
Fundamental Limit of Network Flow Attacks

by

Xinzhe Fu

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

@ Massachusetts Institute of Technology 2019. All rights reserved.

Signature redacted
A u thor

Department of Aeronautics and Astronautics
May 23, 2019

/ 1

Signature redacted
Certified by.................

V Eytan Modiano
Professor of Aeronautics and Astronautics

Thesis Supervisor

Signature redacted
A ccepted by

Sertac Karaman
Associate Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

JUL 0 1 2019

LIBRARIES
ARCHIVES

Fundamental Limit of Network Flow Attacks

by

Xinzhe Fu

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

A network flow-based attack refers to a cyber-attack where the adversary seeks to

block user traffic from transmission by sending adversarial traffic that reduces the

available user capacity. In this thesis, we explore the fundamental limits of network

flow attacks by investigating its feasibility region defined by the minimum resource

required for a successful attack and designing optimal attacking strategies that achieve

the feasibility region.
First, we consider the case where the target network uses fixed-path routing and

the adversary injects traffic into the network, encroaching the capacity of the network

links and thus reducing the capacity available to network users on the fixed paths.

We propose a new network interdiction paradigm that captures this phenomenon

by modeling the network as a capacitated graph with the user throughput given by
the max-flow value on the fixed user paths. The adversary injects interdicting flows

that reduces the capacity of the links (and hence the user throughput), and seeks to

maximize the throughput reduction caused by the adversarial injection under a given

flow budget. We show the NP-hardness of the problem of maximizing throughput

reduction, and propose an efficient approximation algorithm that yields near optimal

interdicting flows within a logarithmic factor by harnessing the submodularity of the

problem. We further extend the algorithm to an approximation framework that can

deal with the situation where the adversary does not have deterministic knowledge

of the set of user paths but aims to maximize the worst case throughput reduction

given that the set of user paths lies in certain collection of paths.

Next, we turn to the scenario where the target network employs dynamic routing

mechanisms such as Join-the-Shortest-Queue (JSQ) or Max-Weight. We start from

single-hop server farm under JSQ routing, where the adversary attacks by injecting

adversarial traffic to servers with the objective of blocking user traffic, i.e., causing

user traffic to experience unbounded delay. We first characterize the feasibility region

of the attack by presenting a necessary and sufficient condition on the rate of ad-

versarial traffic rate for the attack to be successful. We then propose an adversarial

injection policy that is, (i) optimal: it achieves a successful attack whenever the ad-

versarial traffic rate is inside the feasibility region and (ii) oblivious: it does not rely

3

on any knowledge of the network statistics. We further evaluate the performance of

the injection policy. Finally, we extend our results to multi-hop.network employing

Max-Weight routing.

Thesis Supervisor: Eytan Modiano

Title: Professor of Aeronautics and Astronautics

4

Acknowledgments

I greatly acknowledge the invaluable guidance and support of my thesis supervisor,

Professor Eytan Modiano, whose patience and kindness have helped me navigate the

ups and downs of my master's studies.

I am blessed to have made amazing friends at MIT, who have helped me a lot,

both in study and in life. I really enjoyed my discussion on research and coursework

with Vishrant Tripathi, Bai Liu, Tianyi Peng, Zehao Yu, Igor Kadota, Ruihao Zhu,

Xinyu Wu, Ertem Nusret Tas, Georgia Dimaki, Rajat Talak, Dr. Jianan Zhang, Dr.

Qingkai Liang, Dr. Thomas Stahlbuhk, Dr. Anurag Rai, Dr. Dan Wu, Prof. Hyang-

Won Lee and Prof. Abhishek Sinha. As sports, especially tennis and soccer, has

been an integral part of my life and a major source of happiness, I am grateful to my

previous and current tennis coaches, Nick White and Charlie Maher, my tennis pals,

soccer teammates and others who have made my entertaining sporting experience at

MIT. I very much appreciate friends that I have known since high school or college,

Shengzhong Liu, Shucen Liu, Mengdie Zhou, Zhiying Xu, Prof. Luoyi Fu and Prof.

Xinbing Wang for letting me share my feelings and thoughts. I also want to thank

my roommate, Yuanming Hu, for our pleasant two years sharing a home.

I want to extend my deepest gratitude to my family. In particular, I am very

grateful to my uncle Sheldon He and his family (Wei Su He, Harrison He, Felicia He)

for hosting me during Thanksgiving and Christmas holidays and giving me advice

on my life in the US. Finally, I am forever indebted to my parents, Xiaoxin He and

Yonghui Fu, who have always been there for me no matter what we are going through.

5

6

Contents

1 Introduction

1.1 Background and Motivation

1.2

1.3

Thesis Contribution

Literature Review

1.3.1 Network Interdiction

1.3.2 Adversarial Network Optimization

1.3.3 Network Attack-Defense Framework . . .

15

15

. 16

. 17

. 17

. 18

. 19

2 Network Interdiction Using Adversarial Traffic Flow 21

2.1 Network Interdiction Paradigm . 23

2.1.1 Structural Properties of the Paradigm 25

2.2 Deterministic Flow Interdiction . 25

2.2.1 Problem Formulation . 25

2.2.2 Computational Complexity . 26

2.2.3 Approximation Algorithm . 27

2.3 Robust Flow Interdiction 36

2.3.1 Problem Formulation . 36

2.3.2 Approximation Framework . 38

2.4 Sim ulations . 43

2.4.1 Simulation Setting . 43

2.4.2 Deterministic Flow Interdiction 44

2.4.3 Robust Flow Interdiction . 45

2.5 Discussion of General Networks . 46

7

2.6 Chapter Summary .

2.7 Chapter Appendix .

2.7.1 Proof of Proposition 1

2.8 Proof of Proposition 3 .

2.8.1 Generalization of the Recursive Greedy Algorithm . . .

2.9 Proof of Lemmas 2 and 3 .

2.9.1 Lem m a 2 .

2.9.2 Justification of Integrality Assumption of A

3 Fundamental Limit of Volume-based Network DoS Attacks

3.1 Model and Problem Formulation

3.1.1 Network Model

3.1.2 Queueing Dynamics

3.1.3 Problem Formulation

3.2 Feasibility Region

3.3 Preliminary Results

3.3.1 Queue Length Behavior Under JSQ

3.3.2 Transience of Markov Chain

3.3.3 Monotonicity Property of JSQ

3.4 Optimal Oblivious Adversary Injection Policy

3.4.1 Target-JSQ Policy

3.4.2 The Min-Zero Policy

3.5 Sim ulations

3.5.1 Simulation Setting

3.5.2 Simulation Results

3.6 Generalization to Multihop Networks

3.6.1 Model and Problem Formulation . .

3.6.2 Feasibility Region

3.6.3 The Multi-hop Min-Zero Policy . . .

3.7 Chapter Summary

8

48

48

48

50

51

55

55

58

61

63

64

64

66

68

75

75

79

80

81

82

86

92

92

93

95

96

97

101

102

.

.

.

.

.

3.8 Chapter Appendix . 103

3.8.1 Proof of Propositions 6, 7 and Their Multi-hop Generalization 103

3.8.2 Proof of Proposition 9 . 105

9

10

List of Figures

2-1 An example network of the flow interdiction problems. 26

2-2 Illustration of the Recursive Greedy algorithm (with some intermediate

steps omitted) on the example of Figure 2-1, where Ef, .. . , Er4 are

used to denote the sub-paths constructed during the recursion for ease

of notation. 30

2-3 Ratio of throughput reduction of the solutions by our algorithms to

the optim al. 46

2-4 An illustration of the reduction process for the 3-satisfiability instance

with formula (xiV -) A (i VX 2). 51

3-1 Illustration of our single-hop network model. User dispatchers are rep-

resented by hollow circles. Adversary dispatchers are represented by

solid circles. Servers are represented by rectangles. The numerical val-

ues in the graph represent the traffic arrival rates to user/adversary

dispatchers and the service rates of servers. 66

3-2 Illustration of the val-condition. Consider three subsets of servers

S1, S2 and S3 enclosed in dashed rectangles. val(Si) = 9, val(S2) =

14, val(S3) = 14 and A(Si) = 10, A(S 2) = 13, A(S 3) = 9. Thus, S2

and S3 satisfies the val-condition while Si does not. 69

3-3 Convergence times of variants of Min-Zero on networks with different

sizes. 94

3-4 Convergence times of variants of Min-Zero on networks with different

loads........... 94

11

3-5 Illustration of the multi-hop network model. v, and v2 are the adver-

sary sources. The capacities are labeled beside the links. 98

3-6 Illustration of the extended val-condition: Consider the s-d cut (S, Ar\S)

with S = {s, ni, n 4}. A, = 4, Cap(S) = 9 and val(S) = 6. Therefore,

the cut satisfies the extended val-condition. 99

12

List of Tables

3.1 Notations and Definitions . 63

13

14

Chapter 1

Introduction

1.1 Background and Motivation

Network flow attacks refer to a class of cyber-attacks where the adversary seeks to

make some network resources unavailable to its intended users by sending adversarial

traffic flow that competes for the resources. On one hand, attacks of this category,

such as DoS attack [1], stealth DoS attack [21, RoQ attack [3] and Pulsing attack [4]

often result in downtime of web service, cloud computing, DNS service, etc., causing

huge financial loss to institutions [5]. On the other hand, network flow-based attack

is difficult to detect due to the similarity of adversarial traffic and normal user traffic.

Moreover, the increasing availability of botnet [61 as sources of adversarial traffic

exacerbates the issue. The above two aspects make network flow-based attack one of

the most serious security threat to the Internet. Due to the significance and prevalence

of network flow attacks, there have been a flurry of works focusing on detection and

mitigation of such attacks [1,7,8]. However, we still lack theoretical understanding of

the limits of such attacks, i.e., How much resources does the adversary need

for a mounting successful network flow attack and what is the optimal

attack strategy?

Understanding the above questions is of great importance to the design and pro-

tection of network systems. It provides us with valuable insights on the robustness

of the network system as the resource requirement for the adversary actually defines

15

the safety margin of the system. Such safety margin often plays an important role

in evaluating the vulnerabilities of network infrastructure 19, 101. Furthermore, the

structure of the optimal attack strategy sheds light on the design of practical detec-

tion and mitigation methods, providing guidelines to the design of security-enhanced

systems [11].

In this thesis, we explore the fundamental limits of the network flow attacks. Tak-

ing a network flow and queueing perspective, we model the attack using a capacitated

network with user traffic and adversarial traffic generated at certain rates from cer-

tain sources, respectively. The user traffic is routed using some pre-defined policy of

the network, while the adversarial traffic is injected according to some policy dictated

by the adversary. The goal of the adversary is to reduce the throughput available to

user traffic by injecting adversarial traffic in an intelligent way. We interpret the link

capacities and user traffic rates as network parameters, and the adversarial traffic

rates as the budget of the adversary. Based on this, the two problem we raised, which

will be the central theme of the thesis can be translated into: given the network pa-

rameters, how much budget does it take to achieve a successful attack, and what is

the optimal adversarial injection policy that guarantees the success or maximize the

damage of an attack?

1.2 Thesis Contribution

We answer the questions through the following main results, which can be divided

into two parts based on the routing policy that the network uses.

e In Chapter 2 we study the case where the network employs fixed-path rout-

ing, which captures routing protocols such as shortest-path routing (OSPF,

BGP) and multi-path routing (ECMP). Under fixed-path routing, the prob-

lem falls into the category of network interdiction which models the scenario

where a budget-constrained interdictor tries to reduce the throughput available

for users of a capacitated network [12, 13]. Since the traditional interdiction

paradigm falls short of capturing the flow-based attack as it only considers

16

network node/link removal, we propose a new network interdiction paradigm

where the interdiction is performed by injecting adversarial traffic flow. Under

the proposed paradigm, we study the computational complexity of the problem

and devise a near-optimal interdiction strategy that approximately maximizes

the throughput reduction.

In Chapter 3 we investigate the scenario where the network employs dynamic

routing strategy such as Join the Shortest Queue and Max-Weight [14-16],

which naturally mirror systems with load-balancing mechanisms such as server

farms. We define the feasibility region of the network flow attack under this

setting and design an optimal attack strategy that achieves the full feasibility

region. A notable feature of the optimal strategy is that it does not rely on

knowledge of network statistics.

1.3 Literature Review

We present a brief literature review on three relevant topics, adversarial network

optimization and network attack-defense framework.

1.3.1 Network Interdiction

Network interdiction, originally proposed in [12, 17] models the scenarios where a

budget-constrained interdictor tries to limit the throughput available for users of a

capacitated network by removing network edges. The throughput is given by the op-

timal value of a single-commodity max-flow problem and the goal of the interdictor

is to compute an interdiction strategy that specifies which edges to remove in order

to minimize the throughput, or maximize the throughput reduction, subject to the

budget constraint. Since the problem is NP-hard even when the network has special

topologies, previous works focus on designing approximation algorithms [17-19] or

formulating integer programs and solving them using traditional optimization tech-

niques (e.g. branch and bound) [12,201. Subsequent generalizations include extensions

17

to the case where the throughput is given by multi-commodity max-flow problem [21]

and allowing the interdictor to use mixed strategy that takes advantage of randomiza-

tion [22,23]. We refer the readers to 1241 for a comprehensive survey. As traditional

network interdiction only considers link removal, it cannot capture the scenario of

network flow attacks where the method of attack is injecting traffic flow rather than

removing network links.

