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Abstract

Black box machine learning methods have allowed researchers to design accurate models
using large amounts of data at the cost of interpretability. Model interpretability not only
improves user buy-in, but in many cases provides users with important information. Especially
in the case of the classification problems addressed in this thesis, the ideal model should not
only provide accurate predictions, but should also inform users of how features affect the results.

My research goal is to solve real-world problems and compare how different classification
models affect the outcomes and interpretability. To this end, this thesis is divided into two
parts: food safety risk analysis and human trafficking detection. The first half analyzes the
characteristics of supermarket suppliers in China that indicate a high risk of food safety vi-
olations. Contrary to expectations, supply chain dispersion, internal inspections, and quality
certification systems are not found to be predictive of food safety risk in our data. The second
half focuses on identifying human trafficking, specifically sex trafficking, advertisements hidden
amongst online classified escort service advertisements. We propose a novel but interpretable
keyword detection and modeling pipeline that is more accurate and actionable than current
neural network approaches. The algorithms and applications presented in this thesis succeed in
providing users with not just classifications but also the characteristics that indicate food safety
risk and human trafficking ads.
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Chapter 1

Thesis Overview

This thesis covers two disparate projects that both use interpretable machine learning methods

to analyze large amounts of data. Chapter 2 discusses our research on the detection of food

safety risks in Chinese suppliers. This project analyzes a group of suppliers from a leading

Chinese supermarket for characteristics indicative of food safety violations. The chapter dis-

cusses the background on food safety research, data sources used, hypotheses, machine learning

methods applied, predictive results, and implications to our collaborator and food safety in

China. We ultimately discover that certification systems and other supply chain characteristics

are inconsequential to reducing a supplier’s likelihood of failure in national food safety exams

in our data.

Chapter 3 follows a similar structure. It discusses our work on detecting human trafficking

advertisements from online Adult service ads. It discusses previous human trafficking detection

research, data used, pipelines tested, predictive results, applications to organization detection,

and contributions of our model. In this project, we develop an unsupervised keyword detection

pipeline that can be used to train supervised models that accurately identify suspected human

trafficking advertisements.
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Chapter 2

Predicting Food Safety Violations

2.1 Introduction

2.1.1 Motivation

More than 500,000 food safety violations were uncovered from over 15 million inspections in

China in 2016 [2]. Despite sweeping reforms to Chinese food safety standards and inspections

the following year, the scandals have continued. In March 2019, over one million pounds of pork

were seized by U.S. border agents in New York over suspicions of swine flu contamination [3].

China has suffered numerous food safety scandals across all products, dairy, meat, vegetable,

oils...etc, ever since scrutiny increased after joining the World Trade Organization in 2001.

Poor food safety regulation in China is not just a national issue; it affects the international

community. China is the U.S.’ fourth largest supplier of agricultural imports. In 2017, the

U.S. imported $4.5 billion worth of agricultural products from China [4]. Yet despite the high

costs of undetected food safety violations, very few of these agricultural imports are actually

inspected. In 2015, only 2.2% of all imported seafood were examined [5]. However, food safety

violations in the United States have caused 50 million people, or one in six people, to fall ill

and three thousand to die annually [6]. In addition, the costs of food safety recalls on average

were $10 million dollars in direct costs to the company [7]. Given these gaps in government

level food safety inspections, a push for quality and traceability certifications has taken hold to

mitigate food safety risks starting at the beginning of the supply chain.

Supplier quality and traceability certifications increase consumer confidence in product

safety, especially as food supply chains become increasingly complex in a global economy. How-

ever, significant start-up investments are required in order to implement mechanisms that com-

ply with standards. In the case of traceability systems, suppliers must also invest in technology

for testing, recording, storing, and transferring product information from its beginning at a

farm to its end of life with the consumer. In addition, suppliers often need additional training

in order to learn how to successfully implement and maintain food safety standards. These

investments are expected to be cost-effective solutions for reducing food safety risks.

Although a significant amount of research indicates that investments in food safety certifi-

cations are generally cost-effective and beneficial to suppliers and retailers in the long run [8],

there are few studies to date on whether these measures actually improve food safety. Using

data provided by a leader in the grocery industry and quality management systems in China

11



CHAPTER 2. PREDICTING FOOD SAFETY VIOLATIONS

that has developed its own rigorous supplier quality and traceability certification system, we

analyze how effective these measures are in improving food safety.

2.1.2 Objective

Our research addresses the following questions:

1. How effective are quality certification systems in improving food safety?

2. What supplier characteristics are predictors of food safety risks?

2.1.3 Approach

We apply a data-driven, analytical approach to investigate the effectiveness of supplier certifi-

cation systems and the characteristics of suppliers with high risks of food safety. Combining

data from the Chinese Food and Drug Administration (CFDA) with supply chain data from

a leading supermarket in China, we model the likelihood of a supplier being at risk of food

safety failures. We characterize each supplier as a vector of features describing its supply chain

composition: the number of farms, factories, products, etc. Most importantly, we factor in the

results of our collaborator’s internal supplier evaluations: grades and certification status. We

then use interpretable classification modeling techniques to understand the characteristics of

high risk suppliers and if the company’s internal quality and traceability certification system

improves food safety.

2.1.4 Contributions

Our results show that the company’s internal certification systems may not be as effective in

ensuring food safety as consumers and retailers alike expect. Our collaborator’s certification

system does not reduce the risk of a supplier failing food safety tests. We do observe that it does

reduce the chance of a supplier being sampled by the CFDA in the market, potentially because if

the supplier failed the company’s internal internal certification, then the company would source

fewer products from this supplier. Furthermore, supply chain characteristics, such as distance

between a supplier’s farms and factories, also are not found to be significant influencers of food

safety risk. We did find that suppliers located in regions with stronger governance failed CFDA

tests more frequently. This could imply that governments in regions with weaker governance

tend to identify fewer problems due to lax control. These results suggest that further changes

in the CFDA’s governance and our collaborator’s quality management system are needed to

truly improve food safety.

2.2 Background

2.2.1 Trends in Food Safety Quality Management

Over the past two decades, numerous international, national, and local level legislation have been

written recommending, and even requiring, some degree of traceability and quality assurance.

Simultaneously, many international third party quality assurance systems have been developed,

12



CHAPTER 2. PREDICTING FOOD SAFETY VIOLATIONS

to include benchmarks by Global Food Safety Initiative (GFSI), Global Good Agricultural Prac-

tice (GlobalG.A.P), and International Food Standar (IFS). In fact, quality assurance systems

have become standard business practice for food suppliers in many regions, like the U.K. [9], and

traceability systems are rapidly becoming standard as well. For example, in China, beginning

in 2001, Shanghai began requesting that vendors provide information on their products [10].

In 2002, Beijing also began requiring a low level of traceability information for food products

[10]. In 2009, China took a significant national step to improve food safety by passing their

Food Safety Law. More recently in 2015, a sweeping revision of this law was passed to require

a state-owned food traceability system. However, changes are slow and it was not until 2017

that implementing regulations were passed [10]. It is yet unclear if these changes have in fact

improved the safety of Chinese food products.

Nevertheless, these systems are used to assure customers that products and processes are

consistently delivered [9]. They can take the forms of privatized international standards, like

those mentioned above, government regulations, like in China, or proprietary systems that are

often maintained by large retail food chains [9]. Suppliers that meet the standards are often

then awarded with certification labels that inform customers that their products are of the

expected quality (e.g. chemical-free, traceable, or, most importantly, safe).

Quality certification systems have become increasingly popular in the global economy. They

ensure that retailers and suppliers comply with best practices and food safety standards via

education and inspections. In addition, suppliers have an incentive to participate because quality

certification systems are expected to help improve market access, improve product quality, and

even potentially improve operational efficiency [9]. However, suppliers may incur high sunk

costs to adopt the system and often times also pay inspection fees in order to become certified

[8]. As a result, large suppliers often adopt the standards and gain certification more easily,

while also benefiting more from the economies of scale than small and medium sized suppliers

[8].

The documentation of production processes required by quality assurance systems often

corresponds to traceability certifications. In 1998, in conjunction with the growth in quality

certification systems, new attention was drawn to food traceability systems as a method to

ensure food safety [11]. Traceability, as defined by Moe, is “the ability to trace the history,

application or location of an entity, by means of recorded identifications” and is essential to

quality management [11].

The purpose of food traceability systems are primarily three fold: improve food quality,

improve recall efficiency, and offer a business advantage. Traceability systems allow stakeholders

to identify the life history of a product: where and how it was farmed, transported, and processed

[12]. This history is not sufficient in reducing food safety risks. Rather, the information must

be used in conjunction with a quality assurance system to identify poor practices and prevent

unsafe foods from entering the market [13]. In the event of a food recall, traceability systems also

facilitate the identification of products of concern and more importantly, they allow companies

to find the origin of the problem and resolve it at the source [12][13]. These characteristics

of traceability systems are particularly important in a country, like China, with significant

problems in food safety such that in 2007 they had twice as many food recalls as the United

13



CHAPTER 2. PREDICTING FOOD SAFETY VIOLATIONS

States [14].

Retailers and suppliers have an incentive to implement quality and traceability certifica-

tion systems despite high initial investment because of the prospective business advantage.

These systems are expected to reduce transaction costs between buyers and sellers through

the implementation of best practices [9]. Regattieri et al., posits that an effective and efficient

traceability system can “significantly reduce operating costs and can increase productivity”[15].

Various studies have also found that certain consumers are willing to pay a premium for quality

assured foods. A survey of Chinese consumers found that they were willing to pay a premium

for product traceability, although they would prefer governmental or private quality assurance

certification [16]. These results were corroborated in another survey published in 2010 of citi-

zens in Jiangsu, China that found that 32% of respondents opted for certifiably traceable foods

and 68% of those consumers were willing to pay for traceability [17]. Therefore, improving food

safety via quality and traceability inspection systems is expected to be economically beneficial

for retailers and suppliers.

Given these benefits, numerous quality assurance frameworks and related technology have

been developed to increase food safety over the years. Roth et al. proposes a six part frame-

work, the “six Ts”: traceability, transparency, testability, time, trust, and training [14]. Deloitte

recommends a similar framework that is composed of initiating business with formal documen-

tation, due diligence and selection of suppliers, contracting and on-boarding of food safety

specifications, ongoing monitoring, and formal termination and off-boarding [18]. Essentially,

these and other frameworks all recommend that companies have clear records of their suppliers’

activities, conduct training to ensure suppliers comply with company standards, and repeat-

edly verify that suppliers are meeting these standards. They are achieved through traceability,

education, and inspections, respectively.

These efforts at improving food safety must first overcome significant challenges, especially

in China. First, Chinese suppliers have less financial incentive to participate in certification

systems. 90% of Chinese farms are smaller than 2.5 acres [19] and as previously discussed, it

is more difficult and less financially beneficial for small suppliers to implement and maintain

quality and traceability assurance systems. Second, despite the expected long term financial

benefits, it is difficult to convince suppliers to shift practices and abide by new standards

and traceability systems. China’s market renders systems without short term positive impact

unheeded [14]. Instead, suppliers bend to economic pressure to use cost-cutting measures to

ensure profit, potentially resulting in noncompliance and food safety violations. Finally, local

administrators, until recently, have been disincentivized to enforce food safety compliance. As

discussed by Roth et al.,“if local governments close all the companies that violate food safety

regulations, a lot of workers will lose their jobs”[14]. As a result, food inspections might not be

as rigorous or accurate as needed. Given these challenges, the presence of inspection and quality

certification systems, even in tandem, do not guarantee a reduction in food safety violations.

These systems will only be successful in improving safety if they are implemented in con-

junction with a shift in attitude through training and incentive structures [20]. A low cost

traceability and quality assurance system would make certification accessible to China’s numer-

ous small suppliers. China’s dispersed small enterprises and high worker turnover also require

14
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a shift in individual behaviors. This can be achieved through facilitating collaboration with

regulations, training, and incentives so that group norms converge upon an industry standard

[20][14]. Likewise, traceability systems paired with quality assurance inspections that allow

failure costs to be allocated to the sourcing producer can offer a strong financial incentive to

motivate suppliers to implement and follow product quality standards [13]. Many of these

characteristics are present in our collaborator’s quality management system.

2.2.2 Collaborator Quality Management System

It is unsurprising that given the expected benefits of food traceability and other supply chain

quality management systems, top retail stores have implemented their own systems. Our col-

laborator has implemented a state-of-the-art certification and traceability system on a subset

of their grocery suppliers. These suppliers are provided training on best farming and process-

ing practices. Their products are then labeled and certified as traceable if the supplier is in

accordance with the company’s internal quality standards. The company has created these

internal quality standards by adapting well-established international ones, such as Good Agri-

cultural Practices (GAP) and Good Manufacturing Practices (GMP), and leveraging their own

experiences working with the vendors. Customers can search online or simply scan a product

package’s QR code to learn more about the product sources and processing. Our collabora-

tor provides customers with information on the distributor company, packaging date, factories

involved, inspection reports, additional certifications, transportation processes, and more.

In order to become certifiably traceable, suppliers must undergo rigorous quality and trace-

ability inspections and training sessions every six months at all levels of the supply chains.

These inspections and training sessions are in addition to the annual inspections non-traceable

suppliers already undergo. A supplier who receives lower than a “B” score is considered to have

failed the inspection and must undergo additional testing to regain certification. Weak points

are also discussed with the supplier and corrective actions are recommended after each inspec-

tion. We leverage the results of these inspections and other supply chain information provided

by our collaborator to analyze the impact that their certification and traceability system has

had on the food safety risks of their suppliers.

2.2.3 Food Safety Risk Identification

The food industry has high hopes that traceability and quality management systems will have a

dramatic impact on improving food safety. A survey on companies who have implemented and

certified a new quality management system found that most believed there was an improvement

in the food supply chain, including simplification of quality control and reduction of errors

[21]. In a case study of a cheese company that implemented a traceability system, they were

found to have successfully used the system to product the authenticity of their brand[15]. It

required passing along a slight increase in product cost to customers but because of the system,

customers were able to check the origin and production process of their purchase. In addition,

the manufacturer was able to check production progress and rapidly implement recall strategies

as needed. However, the researchers did not analyze the effectiveness of this safety assurance

in improving safety.
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To the best of our knowledge, few studies have used data-driven modeling techniques to

predict food safety risks and evaluate quality management systems. This is likely due to the

unavailability of data. Only a handful of studies exist to date. A 2015 study on dairy farm’s

cattle welfare (which is often linked to food safety) used a dataset of only 24 dairy farms to train

a decision tree model that classifies the welfare of over six thousand dairy farms [22]. Although

they created synthetic data using SMOTE (further discussed in section 1.4), to correct for the

unbalanced data, it is unlikely that there is sufficient data to verify the model accuracy. With

more success, another study evaluated food safety in dairy products with 86% accuracy over a

test set of 6000 samples [23]. They had significantly more data, though they still enhanced it

with synthetic samples using SMOTE, and were able to apply neural networks on a balanced

data set to predict the presence of contaminants. Although the features used are not specifically

explained in this study, there is no indication that supply chain information is included. Even if

it was, due to the neural network approach, no conclusions can be drawn on the characteristics

that indicate food safety violations. A recent study did use supply chain features to predict

food safety risks at the manufacturer level [24]. They analyzed data on 900 companies from

publicly available Chinese websites involved in food exports. This data included information

on the number and output volumes of upstream suppliers. Using Heckman’s sample selection

model, they found that high supply chain dispersion and weak local governance are predictors

of higher risk manufacturers, and manufacturers located in regions with weak governance are

sampled less [24]. This analysis does not include characteristics on traceability or internal

quality management.

