provide a way for components

to discover important run-time properties of their peers without having to encode specific

knowledge about those peers ahead of time. For example, a component invoking a sub-

planner may need to know if it can use the sub-planner to solve multi-agent problems.

If it is able to discover the identity of its sub-planner it can gain this information, but

this approach can quickly become brittle and prone to failure when another, previously

unknown component is used instead. Our solution to this problem was to add a specific

API call providing a metadata message that enables planners to inspect their peers.

The metadata message contained, among other data, the following fields:

• The planner’s name;

• its capabilities, as a set of atomic, pre-determined symbols;

• supported file formats;

• a version identifier;

• and a recursive listing of the metadata of its own sub-planners.

This is a general-purpose method for planners to discover capabilities provided by

their peers, and for other systems such as user interfaces to examine the system structure.

Architectural flexibility is maintained by abstracting the planner capabilities into a set

of common tag-like declarations. For example, pSulu is risk-aware while ScottyPath is

a multi-vehicle planner; other planners can advertise these same abilities when they are

40

installed in the system and be used in a similar fashion with no changes to the upstream

components.

An important consequence of this method is that because each planner is in com-

plete control of the capabilities it broadcasts at run-time, it may make decisions about

what guarantees it can provide based on the currently-deployed system architecture. As

a hypothetical example, a planner that can provide risk-aware planning when given a

risk-aware sub-planner but not when given a naïve one may change the capability set it

broadcasts based on what it is able to determine from its children’s metadata. This en-

ables flexible architectures, and incremental enhancements can be made locally without

impacting the global structure.

4.1.3 State Management

When designing a composable system it is natural to imagine each component as a pure,

stateless function, transforming inputs into outputs directly and with no side effects.

While this model is conceptually quite simple and valuable for analysis purposes, it does

not reflect the fact that real systems maintain state and use it for a variety of purposes, not

the least of which is to improve their own performance. To preserve the major benefits

of the functional approach while enabling components to use state effectively requires

taking a principled path towards managing state.

As a motivating example of why state management matters, consider that several of

the planners in Enterprise retain the state of their solvers after completing a plan in order

to be able to reduce the time required for subsequent planning problems. This “warm

start” capability is extremely useful in improving planner performance as it reuses knowl-

edge of the problem domain captured in the solver state. At its most beneficial, this

type of strategy can act as a memoizing cache and return pre-made solutions to prob-

lems that have already been solved. Unfortunately, the naïve approach to implementing

this capability—namely, to keep the solver state in memory—carries a number of issues.

When planners encounter unrecoverable errors or must be restarted for another reason

(such as for a system upgrade) they lose their state. Caching systems are ineffective or

potentially incorrect when they do not have access to the entire problem context, includ-

ing the solver state. Performance benefits of reusing previous solutions are not realized

when there are multiple replicas of a planner, and synchronizing their states is difficult.

41

To address these issues we introduce the concept of a state token. State tokens are

an opaque, unique identifier that the planner provides to clients along with the results

of a planning session in order to recreate the saved state of the solver3. They may be

implemented in any number of ways, including as a direct encoding of the solver state in

the token or as an obfuscated database key pointing to persisted state stored elsewhere.

On subsequent requests the client may provide the token to the solver as a “hint” about

how to best approach the problem, potentially realizing large performance gains with no

compromises in correctness. In addition, because the state is now explicitly encoded in

the request context, a number of new architectures are possible that enable the use of

caching systems between planners, horizontally scaling planners through replication and

load balancing, automatic failure and restart tolerance, and more.

One additional benefit of this approach is that it makes the full system quite easy

to model by extending the naïve functional model mentioned at the beginning of this

section to include the solver state as an input. By doing so, analysis of the correctness

properties of the system is dramatically simplified, and reasoning about state becomes

less burdensome. For the purposes of this thesis, we will make the additional assumption

(justified by the properties of the planners in practice) that the final result of a planning

session is invariant with respect to the state of the planner, and that the only property

changing when state is changed is the speed with which that solution is produced.

4.2 Application: Undersea Exploration as a Space Analog

As described in earlier chapters, it is quite difficult to find opportunities to deploy state-

of-the-art AI systems aboard spacecraft due to the high cost of such missions and the

risk posed by novel software systems. To gain experience with real-world AI assisted

missions, the MERS team has partnered with the Woods Hole Oceanographic Institution

(WHOI) to deploy Enterprise on oceanographic research expeditions.

These expeditions are a particularly valuable space analog because they provide a

challenging and often dangerous environment for robotic explorers, where loss of commu-

nication is commonplace. Changing tides and currents along with bathymetric obstacles

introduce a number of risks for the vehicles including loss of power, collision with terrain,

3A state token is conceptually similar to the “cookies” used in web browsers to store session state.

42

and inability to complete planned trajectories within timing constraints. These challenges

are a good match for Enterprise, which can apply multiple planning techniques to address

them.

Space analogies extend to the concept of operations (CONOPS) as well. As part of

the proposal for a series of joint MIT-WHOI missions under the auspices of the NASA

Planetary Science and Technology from Analog Research (PSTAR) program, the CONOPS

for a generic exploration mission was described as involving three primary system roles

working in concert: an orbiter, a probe, and a lander. Upon reaching the research site,

which may be an exoplanet in the space context or an area of the ocean in the Earth-

bound context, the orbiter collects high-resolution mapping data for use in future mission

planning and identifies areas of scientific interest. It then dispatches a probe to perform

additional reconnaissance to determine if these sites are worth detailed study and to

update predictive models used for identifying further visitation goals. Finally, a lander

is dispatched to perform more extensive investigation of the highest-value areas. Each of

these stages provides more information at a correspondingly higher cost. It makes sense,

therefore, to try to quickly identify the best possible use of the most expensive asset (the

lander) by targeted deployment of the remote sensor platforms (orbiters and probes).

In the oceanographic context we can draw analogs to these roles: the research vessel

with its array of sonars, water column sensors, and surface-based instrumentation is the

“orbiter.” A team of low-cost, low-capability autonomous underwater vehicles (AUVs)

are the “probes,” and a high-cost but highly capable remotely operated vehicle (ROV) is

the “lander.” Maximizing the strengths of this joint system while minimizing the costs of

operations benefits from powerful planning capabilities.

We have deployed Enterprise on a number of these expeditions, but I will focus pri-

marily on the January 2018 mission to Hawaii and the December 2018 deployment to

Costa Rica. It was in the time between these cruises that the MERS team converged on

the modular architecture described above and began to reap the benefits.

4.2.1 Deployment: Au’Au’ Channel, Hawai’i

In January of 2018 the MERS team was part of a multinational group of researchers aboard

the research vessel Falkor, operated by the Schmidt Ocean Institute, whose objective was to

explore the coordination challenges implicit in operating large numbers of heterogeneous

43

AUVs concurrently. Additionally, our scientific objectives also included identifying and

capturing imagery of sea bottom coral formations within the Au’Au’ channel between

the islands of Maui and Lna’i. Operations during the cruise included the coordination of

vehicles from the Woods Hole Oceanographic Institution (WHOI), the Australian Center

for Field Robotics (ACFR), the University of Rhode Island (URI), and the University of

Michigan (UM).

A typical day during the cruise would involve committing to a high-level mission plan

developed during the previous evening, which outlined particular deployment zones and

asset allocations (e.g. the availability of small boats and Falkor crew to recover vehicles)

to service the science objectives. During the course of the day various vehicles would

be deployed and recovered, sometimes multiple times, with groups operating in paral-

lel. Plans evolved quickly in response to new findings, hardware or software failures,

resource contention, and other factors, making planning and coordination of the research

groups a continuous challenge. Automated planning tools with the ability to de-conflict

various teams and perform negotiations to resolve over-constrained problems were in

high demand.

VM Boundary

SBCL

Uhura

UI Server

HTTP
Server

pSulu Scotty
Path

OPSAT Odo Kirk Core

SP Shim

SLIME

TCP 1701
TCP 1701

TCP 8080
TCP 8080

TCP 1750
TCP 1750

TCP 22
TCP 2222

SSHD

Web
Browser

UDP 8081
UDP 8081

AIS

Persistent Storage

Map
Database

Scotty Env.
Files

Spock

Emacs

ACFR
Model Files

Figure 4-3: A block diagram showing the virtual machine architecture used in the Hawai’i deployment.

44

The Enterprise system deployed by MIT was used to produce risk-aware trajectory

plans for all of these various teams over the course of the cruise, and through the process

of designing models and planning missions we discovered that our existing architecture

was neither flexible or robust enough for our needs. The system deployed in Hawai’i

was built using a VirtualBox virtual machine with pre-installed software support for the

various planner systems and run them within a contained environment. Figure 4-3 shows

the conceptual architecture of this virtual machine. While this approach was portable and

allowed us a consistent environment in which to run the planners, it was also brittle, com-

plex, and difficult to maintain. Integration between the planners was ad hoc and the input

formats poorly specified, leading to flakiness in the system and difficulty tracking down

bugs. Because each system was implemented independently using different guiding prin-

ciples, researchers familiar with one system could not expect to meaningfully contribute

to others.

Our diagnosis of these issues directly informed the redesign of the system around the

architectural principles described previously, and a migration to the Docker containeriza-

tion technology as the basis for future deployments. We exercised these revised system

during the following expedition, this time in Costa Rica.

4.2.2 Deployment: Puntarenas Province, Costa Rica

Our next deployment, to Costa Rica’s western shores, demonstrated the flexibility and

stability of the new design. Each of the Enterprise components was encapsulated into a

separate Docker image, with the arrangement of the various pieces defined externally

using the Docker Compose tool set. Containerization enforced communication to occur

along explicit channels described in the system architecture, and standardization of these

lines of communication enabled the containers to be connected in an ad-hoc manner to

create new Enterprise instances.

The decoupling enabled much faster research iterations. Now, instead of having to re-

build a virtual machine containing the entire system at once when a change was made—a

slow, fragile process that could take hours—each component could be built independently

with a clean and deterministic process, yielding predictable results. New features could

be developed, built, and deployed within an hour without incurring system downtime.

We exploited these properties to create continuous integration and continuous deploy-

45

ment (CI/CD) infrastructure that would automatically compile our software components

and deploy it to the Falkor’s computing infrastructure when new changes were made.

This reduced the amount of overhead involved in deploying the system dramatically.

With a more understandable, flexible, and stable system the team was able to conduct

research rapidly and focus their time on collaboration with the other members of the

science crew. The enhanced focus on research rather than engineering meant that our

scientific results improved: our system was able to successfully combine an information-

seeking path planner (Spock [29]) and an activity planner (Kirk [28]) to plan mission

trajectories for both an AUV (a Teledyne-Webb Slocum Glider) and a remotely operated

vehicle (the SOI ROV “Subastian”) to identify a number of undersea hydrothermal seeps.

At the project level, our composable architecture helped to keep us insulated from failures

and programmatic risks. Components that encountered difficulties in development and

were unable to be deployed would have been blocking factors previously but were easily

omitted in the more modular design.

4.2.3 Future Developments: Santorini and Beyond

The next deployment in this series will occur in 2019 at the Kolumbo undersea volcano

in Santorini, Greece. This site is home to a number of undersea carbon dioxide pools,

presents a hazardous environment that is challenging for robotic operations, and may

host unique lifeforms that have yet to be discovered [30]. Within the caldera, strong cur-

rents that change direction quickly and the limited maneuvering space present particular

challenges for thrust-limited vehicles such as Slocum Gliders. In contrast to the three-

week timeframes of previous missions, our excursion to Santorini may be compressed to

as little as one week. To address these challenges, Enterprise will need to be extended

with new capabilities.

Modularity of the system architecture is the key enabling factor for this extension.

We are currently developing new system components that exploit the work previously

done to standardize the system. A new system running on-board the gliders will en-

able a microcosm of the larger Enterprise system to be used for real-time control of the

vehicle, giving us more robust maneuvering options and the ability to replan missions

in response to events detected while underwater. Ship-side systems will help the princi-

pal investigator manage the campaign, providing stochastic scheduling capabilities and

46

resource management tools to aid in replanning and more seamless adaptation to contin-

gencies.

Beyond our oceanographic deployments, we are taking advantage of the recent prolif-

eration of industrial cloud computing services to host a cloud-based Enterprise system for

instruction and research. Our containerized planners are easily deployed using the Ku-

bernetes orchestration tools to services such as Google Cloud Engine. Explicit state man-

agement and common interfaces enable us to create generic load-balancing and caching

systems that abstract the individual planning systems and allow us to scale horizontally.

We intend to create a system to provide “planning as a service” for use at MIT and other

institutions, with the intention of enabling more researchers in academia and industry to

leverage Enterprise for their projects.

4.3 Correctness, Validation, and Verification in the Modularized

Architecture

A plug-and-play architecture has many benefits, as described above; however, it also

brings a number of challenges. The architecture must simultaneously provide enough ex-

pressive power to enable the components to be used to their fullest extent while restricting

the communications between components to ensure their interoperability. Unforeseen in-

teractions at the system level can cause difficult to diagnose failures. Ensuring that the

output of a composite planning system, built in this modular fashion, is correct requires

reasoning abstractly about the space of possible components and their properties. The

next chapter will apply the modeling and specification techniques developed so far to

the Enterprise architecture, demonstrating the approach in the context of a real-world

example.

47

48

Chapter 5

Logical Foundations

5.1 Introduction

We can now turn our attention to the logical structures we will use to write the spec-

ifications for architectural models. This logic needs to be powerful enough to express

interesting properties, have a well defined semantics to enable its use in proofs, and be

possible to mechanize so that system designers can leverage computer assisted proof tools

such as theorem provers or model checkers. In designing a logical language to meet these

criteria, we will need to leverage the tools developed in the study of mathematical logic.

Over the course of this chapter we will examine the mathematics that underlie the in-

terpretation of first-order logic using algebraic structures, and develop an understanding

of the properties required for this to be done successfully. As a case study in this type

of modeling, we will then examine Qualitative State Plans (QSPs) and demonstrate that

they possess the requisite structure. The result of all of this work is to provide a concise

and expressive language for describing the properties of planning systems.