1.3.2 Adversarial Network Optimization

Adversarial network optimization studies the problem of optimizing network per-

formance in adversarial environments. This area of study started from adversarial

queueing theory [25] that investigates the stability of various service disciplines un-

der adversarial-generated traffic. Previous works [25-27] established the universal

stability of several service disciplines such as Newest-in-System and Furthest-to-Go,

the instability of service disciplines such as First-Come-First-Serve and the universal

stability of certain network topologies. Later, Lim et al. [28] extended the framework

to multi-hop network routing and showed the throughput optimality of Max-Weight

policy under adversarial traffic. Recently, Liang and Modiano extended the theory

to optimizing utility/queue lengths in networks with adversarial traffic and network

states [29, 30]. They analyzed the performance of Max-Weight policy and Tracking

policy in terms of regret, establishing the optimality of the two policies under cer-

tain adversarial network models. Adversarial network optimization considers the case

where there is only adversarial traffic whereas we consider a mix of both adversarial

and user traffic. Another major difference is that in adversarial network optimization,

although the traffic is adversarial, it is still assumed to be stabilizable, i.e., lies in the

capacity region of the network. In contrast, in our setting of network DoS attack, the

case of interest is often the overload regime, where the combined traffic of user and

adversary lies outside of the capacity region.

18

1.3.3 Network Attack-Defense Framework

Network attack-defense framework investigates the optimal (attack or defense) strat-

egy in a network with two parties of conflicting interests. Most works in this line adopt

a game-theoretic perspective [31-33]. Wang and Shroff [31] focused on equilibrium

analysis of network security game. Niyato and Hossain [33] studied the dynamics

of network selection through an evolutionary game. For a comprehensive review on

this topic, we refer the reader to the survey by Manshaei et al. [32] The modeling

approach of game theory does not possess the fine-granularity to capture important

aspects in flow-based attack such as network routing and network dynamics. An im-

portant exception that does not use game-theoretic modeling is the paper Paschos and

Tassiulas [2]. They studied the sustainability of service provisioning system, which is

similar to a special case of our problem on single-hop networks. Apart from network

settings, another important distinction is that they did not investigate the problem

of designing optimal attack strategies.

19

20

Chapter 2

Network Interdiction Using

Adversarial Traffic Flow

In this chapter, we study network flow attacks where the network employs fixed-path

routing. As the problem falls into the broad category of network interdiction, we pro-

pose a new network interdiction paradigm where the interdiction is performed through

injecting adversarial traffic flow to the network in an intelligent way, encroaching the

capacity of network links, thereby reducing the throughput of network users. Our

models captures is the stealth denial of service (DoS) attack in communication net-

works (including wireless ad hoc networks [34, software defined networks [351 and

cloud services [361), where interdictor (attacker) injects low-rate data into the net-

work that consumes network resources and compromises the capacity available to the

users. Under this paradigm, we model the network as a capacitated directed graph

with n nodes, where the network users are sending flow on a set P of user paths and

the interdictor aims to reduce the throughput of the users through sending adversarial

flow from its source s to its destination t. Mirroring the situations in 12,34,35], we

assume the interdictor to be low-rate and undetectable, which will be formally defined

later. The interdiction strategy is defined as a probability distribution over the set of

s-t flows with value less than the given budget, which resembles the mixed strategy

in the game theory literature [22]. The throughput reduction achieved is equal to the

difference between the network throughput before the interdiction, which is defined

21

as the sum of initial flow values on paths in P and the network throughput after

the interdiction, which is determined by the optimal value of a path-based max-flow

problem on the residual network.

Under the proposed interdiction paradigm, we study two problems that differ in

the availability of the knowledge on the operation of network users captured by the

set of user paths P. The first, deterministic flow interdiction, assumes that the inter-

dictor has perfect knowledge of P and seeks an interdiction strategy that maximizes

the (expected) throughput reduction with respect to P. We show that there does

not exist any polynomial time algorithm that approximates the problem on general

networks within an O(n'-) factor for any 6 > 0 unless P = NP, and the problem is

NP-hard even when the network is acyclic. Thus, we focus on designing efficient algo-

rithms with good performance guarantees on acyclic networks. Specifically, utilizing

the submodularity of the problem, we propose a recursive algorithm that is capable

of achieving O(log n)-approximation. The second problem, robust flow interdiction,

deals with the situation where definitive knowledge of P is not available. In particu-

lar, we assume that the set of user paths lies in some uncertainty set U that contains

all possible candidates for P. The goal of the interdictor is to compute an interdic-

tion strategy that maximizes the throughput reduction for the worst case in U. As

a generalization of its deterministic counterpart, robust flow interdiction inherits the

computational complexity results and is more challenging to solve due to its inherent

maximin objective. In this context, we design an approximation framework that inte-

grates the algorithm for deterministic flow interdiction and yields a quasi-polynomial

time procedure with a poly-logarithmic approximation guarantee. Finally, We evalu-

ate the performance of the proposed algorithms through simulations. The simulation

results suggest that our algorithms compute solutions that are at least 70% of the

optimal and are efficiently implementable.

The rest of the chapter is organized as follows. We formally present our paradigm

on acyclic networks in Section 2.1. In Sections 2.2 and 2.3, we introduce formal

definitions, show the computational complexity and describe our proposed algorithms

for the two flow interdiction problems, respectively. We evaluate the performance of

22

our algorithms through simulations in Section 2.4. Section 2.5 is devoted to the

extension of our paradigm and the interdiction problems to general networks. We

conclude the chapter in Section 2.6.

2.1 Network Interdiction Paradigm

In this section, we first formalize our network interdiction paradigm, and then show

two important structural properties of it. Note that currently, we focus on acyclic

networks, and provide extensions to general networks in Section 2.5.

Consider a network represented as a directed acyclic graph G(V, E) with vertex

set V and edge set E C V x V. Let n = IVI be the number of nodes and m = JEl

be the number of edges. We assume G to be simple (with no multi-edges). Let C be

an JEl-dimensional non-negative capacity vector with C(e) indicating the capacity of

edge e. We define s, t E V as the source and the destination of the interdictor, and

assume without loss of generality that they are connected. An s-t flow is defined as an

|El-dimensional vector f that satisfies capacity constraints: Ve E E, 0 < f(e) < C(e)

and flow conservation constraints: Vv E V\{s, t}, E(uv)EE f(U, V) = E(v,u)EE f(V, u).

We define val(f) = Z(U)E f(s, it) to be the value of f, i.e., the total flow out of the

source.

The interdiction is performed by injecting flow from s to t. The interdictor has

a flow budget -y that specifies the maximum value of flow that it can inject. In this

paper, we are primarily concerned with low-rate interdictor, and thus assume that

-y mineEE C(e) and is bounded by some polynomial of n. Let -F, be the set of s-t

flows f with val(f) < -y. We allow the interdictor to use randomized flow injection,

which is captured by the concept of interdiction strategy formally defined below.

Definition 1 (Interdiction Strategy). An interdiction strategy w is a probability dis-

tribution w : F, -+ [0, 11 such that ZfEF< w(f) = 1

The interdiction strategy bears resemblance to the mixed strategy in the game

theory literature. It can be alternatively interpreted as injecting flows in a time

23

sharing way. Furthermore, a deterministic flow injection f (similar to a pure strategy

in game theory) can be represented as a strategy with w(f) = 1.

Before the interdiction, the network users are sending flow on a set of user paths

P = {pi, P2,... , Pk} in the network. Each path is a subset of edges and we use e E p

to represent that edge e is on path pi. The user paths may not share the same source

and destination, and are not necessarily disjoint. Initially, the values of the flows

on the paths are A1 , A2..., Ak respectively, which satisfy capacity constraints: Ve C

E, EZpe Ai < C(e). The network throughput for the users before the interdiction is

defined as E1 Ai. Note that the involvement of the initial flows gives our paradigm

the flexibility to capture the case where the users are not fully utilizing the paths

before interdiction.

After the interdictor injects flow f, the residual capacity of the edges becomes

CO such that Cf(e) = C(e) - f(e) for all e E E. The throughput of the users after

interdiction is given by the optimal value of the following (path-based) max-flow

problem:

maximize Ki AI (2.1)

s.t. E, , Of f(e), Ve E E (2.2)

0 < Ai < Ai, Vi (2.3)

where constraints (2.2) are the capacity constraints after the interdiction and con-

straints (2.3) specify that the users will not actively push more flows on the paths

after the interdiction, which can be attributed to the undetectability of the inter-

dictor or that the users have no more flow to send. Let T(f, P) be the optimal

value of (2.1). We define the throughput reduction achieved by injecting flow f

as the difference between the throughput of the network before and after inter-

diction, i.e., A(f, P) = Ei Ai - T(f, P). Naturally, under an interdiction strat-

egy w, the expected throughput reduction achieved by the interdictor is defined as

A(w, P) =-eF w(f)A(f, P).

24

2.1.1 Structural Properties of the Paradigm

The proposed network interdiction paradigm has two important structural properties

that will play a key role in the problems we study in subsequent sections. The first

property shows that if we want to maximize the throughput reduction, we can restrict

our consideration to the set of s-t flows with value -y. Its proof follows straightfor-

wardly from the monotonicity of throughput reduction with respect to the value of

the interdicting flow and that -y < mine C(e).

Observation 1. For any s-t flow f with val(f) < -y, there exists a flow f' such that

val(f') = -y and A(f', P) A(f, P) for all possible P.

We denote Fy to be the set of flows with value -y. We further define single-path

flows as the s-t flows that have positive values on edges of one s-t path. The second

property establishes the optimality of interdiction strategies taking positive value on

only single-path flows in the maximization of A.

Proposition 1. For any interdiction strategy w, there exists an interdiction strategy

w' that is a probability distribution on the set of single-path flows such that A(w', P) >

A(w, P) for all possible P.

Proof. We prove the proposition through flow decomposition and linear programming

duality. See Appendix 2.7.1 for details.

2.2 Deterministic Flow Interdiction

In this section, we study the deterministic flow interdiction problem. We first formally

define the problem, then prove its computational complexity, and finally introduce

our proposed approximation algorithm.

2.2.1 Problem Formulation

The deterministic flow interdiction deals with the case where the interdictor has full

knowledge of P and seeks the interdiction strategy that causes the maximum expected

throughput reduction.

25

VI 3 PI ={I(S' ,), (vi,v2)
3 V' 3 v

P 2 = {(s, v3),(v3, v2)}
s ' =, 4(V I V 10

3 ,f5

Figure 2-1: An example network of the flow interdiction problems.

Definition 2 (Deterministic Flow Interdiction). Given the set of user paths P

{P1..., Pk} with initial flow values {A,..., Ak}, the deterministic flow interdiction

problem seeks an interdiction strategy w that maximizes A(w, P).

Example: We give an example of the problem. Consider the network in Figure

2-1, where the capacities are labeled along the edges. The source and the destination

of the interdictor are nodes s and t. The interdictor has budget 'y = 2. The user

paths P = {Pi, P2, p3 } all have an initial flow value of 3. Let f be the s-t flow such

that f(s, vi) = f(vI, v 3) = f(v 3 , v4) = f(v 4 , t) = 2 . In this example, the interdiciton

strategy w such that w(f) = 1 is optimal with A(w, P) = 4.

2.2.2 Computational Complexity

Before establishing the computational complexity, we first show some structural prop-

erties specific to the deterministic flow interdiction problem. Following from Propo-

sition 1, there exists an interdiction strategy on the set of single-path flows that

is optimal for the deterministic flow interdiction. We further extend this property,

showing that there exists an optimal pure interdiction strategy.

Proposition 2. For the deterministic flow interdiction problem, there exists an op-

timal (pure) interdiction strategy w such that w(f*) = 1 for some single-path flow

f*

Proof. Building on proposition 1, let w be an optimal interdiction strategy that takes

positive values only on single-path flows qi, . . . , q,. Let q* E arg maxi A(qj, P). Con-

26

sider the pure strategy w' with w'(q*) = 1. It follows that A(w', P) = A(q*, P) >

E w(qi)A(qi, P) = A(w, P), which proves the existence of an optimal pure strat-

egy.

From the proof of Propositions 1 and 2, we can obtain the following corollary.

Corollary 1. Given an optimal strategy w to the deterministic flow interdiction prob-

lem, we can obtain another optimal strategy w' with w'(f*) = 1 for some single-path

flow f*.

Proof. For any f that w(f) > 0, it can be decomposed into single-path flows q1 , ... , q,.