2.3 Data Overview

The data we used in our analysis are supply chain and inspection data from our collaborator,

location based data from [24], and food product sampling data published by the CFDA.1 We

provide a detailed description of this data in this chapter.

2.3.1 Collaborator Data

We collaborated with a top Chinese grocery retailer to collect data on their supply chain and

internal inspections. Their data report supplier status up to March 2018. Resulting from the

small to medium-sized farms characteristic of China, their supply chain is quite complex with

many small farms feeding into multiple factories and suppliers. A simplified visualization is

shown in Figure 2.1. The far left chain shows the simplest chain, where a farm (or distributor)

can also process its own product as a factory (or processor), and be the final supplier to the

retailer, our collaborator. In addition, another chain of farms and factories can sell to that same

supplier. Likewise, multiple farms can supply to the same factory, which may also be the direct

supplier to the retailer. Finally, farms can supply to multiple factories, where one may also

function as the direct supplier to the retailer. These are just a few examples of the multitude of

1The CFDA data was made available via a project by Retsif Levi, Qiao Liang, Nicholas Renegar, Qi Yang,
Run Zhou, and Weihua Zhou. Combining Multiple Information Sources for Informing Food Safety Regulation in
China. Working Paper. February 2019.
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variations found in our collaborator’s supply chain. Our analysis focuses on the supplier level,

which includes any suppliers that also farm or process their own products.

Figure 2.1: Supply Chain From Farms, to Factories, to Suppliers, to the Retailer

Along with an annual internal inspection on all suppliers, our collaborator also conducts

additional inspections on the farms and factories of a subset of self selected suppliers to certify

their products as high quality and traceable. Henceforth, we will refer to these inspections as

regular or certification inspections. A complete record within this data provides information

on each supplier’s name, location, products, farms, factories, and internal inspection results.

We do not have information on why a supplier may have failed an internal inspection, but we

do know when and which type of inspection it failed. This dataset includes inspections dating

back to 2011 and up to March 2018. For the sake of completeness and consistency, we focus

on suppliers with data from 2014 and after. From this data we can observe when suppliers are

certified or not by the retailer.

For our study we focus on suppliers that were inspected for meat, aquatic, vegetable, fruit,

tea, egg, and nut products by the CFDA. These are some of the most common product categories

in the CFDA data with a non trivial number of failures. We apply a neural network based food

categorization model designed by another MIT research team [25] to map the product names in

the supply chain data into product types. We find that these suppliers may also sell products

to our collaborator outside of our main categories of interest. We annotate this characteristic

by including an “other” product category. This results in a dataset of over three thousand

suppliers.

2.3.2 CFDA Data

Our dependent variable, level of food safety risk, is derived from the results of CFDA food safety

tests. The CFDA periodically samples food products from the market and tests them against
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quality standards [26]. Since 2016, these test results have been published online [26]. These

results were collected by an MIT research team from publicly available Chinese government

websites [25]. The version used in our analysis covers all published CFDA test results as of

October 2018 from the state-level CFDA, all 34 province-level or municipality CFDAs, and

335 prefecture-level CFDAs. It includes records dating back to 2014. This research effort has

resulted in a dataset describing over two million unique tests.

Each data record describes the name and type of the tested product (e.g. vegetable or

aquatic), manufacturer and sampled location, the production date, the website announcement

date, and the test results. If a failure occurred, the test result also includes the cause of failure.

From the data, we found that although our collaborator has a lower failure rate than the average

across all CFDA tests collected, it has a higher than average failure rate compared to its major

competitors, as depicted in Figure 2.2. On the other hand, although the test frequency of certain

product types, like meat products, are significantly higher for the collaborator, the failure rates

are not. This is visualized in Figure 2.3 and 2.4. The failure rates across categories have distinct

differences. Despite our collaborator’s rigorous internal testing, its food safety test performance

does not appear to be consistently better than either its competitors’ or the average supplier’s

performance.

Figure 2.2: Comparison of CFDA Failures in Chinese Supermarket Chains
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Figure 2.3: Comparison of CFDA Test Frequency Across Product Categories

Figure 2.4: Comparison of CFDA Test Failures Across Product Categories

2.3.3 Location Based Data

In addition to the CFDA data, we also analyze data on each prefecture’s demographics (GDP per

capita and population) and governance quality. Quality of governance is scored by a misconduct

ranking on a 0 to 5 scale and a 4 dimensional transparency score as introduced in [24].

The misconduct ranking is calculated by identifying the number of misconduct cases reported

between 2003 and 2015 and scoring each prefecture based on the depth of the misconduct in

the higher-ranks of governance. A prefecture is ranked 5 if its mayors, party secretaries, and

subordinates were all engaged in misconduct cases, 1 if only subordinates had, and 0 if no cases

were reported. For suppliers whose location is only given at the provincial level, we take the

average of the misconduct rankings of other prefectures in its province. Figure 2.5 presents the

misconduct ranking of the suppliers analyzed.
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Figure 2.5: Misconduct Rankings of Suppliers

Figure 2.6: Transparency Rankings of Suppliers

Transparency is measured by the presence of various components on the government agency

website in question, in this study, the CFDA. These components indicate to what extent each

prefecture discloses and solicits food safety information. They examine if a supplier black list,

complaint forms, test results, and/or food safety knowledge are published. A higher trans-
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parency score indicates that the government is more transparent and hence stronger in food

safety governance. Figure 2.6 presents the transparency score of all the suppliers analyzed.

2.3.4 Final Dataset

To compile our final dataset, we created a cross-sectional data structure for our analysis due

to the low number of failures per supplier in the CFDA data. Each observation in the data

corresponds to a unique supplier. We searched the CFDA data and found the tests associated

with each of our collaborator’s suppliers. We included tests from all sampled locations, including

when a supplier’s products were sampled from other retailers, or on site from the supplier’s

farms/factories. In addition we searched the CFDA data for entries where our collaborator is

listed as a sampled location and extracted all corresponding suppliers who were not included

in the supply chain data shared by our collaborator. In this dataset, we define each supplier to

include any farm or factory that directly provides products to our collaborator. For the farms

and factories that are separately sampled by the CFDA, we linked their CFDA test results to

their associated supplier per our collaborator’s supply chain data. This ensures that no CFDA

test results are considered multiple times.

By comparing the announcement date of the CFDA tests to our collaborator’s internal

inspection data, we labeled whether or not a supplier was certified traceable at the time of the

CFDA test. For each supplier, we also computed the average grade of the internal inspections

the year before the CFDA tests. In addition, we calculated the average distance between a given

supplier and its associated farms and factories. Finally, we used the location of the supplier to

match it to the demographic and governance data previously described. We exclude additional

transparency measurements due to collinearity between government agencies.

Our final dataset includes the following information for each supplier:

• Number of times it has been tested by the CFDA

• Number of times it has failed a CFDA test

• Percent of CFDA tests completed/failed while it was labeled a certified traceable supplier

• Number of products it supplies to our collaborator

• Number of farms under the supplier working with our collaborator

• Number of factories under the supplier working with our collaborator

• Number of different food categories (e.g. fruit, vegetable, meat, tea) it supplies

• What food categories it supplies (meat, aquatic products, fruit, vegetable, nut, tea, egg,

or other)

• Average distance between the supplier and its farms and factories

• Average grade of both regular and certification inspections the year before each CFDA

test
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• Total number of regular or certification inspections conducted the year before each CFDA

test

• Whether it was ever certified

• Average GDP and GDP per capita of the supplier’s location

• Average population of the supplier’s location

• Misconduct ranking of the supplier’s location

• Transparency score of the prefecture’s CFDA website

• Length of time it was a regular and/or certified supplier with our collaborator (Age)

This results in 25 explanatory variables that can be used in our analysis. We have 679

suppliers with internal test results who supply products in the categories of interest. Among

them, 313 suppliers also have CFDA tests. These 313 suppliers have a total of 11,485 CFDA

tests. We conduct our predictive analysis of food safety risk on these 313 suppliers and use the

additional 366 suppliers to factor in potential sampling bias from the CFDA.

Our dependent variable is the risk level of a supplier having a food safety violation, given

that it has been sampled by the CFDA. It is a binary bin that represents if a supplier has

failed a CFDA test: 1 if it has had one or more failures and 0 otherwise. Henceforth, we will

refer to suppliers with a CFDA failure as high-risk suppliers and suppliers that have passed all

their CFDA tests as low-risk suppliers. Out of the 313 suppliers with CFDA tests, we find that

suppliers have an average failure rate of 2.1% with 18.5% suppliers having at least one failure.

Figure 2.7 maps our collaborator’s suppliers and colors it by their risk level. It shows that food

safety failures are not more common in one region over another.

It is important to note that as with most real world problems, due to inconsistent internal

data gathering, 18% of the suppliers with CFDA tests are missing some information. In ad-

dition, our data may be biased because we only have data from our collaborator’s perspective

but are including CFDA tests from all retailers. Suppliers may provide different products to

other retailers or have additional farms and factories not inspected by our collaborator. As a

result, the farms, factories, and products that our collaborator has tested internally might not

correspond with what the CFDA tested. In addition, the product quantities, age, number of

farms, and number of factories are only proxies for the true values. These are only the numbers

pertinent to our collaborator and do not reflect the total products, age, farms, or factories a

supplier has. For instance, a supplier could have existed for longer than its age according to our

collaborator’s data. These are also static quantities and do not reflect growth or reductions over

time. This data demonstrate the complexities in evaluating food safety systems and conducting

risk analysis.

2.4 Hypotheses and Expectations

The primary purpose of this study is to analyze the impact of traceability and supply chain

characteristics on food safety. To this end, we present our hypotheses and preliminary data

analysis in this chapter.
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Figure 2.7: Suppliers Across China

Red points designate high risk suppliers; blue points designate low risk suppliers.

2.4.1 Hypothesis

We present the following hypotheses used to structure our analysis.

Hypothesis 1:

Certified suppliers have a lower risk of failing CFDA tests because potential risk points should

have been identified and remedied from rigorous internal inspection processes.

We expect a lower failure rate amongst certified suppliers. Our collaborator’s certification

system is in line with the best practices recommended by traceability and quality management

literature and developed based on well-established international standards such as GAP and

GMP. Suppliers who are certified as traceable have more rigorous inspections and higher qual-

ity requirements than the regular suppliers. Although these are nonrandom inspections, the

rigorous inspections should motivate the certified suppliers to develop better quality manage-

ment processes than the regular suppliers. Note that these suppliers could have been tested

on products from farms or factories whose production process have not been certified by our

collaborator and are supplied to other retailers. This may cause a bias so that the reduction in

failure rate due to our collaborator’s certification system is smaller than what would otherwise

be expected. However, we hypothesize that the processes and management practices resulted

from our collaborator’s certification system will benefit all products produced by the certified

suppliers.
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Hypothesis 2

Suppliers with more internal inspection failures have higher failure rates in the CFDA tests.

We hypothesize that in general, internal failures correlate to more CFDA failures. Quality

management and traceability systems are expected to be able to identify and mitigate food

safety risks. Internal inspection failures point to the presence of risk factors that may lead to

food safety violations. Since other retailers are not privy to our collaborator’s internal inspection

results, a supplier can continue to sell their products to other retailers after failing a regular

or certification inspection. There is a higher likelihood that the CFDA also identifies food

safety violations in these products because potential failure points have already been identified.

Therefore, if the regular and certification inspections are effective, then the failures should be

predictive of CFDA test failures.

Hypothesis 3

Suppliers with a more dispersed supply chain have a higher failure rate in the CFDA tests.

Motivated by the results in [24], our final hypothesis is that supply chain dispersion will

have a negative effect on food safety; greater dispersion is associated with higher risks. We

measure dispersion in a number of dimensions: the average distance between a supplier and

its farms/factories, the number of farms/factories a supplier works with, and the variety of

products a supplier supplies. The longer the distance, and the more farms/factories involved,

the more likely contamination and hazards may occur along the supply chain. Similarly, if a

supplier works with a large variety of products, it is likely less centralized and has more potential

points of failures in its supply chain. On the other hand, the opposite effect could occur if the

suppliers with more dispersion are simply larger, more established companies. We account for

this factor by controlling for the product quantity supplied to our collaborator.

Controls

In order to test our hypotheses, we control for a number of additional features. First, we control

for product types. As we show in the following section, there are differences in sampling and

failure rates across categories. This is likely due to the varying levels of concerns and resulting

emphasis the CFDA puts on certain products, like meat and eggs. We also control for demo-

graphic information using GDP per capita and population size. Suppliers in prefectures with

high GDP and population may be tested more because of the greater affluence in that area. In

addition, following results in [24], we capture the strength of governance in the prefecture where

a supplier is located, measured by the prefecture’s misconduct ranking and the transparency

score of the prefecture’s CFDA website. Finally, we control for the age and size of the supplier

and the number of CFDA tests it has received. We expect that suppliers with more CFDA

tests are more likely to have at least one failure occur. Likewise, we expect older suppliers and

suppliers with higher product quantities to be more likely to fail because they are also more

likely to have been sampled multiple times.

24



CHAPTER 2. PREDICTING FOOD SAFETY VIOLATIONS

Preliminary Analysis

We provide a general overview of the features relevant to our predictive analysis in this section.

Many of our collaborator’s suppliers in the categories of interest supply a variety of product

types. Figure 2.8 presents what fraction of the suppliers sampled are in each product category

and among those with failures, the fraction belonging to each category (i.e. number of suppliers

in category X out of total number of suppliers who have been sampled or failed a CFDA test).

Our data show that most of the suppliers analyzed are meat, vegetable, aquatic, and/or fruit

product suppliers. The failures are also equally distributed across all supplier categories (i.e.

categories with more suppliers sampled also have more failures). However, egg suppliers are an

anomaly. They make up a disproportionate number of the suppliers with failures given their

small sample size.

Figure 2.8: Percent of Suppliers in Each Category

In addition, one can see in Figure 2.9 that sampling rates of suppliers vary across categories.

The average sampling rate is 58.9%, but there is a standard deviation of 15.2%. Out of the

categories examined, only our collaborator’s fruit and vegetable suppliers have less than 50% of

the categories’ suppliers sampled. However, failure rates (i.e. number of suppliers who failed in

a category out of total number of suppliers in that category) are more similar across categories,

with a mean of 23.2% and standard deviation of 6.1%. Only egg and tea suppliers have more

than a 25% CFDA failure rate.

The features we extract from the available data mostly do not have a statistically significant

relationship to our dependent variable, that a supplier has a high risk of food safety violations.

However, there are a few variables that are significantly different between the suppliers that have

been sampled by the CFDA and those that have not been sampled (679 suppliers in total), and

between the suppliers with and without failures (conditional on being sampled; 313 suppliers in
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Figure 2.9: Supplier Tests and Failures Out of Each Category

total). Statistics for particular variables are summarized in Tables 2.1 and 2.2. Variables not

included are not significantly different between the groups based on either chi-squared tests or

t-tests with a p-value of less than 0.1. We include a few variables that may be of interest to

readers but are not significant.

