
Adaptive Robust Model Predictive Control for

Nonlinear Systems
by

Brett T. Lopez
S.M., Massachusetts Institute of Technology (2016)

B.S., Aerospace Engineering
University of California - Los Angeles (2014)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2019

Massachusetts Institute of Technology 2019. All rights reserved.

Signature redacted
A u th or ....................... ................

Deparment(of Aeronautics and Astronautics

Signature redacted May 23, 2018
C ertified by ............... .....................

Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT

Thesis Supervisor

Certified by................. Signature redacted
Jean-Jacques E. Slotine

Professor of Mechanical Engineering and Information Sciences, MIT

Certified by.................................. Signature redacted
Nicholr Roy

Professor of Aeronautics an Astropaitics, MIT

Accepted by ................................. Signature redacted
,AWL ertac Karaman

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY Associate Professor of eronautics and Astronautics

JUL 0 12019 Chair, Graduate Program Committee

LIBRARIES
ARCHIVES



2



Adaptive Robust Model Predictive Control for

Nonlinear Systems

by

Brett T. Lopez

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Modeling error and external disturbances can severely degrade the performance of Model
Predictive Control (MPC) in real-world scenarios. Robust MPC (RMPC) addresses this
limitation by optimizing over control policies but at the expense of computational complexity.
An alternative strategy, known as tube MPC, uses a robust controller (designed offline) to
keep the system in an invariant tube centered around a desired nominal trajectory (generated
online). While tube MPC regains tractability, there are several theoretical and practical
problems that must be solved for it to be used in real-world scenarios. First, the decoupled
trajectory and control design is inherently suboptimal, especially for systems with changing
objectives or operating conditions. Second, no existing tube MPC framework is able to
capture state-dependent uncertainty due to the complexity of calculating invariant tubes,
resulting in overly-conservative approximations. And third, the inability to reduce state-
dependent uncertainty through online parameter adaptation/estimation leads to systematic
error in the trajectory design. This thesis aims to address these limitations by developing a
computationally tractable nonlinear tube MPC framework that is applicable to a broad class
of nonlinear systems.
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Chapter 1

Introduction

1.1 Overview

Model Predictive Control (MPC) has emerged as a fundamental control strategy because of

its ability to handle constrained multi-variable systems. Using a model of the dynamics, MPC

solves a constrained optimal control problem to generate both a sequence of open-loop control

actions and future (i.e., desired) states. By repeatedly performing the optimization with the

current state of the system, MPC defines an implicit control law with robustness and stability

properties. MPC can then be viewed as simultaneously generating a reference trajectory and

feedback control law. This key attribute, and the development of fast optimization solvers,

has made MPC a staple of robotics [1, 2], aerospace [3, 4], process control [5], operations

control [6], and many other engineering/non-engineering fields.

MPC heavily relies on a model to predict the future state of the system, making it

susceptible to unknown external disturbances and modeling error. Consequently, severe

performance degradation or instability can occur if uncertainty is not directly accounted

for in the optimization [7]. Robust MPC (RMPC) was developed to explicitly account for

uncertainty by optimizing over control policies instead of control actions but at the expense

of increased computational complexity [7-9]. A number of approximate solution strategies

for RMPC have been proposed to regain tractability but few are applicable to nonlinear

systems with real-time constraints. In this thesis, a robust MPC strategy that accounts

for uncertainty, both from external disturbances and modeling error, is developed for a

17



broad class of nonlinear systems while maintaining computational tractability for real-world

applications.

1.2 Problem Statement

Due to the computational demands of RMPC, the controls community has primarily focused

on a decoupled strategy, known as tube MPC, that involves solving the nominal MPC problem

online and designing a robust tracking controller offline [7, 10-12]. The controller is designed

to keep the system in a tube, invariant to uncertainty, centered around the desired trajectory.

While this decoupled design is computationally tractable, it is inherently suboptimal since

the nominal MPC optimization is unable to modify the tube geometry to satisfy changing

constraints or objectives [13-161. Further, many state-of-the-art tube MPC algorithms are

unable to leverage knowledge of state-dependent uncertainty (i.e., parametric modeling

error) due to the complexity of constructing invariant tubes, leading to overly conservative

approximations.

Independent of explicitly capturing state-dependent uncertainty, the inability to update

the prediction model online leads to systematic error in the trajectory design; ultimately

limiting the performance of MPC. Ideally, if the uncertainty is parametric, an estimation

scheme could be used to obtain a more accurate model. The difficulty, however, lies in

ensuring state/actuator constraints remain satisfied as the model is being updated online

[17]. This is particularly challenging for nonlinear systems where the separation principle

does not hold and constructing a stabilizing controller for all model realizations is difficult.

While some work has been done in adaptive nonlinear MPC [17-21], the results are mostly

theoretical and intractable for real-time systems.

This thesis addresses the current limitations of tube and adaptive MPC for nonlinear

systems. Specifically, a framework for nonlinear systems is developed that can: 1) opti-

mize the tube geometry to satisfy changing constraints and objectives; 2) explicitly capture

state-dependent uncertainty to design more intelligent trajectories; and 3) estimate model

parameters to reduce model uncertainty while maintaining stability and recursive feasibility.

The framework is applicable to feedback linearizable (see Chapter 2 for a thorough discussion
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on feedback linearization), minimum-phase, and cascaded nonlinear systems which encom-

passes many real-world systems. There were several conceptual and computational challenges

that had to be addressed in developing this framework:

" Tube Geometry (Controller) Optimization: The formal procedure to account for un-

certainty in MPC is to simultaneously generate a trajectory and sequence of control

policies. Optimizing over arbitrary functions is not computationally tractable, leading

to a decoupled trajectory and controller design strategy that is inherently suboptimal

[8, 9, 11, 12]. One approach to address the duality gap introduced by the decoupled

design is to optimize over a set of parameterized linear controllers [13-15]. However,

constructing a set of linear controllers that maximizes the region of attraction for a

nonlinear system is computationally intensive and requires knowing the desired trajec-

tory a priori [22-24]. Selecting a nonlinear control synthesis strategy that was easily

parameterized and applicable to a variety of nonlinear systems was paramount to obtain

a tractable strategy that best approximated the original robust formulation.

" State-Dependent Uncertainty: Explicitly considering state-dependent model uncertainty

in tube MPC is challenging because it requires deriving an explicit relationship between

the uncertainty and tube geometry. Existing tube MPC algorithms circumvent this

complexity by simply assuming the uncertainty is bounded, leading to overly conserva-

tive solutions. Recently, scenario-based MPC [25], which entails forward simulating a

finite number of realizations (or scenarios) of the uncertainty and checking for constraint

violation, has been used to capture state-dependent uncertainty [26]. However, the

number of samples required to statistically verify the constraints are satisfied can be

substantial [25, 26]. Selecting a nonlinear control strategy that lead to a simple relation-

ship between uncertainty and tube geometry was required to reduce conservativeness

and computational complexity when compared to existing techniques.

" Model Estimation: Capturing state-dependent model uncertainty in MPC can signifi-

cantly reduce conservativeness but better performance can be obtained by updating the

prediction model online with adaptation/estimation. Incorporating adaptation, based

on execution error, in nonlinear MPC is a challenging proposition since recursive feasibil-
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ity of the optimization requires predicting how the model parameters will evolve along

the trajectory. Minimax optimization has been the only proposed method that achieves

recursive feasibility for nonlinear adaptive MPC but is too computationally expensive

for real-time use [17, 18, 20, 21]. Alternatively, model parameters can be estimated

by executing specialized trajectories to maximize parameter observability. However,

nonlinearities in the dynamics and measurement model pose significant challenges

for computing and optimizing observability, often leading to approximate approaches

[27-31]. Set membership identification [32-35], which is closely related to the concept

unfalsification [36, 37], is a different strategy that constructs an "unfalsified" set of model

parameters. This approach has several nice properties, such as guaranteed recursive

feasibility and robustness to unmodeled disturbances, but has only been applied to

linear systems. Selecting a nonlinear control and adaptation/estimation strategy that

ensured stability and recursive feasibility for constrained nonlinear systems was needed

to address the deficiencies of current approaches.

1.3 Existing Gaps

This section presents a brief literature review of relevant material. A more thorough review

can be found in Section 1.4.

1.3.1 Tube MPC

Robust Model Predictive Control (RMPC) is one strategy that accounts for uncertainty

by simultaneously generating a trajectory and sequence of control policies [7, 10, 11]. As

stated above, this approach is not computationally tractable because it entails optimizing

over arbitrary functions. Tube MPC regains tractability by decomposing RMPC into an

open-loop optimal control problem and design of an ancillary tracking controller [8, 12, 38].

The ancillary controller ensures the system remains in a tube, invariant to uncertainty, around

the trajectory; ensuring feasibility of the open-loop problem given appropriate state/control

constraint tightening. Various procedures for designing the ancillary control and computing

the associated invariant tube for linear and nonlinear systems have been reported in the

20



literature [12, 39-43]. Fundamentally, though, the proposed decomposition introduces a

duality gap that can be non-trivial. Homothetic [14], Parameterized [13], and Elastic [15]

Tube MPC have been proposed to bridge the duality gap by giving the optimizer additional

flexibility to change control parameters. However, the feedback controller used in these works

is only applicable for linear systems, and no advancements have been made for nonlinear

systems. Furthermore, all of the aforementioned approaches are unable to capture state-

dependent uncertainty, leading to overly conservative approximations.

1.3.2 Adaptive MPC

The effectiveness of RMPC (and its approximate solution strategies) is limited by the quality

of the uncertainty description and prediction model. Consequently, the inability to update

the prediction model degrades the performance of RMPC and its alternatives. Adaptive

MPC addresses this deficiency by updating the model online using an adaptation law based

on execution error. There are a plethora of linear adaptive MPC approaches, all of which

rely on imposing periodicity of the control input (i.e., persistent excitation [44, 45]) to

guarantee parameter convergence [46-51]. The difficulty of using adaptation in nonlinear

MPC is that, in general, the separation principle does not hold so adaptation along the

prediction horizon must then be considered to guarantee stability and recursive feasibility

[17]. Adetola et al. [17, 21] proposed a minimax formulation where the cost function was

maximized with respect to the model parameter set and minimized with respect to control

policies. Maximizing with respect to the model parameter set ensures the state constraints

are satisfied for the worst possible state realization. However, minimax optimization is too

computationally intensive for real-time use. Furthermore, even though the lack of robustness

in adaptive control is well documented [52], existing approaches must neglect the presence of

unmodeled dynamics and disturbances to prove stability, establish recursive feasibility, and

guarantee parameter convergence. Adaptive tube MPC [48, 53], which treats the adaptation

as a disturbance, has shown promise but has yet to be applied to constrained nonlinear

systems.
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1.4 Literature Review

1.4.1 Robust Model Predictive Control

Model Predictive Control (MPC) relies heavily on a model to accurately predict the future

state of the system, making it susceptible to unknown external disturbances or modeling

error. Severe performance degradation and instability can occur if uncertainty is not directly

accounted for. Methods that address the aforementioned issues can be broadly categorized as

Robust MPC (RMPC) [56] or Stochastic MPC (SMPC) [57] techniques. The former, which

is the focus of this thesis, assumes the uncertainty is bounded while the latter assumes a

probabilistic description of the uncertainty. RMPC accounts for uncertainty by optimizing

over control policies instead of control actions. While changing the decision variable is well

motivated, optimizing over arbitrary functions is generally not computationally tractable.

The remainder of this subsection presents the main strategies used to solve, exactly or

approximately, RMPC problems.

Minimax MPC

Minimax optimization minimizes a cost function for the worst-case uncertainty realization,

and was proposed to solve dynamic programming problems with bounded uncertainty [8, 9].

The close connection between MPC and dynamic programming, where the former is an

approximation of the latter [58], has lead to similar formulations for solving RMPC problems.

Minimax MPC techniques can be classified as either open-loop or closed-loop, the difference

being whether control actions or control policies are the decision variables, respectively.

Open-loop minimax MPC is more computationally tractable but suffers from feasibility issues

since finding a sequence of control actions that satisfy state and actuator constraints for all

realizations of the uncertainty is difficult [59, 60]. Closed-loop or feedback minimax MPC

addresses the feasibility issues at the expense of computational complexity. Several results

and procedures have been presented for linear systems in an attempt to regain tractability

of feedback minimax MPC. Scokaert et al. [60] showed that the number of uncertainty

enumerations can be reduced to only the extrema by leveraging convexity of linear dynamics,
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leading to a finite-dimensional optimization problem. In addition, a dual-mode minimax and

linear controller was shown to stabilize the systems for arbitrary initial conditions. Bemporad

et al. [61] showed that a set of linear controllers can be parameterized for online use if

the system's dynamics and cost function are linear. Lofberg et al. [62] used semidefinite

relaxations and robust optimization techniques to obtain approximate minimax optimization

solutions. While all the aforementioned works present nice theoretical results, they are still

too computationally complex for real-time use and are restricted to linear systems. Further,

results for nonlinear systems predominately use a combination of the above techniques but

with linearized dynamics [63] and therefore suffer from the same computational complexity

issues.

Tube MPC

Tube MPC is a strategy that decomposes RMPC into an open-loop MPC problem and

design of an ancillary controller that provides robustness to uncertainty [7, 10]. The ancillary

controller keeps the system in a robust invariant set, known as a tube, around the desired

trajectory. Bertsekas et al. [8] were the first to present the idea of a tube and its role in

stochastic dynamic programming. Intuitively, they reasoned that a stabilized system with

uncertainty converges to a region (tube) around the desired state, as opposed to the standard

notion of stability where the system converges to an equilibrium point. Because of the close

connection between MPC and dynamic programming [58], tubes have become a powerful

concept for developing strategies that enable MPC algorithms to account for uncertainty.

The computational complexity of RMPC is often not tractable because it entails optimizing

over arbitrary feedback policies. The seminal papers by Rossiter et al. [64] and Langson et

al. [38] instead proposed to restrict the feedback control policies to be the superposition of a

feedforward term and linear feedback (ancillary) controller. Through this parameterization,

the decision variables become control actions (i.e., feedforward) with the ancillary controller

restricting the spread of trajectories [38]. The goal of tube MPC, then, is to design an

ancillary controller that keeps the system in the smallest possible tube around the trajectory.

Further, by tightening the state and control constraints to account for tracking error and

control effort due to feedback, one can establish asymptotic stability [38]. Numerous papers,
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surveys, and books have been written discussing the stability, feasibility, and performance

of linear tube MPC [10, 55, 59]. While this is an effective strategy to achieve robustness

to uncertainty, decoupling the nominal MPC problem and controller design introduces a

performance duality gap. Specifically, as first shown by Rakovid et al. [14], the region of

attraction can be enhanced by parameterizing the problem with a feedforward term and

tube size. Fundamentally, the authors proposed treating the state and control tubes as

homothetic copies of a fixed cross-section shape, enabling the problem to be parameterized

by the tube's centers (i.e., feedforward term) and a cross-section scaling factor; the approach

was named homothetic tube MPC (HTMPC). The authors later extended their previous

work to tubes with varying shapes, known as elastic tube MPC (ETMPC), but at the

expense of higher computational complexity [15]. Both HTMPC and ETMPC possess strong

theoretical properties that have the potential to significantly enhance performance. However,

experimental results have yet to be published and nonlinear extensions have yet to be

proposed.

Nonlinear tube MPC is significantly more challenging than its linear counterpart due to

the complexity of designing a nonlinear controller and computing the associated invariant set.

Nonetheless, several strategies have been proposed, with recent works leveraging new nonlinear

control synthesis methods. Mayne et al. [65] proposed using a two-tier MPC architecture

where the nominal MPC problem, with tightened constraints, is first solved followed by

ancillary problem that drives the current state to the nominal trajectory. Linear reachability

theory is another strategy that has been used to calculate tubes [66] and was one of the first

methods to be tested in hardware on ground [67] and aerial vehicles [40]. Unsurprisingly,

though, linearizing the dynamics and treating nonlinearities as bounded disturbances leads

to overly conservative behavior. Because of its strong robustness properties, sliding mode

control [68] has been proposed as a suitable ancillary controller for nonlinear tube MPC

[39, 69-74]. The work by Muske et al. [69] is of particular interest because the parameters

of the sliding surface were selected by the MPC optimizer to achieve minimum time state

convergence. Majumdar et al. [41] constructed ancillary controllers for nonlinear systems via

sum-of-squares (SOS) optimization that minimized funnel size (akin to a tube). The method,

however, required a pre-specified trajectory library making it highly dependent on the choice
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of path/motion planner. Further, the method entailed an extremely time consuming offline

computation phase (20-25 minutes per trajectory). Singh et al. [42] proposed using control

contraction metrics [75], a control synthesis strategy that only requires the system to be

stabilizable, to construct tubes and showed their approach increases the region of feasibility for

the optimization. The several recent results listed above have begun to address the challenges

of nonlinear tube MPC, but more work is required to expand the results to systems with

state-dependent uncertainty and to address the optimality gap introduced by the decoupled

design.