From the proofs of Propositions 1 and 2, it follows that strategies wi, i E {1, ... , r}

with wi(- qi) - 1 are all optimal. I

Corollary 1 states that a single path flow that maximizes A(-, P) can be obtained

from an optimal interdiction strategy for the deterministic flow interdiciton problem

in polynomial time. Hence, the NP-hardness of finding an optimal single-path flow

implies the NP-hardness of the deterministic flow interdiction. Based on this result,

we prove the NP-hardness of the deterministic flow interdiction problems.

Proposition 3. The deterministic flow interdiction problem is NP-hard.

Proof. The proof is done by reduction from the 3-satisfiability problem, which is a

classical NP-Complete problem 1451. See Appendix 2.8 for the details. EI

Remark: From the proof of Proposition 3, we have that even when the user paths

are disjoint, the deterministic problem is still NP-hard.

2.2.3 Approximation Algorithm

Before presenting the algorithm, we extend some previous definitions. For any subset

of edges A C E, imagine that the interdictor can interdict the edges in A by reducing

their capacities by -y. We extend the definition of A(-, P) to A as A(A, P) = Ei A -

T(A, P), where T(A, P) is the optimal value of the maximization problem (2.1) with

OA(e) = C(e)---1{eEA} . This provides an interpretation of A(-, P) as a set function on

27

all subsets of E. Note that each single-path flow f can be equivalently represented as a

set of edges Ef with f(e) = -y if and only if e E Ef. It follows that A(f, P) = A(Ef, P),

which links the definition of A(-, P) on single-path flows to that on sets of edges.

Our algorithm works on the optimization problem below.

maximize A(Ef, P) (2.4)

s.t. Ef forms an s-t path.

Let Er be the optimal solution to (2.4) and f* be its corresponding single-path flow.

By Proposition 1, the strategy w with w(f*) is an optimal interdiction strategy, and

A(Ef, P) = A(w, P). Therefore, through approximating problem (2.4), our algorithm

translates to an approximation to the deterministic flow interdiction problem. In the

sequel, to better present the main idea of our algorithm, we first discuss the case

where the user paths are edge-disjoint. After that, we generalize the results to the

non-disjoint case.

C.1) Disjoint User Paths: When the user paths are edge-disjoint, for some in-

terdicted edges A C E and user paths {P1,. . . , PA} with initial values {, . . . , A}

the optimal solution to the max-flow problem (2.1) can be easily obtained as AiA

min (Ai, mincEpi OA(e)) for all i. It follows that the throughput reduction can be

written as the sum of the throughput reduction on each paths, i.e., A(A, P) =

E(A; - IiA). Based on this, we reason below that the set function A(-, P) has

two important properties: monotonicity and submodularity.

Lemma 1. Consider A(-, P) : 2E 4 R* as a set function. A is:

1. Monotone: A(A, P) <; A(B, P) for all A C B;

2. Submodular: for all A, B C E,e E E, if A C B, then A(AU{e}, P)- A(A, P)>

A(B U {e}, P) - A(B, P).

Proof. The monotonicity is easily seen from the definition of A. The proof of sub-

28

modularity is also straightforward. Note that for each user path i,

A -- IA = Ai - min(Ai, min{C(e) - 11cEA1})
eEpi

Ai + max(-Ai, max{-C(e) +]{eEA}})
eEp2

Since constant and linear functions are submodular, and the maximum of a set of

submodular functions is also submodular, it follows that A(A, P) = (A - AiA) is

submodular. L

Intuitively, an s-t path with large throughput reduction should have many inter-

sections with different user paths. This intuition, combined with the monotonicity

and submodularity of A, may suggest an efficient greedy approach to the optimiza-

tion problem (2.4) that iteratively selects the edge with the maximum marginal gain

with respect to A while sharing some s-t path with the edges that have already been

selected. However, this is not the whole picture since such greedy selection might get

stuck in some short s-t path and lose the chance of further including the edges that

contribute to the throughput reduction. The latter aspect indicates the necessity of

extensive search over the set of all s-t paths, but the number of s-t paths grows expo-

nentially with n. Therefore, an algorithm with good performance guarantee and low

time complexity must strike a balance between greedy optimization that harnesses

the properties of A, and extensive search that avoids prematurely committing to some

short path. The algorithm we propose, named as the Recursive Greedy algorithm,

achieves such balance. It is based on the idea of [38]. The details of the algorithm

are presented in Algorithm 1 . In the description and analysis of the algorithm,

Ax(A, P) = A(A U X, P) - A(X, P) for X, A C E represents the marginal gain of

set A with respect to X. We use log to denote the logarithm with base two. For

two nodes u1 , U2 E V, the shortest u1-u 2 path is defined as the ui-u2 path with the

smallest number of edges.

The recursive function RG lies at the heart of the Recursive Greedy algorithm.

RG takes four parameters: source ul, destination u2, constructed subpath X and

recursion depth i. It constructs a path from u1 to u2 that has a large value of Ax(-, P)

29

RG(s,t,0,2)

RG(s,v,,0,1) RG(v, t, E, ,1)

RG(s,v,,0,0) |RG((v,, v,, E 0) RG(vs,,v, E ,)||R v,,E,)

Figure 2-2: Illustration of the Recursive Greedy algorithm (with some intermediate

steps omitted) on the example of Figure 2-1, where Ef,... , E 4 are used to denote

the sub-paths constructed during the recursion for ease of notation.

by recursively searching for a sequence of good anchors and greedily concatenating

the sub-paths between anchors. The base case of the recursion is when the depth i

reaches zero, then RG returns the shortest path between ui and U2 if there exists one

(step 2). Otherwise, it goes over all the nodes v in V (step 8), using v as an anchor

to divide the search into two parts. For each v, it first calls a sub-procedure to search

for sub-path from u1 to v that maximizes Ax(-, P), with i decremented by 1 (step

9). After the first sub-procedure returns Ef1 , it calls a second sub-procedure for sub-

paths from v to u2 (step 10). Note that the second sub-procedure is performed on the

basis of the result of the first one, which reflects the greedy aspect of the algorithm.

The two sub-paths concatenated serve as the U1-u 2 path that RG obtains for anchor

v. Finally, RG returns the path that maximizes Ax(-, P) over the ones that it has

examined over all anchors (steps 11, 12 and 13).

The Recursive Greedy algorithm starts by invoking RG(s, t, 0, 1) with I as the

initial recursion depth. In the following, we show that the algorithm achieves a

desirable performance guarantee as long as I is greater than certain threshold. An

illustration of the algorithm with I = 2 on the previous example is shown in Figure

2-2. The optimal solution is returned by the path with anchors v1 , v3 , v4.

Theorem 1. If I > [log d], the Recursive Greedy algorithm returns an s-t path Ef

with A(Ef, P) A(Ef, P), where d is the length of Ef..

30

-- .1

Algorithm 1 The Recursive Greedy Algorithm

Input: Network graph G(V, E), user paths P ={P,... , P2} with initial flow values

{ f..... , fk}, Interdictor's source s, destination t and budget -y
Output: The optimal s-t path Ef

1: Run: RG(s, t, 0, I)
The Recursive Function RG(u1, u2 , X, i):

2: Ef := shortest u1-u2 path.
3: if Ef does not exist then
4: return Infeasible
5: if i = 0 then
6: return Ef
7: r := Ax(Er, P).
8: for all v E V do
9: Ef: RG(ui, v, X, i - 1).

10: Ef2 := RG(v, U2 , X U Ef, i - 1).
11: if Ax(Ef1 U Ef2 , P) > r then
12: r := Ax(Ef1 U Ef2 , P), Ef := Ef1 U Ef2 .
13: return Ef

Proof. We prove a more general claim, that for all U 1 , U 2 E V, X C E, if I >

[log d], the procedure RG(ui, u 2 , X, I) returns an u1-u2 path Ef with Ax(Ef, P) >

[AX(Ef., P), where Ef is the u1-u 2 path that maximizes A(-, P) and d is the

length of Ef.. The theorem follows from the claim by setting ui = s, u 2 = t and

X=0.

Let the nodes on the path Ef- be {ui = Vo,... , v = U 2 }. The proof is done by

induction on d. First, for the base step, when d = 1, it means that there exists an edge

between ui and u2 , which must be the shortest u1 -u2 path. Obviously the procedure

examines this path at step 2, and the claim follows. Next, suppose the claim holds

for d < 1. When d = 1 + 1, I 1. Let v* = VF4 and Ef1 , E; be the subpaths of Ef.

from ui to v* and v* to t, respectively. When RG uses v* as an anchor, it first invokes

RG(ui, v*, X, I - 1) that returns Ef1 and then invokes RG(v*, U 2 , X U Ef1 , I - 1) that

returns Ef 2 . Let E' = Ef, U Ef2 . Our goal is to show that

1
Ax(Ef, P) > Ax (Ef-, P), (2.5)

[log dl + p

which proves the induction step, since the path Ef that RG(ui, U2, X, I) returns must

31

satisfy Ax (Ef, P) Ax (E', P).

Since I > Flog d], we have I - 1 > [log d] - 1 = Flog = [log r]. As Ef, is a

path of length [d/21 from u1 to v* and Ef is a path of length Ld/2] from v* to U2 ,

by the induction hypothesis,

AX (Ef, P) !
Flo1]Ax (Efg, P),

[lgd
1

AXUEf, (Ef 2, P) [AXUEfi (Es, P).
[log d]

By the submodularity of A (Lemma 1), we have

Ax(Ef;, P) > AXUE(Ef;, P)

AXUEf, (Es, P) > AXUEf, (Er;, P)

Using this, we sum the two inequalities obtained form the induction hypothesis and

get

Ax (El, P) [ogd] (Ax (Ef , P) + AXUEf, (Eg , P))

I
-[log d]

Again, by Lemma 1, we have,

AXUE;(Ef;, P) AXUEUEf (Ef, P)

It follows that

(AXUEf (Eq,
P) + AXUE'UEf (Eq,

(A (X U El U Ef., P) - A (X U El, P))

(A (X U Ef., P) - A (X U Ef, P))

(Ax (Ef, P) - Ax (Ef, P)) ,

32

A x (E f, P) 2 [I g

1
[log d]

[log d]

P))

(2.6)

(2.7)

(2.8)

A XUEf (Eq , P) + AXUEf, (Ef,., P)) .

where equality (2.6) follows from the definition of Ax and that Ef. = Efl U E g,

inequality (2.7) follows from the monotonicity of A and equality (2.8) follows also

from the definition Ax. From (2.8), we obtain (2.5), which concludes the proof. I

Time Complexity: The bound on the Recursive Greedy algorithm's running

time is easy to establish. As we invoke at most 2n sub-procedures at each level of

recursion and the computation of A takes 0(m) time, the time complexity of the

algorithm is 0((2n)'m). Taking I = log n > [log d],1 we get an algorithm with

a logarithmic approximation ratio of 1/([log d] + 1) with a quasi-polynomial time

complexity of Q((2n)O nm).

Remark: First, note that the proof of Theorem 1 only relies on the monotonicity

and submodularity of A. Therefore, the Recursive Greedy algorithm works for any

monotone and submodular function on the subsets of E. Second, we can generalize

Algorithm 1 to one that uses more than one anchors at step 8. The generalization

is given in Appendix 2.8.1. When the algorithm uses a - 1 anchors, it achieves an

approximation ratio of 1/([loga d] + 1) in 0((an)(al-)lOag? m) time. The parameter

a can thus control the tradeoff between the performance guarantee and the time

complexity of the algorithm.

C.2) Non-disjoint User Paths: When the user paths are not disjoint, the problem

becomes more challenging. First, notice that iA=- min (Ai, mincEp, OA(e)) no longer

holds due to the constraints in (2.2) that couple different Ai's together. More impor-

tantly, A actually loses the submodular property when the user paths are not disjoint,

which prevents the direct application of the Recursive Greedy algorithm. We tackle

the issues through approximating A with a monotone and submodular function A,

and run the Recursive Greedy algorithm on A. The performance guarantee of the

algorithm can be obtained by bounding the gap between A and A.

Let EO C E be the set of edges that belong to some user path. This is also the

set of edges that appear in constraints (2.2). We partition EO into two sets E1 and

E2 , where E is the set of edges that belong to only one user path, and E 2 is the

'Strictly speaking, we need to set I = [log nl. We omit the ceiling function here for ease of
notations.

33

set of edges that belong to at least two (intersecting) user paths. Following this, we

define A(A, P), A C E to be evaluated through the two-phase procedure below. The

procedure first goes edges in E1 (Phase I), setting

V) :=min (A, min {CA(e)}, Vi.jA .eEpi,eEE
1

Then, it goes over edges in E 2 (Phase II), setting

(2))(1) CA (C) Vi

eEpi,eEE2,0A(e)<Z.eAj p3 e 3'

Finally, it sets A(A, P) = i Aj - E1 A2.