Between the suppliers with and without CFDA tests (Table 2.1), transparency scores, num-

ber of egg suppliers, product quantity, average distance between farms and factories, internal

inspection grades, and demographic data are significantly different. Unsurprisingly, a supplier

that has been sampled is more likely to come from a more transparent location with a larger

population, and higher GDP per capita. This bias may result from the fact that more pros-

perous locations have better governance and thus more tests and/or more well published tests.

Intuition and our data also support that suppliers with CFDA tests have significantly higher

product quantities. It is interesting to note that suppliers that are not sampled have higher

internal failure rates for both regular and traceability tests. It also appears that the CFDA tests

egg suppliers, which have a history of fake egg scandals, more rigorously than other categories.

At the same times, it does not test categories like meat, which is also rife with scandal, as often,

in proportion to the number of suppliers that exist in each category. We further explore the

potential biases more in our Heckman selection model discussed in Section 2.6.3.

Only five out of our twenty-five features have a significant difference between the suppliers

with and without CFDA failures (given they have at least one CFDA test). The misconduct

ranking, number of egg suppliers, number of certified suppliers, supplier age, and number of

CFDA tests are significantly different. As hypothesized, the suppliers with CFDA failures have

more CFDA tests and have been a supplier with our collaborator longer than those without. It

is interesting to note that the misconduct rankings between these two groups are significantly
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Table 2.1: Statistical Significance of Difference Between Sampled and Non-Sampled Sup-
pliers

Average

Feature Sampled Not Sampled P-value

Transparency Score 3.47 3.19 <.001 ***
Is an Egg Supplier 12.1% 3.00% <.001***
Distance To Farms/Factories .573 1.44 <.001***
Percent Regular Inspections Failed 14.3% 36.0% <.001***
Percent Certification Inspections Failed 1.9% 61% <.001***
Prefecture’s GDP per capita 44800 32400 <.001***
Product Quantity 6.02 3.99 .037 **
Prefecture’s Population 546 483 .019**
Number of Factories .936 .675 .133
Age as Collaborator’s Supplier 3.07 2.57 .165
Misconduct Ranking(0-5) .601 .704 .474
Certified At Least Once 40.3% 51.1% .909

***: p < .01; **: p < .05; *: p < .10
p values are derived from chi-squared tests or two sided t tests among the 679 suppliers

different. Suppliers without failures are in locations with more misconduct, on average. Egg

suppliers are also more prevalent in the population of suppliers with failures. Contrary to our

expectation, a larger fraction of suppliers with failures were certified as traceable during at least

one CFDA test, than the suppliers who passed all the tests. Internal inspection grades do not

differ significantly between the two groups. Outside the scope of Table 2.2, we also did not

observe a significant difference between failure rates when a supplier is certified versus when it

is not.

We additionally investigate the differences between the suppliers who become certified trace-

able and the ones that do not pass the certified traceable inspections. We compare the charac-

teristics of the suppliers who pass the inspection and become certifiably traceable (26 suppliers)

versus those that attempt but do not pass the inspection (3 suppliers). We define the entry

certification inspection as the treatment. Suppliers that never attempt traceability certifications

are not included in this comparison. Despite the small sample size, a few features are found to

statistically significantly different between the certified and attempted-certify suppliers. These

results are shown in Table 2.3.

The certified suppliers are in locations with less traceability, include more aquatic suppliers,

and have longer distances to their farms and factories. In addition, the CFDA failure rates

and regular internal inspection grades are significantly different between the two groups, both

before and after the entry level certification inspection, and on average. The certified suppliers

have significantly more regular internal inspection failures before the entry inspection but fewer

failures after compared to suppliers who do not pass the inspection. However, certified suppliers

are more likely to fail a CFDA test than the attempted-certify suppliers, though this failure

rate does drop after certification. In addition, after receiving certification, suppliers are also

less likely to be sampled in a different prefecture than its manufacturer. It is interesting to also

note that, in line with current research, the suppliers who pass or attempt to pass certification
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Table 2.2: Statistical Significance of Difference Between Suppliers With and Without
Failures

Average

Feature Failures No Failures P-value

Number of CFDA Tests 92.7 23.9 < .001***
Misconduct Ranking(0-5) .414 .643 .015**
Is an Egg Supplier 22.4% 9.80% .015**
Age as Collaborator’s Supplier 3.88 2.89 .027**
Certified during a CFDA Test 43.1% 12.9% .063*
Product Quantity 9.15 5.31 .141
Transparency Score 3.53 3.46 .175
Number of Factories 1.48 .812 .178
Prefecture’s Population 613 531 .242
Prefecture’s GDP per Capita 47600 44200 .228
Percent Certification Inspections Failed .027 .017 .387
Distance to Farms/Factories .731 .537 .516
Percent Regular Inspections Failed .153 .140 .748

***: p < .01; **: p < .05; *: p < .10
p values are derived from chi-squared tests or two sided t tests among the 313
suppliers that have been sampled

inspections are all larger suppliers with significantly more farms, factories, product quantity,

and variety than suppliers who never attempt traceability certification.

Table 2.3: Statistical Significance of Difference Between Suppliers That Have Passed Versus Failed
the Entry Certification Inspection

Feature’s Mean Value

Feature Certified Attempted-Certify P-value

Failure Rate .011 .000 < .001***
Regular Inspections Failed (BT) 24.9% 0.00% < .001***
Regular Inspections Failed (AT) 9.80% 20.7% < .001***
Aquatic Supplier 38.5% 0% < .001***
CFDA Failure Rate (AT) .009 .000 < .001***
CFDA Failure Rate (BT) .018 .000 .002***
Distance between Farms and Factories .829 <.001 .025**
Transparency Score 3.58 4.00 .069*
Different Retailer and Supplier Region (AT) 75.5% 82.1% .076*
Different Retailer and Supplier Region (AT) 85.6% 82.5% .627
Product Quantity 19.5 14.3 .284
Number of Factories 2.62 1.67 .394
Number of Farms 4.54 5 .909

BT: Before Treatment; AT: After Treatment
***: p < .01; **: p < .05; *: p < .10
p values are derived from two sided t tests of the differences between the certified (26) and attempted-
certify (3) suppliers; or their corresponding 1785 (499 before treatment) and 135 (40 before treatment)
CFDA tests
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These preliminary statistics demonstrate that some of our hypotheses may not hold within

our data and that it is nontrivial to model whether a supplier would fail a CFDA test.

2.5 Methodology

Due to the small size of our dataset, we were limited in the complexity of the techniques we could

use to predict food safety risks. At the outset, we tested a variety of models, including support

vector machines, linear discriminant analysis, naive Bayes classifiers, hierarchical clustering,

classification and regression trees (CART), probit regressions, and Heckman’s sample selection.

We also applied Synthetic Minority Over-sampling Technique (SMOTE) to create more balanced

data (between the number of suppliers with and without CFDA failures) for model training.

In this and the results chapter we will focus our discussions on SMOTE, CART, probit, and

Heckman’s sample selection model because they perform significantly better than the other

models.

2.5.1 SMOTE

Since its publication in 2002, SMOTE has laid “the foundation for learning from imbalanced

datasets” [27]. Numerous extensions and variations have since been developed to create syn-

thetic minority data for a variety of situations. In our study we apply an R implementation

[28] of the original SMOTE algorithms described in [29] and summarized here.

SMOTE improves the classification of minority classes in imbalanced data. It allows one to

over-sample the minority class and under-sample the majority class. Unlike previous algorithms

which over-sample the minority class by replication, leading to over-fitting, SMOTE creates

synthetic minority data. It over-samples the minority class by taking k (in our case, k = 5)

nearest neighbors for a given minority data sample, finding the difference between the features

of it and a randomly chosen neighbors, multiplying this difference by a random number between

0 and 1, and adding it to the feature vector. SMOTE repeats this sampling and perturbation

algorithm to create minority data samples according to the amount of over-sampling desired.

For instance, over-sampling by 200% creates two new synthetic minority samples by separately

perturbing a sample along the vectors of two different nearest neighbors. SMOTE also allows

one to under-sample the majority class by removing samples until the new majority class is a

certain percentage of the original minority class’ sample size. Depending upon the percentage of

over and under sampling, the resulting dataset may have more or fewer samples in the minority

class than in the original data.

With slight variation, a similar technique can be used for categorical variables. In the case

of mixed categorical and continuous variables, like our dataset, SMOTE calculates the nearest

neighbors by first calculating the median of standard deviations of the continuous features in the

minority class. If the categorical variables differ between the sample and its potential nearest

neighbors, then the previously calculated median is included in calculating the Euclidean dis-

tance between samples. After the k nearest neighbors are determined, the synthetic categorical

features are assigned the majority occurring values amongst the nearest neighbors while the

continuous variables are calculated in the original fashion.
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By creating synthetic minority classes, SMOTE creates more general decision regions than

the small, specific regions that result from replication of minority classes. Because samples are

only perturbed by a factor between 0 and 1, this method does limit the synthesized data to be

no more or less than the extreme values of the real data. Yet this approach has proven to be

successful in improving the classification of the minority class and has been applied to problems

in a variety of applications, such as: text classification, time series, and bioinformatics, to name

a few [27]. We have also found it used in the agricultural industry, as previously discussed in

predicting cattle welfare and dairy product safety [22][23].

Due to the small sample size and the low failure rates in our data, we apply SMOTE to

expand our minority class of high-risk suppliers. We use a five-fold cross validation approach,

such that the model was trained on 80% of the data and tested on 20%. A range of over and

undersampling percentages from none to 1000% was applied to the training set. We then built

a CART or probit model on this synthetic training dataset. We do not use synthetic data on

Heckman’s sample selection model because it would cause undesired effects on the estimation of

the selection model. The test set also was not over or under sampled. We used it to validate our

model and calculate the AUC (area under the ROC curve), accuracy, and confusion matrix. We

then calculated the precision, recall, and F-1 through summing the confusion matrix across all

five validated test sets for a conservative estimate of model performance on the entire test set.

For each specification of features and sampling levels, we iterated this procedure one hundred

times in order to calculate a confidence interval of our model accuracy.

2.5.2 CART

Decision trees are a commonly used and interpretable method of classification and prediction in

a variety of contexts, including supply chain management. Dani recommends using classification

techniques, like classification and regression trees (CART), and regressions as possible methods

to predict supply chain risk, which is a requirement for “an effective proactive risk management

process” [30]. CART is a popular decision tree methodology first discussed by Breiman, et al. in

Classification and Regression Trees. We apply an R implementation of CART called Recursive

Partitioning (rpart) [31].

Rpart splits nodes along features that maximize impurity reduction. We use the Gini infor-

mation index as an impurity function, where it is defined as f(p) = p(1−p). Impurity is defined

as I(A) =
∑C

i=1 f(piA) across C classes. Therefore rpart is maximizing the following function:

∆I = p(A)I(A)− p(Al)I(AL)− p(AR)I(AR)

piA is the proportion of a node, A, that belongs to class i in the data, and R/L are the right and

left splits of said node A [31]. Rpart continues splitting nodes in order to maximize impurity

reduction until there is only one sample, no difference in splits, or it has reached a maximum

pre-determined depth. At this point, the algorithm prunes the tree. It simplifies the tree

according to a complexity parameter that represents a minimum level of improvement that a

split must achieve to be included in the tree [32].

CART is popular because it is relatively easy to interpret and implement [33]. It also requires

fewer assumptions than regression models. It performs well with nonlinear, multi-modal data
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as it is non-parametric [32]. As a result, it often has better predictive performance than naive

regression models. However, the model performance is significantly dependent on how well

the complexity parameter is tuned, because it determines the simplicity of the tree and the

possibility of overfitting. In addition, with the addition of interaction terms and transformations,

regression models can have comparable performance to CART models [33].

2.5.3 Probit Model

Probit models are another commonly used method of risk prediction first proposed in 1934 to

model medicine dosage mortality [34]. It has since expanded to other fields as a method of

predicting various binary responses.

Along with assuming binary dependent variables, independent observations, and little mul-

ticollinearity between variables, a probit model assumes a normal distribution of errors. There-

fore, a probit regression results from assuming

Φ−1(π) = β1 + βx

[35]. Φ denotes the cumulative probability function for N(0, 1) and π is the probability that

Y = 1, where Y is the dependent variable. The β’s can then be estimated using maximum

likelihood estimation.

After an initial model is built, we choose relevant features using stepwise model selection.

Features are removed or added based on the extent to which they improve the model versus

the cost of increasing model complexity. This is measured by difference in Aikake information

criterion (AIC), where AIC = −2ln(L̂) + 2k. L̂ is the maximum likelihood of a given model,

and k is the number of parameters. Features are changed in order to minimize this score.

In order to improve model accuracy and the prediction of the minority class, the initial

features must be carefully considered. Inclusion of interaction and transformed terms as well as

close attention to a probit model’s parametric assumptions can lead to sufficient improvements

such that less interpretable machine learning models are unnecessary [33]. Probit models, like

CART, also do not rely on as much data as more complex, but often times, more accurate

machine learning models like random forests and neural networks.

Although stepwise selection does reduce the model size, it only reduces it to a local minimum

of AIC. Because of its stepwise characteristics, different starting features will result in different

final models. In our analysis, we experimented with a range of starting variables to include

interactions and transformations of features. For example, we included the interaction between

the number of farms and product quantity, as a supplier with a large number of products

and large number of farms may affect risk differently from a supplier with few farms and few

products. In addition, we tested interactions of the number of internal tests on test grades, and

the product quantity on number of factories. We also took the log of the population and gdp

per capita and experimented with both the square root and logs of the number of CFDA tests

and supplier age.
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2.5.4 Heckman’s Sample Selection Model

Neither probit nor CART account for sample selection biases. They assume that suppliers were

sampled by the CFDA at random. We employ Heckman’s sample selection model to account

for potential selection biases that may result from non-random sampling by CFDA officials or

from suppliers removing themselves (or being removed) from the market prior to being sampled

(e.g. recognizing a food safety risk and proactively exiting the market) [36].

We estimate the Heckman’s selection model using maximum likelihood estimation (MLE)

rather than the original two-step approach. Although the maximum likelihood estimation is

less computationally flexible than a two-step approach [37], it is more efficient [38]. We follow

the framework used in [24] and formulate the selection and outcome equations accordingly:

S∗i = γZi + εSi

R∗i = βXi + εRi

.

Si and Ri are the likelihoods of being sampled by the CFDA and having a CFDA inspection

failure, respectively, for supplier i, where Si = 1 and Ri = 1 mean that supplier i was sampled

and had a failure. S∗i and R∗i are the latent variables such that Si = 1 if S∗i ≥ 0 and Ri = 1

if R∗i ≥ 0, and both Si and Ri = 0 otherwise. γ and β correspond to the vector of coefficients

for the independent variables Zi and Xi. The error terms are represented by εSi and εRi , such

that a nonzero correlation, ρ, between the two indicates the presence of sample selection biases.