Constraint Tightening MPC

As the name suggests, constraint tightening MPC utilizes tightened state constraints to

achieve robustness to uncertainty [76]. Similar to tube MPC, this paradigm uses a nominal

model but monotonically tightens state constraints along the prediction horizon. The degree

to which constraints are tightened depends on the convergence rate of the system and the

magnitude of the disturbance. This procedure, in essence, captures the spread of trajectories

due to uncertainty and alleviates the computational complexity of computing robust control

invariant sets as required in tube MPC [77]. Chisci et al. [78] developed a state-space

framework that, for any arbitrary stabilizing linear controller, guarantees convergence to the

smallest possible invariant set around the origin. This work was extended by Richards et

al. [77] to include time-varying linear controllers and showed the extra degree of freedom

enlarged the feasibility region. Recent results have emerged for nonlinear systems where

incremental stability [79] is leveraged to obtain a lower-bound on the convergence rate of

the system [80]. While this approach shows promise, more work is required to expand the

technique to a broader class of nonlinear systems.

Scenario-Based MPC

Instead of deriving an explicit bound on the system's state (as in tube MPC), scenario-based

MPC relies on simulating randomly-sampled realizations (or scenarios) of the uncertainty

to calculate the spread of trajectories [25, 81]. By sampling from the uncertainty set, the

challenge of calculating invariant tubes for complex nonlinear systems is eliminated. For
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instance, Garimella et al. [26] sampled from the uncertainty set to estimate the dispersion of

trajectories for high-dimensional nonlinear systems with state-dependent uncertainty. Until

recently (e.g., see [16]), the results presented by Garimella et al. were not possible using

tube MPC. The key drawback of this approach is that the number of samples required

to statistically verify the constraints were satisfied can be substantial. This is especially

problematic for computationally constrained systems with complex dynamics. While there

has been several advances in intelligent sampling, any type of online sampling procedure is

going to be too intensive without sophisticated computing techniques and hardware (i.e.,

parallel computing via a GPU).

1.4.2 Adaptive MPC

The inability to improve the prediction model in RMPC formulations fundamentally limits

their performance. Adaptive MPC (AMPC) uses ideas from the adaptive control literature

[44, 82] to improve the model through a parameter update law based on execution error;

eliminating the suboptimal performance caused by modeling error. Linear AMPC heavily

relies on the notion of persistent excitation (PE), which is a metric that describes the richness

or periodicity of a signal and is a necessary condition to obtain accurate parameter estimates

[44, 45, 82]. AMPC must balance two competing objectives: 1) regulate the system to achieve

stability and 2) excite the system to obtain accurate parameter estimates. Simultaneous

regulation and excitation is known as the dual control problem and is, in general, considered

intractable [51]. Nonetheless, a number of approximate strategies have been developed.

Genceli et al. [47] were the first to develop an AMPC framework by imposing a PE constraint

on the control input to achieve accurate parameter identification. Their work was later

extended by Shouche et al. [46] to deterministic auto-regressive moving average (DARX)

processes to reduce the optimization's dimensionality. Marafioti et al. [51] showed that the

hard PE constraint used by Shouche et al. could be relaxed, resulting in a formulation that

did not strictly enforce periodicity of the control input. Hernandez et at. [48] used a linear

tube MPC approach that treated the PE part of the input as a bounded disturbance. By

using a tube MPC framework, Hernandez et al. were able to prove stability and recursive

feasibility for constrained linear systems with PE; a result that other works were not able
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to obtain. Gonzalez et al. [491 developed a framework where the system converged to an

invariant set inside which PE was safely applied. This work was extended by Anderson

et al. [50] by explicitly considering parametric uncertainty (as opposed to simply additive

uncertainty) and using probabilistic invariant sets to reduce conservativeness.

Nonlinear AMPC is significantly more challenging than its linear counterpart because 1)

the separation principle does not hold and 2) the theoretical results for PE are, in general, not

applicable to nonlinear systems. As a result, there has been little work on nonlinear AMPC.

Mayne et al. [19] implemented a receding horizon estimation scheme that globally stabilized

nonlinear systems. However, the authors assumed the estimate converges in finite time to

prove stability and feasibility (i.e., constraint were not violated); performance guarantees,

including feasibility, before convergence could not be established. DeHaan et al. [18, 201 and

Adetola et al. [17, 21] instead used adaptation to shrink the uncertainty set, which contains

the uncertain parameters, instead of estimating the parameters directly. Fundamentally,

the adaptation scheme eliminates regions of the uncertainty set where the parameters are

known not to lie. To prevent state and control constraint violation, the authors proposed

using a minimax optimization where the effects of estimation were explicitly minimized. The

computational complexity of the minimax optimization, which the authors admit, is too

computationally intensive for real-time use. A tractable nonlinear AMPC approach that does

not rely on unrealistic assumptions has yet to be developed.

1.4.3 Active Estimation

Proprioceptive Methods

Proprioceptive active estimation is concerned with executing maneuvers that improve the

system's observability. In general, the separation principle for control and estimation does

not hold for nonlinear systems making a coupled approach necessary for optimal performance.

However, such an approach requires more than the observability rank condition used in

classical control, and requires a measure of observability. Krener et al. [28] proposed using

the minium singular values or the condition number of the observability gramian as measures

of observability. The observability gramian is constructed by linearizing the dynamics and
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measurement model about a desired trajectory and integrating over a time horizon. The

authors made a number of useful suggestions for practical use, such as scaling the state

coordinates so the relative size of the singular values are comparable. Hinson et al. [29] further

explored the properties of the observability singular values and their relation to the estimation

covariance. An analytic solution to the observability optimization problem of a nonholonomic

integrator was also presented. Hausman et al. [30] later used the observability gramian

to develop an observability-aware trajectory optimization framework for self-calibration of

nonlinear systems, and was shown to outperform other methods in terms of accuracy and

computation time when tested on a simulated quadrotor with a GPS-IMU sensor suite. Priess

et al. [31] expanded the work to consider observability throughout the entire operation (not

just during calibration phase) and added obstacle constraints. More accurate estimates were

obtained when tested on a simulated quadrotor using a loosely-coupled visual-inertial state

estimator; a good platform choice since monocular visual-inertial systems are only observable

with non-zero acceleration [83, 84]. The main limitation, though, of using the observability

gramian is the necessity to linearize the dynamics and measurement model about a desired

trajectory; leading to linearization error and requiring an iterative optimization framework.

Further, as shown by Rafieisakhaei et al. [85], using the observability gramian, instead of

using the estimation covariance, can generate less accurate estimates when initial, process, or

measurement noise is present.

Exteroceptive Methods

Exteroceptive active estimation, more commonly known as belief space planning, leverages

information about the environment to steer the system to areas that improve estimation

accuracy. Bry et al. [86] developed the rapidly exploring random belief trees (RRBT) algorithm

which considers state-dependent stochasticity in both dynamics and measurements. Simulation

results demonstrated RRBT's ability to balance information gathering to reduce uncertainty

and generate low-cost paths to a goal. Achtelik et al. [87] proposed an extended version

of RRBT framework that accounted for complex dynamics while maximizing information

gain. The approach was shown to reduce the estimation covariance both in simulation and

hardware but was unable to run in real-time. Indelman et al. [88] presented a continuous-
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time formulation that was shown to generate smooth trajectories that maintained estimation

uncertainty bounds. Costante et al. [89] developed a framework suited for vision based-systems

where both geometric and photometric (i.e. texture) information about the environment

were leveraged to find a minimum uncertainty path to a goal. Simulation and hardware

results showed that longer but lower uncertainty paths where generated when compared

to non-perception-aware planning methods. While all of the aforementioned methods have

been shown to improve estimation accuracy, the need to have a detailed description of the

environment is a severe limitation. For receding horizon applications, these methods will be

most useful for when the vehicle revisits known areas. Furthermore, efficient techniques for

extracting and storing pertinent information about the environment are needed to meet the

requirements of real-time, receding horizon implementations.

1.5 Technical Contributions and Thesis Structure

1.5.1 Contribution 1: Combined Trajectory and Controller Design

A nonlinear tube MPC framework where both the trajectory and controller are designed

simultaneously is developed to reduce the performance gap introduced through the standard

decoupled approach. Previous works have focused on linear systems where optimizing over

parameterized linear controllers was shown to improve performance. While conceptually

this idea should be applicable to nonlinear systems, the complexity lies in finding a parame-

terization that is computationally tractable for online use and is generalizable to a broad

class of systems. This contribution expands previous works [14, 15] to nonlinear systems by

using boundary layer sliding control [68, 90] to construct parameterized robust nonlinear

controllers.

The primary benefit of this contribution is the ability to dynamically change control

performance and maximize responsiveness to changing operation specifications. This is

especially important for energy-limited systems where precise tracking (i.e., high-bandwidth)

control can limit operation time and may not always be needed (e.g., robot navigating through

environment with varying obstacle density).
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1.5.2 Contribution 2: Leveraging State-Dependent Uncertainty

A nonlinear tube MPC framework that leverages state-dependent uncertainty is developed

to reduce the conservativeness introduced by simply assuming the uncertainty is bounded.

Existing state-of-the-art nonlinear tube MPC algorithms are unable to establish an explicit

relationship between uncertainty and tube geometry, leading to overly conservative simplifi-

cations. Unsurprisingly, the difficulty in establishing such a relationship is a direct result of

the chosen control synthesis methodology. Recent work has shown that state-dependency

can be leveraged via forward simulating different realizations of the uncertainty but at the

expense of computational complexity. This contribution addresses the limitations of existing

nonlinear tube MPC approaches by using boundary layer sliding control to construct an

explicit relationship between uncertainty and the desired trajectory.

The primary benefit of this contribution is the ability to construct more intelligent

trajectories by using a higher quality description of the uncertainty in the MPC optimization

without a substantial increase in computational complexity. This is especially important for

systems where acquiring a high-fidelity model is too time consuming or not realistic.

1.5.3 Contribution 3: Model Estimation with Set Membership Iden-

tification

A nonlinear adaptive tube MPC framework that estimates unknown model parameters is

developed to improve the prediction model accuracy and reduce conservativeness. Previous

works in linear and nonlinear adaptive MPC have relied heavily on persistent excitation to

prove parameter convergence. However, these approaches ignore the presence of unmodeled

dynamics/disturbance to achieve parameter convergence and often neglect state/actuator

constraints. Adaptive tube MPC has shown promise, but has yet to be applied to nonlinear

systems due to: 1) the difficulty in constructing stabilizing controllers for all model parameter

realizations; and 2) the inability to derive an explicit relationship between the tube geometry

and model uncertainty. This contribution addresses these two limitations by combining

boundary layer sliding control and set membership identification to update the prediction

model while maintaining recursive feasibility and computational tractability.
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The primary benefit of this contribution is the ability to robustly reduce model uncertainty

through set membership identification. This is especially important for systems where certain

model parameters may be difficult to obtain a priori but have a significant impact on system

performance.

1.5.4 Contribution 4: Simulation Experiments

The primary objective of this thesis was to develop a nonlinear adaptive tube MPC framework

that addresses the deficiencies of existing approaches. To this end, simulation experiments of

the proposed work are crucial for demonstrating the work's utility. Simulation experiments are

conducted on a nonlinear drag, double integrator system performing collision avoidance and

the nonlinear lateral dynamics of a high-performance aircraft. Model parameters, disturbances,

and noise were chosen in an effort to generate realistic results.

1.5.5 Thesis Structure

The rest of the thesis is structured as follows:

9 Chapter 2 presents the necessary mathematical background information for MPC,

robust MPC, and tube MPC. Input-output and input-state feedback linearization, two

common nonlinear control strategies, are also discussed.

e Chapter 3 introduces the Dynamic Tube MPC (DTMPC) framework that utilizes the

robustness properties of boundary layer control to: 1) construct a parameterization that

enables online optimization of the trajectory and control parameters (Contribution 1);

and 2) derive an explicit relationship between the tube geometry and state-dependent

model uncertainty (Contribution 2).

* Chapter 4 presents simulation results demonstrating DTMPC's ability to simultane-

ously optimize a trajectory/tube geometry and leverage state-dependent uncertainty.

Test domains include collision avoidance of a nonlinear mechanical system and gen-

erating/executing aggressive maneuvers for an unstable, nonlinear model of the roll

dynamics of a high-performance aircraft (Contribution 4).
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" Chapter 5 introduces the Adaptive Dynamic Tube MPC (ADTMPC) framework that

utilizes set membership identification (SMID) to reduce model uncertainty while main-

taining computational tractability and recursive feasibility (Contribution 3).

" Chapter 6 presents simulation results showcasing how ADTMPC can robustly update

the prediction model, leading to better overall performance. Test domains include

collision avoidance of a nonlinear mechanical system and generating/executing aggressive

manuevers for an unstable, nonlinear model of the roll dynamics of a high-performance

aircraft (Contribution 4).

* Chapter 7 summarizes the thesis contributions and discusses directions for future work.
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Chapter 2

Mathematical Preliminaries

2.1 Overview

This chapter contains the necessary mathematical background for MPC and the nonlinear

control technique known as feedback linearization. Definitions and the mathematical formu-

lations of traditional, robust, and tube MPC are first presented. Output and state feedback

linearization, their properties, and limitations are then discussed.

2.2 Model Predictive Control

2.2.1 Overview

This thesis is concerned with developing a tractable robust MPC implementation for nonlinear,

control-affine systems of the form

si(t) = f (x(t)) + b(x(t))u(t), (2.1)

where x E R" is the state and u E R' is the control input. The remainder of this section will

discuss the conceptual and computational differences between traditional, robust, and tube

MPC. For clarity, the time argument of the state and control input will be omitted except

in problem definitions. Note that the term uncertainty, in the context of this thesis, means
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model error and/or external disturbances. Distinctions between the types of the uncertainty

(i.e., model error or disturbances) will be explicitly stated.

2.2.2 Traditional MPC

A key characteristic of MPC, unlike more traditional control techniques, is the ability to

explicitly handle state and actuator constraints. MPC entails repeatedly solving a nonlinear

optimal control problem with the current state of the system and applying the resulting

optimal control input open-loop. A typical nonlinear optimal control problem takes the

following form.

Problem 1 - Traditional MPC

tf

u*(t) = argmin J = hf ('(tf)) + f t (t) ,t(t)) dt
fl(t) to

subject to z(t) = fQz(t)) + b(z(t))i(t),

z(t) G X, fL(t) E U,

(to) = x(to), -t(tf) E Xf

where u* is optimal open-loop control input; are the internal variables of the optimization;

hf and f are the terminal and stage cost (typically quadratic in state and/or control); X

and U are the state and actuator constraints; Xf is the desired equality/inequality terminal

constraint; f and b are the nominal dynamics and input matrix; and x(to) is the current

state of the actual system. This procedure, shown in Fig. 2-1, can be viewed as an implicit

feedback control law that attempts to stabilize (2.1). In some cases, an explicit control law,

such as an LQR controller, can be obtained but typically requires the removal of the state

and actuator constraints. A number of modified versions of Problem 1 can be found in the

literature, with variations arising from the use of terminal constraints in place of a terminal

cost function and vice versa. A summary on the different formulations, and their benefits,

can be found in [7].

Stability, robustness to uncertainty, and recursive feasibility (i.e., ensuring the optimization

remains feasible) of Problem 1 are important and well-studied concepts in the MPC community.
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Optimizer
U* = argmin J

a * Plant

subject to 1 (l) + b(1)6 Wi = f x))+ b(x)u* + d
&EX, fEU,

1(to) = x(to), 1(tf) E Xr

I X(to)

Figure 2-1: Nominal MPC architecture. An optimal control problem is repeatedly solved with the

current state of the systems and the resulting control input is applied open-loop.

While there are a number of techniques to achieve stability and recursive feasibility, heavy

reliance on a model leads to small robustness margins [7, 11, 65]. In practice, minimal

robustness can have severe consequences when state/actuator constraints, such as not colliding

with an obstacle or exceeding the physical limits of actuators, are not guaranteed to be satisfied.

Further, in many situations, acquiring a high-fidelity model of the dynamics/disturbances

is not practical. As a result, there has been substantial research in obtaining a robust and

tractable MPC solution.

Before proceeding, it is important to highlight that the MPC framework should be viewed as

more than just a stabilizing feedback controller. The framework is general enough that it can be

used in almost every feedback loop that executes an action (i.e., u*) when new information (i.e.,

x (to)) becomes available. This includes control, collision avoidance/trajectory generation/path

planning, perception, or any other sequential decision making process [91]. The complexity lies

in describing the physics of the system, getting constraints in a form suitable for optimization,

and obtaining a computationally tractable problem.