We will begin with a review of the fundamentals of intuitionistic logic and key opera-

tions on lattices needed to define its semantics in set-valued structures. This groundwork

will lead to the definition of a Heyting algebra and of the axioms such a structure must

satisfy. Next we will examine Simple Temporal Constraint Networks [31] with attention

to their lattice structure. After describing state constraints, we proceed naturally to the

Qualitative State Plan itself and extend the model to include state.

49

5.1.1 A note on notation

When defining a logic confusion occurs easily when the context of operators is unclear.

For this thesis, I use the following conventions:

• A “fat” arrow, =⇒ , represents implication within the meta-logic used to define

specification logic terms.

• A “skinny” arrow, →, represents implication within the specification logic itself.

• The standard symbols ∧ and ∨ for logical “and” and “or” are given subscripts when

used to represent specification logic terms, if their interpretation is non-obvious

given the context.

5.2 Fundamentals of Intuitionistic First-Order Logic

There are two major schools of thought with regards to mathematical logic that dictate

how semantics are defined and what can be proven in a given language. The classical

approach, which is the most common form of logic used in mathematics, has fundamen-

tal limitations when used for creating verified software.1 In contrast, the intuitionistic

approach, which is stricter and less commonly used for pure mathematics, gives more

useful results for software in part because of its limitations.

This section begins by discussing the history and distinctions between these ways of

thinking about logic, motivating the use of intuitionistic mathematics in defining the logic

for writing specifications of our architectures. I will then discuss how a logical signature

is constructed to define the logic’s syntax, and show how the semantics of our first order

logic can be defined in a clean, precise manner through the creation of a Heyting algebra,

which is a general method us to create logics describing planning problems or other

interchange formats having a certain structure. We will then apply these ideas to the

Qualitative State Plan (QSP) structure used in the Enterprise system as a case study in

defining such a logic for a real-world data structure.

1For example, it is quite possible to write a sound classical proof that cannot be feasibly implemented as
an algorithm. We will see this type of limitation again later in the chapter.

50

5.2.1 Historical Background

Multiple formalizations of mathematical logic are available to the practitioner. Variations

of classical logic have been the primary foundation and working language for mainstream

mathematics since the time of Aristotle [32]. As Lindstrom, et al describe in their intro-

duction to the 2009 work “Logicism, Intuitionism, and Formalism,” the situation changed

in the late 1800’s with Frege’s work Begriffsschrift, in which he tried to provide a sound,

complete, and consistent logical basis for mathematics. Following publication there be-

gan a rapid expansion in the body of work re-examining the foundations of mathematics

and logic, leading to the creation of three major schools in the field: Logicism, Formalism,

and Intuitionism. These largely differ in whether they consider logic to be “fundamental,”

in the philosophical sense of existing on its own without needing to reference anything

outside itself, in the way that a physical object might be said to simply “exist.”

In Begriffsschrift, Frege argued that logic could be defined independently of mathemat-

ics, and then used as a system in which mathematics could be formalized. This mean

that the logical system itself was designed on its own and accepted as consistent a pri-

ori, relying on its own internal mechanisms to maintain the truth of statements deduced

using the logic. Axioms in this system were to be “self-evident,” not requiring external

justification to be accepted as true. This school became known as Logicism.

Formalists, in the mold of Hilbert, sought to identify consistent axiomatic systems for

their own sake. In contrast to logicism which relied on the mathematician to determine

what was true using the self-evidency test, for the formalists consistency was a sufficient

condition for the logical objects described by the system to exist. Both of these programs

to formalize mathematics were jeopardized by the work of Russell and Gödel [33], both

of whom demonstrated that there are potentially crippling limitations to what can be

determined using any logic which is powerful enough to be considered “useful” for the

basis of mathematics.

Intuitionism, in contrast to logicism or formalism, began with Brouwer’s rejection of

what he considered the unconstrained use of the “law of the excluded middle” (LEM)

(∅ ` p∨¬p). The LEM is generally accepted within classical logic and states that in every

circumstance it is possible to prove that a statement is either true, or that it is false; if it

is not one then it must be the other. The “middle” being excluded is the unknown state

51

between truth and falsity, where the proposition p is neither true nor false.

Brouwer claimed that when used improperly the LEM would lead to unreliable de-

ductions. Existence proofs in particular become suspect when they rely on proof by

contradiction in ways that depend on the LEM, because it is possible to write a proof that

an equation has a solution that cannot be used to construct any examples of structures

that satisfy it. In this sense, the proof is not “information bearing” about the objects it

describes [34] in that it does not show how to create the objects themselves.

For Brouwer mathematics was the free practice of exact thinking, where truth was

constructed, rather than discovered, by the mathematician by applying a series of precise

inference steps to arrive at what he termed a “mental construction.” Mathematics, then,

is a fundamental activity2 of the human mind and not rooted in a separate entity (such

as logic) as the logicists or formalists would claim. Rather, Brouwer insisted that math-

ematics was the basis of logic and not vice versa. In his view, unless a structure can be

synthesized in some deterministic fashion there is no meaningful proof of its existence

[35].

This property of intuitionism, that every proof be reducible to some algorithm, is

a very useful one for anyone writing specifications about software systems because it

restricts our methods of proof to the realm of computable functions. If we cannot algo-

rithmically construct an object, it does not matter if it can be shown to exist in a classical

sense. Specifications written in a classical logic, which places no such limits on whether

non-information-bearing proofs are acceptable, leave themselves exposed to the case that

there are no possible implementations of the specification. Using intuitionistic techniques

instead means that every proof not only provides a logically sound deduction of a cer-

tain fact, but also embodies the computation necessary to construct an object having the

proven properties. These objects are called witnesses to the proof.

Fortunately, if unintuitively, intuitionistic logic has been shown to be strictly more

powerful than its classical counterpart. Any sentence written in classical logic can be

rewritten into intuitionistic logic through the appropriate translation of the classical sen-

tence into an intuitionistic version [36]. This process is called Gödel Translation, and gives a

sentence in the intuitionistic logic that is true if and only if the original is true in classical

2A “fundamental object” or “fundamental activity” refers to a concept that can be considered the most
basic or the most atomic in a philosophical sense, such that describing its existence is possible a priori,
without relying on the existence of other objects.

52

logic.

In the intuitionistic view logic is simply a construction atop more fundamental objects

and not a fundamental object in itself. As a result, logic should be given meaning in terms

of mathematics and the properties of its structures. This means that to interpret a logical

sentence such as p∧ q, one needs to know what mathematical objects p and q are, and

what operation on these objects ∧ is. Without this grounding, the sentence doesn’t really

“mean” anything at all.

As a student of Brouwer’s, Heyting formalized this idea by demonstrating that cer-

tain structures of mathematical objects were rich enough to be the basis for defining the

semantics of certain logics [33]. We will specifically make use of his formalization of

first order logic, the Heyting algebra, to define our own specification logic by using the

properties of Qualitative State Plans.

5.2.2 Signatures of First Order Logics

To set the stage for the definitions to follow, we will first want to have a working definition

of what a first order logic is, and what operations it supports. We will begin by defining

a signature, which bundles the operations and objects of the logic together.

Basic propositional logics contain a set of atomic objects representing statements that

have some truth value and cannot be broken down into smaller statements. These objects

are then joined together to form compound statements using logical connectives, such

as “or” and “and.” More advanced logics can include functions which transform other

statements, relations between statements, and other structures of varying complexity. We

will build a first-order logic to use for specifications, as it provides enough power to write

interesting specifications without adding undue complexity.

A first-order logic is a propositional logic that allows quantification over the atomic

objects, but not over functions, relations, or compound formulae. The signature for a

general first order logic contains a set of atomic objects P; two distinguished values of

P written > (truth) and ⊥ (falsity); the connectives ∨ (or), ∧ (and), → (implies), and ¬

(negation); an infinite set of variable names V that may be substituted for propositions; a

set of relation symbols R; a set of function symbols F; and the quantifiers ∀ (for all) and ∃

(there exists).

For the purposes of this thesis we will concern ourselves only with single-sorted logics;

53

these are the logics that have a single “type” of object in P, and all relations and functions

act solely on this type. This is sufficient to model planning architectures which use a

common data structure and avoids the need to model types explicitly within the logic.

The inclusion of function and relation symbols is necessary to model planners (which we

model as functions3) and equality (which we model as a relation).

We can combine these elements to create logical formulae, which may contain vari-

ables of type T . The free variables FV(ϕ) of a formula are the variables appearing in ϕ,

drawn from V , that are not bound within the scope of a quantifier. Drawing from the lu-

cid treatment of various logics by Johnstone [37], the formulae of a signature are created

according to the following rules:

1. Every atomic proposition and every variable is a trivial formula. The free variables

of an atomic proposition is the empty set; for a variable, it is the singleton set

containing the variable itself.

2. > is a trivial formula as is ⊥, neither of which contain any free variables.

3. If P and Q are formulae, then so are P∨Q and P∧Q, the free variables of which are

given by FV(P)∪ FV(Q).

4. If P is a formula, so is ¬P. The free variables are the same for both.

5. If P and Q are formulae then so is P → Q. The free variables are given by FV(P) ∪

FV(Q).

6. If P is a formula, and x a variable, ∀x,P and ∃x,P is also a formula. The free variables

in either case are given as FV(P) \ {x}.

7. If R is a relation or function symbol of arity n and x1, . . . , xn are formulae, then

R(x1, x2, . . . , xn) is also a formula whose free variables are the union of the free

variables of the assorted xi.

As in Johnstone [37], generally we will assume that the formula are chosen such that

the names of their variables do not collide and that formulae differing only in the names

of their variables are equivalent. This property is known as alpha-equivalence. Formulae

3The choice of how to interpret the function symbols is made by the instantiation table when the architec-
ture is concretized; see the definition of abstract component in Chapter 3.

54

containing no free variables—that is, those that either contain no variables at all or all of

whose variables are bound within the scope of some quantifier—are “closed formulae”

while the remainder are “open.” A theory over a signature is a subset of the signature’s

closed formulae that are considered axiomatic or self-apparent. When modeling architec-

tures, we will often axiomatize the behavior of a planner’s sub-planners to create a theory.

Within this theory we can then form a proof that if the sub-planners behave correctly (that

is, according to our assumptions) then the parent planner will also.

These signatures are considered “first order” because the possible scope of quantified

variables is restricted to the elements of P. While function and relation symbols may be

included as part of the signature, they cannot be bound by quantifiers and must appear

as named constants within formulae containing them.

5.2.3 Heyting Algebras

Providing a mathematical semantics for first order logic requires defining an object in a

mathematical structure corresponding to each formula generated by the logic’s signature.

A common example, and one which we will use to illustrate concepts in this chapter,

would be a set containing particular elements. When we create a logic whose semantics

are defined in terms of the theory of this set and its subsets, every formula will have a

corresponding subset and the overarching structure is a lattice of these subsets.

These mathematical objects must also support operations corresponding to the logical

operators we want to use. The two operations, mathematical and logical, need to mirror

the ways their counterpart behaves. Continuing with our set example, in order to define

the logical “or” operation there needs to be a binary operation ∨set on sets that we can

use which behaves in the set-world the same way that ∨ behaves in the logic-world. If we

have logical statements p and q and sets P and Q, then the set that corresponds to p∨ q

is always P∨setQ, and the same holds for all of the other operators.

The Dutch mathematician Arend Heyting provided the axioms and interpretations

required to provide such a semantics for intuitionistic first order logic in his 1930 work

“Die formalen Regeln der intuitionistischen Logik,” resulting in a structure known as a

Heyting algebra.4 We will begin our examination by describing what each of these terms

4In a nutshell a Heyting algebra is “a bounded lattice, with all meets and joins, equipped with an implica-
tion operator satisfying certain axioms.”

55

means and then proceed to discuss examples of Heyting algebras to help anchor the con-

cept firmly. In defining the Heyting algebra we will see how to connect logical structures

and mathematical structures so that we can move between them freely.

Fundamental Structures: Lattices, Joins, and Meets

Lattices are structures which can be built from sets that meet certain criteria: the objects

in the must be partially ordered, and for every pair of objects in the set there must be

another object, also in the set, which is their meet, and yet another that is their join. We

will see that by finding these types of objects in the lattice we are able to interpret logical

sentences, but first we need to understand what properties they have.

To begin with, the set must be equipped with a partial order relation5 between ele-

ments, “less than or equal to” (⩽), that satisfies the following axioms:

1. Reflexivity: ∀a,a ⩽ a.

2. Antisymmetry: ∀ab,a ⩽ b∧ b ⩽ a =⇒ a = b.

3. Transitivity: ∀abc,a ⩽ b∧ b ⩽ c =⇒ a ⩽ c.

This ordering relation imposes a directed graph structure on the set, where there is an

edge from an element a to an element b if and only if a is less than or equal to b. When

this graph has“root” and “leaf” nodes which have no objects that are greater than them

(or lesser than them, respectively) the lattice is “bounded”. These objects are usually

distinguished and named the “top” (>) and “bottom” (⊥) nodes. These bounds must

satisfy these sentences:

1. ∀a,a ⩽ >.

2. ∀b,⊥ ⩽ b.

Within the body of the lattice there are additional distinguished locations with respect

to every pair of nodes: their join and their meet. Joins and meets are, fundamentally,

ways to find the “best” way of combining two elements such that certain properties are

preserved. A join of two elements a and b (also known as their “supremum”) is the least

5Also referred to as a “poset,” for “partially ordered set.”