These error terms are assumed to jointly follow a bivariate normal distribution with mean 0,

standard deviations σS and σR, and covariance equal to ρσSσR. Ultimately, using maximum

likelihood estimation, our model results from the following:

max
γ,β,ρ,σSσR

LL ≡
∑

iε{i:Si=0}

logP(Si = 0)+

∑
iε{i:Ri=1,Si=1}

logP(Ri = 1, Si = 1) +
∑

iε{i:Ri=0,Si=1}

logP(Ri = 0, Si = 1)

We implemented this estimation by adapting the code developed in [24] and experimented

with various combinations of features. We trained a model on 70% of the data and then tested

its prediction accuracy on the remaining 30%. We iterated this procedure one hundred times

per model to develop confidence intervals for the model coefficients and accuracy. We tested if

there is significant sample selection bias by using a likelihood ratio test. Specifically, we compare

the log-likelihood of the Heckman sample selection model to the sum of the log-likelihoods of

independently constructed selection and outcome probit models that assume ρ = 0. The log

likelihood ratio is calculated as follows:

LLR = LLh − (LLs + LLo)

LLh is the log likelihood of the Heckman model and LLs and LLo are the log likelihoods of

the independently constructed selection and outcome models. 2×LLR follows a χ2 distribution,
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so can be used to calculate its p-value.

Although Heckman selection model is more generalizable, it is more dependent on the model

being correctly specified than a regular regression [39]. However, even if no selection bias is

detected, by using a Heckman sample selection model we are able to gather a better, more

generalized understanding of the underlying interactions between features,the odds of being

sampled, and the risk of food safety failures.

2.5.5 Model Assessment

These models can all be evaluated using a variety of prediction measurements, to include accu-

racy, F-1, prediction, recall, and AUC. Accuracy equals

TP + TN

TP + TN + FP + FN

where TP , TN , FP , FN are true positives, true negatives, false positives, and false negatives,

respectively. Positives indicate high-risk suppliers; negatives indicate low-risk suppliers. In

an unbalanced dataset like ours, a high accuracy but useless model can be gained by simply

predicting all suppliers as low risk. Alternatively, F-1 is useful in measuring how well a model

predicts the minority class. For models using unbalanced data, there is a tradeoff between high

accuracy and high F-1. F-1 is the harmonic mean of prediction and recall, such that

F-1 = 2× precision× recall
precision+ recall

Precision is a measurement of how many of the predicted positive class are correct:
TP

TP + FP
.

Recall is a measurement of how many of the actual positive class in the data are predicted

correctly:
TP

TP + FN
. Finally, AUC (Area under the ROC curve) is a measurement of how well

a model discriminates between binary classes. The ROC curve is a plot of the true positive rate

against the false positive rate at various propensity score thresholds. AUC can be interpreted

as the expectation that a randomly selected positive sample will be predicted to have a higher

probability than a randomly selected negative sample (e.g. a model with an AUC of .7 has a

70% chance of predicting higher probabilities for high-risk suppliers than for low-risk suppliers).

Like accuracy, AUC is also skewed by imbalanced data. Depending on a stakeholder’s goals,

any of these measurements of model quality can be useful. For our study we focus on models

that best discriminate the minority from the majority class, i.e. have a high F-1.

2.6 Results

In this chapter, we discuss the results of our CART, probit, and Heckman models. The AUC,

F-1, accuracy, precision, and recall of the best models using these three techniques are provided

in Table 2.4. For comparison, we also provide the prediction results of our CART and probit

models without using SMOTE. As the table shows, over- and under- sampling the minority

and majority classes, respectively, do improve out of sample prediction of the minority class.

However, even with the addition of synthetic data, our CART and probit models still perform
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worse at minority class predictions than the outcome model using the Heckman framework.

Table 2.4: Food Safety Prediction Results

Mean (StDev)
Model AUC F1 Accuracy Precision Recall

CART w/ SMOTE .678 (.037) .440 (.029) .673 (.026) .323(.024) .694(.054)
CART -no SMOTE .651 (.070) .438 (.053) .833 (.013) .583 (.057) .352 (.053)
Probit 1 w/ SMOTE .786 (.011) .496 (.016) .751 (.011) .397 (.015) .662 (.244)
Probit 2 w/ SMOTE .774 (.012) .507 (.018) .788 (.010) .446 (.019) .588 (.026)
Probit -no SMOTE .764 (.018) .347 (.024) .832 (.006) .623 (.044) .24 (.019)
Heckman Outcome .772 (.049) .541 (.061) .850 (.018) .505 (.132) .594 (.134)

Results are the means and standard deviations across one hundred iterations.

2.6.1 CART

We experimented with a variety of potential features and over/under-sampling ranges to train

our CART models. A small amount of synthetic data slightly improves the AUC and F-1 scores,

while too much over- or under-sampling results in the model predicting mostly the majority

class. Ultimately, the best model is the one that over-samples the minority class by 100%

(doubling its size) and under-samples the majority class to be 140% of the original minority

class. The best CART model is still 7% worse than the best probit model when comparing F-1

scores. However, this F-1 score is less than 50% which indicates it is not a particularly useful

model. It can be intuitively interpreted to represent that if the majority and minority class

were split 50-50, our model would not do better than random guessing. The model’s recall is

on average 69.4%. This indicates that it is able to correctly predict 69.4% of the minority class.

However, its precision is 32.3%, indicating that it is over classifying suppliers to the minority

class.

Across one hundred iterations with different training/testing splits, the variables used to

build the models in order of average importance (i.e. the greatest total decrease in impurity

for all splits) are number of CFDA tests, percent of CFDA tests completed while a supplier is

certified, percent regular inspections failed, age of a supplier, prefecture’s population, age as a

certified supplier, average distance to farms and factories, number of certification inspections

every year, prefecture’s misconduct ranking, prefecture’s GDP per capita, number of regular

inspections every year, number of product types, percent of certification inspections failed,

and whether it is an egg supplier. This is the only model in which our collaborator’s internal

inspection outcomes play a significant role in affecting the risk levels of the suppliers.

We depict the single best predictive model (highest F-1) out of all one hundred trials in

Figure 2.10. This tree shows, as an example, that 49% of suppliers have more than 35 tests,

and if a supplier has more than 35 CFDA tests, then it has an 88% chance of being high risk.

Each node shows the predicted classification (high-risk, 1, or low-risk, 0), the probability of

being high-risk, and the percent of suppliers that belong in that node.

The CART models are not consistent across various training and testing splits, as noted

by the discrepancy between the list of important variables across one hundred trials previously
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Figure 2.10: Best CART Model

“num tests”: number of CFDA tests; “percentCnstar avg”: average number of our collaborator’s regular
inspections failed; “mean pop log”: log of the supplier’s prefecture’s population

described and this “best” model. For example, while the model depicted in Figure 2.10 classifies,

in accordance with our hypothesis, suppliers with more regular internal inspections failures as

high-risk suppliers, this often is not the case in the other 99 models trained using the same

features. The variables used and the direction of splits are not consistent.

Along with the low prediction scores, the inconsistency of the CART models indicates that

despite its interpretability and minimal assumptions, it is not a good technique for prediction

with this small and unbalanced dataset.

2.6.2 Probit Model

Our probit models performed significantly better than the CART models in both AUC and F-1.

Following the same process as the CART models, we tested models built with various combi-

nations and interactions of our variables over a range of over- and under-sampling percentages.

The best probit model required more synthetic data than the CART model. It results from

data with the minority class over-sampled by 200% and the majority class under-sampled to

be 180% of the original minority class. It is interesting to note that the probit models built

without any synthetic data have significantly worse F-1 performance, but significantly better
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AUC scores, than the CART models without synthetic data (Table 2.4).

Our best models are built using the variables and results outlined in Table 2.5. Regardless of

whether or not synthetic data is used, the same variables are significant. Probit 1 uses a natural

log transformation of the number of tests and supplier age. It is the model with the highest

AUC amongst all models we trained. Including the square root of both the number of tests and

the supplier’s age results in a model with the highest F-1 score, Probit 2. Observe from Table

2.4 that the AUC of both models indicate that more than 75% of the time suppliers with CFDA

failures are predicted to have a higher risk than suppliers without failures. However, Probit 1’s

F-1 score is less than 50% and Probit 2’s F-1 score is marginally greater than 50%. These low

F-1 scores are a result of their disproportionately low precision scores. Both models are over

assigning suppliers to the positive, high risk, class. This indicates that these models are not

good predictors of high risk suppliers in practical applications.

Table 2.5: Regression Results of Probit Models

Value Standard Error p-value

Probit 1

Misconduct Ranking -.283 .153 .019**
Egg Supplier .410 .332 .025**
Log(Number of CFDA Tests) .510 .065 < .001***
Log(Supplier Age) .052 .047 .022**

Probit 2

Misconduct Ranking -.261 .153 .027**
Egg Supplier .410 .330 .027**
Sqrt(Number of CFDA Tests) .177 .033 < .001***
Sqrt(Supplier Age) .237 .126 .021**

Probit - no SMOTE

Misconduct Ranking -.101 .113 .048**
Egg Supplier .410 .300 .044**
Sqrt(Number of CFDA Tests) .137 .011 < .001***
Sqrt(Supplier Age) .085 .095 .041**

***: p < .01; **: p < .05; *: p < .10
Values are the mean of the estimated coefficients across one hundred iterations.

Despite this poor predictive performance, our model is useful in understanding the data.

The positive coefficient assigned to egg suppliers supports the characteristics we found in our

chi-squared test. Egg suppliers have a higher risk of failures. Unsurprisingly as well, number

of CFDA tests and supplier age also have positive coefficients. The more CFDA tests and

the longer a supplier exists, the more likely it has had a CFDA failure. The square root and

natural log transformations of these two variables indicate that increasing ages and tests have

diminishing effects on the likelihood of failure.

The coefficients on misconduct rankings are also aligned with the results of our chi-squared

test. They consistently have a negative coefficient. This indicates that suppliers in locations

with more reports of misconduct will have a lower probability of failing CFDA tests, which may
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indicate that less corrupt governments are more effective in detecting problematic products and

suppliers.

The lack of inclusion of supply chain, internal inspection, and certification features in our

best model indicate that they may not be as influential on reducing or predicting food safety

risks as researchers have previously expected. While the results of our probit models are more

consistent than the CART models, they still have weak predictive capability. In the following

section, we discuss our overall best model.

2.6.3 Heckman’s Sample Selection Model

The outcome model built using a maximum likelihood estimation of Heckman’s Sample Selection

model has the best prediction results overall, with an average F-1 score of 54.1%. This 4 to

5% increase in F-1 score is improved primarily as a result of increased precision; the model has

fewer false positives while maintaining a comparable number of true positives. However, its

average AUC is not better than our probit models. Neither of these differences are statistically

significant.

The likelihood ratio test indicates that there is no sample selection bias in our data. Although

sampling prediction is not a study objective, we observe that the predictive accuracy of the

selection model is quite low. However, joint estimation of the selection model with the outcome

model does improve risk level classification accuracy. The inclusion of statistically insignificant

variables in our selection model also improves this accuracy. These results are shown in Table

2.6. From these results, we observe that greater transparency in a supplier’s prefecture, GDP

per capita in a supplier’s prefecture, and supplying non-meat, vegetable, aquatic, fruit, nut or

tea products increase the likelihood of a supplier being sampled. Larger prefecture populations,

and more regular and traceable internal test failures decrease the likelihood of a supplier being

sampled by the CFDA. A possible interpretation of the relationship between internal inspection

failures and sampling rate is that our collaborator successfully stopped sourcing from a supplier

with inspection failures. This implication does not account for situations where other retailers

remain unaware of a supplier’s potential food safety problems and continue sourcing products

from the supplier. These observations warrant future research.

The best outcome model contains the same variables as in our probit model. In addition,

similar relationships between the variables and food safety risk are estimated. Egg suppliers,

suppliers with a longer history with our collaborator, and suppliers with more CFDA tests have

higher risk of failure, while suppliers in locations with more misconduct are associated with a

lower chance of CFDA failure. Unlike the probit models, the regression results of the Heckman

selection’s outcome model are not all significant. However, the inclusion of the insignificant

variables does increase predictive accuracy. Most importantly, like the probit models, the Heck-

man’s sample selection models also demonstrate that our collaborator’s quality and traceability

certifications, internal inspections, and supply chain dispersion are not useful predictors of food

safety risk.
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Table 2.6: Regression Results of Best Heckman Sample Selection Model

Value Standard Error p-value

Selection regression (likelihood of a supplier being tested)

Log of GDP per Capita .258 .054 < .001***
Other Product Supplier .642 .161 < .001***
Percent Regular Inspections Failed -1.06 .208 < .001***
Log of Population -.189 .055 .001***
Percent Certification Inspections Failed -1.42 .655 .052*
FDA Transparency .106 .054 .078*
Aquatic Supplier .288 .158 .105
Number of Farms .050 .029 .133
Variety Count -.058 .109 .508
Misconduct Ranking -.081 .196 .658
Number of Factories .001 .048 .631

Outcome regression (likelihood of a supplier having at least one failure)

Number of CFDA Tests .006 .001 < .001***
Supplier Age .069 .038 .120
Egg Supplier .466 .308 .185
Misconduct Ranking -4.12 89.3 .960

***: p < .01; **: p < .05; *: p < .10
Values are the mean of the estimated coefficients across one hundred iterations.
Likelihood ratio: .177; p-value = .5518

2.7 Discussion

Our probit and Heckman models perform significantly better at predicting high risk suppliers

than our CART model. The F-1 and AUC of our probit and Heckman’s sample selection models

are comparable. They are not significantly different from one another. Since our Heckman’s

sample selection model relies on fewer generalizations and assumptions, we consider it the best

and most realistic model.

Regardless of which is the best model, in practical application, a few conclusions result from

this analysis. Contrary to our hypotheses, quality certification, internal inspections, and supply

chain dispersion do not affect food safety risk in our data. We find that our control features

are the only characteristics that are significant in predicting CFDA failures. It is surprising

that more misconduct in a prefecture is consistently related to lower risk of failures in both

our probit and Heckman models. This may indicate that weaker governance is associated with

less effective detection of food safety problems by local governments. Alternatively, this result

could also be interpreted to mean that these prefectures have had more attempts to uncover

misconduct and hence, they actually have stronger governance and accordingly better food

safety. Further analysis is necessary to make that determination.

Unlike previous studies [24], we do not identify a relationship between the supply chain

dispersion of a supplier and its food safety risk level. We had hypothesized that greater supply

chain dispersion, represented by distance, variety, number of farms, and number of factories

would be related to higher risks of food safety. These features are not found to be significant in
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any of our models. This indicates that they do not play a significant role in helping to predict

CFDA failures of suppliers in our data. However, this result may also be biased because we

only factor in the supply chain characteristics known to our collaborator. Suppliers may have

more farms and factories that our collaborator does not source from and as a result does not

have data on.

Of primary interest to our collaborator, we find that their internal inspections do not reduce

the risk of a supplier having CFDA test failures. Internal inspections, both certification and

regular ones, are not found to be significantly associated with the suppliers’ risk levels. However,

we do observe that internal inspection failures reduce the chances of a supplier being sampled

by the CFDA. These results counter the current beliefs of traceability and quality management

experts.