2.2.3 Robust MPC

As mentioned above, traditional MPC is sensitive to modeling error and external disturbances,

leading to poor performance in real-world applications. Fundamentally, this lack of robustness

is a consequence of not explicitly considering uncertainty in Problem 1. Robust MPC, on

the other hand, directly accounts for the uncertainty by optimizing over control policies

instead of control actions (as in traditional MPG). The formal way to structure a robust
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MPC problem originated in the dynamic programming community where the optimization

selects the best control policy for the worst case uncertainty [8, 9, 581. More formally, the

optimizer constructs a feedback policy 7r : X x R -+ U such that the cost is minimized and

the constraints are satisfied for all possible realizations of the uncertainty. For simplicity,

assume (2.1) is subject to a bounded additive disturbance d E D. Then, the robust MPC

problem is formulated as the following minimax optimization.

Problem 2 - Robust MPC

tf

7r*(x(t), t) = argmin max J = hf (z(tf)) + f ((t), r(t(t), t)) dt
7r( (t),t) d(t) J

to

subject to z(t) = f((t)) + b(zt(t))ir( (t), t) + d(t),

2t(t) E X, 7r( (t) , t) E HI, d(t) E D

(to) = x(to), 2(tf) E Xf

where H is the allowable set of feedback policies and the remaining variable definitions are the

same as that in Problem 1. The key difference, however, is that Problem 2 directly considers

the uncertainty by optimizing over control policies.

Solving Problem 2 entails optimizing over arbitrary functions which, in general, is not

computationally tractable. Discretization, as done in dynamic programming, is also not

tractable because of the curse of dimensionality. For instance, Scokaert et al. showed that

the computational complexity of linear robust MPC is exponential even after proving only

the extrema of the uncertainty set has to be considered [601. For nonlinear systems, the

complexity is far worse since many more uncertainty realizations must be checked. The

computational complexity of robust MPC has stimulated extensive research in finding a

tractable alternative.

2.2.4 Tube MPC

The standard RMPC formulation involves a minimax optimization to construct a feedback

policy 7r. However, optimizing over arbitrary functions is not tractable and discretization

suffers from the curse of dimensionality. The standard approach taken in tube MPC [10] is
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*

Figure 2-2: Illustration of robust control invariant (RCI) tube Q centered around desired state x*.

If the state x begins in Q then it remains in Q indefinitely for all realizations of the model error or

external disturbance.

to change the decision variable from control policy 7r to open-loop control input u*. In order

to achieve this re-parameterization, the following assumption is made about the structure of

the control policy.

Assumption 1. The control policy 7r takes the form 7r = u* + I'(x, x*) where u* and x* are

the open-loop input and reference trajectory, respectively.

In the tube MPC literature, r, is known as the ancillary controller and is typically designed

offline [12, 65]. The role of the ancillary controller is to ensure the state x remains in a robust

control invariant (RCI) tube around the nominal trajectory x*.

Definition 1. Let X denote the set of allowable states and let : := x - x*. The set Q C X

is a RCI tube if there exists an ancillary controller , (x, x*) such that if ; (to) E Q, then, for

all realizations of the disturbance and modeling error, ;(t) E Q, Vt > to.

Fundamentally, RCI tubes are a mathematical object that describe how "close" the system

remains to the desired trajectory for all realizations of the uncertainty. Fig. 2-2 provides a

visualization of a RCI tube.

Given an ancillary control K and associated RCI tube Q, a constraint-tightened version

of the nominal MPC problem can be solved to generate an open-loop control input u* and

reference trajectory x*. Tube MPC is typically formulated as the following optimization.
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Optimizer
U*, =mn J Ancillary Plant

subject to &= + 6(t)f Controller X= f(z) + b(x)u + d
& E 1, f, U Au= U* + (x, z*)

t(to) = ZO*, t(tf) E Xf

Figure 2-3: Tube MPC architecture. A constraint-tightened optimal control problem is repeatedly
solved with initial condition x* that can be freely picked. The ancillary controller tracks the desired
state while providing robustness to model error and disturbances.

Problem 3 - Tube MPC

tf

u*(t), x*(t) = argmin J = hf (z(tf).) + f t ((t), I (t)) dt

to

subject to i(t) = f((t)) + b(z(t))fL(t),

z(t) E X, fL (t) E U,

. (to) = X*, 2(tf) E Xf

where X and U are the modified state and actuator constraints, respectively. Note that

Problem 3 is initialized with x* instead of x(to), which is typically chosen to be somewhere

along the last optimal solution (i.e., x* = x*(r) where r E [to, tf]). Also, since Problem 3

is just a modified version of Problem 1, all the stability and recursive feasibility proofs for

traditional MPC can be easily extended to tube MPC so long as the constraints are tightened

appropriately. The complexity, then, of tube MPC is designing the ancillary controller n and

calculating the associated RCI tube Q - both of which are done offline. The standard tube

MPC architecture is shown in Fig. 2-3.

While tube MPC is a tractable alternative to robust MPC, it has three main drawbacks.

First, the decoupled trajectory and control policy design (i.e., tube geometry) is inherently

suboptimal. Second, it is extremely difficult to establish an explicit relationship between state-

dependent uncertainty and the tube geometry; often leading to the simplifying assumption

that the model uncertainty is simply bounded. Third, the difficulty of constructing a certainty

equivalence controller for nonlinear systems inhibits the use of online adaptation/estimation
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to reduce model uncertainty. A solution for the first two issues is presented in Chapter 3 and

the third issue in Chapter 5.

2.3 Feedback Linearization Control

2.3.1 Overview

A complete survey of nonlinear control theory would undoubtedly multiply the length of this

thesis multifold. As a result, this section will focus on the nonlinear control technique known

as feedback linearization. As will be rigorously shown, feedback linearization entails forcing a

nonlinear systems to behave as a linear one by inverting the system dynamics. This inversion

is sensitive to model error and disturbances, eliminating it as a suitable ancillary controller

for tube MPC. However, many of the theoretical aspects of feedback linearization are central

to the ancillary controller design in Chapter 3. The following material borrows heavily from

results presented in [45, 92]. The following definitions will be used later in this section.

Definition

there exists

Definition

there exists

Definition

there exists

2. The equilibrium state x = 0 for a dynamical system is stable if for any R > 0

r > 0 such that if I|x(0)f| < r then ||x(t)I < R for all t > 0.

3. The equilibrium state x = 0 for a dynamical system is asymptotically stable if

r > 0 such that if Ix(O)IW < r then I1x(t)fl -+ 0 as t -+ oc.

4. The equilibrium state x = 0 for a dynamical system is exponentially stable if

K, A, r > 0 such that if l|x(0)|| < r then ||x(t)I| < Kjlx(0)|e-At.

Definition 5. Let h : R-+ IR and f : R' -4 Rn be a smooth scalar function and vector

field. The Lie derivative of h with respect to f is a scalar function defined by Lfh = Vhf.

Definition 6. Let f, b : RI -- Rn be two smooth vector fields. Then the Lie bracket of f

and b is another vector field defined by

adfb = [f, b] = Vbf - Vfb,

where ad is commonly referred to as the adjoint.
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Definition 7. A function #: R' --+ R' is a diffeomorphism if it is differentiable and bijective.

2.3.2 Input-Output Linearization

Consider the following single-input, single-output nonlinear system

, = f(x)+b(x)u (2.2)

y = h(x)

where x E R', u E R, and y E R. The goal of input-output feedback linearization is to

transform (2.2) into a linear system so concepts from linear control theory can be applied.

This is accomplished by continuously differentiating the output until the input appears. For

instance, assume that it takes r < n differentiations of h for the input to appear. It can then

be shown that

y(r) = Lrh(x) + LbLr-lh(x)u, (2.3)

where Lf and Lb are Lie derivatives (from Definition 5). Since LbL-h(x) # 0, then if the

control law

U= (-Lrh + v) (2.4)

is applied to (2.2), the following linear system is obtained

y(r) = - , (2.5)

where v can be designed via pole placement, LQR, or other linear control techniques.

The number of r differentiations for the input to appear in the output is known as the

relative degree of the system. If r = n, then the system is said to be input-state linearizable

(to be discussed next). However, if r < n, then there is a subset of the dynamics that are not

directly controlled. In order for these internal states to remain bounded, the stability of the

internal dynamics must be verified. It can be shown that if the internal dynamics are stable

when the output y is identically zero then the overall system is asymptotically stable 145].
In order to study these internal dynamics formally, the concept of normal form needs to
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be introduced. First, let

Z = [Zi Z2 - Zr]T = Y - -y(r-1)IT

The normal form of (2.3) is given by

i =

Z 1

Z2

Zr

c-(z, T) + O(z, I)u

where

-(z, qI) = Lr h(x), /(z, T) = LbLr 1lh(x). (2.8)

If it can shown that the internal dynamics

'I = q(0, T), (2.9)

where z = 0 are stable, then the entire closed-loop systems is asymptotically stable. The

following example outlines the general procedure.

Example 1. Consider the following system

= x + x 2 + U

y = x1

with

S-x - x 2 + V.

For y = 0, then the internal dynamics are given by

(2.6)

(2.7)

2 = -Xz + 2x1 (2.10)

(2.11)

3
X2= -2
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which are exponentially stable so the closed-loop system is asymptotically stable. 1

It is important to highlight that only asymptotic stability is guaranteed for the closed-loop

system. This is a consequence of the peaking phenomenon [93], which is a result of studying

the stability of the internal dynamics when the output is identically zeros. A natural question

then arises: how does one stabilize (2.2) if the internal dynamics are unstable? Backstepping

is one technique that entails designing v to stabilize the internal dynamics but requires the

system to be in a particular form [94]. State-output linearization, discussed next, is another

approach that attempts to construct h such that there are no internal dynamics (i.e., r = n).

2.3.3 Input-State Linearization

The goal of input-state linearization is to construct a diffeomorphism #(x) : R" -+ Rn such

that the general nonlinear system

f (x) + b(x)u, (2.13)

can be transformed into normal form

1 =2

2 = 3
(2.14)

in = -(z) + 3(z)u

where z = [zi z2 ... z"]T = [01 (x) # 2(X) -. -- #(X)]T = #(x). Note the absence of the output

function h(x) in (2.13) and the internal dynamics T = q(z, T) in (2.14). By transforming

(2.13) to (2.14) and letting

u = /(z)>1(--(z) + v), (2.15)

linear control techniques can be used to design v without any concern about the stability of

the internal dynamics. Constructive conditions for O(x) can be obtained by simply using the
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definition z = #(x) and differentiation n times

i = Vol(f(x) + b(x)u) = Z2

Z2 = V# 2 (f(x) + b(x)u) = Z
(2.16)

in= V~n(f (x) + b(x)u) = -(z) + /(z)u.

In order for (2.16) to hold, u must be eliminated from the first n - 1 equations. This is

achieved by setting

V#1b(x) = Vk 2 b(x) =- = Vqn-lb(x) = 0, V~nb(x) / 0, (2.17)

or more concisely

LA#1 = Lb0 2 = = LOn = 0, LbOn # 0. (2.18)

Recall that since ii = zi+1 , then #i = qj+1 for i = 1,... , n - 1 so (2.18) can be expressed

as a function of # 1 only

LbOl = LbLfo#l =- = LbL"-l = 0, LbLq 1 f 0. (2.19)

Noting that if LbLk = 0 then LbLk = adfk-lb(x) for k = 0, ... , n-2, the following constructive

conditions for #1 are obtained

V#ladfkb(x)=0 k=0,... , n-2 (2.20)

Voladn- lb(x) # 0

Observe that (2.20) is a (possibly nonlinear) partial differential equation for #1. In order

for a solution to exist, two technical conditions must be satisfied. First, the vector fields

{b(x), adfb(x), - - - , adf-lb(x)} must be linearly independent. This corresponds to (2.13)

being fully controllable. Second, the set {b(x), adfb(x), - , ad"-2b(x)} must be integrable.

This condition is far more technical than the controllability condition but is necessary and

sufficient for the solvability of (2.20). Interestingly, the physical interpretation of integrability
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is that (2.13) must be holonomic [95]. Consequently, nonholonomic systems are not input-state

linearizable, which is why deriving controllers for these type of systems is so challenging.

2.3.4 MIMO Extensions

Consider the following MIMO system

x = f(x) + b(x)u (2.21)

y = h(x)

where x E R', u E Rm, and y G Rm. Same as in input-output linearization, each output yj

can be differentiated ri times for i = 1,... , m until the input appears

m

(r) = Lr hi + Z LjL(-'hi.uj (2.22)
j=1

Each yr) can be stacked to obtain

y(ri) Lr hi(x) LbiLr'hi (x) ... LbmL'hi (x)

j- .U j , (2.23)
y Lm hm(x) LbL hm(x) --- LbmLr-hm(x)
Ym ______ LLf___LLT___(x)_..._f

F(x) B(x)

where B(x) E Rmxm is the decoupling matrix. The controller u then takes a similar form to

that in (2.4), which requires B(x) to be invertible. In the scenario where B(x) is not invertible,

dynamic extension of the inputs or re-defining the outputs are two possible strategies to make

B(x) non-singular. If the relative degree r = r1 + - - - + rm = n then there are no internal

dynamics so (2.21) is input-state linearizable. Otherwise, the stability of the zero dynamics

must be checked by setting y = 0.

2.3.5 Feedback Linearization Robustness

Fundamentally, both input-output and input-state feedback linearization are forcing the

system to behave linearly by inverting the nonlinear dynamics. This inversion requires an
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accurate model of the dynamics, which may be difficult or costly to obtain. Since many

real-world systems have some form of model error or are subject to external disturbances,

it is desirable to construct a robust version of feedback linearization. Although derived

independently from feedback linearization, sliding mode control provides complete cancellation

of model error and external disturbances. In the context of tube MPC, using a sliding mode

ancillary control to completely cancel model error and disturbances would reduce the tube

geometry to zero - a very enticing proposition. However, this impressive level of robustness

comes at the expense of high-frequency discontinuous control. Sliding mode control, its

properties, and alternatives are discussed in detail in Chapter 3.

2.4 Summary

This chapter presented the mathematical preliminaries required for the rest of the thesis.

Specifically, traditional, robust, and tube MPC were presented. Traditional MPC, which

entails repeatedly solving an open-loop optimal control problem with the current state of

the system, is susceptible to model error and disturbance leading to suboptimal performance

in real-world scenarios. Robust MPC addresses this limitation by optimizing over control

policies instead of control actions but at the expense of computational complexity. Tube

MPC is a tractable alternative to robust MPC that uses an ancillary controller, designed

offline, to keep the system in a tube centered around the desired trajectory, generated online.

While this decoupled trajectory-controller design is tractable, it is inherently suboptimal.

The complexity of nonlinear tube MPC is in designing an ancillary controller and com-

puting the corresponding tube. A number of different control designs can be found in

the literature (see Section 1.4). For brevity, this chapter only presented two techniques,

input-output and input-state linearization, because they are most relevant to the framework

developed in Chapter 3. While the lack of robustness for both techniques is well documented,

Chapter 3 will show that using a robust version of feedback linearization (i.e., sliding control)

as an ancillary controller leads to several nice properties that address a number of limitations

with existing nonlinear tube MPC approaches.
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Chapter 3

Dynamic Tube MPC

3.1 Overview

This chapter presents the Dynamic Tube MPC (DTMPC) framework for nonlinear systems.

DTMPC has two unique features: 1) the open-loop trajectory and tube geometry can be

simultaneously optimized; and 2) the structure of the model uncertainty can be used within

the optimization to produce more intelligent trajectories. The structure of this chapter is as

follows. The problem formulation and necessary assumptions are first presented. Boundary

layer sliding control, used as the ancillary controller in DTMPC, is then derived and discussed

in detail. The main technical result of the chapter, proving the boundary layer sliding

controller induces a robust control invariant tube, is then presented. Finally, the DTMPC

framework is formally defined and discussed.

3.2 Problem Formulation

Consider a nonlinear, time-invariant, and control affine system given by (omitting the time

argument)

S= f (x) + b(x)u+ d (31)

y = h(x)

where x E R' is the state of the system, u E Rm is the control input, d E R' is an external

disturbance, and y E R' are the states to be controlled.
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Assumption 2. The dynamics f can be expressed as f = I+ I where f is the nominal

dynamics and f is the bounded model error (i.e., If(x)| I Af(x)).

Assumption 3. The elements of the input matrix b can be expressed as b= ( + i,) &ij

for i = 1, ... , n and j = 1,.-- , m where b is the nominal input matrix and 6 is the bounded

input matrix error (i.e, Ib(x)I Ab(x)).

Note that the model error and input matrix bound in Assumption 2 and Assumption 3 are

intentionally left to be state-dependent. As will be shown shortly, one of the key characteristics

of DTMPC is the ability to leverage this dependency within the optimization.

Assumption 4. The disturbance d belongs to a closed, bounded, and connected set D (i.e.,

D = d E R' : IdI D}) and is in the span of the control input matrix (i.e., d E span (b(x))).

As discussed in Chapter 2, the standard RMPC formulation requires solving a minimax

optimization to construct a feedback policy 7r : X x R -+ U where x E X and u e U are

the allowable states and control inputs, respectively. However, this is not tractable even

for simple linear systems where Scokaert et al. [601 showed the computational complexity is

exponential. Tube MPC overcomes this challenge by re-parameterizing the control policy

7r (via Assumption 1) such that decision variable becomes the open-loop control input u*.