56

element that is larger than both a and b. We will write joins within a lattice l using

a similar symbol as logical “or,” ∨l, for the precise reason that a join within a lattice

structure is the semantic interpretation of the “or” operation in a corresponding logical

language. Similarly, meets (“infimums”), written as ∧l, correspond to logical “and.” The

following axioms define these operations precisely:

1. Joins: ∀abc,a∨l b = c ⇐⇒ (a ⩽ c)∧ (b ⩽ c)∧ (∀d,a ⩽ d∧ b ⩽ d =⇒ c ⩽ d).

2. Meets: ∀abc,a∧l b = c ⇐⇒ c ⩽ a∧ c ⩽ b∧ (∀d,d ⩽ a∧ d ⩽ b =⇒ d ⩽ c).

Note that, for the join or the meet to exist, there must be a unique element satisfying

the above axioms. If a set is equipped with a partial order, and contains a join element

and a meet element for every pair of elements, it is considered a lattice, and if it also has

bounding elements as described above it is a bounded lattice. One common example of

a lattice is a set and its subsets; we will use a small set throughout the chapter to help

explain these concepts. An example of a structure which is a partially ordered set but not

a lattice is the set {1, 2, 3} ordered by divisibility (e.g. 1 ⩽ 2, 2 ≰ 3). This set does have a

meet for every element, but it does not have a join for the elements 2 and 3.

To illustrate these concepts, let us examine a small lattice consisting of the subsets

of {A,B,C} ordered by subset inclusion. We will return to this example to illustrate the

implication operation.

Within this lattice the bounding elements are {A,B,C} at the top and the empty set ∅

at the bottom.

Figure 5-1: The join {A} ∨ {C} = {A,C} and the meet {A,B} ∧ {B,C} = {B}.

57

A join in this lattice is the union of two sets. We can verify this by seeing that for any

two sets their union is the smallest set that is larger than both of them: it contains no

extraneous elements, and contains all of the elements of the two “input” sets. Similarly a

meet is the intersection of two sets, and, because it contains exactly the elements that are

present in both, it is the largest set that is smaller than its inputs. An example for both

joins and meets is shown in figure 5-1.

It should be clear how the two operations relate to their logical counterparts, or and

and: meets are conjunctions, and joins are disjunctions. This is true in general, and gives

us definitions for these two logical operators in any Heyting algebra. The analogs for truth

and falsity are also apparent: they are the top and bottom elements of the lattice (that is,

the maximal and minimal elements as given by the lattice’s partial order). However, it

is not yet clear what it means for other operations such as negation or implication to be

interpreted within this structure.

Heyting Implication and Pseudocomplements

Implication is the key operation that makes a lattice into a Heyting algebra and enables

modeling of first order logic. Without it, we are very limited in the sentences that we

can describe with our formal semantics; in fact, we are so limited that we cannot model

negation. Within the lattice structure, the object corresponding to an “implication” relationship

between two other objects is a witness to the fact that if one is constructible, the other must also be

constructible.

We want our system to be sound, meaning that we cannot prove false statements.6 (If

we could, then the logic would not be very useful.) In classical logic we can define the

implication a → b as being true if and only if ¬a∨ b is true. This definition makes the

most common inference rule, modus ponens (i.e. P ∧ (P → Q) =⇒ Q), sound but it isn’t

intuitionistically valid as it relies on the use of the law of the excluded middle to prove

a→ b =⇒ ¬a∨ b [32].

Instead, we will depend on a weaker definition of implication defined in terms of the

lattice.

Definition 9 (Relative Pseudocomplement). The witness to a statement x → y is the greatest

6A corresponding property completeness is, in general, unattainable for a logic that is this expressive; c.f.
[38].

58

object satisfying the relation z∧ x ⩽ y [32]. This object is known as the “relative pseudocomple-

ment of x with respect to y.”

From our set example it should be clear that when a ⩽ b then a should imply b. Note

that using this intuition the definition preserves modus ponens: if x→ y = z then x∧ z ⩽ y.

We will also want to have certain other standard properties, such as self-implication and

standard distributive properties. Our definition of relative pseudocomplements gives us

all of these properties, as shown by Heyting [39]:

1. Self-implication: ∀a, (a→ a) = >.

2. Modus ponens: ∀ab, (a∧ (a→ b)) = (a∧ b).

3. Elimination of meets: ∀ab, (b∧ (a→ b)) = b.

4. Distribution of implication over meets: ∀abc, (a→ (b∧ c)) = (a→ b∧ a→ c).

Negation

Let us briefly define negation before returning to the general idea of pseudocomplements.

Negation is intuitively understood to mean that the object being described does not exist.

This is hard to encode directly, so instead we will use implication and the soundness of

our system to write it indirectly.

In any logical system a major consequence of being able to prove false is known as the

principle of explosion: if one is able to derive a proof of falsity, then any statement can be

proved from it regardless of whether it is true or false. We can leverage the principle of

explosion to derive an encoding of the negation of an object. We will define the negation

of an object as a proof that if that object exists, then we can create an object which has

any property we want (i.e. a witness of any proof). This is the standard representation of

negation for a Heyting algebra:

∀x,¬x = (x→ ⊥)

Note that with this definition one can easily show that p∧¬p = ⊥, though in general

it is not possible to show p ∨ ¬p = >—the law of the excluded middle—without explicit

knowledge about the structure of the particular lattice under study. Our example lattice

59

x
x→ y y

∅ {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

∅ {A, B, C} {A, B, C} {A, B, C} {A, B, C} {A, B, C} {A, B, C} {A, B, C} {A, B, C}
{A} {B, C} {A, B, C} {B, C} {B, C} {A, B, C} {A, B, C} {B, C} {A, B, C}
{B} {A, C} {A, C} {A, B, C} {A, C} {A, B, C} {A, C} {A, B, C} {A, B, C}
{C} {A, B} {A, B} {A, B} {A, B, C} {A, B} {A, B, C} {A, B, C} {A, B, C}
{A, B} {C} {A, C} {B, C} {C} {A, B, C} {A, C} {B, C} {A, B, C}
{A, C} {B} {A, B} {B} {B, C} {A, B} {A, B, C} {B, C} {A, B, C}
{B, C} {A} {A} {A, B} {A, C} {A, B} {A, C} {A, B, C} {A, B, C}
{A, B, C} ∅ {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

Table 5.1: The relative pseudocomplements (x→ y) for all pairs of x and y in the {A,B,C} lattice.

does exhibit this property, as does the familiar Boolean lattice, with 1 and 0 as the top

and bottom elements, respectively, and joins and meets defined in the normal way. The

simplest example that does not is a ternary logic consisting of 0, 1/2, and 1. It should not

be assumed that the LEM holds for a given Heyting algebra; rather, it must be proved to

hold using the existing axioms.

Examples of Pseudocomplements

Returning to pseudocomplements in our example lattice, there are some that are easily

identified and some that are more difficult. Among the easier ones are that, for any a

and b where a ⩽ b, a → b is simply >. However, if we look at two elements that do not

have this relation—say, {A,B} and {B,C}—the pseudocomplement is not readily apparent.

Fortunately, we can lean on modern proof tools to help us identify the correct mapping

automatically,7 as shown in table 5.1.

We will examine a few examples to help illustrate the idea of relative pseudocomple-

ments. Let’s begin with an easy one. Consider the statement ∅ → {A,B} =?. To find the

answer, we need to construct the greatest object such that the result of meeting it with ∅

is less than {A,B}. We know that every object’s meet with ∅ is also ∅, so the element we

want is the greatest element of the lattice, {A,B,C}.8

As another example, consider {A} → {B} = ∅.

1. Goal: find the greatest z such that {A} ∧ z ⩽ {B}.

2. ∀x, x ⩽ {B} =⇒ (x = {B})∨ (x = ∅), by examining the structure of the lattice.

7To identify the pseudocomplements for this example I used Z3, a Satisfiability Modulo Theories (SMT)
solver developed by Microsoft Corporation. The full source of the SMT problem is given in Appendix A.

8Note that this is also true for every other element in the lattice, so we can make the stronger statement
that ∀a,⊥ → a = >, which is exactly the principle of explosion described earlier.

60

3. The element {B,C} has the correct meet: {A} ∧ {B,C} = ∅. The elements {B}, {C}, and

∅ do as well but all of these are smaller.

4. The only object greater than {B,C} in the lattice is {A,B,C}. {A,B,C} ∧ {A} = {A} ≰ {B},

therefore {B,C} is the greatest object whose meet with {A} is less than {B} and is the

desired object.

After this discussion the interpretation of Heyting algebra operations in a set-valued

lattice structure should be clear. While defining a logic’s semantics in terms of this family

of structures is the most natural approach and most applicable to this thesis, they are

not the only types of structures that can help to define a logic. Here we use first-order

intuitionistic logic, defined through Heyting algebras, because it is the simplest of these

which is still powerful enough to use for writing interesting specifications. Many other

structures exist that support logics with varying properties, including linear logics that

can model the consumption and production of finite resources, modal logics to model

actions over time, and the simply typed lambda calculus which provides a natural and

powerful way to model computation. Each of these lends more expressive power and

captures a greater number of possible behaviors, but at the cost of additional complexity

when defining the semantics in a constructive fashion.

For a deeper treatment of this topic I refer the reader to Johnstone [37] who provides

perhaps the most detailed description of categorical logic currently available, and Baez

[34] who discusses its broad-ranging connections with physics, topology, and computer

science.

In the following sections, I will go on to describe the formal properties of the Qualita-

tive State Plan, which shares many properties with the basic sets described here.

5.3 Case Study: Qualitative State Plans (QSPs)

The Qualitative State Plan (QSP) is the fundamental plan representation within Enterprise

and thus the focus of attention for inter-component communication specifications. In this

section I describe the fundamentals of QSPs, building upwards from the Temporal Con-

straint Network to include constraints on the state parameters of the controlled system.

In the process I explore the algebraic properties that are of interest in demonstrating that

61

QSPs form a Heyting algebra, which is presented in the following section.

5.3.1 Temporal Constraints

Scheduling is a fundamental part of almost every real-world planning task. In general,

our problems require that the system produce a schedule of actions that meet a set of user-

provided timing constraints. These constraints enforce conditions such as “after shutting

down the computer, wait 10 seconds for the process to complete” or “within a day after

beginning execution, you must reach the objective location.” A QSP embeds a description

of the schedule requirements using a temporal constraint network (TCN) [31], consisting of

a set of events representing independent points along a real-valued timeline augmented

with a set of temporal constraints between pairs of events. Each of these constraints

contains an ordered pair of start and end events (Es,Ee) along with a corresponding set

of time intervals restricting the duration between the start and the end events expressed

as linear inequalities such as −∞ ⩽ Ee−Es ⩽ ∞. A temporal constraint whose interval set

is a singleton is considered “simple,” and a network consisting of only simple constraints

is a simple temporal network.

es ef
{[0, 10],
 [90, ∞]}

Figure 5-2: A basic temporal constraint network consisting of two events and one constraint.

These sets of intervals form the heart of the constraint network and are the basis for

its algebraic properties. An individual constraint is considered “satisfied” by a timing

assignment to its events if that assignment makes the duration between the start and end

events fall inside one of the intervals in the constraint’s interval set. To help illustrate the

idea, consider the simple constraint network shown in figure 5-2. We have two events, the

start event es and finish event ef, joined by a constraint restricting the timing difference,

∆s,f = ef − es, between them to 10 ⩽ ∆s,f ⩽ 30 time units or to 90 ⩽ ∆s,f ⩽ ∞ time units.

This means that, whatever value we give es, it must be at least 10 units before ef and

ef must follow either no more than 30 or no less than 40 units after. In this case, the

62

assignment es 7→ 5, ef 7→ 25 would satisfy the constraint while es 7→ −10, ef 7→ −50 would

not.9

Writing the set of constraints between events as C(es, ef), the constraint network as

a whole is satisfied if, for every pair of events with a constraint, the time between the

start and end events satisfies any of the the intervals of the constraint between those two

events. This is reflected in the following formula:

∧
es,ef∈E

∨
c∈C(es,ef)

lc ⩽ es − ef ⩽ uc

In their treatment of these structures Dechter, et al defined operations corresponding

to joins and meets for temporal constraints as follows [31]:

• The join of two constraints accepts only values that are accepted by one or both of

the two source constraints.

• The meet of two constraints accepts only values that are accepted by both of the two

source constraints.

In addition, Dechter, et al define a partial ordering relation among temporal constraint

networks: between a pair of constraint sets A and B sharing start and end events, A is

equally or less permissive than B if every assignment accepted by A is also accepted by

B [31]. In general this will require that the events contained in B are a subset of those

in A, and that every decision already made in B about the assignments to the temporal

variables is preserved in A. When this condition holds we can say that A ⩽ B or that

A “refines” B. Formalizing this definition we say that for two constraint networks C and

D, C refines D if and only if C contains every event in D and for every assignment to

the temporal variables that C accepts, the same assignment is also accepted by D. Two

constraint networks are equivalent (C ≡ D) if and only if they each refine the other.

These operations, combined with the refinement ordering relation, induce the lattice

structure required for a Heyting algebra. In fact, if one considers an alternative repre-

sentation of the constraints—that is, that the constraints are given by the explicit sets of

9Every constraint also has a dual, where the start and end events are swapped and every interval in the
constraint is reflected across the origin, so that [a,b] becomes [−b,−a]. These duals can often be used to make
the network well-formed for the purposes of computation, and in particular are useful for ensuring that a
temporal constraint network’s directed graph is acyclic.

63

values they accept—the lattice is clearly the same as the set-valued structures examined

previously, with intersection and union given their normal set-theoretic definitions, and

bounded at the bottom by the “empty” constraint set accepting no assignments and at

the top by the “universal” constraint set accepting any assignment.

Viewing sets of linear constraints in terms of the sets of accepted assignment values to

each variable is a natural and valuable perspective making the visualization and intuition

of these structures more apparent. We will lean on this viewpoint in the next section to

define state constraints and the lattice of QSPs.

5.3.2 State Constraints

Whereas temporal constraints limit the potential assignments of time to events in the

problem, a state constraint will restrict the values that a variable representing the physi-

cal properties of the system can take.10 At their most basic, state constraints, like tempo-

ral constraints, are defined using linear inequalities and define convex polytopic regions

within the state space (which may or may not be bounded). For example, a state con-

straint may define the feasible region of acceleration for a vehicle, restricting it to the

region between ±7m/s2. Others may define the area of operations for the system by spec-

ifying that the position state variables remain within a given half-space (see figure 5-3).

Combining groups of these constraints is simply a matter of taking the intersection of the

polytopes they define, making it easy to create composite constraints acting over multiple

variables or bounding the same variables from multiple directions.