The scope of our analysis is limited by the amount and quality of data available. As demon-

strated by our use of SMOTE, more data will improve analysis. Many of the suppliers that

our collaborator provided supply chain data for did not have corresponding internal inspection

results. With more consistent data collection of internal inspections, we could triple the size

of the data analyzed from 313 suppliers to 1012 suppliers. With more CFDA data, we could

also conduct more accurate analysis of supplier risks through analyzing the data as a panel

dataset. It would be more useful to analyze the likelihood of a supplier failing a single CFDA

test given its internal inspection results and characteristics immediately prior, than to analyze

the aggregate risk of failures, as we did in our study. It would also be interesting to analyze if

the results of CFDA tests affect future internal test results of a supplier.

There is still a significant amount of opportunity for future exploration and improvement in

order to generalize these conclusions to other quality management systems. The CFDA began

a new wave of reforms to align its national standards closer to international standards in 2017

[40]. With more data, we could isolate analysis to CFDA tests performed after 2017 and test

if the increased standardization offers any improvement in detection or reduction of the effects

of misconduct and transparency on failures. Also, if we had our collaborator’s specific internal

inspection features and results, we could test if there are specific aspects of the inspections

that are more useful than others in predicting risk. It would additionally be beneficial if we

received our collaborator’s internal product inspection data. We could then directly relate it

to the supply chain and inspection data, rather than relying on CFDA test results which are

much more sparse per supplier. Due to the data limitations of this study, we can only draw

conclusions on our collaborator’s certification system, and must be careful not to over-generalize

our results to other retailers’ or third party traceability and quality inspection systems.
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Chapter 3

Identifying Human Trafficking

3.1 Introduction

3.1.1 Motivation

Modern day slavery, also known as human trafficking, exploits more people now than ever before

in human history [41]. Human trafficking is the “act of recruiting, harboring, transporting,

providing, or obtaining a person for compelled labor or commercial sex acts through the use of

force, fraud, or coercion”[42]. Despite slavery being outlawed, it remains a global problem and

affects an estimated 40 million victims worldwide in the form of human trafficking [43]. In just

the United States, l8,524 cases of human trafficking cases and 10,708 victims were identified in

2018 [44].

This thesis focuses on sex trafficking, which is estimated to make up 79% of human traf-

ficking cases and generates an estimated annual profit $99B globally [45][46]. Sex trafficking

is characterized by individuals who commit commercial sex acts under threat of force, fraud,

or coercion, or anyone under 18 years old [47]. Like most illegal activity, identifying and in-

terdicting sex trafficking is a difficult problem for law enforcement agencies. Countering sex

trafficking has become even more difficult in recent decades because it has moved from the

streets to obfuscated online classified advertisements and the dark web.

It comes as no surprise that combating human trafficking is a “key Defense Department

mission” in the United States [48]. In support of this mission, DARPA began the Memex

program in 2015 [48]. Memex’s goal is “to move forward the state of the art in content indexing

and web searching on the Internet”. This program has opened the path to developing tools

that have proven useful in helping law enforcement counter human trafficking. One of these

tools is TellFinder which provides users with visualizations of personas identified in archived

web data by their similar attributes, like phone numbers or images. It then flags content with

high risk human trafficking indicators [49]. However, current technology can not efficiently,

automatically, and accurately identify these trafficking indicators.

Unfortunately, sex trafficking investigations are resource and time intensive activities. In

Florida, a 2019 sex trafficking case across ten spas that resulted in more than 200 charges [50]

took seven months and over $400,000 worth of detective work to build [51]. Suspicious activity

only came to law enforcement’s attention after a health inspection, despite many publicly avail-

able reviews (on Yelp and Google for instance) indicating that the massage parlors were actually
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fronts for brothels. Even with all of this detective work, the spa owners’ may only be charged

with prostitution solicitation rather than human trafficking despite many clear indicators that

the sex workers were being manipulated [50].

Successful applications of the tools resulting from Memex can significantly aid law enforce-

ment in identifying and investigating human traffickers. In January 2019, with the help of

technology that scheduled and tracked prostitution dates from online posts, law enforcement

officers succeeded in seizing about 500 websites and indicting six people for running a global

sex trafficking organization in the U.S., Canada, and Australia. This organization logged more

than 30,000 customer phone numbers [52]. However, an additional resource is needed that could

identify advertisements, contacts, locations, and ultimately organizations of suspected sex traf-

fickers from online ads. This would allow law enforcement to be even more efficient and effective

with their resources.

The difficulty in building such a platform is that identifying sex trafficking is a nontrivial

problem. The advertisements are often hidden amongst legal escort service and voluntary

(albeit, illegal in most of the U.S.) prostitution. These ads are full of non-standard English

grammar structures and emoticons. Furthermore, human trafficking ad identification operates

in an adversarial environment where traffickers are obfuscating text and using coded keywords,

like the global sex trafficking case previously mentioned [53], to describe services. Although

Backpage.com, a former major platform for sex ads, has been shutdown, human trafficking

ads have since resurfaced on other platforms. Without the consolidation of ads on one site,

manual online data combing has become even more difficult [54]. As a result, given the time

intensiveness of labeling advertisements, a useful platform must be able to identify trafficking ads

even as obfuscation techniques change. It must be a generalizable model that does not depend

on characteristics specific to the training dataset, like emails and phone numbers, but rather

adapts to identify new keywords as the language used in human trafficking ads transforms. This

would allow law enforcement to spend less time sifting through data and would provide them

with starting points for future investigations. This study furthers the development of such a

tool for combating sex trafficking.

In the following sections we discuss our work in developing a pipeline to improve upon

current sex trafficking detection technology.

3.1.2 Objective

The objective of our work is to answer the following questions:

1) Can we build an accurate and interpretable model for detecting sex trafficking advertise-

ments?

2) How can we identify keywords of sex trafficking ads even as language transforms?

3.1.3 Contributions

We develop a text based pipeline using natural language processing and interpretable predictive

algorithms that performs better at classifying human trafficking ads than all known models,

to include models trained using known human trafficking keywords. Our pipeline also has

better predictive performance than the results of a published deep multimodal network model
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approach that uses both the pictures and text of the same data as this study [55]. Although

we only have non-dynamic data, we demonstrate an opportunity for accurate and unsupervised

keyword identification. Our pipeline detects structures in human trafficking advertisements

and narrows down keyword lists that distinguish human trafficking advertisements. Finally, we

demonstrate that our pipeline can be successfully applied to outside data to detect suspected

human trafficking organizations. Unlike current state-of-the-art models, not only does our

pipeline allow for efficient and accurate human trafficking detection, it is also interpretable and

could allow for keyword identification even as language transforms.

3.2 Literature Review

The role of social networking sites and online ads in facilitating human trafficking was unclear

in 2010 [56]. Today, there is no question that online platforms are being exploited by human

traffickers. However, as Laterno writes, technology can be used to further efforts to combat it

as well. His comprehensive report of online human trafficking suggests data scraping, natural

language processing, and facial recognition as technology that can be leveraged to identify

victims more quickly [56]. Many of these technologies and more have come to fruition almost a

decade later.

These developments are outlined in a recent review of the relationship between technology

and human trafficking in [47]. For example, human trafficking detection programs include Pho-

toDNA, Spotlight, and Traffic Jam. PhotoDNA compares photos to those in a repository of

confirmed child exploitation cases and automatically reports matches to law enforcement. Spot-

light searches the internet for advertisements promoting sexual acts [47]. Traffic Jam, developed

by Marinus Analytics (our data provider), combines facial recognition, natural language pro-

cessing, and network analysis to identify human trafficking ads that may be linked to an input

photo or phone number [57][58]. Both Spotlight and Traffic Jam provide descriptive information

on the suspected victims in addition to contact or location information from the advertisements.

They use machine learning techniques and linguistic properties to improve data scraping, over-

come text obfuscation, and identify high risk advertisements [47]. Ultimately, Pendergrass finds

that while technology has significantly aided traffickers in ensnaring and exploiting victims, new

developments, especially in machine learning, have also reduced the manual labor required of

law enforcement to identify human trafficking victims.

Many of these technological developments leverage linguistic cues in advertisements. Re-

search has repeatedly proven that advertisement language often contain human trafficking sig-

nals. In one of the first studies to apply data analytics to online human trafficking, researchers

analyzed advertisements in the Adult section of Dallas’ Backpage site for the week leading up to

the 2011 Super Bowl [56]. Using natural language processing, they were able to find potential

keyword indicators of trafficking. However, researchers were unable to confidently verify that

the suspected ads were actually human trafficking using these methods [56].

Building from this study, researchers have primarily detected suspected sex trafficking ad-

vertisements from escort service advertisements using sets of pre-determined attributes. Most

of these studies also do not have truth data. For example, Kennedy, the cofounder and presi-

dent of Marinus Analytics, developed a methodology for detecting and visualizing patterns in
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trafficking movements via text analytics. Kennedy narrowed down a database of advertisements

scraped from Backpage by using various characteristics, like keywords, language, websites, phone

numbers, and locations, that map to indicators of human trafficking: being underage, shared

management, and movement. This pipeline then allowed a user to conduct queries and visualize

the related advertisements and their metadata (eg. posting time, frequency, and location) [59].

Similarly, Silva et al., designed a system for identifying the prostitution networks of possible

underage sex trafficking victims [60]. However, like Kennedy’s research, the utility of this tool

is also dependent on information known a priori because there was no verification data[60].

A more detailed content analysis of advertisements posted on Hawai’i Backpage created an

index of human trafficking indicators: inconsistent ages, inconsistent aliases, movement, shared

management, third party posting, advertised nationality, and potential restricted movement

[61]. However, this analysis found that out of the 1436 advertisements analyzed, 82% of the ads

contained one or more indicators. It is unlikely that the true prevalence rate is this high. This

shows that the presence of any given indicator can not be seen as proof of sex trafficking but

only a flag to be raised for further investigation [61].

Researchers have also found that not only do human traffickers use coded words and phrases,

they also use coded emoticons [62]. An ontology of emoticons, keywords, and phrases that are

indicators of human trafficking were compiled from interviews with law enforcement and individ-

uals involved in combating sex trafficking by Whitney et al. Emoticons used in advertisements

with keyword/phrase indicators of human trafficking were then compared with advertisements

without indicators using hypothesis testing and logistic regressions. This exploratory study not

only found that emoticons are a useful indicator of human trafficking but that they may be

used independent of keyword indicators [62]. Although this discovery provides more leads to

potential victims, it adds another layer of noise for accurately narrowing down human traf-

ficking investigations. Hultgren et al., suggests researchers can use a knowledge management

approach to update keyword ontologies as successes occur to maintain system accuracy [63].

However the manual identification and updating of keywords that is suggested is laborious in

itself. These studies are all dependent upon the accuracy and availability of known indicators of

human trafficking. Automated detection of sex trafficking advertisements and indicators would

be a significant improvement to current technology but is yet relatively un-researched.

One example of a supervised modeling approach to human trafficking detection is a study

by Dubrawski et al. They compare three methods of feature selection and test a tenfold cross-

validation random forest classifier on a dataset of 37,000 unique advertisements where 40% of

the ads contained phone numbers of known traffickers and the remaining 60% were randomly

selected from a set of unlabeled escort service advertisements [64]. These three models use key-

word/phrases gathered from interviews with law-enforcement, regular expression extractions of

personal identifying physical and operational characteristics (e.g. ethnicity or url), and natu-

ral language processing features selected from the top 300 principal component analysis words

from a bag of words representation of all 16 million advertisements. The model trained using

NLP selected features has significantly better predictive performance than both the keywords

and regular expression based models. This suggests that although experts have identified dis-

criminatory keywords and phrases, the NLP selected features are able to identify more subtle

indicators.
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Dubrawski et al.’s has excellent predictive results (F-1 of 73.7%). However, their training set

is an unrealistic representation of real data because the prevalence rate of human trafficking is

much lower. This would make model training much more difficult. In addition, they built their

NLP features using all 16 million advertisements, which means it used both the words in the

training and testing set. To achieve unbiased results, they should have selected features only

from the set of training advertisements. Nevertheless, this study demonstrates that unsuper-

vised NLP features may be an improvement from detecting human trafficking advertisements

using pre-determined indicators.

Tong et al. similarly uses natural language processing, combined with computer vision,

techniques to detect suspected human trafficking advertisements. They built a rigorously anno-

tated dataset of 10,000 advertisements to train their deep multimodal network model, named

Human Trafficking Deep Network (HTDN). HTDN uses a language network built using word

embeddings trained on one million unlabeled ads outside of the annotated set coupled with a

vision network using advertisement images. They find that HTDN performs significantly better

than baseline models built using random forest, logistic regression, and linear SVM with 108

keywords, average trafficking vectors, 108 informative words, or bag of words as features. They

report an upper bound F-1 per human performance metrics of 73.7%. HTDN results in an F-1

of 66.5% [55]. Although the HTDN pipeline performs better than all the other more simplistic

methods, it does not allow for any interpretability. Law enforcement would have to accept the

results at face value as they can not decipher how features impact the results. In addition, this

approach is completely dependent upon having a well annotated training set, which significantly

detracts from the automation of the entire process. Using the same training data, we propose

a more interpretable and more accurate method that is less dependent on labeled data.

3.3 Data

In this section we present the datasets used to train our language models and classification

models. Both were provided by Marinus Analytics.

3.3.1 Language Model Dataset

We use a set of over 2.5 million unique Adult service ads that were scraped over a six month

period in 2017 from the now defunct Backpage.com. These advertisements represent activities

across the United States and Canada. They describe activity ranging from massage parlors,

escort services, to suspected sex trafficking. Each ad is composed of all textual information that

is displayed on the webpage, to include titles and emojis, and is labeled with IDs and locations.

Although previous processing efforts have tried to remove ad reviews, due to the unstructured

nature of this data many still remain in the data.

These ads are not annotated, so it is unknown how many of them are suspected to be tied

to human trafficking organizations. Nevertheless, they provide an accurate, albeit unknown,

representation of the true distribution and language of human trafficking in Adult service ads.
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3.3.2 Trafficking-10k Dataset

The Trafficking-10k dataset also is the data used in the previously discussed HTDN model in

[55]. It is an annotated set of ten thousand advertisements that were randomly sampled from

a larger set of Adult service ads scraped from Backpage.com at an unknown time[55]. The

ads do not overlap with those in the Language Model Dataset. But like the Language Model

Dataset, they also represent ads from across the United States and Canada [55]. Although the

annotators and the multi-modal HTDN model use images from the ads to aid classification, this

study does not include images in its analysis.

These ads were rigorously annotated by subject matter experts on a 7 degree scale of likeli-

hood of being human trafficking, with the middle level being unsure [55]. More information on

the annotation methodology is described by Tong et al. The distribution of advertisements and

scores is depicted in Figure 3.1. As depicted, most of the ads are not found to be human traf-

ficking related. However, there is also a lot of uncertainty in classification. In fact, annotators

are mostly uncertain even for the suspected human trafficking ads. As a result, because there

are few certain high-risk ads, we approach this as a binary classification problem between not-

suspected and suspected human trafficking ads. Ads that are suspected to be human trafficking

are considered to be high-risk and ads that are unlikely to be human trafficking are considered

to be low-risk.