Robustness is achieved by designing the ancillary controller K such that the state x remains

in a robust control invariant tube Q (Definition 1) centered around the desired trajectory.

Both Assumption 1 and Definition 1 from Chapter 2 are repeated below.

Assumption 1. The control policy -r takes the form 7r = u* + K(x, x*) where u* and x* are

the open-loop input and reference trajectory, respectively.

Definition 1. Let X denote the set of allowable states and let J := x - x*. The set Q C X

is a RCI tube if there exists an ancillary controller r, (x, x*) such that if c (to) E Q, then, for

all realizations of the disturbance and modeling error, z(t) E Q, Vt > to.

Calculating a RCI tube for a given ancillary controller can be very difficult for nonlinear

systems. Unsurprisingly, the chosen methodology for synthesizing the ancillary controller

can dramatically influence the complexity of the tube geometry construction. Ideally, the
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controller and tube geometry could be parameterized such that an explicit relationship

between the two can be derived; enabling the controller and tube geometry to be designed

online within the optimization. Further, having a control strategy that is able capture state-

dependent uncertainty and describe how it impacts the tube geometry would be desirable.

While it may seem infeasible to find such a control synthesis strategy, Section 3.3 will show

that boundary layer sliding control possesses both properties.

For now, assume that a control synthesis technique exists such that both the controller

and tube geometry can be parameterized by a E A where A is the allowable set of parameters.

By introducing the parameter vector a, a more precise definition of the ancillary controller is

the mapping , : X x X x A -+ U. Also, how the state-dependent uncertainty and parameter

vector a affect the tube geometry must be captured. This is achieved by introducing the

tube geometry dynamics

S= T (x*, a, Q) (3.2)

where T is a function, possibly nonlinear, that describes how x* and a influence the geometry.

Therefore, the nonlinear tube MPC problem where the tube geometry and open-loop trajectory

are simultaneously optimized can be formulated as the following optimization.

Problem 4 - MPC and Tube Geometry Optimization

tf

u*(t), x*(t), o*(t) = argmin J = hf (z(t)) + J ( (t), i(t), d(t)) dt

subject to X(t) = f(t(t)) + I(t))i2(t),

Q = T (z(t), d(t), Q(t)) ,

t (to) = x*, Q (to) = Iz(to)I,

z (tf) E if,7 d(tf) E Af

Iz(t) E R, fL(t) E U, d (t) E A

where hf and f are quadratic terminal and stage cost; X := X E Q the tightened state

constraints; Xf := Xf E Q the tightened terminal state constraints; := U E IF the tightened

control input constraints; Af is the terminal constraint set for parameter a; and is the

element-wise absolute value.
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3.3 Boundary Layer Sliding Control

3.3.1 Overview

This section reviews time-varying boundary layer sliding control [45, 90], provides analysis

supporting its use as an ancillary controller, and shows how the DTMPC framework leverages

its properties. As reviewed in Section 1.4, sliding mode control has been extensively used

for nonlinear tube MPC because of its simplicity and strong robustness properties. Unlike

other control strategies, sliding mode control completely cancels any bounded modeling error

or external disturbance (reducing the RCI tube to zero). However, complete cancellation

comes at the cost of high-frequency discontinuous control making it impractical for many

real systems; a number of continuous control versions have since been developed. Note that

the boundary layer controller was originally developed in [90] but, until now, has not been

used within the context of tube MPC. Before proceeding the following assumption is made.

Assumption 5. The system given by (3.1) is either input-state or input-output linearizable

with zeros that are stable or can be stabilized via backstepping.

Note that Assumption 5 requires system (3.1) to be fully actuated, minimum phase, or in

cascaded form. While many systems fall into one of these categories, future work will extend

DTMPC to more general nonlinear systems.

3.3.2 Sliding Mode Control

Let : yj - y* be the tracking error for output yi for i = 1,..., m. Then, for Ai > 0, the

sliding variable si for output yi is defined as

(d r-1
si = +& 33

ri -1) _ (+ -1

-=yi -ypi,
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(a) Sliding manifold S. (b) Boundary layer B.

Figure 3-1: Sliding manifolds. (a): Sliding surface for traditional sliding mode control. S is

invariant to uncertainty and disturbances but requires discontinuous control. (b): A time-varying

region B around S can be constructed such that B is invariant through continuous control.

where

( - 1) _ (ri-1) ri- r-k -k-1)Y;~~~ (r A(34
k=1

and ri is the relative degree of output yi (defined in Section 2.3).

In sliding mode control, a sliding manifold Si is defined such that si = 0 for all time once

the manifold is reached (shown in Fig. 3-la). This condition guarantees the tracking error

converges to zero exponentially via (3.3). To ensure the sliding manifold Si is attractive, the

following condition for the sliding variable si for output yi is imposed

1 d
s- - -r1ilsil, (3.5)

2dt 
(35

where 71i dictates the convergence rate of si to the manifold Si. Using the definition of si

from (3.3) and performing the differentiation in (3.5), one obtains

S, (y ri) - y -rii)s<I. (3.6)

Recall from Section 2.3, the dynamics of the output variable is given by

m

y r) = Lj rhi(x) + L L r?-1hi(x)u + di. (3.7)
j=1
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Substituting into (3.6),

si L)'hi W + Lbj L' -'hi(x)uj - yi) + d ) -i I siL
\ fj=1

which can be stacked for each output yi to obtain a more concise form

L" hi(X)

s*

L hm(x) 

F(x)

Lb LL" h1 (x) ... LbmL'hi(x)

+ U - y r) + d < -97 *lsj, (3.9)

LbLrmhm(x) --. LbmL hm(x)

B(x)

where * and I - are element-wise multiplication and absolute value, respectively.

For clarity of the following derivation, B(x) is assumed to be known so B(x) = B(x). The

derivation for the sliding mode controller with an uncertain input matrix entails identical

steps but is more tedious to follow. The equation for the controller with an uncertain input

matrix will be presented following the derivation.

Let u take the form

u = $(x)- 1 (-(x) + y r) - K(x)sign(s)) (3.10)

where K is the robust gain that must be found. Then, (3.9) becomes

s * {F(x) + B(x) [B(x)-1 (-F(x) + y ') - K(x)sign(s) + y T) + d} -r * IsI. (3.11)

Since B(x) = B(x) (again only for clarity)

s * {F(x) - P(x) - K(x)sign(s) + d} -r7 * s. (3.12)

Taking the element-wise absolute value of both sides and using Assumption 2 and Assump-

tion 4,

1s5 * {AF(X) - K(x) + D} -n * IsI, (3.13)

52

(3.8)



2.5 15

2
10

1.5

1 5

0.5 0

';, 0

-0.5 -5

-1 -10

-1.5

- 15

-2.5 -20
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0 1 2 3 4 5

y t

(a) State trajectories. (b) Control input u.

Figure 3-2: Simple sliding mode control example for 2 = -x - x3 + -3 + u + d, y = x, and

d = sin(27rt). (a): State trajectory (blue) converges to and slides along the sliding surface (red) in

finite time, irrespective of the disturbance. (b): Control input as the state trajectory reaches and

slides along the surface. The sign(.) term in the controller leads to discontinuities in the control

signal. This phenomenon is known as chattering.

which is satisfied if K is chosen to be

K(x) = AF() + D+ (3.14)

In the case where there is uncertainty in the input matrix then, using Assumption 3, K takes

the more complicated form

K(x) = (1 + AB(X)) 1 [AsF(X) + AB(X) I-F(x) + y~)+ D + ~ (.5

Hence, the sliding mode control law is given by (3.10) and (3.14) (or (3.15) if AB(x) ' 0).

Intuitively, the choice of the robust gain K is dictated by the level of uncertainty in the

dynamics and magnitude of the disturbance. In order for the sliding manifold S to remain

invariant, K must be large enough to compensate for both model error and disturbances.

As stated earlier, the construction of the sliding mode controller ensures that the affects

of model error and external disturbance are completely canceled. However, this impressive

robustness is achieved by having high-frequency discontinuous control which, among other

things, can excite unmodeled high-frequency dynamics and shorten actuator life span. An

example of the discontinuous control, commonly referred to as chatter, is shown in Fig. 3-2
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for a simple second order nonlinear system.

3.3.3 Boundary Layer Control

One strategy to smooth the control input is to introduce a boundary layer around the sliding

surface. Let the boundary layer be defined as B := {x : Isi 5 Di } (shown in Fig. 3-1b) where

4Di is the boundary layer thickness. If <Di is time varying, then the boundary layer can be

made attractive if the following differential equation is satisfied

I 2 < -ri ISi (3.16)
2 dt

where ri dictates the convergence rate to the boundary layer Bi (as opposed to the sliding

manifold Si as before). Following the same steps, the boundary layer controller takes the

form (again assuming AB = 0 for simplicity)

u = B(x)- [-F(x) - y) - K(x)sat (s/<) , (3.17)

where sat(.) is the saturation function and the division is element-wise. Then, for 1I > <D,

the boundary layer is attractive if

K(x)= AF (x)+ D + r1 -. (3.18)

Additional information can be inferred by considering the sliding variable dynamics inside

the boundary layer. After substituting (3.17) into the sliding variable dynamics one obtains

K(x)S = - s + F(x) - F(x) + d, (3.19)

where the division is element-wise. Alternatively, (3.19) can be written as

a K(x*) + F(x*) - F(x*) + d + O() , (3.20)

which is a first order filter with cutoff frequency K(x*). Let a be the desired cutoff frequency,
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(a) State trajectory. (b) Control input u.

Figure 3-3: Simple boundary layer control example for 2 = -x - x3 + '3 + u + d, y = X, = 0.1,

and d = sin(27rt). (a): State trajectory (blue) converges to a region (boundary layer) around the

sliding manifold (red) in finite time, irrespective of the disturbance. (b): Control input as the state

trajectory reaches the boundary layer. The sat(.) term in the controller eliminates the chattering

phenomenon.

then, leveraging (3.18), one obtains

AF(X*) + D + - a (3.21)

or

= -D + A F(X*) + D + 7. (3.22)

Thus, the final control law is given by (3.17), (3.18), and (3.24). In the case where AB(x) # 0,

then, using Assumption 3, the robust gain K is

K(x) = (I + AB(x)) - AF(X) + AB(X) -F(x) + y + D + , - , (3.23)

and the boundary layer dynamics are

= -D + AF (X ) + AB(X) -F(x*) + yr) + D + 77. (3.24)

Fig. 3-3 illustrates the effectiveness of eliminating chatter from the control input. The

state trajectory (shown in Fig. 3-3a) converges to a region around the sliding manifold in

finite time without discontinuous control (shown in Fig. 3-3b). While boundary layer control
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was originally developed to eliminate chattering, the ability to explicitly capture the affect

of uncertainty on the tracking error is the characteristic that makes it such a useful control

strategy for tube MPC.

3.4 Main Result

The boundary layer sliding controller in (3.17) allows us to establish several key properties at

the core of DTMPC. All of which are a consequence of the following theorem.

Theorem 1 (RCI Tuibe [161). Let ii = [i 1 - I be the error vector for output

yi. The boundary layer controller induces a robust control invariant tube Qj where the tube

geometry is given by

Qj(t) e Ai(t-to)Qi(to) + eAc (t-t0--)B,< Dj(T) dr, (3.25)
J to

where Qj (t) =i (t) I and A, and B, are found by putting (3.3) into controllable canonical

form.

Proof. Recalling the definition of si from (3.3), the error dynamics are given by the linear

differential equation

i+ + - S,. (3.26)

With the error vector ii = [ .- T- and putting (3.26) into the controllable

canonical form, the analytical solution is

ii(t) = eAc (t-to)ii(to) + 1 eA (tto-r)B ,sidr. (3.27)

Taking the element-wise absolute value I -1, setting Qj(t) = I (t)1, and noting I si 4 i, (3.25)

is obtained. Thus, by Definition 1, 4 is a RCI tube since ii is bounded. E

Remark 1. Theorem 1 proves that the tracking error j for output yj is bounded once the

sliding variable reaches the boundary layer. It is important to highlight that Theorem 1 also

establishes bounds on the derivatives of the tracking error Yi, - , Q(ri--) Further, since
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yi = hi(x), bounds on the state tracking error z can be obtained. The remainder of this thesis

will adopt the convention of denoting the tracking error by z, and it should be understood

that this bound is given by Theorem 1 and the relationship between the output variable y

and state x.

Theorem 1 proves that the geometry of the RCI tube Qi is uniquely described by the

boundary layer thickness (Di. Using the terminology introduced by Rakovi et al., the tubes

in DTMPC are both homothetic and elastic. For this reason, and the ability to capture

state-dependent uncertainty, the approach developed here is called Dynamic Tube MPC.

Further, as briefly discussed in [42], a tighter geometry can be obtained if the current (as

opposed to the predicted) tracking error is used in (3.25).

The importance of (3.22) (and (3.24)) cannot be understated. It gives a precise description

for how the tube geometry changes with the level of uncertainty (from the model or otherwise).

This is an incredibly useful relation for constructing tubes that are not overly conservative

since, in most cases, the model error bound is typically picked to be a large constant because

of the difficulty/inability to establish a relation like (3.22) (and (3.24)). By letting the

uncertainty be state-dependent, the MPC optimizer (to be discussed in Section 3.5) is able to

utilize a more accurate description of the uncertainty to maximize performance. This further

underlines the importance of acquiring a high-fidelity model to reduce uncertainty and make

the tube as small as possible without using high-bandwidth control.

Another interesting aspect of (3.22) (and (3.24)) is the choice of the cutoff frequency a.

In general, ce and A are picked based on control-bandwidth requirements, such as actuator

limits or preventing excitation of higher-order dynamics. It is clear that a larger 0Z produces

a smaller boundary layer thickness (i.e., high-bandwidth control leads to compact tubes).

However, from (3.20), increasing the bandwidth also increases the influence of the uncertainty.

Hence, the bandwidth should change depending on the current objective and proximity to

state/control constraints for optimal performance (see Section 3.5).
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3.5 Dynamic Tube MPC

3.5.1 Overview

This section presents the Dynamic Tube MPC (DTMPC) framework and discusses its

properties. The novelty of DTMPC is its ability to change the tube geometry to meet

changing objectives and to leverage state-dependent uncertainty to maximize performance.

This section first presents a constraint tightening procedure necessary for recursive feasibility.

Next, optimizing the tube geometry by adding the control bandwidth as a decision variable

is discussed. Lastly, the non-convex formulation of DTMPC is presented. Before proceeding,

the following assumption is made about the form of the state and actuator constraints.

Assumption 6. The state and actuator constraints take the form

||Pxx + q| 1H cx, IPuu+ qu||1 cu, (3.28)

where | - is the L 2 norm, and P, qi, and ci are constants dictated by the application.

Many physical systems possess these type of constrains so the above assumption is not overly

restrictive. Note that state constraints are imposed on the full state of the system x and not

just on the output variable y.

3.5.2 Constraint Tightening

State and actuator constraints must be modified to account for the nonzero tracking error

and control input caused by model error and disturbances. The following corollary establishes

the modified state constraint.

Corollary 1 (Tightened State Constraint). Assume the control law (3.17) is used as

an ancillary controller with associated RCI tube Q and bounded tracking error . Then, the

following modified state constraint

||Pxx* + qx|| cx - |Px||, (3.29)
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guarantees, for all realizations of the uncertainty, the actual state satisfies the original

constraint.

Proof. Recall that Theorem 1 established that the boundary layer controller induces a RCI

tube Q with bounded tracking error given by (3.25). Then, the state is always upper bounded

by x < x* + L2|. Substituting this bound into the state constraint (3.28) and using the

triangle inequality, the result is obtained. El

Tightening the actuator constraints is more complicated since the control law in (3.17)

depends on the current state x. However, the tracking error bound can be used to obtain an

upper bound on the control input that is only a function of the boundary layer thickness,

desired state, and dynamics. It is helpful to put the controller into a more useful form for

the following theorem

u = B(x)- 1 y*(r) -) _ r-k(k) -K(x)sat (s/)j, (3.30)

where the first term is the feedforward (and hence the decision variable in the optimization)

and the last three are the feedback terms.

Theorem 2 (Control Input Upper Bound). Assume that the control law is given by

(3.30). Then, the control input is upper bounded, for all realizations of the uncertainty, by

E r - )u K -y*' + P + 2.~k $(k) + IK], (3.31)
L k=1 '

where

f-' = max {B- (x), B-' ()}, (3.32)

= max{ F(x) , () } , (3.33)

K = max {K (x) , K (.)}, (3.34)

x x* - z|,: x* + , and max { -} is the element-wise maximum.
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Proof. The tracking error bound can be leveraged to eliminate the state-dependency in (3.30).