While very convenient computationally and easy to reason about, if we restrict our-

selves solely to conjunctive sets of linear inequalities we will not be able to model obsta-

cles; so, we must extend the formalism to include disjunction. This reimagines the model

as a set of polytopes containing feasible regions rather than a single polytope, and mem-

bership in any one of these regions is acceptable. The true system state may pass through

a variety of these polytopes over time, in order to perform mode switching and to avoid

obstacles, passing between the feasible regions where they overlap.

Without some connection with time state constraints are unsuitable for a goal speci-

10In the planning community the general practice is to define state variables as distinct from control
variables, with the assumption that the former are not directly assignable by the planner. I take the view
that because the state and control variables constrain each other exactly, they are effectively the same class of
variables and can be treated the same for the purposes of mathematics.

64

Figure 5-3: A region defined by the intersection of half planes.

Figure 5-4: In this illustration, an agent must remain between walls which move over time.

fication or for describing changing environments or vehicle dynamics. To avoid this, we

will embed the state constraints within a temporal network by denoting specific start and

65

end events between which a given state constraint is considered “active” and must be

obeyed. The period between these events, combined with the corresponding state con-

straint, forms an episode in the plan. Consider the example given in figure 5-4, where an

agent in a 1-dimensional world must remain between two walls, which shift position over

time.

At e1 and e2 the walls move outward from their starting position, at e3 they return,

and so on; this is represented with state space constraints restricting the agent to be be-

tween the walls as they are positioned at these various times. Each of these combinations

of a state constraint and temporal interval forms an episode. Note that the feasible region

for the entire plan is the result of combining the feasible regions for each episode. The

system state trajectory must pass between the regions where they touch at event bound-

aries, here represented as vertical lines. These interfaces between episodes correspond to

the “meet” of the episodes at that point. The system may otherwise occupy any space

within the feasible region at a given time point.

A similar set of regions can be constructed for higher dimensional systems by “glu-

ing” viable state polytopes together at event boundaries, themselves represented as hy-

perplanes which are normal to the time axis. This geometric interpretation of state constraints

gives rise to the idea of a “flow tube” introduced by Li [40], drawing upon previous work

by Zhao [41] and Hofmann [42]: an n-dimensional polytope that compactly encodes the

set of valid trajectories that the system state may take between two timepoints. Flow tubes

provide an intuitive representation for episodes, hinting at opportunities for abstraction

and concretization. We will discuss these opportunities in more detail in Section 5.4.

5.3.3 Definition of the Qualitative State Plan

Combining temporal and state constraints as described above yields a composite structure

suitable for encoding both models of systems and goals: the Qualitative State Plan (QSP).

As defined by Léauté [8], QSPs contain:

• A set of events that can be assigned specific points along a real-valued timeline.

• A set of temporal constraints, sets of linear inequalities providing bounds on the

durations between the events.

66

• A set of episodes, each a set of state constraints between a specific pair of events. In

a QSP these constraints may additionally be quantified with one of a “for all” (∀),

“there exists” (∃), “beginning at”, or “ending at” quantifier that state, respectively,

that the system must respect the state constraints during the entire duration between

the start and end events, that it must satisfy them at least once during that period,

that it must satisfy them at the instant of the start event, or that it must satisfy them

at the instant of the end event [8].

Figure 5-5: An example QSP describing a high-level plan for a fictitious UAV.

It can be convenient to represent QSPs in a graphical form, as shown in figure 5-5.

Graphically, these elements form a directed graph with labeled edges: the events form

the vertices while the temporal constraints and episodes are edges between their start and

end events labeled with their constraint sets. The edges representing temporal constraints

are directed, such that the decision variable representing the time difference between the

two vertices is defined as ef − es, with es being the origin vertex and ef the destination

vertex, as in a Temporal Constraint Network.

To make the structure easier to reason about we additionally impose that this graph

to be acyclic, and have a single start and end; thus we will define a well-formed QSP as

one in which:

67

• There exist distinct start and end events for the QSP, such that the start is followed

by or at the same time as, and the end preceded by or at the same time as, all other

events in the QSP.

• There exists a path in the constraint graph from the start event to every other event

in the QSP.

• The end event is reachable within the constraint graph from every other event in

the QSP.

• No (directed) cycles exist within the temporal graph. Some QSPs which would

otherwise contain cycles can be made acyclic by reversing some of the constraints,

using the duality property of temporal constraints discussed earlier.

5.3.4 Use of Constraint Systems for Models, Goals, and Solutions

Generally, model-based planning systems will make a distinction between several dif-

ferent models that are used as input to the planner. These include the plant model, the

environment model, and the goal specification; of these, only the last has generally been

given as a time dependent constraint problem, the others being represented either as

time-invariant equations or in a geospatial encoding such as GeoJSON. However, we will

see that all three of these models can be expressed using the tools a QSP makes available,

as can the solution to a planning problem. This same approach can be generalized to

other structures supporting similar features as well.

The first of our models, the plant model, defines the relationships between various state

variables to encode the dynamics of the system under control. Plant models are generally

taken to apply across the entirety of the planned duration, as they represent intrinsic

properties of the system. A QSP can model this style of constraint as a ∀-quantified

episode between the start and end events. The environment model encodes regions that the

system must either avoid or remain in; obstacles may be encoded in their dual form, as a

choice between half-spaces that the system may be in.11 QSPs are able to encode this type

11Environments are not generally stored as QSPs, but rather given a geometric representation that is more
compact and easier to edit with available tools. However, there is a useful isomorphism between convex
polytopic environments and disjunctive linear constraint systems that allows encoding them as QSPs; we
will ignore the alternative representation for convenience.

68

of constraint similarly with a ∀-quantified episode, relying on the disjunctive form of the

state constraint to provide the various choices.

The final model encodes the goal specification for the system as a set of constraints on

the high-level system behavior. These generally provide the bulk of the temporal con-

straints and the initial set of state constraints defining the objectives of the system user.

Goal specifications will constrain the starting and ending conditions of the plan at a min-

imum, and generally provide intermediate events with corresponding state constraints

defining the high-level properties of the desired system state trajectory.

Figure 5-6: The goal model QSP for the firefighting example.

Figure 5-7: The plant and obstacle model QSP for the firefighting example.

As an illustrative example, I will borrow a firefighting scenario described by Léauté

[8] in which a pair of autonomous vehicles must depart from their respective home bases,

enter the vicinity of a forest fire, drop water on it, photograph the damage, and then

return to their bases within a 20 minute time window. The goal QSP (depicted in figure 5-

6) encodes these constraints, requiring the vehicles to be at certain places at certain times,

and enforcing a timing relationship between their activities so that the fire is extinguished

69

before the photography begins. This object does not include constraints on the system

dynamics or obstacles to be avoided, so another QSP must be provided that specifies

these (shown in figure 5-7).

A solution to this planning problem is an assignment of time to the events along with

an assignment to the various state variables over time.12 Assignments can either be so

tight that they only admit a single value, in which case the plan is “grounded,” or loose

enough to give an executive the ability to modify the plan in response to state updates

during the execution phase. If an executive is available, the ideal is a “least-commitment”

plan: one that is constrained enough that the admitted solutions will all achieve the goal,

but with the maximum amount of flexibility allowed otherwise. We will revisit this idea

in the context of the Heyting algebra in the next section; for the time being, it is sufficient

to state that these results are both representable as QSPs by adding events and constraints

that further refine the goal and model specifications to include only the desired solutions.

QSPs have been applied to both trajectory optimization and activity planning prob-

lems, with examples such as Kongming [40], Scotty [9], Sulu [8], and tBurton [43]. The

details of these planners and their approaches to QSP planning are beyond the scope of

this thesis; let it suffice to say that the constraint system models used here are rich and

applicable to a wide variety of planning domains.

5.3.5 The Heyting Algebra of Qualitative State Plans

The previous sections have discussed how Heyting algebras can be used to give a se-

mantics for first-order intuitionistic logic and defined the Qualitative State Plan. We will

now proceed to combine these two ideas and define a logic which allows us to write

concise specifications of planner behavior by connecting logical operations to common

concepts from the planning community, such as relaxations and conflicts. In a nutshell,

these connections are:

1. Implication encodes when the solutions to one QSP are also solutions to another.

2. Joins encode constraint relaxation.

12For the purposes of this thesis, I am ignoring the distinction between state and control variables. This
is a reasonable thing to do, because we are concerned here with what a feasible solution looks like in terms
of the constraint system properties, and not with the details of how to generate it. Because a QSP which is
inconsistent between the controllable and uncontrollable variables is equivalent to ⊥, any valid QSP must
also have valid control variable assignments unless the control equations are under-constraining.

70

3. Meets encode the addition of new constraints.

4. Negation encodes conflict kernels.

Moving on to the definition of the Heyting algebra for QSPs, we will first give a high-

level outline of the approach before proceeding to define the necessary operations in more

detail. Qualitative State Plans, as implied by their geometric interpretation as flow tubes,

describe sets of possible assignments to the state and temporal variables of the system

under control. Fundamentally a QSP is simply a compact encoding of this set. To define

the Heyting algebra over the set of QSPs, then, we will take a similar approach to the case

of temporal constraint networks and view the QSPs in terms of their respective solution

set.

In this view, a QSP A is less than or equal to another, B, if any assignment of time or

state variables accepted by A is also accepted by B. Previously in the case of temporal

networks we called this relationship a refinement; the term applies here as well, reflecting

the fact that A is restricting the possible solution set sol(B) by making commitments to

certain assignments that B left undecided.

Definition 10 (Ordering Relation of QSPs). For two QSPs, A ⩽ B ⇐⇒ sol(A) ⊆ sol(B).

Definition 11 (Equivalence of QSPs). Two QSPs are equivalent if and only if they are mutually

refining: A ≡ B ⇐⇒ (A ⩽ B)∧ (B ⩽ A).

Definition 12 (Equivalence Class). An equivalence class is a set of objects which are all equiva-

lent to each other.

Mutual refinement of two QSPs does not necessarily imply that they have the ex-

act same structure. They must share the names of their events—up to a form of α

equivalence—but they may have more or fewer temporal and state constraints as long

as the accepted variable assignments are the same. This distinction is not particularly in-

teresting from a theoretical standpoint, so we will define two QSPs as being equivalent if

and only if they are mutually refining, and define the QSP lattice in terms of equivalence

classes of QSPs rather than specific objects themselves.

We have been defining properties of QSPs in terms of their solution sets, but in doing

so there is a danger that we accidentally make claims about QSPs which are true for sets

of state trajectories but that are not true for the constraint representation. We can avoid

71

this by establishing that there is a transformation between QSPs and their solution sets,

such that every QSP has a solution (which may be empty) and every solution has a QSP.

Given a solution set—i.e. a set of assignments—for an equivalence class of QSPs,

it is possible to re-encode it as a QSP by creating a set of events mirroring that of the

solution set, adding a temporal constraint for each possible timing assignment between

each pair of events, and then adding state constraints in a similar manner. This approach

does not yield a particularly elegant or minimal encoding; the result can be improved by

reducing the temporal constraints to a set of disjoint intervals and similarly with the state

constraints.

Now that we have established that working with the solution sets is safe, we can

define a Heyting algebra for QSPs easily. We will consider the equivalence classes of

QSP solutions as the objects of the lattice, ordered by subset inclusion (equivalent to

QSP refinement). Boundedness is given in the same way that we described for temporal

networks: at the bottom is the empty solution set, whose equivalence class contains all

QSPs admitting no solutions, and at the top the universal set that accepts any assignment

to the state and temporal decision variables.

In the solution space, meets and joins are defined in the standard way for sets, with

intersection and union, respectively. These operations have interesting interpretations in

terms of the QSPs they operate on: a meet corresponds to the merging of two QSPs such

that the result contains all of the constraints of its parents, while a join is the relaxation

of the constraints—both implicit and explicit—that are not shared between two QSPs.13

Relaxation of constraints is a straightforward operation,14 generally involving either delet-

ing a constraint edge or adjusting its inequality sets. Merging of two QSPs is slightly more

involved, requiring that shared events are combined along with the corresponding state

and temporal constraint sets.

Relative pseudocomplements are defined in a similar fashion, and allow us to model

the implication between two QSPs when one refines the other: ∀ab,a ⩽ b =⇒ a → b.

Another interesting interpretation of implication arises when we consider the definition

of negation, and gives us a way to model conflicting constraints. Recall the definition

13It is easy to create two QSPs that share only a small portion of their explicit constraints but have the
same solution set. Considering the implied constraints as well, the two are the same as captured by the
equivalence relation defined in this section.

14Mathematically speaking, that is; finding the right relaxation is not easy in practice.

72

¬x = x→ ⊥. This means that the object ¬x is a proof of the fact that every time we have the

conjunction x∧¬x we will always derive ⊥ from it. In this sense, ¬x contains conflicting

constraints which can’t be combined with the constraints in x while still having solutions.

In addition, recall that Heyting pseudocomplements are the greatest object in the lattice

with this property, so ¬x is the most permissive set of QSPs which are incompatible with

x; i.e. they are minimal conflict kernels.

In summary, the Heyting algebra gives a formal way to connect concepts familiar to

the planning community to operations in first-order logic so that they can be modeled

concisely and used to write specifications of planner behaviors. Recall the list of concepts

from the beginning of this section:

1. Implication encodes when the solutions to one QSP are also solutions to another.

2. Joins encode constraint relaxation.

3. Meets encode the addition of new constraints.

4. Negation encodes conflict kernels.

In the next section we will examine how to evaluate first order logic formulae within

this structure, and what types of objects are produced by doing so.

5.3.6 Evaluating FOL Formulae in the Heyting Poset

Recall from earlier in this chapter that the signature of a first-order logic contains a set

of atomic objects, a set of logical connectives, a set of variables, a set of relation symbols,

a set of function symbols, and a pair of quantifiers. To interpret the logic in terms of a

Heyting algebra, we need to give a definition of how these pieces map to objects in the

lattice.