Figure 3.1: Distribution of Human Trafficking Risk in Trafficking-10k Ads
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3.4 Methodology

Given the level of human interaction and burden of proof required in human trafficking inves-

tigations, black box approaches are not ideal. Law enforcement officers require justification

behind their actions. In addition, they do not have the resources to read through the millions

of ads that are posted everyday. An ideal methodology would not only identify features used to

classify human trafficking but be able to do so with minimal supervision. We develop a pipeline

that can do exactly that. After pre-processing, we use unsupervised NLP features on a bag

of words representation of each ad to train interpretable models (classification and regression

trees, random forest, and binomial logistic regressions).

3.4.1 Pre-Processing

In order to focus on textual features we conduct a rigorous pre-processing of the advertisements

to remove unnecessary or overly specific information using regular expressions. We cleaned

up utf-8 characters that were mangled during crawling and striped HTML tags from the text.

We also removed ad ID codes and locations. Next, we cleaned obfuscated words. The most

common and easily replaced obfuscations were words whose characters were separated by spaces

and asterisks. We then identified and replaced phone numbers, emails, costs, and times with

filler words indicating the original purpose (e.g. “phonenumber” , “email”). We replaced all

remaining numbers with a filler word as well. Finally, we removed all emojis, websites, and image

references. For future research, we developed an alternate pathway to keep or use filler words

for the emojis, websites, and images, but did not experiment with that implementation in this

study. Finally, we tokenized all the punctuation. We did not conduct stemming because words

like “girl” versus “girls” have significantly different implications in the case of human trafficking

scenarios. This procedure was implemented on both the Language Model and Trafficking-10k

Dataset. In the Trafficking-10k dataset, we also removed non-unique and the “unsure” class

ads. It is unclear from Tong et al.’s study if the “unsure” class was included in the analysis and

if so, if those ads were grouped with the minority (high-risk) or majority (low-risk) class. In

addition, there are some non-unique advertisements that are annotated with different scores. As

a result, to reduce the noise in our data, we neither include the “unsure” ads nor the non-unique

ads. This leaves 9108 advertisements from the Trafficking-10k dataset for training and testing

our models.

3.4.2 Phrase Detection

After pre-processing, a phrase detection and replacement algorithm is applied to the advertise-

ments iso that phrases will be treated as a single token in later models. Phrase detection is

applied because many of the indicators used in previous literature were not just singular words,

but phrases like “new in town”, indicating movement or a minor, or “no outcall”, indicating

restricted movement [47]. A word like “outcall” or “town” on its own is not a good indica-

tor of human trafficking without the entire phrase. In addition, regardless of whether or not

phrases are selected for model building, the inclusion of these phrases changes the language

model estimations for the surrounding words and reduces multicollinearity between commonly
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neighboring words. Individual words may have lower perplexity scores in the language model if

they are part of a phrase, but if the phrase is interpreted as a token, the scores of the combined

words, and the surrounding context will be different.

The phrase detection algorithm is run on the Language Model Dataset of 2.5 million Adult

service advertisements to create a phrase dictionary. The phrase detection algorithm was created

by the HDDN team at Lincoln Laboratory. It identifies repeated multiword units from the text

and considers them to be phrases if they meet a count threshold and weighted pointwise mutual

information (PMI) minimum. Weighted PMI equals the frequency of a multiword unit in a text

multiplied by its PMI score. PMI measures the probability of mutual occurrence between tokens

in the multiword unit given the rest of the corpus. Frequency is the number of occurrences of

the multiword unit divided by the total number of words in the text. After this dictionary

of phrases is completed, only the phrases that are within a minimum and maximum length

requirements are kept. The resulting set is the final phrase dictionary.

We then concatenate and replace the detected phrases in both datasets, thereby transforming

them into “words”, before creating the language model and training the classification models.

Only exact matches are replaced. A more robust approach would build a phrase dictionary that

takes into account obfuscations and minor variations.

We experiment with varying degrees of granularity in phrase detection by varying the min-

imum and maximum lengths of phrases and repeated occurrence thresholds. We test pipelines

using phrases ranging between three to seven words and occurrence cutoffs ranging from ten to

twenty. The most accurate classification models ultimately use phrases of three to six words

and require a twenty occurrence minimum.

3.4.3 Language Characteristics

After processing, there are a total of 1,959,339 unique words in the Language Model dataset.

The ads are in nonstandard English, with a small percentage also in foreign languages. The

processed advertisements on average have 68 words and 436 characters per ad with a standard

deviation of 51 and 343, respectively, due to some extremely long advertisements. Our most

useful phrase detection algorithms were able to identify 2128 unique phrases. Each phrase is

3 to 6 words long, with a median length of 3 words. Each ad contains on average 4.5 phrases

with a standard deviation of 3.8.

In the Trafficking-10k dataset, there are a total of 9,227 unique words. Similarly to the

Language Model dataset, these ads have on average 75 words and 489 characters with a standard

deviation of 48 and 376, respectively. There are also on average 3.6 phrases found in each ad

with a standard deviation of 2.7.

The word count and character count are significantly different at p < .001 between the high-

and low-risk advertisements (ignoring ads that are classified as “unsure”). On average low risk

ads have more words and characters. The statistical difference found in average word count

likely results from extreme outliers in the low risk advertisements, as can be seen in Figure 3.2.

The phrase count between classes is not significantly different (p = .8112). This implies that the

phrases detected in the Language Model dataset likely are not associated with risk indicators.

The distribution of the phrase counts across various risk levels is depicted in Figure 3.3. These
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statistics demonstrate that high-risk and low-risk ads have similar language structures.

Figure 3.2: Word Count Across Risk Levels
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Figure 3.3: Phrase Count Across Risk Levels

3.4.4 Feature Selection Overview

Features are selected using natural language processing (NLP) characteristics calculated from a

language model trained on the 2.5 million ad dataset after pre-processing and phrase detection

is completed. This language model is queried to evaluate perplexity and context scores of the

words and ads in the processed Trafficking-10k dataset. We then experiment with perplexity,

context, frequency, and TFIDF scores to select words for training the supervised model. A

visualization of this process is included in Figure 3.4. We further detail our features selection

pipeline in the following subsections.

Language Model

The keyword selection pipeline selects words using the results of a language model query. Lan-

guage models are useful for predicting words that should occur. It is most commonly used to

help machines identify words from noisy input, like in speech, handwriting, spelling, or trans-

lations [65]. In addition, they allow for topic independent keyword detection [66] and topic

signature detection [67]. Given these benefits, we hypothesize that language models are also

useful for identifying words that we do not expect to occur – the words and phrases that are

indicators of human trafficking advertisements. At the time of writing, we are not aware of any

similar applications of language modeling in human trafficking ad detection.

We train a 5-gram language model using the ads from the Language Model dataset and use

this model to discover these unexpected words. These words are then used as features to detect
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Figure 3.4: Feature Selection Pipeline

Blue: Language model processing; Purple: Trafficking-10k processing; Green: Modeling

differences between the language used in legal Adult service ads and suspected human trafficking

ads. We assume that if the language model ads are primarily not potential human trafficking ads,

then the words that are out of context are expected to be indicators of human trafficking. This

is a valid assumption because previous researchers have found a human trafficking prevalence

rate of 12% in escort service ads [64] and have primarily relied on contextual clues to identify

human trafficking [59][61][62].

We estimated, filtered, and queried our language model using the KenLM Language Model

Toolkit. The output was processed using a variant of code written by Dr. Michaeel Kazi.

KenLM efficiently finds the probabilities and backoff penalties of n-grams (sequences of n words)

from a language model [68]. It implements modified Kneser-Ney smoothing with interpolation

to estimate perplexity scores of each word [69]. The complete pipeline used to estimate the lan-

guage model is shown in Figure 3.5 which is originally from [1]. We summarize the methodology

as discussed in [69] and [1] below.

Language model of order n estimates P (wn|wn−11 ), the probability a sequence of n words

(wn) occurring given the previous n − 1 words (wn−11 ). To calculate this, the first step is to

count all n-grams in the corpus. These counts, c, are then replaced with adjusted counts, a,

per:

a(wn1 ) =

c(wn1 ), if n = N or wq =< s >

|v : c(vwn1 ) > 0|, otherwise

where v represents the number of unique words prior to wn1 .

Smoothing statistics tn,k (the number of n-grams with adjusted count k) and discount Dn(k)

are also calculated at this time.
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Figure 3.5: KenLM Pipeline from Heafield et al.’s Presentation [1]

tn,k = |{wn1 : a(wn1 ) = k}| for k ∈ [1 : 4]

Dn(k) = k −
(k + 1)tn,1tn,k+1

(tn,1 + 2tn,2)tn,k
for k ∈ [1, 3]

Dn(0) = 0 and Dn(k) = Dn(3) for k ≥ 3

Next, KenLM normalizes the probabilities by computing pseudo probability, u, and backoff

penalty, b, for unobserved events:

u(wn|wn−11 ) =
a(wn1 )−Dn(a(wn1 ))∑

x a(wn−11 x)

b(wn−11 ) =

∑3
i=1Dn(i)|{x : a(wn−11 x) = i}|∑

x a(wn−11 x)

The final probability, p, is then calculated such that

p(wn|wn−11 ) = u(wn|wn−11 ) + b(wn−11 )p(wn|wn−12 )

and

p(wn) = u(wn) + b(ε)
1

|vocabulary|

where ε denotes an empty string[69].

Using KenLM’s methodology for computing these probabilities, we efficiently query the

language model procure perplexity scores, PP for each Trafficking-10k ad, W , where PP (W ) =

P (w1w2...wN )
−1
N [65].
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This results in each token (word or phrase) in each ad being assigned a perplexity score

(with a maximum possible score of 0). More negative scores are more “perplexing” – they occur

in unlikely n-grams. We also calculate a “context” score to estimate the likelihood a token is in

a real sentence. The context score is an average of the perplexity scores of the k tokens to the

left and k tokens to the right of the token in question. We use k = 5. Observe that this does

not include the perplexity score of the token in question. Similar to perplexity, we can interpret

tokens with lower context scores to represent tokens that are less likely to be a part of a real

sentence because their surrounding context is more unexpected. In addition, KenLM calculates

the total perplexity score per ad that is equal to the sum of the scores for all the tokens in that

ad and the total number of tokens that were out of the vocabulary (oov) of the language model.

The Trafficking-10k tokens using the baseline language model, with no phrases included, has

an average perplexity score of -1.73 with a standard deviation of 1.59 and an average context

score of -1.58 with a standard deviation of .74. The perplexity and context scores are only

correlated with a Pearson coefficient of .37. There are on average 3.47 tokens out of vocabulary

but there is a standard deviation of 32.0. This is because of about 30 ads with over 100 tokens

found to be out of vocabulary. This inconsistency resulted primarily from pre-processing error

that kept some html tags. It exemplifies the difficulties in working with non-regular text.

Using the language model and phrase detection that allowed for the most accurate detection

of human trafficking risks, the perplexity score on average is -2.03 with a standard deviation

of 1.57 and an average context score of -1.84 with standard deviation .71. The perplexity and

context scores under this model are slightly less correlated with a correlation coefficient of .35.

This language model has fewer tokens out of vocabulary, with an average of 1.39 and a standard

deviation of 2.63. Under a t-test, the differences between perplexity, context, and oov in the

baseline and best language model results are all significantly different at a p-value < .001.

Feature Selection and Representation

After training and querying the language model, the next step in our feature selection pipeline

is to calculate the average perplexity or context score for each unique token (word or phrase)

in the Trafficking-10k ads. We then experiment with choosing the tokens with the highest or

lowest average scores across varying ranges. The lowest scores correspond to the most perplexing

or out of context tokens. We additionally experiment with the usefulness of phrase detection

algorithms by comparing three methods: selecting the top words without phrases, selecting the

top tokens with phrases, and selecting the top words and the top phrases separately. These

selected tokens become the keyword features used in our model.

Each ad is represented by a vector of these keywords. Although the keywords were selected

by context or perplexity scores, we experiment with different numerical representations. The

vectors were represented with either the TFIDF, frequency, perplexity, or context scores of each

keyword in the ad. These representations test whether given a list of keywords, number of

occurrences (frequency), level of strangeness (perplexity/context), or a combination of the two

(TFIDF), will result in the most accurate predictions.

We also experiment with additional feature elimination methods to remove unimportant

words. First, we remove tokens that are too short, which we define as words that are fewer
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than three characters long. These are “words” that likely resulted from processing error, where

we did not identify letters that were separated from one another. We also run models with

only tokens that are both low in context and low in TFIDF score in order to further reduce the

potential noise caused by overly common words. The final filter removes all non-sparse terms,

which we define as words in less than 2% of all documents.

In addition to these tokens, we include features describing language characteristics of the

advertisements: number of phrases, number of words, number of characters, percent of words

that are phrases, total perplexity, total out of vocabulary (oov) words, and the sum of the NLP

(e.g. perplexity, tfidf or context) features.

We compared this pipeline to two simpler techniques, where all but the sparse tokens are

kept. After feature selection, each ad is represented as a vector of the frequency or TFIDF of

the tokens that remain, as calculated by R’s tm package [70]. This matrix of word vectors is

used to train our models. The level of sparsity removed is a parameter that can significantly

affect accuracy and utility of the model. Keeping too many sparse words may result in too much

noise and a long list of “keywords”. On the other hand, removing too many sparse words may

result in removing actual keywords and subsequently reducing model accuracy. As a result, we

experiment with varying level of sparsity to tune the model. We find that models with TFIDF

score representations of words that are in more than 2% of documents have consistently better

predictive performance than the corresponding frequency based models so we will focus our

discussion on the TFIDF-based model results.

3.4.5 Human Trafficking Detection

In order to build a model for human trafficking detection, we applied this feature selection

pipeline to the Trafficking-10k data. Only words/phrases from the training set were used as

features in the model. As a result, the testing set sometimes was missing tokens found in the

training set. These missed words were added to the testing set as having a perplexity, context,

or TFIDF score of 0.

Using this data we experimented with multiple machine learning methods. We trained

binary classification models using a five-fold cross validation approach. The multiclass risk

annotations were converted to a binary system of high- vs low-risk, with the mid-level “unsure”

class removed. We applied clustering methods, but due to their poor initial performance, we

focused our modeling efforts on binary logistic regressions, classification and regression trees,

and random forests.

We applied binary logistic regressions (logit) for its simplicity and interpretability. Not only

does it classify the ads but it also provides users with a clear ranking of ads and their likelihood

of being human trafficking related. Logit is also useful because the coefficient values of the

regression represent whether a keyword increases or decreases the likelihood of an ad being

human trafficking. In addition, it is often better than probit at modeling the effects of extreme

independent variables, where one feature may significantly impact classification results. This

is important in this application because the presence of particular keywords may be a near

guarantee that an ad would be suspected of human trafficking by SMEs.

Unlike probit (as discussed in Chapter 2.5), logit assumes a logistic link function such that
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[35]:

log(
π

1− π
) = β1 + β2x

where log( π
1−π ) are the log odds that Y = 1, such that Y = 1 if an ad is suspected to be

human trafficking and π represents the probability that Y = 1. Like probit, logit also assumes

independent observations and little multicollinearity between variable. We propose that these

assumptions are valid because we have removed duplicated advertisements. We further ensure

that there is no multicollinearity between variables by conducting phrase detection and only

including one set of language model features in the model – only perplexity, context, TFIDF,

or context scores.

Unlike the models discussed in 2.5, we do not apply stepwise model selection to reduce the

number of features because of the large number of features. We also do not include interaction

terms as that would significantly reduce the automation of the model building. However, the

inclusion of phrases, while also reducing multicollinearity, approximates the interaction of the

words within the phrases.