Specifically, the state is bounded by

X* - Xz < X* + JJ* + 1, (3.35)

where |.| is the solution to (3.25) when equality is imposed. It is clear from (3.30) that

to upper bound u, the inverse of the input matrix B- 1 and the last three feedback terms

should be maximized. Define x := x* - I and t := x* + 4z, then using (3.35), each term in

(3.30) can be upper bounded by evaluating at x and t and taking the maximum, resulting in

Equations (3.32) to (3.34) and hence (3.31).

Remark 2. The bound given by Theorem 2 can be very conservative depending on the

structure of the nonlinearities in the dynamics. Tighter bounds can be obtain, for instance, if

the dynamics can be expressed as a sum of polynomial functions of a single variable (i.e.,

F(x) = E pj(x2)). If this is not the case, then convex approximations of (3.31) can be

employed [96, 97].

The bound established by Theorem 2 can be put into a more concise form

U < f1 [u* + Ufb] , (3.36)

where u* := y*(r) - P(x*) and Ufb is the sum of the last three terms in (3.31). Using Theorem

2, the following corollary establishes the tightened actuator constraint.

Corollary 2 (Tightened Actuator Constraint). Assume the control law (3.17) is used

as an ancillary controller with the associated RCI tube Q and upper bound on input due to

feedback fb. Then, the following modified actuator constraint

||uPu5 U* + qu 1| cu - 11 Puf-1 |fb|, (3.37)

guarantees, for all realizations of the uncertainty, the actual input satisfies the original

constraint.

Proof. Theorem 2 established the upper bound on the control input to be u < f- [u* + ifbl.
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Substituting this bound into the actuator constraint (3.28) and using the triangle inequality,

the result is obtained. E

3.5.3 Optimized Tube Geometry

For many autonomous systems, the ability to react to changing operating conditions is crucial

for maximizing performance. For instance, a UAV performing obstacle avoidance should

modify the aggressiveness of the controller based on the current obstacle density to minimize

expended energy. Formally, the tube geometry must be added as a decision variable in

the optimization to achieve this behavior. DTMPC is able to optimize the tube geometry

because of the simple relationship between the tube geometry, control bandwidth, and level

of uncertainty given by (3.22). This is one of the distinguishing features of DTMPC since

other state-of-the-art nonlinear tube MPC algorithms are not able to establish an explicit

relationship like (3.22).

In Section 3.3, it was shown that the control bandwidth a is responsible for how the

uncertainty affects the sliding variable s. Subsequently, the choice of ce influences the tube

geometry (via (3.22)) and control gain (via (3.18)). In order to maintain continuity in the

control signal, the tube geometry dynamics are augmented such that a and 4D remain smooth.

More precisely, the augmented tube dynamics are (ignoring input matrix uncertainty)

i>=-A)D + AF(X*) + D+r,

V) =(3.38)

where v E V is an pseudo-control input that will serve as an additional decision variable in

the optimization. It is easy to show that the above set of differential equations is stable so

long as a remains positive.

3.5.4 Complete Formulation

With Corollary 1 and 2 establishing the tightened state and actuator constraints, Dynamic

Tube MPC can be formulated as the following optimization.
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Problem 5 - Dynamic Tube MPC

tf

U*(t), x*(t), ce*(t)= argmin J= hf(I(tf))+ f(.tt),f6(t), Z(t),f0(t))dt

to

subject to X(t) = f(z(t)) + b(,(t))i2(t), &(t) = i(t),

(t) = -d(t)(t) + AF(X(t)) + D + rl,

Q(t) = AcQ(t) + BeI(t), Q(to) = |c(to)

t(to) = x*, d(to) = c* @(to) = (o,

2t(t) E f, 6t) E Ud(t) E A, f)(t) E V,

-(tf) E if, d(tf) E Af,

where X, Xf, and U are the tightened state, terminal, and actuator constraints; A and V are

the constraints for the bandwidth oz and pseudo-control input v; Af is the terminal constraint

set for the bandwidth; Ac and Bc are the state and input matrix for the controllable canonical

form; and hf and f are the quadratic terminal and stage cost. The output of DTMPC is an

optimal control input, trajectory, and controller bandwidth.

DTMPC is inherently a non-convex optimization problem because of the nonlinear

dynamics and (possibly) non-convex state/input constraints. However, non-convexity is

a fundamental characteristic of nonlinear MPC and a number of approximate solution

procedures have been proposed. The key takeaway is that Problem 5 is a nonlinear tube

MPC algorithm that simultaneously optimizes the open-loop trajectory and tube geometry,

eliminating the duality gap in standard tube MPC. Furthermore, conservativeness can be

reduced since Problem 5 is able to leverage state-dependent uncertainty to select an open-loop

trajectory based on the structure of the uncertainty and proximity to constraints. The

benefits of these properties, in addition to combining the tube geometry and error dynamics,

will be demonstrated in Chapter 4.
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3.6 Summary

This chapter presented the Dynamic Tube MPC (DTMPC) algorithm that addresses a

number of limitations of current nonlinear tube MPC algorithms. First, the open-loop MPC

optimization is augmented with the tube geometry dynamics enabling the trajectory and

tube to be optimized simultaneously. Second, DTMPC is able to utilize state-dependent

uncertainty to design more intelligent trajectories, subsequently improving optimization

feasibility. And third, the tube geometry and error dynamics can be combined to further

reduce conservativeness. All three of these properties were made possible by leveraging the

simplicity and robustness of boundary layer sliding control.
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Chapter 4

Dynamic Tube MPC: Application and

Analysis

4.1 Overview

This chapter presents simulation results demonstrating the two key features of DTMPC:

1) combining the trajectory and tube geometry design into a single optimization; and 2)

capturing state-dependent modeling error to construct less conservative trajectories. DTMPC

is applied to two domains, both with nonlinear dynamics and state/performance constraints.

The first domain is a double integrator system with nonlinear drag performing obstacle

avoidance. Results will separately highlight the ability of DTMPC to modify the tube

geometry based on proximity to obstacles and leverage state-dependent uncertainty (unknown

drag coefficient) to design less conservative trajectories. The second domain is a high-

performance aircraft whose latitude (roll) dynamics are subject to oscillations; a phenomenon

known as wing rock. Results will show DTMPC's ability to optimize the tube geometry

(control bandwidth) to dynamically compensate for model uncertainty while satisfying other

performance specifications.
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4.2 Collision Avoidance

4.2.1 Overview

Collision avoidance is a fundamental capability for many autonomous systems, and is an

ideal test domain for two reasons. First, enough safety margin must be allocated to prevent

collisions when model error or disturbances are present. More precisely, the optimizer must

leverage knowledge of the peak tracking error (given by the tube geometry) to prevent

collisions. The robustness of DTMPC and ability to utilize knowledge of state-dependent

uncertainty can thus be demonstrated. Second, many real-world operating environments have

variable obstacle densities so the tube geometry can be optimized in response to a changing

environment. The rest of this section presents the model, formal optimal control problem,

results, and analysis.

4.2.2 Model

This section uses a double integrator model with nonlinear drag, which describes the dynamics

of many mechanical systems. Let r = [r- ry rz]T E R3 be the inertial position of the system

that is to be tracked. The dynamics are

i = -C|f| 1i + g +u+ d, (4.1)

where fl is the L2 norm, g E R' is the gravity vector, Cd is the unknown but bounded

drag coefficient (0 < Cd Cd), and d is a bounded disturbance (Id D). From (3.17), the

control law is

= + Od -- A - Ksat (s/<t), (4.2)

where Cd is the best estimate of the drag coefficient, s = r + )f is the sliding variable, and

K =Cdr |fl - Cd Ii.*I1IK*I + wD, (4.3)

Ci) -Ce<D + Od |jf* 11 1* I + D + r/, (4.4)
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are the robust gain and boundary layer dynamics, respectively, with -I being the element-wise

absolute value.

4.2.3 Collision Avoidance DTMPC

Let H, pc, and r0 denote the shape, location, and size of an obstacle. The minimum control

effort DTMPC optimization (for a given final time) with collision avoidance for system (4.1)

is presented in Problem 6.

Problem 6 - Collision Avoidance DTMPC

u* (t),r*(t),a*(t) = argmin J = &(t)T Rf&(t) + J [l(t)TQfL(t) + &(t)TR&(t)] dt

to
subject to r(t) = -Cd |(t) f(t) + g + M(t), (t) = )

<(= -c(t)4D(t) + Cd I 1(t)f (t) + D + r7,

(t)= AcQ(t) + Be4D(t), Q(to) = |f(to)l,

(to) =r*, <D(to) = <Do, f(t) =r*

IHii (t) - pc,ill ro,i + I|Hif(t)I, i = 1, ... , No,

(t)I 5 m - |M(t)I, II(t)j Urn - iif b, f)(t) Vrm,

0 < a < d(t) :5 5, d(t) = 6Z(t) - a

a and d are the upper and lower bounds of the control bandwidth, im is the peak desired

speed, vm is the max pseudo-control input, and N, is the number of obstacles.

4.2.4 Simulation Environment

DTMPC was tested in simulation to demonstrate its ability to optimize tube geometry and

utilize knowledge of state-dependent uncertainty through an environment with obstacles.

The obstacles were placed non-uniformly to emulate a changing operating condition (i.e.,

dense/open environment). In order to emphasize both characteristics of DTMPC, three

test cases were conducted. First, the bandwidth was optimized when both the model and
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Table 4.1: DTMPC Collision Avoidance Simulation Parameters.

Param. Value Param. Value

ro [0 0 1]T M rf [0 25 11T M
o [0 1 0 ]T M/s 7f [0 1 O]TM/s

A [2 2 2 ]T rad/s Rf 213

Q 213 R 0.113
a 0.5 rad/s a 4 rad/s
UM 5 M/s 2  Vm 2 rad/s2

rn 2.5 m/s D 0.5 M/s 2

Cd 0.1 kg/m Cd 0.2 kg/m
0.1 M/s 2  No 5

obstacle locations were completely known. Second, the bandwidth was again optimized

with a known model but the obstacle locations were unknown, requiring a receding horizon

implementation. Third, state-dependent uncertainty is considered but control bandwidth is

kept constant. Nothing about the formulation prevents optimizing bandwidth and leveraging

state-dependent uncertainty simultaneously in a receding horizon fashion (as will be shown

in Section 4.3), this decoupling is only for clarity. The tracking error (3.25) is used to tighten

the obstacle and velocity constraint.

Problem 6 is non-convex due to the nonlinear dynamics and non-convex obstacle constraints

so sequential convex programming, similar to that in [98], was used to obtain a solution. The

optimization was initialized with a naive straight-line solution and solved using YALMIP

[99] and MOSEK [100] in MATLAB. If large perturbations to the initial guess are required

to find a feasible solution, then warm-starting the optimization with a better initial guess

(possibly provided by a global geometric planner) might be necessary. For the cases tested

in this work, the optimization converged within three to four iterations - fast enough for

real-time applications. The simulation parameters are summarized in Table 4.1.

4.2.5 Results and Analysis

Optimized Tube Geometry

The first test scenario for DTMPC highlights its ability to simultaneously optimize an

open-loop trajectory and tube geometry in a known environment with obstacles placed
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4

r- 0 25m

Figure 4-1: DTMPC simultaneously optimizing an open-loop trajectory (multi-color) and tube

geometry (black) around obstacles (grey). High-bandwidth control (yellow) is used when in close

proximity to obstacles while low-bandwidth control (dark blue) is used in open space.

non-uniformly. Fig. 4-1 shows the open-loop trajectory (multi-color), tube geometry (black),

and obstacles (grey) when DTMPC optimizes both the trajectory and tube geometry. The

color of the trajectory indicates the spatial variation of the control bandwidth, where low-

and high-bandwidth are mapped to darker and lighter color, respectively. It is clear that the

bandwidth changes dramatically along the trajectory, especially in the vicinity of obstacles.

The inserts in Fig. 4-1 show that high-bandwidth (compact tube geometry) is used for the

narrow gap and slalom and low-bandwidth (large tube geometry) for open space. Hence,

high-bandwidth control is used only when the system is in close proximity to constraints (i.e.,

obstacles), consequently limiting aggressive control inputs to only when they are absolutely

necessary. Thus, DTMPC can react to varying operating conditions by modifying the

trajectory and tube geometry appropriately.

DTMPC is able to dictate how aggressively the controller compensates for model er-

ror/disturbances by optimizing the control bandwidth. One measure of aggressiveness is
tf

the closed-loop control effort U := f IluII2dt (which can also be viewed as a measure of
to

power consumption) as the controller tracks the desired trajectory. 1000 simulations with a

white noise disturbance were conducted to compare the closed-loop control effort using static

high-bandwidth control and the bandwidth generated by DTMPC. Table 4.2 shows that
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tf

Table 4.2: Closed-Loop Control Effort U = f |uII2dt.
to

Uatm UDTMPC % Reduction
4.2 0.35 3.3 0.34 21.4

r= 0 r= 25m

Figure 4-2: Monte Carlo verification that the time-varying tube in DTMPC remains invariant.
The closed-loop system (blue) was simulated with a different disturbance profile uniformly sampled
from the disturbance set.

DTMPC achieves a 21.4% reduction in U, indicating the control signal is less energetic than

that of the high-bandwidth controller. This shows that optimizing the control bandwidth

within DTMPC leads to less aggressive/energetic feedback control inputs, which can have

substantial benefits for energy-constrained systems.

Since the tube geometry changes dramatically along the trajectory, it is important to

verify that the tube remains invariant to uncertainty. This was tested by conducting 1000

simulations of the closed-loop system with a disturbance profile sampled uniformly from the

disturbance set D. Fig. 4-2 shows the nominal trajectory (red), each closed-loop trial run

(blue), tube geometry (black), and obstacles (grey). The inserts show that the state stays

within the tube, even as the geometry changes, which verifies that boundary layer control

induces a RCI tube.
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Receding Horizon Optimized Tube Geometry

In many situations the operating environment is not completely known and requires a

receding horizon implementation. The second test scenario for DTMPC highlights its

ability to simultaneously optimize an open-loop trajectory and tube geometry in a unknown

environment. Fig. 4-3 shows a receding horizon implementation of DTMPC where only

a subset of obstacles are known (dark-grey) and the rest are unknown (light-grey). The

bandwidth along the trajectory is visualized with the color map where low- and high-

bandwidth are mapped to darker and lighter color. The first planned trajectory (Fig. 4-3a)

uses high-bandwidth at the narrow gap and low-bandwidth in open space. When the second

and third set of obstacles are observed, Fig. 4-3b and Fig. 4-3c respectively, DTMPC modifies

the trajectory to again use high-bandwidth when in close-proximity to newly discovered

obstacles. This further demonstrates DTMPC's ability to construct an optimized trajectory

and tube geometry in response to new obstacles.

State-Dependent Uncertainty

The third test scenario for DTMPC highlights its ability to leverage knowledge of state-

dependent uncertainty, in this case arising from an unknown drag coefficient. From (4.4),

the uncertainty scales with the square of the velocity so higher speeds increase uncertainty.

Fig. 4-4 shows the open-loop trajectory (multi-color), tube geometry (black), and obstacles

(grey) when DTMPC leverages state-dependent uncertainty. The color of the trajectory is

an indication of the instantaneous speed, where low and high speed are mapped to darker

and lighter color, respectively. It is clear that DTMPC generates a speed profile dictated

by the proximity to obstacles. For instance, using the inserts in Fig. 4-4, the speed is lower

(darker) when the trajectory goes through the narrow gap and around the other obstacles;

reducing uncertainty and tightening the tube geometry. Further, the speed is higher (lighter)

when in the open, subsequently increasing uncertainty causing the tube geometry to expand.

If the state-dependent uncertainty is just assumed to be bounded, a simplification often

made out of necessity in other tube MPC algorithms, the tube geometry is so large that, for

this obstacle field, the optimization is infeasible with the same straight-line initialization as
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(a) Planned trajectory at t =Os.

0

(b) Planned trajectory a t =6s.
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(c) Planned trajectory at t = 8s.

Figure 4-3: Receding horizon implementation of DTMPC with known (dark-grey) and unknown
(light-grey) obstacles. The bandwidth along trajectory (multi-color) varies, resulting in a dynamic
tube geometry (black). (a): First planned trajectory and tube geometry when only the first two
obstacles are known. (b): New planned trajectory when the next two obstacles are observed. (c):
New planned trajectory when the last obstacle is observed.
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Figure 4-4: DTMPC leveraging state-dependent uncertainty to robustly avoid obstacles (grey).

The speed along the trajectory, given by the color map, is low (dark) when in close proximity to

obstacles and is high (light) in open regions. This causes the tube geometry (black) to contract and

expand.