The procedure uses {I }, a set of flow values on user paths, as an approximate

solution to the max-flow problem (2.1). The solution, is obtained through first setting

the flow values to {A} and then gradually decreasing them until the constraints are

satisfied. In Phase I, the flow values are decreased to satisfy the capacity constraints

posed by edge in El. In Phase II, the flow values are further reduced to compensate

for the capacity violations on edges in E2 through multiplying a factor CA(e, which

is equal to the ratio between the capacity of e after the interdiction and the sum of

flow values on e before the interdiction, to the flow value of each user path containing

e, for each e e E2 . Typically, Phase II overcompensates and thus A is an upper

bound of A. But as we will show, the gap between A and A is moderate and such

overcompensation guarantees the submodularity of A.

Substituting A with A in Algorithm 1, we obtain the Recursive Greedy algo-

rithm for the case of non-disjoint user paths. We will refer to this algorithm as the

Extended Recursive Greedy algorithm. The name is justified by noting that

when the user paths are disjoint, E 2 = 0 and A A, the Extended Recursive Greedy

algorithm degenerates to Algorithm 1.

Before analyzing the performance of the algorithm, we establish two lemmas that

show the monotonicity and submodularity of A, and bound the gap between A and

A, respectively. The proofs of the lemmas are given in Appendix 2.9

34

Lemma 2. Consider A(., P) : 2E - R* as a set function. A(-, P) is monotone and

submodular.

Lemma 3. A(A, P) < A(A, P) 5 (b + 1) - A(A, P) for all A C E, where b

maxi |E2 n P,|, 2 i.e., the maximum number of edges that a user path shares with other

user paths.

Now, we are ready to analyze the performance of the Extended Recursive Greedy

algorithm.

Theorem 2. If I > [log d], then the Extended Recursive Greedy algorithm returns

an s-t path Ef that satisfies

1
A(Ef, P) > -A(Ef -, P),-- (b + 1) - ([log dl + 1)

where d is the length of Ef- and b = maxi B 2 O pi|.

Proof. By Lemma 2 and Theorem 1, we have A(Ef .P) > g). A(Ef, P) when

I > [log d]. Invoking Lemma 3, we obtain that

A(Ef, P) > A(Ef, P) > -A(Ef -, P)
-b + I (b + 1) - ([log d] + 1)1- 1

I 1 A(Ef, P),
-(b + 1) -([log d] + 1)

which concludes the proof. L

Note that the computation of A takes O(m) time. Therefore, taking I log n we

get a (+ - approximation algorithm with a time complexity of Q((2n)o"nm).

Although in the worst case, b can be at the same order as n. In the cases, b is of

O(log n), and the Extended Recursive Greedy algorithm still enjoys a logarithmic

approximation ratio.

35

2 AI denotes the cardinality of set A

2.3 Robust Flow Interdiction

In this section, we investigate the robust flow interdiction problem. Following the

road map of deterministic flow interdiction, we first describe the formal definition of

the problem, then show its computational complexity, and finally present the approx-

imation framework for the problem.

2.3.1 Problem Formulation

While deterministic flow interdiction considers the case where the interdictor has

definitive knowledge of the user paths, robust flow interdiction concerns scenarios

where such knowledge is not available. We model this more complicated situation

using the robust optimization framework [37]. Instead of having certain knowledge

of P, the interdictor only knows that P lies in an uncertainty set U = {P1,. .. , P}.

Each P = {Pi } C U, associated with initial flow values {IA, ... , A)',}, is a

candidate set of paths that the users are operating on. The interdictor aims to hedge

against the worst case, maximizing the minimum throughput reduction achieved over

all candidates P.

Definition 3 (Robust Flow Interdiction). Given the uncertain set U {P1 , .. ., P4}

of the user paths and the associated initial flow values on user paths for each P G U,

the robust flow interdiction problem seeks an interdiction strategy w that maximizes

the worst case throughput reduction, i.e., w C arg maxw' minpeu A(w', P).

Example: As an example of the robust flow interdiction problem, we again con-

sider the network in Figure 2-1. The interdictor has source s, detination t and budget

-y = 2. Assume that the interdictor only knows that the users are sending flow on

either {P1, P2} or {p1, p3}, and the initial flow values on P1, P2, P3 are all three. This

corresponds to the robust flow interdiction with U = {{P1, P2}, {PI, P3}}. Let fi be

the s-t flow such that fl(s,v 3) = fl(v3 , v4) = fi(v 4 , t) = 2 and f2 be the s-t flow such

that f2 (s, vi) = f2 (v1 , v 3) = f2 (v 3 , v2) = f2 (v2 , t) = 2. The optimal strategy in this case

is w(fi) = 1/3, w(f2) = 2/3, and the worst case throughput reduction equals 8/3 as

36

A(w, {pi, P21) = A(w, {Pi, P3}) = 8/3. Note that in this example, no pure interdiction

strategy can achieve a worst case throughput reduction of 8/3, which demonstrates

the superiority of mixed strategies in the robust flow interdiction setting.

The robust flow interdiction problem subsumes the deterministic one as a special

case by setting U = {P}. Therefore, we immediately have the following proposition.

Proposition 4. The robust flow interdiction problem is NP-hard.

Before presenting our approximation framework, we present a linear programming

(LP) formulation that serves as an alternative solution to the robust flow interdiction

problem. According to Proposition 1, we can restrict our attention to distributions on

the set of single-path flows with value -y. Therefore, in the following, the distributions

we refer to are all on the set of single-path flows in T,. We enumerate such single-

path flows in an arbitrary order and associate with each single-path flow fi a variable

wi. Consider the linear program:

maximize z (2.9)

s.t. wiA(fi, P) z, VP E U

Sw2 i

w 0, Vi

Clearly, the solution to the LP corresponds to an optimal interdiction strategy w to

the robust flow interdiction problem with w(fi) = wi. Hence, formulating and solving

the LP is a natural algorithm for the robust flow interdiction. However, as the number

of single-path flows can be exponential in the number of nodes n, the LP may contain

an exponential number of variables. It follows that the algorithm has an undesirable

exponential time complexity. We use this algorithm in the simulations to obtain

optimal interdiction strategies for comparisons with our approximation framework.

Another issue arises when the number of single-path flows is exponential in the number

of nodes, that is, even outputting the strategy w takes exponential time. This makes it

37

impractical and unfair to compare any sub-exponential time approximation procedure

to the optimal solution. We get around this issue by comparing our solution to the

optimal interdiction strategy that takes non-zero values on at most No single-path

flows, where No is a pre-specified number bounded by some polynomial of n. We

refer to such strategies as No-bounded strategies. The optimal No-bounded strategy

corresponds to the best strategy that uses at most No different interdicting flows.

Note that such restriction does not trivialize the problem since we place no limitation

on the set but just the number of single-path flows that the interdictor can use.

2.3.2 Approximation Framework

In this section, we present the approximation framework we propose for the robust

flow interdiction problem. As a generalization of the deterministic version, the robust

flow interdiction is more complicated since it involves maximizing the minimum of

a set of functions. The (Extended) Recursive Greedy algorithm cannot be directly

adapted to this case. Instead, we design an approximation framework that integrates

the Extended Recursive Greedy algorithm as a sub-procedure. The framework only

incurs a logarithmic loss in terms of approximation ratio.

The description and analysis of the approximation framework are carried out in

three steps. First, we justify that it is sufficient to consider the robust flow inter-

diction problem with parameters taking rational/integral values. In the second step,

building on the rationality/integrality of parameter values, we convert the problem

to a sequence of integer linear programs. Finally, we solve the sequence of integer

programs through iteratively invoking the Extended Recursive Greedy algorithm.

Rationalizing the Parameters

In the first step, we show that not much is lost if we only consider the interdiction

strategies that take rational values and restrict the throughput reduction to take

integer values. Specifically, let N = No + No and QN = { : E N, 0 < 3 <

N} be the set of non-negative rational numbers that can be represented with N as

38

denominator. Further, we define INN to be the set of strategies that take value in

QN, i.e., INN =w 'Y " QN, f w(f) = 1}. We use w* to represent the optimal

No-bounded interdiction strategy, and w* to represent optimal strategy in VNN. The

following lemma states that w* can be well approximated by w*.

Lemma 4. For all P E U, A(w* , P) N+A(w*, P).

Proof. Consider Cv* such that l*(f) = _N_*(f_ for all w*(f) > 0 and Cv*(f) = 0

otherwise. Since w* is a No-bounded strategy, Ef C*(f) < N0+N Z *(f) 1. Hence,

we can augment -* into a strategy in VN by adding 1 - Ef, ti*(f') to some z*(f).

With a little abuse of notation, we use Cv* to denote the resulting strategy. By the

definition of i-v*, we have

N2N
Z6*(f)A(f, P) > " N W*(f)A(f, P) =N0 A(w*, P).

f 02+NO f No+

As fv* E WN, it follows that A(w, P) > A(*, P) = E, *(f)A(f, P) > N A(w*, P).

We now proceed to argue that it suffices to consider the throughput reduction

function A to take integral values that are bounded by some polynomial of n. First,

when the integrality of A is not satisfied, we can always use standard scaling and

rounding tricks to get a new instance of the problem, where A takes integral values.

Our framework can be applied to the new instance, yielding an interdiction strategy

that has almost the same performance guarantee for both the original and the new

instances. We defer the formal statement and proof of this to Appendix 2.9.2, as

it involves definitions in subsequent sections. Second, since 'y is bounded by some

polynomial of n, maxv,p A(w, P) is also bounded by some polynomial of n. Now, let

M = N max.,p A(w, P). We can thus without loss of generality assume that M is an

integer bounded by some polynomial of n.

With the above results, we move into the second step, that converts the robust

flow interdiction problem into a sequence of integer linear programs.

39

Converting into Integer Linear Programs

Recall the enumeration of single-path flows in the LP (2.9). This time, we associate

each flow fi with an integral variable xi. Consider the following integer program

ILP(K) parameterized by a positive integer K < M.

minimize Xi (2.10)

s.t. xiA(fi, P) > K, VP e U (2.11)

Xi E N, Vi (2.12)

Each xi indicates the number of times fi is selected. ILP() can be interpreted as

selecting the single-path flows for the minimum total number of times that achieve a

throughput reduction of K for all candidate P.

For each K, we denote by N, the optimal value of ILP(K). If we can obtain an

optimal solution {x} to ILP(K), then the strategy w with w(fi) = xi/N, satisfies

minpeu A(w, P) > K/N,. In the following lemma, we show that the strategy con-

structed according to the solution to the integer program with the maximum value of

K/N, is a close approximation to the optimal No-bounded strategy in terms of worst

case throughput reduction.

Lemma 5. Let K* = arg max1<;,<M(K/N). We have - > minpEu A(w*, P) >

N minpEu A(w*, P).

Proof. Define K' to be minPEU Ef Nw* (f)A(f, P) = minpeu NA(w* , P). Note that

K' is a positive integer and K' < M. Thus, by the definition of K*, we have W'/NK, <

K*/N,.. Also, observe that the solution {x} with xi = Nw* (fi) is feasible to ILP(K').

Therefore, N,, < E w* (fi)N N. It follows that

K' K' No
minA(, P >No n(w*, P).

Nr. - NK, - N PEU No + I PEU

Connecting the analysis so far, we have a clear procedure to compute a near-

40

optimal interdiction strategy for the robust flow interdiction. First, we construct and

solve ILP(K) for 1 < K ; 1. Second, we take optimal solution with the maximal

K/N, and obtain its corresponding interdiction strategy, which is within a factor of

NO1 to the optimal No-bounded strategy. The final step of our framework is devoted

to solving ILP(K).

Solving the Integer Linear Programs

Resembling (2.9), each ILP(K) involves potentially exponential number of variables.

What is different and important is that, we can obtain a I-approximation through

a greedy scheme that iteratively chooses a single-path flow according to the following

criterion: let {x} indicate the collection of flows that have been chosen so far, i.e.,

each fi has been chosen for xi times. Let i' be

arg max min{ - 3 x3 A(fj, P), A(fi, P)}. (2.13)
PEU,K>Z xjA(fj,P) i

The greedy scheme chooses fi. at the current iteration and increments xi. by 1. The

above procedure is repeated until we have E> xjA(fi, P) > k for all P C U. Moreover,

if we apply an a-approximate greedy scheme, which chooses fi that is an a-optimal

solution to (2.13), then the final solution we obtain is a log M-optimal. Essentially,

(2.13) selects the flow that provides the maximum marginal gain with respect to

satisfying the constraints (2.11) for all P E U. That the (a-approximate) greedy

scheme achieves an logarithmic approximation follows from the relation of ILP(K)

to the multiset-multicover problems and the results therein 1391, which we omit here

due to space limitation. Now recall the equivalence between A(f, P) and A(Ef, P)

established in Section 2.2. We proceed to show that the Recursive Greedy algorithm

can be used to construct an approximate greedy scheme. First, we have the following

lemma.

Lemma 6. If A is monotone and submodular, then the objective function of (2.13)

is also monotone and submodular.