Classification and regression trees (CART) was also used for similar reasons to those dis-

cussed in Chapter 2.5. It is interpretable and requires fewer assumptions than regression anal-

ysis. Yet, large trees are sometimes still difficult to interpret and may over-fit, while small trees

may be inaccurate and fail to identify important keywords. Like the aforementioned section,

we implement R’s rpart.

Finally, we train models using random forests. Unlike the previous project, we have a suit-

able amount of data (50 times more than the food safety project). We use an R implementation

of Breiman and Cutler’s random forests from the package “randomForest” [71]. Our forest is

built using the default 500 trees.

Random forest models are the least interpretable of the aforementioned methods. The

output model allows back end analysis of the importance of features but does not allow users

to easily decipher whether a keyword is a high or low risk indicator. Its primary benefit, as

Breiman wrote, is that it is more robust to noise than CART and regressions and it is less

likely to overfit the data [72]. Although random forests provide out-of-bag estimation, in order

to have comparable results as the other methods, we apply five-fold cross validation and tune

within each fold for the number of variables randomly sampled at each split.

Additional techniques are applied to gain more interpretable and predictive results. We

experiment with further reducing the keyword list by choosing the most “important” words per

the results of the best random forest model. We reduce this list by choosing features with an

above average mean decrease in Gini index. In order to understand precisely how these features

affect human trafficking risk, we build a logit model with them. We hypothesize that this two-

phased approach allows us to reduce most of the noise from unimportant keywords while still

keeping the important and desired keywords.

These models allow us to classify suspected human trafficking ads and verify that our unsu-

pervised keyword selection methodology is informative. Tokens are chosen based on likelihood

of occurrence calculated from a language model built using generic Adult service advertise-

ments. Rather than manually collecting the attributes that are indicative of human trafficking,

our methodology discovers keywords semi-automatically. Most importantly, our keyword de-
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tection pipeline indicates that keywords can be selected, accurately and without supervision,

by examining out of context and rare occurring words. They are discovered solely based on

the results of NLP characteristics. With correctly identified keywords, the models are able to

make accurate predictions of human trafficking risk. Therefore, with this methodology, users

can apply interpretable, automatic, and data driven methods of selecting features for predicting

human trafficking. These results are demonstrated in the following sections.

3.5 Results

3.5.1 Best Model Overview

Our interpretable language model pipeline has significantly better predictions than not just the

unimodal HTDN model but also the multimodal HTDN model. For the most part, the more

keywords considered, the better the model performs. However, there are diminishing returns

in model improvement and in some cases we find that too many words cause too much noise,

especially in the logistic regression models. We experimented with up to 1000 words and 100

phrases for all models, and also up to 1500 tokens total for a few models. We found that using

over 1000 words and 25 phrases offered insignificant improvements to predictive performance.

1000 words is about 5 to 6% of the unique tokens in any given training set that is 80% of the

Trafficking 10-k data.

Our best pipeline, Random Forest with Logistic Regression Model (RFLM) has the best

predictive performance out of all the pipeline variations we experimented with. We assume

that the best model is the one that is most applicable to end users. It should provide a precise

list of keywords and have high predictive accuracy. We also assume that a model that is better

at identifying high-risk advertisements (higher recall) is better than one with greater precision

in its identifications, given equivalent F-1 scores. As a result, we determine that RFLM is the

best model.

RFLM has the highest F-1 score out of our models tested. In addition, it has a significantly

higher F-1 score than the HTDN models with a p-value < .001 using a one-sample, one-sided

t-test (since no standard deviations were published by [55]). This is shown in Table 3.1.

We will discuss RFLM’s feature selection technique, key findings, comparable pipelines,

and alternative modeling methods in the following sections. The results of additional pipeline

variations are in Table A.1.

Table 3.1: Top Model Results

Method-Features Average # of Features F-1(StDev) Recall(StDev)

HTDN-Unimodal N/A .658 .623
HTDN-Multimodal N/A .665 .622
Human baseline N/A .737 .709
RFLM 223 .667(.003) .729(.006)

StDev (Standard Deviation) is calculated from one hundred iterations of the pipeline
RFLM: Random Forest with Logistic Regression Model trained with low context
words and phrases
HTDN’s and human baseline model’s results are from [55].
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Feature Selection

RFLM is the pipeline with the highest F-1, recall, and interpretability out of all our experiments.

However, it is also the most computationally complex pipeline. It applies a two phase modeling

technique. In the first phase, it begins by selecting the 1000 and 25 lowest context words and

phrases, respectively. Then it reduces the list of keywords by choosing only words that are three

or more characters long while keeping the sparse words. Next, it adds in three language features:

the total oov, total TFIDF, and total perplexity in each ad. Finally, it trains a random forest

model. For the second phrase, it eliminates features by only keeping tokens that have an above

average decrease in mean Gini Index in the random forest model. This results in 220 tokens on

average along with the language characteristics being used as features for the next model. The

logistic regression model is trained on these remaining features and is the final model used to

identify human trafficking indicators and detect high-risk ads.

Including phrases in our language model does improve the overall detection model. Models

with phrases consistently perform similarly if not better than the comparable models without

phrases even though the phrases are not consistently found to be statistically significant in

the final logistic regression. RFLM is built using phrases of three to six words long and with a

minimum of twenty occurrences in the Language Model dataset. It keeps three out of the twenty

five initially selected phrases on average after the first phase. After the second phase, none of

the phrases are found to be consistently significant and present across trials, although some of

the phrases, like “I love what I do” (a positive indicator of human trafficking) are significant

when used. These results indicate that as suspected from the distribution of phrases across

ad risk levels in Figure 3.3, most of the phrases are not clear indicators of human trafficking.

Nevertheless, they still help in identifying the other keywords by influencing context scores and

reducing multi-collinearity in the models.

In addition to the keywords, a few language features were found to be significant in our

models. Number of characters and words, despite having statistically significant differences

between the two classes, ultimately add too much noise and decrease model accuracy. Total

perplexity, total TFIDF scores, and words out of vocabulary (oov) are kept in the final phase of

RFLM, although oov is not usually statistically significant. Lower total perplexity scores (more

perplexing content) surprisingly decrease the risk of an ad being human trafficking at a p-value

< .03 on average. Higher total TFIDF scores reduce the risk of an ad being classified as human

trafficking with a p-value of < .001.

Key Findings of RFLM

As previously discussed, the RFLM pipeline allows users to identify a list of about 220 keywords

from the Trafficking-10k ads. Over the course of a five-fold cross validation test, we identify 257

keywords total, since not all the same keywords are identified in each model. To identify the

list of true keywords, we take the averages of the coefficient values and statistical significance of

each word across a five-fold logistic regression model output. The coefficient values of a logistic

regression describe the amount and direction of influence a feature has on human trafficking.

Features with positive coefficient values are high-risk indicators, while features with negative

coefficient values are low-risk indicators. The statistical significance of a feature describes the
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probability that the true coefficient value is 0. The coefficient is assumed to be 0 and the

significance is assumed to be 1 for words that are not included in an iteration.

Although the majority of the words are not significant across all five-folds, when used, they

are usually found to be human trafficking indicators. 182 of all the words and phrases (71%)

are high risk indicators. 61 (24%) of all the words (and 0 phrases) are found to be significant

at a p-value of < .1 and 48 (79%) of these words are high risk indicators. Therefore, once

non-important words are removed (e.g. those that have below average decrease in Gini index in

a random forest model), most remaining low context words are potential high-risk indicators.

Previous studies have demonstrated that race, youthfulness, and restricted movement are

known indicators of human trafficking. We are able to observe these indicators in our keyword

list and find them to be distinctly different from the low-risk indicators. This is demonstrated

in the keyword examples shown in Tables 3.2 and 3.3. RFLM is able to separate known human

trafficking indicators from legal or voluntary sex work, while also identifying potentially new

indicators.

Table 3.2: Select High-Risk Indicators

Keyword Value Significance

Asian .563 < .001
Korean .459 < .001
Young .381 < .001
Japanese .310 < .001
Girls .271 < .001
Chinese .198 .030
Incalls .187 < .001
Tight .165 .001
Petite .161 < .001
Slim .159 .005

Table 3.3: Select Low-Risk Indicators

Keyword Value Significance

Sex -.644 < .001
Details -.396 < .001
Mature -.188 .001
Sensual -.187 < .001
Woman -0.174 .003

Our final model is still 6% away in F-1 score from achieving the maximum accuracy which

is defined by the human baseline from [55]. However, it is generally able to accurately detect

suspected ads. As shown in the box plot of predicted risk levels in Figure 3.6, there is a clear

distinction between the predicted probabilities and the true binary risk levels. In addition,

Figure 3.7 demonstrates that our model is especially accurate in classifying ads that human

annotators are not completely certain of and may otherwise spend more time on. The high

predictive accuracy and interpretability of our model has the potential to significantly improve

efficiency in human trafficking detection.
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Figure 3.6: Predicted Risk Against Binary True Risk Levels

The misclassifications in our model primarily arise from the ads that were “certainly yes”.

This is shown in Figure 3.7. An ideal model would have consistently rising predicted probabil-

ities as the true risk levels increase. Since we trained a binary classifier, these probabilities do

not naturally extend to the multi-class annotations. Most of our high risk advertisements are

annotated as “weakly yes” and accordingly our model is best at predicting these ads correctly.

The misclassifications of the “certainly yes” ads additionally demonstrate that the human traf-

ficking indicators are not consistent across classes. The “certainly yes” ads are using different

and unidentified indicators. However, there are not enough ads that are “certainly yes” for

our model to learn the characteristics that discriminate it from the low-risk ads. More data on

“certainly yes” and other higher risk ads are needed in order to more accurately detect human

trafficking.

3.5.2 Alternative Pipelines

In addition to RFLM, we discover three additional pipelines that have comparable F-1 scores

and are also significantly better than the HTDN models with t-test p-values of < .001 across

the board. Their predictive results are shown in Table 3.4. None of these four models are

significantly different from one another in F-1 score at p-values of < .05. However, we do find

that as complexity of the model increases, so does the recall. As a result, RFLM is the best
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Figure 3.7: Predicted Risk Against True Risk Levels

detection model but at the cost of increased complexity.

The four top feature selection techniques have very similar predictive performance as can

be seen in Figure 3.8. However, RFLM has significantly higher recall scores than all the other

models, with a p-value of < .001. In addition, it relies on the fewest number of keywords in its

final model (on average 220 as oov, plex, and total TFIDF score are also kept). Its downside

is that it relies on starting with 1000 tokens and 25 phrases, and even after eliminating short

words, it still uses 955 features to build the random forest. As a result, if no labeled data is

available, it would not be the best model. Its keyword list is too long to be practically applicable.

If training data is not available, the Low Context Logistic Regression Model (LCLM) is

the best model because it requires the smallest set of initial keywords (332 on average). With

training data, LCLM has equally high predictive accuracy and the second highest recall rate.

LCLM uses 332 tokens on average, total perplexity, and oov words to predict human trafficking

risk levels. Like RFLM, it starts by choosing the 1000 lowest context words and 25 lowest

context phrases. It then removes all words that are too short and sparse. This final list of 332

words and phrases and its language characteristics are used to train a logistic regression model.

LCLM is of similar complexity to LCHT.

LCHT, Low Context High TFIDF uses the 1500 and 25 lowest context words and phrases,

respectively, that overlap with the 600 and 25 highest TFIDF scored words and phrases, respec-
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Table 3.4: Alternative Model Results

Method # of Features F-1(StDev) Recall(StDev)

TFIDFS 416 .667(.003) .599(.003)
LCLM 334 .667(.003) .606(.003)
LCHT 569 .667(.004) .605(.005)
RFLM 223 .667(.003) .729(.006)

StDev (Standard Deviation) is calculated from one hundred it-
erations of the pipeline
TFIDFS: logistic regression model trained with all non-sparse
words
LCLM: logistic regression model trained with low context but
non-sparse words
LCHT: logistic regression model trained with low context and
high TFIDF words
RFLM: random forest with logistic regression model trained
with low context words

tively, to train a logistic regression model. It, like the other models, does not include words that

are too short and does include language characteristics (total perplexity, oov, and TFIDF).

Unlike LCLM, it keeps the sparse words. This results in 566 keywords on average, which is

the largest keyword list of our best models. LCHT does have a significantly higher recall rate

than TFIDFS, which indicates that the additional sparse words may allow the model to be less

granular in classifications.

TFIDFS is our least complex pipeline. It is a simple bag of words logistic regression model. It

uses all words that are in more than 2% of the advertisements and longer than three characters,

which results in a keyword list of 414 words. If computational complexity is a significant end

user consideration, TFIDFS may be the best model. All four pipelines represent ads by a vector

of their keyword’s TFIDF scores in an ad.

Phrase detection improves model performance in all but the TFIDFS pipeline. The phrases

are too sparse to be included as a keyword and do not affect the TFIDF score of the remaining

words, so TFIDFS’ model results are exactly the same with and without phrases. However, for

the other three models, phrase detection does significantly influence the words selected. After

querying the Trafficking-10k ads with a language model built using phrase detection, we observe

significant changes to the average perplexity and context scores of each word. Using t-tests,

we find that these differences between the results of a language model with and without phrase

detection are significantly different to a p-value < .001. While RFLM, LCLM and LCHT are

all trained using phrases lengths of three to six words and a minimum threshold of twenty

occurrences, these phrases are rarely found to be consistently significant in the final models.

Nevertheless, their predictive accuracy does improve when phrases are incorporated.

Ultimately, our models demonstrate that keywords can be identified by selecting unexpected

tokens, especially those that are less likely to be in cogent sentences (low contextual features),

but are not too rare. Simply modeling with perplexing words has relatively low accuracy but

focusing further on low context words appears to be more accurate. Low context tokens are ones

that are surrounded by tokens that are not in the expected n-grams. Tokens in the expected

context have very poor predictive performance when used in models (< 1% F-1 see Table A.1).
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Figure 3.8: ROC by Feature Selection

Purple = RFLM, Blue= TFIDF, Orange = LCLM, Green = LCHT

Words of high perplexity are sometimes too rare to be useful for classifying human trafficking.

We also find that low perplexity tokens are often times too common to be useful. Therefore,

if training data is unavailable to run the RFLM pipeline, we find that focusing on low context

but non-sparse words, like LCLM, will provide a manageable keyword list that can be easily

reviewed by users and SMEs.

Although selecting words using a language model may be better than selecting words by

frequency and TFIDF, we did not find a direct correlation between a word’s average context or

perplexity score across documents and its risk indication, as shown in Figure 3.9. This figure

shows the average context and perplexity scores for key words used in our models and codes

the token as either a high- or low- risk indicator based on their coefficient from RFLM’s logistic

regression. There is no visible pattern in this graph. In fact, the correlation coefficient between

context scores and coefficient values is .122. However, this is a higher correlation than that

of TFIDF scores and risk, which is .013. Despite this lack of correlation, we find TFIDF to

be the most useful characteristic, over count, perplexity, or context scores for representing the

word vectors. This demonstrates the complexity in keyword identification and the necessity

for supervised models. Although, a keyword list can be created, models are the only way to
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accurately separate high-risk from low-risk indicators.