DTMPC. Hence, DTMPC is able to leverage knowledge of state-dependent

reduce conservatism and improve feasibility.

uncertainty to

4.3 Wing Rock

4.3.1 Overview

High-performance aircraft operating at high-angle of attack can exhibit wing rock, or limit

cycle oscillations in the lateral (roll) dynamics 101-1041. These oscillations severely degrade

the performance of the aircraft and can have catastrophic consequences if not compensated

for. The aerospace and controls communities have devoted significant resources to modeling

wing rock and developing robust controllers that damp out these oscillations. The highly

nonlinear dynamics and large uncertainty in the aerodynamic coefficients makes wing rock

an ideal test domain for DTMPC. The rest of this section presents the model, formal optimal

control problem, results, and analysis.
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4.3.2 Model

Let q, q E R be the roll angle and roll rate of a high-performance aircraft. The nonlinear

roll dynamics for an aircraft susceptible to wing rock are

= a1# + a2  + a1|#| + a4 j|j + u + d (4.5)

where u is the input (typically aileron deflection), d is an unknown but bounded disturbance,

and ai are empirical aerodynamic coefficients.

The dynamics given by (4.5) converge to a stable limit cycle when the input u is identically

zero. Hence, both roll and roll rate exhibit oscillatory behavior which can be difficult for a

pilot or flight computer to compensate for. An example of this motion is shown in Fig. 4-5

where the roll angle and roll rate, shown in Fig. 4-6a and Fig. 4-6b, oscillate with a fixed

amplitude (after the initial transients) and frequency. The phase plane, shown in Fig. 4-5c, is

consistent with (4.5) being a stable nonlinear oscillator. This interesting nonlinear behavior

has drawn significant attention both from the adaptive and nonlinear controls community,

making it a standard adaptive/nonlinear control benchmark domain.

The coefficients ai in (4.5) are typically uncertain so the boundary layer controller is given

by

U = - a1#5- a2 q$- 53q5 - a4 - AO - Ksat (s/>) (4.6)

where hi is the best estimate of parameter aj, s = 0 + AO is the sliding variable, and

K= &1#* + &2 * + &3 1#*1 * + &415*J* + D +r - 4, (4.7)

4 = -CeD + 51#* + &2 * + &3 #*$ * + &4I * k* + D + r7, (4.8)

are the robust gain and boundary layer dynamics, respectively.

4.3.3 Wing Rock DTMPC

In Section 4.2, tube geometry optimization (via changing control bandwidth) and leveraging

the structure of the model uncertainty were decoupled to highlight each feature. In this
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Figure 4-5: Natural oscillations of the latitude dynamics of a high-performance aircraft susceptible

to wing rock. (a): Roll angle converges to oscillation of fixed amplitude and frequency. (b): Roll rate

converges to fixed amplitude and frequency. (c): Phase plane of the roll angle and rate consistent

with stable limit cycle.

section, DTMPC is used to optimize the control bandwidth in order to reduce the affect of

model uncertainty and achieve specific performance criteria. In particular, suppose a high-

performance vehicle wants to execute the trajectory shown in Fig. 4-6, which was generated

without considering model uncertainty. Further suppose that the tracking error must be kept

below a certain threshold but persistent high-bandwidth control is not desirable. DTMPC

can be used to construct an optimal control bandwidth profile that satisfies the tracking

error requirements by using high-bandwidth control to compensate model uncertainty only

when necessary (i.e., near constraints). The wing rock DTMPC optimization is presented in

Problem 7.
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Figure 4-6: Desired trajectory for a high-performance aircraft susceptible to wing rock. (a): Roll
angle. (b): Roll rate. Both roll angle and roll rate were generated without considering model
uncertainty.

Problem 7 - Wing Rock DTMPC

a* = argmin
i)(t),d(t)

subject to

where

tf

J = &(t)2dt

0

<>(t) = -a(t)<D(t) + F (#* (t) 4*(t)) + D + r;,

M~t =; M~) O(t) = -Q (t) + q<D(t),

4 (0) =DO, d (0) =ao, Q(0) =5(0)j,

F(d* v( t)| 1V, 0 < a < (t) a)

F (#*(t),S* (t) )= a1#*(t) + &2*(O + i|#*(t)|&*(t) + d4|*(t)|4*(t),

&(t) = &(t) - a,

is the element-wise absolute value, a and a are the upper and lower bounds of the control

bandwidth, qm is the maximum allowable tracking error, and vm is the max pseudo-input.
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Table 4.3: Wing Rock Aerodynamic Coefficients.

a1 (s-2) a2 (s-1) a3 (s-1) a4 ()
-32.7 2.5 1.43 0.5 -5.48 t 1.2 0.1 0.02

Table 4.4: DTMPC Wing Rock Simulation Parameters.

Param. Value Param. Value
a 4 rad/s 5 10 rad/s

qm 10 deg Vm 5 rad/s2

A 2 rad/s D 57 deg/s 2

D(to) 15 deg/s a(to) 4 rad/s
Q(0) 0 deg r 5.7 deg/s 2

4.3.4 Simulation Environment

Simulations were conducted in MATLAB using YALMIP [991 and MOSEK [100]. The

coefficients ai are taken from [103] and summarized in Table 4.3. Other simulation parameters

can be found in Table 4.4. Even with the desired trajectory known beforehand, Problem 7

is nonconvex due to the product of a and <D in the boundary layer dynamics. Sequential

convex programming was again used to formulate Problem 7 as a convex optimization by

linearizing the nonlinear dynamics about an initial guess. Re-linearizing and solving the

convex optimization was repeated until convergence, which occurred only after three or four

iterations.

4.3.5 Results and Analysis

The unique ability of DTMPC to both optimize the tube geometry (via control bandwidth)

and capture state-dependent uncertainty means that the boundary layer controller can be

designed to explicitly mitigate model uncertainty while satisfying other performance criteria.

Specifically, high-bandwidth control can be utilized when the model uncertainty is large for a

particular state, and vice versa. Fig. 4-7 shows the trajectory (multi-color) and corresponding

tube geometry (black). The color map describes the temporal evolution of the control

bandwidth along the trajectory; low/high bandwidth corresponds to darker/lighter color.
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Figure 4-7: Desired roll angle (multi-color) and control bandwidth (color map) generated by
DTMPC to compensate for model uncertainty. High-bandwidth control (lighter color) is used for

large roll angles while low bandwidth (darker color) is used for small roll angles, indicating the model
uncertainty is dominated by the roll angle. The unique feature of DTMPC is the ability compensate
for model uncertainty by changing the control bandwidth; which is only possible since the structure
of the uncertainty is directly considered in DTMPC. The tube geometry (black) is also shown.

High-bandwidth (lighter color) is used for large roll angles while low-bandwidth is used for

small roll angles. This indicates the model uncertainty is largest for large roll angles, which

is compensated for by high-bandwidth control.

To gain additional insight, the maximum max (orange), minimum <P. (red), and

optimal topt (blue) boundary layer thickness is shown in Fig. 4-8a. Note that (ma and Dmin

correspond to a = a and a = a, respectively. Both .a and (Dmin are indeed largest for

large roll angles, confirming that the roll angle term in (4.5) dominates the model uncertainty.

The optimal boundary layer thickness 4opt is able to lie between 4ma and 4min since the

bandwidth of the controller changes along the trajectory. In addition, Fig. 4-8b shows the

maximum INmal (orange), minimum I minI (red), and optimal 10.ptI (blue) tracking error

bound. Both I miI and I pgtI satisfy the max tracking error constraint (black) but I opt uses

less control bandwidth on average (as indicated by darker colors in Fig. 4-7). Hence, DTMPC

is able to balance the two competing objectives of low tracking error and minimal bandwidth

by leveraging the structure of the model uncertainty within the optimization. This again

demonstrates the usefulness of capturing state-dependent uncertainty and optimizing the

tube geometry (via control bandwidth), both of which are unique to DTMPC.
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Figure 4-8: Boundary layer thickness and tracking error bound for different values of bandwidth a.

(a): Maximum (orange), minimum (red), and optimal (blue) boundary layer thickness generated by

DTMPC. The optimal boundary layer is able to lie in-between the max and min since the bandwidth

can change along the trajectory. (b): Maximum (orange), minimum (red), and optimal (blue)

tracking error bound generated by DTMPC. The optimal tracking error bound is able to satisfy the

maximum allowable threshold (black) without excessive bandwidth by leverage the structure of the

model uncertainty.

4.4 Summary

This chapter presented simulation results and analysis of DTMPC's performance in two

domains: 1) a double integrator system with nonlinear drag performing collision avoidance;
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and 2) the nonlinear latitude dynamics of a high-performance aircraft. The collision avoidance

results separately demonstrated that DTMPC can optimize the tube geometry (via control

bandwidth) to satisfy changing constraints and leverage state-dependent uncertainty to

construct less conservative trajectories. Results of the nonlinear latitude dynamics of an

aircraft susceptible to wing rock showed that DTMPC is able to optimize the control

bandwidth to directly compensate for model uncertainty while satisfying other performance

specifications (e.g., maximum allowable tracking error). All results are a direct consequence of

the unique features of DTMPC and are not obtainable with current state-of-the-art nonlinear

tube MPC frameworks.
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Chapter 5

Adaptive Dynamic Tube MPC

5.1 Overview

This chapter presents the Adaptive Dynamic Tube MPC (ADTMPC) framework for nonlinear

systems. The key feature of ADTMPC is the ability to reduce model uncertainty while

maintaining recursive feasibility. The structure of this chapter is as follows. The problem

formulation and necessary assumptions are first presented. Set membership identification

(SMID), used to reduce model uncertainty in ADTMPC, is then derived and discussed

in detail. The main technical result of the chapter, proving that the model uncertainty

monotonically decreases even with disturbances/sensor noise, is then presented. Finally, the

ADTMPC framework is formally defined and discussed.

5.2 Problem Formulation

Consider again the following nonlinear, time-invariant, and control-affine system

= f(x)+b(x)u+d (5.1)

y = h(x)

where x E R' is the state vector, u G R' the control input, d E R' an unknown external

disturbance, and y G R' are the elements of x to be controlled. As was shown in Chapter 2
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and Chapter 3, by differentiating the output yj until the input appears, (5.1) can be expressed

as
m

y i)= Li hi(x) + ZL, L hi(x)uj + di, (5.2)
j=0

or in vector form

y(r) = F(x) + B(x)u + d, (5.3)

where F(x) and B(x) are appropriately defined. Assumption 2 and Assumption 3 in Chapter 3

established bounds on the model uncertainty (i.e., IF(x)l 5 AF(x) and lb(x)| 5 AB(X))- In

this chapter, the following stricter assumptions are made about the structure of the model

uncertainty.

Assumption 7. The dynamics F can be expressed as a linear function of parameter vector

O E RP, which consists of nominal value 0 and error term 6. Specifically, the dynamics F

takes the form F = pF(X)T (0 + 6) where SOF(x) E RPx is called the dynamics regressor.

Assumption 8. The input matrix B can be expressed as a linear function of parameter

vector p E Rqxm which consists of nominal value ^ and error term fi. Specifically, the input

matrix B takes the form B = PB(X)T (/ + /) where pB(x) E Rqxm is called the input matrix

regressor.

Assumption 7 and Assumption 8 restrict the class of uncertainties to ones that are linear in

the unknown parameters but (possibly) nonlinear regressors. These are standard assumptions

within the adaptive control/MPC community and one that many physical systems satisfy.

So far throughout this thesis, the premise for reducing model uncertainty has been primarily

anecdotal: reducing model uncertainty reduces conservativeness and performance improves

as a result. We are now at the point where this insight can be established mathematically.

Using Assumption 7 and Assumption 8, the boundary layer controller from Chapter 3, again

ignoring input matrix uncertainty for clarity, becomes

u = (SB(x)T/3>l [-sOF(X)T _ yr) - K(x)sat (s/<)] , (5.4)

where

K(x) = | F (X)Tj + D +77 - (I>, (5.5)
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and

= -a4 + IF(X*)T + D + p. (5.6)

The goal of updating the prediction model is to obtain a more accurate estimate of the

parameter vector 6 (i.e., 6 -÷ 0). Let Ku and 4% denote the robust gain and boundary layer

thickness with the updated parameter vector. In the limit as 6 - 0 then

Ku(x) = D + - (u, (5.7)

and

( U = -cDu + D +,o. (5.8)

It is clear that Ku K and 4D K D. Thus, by reducing model uncertainty, less control

effort and smaller boundary layer thickness (and hence tracking error from Theorem 1) are

achieved. The remainder of this chapter will develop the methodology of obtaining 6 and how

it can be integrated into DTMPC without losing stability and recursive feasibility guarantees.

5.3 Set Membership Identification

Techniques to update model parameters can be broadly classified as being adaptive- or

estimation-based. Adaptive control entails updating model parameters based on instantaneous

tracking error with an adaptation law derived using Lyapunov stability arguments. More

traditional estimation, such as recursive least squares, Kalman filtering, smoothing, rely

on prediction error in the input-output data to update model parameters. While the

implementation of these approaches can be quite different, they both obtain a point estimate

of the true parameter value. In doing so, however, the parameter error may not monotonically

decrease since state observations are corrupted by noise and/or external disturbances. As a

result, nothing can be inferred about the current/future parameter error from the current

parameter value. The inability to predict the evolution of the parameter error rules out these

techniques as possible means for updating the prediction model within DTMPC.

Set membership identification (SMID) takes a different approach: it eliminates parameter
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values that are not consistent with the dynamics, disturbance model, and observations. By

eliminating values that are not physically realizable, an estimate of the true value can be

obtained. Furthermore, and arguably more importantly, the parameter error can be shown

to decrease monotonically; the defining feature that enables combining SMID and DTMPC

while maintaining recursive feasibility.

In addition to Assumption 4 (disturbance bound), Assumption 7, and Assumption 8,

SMID requires the following assumptions.

Assumption 9. The true parameter vectors 0* and p* belongs to a known closed, convex

set 8 (i.e., 0*, p* E 0).

Assumption 9 is not restrictive in practice as many robust control design techniques

(including boundary layer control) require the model error bound to be known.

Assumption 10. The control law u must be a certainty equivalence controller. Specifically,

u must stabilize the system V 9, p E 0.

Assumption 10 can, in general, be hard to satisfy even for linear systems. However, as

was proved in Chapter 3, boundary layer control not only stabilizes (5.1) (under assumptions

about stable zeros) but generates a robust control invariant tube for both bounded model

error and bounded disturbances.

The idea behind SMID is simple: since the dynamics given by (5.3) can be rewritten as

d = y(r) - F(X)TO - CB(X)TpU, (5.9)

and since d E D, a new set E can be constructed that contains 9 and p. Let tk denote a

particular sample time that a state measurement is acquired. Then, the set takes the form

- = ERP, pE E Rm: y(r)(tk) - (PF(X(tk)) 9 - (PB(X(tk))TpU(tk) E D} . (5.10)

Fundamentally, the set given by (5.10) is constructed by finding 9 and p such that the

dynamics in (5.3) belongs to the disturbance set D. Since D = {d : Idl D} via Assumption 4,
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then (5.10) can be rewritten as

0= {oE RP, p E RGq" : y (t) - WF(X(tk)) T 6 - WB(X(tk)) T pU(tk)j D} (5.11)

which can easily be constructed by solving a linear program for the upper and lower bound

on each element of 6 and p. The uncertainty set E at solve iteration j is found by performing

the set following intersection

6= n Oi-I. (5.12)

This allows the establishment of the following lemma.

Lemma 1. Using the set membership identification procedure from (5.11) and (5.12), the

parameter set monotonically decreases since

E' C &5-1, Vj > 0 (5.13)

Proof. Follows from (5.12). Let 6 c j ==> 0 E E n Oi-1. For this implication to hold,

6 E Oj '. Hence 09 C Oi-1.

Before presenting the general algorithm, consider the following simple example of SMID.

Example 2. Let y = ay + u + d where all variables are scalars, Idl D, and a is an unknown

parameter that belongs to the known set 6 = {a : a < a < a}. A new parameter set O3 can

then be constructed by first solving two linear programs to obtain new bounds on a

s, = argmin (-a)
a (5.14)

s.t. 1y(tk) - ay(tk) - u(tk) I D, Vk

and

s2= argmin a
a

s.t. 1P(tk) - ay(tk) - U(tk) I< D, Vk.
(5.15)
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Since maximizing/minimizing with respect to a is only guaranteed to produce an extrema,

the max and min of each solution s and s2 must be taken

S=max (s1 , s 2 ), q = min (si, s 2). (5.16)

The new set E is given by

= {a: a < a < 5}. (5.17)

Finally, the new parameter set 6 is found be taking the intersection of - and W3- 1,

i = max ( a) , c = min (ai-, a) , (5.18)

where 8 = {a : a3 < a < d}. This procedure is then continued until 8 = {a} (i.e., 5, -+ a

for some j) or some pre-defined convergence threshold is reached. E

The procedure presented in Example 2 can be generalized to systems with N unknown

parameters, as summarized in Algorithm 1.

5.4 Discussion

Before proceeding to the main result of this chapter, it is instructive to discuss the compu-

tational complexity and robustness of SMID. From Algorithm 1, two linear programs must

be solved at each time step for every element in the model uncertainty set E. The number

of uncertain parameters typically will not govern the complexity of Algorithm 1. Rather,

the complexity will be dictated by the number of constraints within the linear program, a

consequence of many systems having access to high-rate sensor information. Instead of letting

the number of constraints grow indefinitely, redundant constraints can be checked for and

eliminated by solving another linear program [105]; reducing computational complexity for

computationally-constrained systems. Nevertheless, the computational complexity of SMID

is low compared to other techniques since linear programming is considered one of the easiest

optimization problems to solve with many efficient solvers readily available.