Proof. Note that at any iteration, E xjA(fj, P) is a known constant. Hence, for each

41

P, min{K - Ej xjA(fj, P), A(fi, P)} is the minimum of a constant and a monotone

submodular function, which is also monotone and submodular. It follows that the

objective function of (2.13) is monotone and submodular. E

By Lemma 6, the Recursive Greedy algorithm (or the Extended Recursive Greedy

algorithm using X instead of A when the user paths are not disjoint) can be applied to

the maximization of (2.13) and enjoys the same performance guarantee as in Theorems

1 and 2. Hence, the final step can be completed by an approximate greedy scheme that

iteratively invokes the (Extended) Recursive Greedy algorithm. We now summarize

the three steps of our approximation framework for the robust flow interdiction as

Algorithm 2 and analyze its performance.

Algorithm 2 Algorithm for the Robust Flow Interdiction

Input: Network graph G, Uncertainty set U {P 1 ,... , P }, Interdictor's source s,

destination t and budget -y

Output: Interdiction Strategy w

1: Formulate ILP(K) for 1 < r < M.

2: Solve each ILP(K) using the approximate greedy scheme based on the (Extended)

Recursive Greedy algorithm.

3: Take the solution {x} to ILP(K) with the maximum value of K/ Z3 xj and con-

struct w by setting w(fi) = xi/ E xj for all i.

4: return w

Theorem 3. Algorithm 2 returns an interdiction strategy w that satisfies

min A(w, P)
PCU

>]VNO min A (w *, P),
- (No + 1) (b + 1) log M - ([log dl + 1)) Pc-u

where w* is the optimal No-bounded strategy.

Proof. Let ILP(K) and {x} be the integer linear program and its solution that cor-

respond to w. We inherit the definition of K* in Lemma 5 and further define {x*} to

be the solution that Algorithm 2 computes for ILP(K*). We have

42

min A(w, P) = min w(fi)A(fi, P)
PEU PEU.

= min A(fi, P) >

- (b+ 1) og -([ogd +1) -
(214

> (1MNo min A(w*, P), (2.15)
- (NO +1)(b +1)log M -([log dl+ 1) fPEU'

where inequality (2.14) follows from Theorem 2 and the results in [39], and inequality

(2.15) follows from Lemma 5. L

Time Complexity: Note that Algorithm 2 solves M integer linear programs,

and it takes at most M calls of the (Extended) Recursive Greedy algorithm for

each program since the number of iterations is bounded by M , where = JUI.

Furthermore, at the third step, there are at most N, < M variables with non-

zero values in the solution {x}, which implies that w can be output in O(M) time.

Therefore, the time complexity of Algorithm 2 is 0 (m(M) 2 (2n)o9n).

2.4 Simulations

In this section, we present our evaluation of the performance of the proposed algo-

rithms. We first introduce the simulation environment in the following and then show

the detailed results in subsequent sections.

2.4.1 Simulation Setting

We adopt the Gnutella peer to peer network data set from [43]. We extract 20 net-

works of 1000 nodes, and make the networks acyclic by removing a minimal feedback

edge set from each of them. The capacities of the edges are sampled from a normal

distribution with mean 20 and standard deviation 3. The budget of the interdictor is

set to the minimum capacity of the edges in each network.

43

2.4.2 Deterministic Flow Interdiction

In the deterministic flow interdiction, we divide our simulations into two parts, where

the user paths are disjoint and non-disjoint respectively. In the first part, we designate

k disjoint paths in each network as user paths with k varying in {10, 20, ... , 100}. In

the second part, we follow the similar route, except that the user paths are randomly

chosen without guaranteeing their disjointness. For each network, we randomly select

five connected node pairs as the source and destination of the interdictor. Thus, for

each number of user paths, we have 100 simulation scenarios in total (20 networks

times 5 s-t pairs).

Algorithms Involved in Performance Comparisons

We apply the Recursive Greedy algorithm when the user paths are disjoint and run

the extended one when the user paths are non-disjoint. We vary the recursion depth,

i.e., the value of I in Algorithm 1 to evaluate its influence on the algorithms' per-

formance. Our algorithms are compared to a brute force algorithm that enumerates

all the paths between the interdictor's source and destination, which computes the

optimal interdiction strategy.

Performance Metric

We calculate the ratio of the throughput reduction of the interdiction strategies by

our algorithms to that of the optimal solutions obtained by the brute force algorithm.

The results reported are the average over all the 100 scenarios.

Simulation Results

We plot the results of our algorithms on deterministic flow interdiction with disjoint

and non-disjoint user paths in Figures 2-3(a) and 2-3(b).

From Figure 2-3(a), we can see that: (i). by setting the recursion depth to two, we

get interdiction strategies with throughput reduction more than 90% of the optimal

(0.9-approximation) and (ii). by setting the recursion depth to three, we recover the

44

optimal interdiction strategies. Furthermore, in the simulations, we find that when

the recursive depth is three, the number of paths examined by the Recursive Greedy

algorithm is just about one fifth of the total number of s-t paths. This suggests that

the typical performance and running time are even better than what the theoretical

analysis predicts. Finally, we observe that, in general, our algorithms perform better

when the number of user paths is large. This observation also holds in subsequent

cases. One possible explanation for this is that more user paths present more oppor-

tunities for throughput reduction, making (near-)optimal interdicting flows easier to

find.

As demonstrated in Figure 2-3(b), the deterministic flow interdiction is harder

to approximate when the user paths are non-disjoint. But we can still get 0.8-

approximations with a recursion depth of three and 0.95-approximations with a re-

cursion depth of four. Also, though we have not plotted in the figure, we have seen

that increasing the recursion depth to five or six does not further improve the per-

formance. Therefore, the gap between the Extended Recursive Greedy algorithm

with depth of four and the optimal can be attributed to the loss brought by the

approximate throughput reduction function A.

2.4.3 Robust Flow Interdiction

In the robust flow interdiction, we randomly select 10 groups of k paths as the un-

certainty set U for k E {10, 20,... , 100}. Similar as before, we randomly selected 5

source-destination pairs for the interdictor in each network and form 100 scenarios

for each k.

Algorithms Involved in Performance Comparisons

We embed the Extended Recursive Greedy algorithm with different recursion depths

in our proposed approximation framework (Algorithm 2). The optimal solution in

this case is obtained by solving the LP (2.9).

45

0.9

3.8 -

00.7 -0-Depth = I
C3

Deterninistic Flow Interdiction -9-Depth = 2
0.6 Disjoint User Paths

-EB-Depth = 3

20 3 0 SO 6 0 80 9 0
10 20 30 40 50 60 70 80 90 100

Number of User Paths

(a)

0.9

20.8

00.7

. 0.6 -e-Depth = I
0.5< o -- Depth = 2

Deterministic Network Interdictio -EB-Depth = 3
0.4 Non-disjoint User Paths -V-Depth = 4

10 20 30 40 50 60 70 80 90 100
Number of User Paths

(b)

0.8

C

04

Robust Flow Interdiction -B-Depth 31
03-pt = 4!1

10 20 30 40 50 60 70 80 90 100
Number of User Paths

(c)

Figure 2-3: Ratio of throughput reduction of the solutions by our algorithms to the

optimal.

Performance Metric

For all strategies w computed by our algorithms, we calculate the ratio of minPEu A(w, P)

to that of the optimal. The results reported are again averaged over all the scenarios.

Simulation Results

We plot the results in Figure 2-3(c). Taking the depth as four, our approximation

framework achieves interdiction strategies that are more than 70% of the optimal (0.7-

approximation). As in the previous case, we have implemented the framework with

recursion depth of five and six but found that it did not improve the performance.

2.5 Discussion of General Networks

In this section, we extend our network interdiction paradigm and the two flow in-

terdiction problems to general networks. Our network interdiction paradigm can be

46

straightforwardly extended to general networks by allowing the network graph to be

a general directed graph. One caveat is that we need to additionally restrict the flows

that the interdictor injects to be free of cycles. Since otherwise, as the flow value of

a cycle is zero, the interdictor would be able to consume the capacities of the edges

in any cycle without spending any of its budget, which would lead to meaningless

solutions. Under the generalized paradigm, the deterministic and robust flow inter-

diction problems can be defined in the same way as Definitions 2 and 3. For the

network interdiction paradigm on general networks, Proposition 1 still holds. But the

Extended Recursive Greedy algorithm will break down since the edge set it returns

will be an s-t walk instead of an s-t path (i.e. it may contain cycles). Furthermore,

we can prove by an approximation-preserving reduction from the Longest Path prob-

lem in directed graphs [44] that there is no polynomial time (quasi-polynomial time)

algorithm with an approximation ratio of Q(nl-0) for any 6 > 0 unless P = NP

(DTIME(O(n logn)) - NP).3 The reduction works by defining the graph in the

Longest Path problem instance as the network graph and designating each edge as a

user path. We further set the capacities of the edges and the interdictor's budget as

one. Thus, the optimal single-path flow would essentially be the longest path from

the interdictor's source and destination, with the throughput reduction equaling the

length of the path it corresponds to. Enumerating all the node pairs in the graph,

we can get the longest path in the original graph if we can solve the deterministic

flow interdiction problem. This implies that the two flow interdiction problems on

general directed graph are extremely hard to approximate within a non-trivial factor

in polynomial or even quasi-polynomial time. Finally, we note that our interdiction

paradigm can also be generalized to interdiction with multiple sources and destina-

tions by adding a super source node and a super destinations nodes and connecting

the super source and super destination to the original sources and destinations re-

spectively.

3DTIME(n lon) denotes the class of problems that can be solved in quasi-polynomial time.

47

2.6 Chapter Summary

In this chapter, we proposed a new paradigm for network interdiction that models

the interdictor's action as injecting bounded-value flows to maximally reduce the

throughput of the residual network. We studied two problems under the paradigm:

deterministic flow interdiction and robust flow interdiction, where the interdictor has

certain or uncertain knowledge of the operation of network users, respectively. Having

proved the computation complexity of the two problems, we proposed an algorithm

with logarithmic approximation ratio and quasi-polynomial running time was pro-

posed for the deterministic flow interdiction. We further developed an approximation

framework that integrates the algorithm and forms a quasi-polynomial time proce-

dure that approximates the robust flow interdiction within a poly-logarithmic factor.

Finally, we evaluated the performance of the proposed algorithms through simula-

tions.

2.7 Chapter Appendix

2.7.1 Proof of Proposition 1

Let w be an interdiction strategy. If it is a distribution on single-path flows, then

the proposition follows. Otherwise, there exists an f* with w(f*) > 0 that is not a

single-path flow. By the flow decomposition theorem [41] and that the network is

acyclic, we can decompose f* into f* = E qi, where q1 , - . . , qr are single-path flows

from s to t. We further define q*) qi as a scaled version of qi with value -y, for

i {1,. . . , r}. Note that E' val(qi) =y, and since -y < mine C(e), q*, . . . , q* are all

valid single-path flows in F,,. In the following, we show that we can redistribute the

probability that w lays on f* to all its component single-path flows by decreasing w(f*)

to zero and adding va"(q") w(f*) to each w(qi), with the resulting interdiction strategy
-Y

w' satisfying A(w', P) ;> A(w, P). Repeating the process for all non-single-path flows

f* with w(f*) > 0, we prove the proposition.

For any P, we write the linear program (2.1) with respect to f* and P in vector

48

form and construct its dual as follows:

maximize 1 TA minimize Cfi.g0 + ATgi

s.t. Ai < Of. s.t. A T go + 1gi 2 1

0 <A A go, gi > 0

where A = (A,,..., A)T is the vector of the initial flow values, O. C - f, A

is the matrix representation of constraints (2.2), I, 1, 0 are the identity matrix, the

all-1 vector and the all-0 vector, and go, g, are the dual variables. By the strong

duality theorem [421, the optimal value T(f*, P) of the primal problem is equal to

O Tg- + ATg*, where g, g* is an optimal basic feasible solution to the dual problem.

Furthermore, consider the linear program (2.1) with respect to each q* and its dual.

Note that the dual has the same feasible region as that associated with f*. Therefore,

g*, g* is still a basic feasible solution. Now, invoking weak duality, we have

Vi, T(q, P) (C - q*)Tg* + ATg*

It follows that

val(qj)w(f*) T(q*, P)

val(q) w(f*) ((C - q*)Tg* + ATg*)

w(f*)f(C - f*)Tg* + A Tg*] = w(f*)T(f*, P).

Hence, we have A(w', P) A(w, P), and the proposition follows.

49

2.8 Proof of Proposition 3

The proof is done by reduction from the 3-satisfiability problem, which is a classical

NP-Complete problem t451. 3-satisfiability: Given a set of boolean variables xi, 1 <

i < n and a formula C1 V C2 V ... V Ck with each clause Cj being a disjunction (A)

of at most three literals xi or -x, the 3-satisfiability asks whether there is a satisfying

assignment, i.e., an assignment of the variables that makes the formula true.