Figure 3.9: Language Model Scores and Risk Level

Modeling Methods

Our experiments show that logistic regression and random forest models have the best predictive

performance. A comparison of the performance of the modeling techniques discussed in our

methodology section is shown in the ROC graphs in Figure 3.10. It demonstrates the superior

performance of random forests and logistic regressions in this application. All three models

shown were built using the same 1000 low context words and 25 low context phrases. The

random forest model has a higher true positive rate initially but otherwise appears to have

similar results as the logistic regression model. On the other hand, as exemplified in the ROC

graph, the CART models consistently have the worst predictive performance.

CART results in very simple models after pruning. One example is shown in Figure 3.11.

These results show that although CART may capture a few key indicators, it is unable to capture

the greater complexities and more obfuscated terms in human trafficking ads. Certain features

do not make it into the final model despite being known human trafficking indicators. They

do not provide sufficient improvement in impurity to warrant the increase in tree depth. This

indicates that CART is failing to discriminate effects of a large number of potential keywords

and a small minority class. However, with more training data, CART may be able achieve more
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Figure 3.10: ROC by Modeling Method

Green = Logit, Blue = CART, Purple = RF Using the 1000/25 Words/Phrases in the Least Context

comparable performance to the logistic regressions and random forest models.

Random forest’s performance is on par with logistic regression model performance. As shown

in the ROC curve, random forest models initially have a higher true positive rate at lower false

positive rates, so have a slightly higher AUC (Area Under the Curve). However, across five-fold

cross validation tests, random forest models usually have lower recall than logistic regression

models. This indicates that random forest models are missing high-risk ads for the sake of

precision. These results can be seen in Table A.1. In addition, the random forest models

generally have lower, though similar, F-1 scores than logistic regression models across five-fold

cross validation tests. As a result, we would only recommend a random forest model if precision

is of greater importance than accuracy or recall.

Using the same data, logistic regressions have a higher F-1 than random forests. This may

indicate that the data does in fact generally fulfill parametric assumptions; the frequencies of

various words are linearly increasing or decreasing risk indicators. Logistic regression models

are also more interpretable. Users are able to understand exactly how features influence risk

level via coefficient values and significance tests. As previously discussed, with our best model,

we are able to identify a list of about two hundred keywords and sort them to find key indicators
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Figure 3.11: Best CART Model Results

of human trafficking. As a result, although in the ROC graph in Figure 3.10 the random forest

model may have the better curve and AUC, we conclude that logistic regressions are the best

model in the holistic context of human trafficking detection.

3.6 Application to Organization Detection

Our language modeling pipeline has additional benefits when applied in conjunction with organi-

zation detection. In this section, we discuss the results of RFLM when applied to advertisements

associated with known and unknown human trafficking organizations. We verify our model’s

accuracy for the unknown organizations by checking if the detected organizations involve the

movement of people.

3.6.1 Application to Known Human Trafficking Organizations

First, we applied our model to advertisements from known human trafficking organizations

from outside the Trafficking-10k dataset. We extracted advertisements from a different set of

Backpage.com advertisements supplied by Marinus Analytics that matched information related

to two recently uncovered human trafficking organizations. One case involves the infamous

bust of a sex trafficking ring that sourced from massage parlors across Florida and supplied
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“johns” like Patriots owner Robert Kraft. These advertisements were identified using regular

expression to match the names of the offending massage parlors that were reported in the news

[51]. The second case analyzed is a ring that is being indicted in Oregon but spanned the

United States, Canada, and Australia under the guise of escort services. We matched this ring

with its associated advertisements using contact and web information that were disclosed by

the U.S. Justice Department [52]. This resulted in 53 advertisements identified from the Florida

case and 437 advertisements identified in the Oregon Case. These organizations are suspected

to be human traffickers by law enforcement, but at the time of writing, they have not yet

been convicted for human trafficking. In addition, it is important to consider that not all the

advertisements tied to these organizations are necessarily advertisements for trafficking related

work; they may also engage in entirely legal or voluntary work.

While the Florida case is localized, the Oregon case involves significant human movement

across the United States and Canada. This movement is a key indicator of human trafficking.

Using RFLM we detect that all of the Oregon case advertisements are high-risk, despite none

of the ads being in the Trafficking-10k set. However we only detect that 12 out of the 53

(22%) of the Florida case advertisements are high-risk human trafficking advertisements. The

average risk across all the advertisements are .973 and .333 for the Oregon and Florida cases

respectively. It is unsurprising that some of the Florida case advertisements are considered

low-risk because the locations involved were also licensed massage parlors. They may have

advertised legal activity to obfuscate their illegal activity.

Upon manually reviewing the ads, we find that the high-risk ads include many of the known

indicators of human trafficking, like youth, “new” and “slim”, and ethnicity while the low-risk

ads do not. The Florida case ad with the lowest predicted risk simply describes the massage

parlor’s prices, services, and contact information. Unlike the other ads, there are no descriptions

of the “masseuse”. As the majority of the Florida case advertisements were not detected to

be human trafficking, organization detection would be significantly beneficial for connecting all

associated massage parlors. It would allow users to link the ads that are low-risk to the ads

that are high-risk and gather more information on the potential personas involved. Therefore,

if the advertisements were coupled into an organization detection pipeline, even though certain

advertisements may be detected as low risk, the entire Florida and Oregon case rings would be

identified.

3.6.2 Application to Unknown Organizations

With the intuition that phone number matches across advertisements are indicators of a larger

organization, we construct a phone number co-occurrence network across 124,856 Backpage.com

advertisements supplied by Marinus Analytics using code developed by the Lincoln Laboratory

HDDN team. We scored these advertisements using RFLM and used the average raw probability

score of the ads associated with a given phone number as the percent risk that the phone number

node is human trafficking related. This pipeline is shown in 3.12. The resulting network is shown

in Figure 3.13. This network is made up of 1574 nodes, 2342 edges, with an average of 2.98

degrees. The nodes have an average probability of 39.9% of being human trafficking, with a

standard deviation of 26.3%. 30.6% (482) of the nodes are classified as high risk (probability of
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over 50%).

Figure 3.12: Graph Creation Pipeline

Figure 3.13: Full Co-occurrence Network

More red=higher risk; more blue=lower risk
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From this network, one can see that there is one cluster that is predominantly red because

it is composed of nodes that are highly likely to be human trafficking related. However, even

this cluster contains a few low risk (blue) nodes. There are also appear to be many isolated

high-risk nodes. Since certain organizations may be more discrete in cross-referencing contact

information, organization detection algorithms using template matching like the ones developed

by [73] would be useful in determining if these isolated nodes are part of a larger, but obfuscated

organizations. That would make for more accurate human trafficking organization detection.

However, for the scope of this study, we focus on the organizations detected by phone number

co-occurrence.

To analyze the characteristics of human trafficking organizations, we split the network by

the low risk (probability < .5) and high risk (probability >= .5) nodes. These networks are

shown in Figures 3.14a and 3.14b. From these graphs, one can see that there are fewer high

risk nodes than low risk nodes which is what is expected from the known characteristics of

Adult service advertisements. Despite the high connectivity in the full network, there appear to

be few all high-risk node clusters though there is one complicated web of high risk nodes that

corresponds to the predominantly red cluster in the full network graph. The high risk network

otherwise appears prone to star clusters, where one node centers a group of protruding nodes.

However, there are fewer star clusters found in the low risk network. This indicates that unlike

non-sex trafficking services, sex trafficking ads are often centered around one main contact.

Few other structural differences between the high-risk and low-risk nodes are found. We do

not observe significant correlation between the percent risk of a node being human trafficking

and various other node attributes, like degree and betweenness centrality. The distinctions are

not sufficiently clear between the low- and high-risk graphs to make conclusive judgments about

the structural characteristics of suspected human trafficking organizations.

Detecting High-Risk Organizations

The Florida case previously discussed demonstrates that human trafficking organizations may

include undetected advertisements alongside their detected sex trafficking advertisements. As

a result, a more useful network is one that connects suspected organizations with their related

low-risk nodes. This network would provide users with a fuller understanding of likely high-risk

organizations, potential suspects, and likely contacts. We apply this to our co-occurrence graph,

to produce Figure 3.14d. In order to focus on higher-risk organizations, we only kept connected

components from the high-risk network with at least three nodes before connecting them to

their original neighbors in the full network.

Using this methodology, we detect a total of 18 organizations in the Adult service ads

that have an average probability of 67.2% of being sex trafficking organizations. These 18

organizations encompass 35,047 ads that would have otherwise required manual review.

The various detected organizational sizes and their probability of being sex trafficking are

shown in table 3.5

This table shows that after factoring in the connected low risk nodes, many of these orga-

nizations have a 50% probability of being human trafficking. This could be a result of misclas-

sifications of ads from our model. It could also be a result of the organizations being similar
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(a) Low-Risk Network (b) High-Risk Network

(c) Nodes not in High-Risk with Connections Net-
work (d) High-Risk Network with Connections

Figure 3.14: Subsets of the Full Network

to the Florida case, such that they include ads for legal or voluntary work. However, we can

verify the efficacy of this methodology in detecting human trafficking organizations by checking

if the organizations, like the Oregon case, are related to significant movements of persons. The

lowest probability cluster (2905 advertisements, 22 nodes, and probability of .298) we find to

have minimal movement. It is centered in Florida. Although this organization may be like the

Florida case, it does remove one significant indicator of human trafficking and justifies the low

score that our model assigned.

On the other side of the coin, we mapped one of the high probability large clusters (9405

ads, 204 nodes, and 79.6 probability of being high-risk). We discover that the ads describe a

significant amount of movement across all of the United States. In addition, like the Florida and

Oregan case advertisements and in line previous studies, the ads associated with this cluster

include commonly recognized indicators of human trafficking: youth, race, and movement.

Therefore, we can conclude that RFLM succeeded in detecting a suspected human trafficking

organization.
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Table 3.5: Detected Organizational Size and Probability of Being Sex Trafficking

# of Ads # of Nodes Probability(%)

6016 253 45.1
9405 204 79.6
7029 116 43.9
654 38 48.7
882 27 78.2
1292 22 73.0
2905 22 29.8
470 14 52.2
762 10 72.3
483 9 71.3
623 9 51.6
487 9 67.7
661 8 88.5
464 8 73.1
526 8 57.3
717 5 84.7
920 5 92.6
751 3 99.3

Comparison to Low-Risk Organizations

For comparison, we analyze the nodes that are not considered to be part of the high risk

connected network. This produces the network shown in Figure 3.14c. This network has a

26.9% average probability of being human trafficking. It is also very dispersed but still contains

a few large clusters.

Upon manual examination of the two largest clusters (which contain 110 and 80 nodes), we

find that their ads truly do not contain known indications of human trafficking. In fact the 80

node cluster is associated with escort service reviews rather than the advertisements themselves.

These reviews should have been removed during pre-processing especially because our model

was not trained on review data. Nevertheless, this flaw demonstrates the difficult in accurately

scraping and processing the data.

The 110 node cluster is clearly part of a larger organization based on the websites and busi-

nesses referenced in the ads. This organization is centered in Ottowa and Montreal. It does

not appear to involve a significant amount of personnel movement to be indicative of human

trafficking. In addition, the ads describe one woman at a time. Although they describe her

appearance, they do not describe race or age. They also do not have indicators of restricted

or recent movement. Furthermore, unlike the previously identified human trafficking adver-

tisements, these ads have minimal emoji usage and other text obfuscation techniques. Their

language appears to be closer to standard English than most ads. These characteristics justifies

our model in identifying this cluster as a low-risk human trafficking organization.
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3.7 Discussion

The results of this study offer four main contributions. Most importantly, our sex trafficking

pipeline can significantly improve efficiency in sex trafficking detection with close to human ex-

pert performance. Its predictive performance is also better than the multimodal neural network

model, HTDN [55]. It achieves high accuracy without factoring in personally identifiable infor-

mation, emojis, or images. Through combining language modeling, phrase detection, random

forests, and logistic regressions, we are able to accurately identify suspected sex trafficking ads.

Second, we discover that applying phrase detection before training the language model

improves keyword detection and prediction accuracy, even though few phrases are actually used

in the final predictive model. The addition of phrases sufficiently changes the scores of other

words to improve model accuracy.

Third, our model allows for the automatic detection of keywords. By focusing on low

context and non-sparse words in the Trafficking-10k set, users can identify a set of three hundred

keywords. This is a manageable list that subject matter experts can review to identify potential

sex trafficking indicators. With supervised models, our pipeline allows law enforcement to

identify sex trafficking ads and discover changes in indicators without the painstaking process

of reading and analyzing every ad.

Finally, we demonstrate that our pipeline can be applied to detect sex trafficking organi-

zations. If our advertisement detection pipeline is combined with an organization detection

algorithm like the one discussed in [73], it could be used to verify that an organization is likely

sex trafficking related or detect unknown sex trafficking organizations.

There are still many ways in which this pipeline could be improved. On a micro scale, more

granular tuning of word ranges, phrase length, and phrase thresholds would likely improve

accuracy. More robust phrase detection and pre-processing algorithms to overcome obfuscated

words would also be beneficial. Careful tuning of the various model’s hyper-parameters and

especially reducing features of the logistic regression using AIC scores would improve detection

accuracy and reduce the final keyword list.

This pipeline would also likely benefit from more significant changes. As previous studies

[62] and the ads from the Florida trafficking ring [74] have shown, emojis should be included

in our language model because they are often used as code for sex trafficking. Furthermore,

the ideal indicator detection model would accurately inform users how keywords affect an ad’s

likelihood of being sex trafficking as the language changes and without supervised models.

Although we are able to identify a reduced set of three hundred potential keywords without

labeled data, we can not assign them risk indicators. Instead, there must be training data that is

continuously updated with newly identified sex trafficking ads. The language model would also

need to be periodically retrained on new Adult service advertisements. Further study should

also be conducted on ads over time to understand how quickly sex traffickers adapt their coded

language. This would inform how regularly the model and data should be updated.

This pipeline is still applicable even though Backpage.com is now shut down. Sex traffickers

have simply gone to less centralized online platforms to advertise [54]. With a web trawling

platform, finding and analyzing these ads could still be an automated process. As the online

presence of sex trafficking continues to grow, an accurate automated organization detection
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pipeline is also needed to synthesize the millions of ads available online. This combined with

web trawling and our pipeline would be a significant aid to law enforcement in combating a

hidden multi-billion dollar industry.
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Conclusion

This thesis demonstrates the strength of regression based modeling despite present day’s hype

for neural networks and deep learning. However, feature selection is a non-trivial task. Careful

feature selection and pre-processing is necessary to achieve applicable results. On the other

hand, our methodologies are generalizable and easily understood by potentially less technical

end users. With an interpretable maximum likelihood Heckman model, we were able to glean

a better understanding of the indicators (or lack thereof) of food safety risks. With a simple

logistic regression and NLP, we were able to out-perform a multimodal deep learning based

model to detect human trafficking advertisements. These models provide end users with an

understanding of the “why”, which neural networks simply can not provide. As a result, our

models leave an opportunity for users to take actionable steps in accordance to the results:

address food safety risks or investigate a human trafficking organization.
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APPENDIX A. HUMAN TRAFFICKING DETECTION MODEL RESULTS
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