Unlike other adaptation/estimation techniques, SMID explicitly accounts for the distur-
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Algorithm 1 Set Membership Identification

1: procedure SMID(y(r)(tk), (F(X(tk)), u(tk), 1 , D)
(r ~ i(r)(2: yhist.append(y (tk))

3: (Phist.append((PF(X(tk)))

4: uhist.append(u(tk))

5: L +- y (rengh(

6: si =argmin (-Oi)
0

s.t. y N(k) - sPhist(k)To - Uhist(k) D, k = 0: L

7: s2 =argmin Oi
0

s.t. y((k) - (Phist(k)T 9 - Uhist(k) < D, k = 0: L

8: sol+ = max(si, s 2 )

9: sol- = min(si, s2)

10: i = max(sol+ , 6 )

11: Oj = min(sol- , Vi-)

12: Return 9', i

bance when constructing a new parameter uncertainty set. This characteristic, in conjunction

with the set intersection operation, is what guarantees the monotonic decrease of the parame-

ter error. However, instead of requiring parameter excitation to guarantee convergence, as in

adaptive/estimation techniques, the disturbance must now be exciting to achieve convergence

(i.e., Idl = D for some time interval [t, t + T]). Hence, the disturbance bound must be tight

in order for SMID to obtain the true parameter values. While parameter convergence is of

course ideal, even a mild reduction in model uncertainty can drastically improve performance

(as will be shown in Chapter 6).

The observant reader will notice that the SMID formulation presented above requires

the rate of the state vector. This is not always easily obtainable for real systems that have

measurement noise. However, since SMID can be performed outside of the control loop,

non-causal filtering techniques, such as smoothing, can be applied to significantly reduce

noise. Causal filters can also be used so long as the filter is applied to each term in (5.11), not

just the rate vector. The measurement confidence value can then be added to the disturbance
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bound to ensure correct parameter convergence. More precisely, if the noise/confidence level

of the filtered version of the states is denoted as X, then (5.11) can be re-written as

= {o E RP, p E I": r)(tk) - OF(X(tk))T O - (pB(X(tk)) pu(tk)I - D +A}, (5.19)

where ^ denotes the filtered value. Note that the filtered version of the regression vector must

be used, as opposed to the filtered state, to ensure the filtering process does not effect the

inequality in (5.19). As stated above, the tighter the disturbance and noise/confidence bound

the better SMID will perform. The effect of noise on SMID will be explored in Chapter 6.

5.5 Main Result

The main technical result of this chapter is given by the following theorem.

Theorem 3 (SMID Recursive Feasibility). First assume that an optimal solution x*

exists to the DTMPC optimization given by Problem 5 at t = 0 but with the modified boundary

layer dynamics

= -04 + cF(X*)TO0 + D + r, (5.20)

where

It= sup '- inf 01 (5.21)

is the parameter bound given by the parameter set ei of the jth iteration of SMID for

parameter 0%. Then DTMPC remains is feasible for t > 0 and for each SMID iteration j > 0.

Proof. Recall from Chapter 3, Theorem 1 established that the boundary layer controller

induces a robust invariant tube so 1z| < Q with

n2 = AcQ + Bc4D (5.22)

and Ac, B, are the state and input matrix in controllable canonical form. Let <Di and Qj be
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the boundary layer thickness and tube geometry for the parameter set 6j. From Lemma 1,

E'i C O- =-=> I I j - 1, (5.23)

and since V1(O) = V-1(0), then 1j(t) 4i-1(t) Vt > 0 from (5.20). Using an identical

argument for Qj and Qjl-, we can conclude that

Iz| I Q' < QJ-, (5.24)

and hence the error bound 1z| decreases as the SMID iteration number j increases. Since an

optimal solution existed with the larger error bound, a solution is guaranteed to exist with

the small error bound. Hence, DTMPC with SMID is recursively feasible. El

Theorem 3 proves that combining SMID with DTMPC (or any other recursively feasible

MPC algorithm) does not impact recursive feasibility. This is a direct result of the uncertainty

set monotonically decreasing as the iteration number of SMID increases. This is a very

important result since monotonicity, and hence recursive feasibility, cannot be achieved when

other adaptive/estimation techniques are used. While these other methods will reduce the

instantaneous tracking/prediction error, very little can be guaranteed in terms of convergence

when disturbances/noise are present. Specifically, the parameter uncertainty set could grow at

any point along the prediction horizon, likely leading to constraint violation. The monotonicity

of SMID is able to ensure DTMPC remains feasible while improving performance as the

uncertainty is reduced.

5.6 Adaptive Dynamic Tube MPC

The formal combination of SMID and DTMPC, known as Adaptive Dynamics Tube MPC

(ADTMPC), is given by Problem 8 for a known input matrix.
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Problem 8 - Adaptive Dynamic Tube MPC

u*(t), x*(t), a*(t) = argmin J = hf ( (tf)) + d(t), f(t))dt
ft(t), (f), (t),Id(t) to

subject to (t) = pFB(t))T + . t))Tp(t) (t)

(t) = -(t0)(t) + OF( (t)) TJ + D+ ,

n(t) = AcQ(t) + Bc((t), Q(to) = |z(to)|,

z(to) = X*, 7 Z(to) = a* (to) = )o

(t) E X, f(t) E U, d(t) C A, f0(t) c V,

(tf) E Xf , d(tf) E Af ,

where 9' 6' = SMID((t), F((tf)), (tk), - 1 , i- 1, D),

03- 1O j 3 O

Again note that SMID does not have to be run at the same rate as the optimization or the

ancillary controller. It can be done in parallel at its own rate; the model in the optimization

and controller are then updated when a new parameter set becomes available. As was proved

in Theorem 3, Problem 8 is recursively feasible.

5.7 Summary

This chapter presented the Adaptive Dynamic Tube MPC (ADTMPC) algorithm that

addresses a key limitation of existing nonlinear tube MPC algorithms: the inability to

update the prediction model while still maintaining recursive feasibility. It was shown

that set membership identification (SMID) guarantees the uncertainty in model parameters

monotonically decreases even when disturbances/measurement noise are present (assuming a

bound is known). Guaranteed monotonicity is unobtainable with other adaptive/estimation

schemes which prevents establishing recursive feasibility. By combining DTMPC and SMID,

ADMPT can: 1) simultaneously optimize a trajectory and tube geometry; 2) leverage state-
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dependent uncertainty to construct less conservative trajectories; and 3) further reduce

conservativeness by using SMID to update model parameters. All three features are unique

to ADTMPC and are not obtainable by current nonlinear tube MPC algorithms.
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Chapter 6

Adaptive Dynamic Tube MPC:

Applications and Analysis

6.1 Overview

This chapter presents simulation results that show how Adaptive Dynamic Tube MPC

(ADTMPC) can improve upon the performance of DTMPC by robustly reducing model

parameter uncertainty online. ADTMPC is applied to two domains, both with nonlinear

dynamics and state/performance constraints. The first domain is a double integrator system

with nonlinear drag performing obstacle avoidance. Results will show that ADTMPC is

able to achieve a higher speed around obstacles, a direct consequence of obtaining accurate

parameter estimates even when disturbances/sensor noise are present. The second domain

is a high-performance aircraft whose lateral dynamics are susceptible to oscillations; a

phenomenon known as wing rock. Results will show that ADTMPC obtains significant

performance enhancement, as measured by lower bandwidth control, by obtaining accurate

estimates of multiple aerodynamic parameters.
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6.2 Collision Avoidance

6.2.1 Model

As in Section 4.2, a double integrator model with nonlinear drag is used to represent a

mechanical system performing collision avoidance. The dynamics, controller, robust gain,

and boundary layer dynamics were presented in Section 4.2 but are presented again for

completeness. With r = [r_ ry rz]T E R3 denoting the inertial position of the system, the

dynamics are

S=-Cd + g + u + d, (4.1)

where g E R3 is the gravity vector, CO E E = {Cd E R : Cd Cd O is an unknown drag

coefficient, and d is a disturbance such that Idl D. The control law is

U =f + O Cd | A - Ksat (8/<1)), (4.2)

where Od :(Cd + Qd) is the best estimate of the drag coefficient, s = r" + Af is the sliding

variable, and

K = Od [IP11i H - I1 *Ii|fI] + a<D, (4.3)

<i> = -a<D + Od |f*J *J + D + r/,(4.4)

are the robust gain and boundary layer dynamics with Cd := Od - Cd being the parameter

error, respectively.

6.2.2 Set Membership Identification

The goal of set membership identification (SMID) is to reduce parametric uncertainty by

eliminating parameter values that are not consistent with the state observations. For the

model in (4.1), this corresponds to eliminating uncertainty in the drag coefficient Cd. As

discussed in Chapter 5, the primary benefit of eliminating model uncertainty is to reduce

conservativeness in the trajectory optimization. For this system, speed around obstacles is a
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Algorithm 2 Drag Coefficient Set Membership Identification

1: procedure DRAG SMID(ijtk), x(tk), ux(tk), Jd-l, O~j-1, D, A)

2: rhist.append(r(tk))

3: r2,hist.append(rx(tk))

4: ux,hist.append(uX(tk))

5: L - Xhist.length()

6: si =argmin (-Cd)
Cd

s.t. Irx,hist(k) - Cd hist(k)i'x,hist (k) - ux,hist(k) < D + , k = 0 L

s 2 =argmin Cd
7: Cd

s.t. |Tx,hist(k) - Cd IIist(k) Ix,hist (k) - ux,hist(k)| < D + A, k = 0 L
8: sol+ = max(si, s 2 )

9: sol~ = min(si, S2)

10: CO = max(sol+,7 O1)

11: Cd = min(sol-,I Cdj-l)

12: Return C , q

direct indicator for conservativeness. Since Cd E R, then any acceleration component can be

used in SMID. Algorithm 2 summarizes the SMID algorithm using the ix acceleration.

6.2.3 Collision Avoidance ADTMPC

Again let H, pc, and r, denote the shape, location, and size of an obstacle. The minimum

time and control effort ADTMPC optimization with collision avoidance for system (4.1) is

presented in Problem 9.
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Problem 9 - Collision Avoidance ADTMPC

tf

u*(t), r*(t) =argmin J = J (t)T QiL(t)dt
fl(t),f (t),tf Ito

subject to M(t) = -OC lli(t) r(t) + g + i2(t),

<i()=-a<D(t) + 0% |lr(t) 11 lr(t) I+ D + rq,

Q(t) = AcQ(t) + Be((t), Q(to) = |:(tO)

f (to) = r*, D(to) = o, i(t) =r*

11H~i(t) - pc,il 1 roi + 11Hi (t)11, i = 1, - , No,

r (t)I rm - |i(t)|, II(t)II Um - ifb

where C , CO = DRAG_ SMID((t), ix(t), u(t), C-, -1 , DA),

is the L 2 norm, is the element-wise absolute value, m is the peak desired speed, and

No is the number of obstacles.

6.2.4 Simulation Environment

ADTMPC was tested in simulation to demonstrate its ability to construct less conservative

trajectories as the prediction model is update with SMID. As in Chapter 4, obstacles were

placed non-uniformly so the speed along the trajectory had to be modulated based on the

level of parametric uncertainty. Tests were conducted with both perfect and noisy acceleration

information provided to Algorithm 2. The acceleration and regression vector measurements

were not filtered to test SMID's performance with real-time noisy data; noise was sampled

from a uniform distribution with bound Af. Since the obstacle locations were known a

priori, a new trajectory was generated only when SMID produced an updated estimate of

the parameter bounds. The resulting trajectories were tracked by the controller given by

(4.2) that had to compensate for both the model error and a sinusoidal disturbance, shown in

Fig. 6-1. Sequential convex programming was again employed where the optimization was
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Table 6.1: ADTMPC Collision Avoidance Simulation Parameters.

Param. Value Param. Value

ro [0 0 1]T m rf [0 25 11T m
o [0 1 0 JT M/s f [0 1 OTM/s

A [2 2 2 1 T rad/s g [0 0 -9.8TM/s 2

UM 5 m/s 2  rM 2 m/s
a 2 rad/s D 0.5 M/s 2

Cd 0 kg/m d 0.5 kg/m
0.15 kg/m 0.1

No 5 rad/s 2  Q 213
K 0, 0.25, 0.5, 1, 2.5 m/s 2  _

initialized with a naive straight-line solution and solved using YALMIP [99] and MOSEK

[100] in MATLAB. In order to minimize the final time, the optimization was solved for a

relaxed final time tf which was then iteratively reduced until a solution no longer existed.

The simulation parameters are summarized in Table 6.1.
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6.2.5 Results and Analysis

ADTMPC No Noise

The goal of ADTMPC is to reduce model uncertainty through SMID and produce less

conservative trajectories. Fig. 6-2a shows the initial planned trajectory with the original

drag coefficient uncertainty bounds. The speed along the trajectory can be visualized by

the color map, where darker/lighter color corresponds slower/faster speed. Since the model

uncertainty scales with speed (as seen in (4.4)), the speed along the trajectory is lower in the

vicinity of obstacles. As the system progresses along the desired trajectory, ADTMPC begins

to obtain state measurements that are used to update the parameter bounds. Fig. 6-2b shows

a new planned trajectory when a better estimate of the parameter bounds is available, which

is less conservative around the second set of obstacles as seen by the faster speed. Fig. 6-2c

shows the resulting trajectory with the final parameter bounds from SMID. Since the model

uncertainty is essentially eliminated, the optimizer is free to generate a trajectory at the

maximum allowable speed, as desired.

The trajectories shown in Fig. 6-2 clearly demonstrate the benefits of reducing model

uncertainty and the effectiveness of ADTMPC. Fig. 6-3 shows the evolution of the parameter

bounds as the system progresses along the trajectories generated by ADTMPC (with no noise

in the acceleration measurement). The upper (blue) and lower (red) bounds converge to

the true value (black) at approximately t = 5s, which corresponds to the disturbance profile

reaching its lower bound (from Fig. 6-1). Hence, parameter convergence is contingent on the

excitation of the disturbance. While convergence is of course ideal, Fig. 6-3 does show that

the parameter bounds can be significantly reduced even before the disturbance reaches its

bounds. The ability to still converge to the true parameter value even when an unknown

disturbance is present is a remarkable characteristic that other adaptive control or estimation

schemes do not possess; further substantiating the use of SMID within ADTMPC.

ADTMPC With Noise

It is critical to test the performance of any adaptation/estimation scheme with noise-corrupted

measurements to ensure adequate performance can still be achieved and stability maintained.
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Figure 6-2: Receding horizon implementation of ADTMPC with no measurement noise. Obsta-

cles (dark-grey) are known and the speed along the trajectory is given by the color map where

darker/lighter corresponds to low/high speed. (a): First planned trajectory has low/high speed

when the trajectory is closer/farther from obstacles. (b): Second planned trajectory is less conserva-

tive (higher speed) with SMID updating model uncertainty bounds. (c): Final trajectory utilizes

maximum allowable speed indicating SMID eliminated all model uncertainty.

Uniformly sampled noise with bound A was added to the acceleration measurement to test the

performance and robustness of ADTMPC. Fig. 6-4a shows the true (blue) and corrupted (red)
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Figure 6-3: Drag coefficient estimate with set membership identification. The upper (red) and

lower (blue) bound both converge to the true value (black). Convergence occurs after the disturbance

excites its upper and lower bound.

acceleration measurements used by ADTMPC as the system tracks the initial trajectory in

Fig. 6-2a for K = D/ 2 . Fig. 6-4 shows the upper (blue) and lower (red) parameter bounds and

the true (black) parameter value if the initial trajectory is tracked for its entirety. Although

the bounds do not converge to the true parameter value, they are reduced considerably: the

estimated value is within 3.63% of the true value with an uncertainty of 0.01 kg/m (a

96% reduction). Fig. 6-5, Fig. 6-6, and Fig. 6-7 show the acceleration measurements and

parameter bounds for noise levels1 of K = D, 2D, 5D, respectively. It is clear that as

the noise level increases the parameter bounds loosen, indicating more uncertainty in the

parameter estimate; an effect likely caused by the disturbance signal being dominated by the

noise in the acceleration measurements. Nonetheless, the percent reduction in the uncertainty

is still substantial: 82.4% reduction for K = 5D, the highest noise level tested. Further, the

error in the parameter estimate is still at most 3.63%. Table 6.2 summarizes the estimated

parameter value, estimation error, uncertainty level, and percent uncertainty reduction for

'The same random seed was used for each K tested.
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Figure 6-4: Acceleration and drag coefficient estimate for K = D/ 2. (a): True (blue) and noise-

corrupted (red) acceleration. (b): The drag coefficient upper (blue) and lower (red) bounds still

nearly converge to the true value (black) with a 96.0% reduction in uncertainty.
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Figure 6-5: Acceleration and drag coefficient estimate for K = D. (a): True (blue) and noise-

corrupted (red) acceleration. (b): The drag coefficient upper (blue) and lower (red) bounds are not

as tight as the low-noise cases but still see a significant 94.4% reduction in uncertainty.

each noise level. These results again demonstrate the ability of ADTMPC (via SMID) to

obtain accurate parameter estimates even when noise/disturbances are present.