Given an instance of 3-satisfiability, the corresponding instance of the determin-

istic flow interdiction is constructed as follows. To begin with, without loss of gen-

erality, we assume that there is no clause that contains both xi and - for some i,

as such clause can be satisfied by all the assignments. To create the network, we

first add a path pj with 3n edges for each clause C,. The paths are node-disjoint.

Then for each variable xj, we create a variable gadget with three nodes ui, vio, vai

and two edges (ui, vio), (uj, vi 1). Nodes vio, vi1 correspond to x, xi, respectively. We

next connect the variable gadgets and the paths for the clauses. For each vi0 (v),

let Ci, ... , C, be the set of clauses that contains literal -i (xi). Let el,... , e, be the

3i-th (3i + 1-th) edges on pu, ... , pir. We add edges to the network to sequentially

connect vio, ei, .. . , er, u+1 and refer to the resulting path from vi0 to uj+1 as vjO-ui

segment. For i = n, we further add a node to serve as un+. We designate s = uo and

t = u,+1 as the source and the destination of the interdictor. The set of user paths

is P = {Pi, .. . , Pk} and the initial flow values fi = ... =fk= 1. The capacities of

all the edges, and the budget of the interdictor are set to 1. Now we have completed

the construction of the corresponding instance of the deterministic flow interdiciton.

Note that the constructed network is a DAG and the whole reduction process can be

done in polynomial time. See Figure 2-4 for an illustration of the reduction process.

We proceed to show that there exists a single-path flow f with A(f, P) = k if

and only if there is a satisfying assignment for the original 3-satisfiability instance.

First, if there exists a satisfying assignment with xi = ai E {0, 1}, we claim that the

single-path flow f that corresponds to the s-t path consisting of (ui, via1) and Viai-ui+1

segment for all i has throughput reduction k. Since in the satisfying assignment,

50

variable gadget-- -
UU

plodlot

p2 0 Q' . p y ,/ p

Formula:

(x v A2)^(v x2)

U 2

Figure 2-4: An illustration of the reduction process for the 3-satisfiability instance
with formula (x1V -) A (zjVx 2).

each clause is set true by some literal, we have that each user path contains an edge

with zero residual capacity after interdicted by f. It follows that T(f, P) = 0 and

A(f, P) = k. Second, if there exists a single-path flow f with A(f, P) = k, then the

path Ef that f corresponds to must intersect with all user paths. We next show that

Ef can be converted to an s-t path Ef, consisting only of (ui, v7i,)'s and Viai-1 i+i

segments and also intersect with all user paths. Indeed, Ef, can be constructed by

taking all the (ui, Viaj)'s and Viai-ui+1 segments that Ef intersects. Note that since

there is no clause that contains both xi and 7X for some i, the assignment Vi, xi = a

induced by Ef, is a valid assignment. Since Ef' intersects with all user paths, the

assignment satisfies all the clauses, and thus makes the formula true. Hence, we

justify the validity of the reduction. Combining with corollary 1, we have that the

deterministic flow interdiction problem is NP-hard.

2.8.1 Generalization of the Recursive Greedy Algorithm

In this section, we describe a generalized version of the Recursive Greedy algorithm

that uses more than one anchors. Let a > 1 be some integers. The details of the

algorithm is presented in Algorithm 3. At step 8, instead of going over all v E V,

the generalized algorithm goes through all a - 1 combinations of nodes in V and uses

51

them as anchors. The analysis of the algorithm is given in Theorem 4

Algorithm 3 The Generalized Recursive Greedy Algorithm

Input: Network graph G(, E), user paths P = {PI,... , P2} with initial flow values

{ fi, . . . , fk}, Interdictor's source s, destination t and budget -y
Output: The optimal s-t path Ef

1: Run: RG(s, t, 0, I)
The Recursive Function RG(u, u2 , X, i):

2: Ef := shortest s-t path.
3: if Ef does not exist then
4: return Infeasible
5: if i = 0 then
6: return Ef
7: r := Ax(E, P).
8: for vi, 2,- - -, a-1 E V do
9: Ef1 := RG(ui,vi,X, i - 1),Ef 2 := RG(v,v 2 ,X U Ef,i - 1),. .. ,Efa

RG(va_1, U2 , X U Eri U ... U Ef._ 1 , i - 1).
10: if Ax(Ef1 U ... U Ef., P) > r then
11: r := Ax(Efi U... U Ea, P), Ef := Efi U ... U Efa,
12: return Ef

Theorem 4. If I > [loga d], the Generalized Recursive Greedy algorithm returns an

s-t path Ef with A(Ef, P) > Flogdl+lA(Ef, P), where d is the length of Efr.

Proof. We prove a more general claim, that for all U1, u2 E V, X C E, if I >

[log d], the procedure RG(ui, u2 , X, I) returns an u1-u 2 path Ef with Ax(E, P) >

[g d91Ax(Ef*, P), where Ef- is the u1 -u 2 path that maximized A(-, P) and d is the

length of Ef.. The theorem follows from the claim by setting u1 = s, u2 = t and

X=0.

Let the nodes on the path Ef- be {ui = v,..., Vd = U2 }. The proof is done

by induction on d. First, for the base step, when d = 1, it means that there exists

an edge between ui and U2 , which must be the shortest u1-u2 path. Obviously the

procedure checks this path, and the claim follows. Next, suppose the claim holds

for d< l EN. Whend = i-+1, let v*= v], v = (-,..., v*_ 1 =v .)d. Let
a a al

Ef, ... , Ef; be the subpaths of Ef. from s to v*,..., V*- to t. When RG examines

{v*,.. , v* 1 } at step 8, it invokes a sub-procedures denoted as RG(ui, v*, X(O), I -

1), ... , RG(v*_ 1, U2 , X(a- 1), I - 1). In the above notations, we use Ef, to denote the

52

sub-path returned by the jth subprocedure, XU) to denote X U E, U ... U Ef, for

j E {1, ... , a} and X(0) = X. Let Ef Ef U .. . U Ef.. Our goal is to show that

1
Ax (El, P) > [Ax (Ef-, P),f -[log, d] + I

(2.16)

which proves the induction step since the path Ef that RG(s, t, X, I) returns must

satisfy Ax (Ef, P) Ax (Ef, P).

Since I > [log, dl, we have I - 1 > [log, dl - 1 = [log, d/al. By the induction

hypothesis,

AX(o)(Ef, P) >
1

[g d1 Ax(o) (Ef , P),
[loga d]

AX(1 (Ef2, P) I AXl) (E;, P),
[log, d]

Ax(.a-) (Efa, P) > 1 A x(-1)(E;, P).
[loga d]

For j E {0, ... , a - 1}, by the submodularity of A (Lemma 1), we have Ax(j) (Er, P) >

Ax() (Ef, P). Using this, we sum all the inequalities above and get

a-1

Ax(Ef, P) = Ax (Er 1 , P)
j=0

1 a-1

[log,, d] Ao(Er+1 ,P)
j=0

a-1

[>~)7AX(a)(Ef* P)
ogd] A (,P).

j=0

(2.17)

(2.18)

(2.19)

Again, by Lemma 1, we have for j E {, .. . , a - 1},

Ax(a) (E;, , P) AX(a)u(UjE) (Ef*, P)

53

It follows that

Ax(EfP P) 1 a-i A (2.20)
[1og. dl Z=AX()U(Uj jE,,)(Efj;l ,P)

[dA(a) (Efj U U Ef, P) (2.21)
[log. d]

A XU U Ef U UEf
[log, d] j1j (jlj P

-A XU U Ef P (2.22)

lo0ga d] AX EU j E 'P

- Ax UEj, P (2.23)

s1 [/a

> Ax UEfP - Ax UEfj, P (2.24)
Floga d] (~ =

= d Ax (Ef, P) - Ax (E., P) (2.25)
loga d]I

where inequality (2.24) follows from the monotonicity of A and equalities (2.21),

(2.22) and (2.23) follow from the definition of Ax. From (2.25), we obtain (2.16),

which concludes the proof. L

Time Complexity: As we invoke at most ana sub-procedures at each level of

recursion and the computation of A takes O(m) time, the time complexity of the Gen-

eralized Recursive Greedy algorithm is O((an)(a-1)Im). Again, taking I= log rn, we

get an 1/([loga n] + 1)-approximation with a time complexity of Q((an)(a-1)lognm).

54

2.9 Proof of Lemmas 2 and 3

This section is devoted to the proof of Lemmas 2 and 3. We define

as Ai(A, P).

H OA (e)
F A

eEpi,eEE2,CA(e) pep j pe 2

2.9.1 Lemma 2

Recall the definition of submodularity and monotonicity in Lemma 1. First, we can

easily see from Phase I and Phase II that for all i, A2 is monotonically non-increasing

with respect to A. It follows that A(., P) is monotone.

Next, we prove the submodularity of A. Consider two sets A C B C E and an

edge e E E, e V B. Our goal is to show that A(A U {e}, P) - A(A, P) > A(B U

{e}, P) - A(B, P). We divide the proof into three cases.

Case I: If e E0 , then A(A U {e}, P) - A(A, P) = A(B U {e}, P) - A(B, P) 0.

Case II: If e E E1 , then suppose e E pi for some i. Note that since A C B,

> V. We further divide this case into three subcases. (i). If C(e) - ' > I ,
then we have and = -)Jl) Hence,iA -iAUfe} iB -iBufe}

A(A U {e}, P) - A(A, P) = A(B U {e}, P) - A(B, P) = 0.

(ii). If V) > C(e) - >), then V) >)19 and V) = .V1 S Hence,

jA -iB' iA iAuje} iB -iBUje}'Hne

A(A U {e},P) - A(A, P) > 0,

A(B U {e}, P) - A(B, P) = 0.

(iii). If C(e) - -y < V, we have)1 = I 0(e) -.
iB' iAU{e} = iBUje} C - -. It follows that

u} (C(c) -y) Ai(A U {e}, P),

u}2) (0(e) -y Ai(B U {e}, P).

55

As A U {e} C B U {e}, we have A (A U {e}, P) > A (B U {e}, P). It follows that,

A(A U {e}, P) - A(A, P) = (A - AM) (A U {e}, P)

(iBj -A)Ai(B U {e}, P)

=A(B U {e}, P) - A(B, P),

where the two equalities follow from the fact that A (A U {e}, P) = A (A, P), A (B U

{e}, P) = A2(B, P) since e E2 .

Case III: If e E E2 , then when C(e) - -y > EPe A, we still have

A(A U {e},P) - A(A, P) = A(B U {e}, P) - A(B, P) 0.

When C - (e < E,,,, A, first, we observe that since e El 1 and

i -=~ 1 l Also, as A C B we have A > V and Ai(A, P)

i. Combining these, we obtain

A(A U {e}, P) - A(A, P)

Z V)- A(A, P)
i(eEpB

y V) -.Aj (B, P)
i:eEpi

-C 1 -Y

- 1 p- eAj

C*c --)

> Ai(B, P) for all

A(B U {e}, P) - A(B, P),

Therefore, in all cases, we have A(AU{e}, P)-A(A, P) > A(BU{e}, P) -A(B, P).

Hence, A(-, P) is submodular.

Lemma 3

In the definition of A, we have reasoned that A(A, P) A(A, P). What is left is to

show that A(A, P) < (b + 1) - A(A, P). Let A1 , ... , lA be an optimal solution to the

maximization problem (2.1) associated with A.

56

First, for Phase I, observe that for all i, A, < min{Aj, m E {CA(e)}}. Therefore,

we have E>)2 > T(A, P). It follows that

A(A, P) (A -) (2.26)

Next, for phase II,

0(1 i

ZAj (1 - Aj(A,P))

i eEpi,eEE2,CA(e) ZPDe AN

-, (1- Ai(A, P))

(1
CA(e)

Zpp e A,,, (2.27)

(2.28)
= : 1: A - OA~),

eEE2 ,A Z(e)< e (Aj bAe))

where inequality (2.27) follows from the fact that 1 - f[, aj < E(1 - a3) for 0 <

a, < ... < a, < 1 and equality (2.28) comes from rearranging the terms. Since

Ep e A- CA(e) for all e, we have

eE E2,A (e) <p3e A3

eEE2,OA(e) eEpj Aj

< b (A

-COA(e))

)i 9e

A j(z Ee P >E)e
(2.29)

Therefore, combining

(b + 1)A(A, P).

(2.26) and (2.29), we have A(A, P) = A - + I (- (

57

- 14) = b -A(A, P).

2.9.2 Justification of Integrality Assumption of A

In this section, we show that not much generality is lost if we consider the throughput

reduction function A to take value in integers that are bounded by some polynomial

of n. Specifically, we show the following proposition.