In the absence of quantifiers—i.e. when there are no free variables—reducing a propo-

sitional logic formula to a truth value is typically done recursively, by reducing each

clause until atomic values are reached and then proceeding using the inference rules of

the logic to join the atoms together. A similar approach works for interpreting formulae

in our Heyting lattices. Atomic propositions refer to specific objects in the lattice, and the

connectives ∧, ∨, →, and ¬ can be easily interpreted by locating the corresponding value

73

in the lattice according to the operator’s definition discussed previously. Function and

relation symbols are also simple to evaluate when there are no free variables: evaluating a

function returns a specific object within the lattice, while a relation is simply a function of

two inputs whose output is restricted to either > or ⊥. When fully reduced, the resulting

object is a witness to the truth (or falsehood) of a given formula.15

Quantifiers introduce free variables that must be grounded in order to construct wit-

ness objects. For existential quantifiers, a proof of ∃x,ϕ(x) is given by a pair 〈x ′,ψ〉 where

x ′ is an object in the lattice and ψ is a witness to the proof that ϕ(x ′) is true [45]. This

essentially entails finding some particular value that makes the formula true. Univer-

sal quantifiers are more complicated: they require defining a function assigning to each

value in the quantified set a proof object for the formula being quantified over when the

quantified variable takes that value.

5.4 Extensions: Abstraction and Refinement of Constraint Sys-

tems

In this chapter we have examined a specific family of mathematical structures (Heyting

algebras) and used them as a tool to define the semantics of a particular logic, intuitionis-

tic first-order logic, in terms of the Qualitative State Plan. As discussed above, QSPs are

contained within the family of linear constraint systems operating over continuous time

and space. Of course, these are not the only constraint systems that can be constructed,

nor are they appropriate for all circumstances. The design space for these structures ex-

tends both higher and lower in abstraction, and similar techniques for deriving the logics

they support also apply in those domains. I will not attempt to provide a comprehensive

treatment of this topic here, but rather I will show some examples of more abstract and

more concrete structures and their relationship to the QSP, with referrals to the reader as

to where they can investigate further.

To begin we will consider the case of making a constraint system more concrete by

discretizing it. This is a common technique performed in trajectory optimization; in par-

ticular, I will refer to the type of time discretization used by the Sulu planner described

15Note that as a first-order logic including both function and binary relation symbols, the decidability of
arbitrary formulae is not guaranteed, as established by Trakhtenbrot [44].

74

by Léauté in [8]. As part of its problem formulation, Sulu divides its planning horizon

into a uniform series of time intervals, between which the control variables to the system

are held constant. This discretization enables the QSP planning problem to be formu-

lated as a Mixed Integer Linear Program (MILP) and solved using standard techniques.

Any solution to this discretized problem formulation is also a solution to variants where

control variables may be modified at any time (or in the limit, continuously) to achieve

the desired trajectory. This is because discretized problems form a proper subset of the

continuous problems, with additional constraints added to enforce that the events occur

on certain time boundaries.

We can define operations to convert continuous-time problems into discrete-time ones,

and vice versa, by adding or removing constraints. By convention these are referred to as

α (the abstraction function) and γ (the concretization function). Together these form a Galois

connection between the abstract poset and the concrete poset if the following relation holds

[46]:

∀ac,a ⩽ α(c) ⇐⇒ γ(a) ⩽ c

Galois connections enable the system designer to choose their level of abstraction for

the problem to fit the technology available for solving it, while also enabling flexibility

in specification. Concrete problems are generally easier to formulate than abstract ones,

but abstract problems can be easier to describe. For example, if the discretization is

auxiliary to the fundamental problem being solved, then specifications can be made in

the “abstract” continuous space to describe the concrete implementations, giving more

flexibility to those implementations and easing the specification burden.16

Unsurprisingly, there are more abstract structures supporting Galois connections to

QSPs. A promising one is the category nCob of generalized (n − 1)-dimensional mani-

folds and their (n)-dimensional cobordisms. This category contains (n− 1)-dimensional

manifolds, the disjoint unions of which form the boundaries of manifolds one dimension

higher [34]. Cobordisms are combined at their boundaries to create “tubes” through the

(n)-dimensional space.

The analogy to the geometric interpretation of a QSP should be fairly clear: we have

16As an interesting example of this approach, c.f. Smith’s work “Toward the Synthesis of Constraint
Solvers” [46], in which Galois connections are used to derive provably optimal constraint solvers.

75

relaxed the requirement that our constraints be linear, and created a more abstract notion

of flow tubes joined at certain planar boundaries. QSPs are the subset of these manifolds

that include a linearity criteria, forcing the manifolds to be prismatic. Relaxing that con-

straint allows modeling of more complex vehicle dynamics, obstacle regions, and goals.

Just as it supports more expressive objects, nCob also supports a more expressive

internal logic. As a closed symmetric monoidal category, its internal logic is multiplicative

intuitionistic linear logic (MILL). Linear logics are strictly more powerful than first-order

logic—one can encode FOL in LL, but not the reverse [47]—and are able to model the

transformation of finite sets of resources. To illustrate the idea, consider the intuitionistic

model of eating a cake: let the statement cake =⇒ happy be true if if eating a cake can

make you happy. In traditional intuitionistic logic, including the variants defined above,

one can infer from cake and cake =⇒ happy that cake∧happy—“you can eat your cake

and have it too.” In a linear logic this type of resource can be modeled, such that in the

process of deducing happy the input cake is consumed and no longer available.

Future work may explore the connections between linear logic and plan represen-

tations in more detail. I anticipate that this would be a fruitful area for deeper study,

enabling more powerful specifications of system behavior.

76

Chapter 6

Application to Modeling and an

Enterprise Case Study

In the last two chapters we developed a semantics for first-order logic defined in terms of

the constraint problems used to represent models, goals, and solutions within a planning

system, and described a particular system, Enterprise, that uses such a structure, the

Qualitative State Plan (QSP), to communicate between its component planners. We will

now connect these pieces via a case study. This chapter will demonstrate how a model

of Enterprise is constructed to match the formalism introduced in the first chapter, how

component specifications are given for key properties, and discuss what remains in order

to build a proof that the overall system structure meets these requirements.

6.1 Abstract Architecture of Enterprise

Before diving in to building a model of Enterprise, I will first establish the appropriateness

of the formalism described in Chapter 1 as a modeling approach. Recall the key condi-

tions: first, that planners communicate using a single message type, T ; second, that they

act as functions of type T × T → T , transforming these messages while retaining their type;

and third, that they are able to be wired together into a tree structure by substituting im-

plementations of these functions for symbolic “holes” in the bodies of other functions. All

of these criteria are met by Enterprise. Our message type will be the QSP, which planners

both consume and produce. Due to the mechanisms for managing state and ensuring

77

solution invariance with regards to it, the planners can safely be considered as though

they were pure functions of their inputs. We are able to combine planners by giving them

the network address of each subplanner so that the parent may call the APIs of the child.

Enterprise is flexible enough to take on a number of different forms. The first is a

simple design, where only a single planner is required. For this architecture, we will have

a single abstract component. The instantiation table is similarly simple, with a single

mapping of that abstract component to a concrete component that does not contain any

holes.

The result of instantiating this architecture is, as one might guess, a single standalone

planner—hardly the most interesting design, but we need to start somewhere. A more so-

phisticated design may start with the same abstract architecture, but with an instantiation

table mapping the abstract component to a concrete one that requires additional pieces;

in this way, we can describe a multi-level planning system that places an activity planner

(in this case, a variant of Kirk [28]) in a position to coordinate the creation of sub-plans

that are dispatched to a path planner.

This type of design is as unconstrained as possible: the only specification given is on

the top-level behavior as exhibited by the single abstract component. While this is con-

ceptually quite simple, the lack of constraint in the system implies a lack of support for

reasoning about appropriate decompositions; that is to say, we may not be able to easily

decide what planners are needed to satisfy the overall specification. This design knowl-

edge is captured in the choice of mappings in the instantiation table rather than made

explicit in the architecture. Contrast this approach with the less flexible but more explicit

design that calls for subplanners with a specific set of properties. A more constrained

approach gives clear guidance about where the inter-component interfaces are and what

makes a planner acceptable for use in each of those contexts.

6.2 Modeling Activity and Path Planners

Generally speaking there are two major categories of planners in Enterprise. Activity plan-

ners decide sequences of high-level actions that are necessary to progress from an initial

state to a goal state, using an action model describing what the system under control can

and cannot do. The result is a schedule of tasks that the system must perform, which may

78

be flexible or may have explicit timing assignments. A path planner, in contrast, generally

operates at a lower level using a more detailed model of the agent’s physical properties,

with the goal of creating a plan of control inputs over time that direct the state trajectory

of the system to evolve towards the desired final state. Said another way, activity planners

operate by scheduling abstracted tasks while path planners schedule control inputs. The

distinction is subtle but important, as each type of planner will have greater expressive

power at a different level of abstraction, and different planner types will be suited for

different roles within a composite architecture.

6.2.1 Common Properties

There is a basic set of correctness properties that applies equally to activity and path

planners. Of these, the most fundamental are correctness with regards to constraints and

termination. The first requires that the planning system—represented in equations as s—

not ignore any constraints given in the problem definition, i.e. any solution produced by

the planner must satisfy both the system model and the goal specification. (If there are

no other solutions, the empty solution may be returned; this is a solution to any goal, but

is not a particularly useful one.)

Definition 13 (Constraint Correctness). A planner is correct with regards to constraints

if there exists a proof that for any combination of model and goal specifications accepted by the

planner, the solution returned by the planner entails both the model and the goal. This property

is true if and only if there exists a proof that the planner satisfies the following sentence in the

specification logic:

constraint_correct(s) = ∀mgp : T , (s(m,g) ≡ p) → [(p→ m)∧ (p→ g)] (6.1)

Definition 14 (Termination). A planner is proven to terminate if there exists a proof that it

will return a solution for any combination of model and goal inputs, given sufficient computation

time.

For any planner shown to meet its specification, the termination property is implicit

due to the first-order structure of our logic. We have no way of representing that a

computation may not terminate, such as returning a function or a continuation; proofs

of correctness must establish that a result will be computed given enough time. This is

79

simultaneously a very useful property, and a restricting one: it means that we can always

count on our systems to give us either a solution or indicate that one does not exist,

but we cannot represent systems that operate continuously over infinite time horizons.

Extending the logic beyond batch planning systems, to include continuous monitoring

and execution systems, is a worthwhile goal for future research.

More advanced properties can also be represented. Consider a planner used in one of

the aforementioned continuous execution systems. In this case, we may want a planner

that makes the fewest decisions necessary to ensure that our goals are met, leaving the

most flexibility to a run-time executive to adjust the schedule of events to match the

situation as it evolves. Such a planner is said to be creating a least commitment plan.

Definition 15 (Least-Commitment Plan). A least commitment plan is the least constrained

plan that satisfies a given model and goal specification. In terms of the plan lattice, it is the meet

of the goal and model objects:

least_commit(m,g,p) ≜ p ≡ (m∧ g) (6.2)

At the opposite extreme, if there is no run-time support available, such as if a robot

can only be programmed with predetermined actions on a fixed schedule, the system

may need to produce a grounded plan.

Definition 16 (Grounded Plan). A grounded plan is the most constrained plan that both

satisfies and a given model and goal specification and is not empty. If it exists, in addition to the

normal correctness specification it also satisfies the sentence:

grounded(p) ≜ ∀mg : T ,
[(
∀y : T , (y→ m∧ y→ g∧¬(y ≡ ⊥)) → (p→ y)

)
∧¬(p ≡ ⊥)

]
(6.3)

Intuitively, a grounded plan is one that has had all of the decisions made ahead of

time. Adding any more constraints to the problem will either have no effect or lead to a

conflict.

Depending on the structure of the planning system’s architecture, these properties

may be preserved (or not) when components having them are combined. The next section

80

describes two major roles that components play in architectures, and how that affects their

specifications.

6.2.2 Leaf and coordinator planners

S

B

A

C

Figure 6-1: An example system containing both coordinator (A) and leaf planners (B, C).

Decomposing the system into a tree implies that planners can be given one of two

distinct roles: that of a coordinating planner and that of a leaf planner. Coordinating plan-

ners are responsible for dispatching appropriate sub-problems to their children and then

recombining the results in a principled way that builds a solution to their original input.

Leaf planners, having no children, are independently responsible for providing solutions

to the problems given to them. Figure 6-1 shows a basic system containing both a coordi-

nating planner, A, and a pair of leaf planners, B and C.

To view this idea from another angle, consider the system from the problem decompo-

sition perspective as shown in figure 6-2. There must be a certain relationship between the

original input problem and the subproblems dispatched to the subplanners in order for

solutions to the latter to be useful. These subproblems are not necessarily going to be full

81

A’s Problem

e0 e1 e3

e2

B’s Problem

e0 e1

C’s Problem

e1 e3

e2

Coordinating
Constraint

Figure 6-2: A possible problem decomposition for the example architecture.

refinements of the original; for example, a path planner that is used to plan a trajectory

between two points may be tasked with a subproblem, the solution to which does not

fully solve the original problem. The task of a coordinating planner is to dispatch appro-

priate subproblems to its child planners and recombine them to produce a complete plan

that entails the original input problem—or to decide that no such plan is possible. Leaf

planners have a much simpler job, as they simply need to satisfy their own specifications

and provide correct outputs to their callers without invoking other planners.

A trivial, and not particularly useful, coordinating planner may do nothing to trans-

form its input and simply pass the problem directly along to a subplanner. A more useful

coordinator may modify the QSP by adding additional events and activities, such that

the new QSP is a refinement of the old, and dispatch individual activities to subplan-

ners. A correct composition of the results then depends on whether the QSPs can be

combined safely with regards to temporal and state constraints. Coordinating planners

will often need to manage information about coordinating constraints: constraints in the

original problem which cross the boundaries between subproblems in the decomposition.

This type of scenario is illustrated in figure 6-2, which shows a possible decomposition of

a problem that introduces a coordinating constraint not captured in the subproblems. If

the decomposition is not done appropriately, the resulting solutions to the subproblems

82

may be impossible to reconcile.