Fig. 6-8 shows the trajectories generated by ADTMPC at different time instances as the

model uncertainty bounds are updated with noisy acceleration measurements with K = D.

The initial trajectory, shown in Fig. 6-8a is of course unchanged: slower speeds around

obstacles to reduce model uncertainty. Fig. 6-8b shows the resulting trajectory with the new

uncertainty bounds at t = 2s. While there are still instances where the speed is low, the
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Figure 6-6: Acceleration and drag coefficient estimate for K = 2D. (a): True (blue) and noise-

corrupted (red) acceleration with. (b): The drag coefficient upper (blue) and lower (red) bounds are

not as tight as the low-noise cases but still see a significant 91.2% reduction in uncertainty.
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Figure 6-7: Acceleration and drag coefficient estimate for K = 5D. (a): True (blue) and noise-

corrupted (red) acceleration. (b): The drag coefficient upper (blue) and lower (red) bounds are not

as tight as the low-noise cases but still see a significant 82.4% reduction in uncertainty.

Table 6.2: Estimated Drag Coefficient and Uncertainty Level for Different Noise Levels.

.A (m/s 2 ) Cd (kg/m) % Error Unc. Level % Reduc.
(kg/m)

0 0.15 0.0 +0 100
D/2 0.1445 3.63 +0.01 96.0
D 0.1445 3.63 +0.014 94.4
2D 0.1447 3.51 +0.022 91.2
5D 0.1454 3.1 +0.044 82.4
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reduced uncertainty bounds allow the optimizer to generate a faster speed around the second

set of obstacles, indicated by the lighter color. Fig. 6-8c shows that the model uncertainty

bounds at t = 6s are reduced enough to result in a speed near the maximum allowable for

the remainder of the trajectory. Hence, significantly improved performance, as measured by

speed when in close proximity to obstacles, is achieved, even though the parameter bounds

do not converge to the true parameter value.

6.3 Wing Rock

6.3.1 Model

The nonlinear latitude dynamics of a high-performance aircraft that exhibit high-frequency

oscillations, a phenomenon known as wing rock, were presented in Section 4.3. For complete-

ness, the dynamics, controller, robust gain, and boundary layer dynamics are presented again

here. With # and denoting the roll angle and roll rate, the dynamics are

q = a1# + a25+ a3 |#0+ a4 $|$1+ u + d, (4.5)

where d an unknown but bounded (i.e., Idl I D) disturbance and ai E e = {ai : ai a}

for i = 1, ... , 4 are unknown aerodynamic coefficients. The boundary layer controller is given

by

U=b -a610 - L2 5 - d3I| - /4o - AO - Ksat (s<D) (4.6)

where di := j (aj + ai) is the best estimate of parameter ai, s = 0 + AO is the sliding variable,

and

K = &1#* + a 2 * + 53 1*1 * + 54H *4* + D +-, (4.7)

b = -a<D + * + + D +q, (4.8)

are the robust gain and boundary layer dynamics with a-: ai - -a being the parameter

error.
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(c) Planned trajectory at t = 6s.

Figure 6-8: Receding horizon implementation of ADTMPC with acceleration measurement noise.

Obstacles (dark-grey) are known and the speed along the trajectory is given by the color map where

darker/lighter corresponds to low/high speed. (a): First planned trajectory has low/high speed when

the trajectory is closer/farther from obstacles. (b): Second planned trajectory is less conservative

(higher speed) with SMID updating model uncertainty bounds. (c): Final trajectory where the

maximum allowable speed it utilized almost for its entirety, indicating some model uncertainty

remains but is far less than in the original trajectory design.
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Algorithm 3 Wing Rock Coefficient Set Membership Identification

1: procedure WRSMID(#(tk), (tk), N(tk), u(tk), ai-1 , ji-, D, K)
2: #hist.append(# (tk))

3: hist.append( (tk))

4: hist -append ( (tk))

5: uhist.append(u(tk))

6: L +- #hiht.length()
7: si =argmin (-aj)

a
4

s.t. Oist(k) - aepe(#hist(k), qhist (k)) - uhist(k) D + K, k = 0: L
f=1

8: s2 =argmin ai
a

4

s.t. /hist (k) - a(pe(c/hist (k), hist(k)) - uhist (k) < D + K, k = 0 L
e=1

9: sol+ = max(si, S2)

10: sol- = min(si, S2)

11: 5 = max(sol+, - 1)

12: a= min(so-, a-)

13: Return a, &

6.3.2 Set Membership Identification

The wing rock phenomenon has received considerable attention from the adaptive and

nonlinear control communities because of the high degree of uncertainty in the aerody-

namic coefficients and the nonlinearities in the dynamics. While numerous adaptive control

techniques have been applied to (4.5) [103, 104, 106], few have successfully identified the

parameters when unmodeled disturbances are present. Further, these adaptive techniques

are unable to guarantee monotonicity in the parameter error. ADTMPC via SMID, on the

other hand, as shown in the previous section, can successfully identify parameters even when

disturbances are present. Further, wing rock is a good domain to apply ADTMPC because

of the number of unknown parameters and the nonlinearities in the dynamics. Algorithm 3

summarizes the SMID algorithm used to identify the wing rock aerodynamic coefficients.
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6.3.3 Wing Rock ADTMPC

The minimum control bandwidth and tracking error threshold Adaptive Dynamic Tube MPC

formulation for the wing rock domain is given by Problem 10.

Problem 10 - Wing Rock ADTMPC

tf

a*(t)= argmin J =J&(t)2dt
'O(t),d(t)

to

subject to >(t) = -d(t)(t) + F(#*(t), q*(t)) + D + r,

(t) = i(t), Q(t) = -AQ(t) + 4(t),

qP(to) = Go, (to) = aO, Q(to) = q5(to)1,

where F (*(t), 4*(t)) = '4*(t) + djq*(t) + 4l#*(t)Iq*(t) + il *(t)k5*(t)

&(t) = d(t) - a,

and a, d -WR_ SMID (#N), ONi), #6j) U(t1), 1 i -'I DAf ,

di = dz - az, i = 1, , 4

6.3.4 Simulation Environment

Simulations were again conducted in MATLAB using YALMIP [99] and MOSEK [100]. The

same aerodynamic coefficients used in Section 4.3 are also used here and can be found in

Table 4.3. The simulation parameters are summarized in Table 6.3, with AV = 0 being the

only addition. SMID (given by Algorithm 3) was performed online as the system tracked the

desired roll angle while subject to a sinusoidal disturbance, shown in Fig. 6-9.
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Figure 6-9: Sinusoidal disturbance applied to the nonlinear longitudinal dynamics of a high-

performance aircraft that experiences wing rock.

Table 4.3: Wing Rock Aerodyniamic Coefficients.

a, (s-2) a2 (s-') a3 (s-1) a 4 (-)

-32.7 2.5 1.43 t 0.5 j -5.48 1.2 0.1 0.02

Table 6.3: ADTMPC Wing Rock Simulation Parameters.

Param. Value Param. Value
a 4 rad/s 10 rad/s

OM 10 deg Vm 5 rad/s 2

A 2 rad/s D 57 deg/s 2

<b(to) 15 deg/s a(to) 4 rad/s
Q(0) 0 deg r 5.7 deg/s 2

AJ 0 deg/s 2  -

6.3.5 Results and Analysis

ADTMPC is used to track the desired roll angle and roll rate (previously shown in Fig. 4-6)

while estimating the unknown aerodynamic coefficients. Fig. 6-10 shows the upper (blue) and

lower (red) bounds for each coefficient a-, the true value (black) is shown for reference. The

first three coefficients (Fig. 6-10a-Fig. 6-10b) see reduction in their uncertainty. However, the

fourth coefficient (Fig. 6-10d) sees no reduction. This indicates that the model uncertainty,

for this desired trajectory, is primarily dominated by the first three coefficients. Table 6.4
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Table 6.4: Wing Rock Parameter Uncertainty Reduction with SMID.

Coefficient Original Final Percent
Uncertainty Uncertainty Reduction

a1  2.5 0.0325 98.7
a2  0.5 0.302 39.6
a3  1.2 0.344 71.3
a4 0.02 0.02 0.0
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Figure 6-10: Wing rock coefficient upper/lower (blue/red) bounds and true value (black). The
first three coefficient (a)-(c) show reduction in their uncertainty as both the upper and lower bounds
approach the true value. The fourth coefficient (d) shows no reduction, indicating it has little affect
on the model uncertainty.

summarizes the performance of ADTMPC in terms of percent reduction in the uncertainty

of each parameter. Every coefficient, besides a4 , sees a reduction of at least 39.6%, further

demonstrating ADTMPC's ability to accurately identify multiple parameters even when an

unknown disturbance is present.
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Figure 6-11: Initial trajectory (multi-color) and bandwidth (color map) from DTMPC and modified

solution from ADTMPC. (a): DTMPC uses high-bandwidth (light color) to compensate for model

uncertainty at large roll angles. (b): ADTMPC uses significantly less bandwidth (darker color) using

updated model parameters at t = 6s (red line) indicating the reduction of model uncertainty.

Fig. 6-11 shows the level of improvement obtained by ADTMPC over its static model

counterpart DTMPC. The initial trajectory (multi-color) and tube geometry (black) are

shown in Fig. 6-11a. The temporal variation of the bandwidth is given by the color map.

High-bandwidth control (lighter color) is used for large roll angles and low-bandwidth control

(darker color) is used for small roll angles; indicating the model uncertainty is predominately

from the aerodynamic coefficient on the roll angle term. Fig. 6-11b shows the modified
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trajectory if ADTMPC were to re-optimize the control bandwidth at t = 6s (indicated by the

vertical red line). With the updated model parameters, the bandwidth in the later part of

the trajectory is reduced by a factor of 2.12 while still satisfying the tracking error constraint.

Therefore, ADTMPC is able to achieve significantly better performance, as measured by lower

control bandwidth while meeting other objectives, by robustly reducing model uncertainty

through SMID.

6.4 Summary

This chapter presented simulation results and analysis of ADTMPC's performance in two

domains: 1) a double integrator system with nonlinear drag performing collision avoidance;

and 2) the nonlinear latitude dynamics of a high-performance aircraft. The collision avoidance

results demonstrated that ADTMPC can successfully estimate an unknown drag coefficient,

leading to faster, less conservative trajectories. It was also shown that ADTMPC is able

to handle measurement noise so long as a noise bound is known. Results of the nonlinear

latitude dynamics of an aircraft exhibiting wing rock showed that ADTMPC is able to achieve

the same level of performance (in terms of tracking error) as DTMPC but with significantly

less control bandwidth. This domain also showed ADTMPC can accurately estimate multiple

parameters. The observed performance enhancement in both domains is a direct consequence

of ADTMPC being able to robustly update the prediction model online, a feature that is

unobtainable in current nonlinear tube MPC frameworks.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

This thesis presented a tube Model Predictive Control framework for nonlinear systems

that have uncertain dynamics and are subject to unknown external disturbances. The key

contributions of the developed framework are: 1) simultaneously optimizing the tube geometry

to satisfy changing constraints and objectives; 2) leverage state-dependent uncertainty to

reduce conservativeness in the trajectory design; and 3) estimate model parameters to reduce

model uncertainty while maintaining stability and recursive feasibility.

Chapter 3 presented the Dynamic Tube MPC (DTMPC) algorithm that addresses a

number of the limitations of state-of-the-art nonlinear tube MPC algorithms. First, the open-

loop MPC optimization is augmented with the tube geometry dynamics enabling the trajectory

and tube to be optimized simultaneously. Second, DTMPC is able to utilize state-dependent

uncertainty to reduce conservativeness and improve optimization feasibility. And third, the

tube geometry and error dynamics can be combined to further reduce conservativeness. All

three properties are a result of using boundary layer sliding control.

Chapter 4 presented simulation results and analysis of DTMPC's performance in two

domains: 1) a double integrator system with nonlinear drag performing collision avoidance;

and 2) the nonlinear latitude dynamics of a high-performance aircraft. The collision avoidance

results separately demonstrated that DTMPC can optimize the tube geometry (via control

bandwidth) to satisfy changing constraints and leverage state-dependent uncertainty to
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construct less conservative trajectories. Results of the nonlinear latitude dynamics of an

aircraft susceptible to wing rock showed that DTMPC is able to optimize the control

bandwidth to directly compensate for model uncertainty while satisfying other performance

specifications (e.g., maximum allowable tracking error). All results are a consequence of

the unique features of DTMPC and are not obtainable with existing nonlinear tube MPC

frameworks.

Chapter 5 presented the Adaptive Dynamic Tube MPC (ADTMPC) algorithm that

addresses a key limitation of existing nonlinear tube MPC algorithms: the inability to

update the prediction model while still maintaining recursive feasibility. It was shown

that set membership identification (SMID) guarantees the uncertainty in model parameters

monotonically decreases even when disturbances/measurement noise are present (assuming a

bound is known). Guaranteed monotonicity is unobtainable with other adaptive/estimation

schemes which prevents establishing recursive feasibility. By combining DTMPC and SMID,

ADTMPC can: 1) simultaneously optimize a trajectory and tube geometry; 2) leverage

state-dependent uncertainty to construct less conservative trajectories; and 3) further reduce

conservativeness by using SMID to update model parameters. All three features are unique

to ADTMPC and are not obtainable by current nonlinear tube MPC algorithms.

Finally, Chapter 6 presented simulation results and analysis of ADTMPC's performance in

two domains: 1) a double integrator system with nonlinear drag performing collision avoidance;

and 2) the nonlinear latitude dynamics of a high-performance aircraft. The collision avoidance

results demonstrated that ADTMPC can successfully estimate an unknown drag coefficient,

leading to faster, less conservative trajectories. It was also shown that ADTMPC is able

to handle measurement noise so long as a noise bound is known. Results of the nonlinear

latitude dynamics of an aircraft exhibiting wing rock showed that ADTMPC is able to achieve

the same level of performance (in terms of tracking error) as DTMPC but with significantly

less control bandwidth. This domain also showed ADTMPC can accurately estimate multiple

parameters. The observed performance enhancement in both domains is a direct consequence

of ADTMPC being able to robustly update the prediction model online, a feature that is

unobtainable in current state-of-the-art nonlinear tube MPC frameworks.
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7.2 Future Work

The simulation results presented in this thesis demonstrated the benefits DTMPC and

ADTMPC. However, experiments on real hardware would further substantiate the usefulness

of DTMPC/ADTMPC. In particular, using DTMPC/ADTMPC on a multi-rotor performing

obstacle avoidance with on-board sensing and computing would really showcase the benefits

of the developed frameworks. The biggest challenge of applying DTMPC/ADTMPC to

this hardware domain is transforming sensor information about the environment into a

form suitable for optimization. This has been investigated by the author [107] but in the

context of using motion primitives instead of optimization for collision avoidance. If a

suitable transformation is either too computationally intensive or unobtainable, combining

DTMPC/ADTMPC with motion primitives would be required. Combining optimization and

motion primitives could be a very fruitful area of research.

Boundary layer control enabled the open-loop trajectory and tube geometry to be simulta-

neously optimized while leveraging the structure of the uncertainty to reduce conservativeness

As mentioned in Chapter 3, boundary layer control can only be used on systems that are

input-state/input-output linearizable or systems that can put (either explicitly or approxi-

mately) into cascaded form. While many physical systems fall into one of these categories,

there exist real-world systems that require a different nonlinear control strategy. For instance,

nonholonomic systems (e.g., a differential drive robot) do not satisfy the integrability condi-

tion for input-state linearization. Furthermore, these systems tend to possess singularities

in input-output linearization controllers. Systems that do not satisfy the controllability

condition also pose significant challenges for feedback linearization/boundary layer controllers.

One example of such a system is the longitudinal dynamics of an aircraft with nonlinear

aerodynamics. A more general control strategy like Control Contraction Metrics [108, 1091

could expand the ideas presented in this thesis to a broader class of systems.

Many of the theoretical results for MPC and its alternatives are derived assuming full

state feedback. In real-world scenarios, however, some states are not directly measurable

so an estimator/observer is required. Further, noisy measurements and/or model error lead

to imperfect state estimates. By ignoring the state estimate uncertainty, state constraints
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can no longer be guaranteed satisfied. Mayne et al. [11, 110] addressed this issue by relying

on the separation principle for linear systems to develop the robust output feedback MPC

framework. However, the complexity of control and observer design for nonlinear systems

make a nonlinear extension very difficult. Developing a systematic framework for controller

and observer design for nonlinear systems that satisfy the separation principle is a research

direction that can lead to significant contributions in the field of controls and MPC.
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