Proposition 5. For any instance I of the robust flow interdiction problem with

throughput reduction function A and some fixed e > 0, we can construct another in-

stance I' in whose throughput reduction function' take integral values that are bounded

by some polynomial of n for all w, P G U. Furthermore, if we apply Algorithm 2 to

I', it returns a strategy w that satisfies

minA(w, P)
PEU

> (1 - C)2 No min A (w*, P)
-(No + 1) (b + 1) log -([log d] + 1))PEU

for the original instance I.

Proof. First, we assume that without loss of generality, if A(w, P) > 0 for some w, P,

then A(w, P) > 1, as we can always scale up all the parameters if the condition is not

satisfied. With this condition, we define A'(f, P) = [N1 A(f, P)j, where N is some

integer bounded by some polynomial of n and satisfies N, = [2(b+1)log(N1M)([log dj+1)

Keeping all other parameters unchanged and substituting A with A', we get the

new instance I'. Note that A'(w, P) satisfies the condition in the statement of the

proposition. Thus, we can apply the proposed framework Algorithm 2 to I' (with

M' = NM). Note that for the Extended Recursive Greedy Algorithm in the frame-

work, the approximate function A we use is calculated with respect to A in the original

instance I.

To establish the performance guarantee of such procedure, we first analyze the

quality of the greedy iterations computed by the Extended Greedy algorithm. At

some iteration, let f be the single-path flow that corresponds to the path returned by

the algorithm. Note that as Lemma 3 holds for all P E U, we have by Theorem 2

58

that

A(f,FP) 2(b + 1) - ([log dl + 1)A(f*P)

1
> IA(f' P)I(b+ 1) - ([log dl + 1)

where f* is the flow returned by the exact greedy scheme with respect to A and f' is

the flow returned by that with respect to '. It follows that

(2.30)S A'(f, P) = LNA(f, P)J
PEU PEU

> (b + 1) - (flog dl + 1)A(f'P)J
PEU

>
PEu

E (I - C)

(N Af' P)-
(b+1 (Flog d] + 1)

N1 A(f', P)
(b + 1) ([log dl + 1)

1 C - 1 A'(f' P).
(b + 1) -([log dl + 1) PEU

Therefore, the quality of the obtained approximate greedy solutions enjoys almost the

same guarantee with respect to '. Then, invoking Theorem 3, denoting the optimal

No-bounded strategy for T as w', we have that

min A(w, P)
PEU

((No

1.I min A'(w, P)
N, PE

+ 1)(b + 1) log M' - ([log dl +

No (1 - E)

(No + 1)(b + 1) log - ([log dl + 1)

No (1 - 6)
(No + 1)(b + 1) log - ([log dl + 1)

No (I -)2

No + 1)(b + 1) log - ([log d] + 1)

)

)

)

m. A(w*, P)

mmI~*,P
PEU N

min A(w*, P).
PEu

El

59

. '(P)
1)) EU N,

1)

Note that the bound obtained in the proposition is essentially the same as that in

Theorem 3.

60

Chapter 3

Fundamental Limit of Volume-based

Network DoS Attacks

In this chapter, we shift out attention to flow-based attacks on networks with dynamic

routing. This framework applies to practical scenarios such as TCP SYN Flood and

DNS Flood [1, 461, where the victim network is typically server farm that employs

dynamic load-balancing and scheduling schemes. This kind of attacks is often referred

to as volume-based DoS attack in the research community [1]. The dynamic nature

of the target system renders the interdiction paradigm in the previous chapter inap-

plicable. Instead, we model the system as a queueing network, which enables us to

incorporate widely studied dynamic routing algorithms such as JSQ and Max-Weight.

We start our analysis with a single-hop network of general bipartite topology,

where one side of the nodes consists of user and adversary traffic dispatchers and

the other side consists of parallel servers with a queue at each server. User traffic

arrives at each user dispatcher at a certain rate and is sent to the servers following

the Join-the-Shortest-Queue (JSQ) rule. Adversary traffic of certain rate arrives

at each adversary dispatchers and gets sent to the servers under some adversary

injection policy. Each server serves the queue at some service rate, with the servers

assumed to not be able to distinguish user and adversary traffic and employs FCFS

service discipline. The success of the network DoS attack, which is also the goal

of the adversary, is defined as making the user traffic in a queue grow to infinity

61

with time, i.e., blocking a certain amount of user traffic from getting served (see

Section 3.1 for rigorous definitions). Projecting into practical scenarios, the servers

in our model can represent web-servers, DNS servers, etc., and the queues correspond

to connection queue, memory or the bandwidth of the servers, depending on the

application. The user dispatchers naturally correspond to load-balancers in various

network applications, and the adversary dispatchers mirror the initiators of the attack

such as botnets. Our model can thus be seen to capture many DoS attack scenarios

in real life such as TCP SYN Flood and DNS Flood [46].

Under our model, we answer the previously raised questions on the fundamental

limit of network DoS attack through the following main results:

1. We first gives a necessary and sufficient condition on the network topology,

the user traffic rates, adversary traffic rates and servers' service rates for the

feasibility of network DoS attack. As the arrival rates of adversary traffic can be

naturally considered as the budget on the adversary's resource, the feasibility

condition can be interpreted as an resource requirement for the adversary to

launch a successful DoS attack and at the same time captures the sustainability

boundary of the network.

2. We then design an optimal adversary injection policy that does not rely on the

knowledge of the network statistics: user traffic rates, service rates and even

the adversary's budget. It is optimal in the sense that the policy achieves the

goal of the network DoS attack whenever the feasibility condition is met. The

existence of such policy demonstrates that the lack of network statistics does

not reduce the adversary's capability to conduct network DoS attack, and thus

the feasibility condition is still valid for adversary that is statistics-oblivious.

We also evaluate the performance and properties of the proposed policy through

simulations.

3. Finally, we generalize our results to multi-hop network that employs the back-

pressure routing policy [161 and extend the feasibility condition and the optimal

adversary injection policy to the multi-hop scenario.

62

Table 3.1: Notations and Definitions
Notation Definition

5, U, V Sets of servers, user dispatchers and adversary dispatchers

s, or n, ul or 1, Vm or m generic server, user dispatcher and adversary dispatcher

S,'J) SV_ The set of servers ul (yin) has connection to

Q (t) Queue length at server n at time t

bn (t), /I Offered service of server n at time t and its mean

A" (t), At User traffic arrival at ul at time t and its mean

Av (t), A-' Adversary traffic arrival at v, at time t and its mean

bu (t), bv (t) Offered service for user (adversary) traffic of server n at time t

au (t), av(t) Total user (adversary) packets routed to server n at time t

au (t), a"n(t) Amount of user (adversary) packets routed from ul (vm) to n at i

Q"n(t), Q"n(t) Amount of user (adversary) packets in Qn at time t

Q(t) Queue length vector at time t

p1, AU, AV Vectors of service rates, user traffic arrival rates

and adversary budget

Us, Set of user dispatchers that only have connections to servers in S'

A further note is that our analysis harnesses combination and extension of results from

two papers by Shah and Wischik [47,48], and a result in Markov chain theory that

establishes transience of Markov chains [49], which may be of independent interests.

The rest of the chapter is organized as follows. In Section 3.1, we formally present

our model and problem formulation. We then introduce the feasibility region in Sec-

tion 3.2. We next summarize some key auxiliary results in Section 3.3 and introduce

the optimal adversary injection policy in Section 3.4. In Section 3.5, we evaluate

the injection policy through simulations. Section 3.6 is devoted to generalization to

multi-hop networks. We conclude the chapter in Section 3.7.

3.1 Model and Problem Formulation

In this section, we formally present our system model for single-hop networks, which

captures server farms as a major application. The model for multi-hop networks will

be presented in Section 3.6. To unify the terminology, we will refer to entity that

flows in the network as packet. We also assume for simplicity that packets are of the

same length. Our results can be easily generalized to the case of non-uniform packet

63

lengths. The notations that we use throughout the paper are summarized in Table

3.1.

3.1.1 Network Model

As our single-hop network model mainly mirrors server farms, we adopt terminologies

therein, and will use single-hop network and server farm interchangeably. Consider a

single-hop network with a set of parallel servers (sinks) and a set of traffic dispatchers

(sources). The dispatchers are divided into two disjoint subsets: user traffic dispatch-

ers that route user traffic to servers, and adversary traffic dispatchers controlled by

the adversary that sends adversary traffic to servers to block the user traffic. We use

S {s1,..., SN} to denote the set of servers, U = {uI, ... , UL} to denote the set of

user traffic dispatchers and V = {v1, . . , vM} to denote the set of adversary traffic

dispatchers. For notational convenience, some time we also use the indices n, 1, m to

denote some server, user dispatcher and adversary dispatcher. We define S, C S as

the set of servers that user dispatcher ul has connection to, and Sm C S as the set

of servers that adversary dispatcher Vm as connection to. Each dispatcher can only

route packets to the servers that it has connection to.

3.1.2 Queueing Dynamics

We consider a discrete-time system. Each server has a queue that buffers the packets,

with Q,(t) representing the length of the queue of server sn at time t. Additionally,

we define Q(t) = (Q 1(t), ... , QN(t)) as the queue-length vector at time t. The of-

fered service of server n at time t is denoted by bn (t). The servers do not distinguish

user and adversary traffic and employ a First Come First Serve (FCFS) service dis-

cipline'. At each time slot, Au(t) packets arrive at user dispatcher ul, and u1 routes

the packets to the servers following the "Join-the-Shortest-Queue" (JSQ) policy, that

is, at each time slot, each user dispatcher ul routes all its incoming packets to the

server s with the minimum queue length among the ones that it has connection to

'This is not a technical choice. Our results hold under all common service disciplines except

priority based service with user traffic having the priority

64

(s c arg ninEs Q,(t)); A"m(t) packets arrive at adversary dispatcher vm, and vm

routes the packets to servers according to some adversarial injection policy 2. We

assume that b,(t)'s, A'(t)'s and Am(t)'s are independent integer-valued random vari-

ables, and are i.i.d across time slots with E[b,(t)j , E[A'L(t)] = A', E[XAv(t)] = AV

We assume that the random variables are bounded, i.e., there exists C > 0 such that

lbn(t)l, IAu(t)l, IAm(t)I ; C. For a finer description of system dynamics, we define

Qu (t) and Qv(t) as the number of user packets and adversary packets in Qn at t, re-

spectively. At each time slot t, we decompose the offered service bj(t) into that offered

to user traffic b(t) and that offered to adversary traffic bv (t) with b(t)+b(t) = bn(t).

b" (t) and bv(t) generally depend on the queue composition. We further define au(t) as

the sum of user traffic arrivals to server n and av (t) as the counterpart of adversary

traffic. we also write av,(t) (a"(t)) as the amount traffic that user dispatcher u1

(adversary dispatcher vm) sends to n at time t. We impose the following ordering on

system dynamics for ease of presentation: at each time slot, first, user dispatchers

route their incoming packets to the servers following JSQ; second, adversary dispatch-

ers route adversary packets to the servers following some adversarial injection policy;

finally, servers serve the packets in the queues. Based on the system dynamics, we

summarize the queue length evolution as follows:

Qu (t + 1) = [Qu (t) + au"(t) - b" (t)]+

Qv (t + 1) = [Qv (t) + av (t) - bvn(t)]+

Qn(t + 1) = Qvn(t + 1) + Q"n(t + 1),

where [a]+ := max{a, 0}. We remind the reader that user traffic and adversary traffic

are buffered in a single queue at each server and Q", Q"'s represent the amount of

user or adversary packets in the queues. In this paper, we will impose the following

assumption on the system and the space of the adversary injection policies.

Assumption 1. limnt, Q , and the time averages of arrivals and services exist

2 To avoid unnecessary complexity, we avoid formally defining the notion of adversary injection

policy, but rather state it as the way that the adversarial dispatchers inject packets to the servers.

65

v18
31 k%|>s

2
2

333

8
V S

U

< -l 2

Figure 3-1: Illustration of our single-hop network model. User dispatchers are rep-

resented by hollow circles. Adversary dispatchers are represented by solid circles.

Servers are represented by rectangles. The numerical values in the graph represent

the traffic arrival rates to user/adversary dispatchers and the service rates of servers.

almost surely.

It can be shown that our model and the policies we will study satisfy the assump-

tion provided that the random variables in the model satisfy some mild conditions [?].

We note that our results also hold under more general case, but require more careful

and nuanced reasoning on convergence of random variables.

We give an illustration of our model in Figure 3-1. It will serve as the running

example throughout our discussion of single-hop networks.

3.1.3 Problem Formulation

As we mentioned, the adversary conducts network DoS attack by controlling adversary

dispatchers to send their available adversary packets to servers and seeking to prevent

user packets from getting served. A network DoS attack is considered successful if the

adversary manages to block certain portion of user packets from service. Formally,

66

the goal of the adversary is that

E[Qu(t)]
For some n E [N], lim > 0. (3.1)

t-400o I

By Little's law, (3.1) is equivalent to making the average delay experienced by user

traffic grow unbounded (linearly) with time.