One might reasonably ask, what guidelines exist to ensure that decompositions are

safe? We can describe, at a high level, what kinds of operations we need to find and use

these specifications as a starting point for either a traditional algorithm design process or

a stepwise refinement approach. To a first approximation, we want to ensure that there

exist operations decompose, with type T → T × T ; refine (T → T); and recompose (T × T → T)

such that the diagram shown in figure 6-3 commutes.

A A’

(A1, A2) (A1’, A2’)

refine

refine × refine

composedecompose ≥

Figure 6-3: Commutative diagram specification for decompose, refine, and compose.

In essence, we want to be able to break a problem into two (or more, through repeated

decomposition) subproblems, solve them individually, and then combine them back to a

solution to the overall problem. This is the specification for the standard divide-and-

conquer method. A trivial implementation of decompose may opt to always return a pair

containing the original problem and the universal problem (which accepts all solutions);

this could satisfy the specification when paired with an implementation of compose that

just returns the first element of a pair (i.e. the refinement of the original problem). How-

ever, this isn’t a very useful design as it doesn’t reduce the complexity of the problem

at all. A better option will reduce the problem complexity so that the subproblems each

capture an even portion of the constraints and have similar levels of difficulty.

The particulars of how to implement these operations is dependent on the data struc-

ture being used and the ways in which its constraints interact. For the QSP, our ex-

ample structure, the temporal constraints are simple to decompose because they have

well-defined coordination points—the events—and interval arithmetic can be applied to

introduce new ones convenient for the decomposition. As an example, consider the fol-

lowing procedure for finding a decomposition of a temporal network:

83

1. For each event e in the graph, create two events e ′ and e ′′ connected by the constraint

set {[0, 0]}. Connect e ′ as the target for any constraints that ended at e, and e ′′ for any

constraints originating from e ′′ as represented in the directed graph interpretation

of temporal constraint networks.

2. The temporal network is now a directed graph with twice the number of nodes.

Weight each edge by the sum of the sizes of the intervals contained in its constraint.

Find the most balanced min-cut of the graph, minimizing the weight of the cut

edges, such that dropping the selected edges separates it into two evenly-sized sub-

graphs. The events joined by the dropped edges are boundary events that interface

between the decomposed graphs.

3. In each of the new graphs, for each pair of events e ′, e ′′ connected by the constraint

set {[0, 0]}, merge the events into a single event e receiving the constraints incoming

to e ′ and sourcing the constraints outgoing from e ′′.

4. Solve the temporal constraint networks independently.

5. Recombine the solutions by reintroducing edges between the boundary events, merg-

ing these events as in step 3, and adjusting the timing of the “latter” constraint

network to account for the timing assignment to the boundary event made in the

“earlier” one.

This definition satisfies the diagram, and works well for temporal constraint networks.

However, it does not take into account interference between state constraints and thus

cannot be applied to generalized QSPs. State constraints are more challenging than tem-

poral constraints in large part because they apply continuously over periods time, rather

than at discrete instants1.

6.3 Entailment of Specifications and Internal Models

Once we have a description of the architecture and a set of specifications for the com-

ponents, we are well on our way to proving that the system behavior will satisfy these

1Recall that in the geometric interpretation of a QSP, state constraints were n-dimensional polytopic prisms
while temporal constraints are hyperplanes. The increased dimensionality adds complexity.

84

assertions. To do so, we will need one more piece: a model of the planner behavior for

each of the components.

Ultimately it is necessary to connect the specifications together by a formal reasoning

process. Abstract architectures and specification sets can create the structure to set up

these types of proofs for each component by providing the child component specifications

as axioms and the component’s own specification as a goal. The process of showing that

the specification is a logical consequence of the axioms for a non-trivial planner requires

that we know something about how the planner itself will transform the problem that is

not captured in the external structure. In a sense, we need to “peek inside the boxes” of

the architecture.

This can be done in a number of ways. A deceptively simple one is to use the planner’s

implementation itself as a perfect-fidelity model. Unless the planner was already written

with formal verification in mind, however, this will quickly lead to over-burdensome

proofs and may make the entire analysis intractable. For most real-world systems a sim-

plified model is necessary; it may even make certain assumptions about the behavior of

the planner that are not formally verified, though these will naturally be areas of weak-

ness for the proofs that rely on them. As an example, an activity planner that is often

used as a coordinating planner may assert that the implementation only ever dispatches

problems to subplanners that are free of state constraint interference. This simplifies the

modeling of the compose operation at the cost of either an unchecked assumption, or the

proof obligation to demonstrate that this property holds.

A good model of the system must provide the analyst with confidence that the fidelity

is high enough to capture the system behavior accurately, yet be small enough to be

analyzable within a reasonable time frame. It should not make more assumptions about

the system than are absolutely necessary. To be useful with this framework, it should

be built in a formal language that is powerful enough to express the specification logic,

logically sound, and provides support to the programmer in creating their models and

proofs. How to write these models is well beyond the scope of this thesis, but there is a

substantial body of literature in the formal methods community that aims to convey this

skillset to the motivated practitioner (c.f. [17] for a model-checking approach, [48] for a

theorem proving one).

85

6.4 Example: Describing Sulu

The Sulu planner is a capable path planner that uses a disjunctive linear programming

approach to solve finite horizon planning problems [8]. Sulu is a leaf planner, so we do

not require a model of its internal transformations for architectural analysis. It produces

grounded plans that use a fixed increment time discretization.

Abstract
Architecture

A

S A ↦ Sulu

…

Instantiation Table

+ ⇒

Concrete
Architecture

Sulu

S

Figure 6-4: Abstract architecture, instantiation table, and concrete architecture for the leaf planner Sulu.

When constructing a description of the planner we should include these properties

within the specification set. Representing grounding is simple, using the definition given

above:

∀mgp : QSP, s(m,g) = p→ grounded(p) (6.4)

Exposing the time discretization within the logic requires creating a predicate that

acts to select only those QSPs whose events are assigned to times that are multiples of

the discretization interval. The predicate must have type T → T to be used within the

specification logic, though it will need to be defined within the metalogic and made

available via the specification logic’s signature.

discretized(x) = ∀e : Event, e ∈ x =⇒ (te mod tint) = 0 (6.5)

Where te is the time assigned to the event and tint is the discretization interval. After

exposing this predicate within the specification logic signature, we can reference it as:

∀mgp : QSP, s(m,g) = p→ discretized(p) (6.6)

This property “bubbles up” to any coordinating planner that uses Sulu to generate sub-

86

plans, causing its plans to be at least partially discretized. Capturing the discretization in

this way allows the system analyst to determine if the sub-plans generated by Sulu are

compatible with the rest of the system.

6.5 Example: Describing ScottyPath

In contrast to Sulu, ScottyPath is a continuous time planner that is well suited for long

horizon planning but does not make use of the fine-grained dynamics that Sulu can

handle. Used on its own, it is able to generate useful high level plans. We also conjecture

that its fidelity can be increased by using its high-level plans to provide a road map that

is then expanded by lower level planners (NB: this remains a conjecture, for which future

work is planned). In this scenario, ScottyPath becomes a coordinating planner whose

discretization depends on that of its child.

Abstract
Architecture

A

S A ↦ ScottyPath

…

Instantiation Table

+ ⇒

Concrete
Architecture

Scotty

S

B

B ↦ Identity

Identity

Figure 6-5: Abstract architecture, instantiation table, and concrete architecture for Scotty paired with an
“identity” planner.

We can approximate the leaf planner behavior by binding the child to an “identity”

planner, i.e. a planner that always returns its own input, as shown in figure 6-5. Notice

that the composite, S, appears to the outside world as a leaf planner for all intents and

purposes; it has no remaining assignments to be made. The specification for S then is

the specification for a leaf-variant ScottyPath, including primary properties describing

ScottyPath’s particular environment representation. Rather than using a disjunction of

half-planes to describe obstacles for the system to avoid, ScottyPath uses conjunctions of

half-planes to describe obstacle-free safe regions that the system must remain within.

This environment representation, along with ScottyPath’s requirement that all state

and control variables be bounded, leads to a predicate on the state constraints defining

the class of QSPs that maintain convex bounds on all variables at all times:

87

bounded(x) = ∀(v ∈ vars(x))(es, ef ∈ events(x)),

|C(es, ef)| > 0

∧ ∀c ∈ C(es, ef), es ⩽ t ⩽ ef =⇒ lc ⩽ vt ⩽ uc

(6.7)

ScottyPath will also require that the events in the QSP are sufficiently constrained to

have a unique total ordering. We can model this by requiring that there exist a unique

injection from the times of each event in the QSP onto the natural numbers that retains

the ordering of the event timepoints.

ordered(x) = ∃!(f : Event → N),

∀e e ′ ∈ events(x), (f(e) = f(e ′) =⇒ e = e ′)

∧ (f(e) ⩽ f(e ′) =⇒ te ⩽ t ′e)

(6.8)

Another architectural option is to use Sulu as the child planner. In this case, the input

requirements to ScottyPath remain the same but the output properties change; namely,

because Sulu discretizes time the portion of ScottyPath’s output QSP that was formed by

Sulu will also have a discrete time formulation. When Sulu is used to refine activities

generated by Scotty, the QSPs dispatched to it will need to be flexible enough to allow

Sulu to generate feasible plans. This is true for any arrangement of planners, but becomes

more pressing when the planners make different assumptions about time or state.

Combining these predicates, we can describe ScottyPath in the specification logic.

Here is a sentence showing the requirement for a total ordering and boundedness on

state:

∀mgp : QSP, s(m,g) = p→ [(¬bounded(m)∨¬ordered(g)) → (p = ⊥)] (6.9)

When ScottyPath is used as a coordinating planner, it may make sense to re-export the

properties of the subplanner—referred to as t in the specification below—as properties of

the composite system. To do so is simple, by stating that any witness object to a property

asserted on solutions of the subplanner is also a witness to that property on the solutions

of the composite:

88

∀mm ′ gg ′ pp ′ : QSP, [(t(m ′,g ′) = p ′) → x] → [(s(m,g) = p) → x] (6.10)

6.6 Example: Specification as a Design Aid

Description of existing components is a useful activity and provides the building blocks

for new designs. However, we are not limited to discussing components that are already

implemented—we can also design conceptual architectures that do not yet have an im-

plementation and test them for feasibility. To do this we must first describe the abstract

architecture and then determine if the components needed to instantiate it are possible to

build.

To drive our example, let us consider the design of a least-commitment planning

system. We can begin our design by writing the specification for the overall system, S.

The specification set will begin with the following entries constraining S:

1. constraint_correct(s)

2. ∀mgp : T , s(m,g) ≡ p→ least_commit(m,g,p)

The basic abstract architecture has a single abstract component, A. We can attempt to

instantiate this component with a single concrete component, if we have confidence that

the problem can be fully solved using one program. If this is not the case—such as if the

desired system needs to be able to operate over a very long time horizon—we may opt to

break the system up into a coordinating planner A and a leaf planner B instead. A will

inherit the overall system specification, as it is the root component. What specification is

needed for the leaf planner?

To show that the combined system always yields a least commitment plan, we need

to build a proof showing that the least_commit property holds given the subplanner

specifications as assumptions. If we try to use a grounded planner like Sulu as our

leaf planner, the assumption we obtain is that the plans coming from the subplanner

will be completely determined with no choice left in them. For some combinations of

models and goals this may be the least-commitment plan, but for the majority it will not

be; constructing the proof of least commitment for the coordinating planner will almost

89

certainly require us to ignore the plans generated by Sulu. This approach doesn’t help us

reduce the complexity of the problem in any meaningful way.

Another approach is to use a planner that is neither grounded nor least-commitment; a

similar problem arises here, because we have no information about the amount of freedom

that the planner will provide in its solutions to use in our proofs. Clearly, the best solution

is to use a least-commitment subplanner. Our specification for the subplanner B thus

mirrors the specification for S as a whole.

With a useful subplanner in place we can now decide what behavior we need to

have from A, in terms of the subplans it dispatches to B, to satisfy its specification. Re-

call the commutative diagram from figure 6-3: subplanner problems are generated by a

decompose operation and combined by a compose operation. Together, these operations

must preserve the least_commit property for the specification to be met. Because the

specification of least_commit is given as a meet of two objects, we want to select opera-

tions that preserve meets. If we assume compose = ∧, then we want decompose to yield

subproblems g0,g1 such that p ≡ g0 ∧ g1; then demonstrating least_commit is as simple

as showing that the sentence

∀mg, decompose(g) ≡ (g0,g1) → [(m∧ g0)∧ (m∧ g1)] ≡ (m∧ g) (6.11)

holds for the implementation of decompose.

Each of the steps taken in this example is an instance of a specification preserving

refinement. Using this process we add more detail to the components in the architec-

ture, their specifications, and their arrangement until we arrive at a set of implementable

designs. If we have existing components we want to use, we can see their effect on the

architecture by incorporating them and their specifications and attempting to prove the

properties we want from the resulting system model. In some cases this will reveal a

simple way to reuse existing components. In others, as outlined here, the existing com-

ponent’s properties are incompatible with our goals and we must design new ones. In

either case the abstract architecture and its specification set enable the designer to evalu-

ate options quickly.

90

6.7 Summary

Enterprise as a system provides planners to fit a number of different roles. These largely

fall into two classes: leaf planners that have no children, and coordinator planners that

do. The description of the input and output properties required for these planners can

be expressed in the first-order specification logic defined in this thesis. In general, coordi-

nator planners will tend to take on the characteristics of their subordinate planners. Two

examples of planners, Sulu and ScottyPath, demonstrate different approaches to the rep-

resentation of time and obstacles and example specification sentences were demonstrated.

As a closing example, I showed how using the modeling approach described in this thesis

can lead to insights about which components to use to achieve a given design objective,

and how to begin a design by refining a specification.

91

92

Chapter 7

Conclusion

7.1 Summary of Contributions

In this thesis I have demonstrated the need for a formal modeling approach to aid in the

design of composite planning systems. The existing literature has not yet solved this prob-

lem fully, and a major gap addressed in this thesis is the lack of an appropriate language

for expressing specifications for the components of these systems. I have demonstrated

that such a language can be created by using techniques from the field of mathematical

logic, and that a strong semantics for a first-order logic can be created using the alge-

braic properties of the data structures used to represent both the problems solved by the

components and the solutions themselves.

This language is intended for use in analyzing system architectures for correctness. To

support this activity an appropriately minimal model of a planning system was demon-

strated, and connected to specifications expressed in the logic. These models support

a variety of abstraction levels and are able to express many different architectures; the

distinction between an abstract architectural structure and the instantiation table used to

make it concrete enables this.

In Chapter 6 I demonstrated the application of the logic to modeling problems, using

Enterprise as a case study. Enterprise provides a wealth of planners designed for different

applications. I have provided formal descriptions of the common properties of these

planners in the specification logic, and addressed a few particular example planners (Sulu

and ScottyPath) directly. As well as describing existing planners, Chapter 6 demonstrates

how to use the logic as a design aid to guide the architect in creating systems to meet

93

particular specifications, either by reusing existing planning components off-the-shelf or

by creating new ones by refining their specifications to implementations.

7.2 Future Work

This thesis presents the beginning of what I expect to be a fruitful area of research at

the intersection of software architecture, automated planning, and formal verification. I

foresee three major areas of extension: the design and implementation of component

models; extensions to the logical framework to enable more expressive specifications; and

expansion of the architectural modeling techniques to relax the constraints imposed on

the system design and allow more systems to be captured.

7.2.1 Component Modeling

Component models are the glue that binds together planner specifications. As discussed

in Chapter 6, these models may be made at several levels of fidelity ranging from a full

implementation to a highly abstracted approximation of the desired component behavior.

Different levels of modeling are appropriate at different points in the design process, due

to their cost to develop and computational requirements.

Extensions to this research should proceed with the approach adopted by the Mission

Data System developed by Ingham, et al [16]. This would involve creating a library

of pre-made models that can be used to explore various architectures, each of which is

conceptually linked to a full implementation of the given algorithm for use in production

systems. These models should be implemented in a computerized proof assistant or other

formal modeling language so that they are able to be model-checked or used as the basis

for theorem proving.

7.2.2 Logical Extensions

The logic defined in this paper is a reasonably powerful one, but it does not fully capture

all of the properties that may be of interest in verifying an autonomous system. Some of

these omissions are intentional—for instance, I do not attempt to model channel proper-

ties due to their treatment in the existing literature. Others are a matter of practicality

given the need to demonstrate that such a logic could be defined in the first place.

94

A richer logic would give the system designer more powerful tools. Extending the

logic to include functions, rather than simple function symbols, would enable component

models to be expressed within the logic itself. Another approach that raises the logic

to include linear operators would enable the modeling of finite computational resources

such as time, memory, and risk. These are particularly important for real-time systems

such as those used on spacecraft. A modal logic along the lines of LTL1 would open

up the world of partiality, allowing the system architect to consider the use of planners

that may not return solutions, or to add bounds to their execution time. Logics that

can represent infinite streams of data may be useful for modeling and verification of

continuous planning and execution systems.

Most of these extensions involve finding (or defining) additional structure within the

poset of problems beyond a Heyting algebra. Categorical semantics provides the theoret-

ical framework for discovering these structures in terms of the category-theoretic analogs

they must correspond to. For example, extending the logic to include functions means

that the category of problems (say, of QSPs) must be cartesian closed; if sufficient structure

can be defined to accomplish this, the category is a model of the simply-typed lambda

calculus, which can then be used as the specification language. Similar statements can be

made for the other extensions suggested in this section2.

7.2.3 Flexible Architectural Models

In the introductory chapter of this thesis, I defined a restricted modeling formalism used

to capture the major relations of a composite planning system’s architecture. The ap-

proach is limited in that it forces the architecture to be a tree-like structure, and cannot

represent systems in which planner have circular references to each other. This type of

system, however, can be quite useful. A more expressive, graph-based representation

would allow the modeler to capture more architectures and close the abstraction gap

between the model and the as-built system.

1LTL, as a monadic logic, does not allow modeling of function symbols or relations that are not unary,
which the logic defined in this thesis permits.

2c.f. Section 5.4.

95

96

Appendix A

Z3 Program to Find

Pseudocomplements of a Heyting

Algebra

(declare-datatypes () ((T O A B C AB AC BC ABC)))

(define-fun lte ((a T) (b T)) Bool

(or

(and (= a O) (= b O))

(and (= a O) (= b A))

(and (= a O) (= b B))

(and (= a O) (= b C))

(and (= a O) (= b AB))

(and (= a O) (= b AC))

(and (= a O) (= b BC))

(and (= a O) (= b ABC))

(and (= a A) (= b A))

(and (= a A) (= b AB))

(and (= a A) (= b AC))

(and (= a A) (= b ABC))

(and (= a B) (= b B))

97

(and (= a B) (= b AB))

(and (= a B) (= b BC))

(and (= a B) (= b ABC))

(and (= a C) (= b C))

(and (= a C) (= b AC))

(and (= a C) (= b BC))

(and (= a C) (= b ABC))

(and (= a AB) (= b AB))

(and (= a AB) (= b ABC))

(and (= a AC) (= b AC))

(and (= a AC) (= b ABC))

(and (= a BC) (= b BC))

(and (= a BC) (= b ABC))

(and (= a ABC) (= b ABC))

))

;; General properties of lte:

;; Transitivity

(assert (forall ((a T) (b T) (c T)) (implies (and (lte a b) (lte b c)) (lte a c))))

;; Reflexivity

(assert (forall ((a T)) (lte a a)))

;; Antisymmetry

(assert (forall ((a T) (b T)) (implies (and (lte a b) (lte b a)) (= a b))))

(check-sat)

;; Bounding instances

(assert (forall ((a T)) (lte O a)))

(assert (forall ((a T)) (implies (distinct a O) (not (lte a O)))))

(assert (forall ((a T)) (lte a ABC)))

(assert (forall ((a T)) (implies (distinct a ABC) (not (lte ABC a)))))

98

(define-fun is-meet ((a T) (b T) (c T)) Bool

(and (and (lte c a) (lte c b))

(forall ((d T))

(implies (and (lte d a) (lte d b))

(lte d c)))))

(define-fun is-join ((a T) (b T) (c T)) Bool

(and (and (lte a c) (lte b c))

(forall ((d T))

(implies (and (lte a d) (lte b d))

(lte c d)))))

;; Examples

(push)

(declare-const a T)

(declare-const b T)

(declare-const c T)

(assert (= a A))

(assert (= b B))

(push)

;; Find a meet between A and B: This is O.

(assert (= (is-meet a b c) true))

(check-sat)

(pop)

(push)

;; Find a join between A and B: This is AB.

99

(assert (= (is-join a b c) true))

(check-sat)

(pop)

(pop)

(push)

;; Theorem checking: all elements have a meet.

(echo "Meets (OK iff unsat):")

(assert (not (forall ((a T) (b T)) (exists ((c T)) (is-meet a b c)))))

(check-sat)

(pop)

(push)

;; Theorem checking: all elements have a join.

(echo "Joins (OK iff unsat):")

(assert (not (forall ((a T) (b T)) (exists ((c T)) (is-join a b c)))))

(check-sat)

(pop)

(declare-fun is-arrow (T T T) Bool)

;; Aliases for top and bottom

(define-fun Top () T ABC)

(define-fun Bot () T O)

;; Axioms of Heyting implication:

(define-fun self-implication () Bool

(forall ((a T))

(is-arrow a a Top)))

100

(assert self-implication)

(define-fun modus-ponens () Bool

(forall ((a T) (b T) (c T) (d T))

(implies (and (is-arrow a b c)

(is-meet a c d))

(is-meet a b d))))

(assert modus-ponens)

(define-fun arrow-elim () Bool

(forall ((a T) (b T) (c T) (d T))

(implies (and (is-arrow a b c))

(is-meet b c b))))

(assert arrow-elim)

(define-fun meets-distr () Bool

(forall ((a T) (b T) (c T) (d T) (e T) (f T) (g T) (h T))

(implies (and

(is-meet b c d)

(is-arrow a d e)

(is-arrow a b f)

(is-arrow a c g))

(is-meet f g e))))

(assert meets-distr)

(define-fun all-implications () Bool

(forall ((a T) (b T)) (exists ((c T)) (is-arrow a b c))))

101

(assert all-implications)

(define-fun bottom-implies-all () Bool

(forall ((a T)) (is-arrow Bot a Top)))

(assert all-implications)

(check-sat)

(get-model)

102

Bibliography

[1] Ari K Jonsson, Paul H Morris, Nicola Muscettola, et al. “Planning in Interplanetary
Space: Theory and Practice”. In: Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems (Apr. 14, 2000–Apr. 17, 2000), p. 6.

[2] Douglas E. Bernard, Edward B. Gamble, Nicolas F. Rouquette, et al. Remote Agent
Experiment DS1 Technology Validation Report. 2000.

[3] Nicola Muscettola, P Pandurang Nayak, Barney Pell, et al. “Remote Agent: To
Boldly Go Where No AI System Has Gone Before”. In: Artificial Intelligence 103.1-
2 (Aug. 1, 1998), pp. 5–47. doi: 10.1016/S0004- 3702(98)00068- X. url: http:
//linkinghub.elsevier.com/retrieve/pii/S000437029800068X.

[4] JPL. JPL History: The 90s Overview. May 5, 2016. url: https://web.archive.org/
web/20160505173534/https://www.jpl.nasa.gov/jplhistory/the90/ (visited
on 02/21/2019).

[5] Ilana Dashevsky and Vicki Balzano. “JWST: Maximizing Efficiency and Minimizing
Ground Systems”. In: 2007 International Symposium on Reducing the Costs of Spacecraft
Ground Systems and Operations Proceedings. 2007, p. 6.

[6] Matt Luckcuck, Marie Farrell, Louise Dennis, et al. “Formal Specification and Verifi-
cation of Autonomous Robotic Systems: A Survey”. In: (June 29, 2018). arXiv: 1807.
00048 [cs]. url: http://arxiv.org/abs/1807.00048 (visited on 02/18/2019).

[7] Daniel Jackson. “Alloy: A Language and Tool for Exploring Software Designs”. In:
(To Appear) Communications of the ACM (2019).

[8] Thomas Léauté and Brian C Williams. “Coordinating Agile Systems through the
Model-Based Execution of Temporal Plans.” In: AAAI (Jan. 1, 2005). url: https:
//dblp.org/rec/conf/aaai/LeauteW05.

[9] Enrique Fernández-González, Erez Karpas, and Brian Charles Williams. “Mixed
Discrete-Continuous Planning with Convex Optimization.” In: AAAI (Jan. 1, 2017).
url: https://dblp.org/rec/conf/aaai/Fernandez-Gonzalez17.

[10] Nancy G Leveson. Engineering a Safer World. Systems Thinking Applied to Safety.
MIT Press, Jan. 13, 2012. 560 pp. isbn: 0-262-29730-2.

[11] Todd Bayer. “Is MBSE Helping? Measuring Value on Europa Clipper”. In: 2018
IEEE Aerospace Conference. 2018 IEEE Aerospace Conference. Mar. 2018, pp. 1–13.
doi: 10/gfvsnh.

[12] NASA Software Safety Guidebook. NASA-GB-8719.13. National Aeronautics and Space
Administration, Mar. 31, 2004. url: https://standards.nasa.gov/file/2617/
download?token=-ONrGarI.

103

https://doi.org/10.1016/S0004-3702(98)00068-X
http://linkinghub.elsevier.com/retrieve/pii/S000437029800068X
http://linkinghub.elsevier.com/retrieve/pii/S000437029800068X
https://web.archive.org/web/20160505173534/https://www.jpl.nasa.gov/jplhistory/the90/
https://web.archive.org/web/20160505173534/https://www.jpl.nasa.gov/jplhistory/the90/
https://arxiv.org/abs/1807.00048
https://arxiv.org/abs/1807.00048
http://arxiv.org/abs/1807.00048
https://dblp.org/rec/conf/aaai/LeauteW05
https://dblp.org/rec/conf/aaai/LeauteW05
https://dblp.org/rec/conf/aaai/Fernandez-Gonzalez17
https://doi.org/10/gfvsnh
https://standards.nasa.gov/file/2617/download?token=-ONrGarI
https://standards.nasa.gov/file/2617/download?token=-ONrGarI

[13] Tazeen Mahtab, Gregory T Sullivan, and Brian C Williams. “Automated Verification
of Model-Based Programs Under Uncertainty”. In: (June 18, 2004), pp. 1–7. url:
https://groups.csail.mit.edu/mers/papers/isda04-mba-final.pdf.

[14] G. Brat, E. Denney, D. Giannakopoulou, et al. “Verification of Autonomous Systems
for Space Applications”. In: 2006 IEEE Aerospace Conference. 2006 IEEE Aerospace
Conference. Mar. 2006, 11 pp.–. doi: 10/bf3vxh.

[15] INCOSE Technical Operations. INCOSE Systems Engineering Vision 2020. INCOSE-
TP-2004-004-02. International Council on Systems Engineering, 2007.

[16] Michel D Ingham, Robert D Rasmussen, Matthew B Bennett, et al. “Engineering
Complex Embedded Systems with State Analysis and the Mission Data System”.
In: Journal of Aerospace Computing, Information, and Communication 2.12 (Dec. 1, 2005),
pp. 507–536. doi: 10.2514/1.15265. url: http://arc.aiaa.org/doi/10.2514/1.
15265.

[17] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis Revised Edition.
MIT Press, Nov. 2011. 376 pp. isbn: 978-0-262-01715-2.

[18] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, et al. “Fiat”. In: POPL ’15.
The 42nd Annual ACM SIGPLAN-SIGACT Symposium. SIGPLAN, ACM Special
Interest Group on Programming Languages, Jan. 1, 2015, pp. 689–700. isbn: 978-1-
4503-3300-9. doi: 10.1145/2676726.2677006. url: http://dl.acm.org/citation.
cfm?doid=2676726.2677006.

[19] James McDonald and John Anton. SPECWARE: Producing Software Correct by Con-
struction. Kestrel Institute, Mar. 14, 2001.

[20] M. Zimmerman, M. Rodriguez, B. Ingram, et al. “Making Formal Methods Practi-
cal”. In: 19th DASC. 19th Digital Avionics Systems Conference. Proceedings (Cat. No.00CH37126).
19th Digital Avionics System Conference. Proceedings. Vol. 1. Philadelphia, PA,
USA: IEEE, 2000, 1B2/1–1B2/8. isbn: 978-0-7803-6395-3. doi: 10/fs55xh. url: http:
//ieeexplore.ieee.org/document/886879/ (visited on 02/12/2019).

[21] K. Havelund, M. Lowry, and J. Penix. “Formal Analysis of a Space-Craft Controller
Using SPIN”. In: IEEE Transactions on Software Engineering 27.8 (Aug./2001), pp. 749–
765. issn: 00985589. doi: 10.1109/32.940728. url: http://ieeexplore.ieee.org/
document/940728/ (visited on 05/21/2019).

[22] Klaus Havelund, Mike Lowry, SeungJoon Park, et al. “Formal Analysis of the Re-
mote Agent Before and After Flight”. In: The Fifth NASA Langley Formal Methods
Workshop. Virginia, June 2000, p. 12.

[23] Leslie Lamport. “Specifying Concurrent Systems with TLA+”. In: (Mar. 1999), p. 68.

[24] Klaus Havelund and Grigore Rou. “Runtime Verification - 17 Years Later”. In: Run-
time Verification. Ed. by Christian Colombo and Martin Leucker. Vol. 11237. Cham:
Springer International Publishing, 2018, pp. 3–17. isbn: 978-3-030-03768-0 978-3-030-
03769-7. doi: 10.1007/978-3-030-03769-7_1. url: http://link.springer.com/
10.1007/978-3-030-03769-7_1 (visited on 05/21/2019).

104

https://groups.csail.mit.edu/mers/papers/isda04-mba-final.pdf
https://doi.org/10/bf3vxh
https://doi.org/10.2514/1.15265
http://arc.aiaa.org/doi/10.2514/1.15265
http://arc.aiaa.org/doi/10.2514/1.15265
https://doi.org/10.1145/2676726.2677006
http://dl.acm.org/citation.cfm?doid=2676726.2677006
http://dl.acm.org/citation.cfm?doid=2676726.2677006
https://doi.org/10/fs55xh
http://ieeexplore.ieee.org/document/886879/
http://ieeexplore.ieee.org/document/886879/
https://doi.org/10.1109/32.940728
http://ieeexplore.ieee.org/document/940728/
http://ieeexplore.ieee.org/document/940728/
https://doi.org/10.1007/978-3-030-03769-7_1
http://link.springer.com/10.1007/978-3-030-03769-7_1
http://link.springer.com/10.1007/978-3-030-03769-7_1

[25] R. Halder, J. Proença, N. Macedo, et al. “Formal Verification of ROS-Based Robotic
Applications Using Timed-Automata”. In: 2017 IEEE/ACM 5th International FME
Workshop on Formal Methods in Software Engineering (FormaliSE). 2017 IEEE/ACM
5th International FME Workshop on Formal Methods in Software Engineering (For-
maliSE). May 2017, pp. 44–50. doi: 10/gfvnnp.

[26] M Ono, Brian C Williams, and Lars Blackmore. “Probabilistic Planning for Con-
tinuous Dynamic Systems under Bounded Risk”. In: Journal of Artificial Intelligence
Research 46 (Jan. 1, 2013), pp. 511–577. doi: 10.1613/jair.3893. url: https://jair.
org/index.php/jair/article/view/10808.

[27] Catharine L R McGhan, Richard M Murray, Romain Serra, et al. “A Risk-Aware
Architecture for Resilient Spacecraft Operations”. In: 2015 IEEE Aerospace Conference.
2015 IEEE Aerospace Conference. IEEE, Jan. 1, 2015, pp. 1–15. isbn: 978-1-4799-
5379-0. doi: 10.1109/aero.2015.7119035. url: http://ieeexplore.ieee.org/
document/7119035/.

[28] Phil Kim, Brian C Williams, and Mark Abramson. “Executing Reactive, Model-
Based Programs through Graph-Based Temporal Planning”. In: Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence. IJCAI 2001. Seattle,
Washington, Jan. 2001, p. 7.

[29] Benjamin James Ayton. “Risk-Bounded Autonomous Information Gathering for
Localization of Phenomena in Hazardous Environments”. Master’s Thesis. Cam-
bridge, Massachusetts: Massachusetts Institute of Technology, Sept. 2017. 150 pp.

[30] NASA. Planetary Science and Technology Through Analog Research (PSTAR) Program
Abstracts of Selected Proposals. NNH15ZDA001N-PSTAR. National Aeronautics and
Space Administration, 2016. url: https://astrobiology.nasa.gov/research/
astrobiology-at-nasa/pstar/ (visited on 04/19/2019).

[31] Rina Dechter, Itay Meiri, and Judea Pearl. “Temporal Constraint Networks”. In: Arti-
ficial Intelligence 49.1-3 (May 1, 1991), pp. 61–95. doi: 10.1016/0004-3702(91)90006-
6. url: http://linkinghub.elsevier.com/retrieve/pii/0004370291900066.

[32] Henri Mühle. “A Heyting Algebra on Dyck Paths of Type A and B”. In: Order
34.2 (July 2017), pp. 327–348. issn: 0167-8094, 1572-9273. doi: 10/gfxzhv. arXiv:
1312.0551. url: http://arxiv.org/abs/1312.0551 (visited on 04/04/2019).

[33] Sten Lindström and Erik Palmgren. “Introduction: The Three Foundational Pro-
grammes”. In: Logicism, Intuitionism, and Formalism. Ed. by Sten Lindström, Erik
Palmgren, Krister Segerberg, et al. Dordrecht: Springer Netherlands, 2009, pp. 1–23.
isbn: 978-1-4020-8925-1 978-1-4020-8926-8. doi: 10.1007/978-1-4020-8926-8_1.
url: http://link.springer.com/10.1007/978-1-4020-8926-8_1 (visited on
04/08/2019).

[34] J Baez and M Stay. “Physics, Topology, Logic and Computation: A Rosetta Stone”.
In: New Structures for Physics. Vol. 813. Chapter 2 vols. Berlin, Heidelberg: Springer,
Berlin, Heidelberg, Jan. 1, 2010, pp. 95–172. isbn: 978-3-642-12820-2. doi: 10.1007/
978-3-642-12821-9_2. url: https://link.springer.com/chapter/10.1007/978-
3-642-12821-9_2.

105

https://doi.org/10/gfvnnp
https://doi.org/10.1613/jair.3893
https://jair.org/index.php/jair/article/view/10808
https://jair.org/index.php/jair/article/view/10808
https://doi.org/10.1109/aero.2015.7119035
http://ieeexplore.ieee.org/document/7119035/
http://ieeexplore.ieee.org/document/7119035/
https://astrobiology.nasa.gov/research/astrobiology-at-nasa/pstar/
https://astrobiology.nasa.gov/research/astrobiology-at-nasa/pstar/
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1016/0004-3702(91)90006-6
http://linkinghub.elsevier.com/retrieve/pii/0004370291900066
https://doi.org/10/gfxzhv
https://arxiv.org/abs/1312.0551
http://arxiv.org/abs/1312.0551
https://doi.org/10.1007/978-1-4020-8926-8_1
http://link.springer.com/10.1007/978-1-4020-8926-8_1
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1007/978-3-642-12821-9_2
https://link.springer.com/chapter/10.1007/978-3-642-12821-9_2
https://link.springer.com/chapter/10.1007/978-3-642-12821-9_2

[35] A. S. Troelstra. “History of Constructivism in the 20th Century”. In: Set Theory, Arith-
metic, and Foundations of Mathematics. Ed. by Juliette Kennedy and Roman Kossak.
Cambridge: Cambridge University Press, 2011, pp. 150–179. isbn: 978-0-511-91061-
6. doi: 10 . 1017 / CBO9780511910616 . 009. url: https : / / www . cambridge . org /
core/product/identifier/CBO9780511910616A014/type/book_part (visited on
04/08/2019).

[36] John Myhill. “Embedding Classical Logic in Intuitionistic Logic”. In: Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 19.3-6 (1973), pp. 93–96. issn:
00443050, 15213870. doi: 10/bdg42n. url: http://doi.wiley.com/10.1002/malq.
19730190307 (visited on 03/19/2019).

[37] P T Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University
Press, Sept. 12, 2002. 716 pp. isbn: 978-0-19-851598-2. url: http://books.google.
com/books?id=TLHfQPHNs0QC&printsec=frontcover&dq=inauthor:johnstone+
elephant&hl=&cd=1&source=gbs_api.

[38] Martin Davis. “The Incompleteness Theorem”. In: Notices of the AMS 53.4 (2006),
p. 5.

[39] Arend Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse. 2.
Berlin, 1930.

[40] Hui X. Li. “Kongming: A Generative Planner for Hybrid Systems with Temporally
Extended Goals”. PhD Thesis. Massachusetts Institute of Technology, June 23, 2010.

[41] E. Bradley and F. Zhao. “Phase-Space Control System Design”. In: IEEE Symposium
on Computer-Aided Control System Design. IEEE Symposium on Computer-Aided
Control System Design. Mar. 1992, pp. 68–75. doi: 10/d35xn2.

[42] Andreas G Hofmann. “Robust Execution of Bipedal Walking Tasks From Biome-
chanical Principles”. PhD Thesis. Massachusetts Institute of Technology, 2006.

[43] David Wang and Brian C Williams. “tBurton: A Divide and Conquer Temporal
Planner.” In: aaai.org (). url: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/
paper/viewFile/9749/9772.

[44] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. OCLC: 604227793.
Berlin; New York: Springer, 1995. isbn: 978-3-662-03182-7 978-3-662-03184-1. url:
http://public.eblib.com/choice/publicfullrecord.aspx?p=3097142 (visited
on 05/03/2019).

[45] Erik Palmgren. “Constructive Mathematics: Course Notes for the Copenhagen Sum-
mer School in Logic”. Copenhagen, NL, 1997.

[46] Douglas R Smith and Stephen J Westfold. Toward the Synthesis of Constraint Solvers.
Palo Alto, CA, Nov. 2, 2013, pp. 1–45. url: https://www.kestrel.edu/home/
people/smith/pub/CW-report.pdf.

[47] Vincent Danos and Roberto Di Cosmo. Introduction to Linear Logic: Notes for the MPRI
Course. 2016. url: http://www.dicosmo.org/CourseNotes/LinLog/IntroductionLinearLogic.
pdf (visited on 04/26/2019).

[48] Adam Chlipala. Certified Programming with Dependent Types. MIT Press, Dec. 2013.
isbn: 978-0-262-02665-9.

106

https://doi.org/10.1017/CBO9780511910616.009
https://www.cambridge.org/core/product/identifier/CBO9780511910616A014/type/book_part
https://www.cambridge.org/core/product/identifier/CBO9780511910616A014/type/book_part
https://doi.org/10/bdg42n
http://doi.wiley.com/10.1002/malq.19730190307
http://doi.wiley.com/10.1002/malq.19730190307
http://books.google.com/books?id=TLHfQPHNs0QC&printsec=frontcover&dq=inauthor:johnstone+elephant&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=TLHfQPHNs0QC&printsec=frontcover&dq=inauthor:johnstone+elephant&hl=&cd=1&source=gbs_api
http://books.google.com/books?id=TLHfQPHNs0QC&printsec=frontcover&dq=inauthor:johnstone+elephant&hl=&cd=1&source=gbs_api
https://doi.org/10/d35xn2
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9749/9772
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9749/9772
http://public.eblib.com/choice/publicfullrecord.aspx?p=3097142
https://www.kestrel.edu/home/people/smith/pub/CW-report.pdf
https://www.kestrel.edu/home/people/smith/pub/CW-report.pdf
http://www.dicosmo.org/CourseNotes/LinLog/IntroductionLinearLogic.pdf
http://www.dicosmo.org/CourseNotes/LinLog/IntroductionLinearLogic.pdf

	Introduction
	Motivation
	Approach and Innovations
	Structure of the Text

	Related Work
	Testing Autonomous Systems
	Applications of Formal Methods to Autonomous Systems
	Verifying Internal Message Semantics of Autonomy Architectures
	Summary

	Architectural Models & Problem Statement
	Notational Conventions
	Problem Statement
	Modeling and Specifying Architectures

	The Enterprise System Architecture
	Architectural Principles of Enterprise
	Common Representations
	Service Discovery and the Metadata Endpoint
	State Management

	Application: Undersea Exploration as a Space Analog
	Deployment: Au'Au' Channel, Hawai'i
	Deployment: Puntarenas Province, Costa Rica
	Future Developments: Santorini and Beyond

	Correctness, Validation, and Verification in the Modularized Architecture

	Logical Foundations
	Introduction
	A note on notation

	Fundamentals of Intuitionistic First-Order Logic
	Historical Background
	Signatures of First Order Logics
	Heyting Algebras

	Case Study: Qualitative State Plans (QSPs)
	Temporal Constraints
	State Constraints
	Definition of the Qualitative State Plan
	Use of Constraint Systems for Models, Goals, and Solutions
	The Heyting Algebra of Qualitative State Plans
	Evaluating FOL Formulae in the Heyting Poset

	Extensions: Abstraction and Refinement of Constraint Systems

	Application to Modeling and an Enterprise Case Study
	Abstract Architecture of Enterprise
	Modeling Activity and Path Planners
	Common Properties
	Leaf and coordinator planners

	Entailment of Specifications and Internal Models
	Example: Describing Sulu
	Example: Describing ScottyPath
	Example: Specification as a Design Aid
	Summary

	Conclusion
	Summary of Contributions
	Future Work
	Component Modeling
	Logical Extensions
	Flexible Architectural Models

	Z3 Program to Find Pseudocomplements of a Heyting Algebra