In an instance of network DoS attack, pn 's and Au's can be seen as network while

AV 's can be viewed as the adversary's resource budget since it dictates how many

packets the adversary dispatchers can inject to servers. We summarize the statistics

and budget into vector forms as the service vector i = (Pi,... pI11N), user traffic

arrival vector Au = (A" ... , A) and adversary budget vector AV (",..., Xy).

Based on the above preliminaries, we formally define the network DoS attack

problem.

Definition 4 (Network DoS Attack Problem). Given a single-hop network with

servers S, user dispatchers U, adversary dispatchers V. The network statistics and

adversary budget vector are given by pi, Au and XV, respectively. The Network DoS

Attack Problem seeks an adversary injection policy under which there exists some

server n with lim)> 0, i.e., the adversary achieves the goal with the policy.

The problem is feasible if such an injection policy exists.

Note that the definition of the Network DoS Attack problem only involves the

means of the arrivals and services. We will demonstrate that the means are sufficient

to characterize the problem.

Example: Consider the network in Figure 3-1, the network DoS attack problem

is feasible. An injection policy that achieves the goal is that: v, injects all its traffic

to S2. v 2 injects half of its traffic to S2 and the other half to S3. v3 injects all its traffic

to S3. Note that if vi and v2 both injects all the traffic to S2, this will cause the queue

in S 2 to overflow, but will not achieve the goal. The (intuitive) explanation is that,

as the user dispatchers are using JSQ, the user traffic from U 2 and U 3 will not be sent

to S2 (in equilibrium state). Since S 3 and s4 have large enough capacities, there will

not be any queue with limt. 00 E > 0.

67

3.2 Feasibility Region

In this section, we propose a necessary and sufficient condition on the network statis-

tics and the adversary budget vector for the network DoS attack problem to be fea-

sible. If we fix the network statistics, then the condition characterizes the feasibility

region of the adversary. We begin by making some preliminary definitions.

For each subset of servers S' C S, we define Us, as the user dispatchers that only

have connections to servers in S', i.e., Us' = {ul I Su C S'}. We further define A(S')

as

A(S') can be interpreted as the excess service rate of S' with respect to the user

traffic generated by Us,. Finally, for each S', we define the following linear program

LP(S') whose optimal value is denoted as val(S').

val(S') = max >3 fmn (3.2)

mEV nES'

s.t. > fn K < A, Vn E V (3.3)
nES'

E3fm n i pn, Vn E S' (3.4)
mEV

fmn = 0, if n lSvm

fmn >_ 0, Vm V.

val(S') can be interpreted as the maximum amount of traffic that the adversary

dispatchers can send to S' without exceeding the budget constraints of adversary

dispatchers (Constraint (3.3)) or injecting to any server at a rate larger than its

service (Constraint (3.4)). It will be clear soon that val(S') represents the maximum

meaningful capacity reduction that the adversary dispatchers can inflict on S', and

it can be achieved by an stationary injection policy given by the solution to LP(S').

Relating A(S') and val(S'), we define the val-condition, which will be play a key role

in the necessary and sufficient condition we propose.

68

S2

Si dos not

SS

31 S> -
A4

Figure 3-2: Illustration of the val-condition. Consider three subsets of servers S1, S2

and S3 enclosed in dashed rectangles. val (S1) = 9, val (S2) = 14, val (S3) = 14 and

A(SI) = 10, A(S2) = 13, A(S3) = 9. Thus, S2 and S3 satisfies the val-condition while

Si does not.

Definition 5 (The val-condition). A subset of servers S' C S satisfies the val-

condition if Us, is non-empty and val(S') > A(S').

We provide an illustration of the val-condition in Figure 3-2 (with the same net-

work as in Figure 3-1).

Intuitively, if S' satisfies the val-condition, then it is possible for the adversary to

make the residual capacity of S' be not enough for the incoming user traffic of Us,,

thus successfully blocking user traffic since the user traffic from Us, can only go to

S'. It is then natural to consider that the network DoS attack problem is feasible if

and only if there exists a subset of user dispatchers that satisfies the val-condition.

We formalize the intuition in the following theorem.

Theorem 5. The network DoS problem is feasible if and only if there exists a subset

of servers S' C S that satisfies the val-condition.

Proof. The proof is divided into two parts. In the first part, we prove the sufficiency

69

of the val-condition by showing that, if there exists S' C S that satisfies the con-

dition, then the stationary injection policy induced by LP(S') achieves the goal of

the adversary. In the second part, we prove the necessity of the val-condition by

starting from any given adversary injection policy that achieves the goal and taking

time averages, which will lead to establishing that some S' satisfies the val-condition.

Sufficiency: If there exists a S' C S such that Us, is non-empty and val(S') >

A(S'), we denote the solution to LP(S') as {f*}m.n. Consider the following ran-

domized injection policy for adversary: at every time slot, each adversary traffic

dispatcher m that has connection to S' injects its traffic to server n E S' with prob-

ability f*/ En' f*,,,; other adversary dispatchers inject the traffic arbitrarily. We

proceed to show that such policy achieves the goal, i.e., under the injection policy,

there exists a server n such that limt,, E[QU(t)] > 0.
t

First, examining the servers in S', we have

Z ES' Qn(t) >ZEnS'E>I= an(') - ZnCS' i= bn.(')
t t

(a(i) a (i) Ztib,(i)

t t t

Let t goes to infinity in the above inequalities. By law of large numbers [?I, the limits

exist with probability one.3 Therefore, on each sample path (except a set of measure

3 For notational brevity, we will often use the same symbol for both random variables and their
realizations on sample paths, e.g. Qn(t) as Q,(t, w)

70

zero), we have

lim nES' Qn(t)

taxtJn aW(i Enes, an(') Engs, bn(i)
>lim +nS

> EA +(f Y~(n
IEUs, mEV nES' nES'

=val(S') - A(S') > 0. (3.5)

From Inequality (3.5), we claim the following, which will lead to the first part of the

proof.

Claim 1. With probability one, there exists n E S' such that limts, Qn > 0.

Proof of Claim 1: We prove the claim by showing that we can find such n on each

sample path (except a set of measure zero). Fixing an arbitrary sample path, by (3.5),

there exists an ni E S' such that limt-- 4" > 0. If li_ QU) > 0, then we
t fl

finish the proof. Otherwise, we have that limt Qs (t) > 0 and linit =(t) 0.

Since server ni is overloaded and its service discipline is FCFS, limts = 0t

implies that limt->o E aul) = 0. This means that the time-average traffic ratet

from Us, to ni is zero. Now, we consider the subset of servers S' = S'\{rn1}. Note

that since EmEV fn*011 < 1 ,, we have that EmeV EnES' f/n > val(S') - PU 1 . It

follows that

lim ZnES 1 Qn(t)
t->00 t

> n i a(al(t bn(t)

rnS n

> lim +
~ -+on ES'

> " +u /i ,*n- n
ni EUsI mEV nES' nES'

>[val (S') - fin] - [A(S') -[pn

>0,

71

where the second inequality follows from that limt .. t = 0. Therefore, we

can repeat the argument above, that there must exist another n 2 E S' such that

limt. Q 2() > 0. And if limt.Q = 0, then again, it implies that the time-

average traffic rate from Us, to n2 is also zero. By repeating such argument, we will

arrive at one of the two following situations: (i). we find a queue find a queue ni

such that lim > 0; (ii). we arrive at Sk that is a singleton set {nk} with
t-

limt" Q'k (t > 0. Furthermore, limt = 0 f o r j=1,..., k - 1. This

implies that limt, -v-- > 0 as Us, is non-empty and the user traffic in Us, must

go to somewhere in S'. Therefore, there exists some n such that limt, Q"(t)/t > 0

with probability 1.

From the proof of Claim 1, it is easy to see that the claim can be strengthened as,

with probability 1, for some E > 0, there exists n E S' such that limtZ Q"(t)/t > E.

Since S' is finite, we have there exists a n C S' such that limt-, Q"(t)/t > c with

probability at least 1/IS'I where JS' denotes the cardinality of S'. Hence, there must

exist an n with limt, E[Qu(t)]/t > 0. Thus, we have shown that the randomized

policy achieves the goal if there exists an U' that satisfies the val-condition.

Necessity: Suppose that there exists an injection policy that achieves the goal,

then there must exists a sample path on which limts, 0 Q-t!t > 0 for some n. Under one
t

such sample path, let S' E S be the subset of servers that ended up getting overflowed

under such policy, i.e., Vn (E S', limt,, Qn > 0 and Vn V S', limt., Q(t) 0.t 00 t

Since the queues in S' grow linearly with time while the queues in S\S' do not,

eventually queues in S' will be longer than those in S\S'. Therefore, for every user

dispatcher ul that has connection to servers that are not in S' the time average arrival

rates from ul to servers in S' are all zero, by the property of JSQ. Formally, we have

t-1
'lim ' > "() = - , vu, s.t. sul n (s\s') 0. (3.6)

nES' i=1

We now claim in the following that S' satisfies the val-condition. By establishing the

claim, we prove the necessity part of the theorem.

72

Claim 2. S' satisfies the val-condition.

Proof of Claim 2: Recall that the set of user dispatchers that only have connections

to servers in S' is denoted as Us,. We first prove that Us, is not empty. For if not,

suppose Us, is empty, then by Equation (3.6), the time average rates from all user

dispatchers to S' are zero, i.e., the user dispatchers inject all their traffic to the non-

overloaded servers S\S', and thus the goal would not be achieved.

We now proceed to demonstrate that val(S') > A(S'). Note that for every n E S',

limt, 0o Qn(t)/t > 0. It follows that the expected sum arrival rate at server n must

be greater than its service rate. Therefore, for each n E S',

i ia=(i) + E aV(i) (') bn(lim +
tx +0 t t

=lim (jG) + Ei t - P > 0.

It follows that for each n E S'

li I a (i) (i i a v(i)lim + min lim E -t p 0 > 0.t +00 t (t->oc t

Based on this, we define a set of {f}mn as:

t1av an(i) .. E - I an(i)fmn = lim , if lim ; <Pn,
t->oo I t-aoo t

and otherwise,

t--ofmn == limn lim -i1n Pn.t-+oo0 t t >oo t

It is easy to verify that {f}m n satisfies the constraints of LP(S'). Furthermore,

innS' a (+ fmn - n > 0.
neS' nES'mEV nES'

73

Here, the strict inequality holds since Us, is non-empty. It follows that

0 < E 'I - 1 pn + E E fn < val(S') - A(S'),
uIEUsi nES' nES'mEV

which implies that S' follows the val-condition.

The necessity of val-condition follows directly from Claim 2. L

Based on Theorem 5, we have the following corollary. It states that to check the

feasibility of the network DoS problem, we only need to check the subsets of servers

induced by subsets of user dispatchers.

Corollary 2. The network DoS problem is feasible if and only if there exists a non-

empty subset of user dispatchers U' C U, such that Su, = U,,Uy Su, satisfies the

val-condition.

Proof. From the definition of val function, we have that if there exists a subset of

servers S' that satisfies the val-condition, then Us, satisfies the condition in Corollary

2. Conversely, if U' C U satisfies the condition in the corollary, then ST, g S satisfies

the val-condition by design. 0

Remark: For an adversary injection policy, it is optimal if the adversary achieves

the goal under such policy whenever the network DoS attack problem is feasible

(i.e., it achieves the feasibility region.); it is oblivious if the policy does not rely on

knowledge of the network statistics tL and A" or budget vector A". The proof of

Theorem 5 already gives us an stationary-randomized adversary injection policy that

is optimal. However, the policy is not oblivious since it involves solving LP's which

depend heavily on network statistics. Since in practice the adversary often does not

have such knowledge, if the feasibility region could not be achieved by any oblivious

policy, then it would not serve as a tight characterization of the fundamental limit of

network DoS attack. We bridge this gap by showing in the sequel is that, an optimal

and oblivious policy does exist, which justifies the validity of the feasibility condition

in practice.

74

3.3 Preliminary Results

In this section, we introduce the key preliminary results that lay the foundation of

the adversary injection policy that we propose.

3.3.1 Queue Length Behavior Under JSQ

Consider a server farm with set of servers S = {s 1 , . . ., SN} and set of traffic dispatch-

ers U = {U 1 ,. . . , UL} (There is no adversary dispatcher.). The traffic dispatchers route

incoming traffic to servers following the JSQ rule, with ties broken arbitrarily. Simi-

lar as in our model, the service rate of each server sn at every time slot is a random

variable (i.i.d across time) with mean yr, and the arrival at each dispatcher ul is a

random variable (i.i.d across time) with mean A,. The tu's determine the throughput

region of the network, i.e., the set of Al's that are supportable under some routing

policy. It is well known that JSQ is throughput-optimal in the sense that using JSQ,

the server farm can support the incoming traffic as long as Al's lie in the throughput

region [?]. It is also intuitively understood that when the arrival rates are outside

the throughput region, JSQ achieves graceful failure such that the queues grow with

time in a balanced manner. The following result makes this precise.

Consider the following optimization problem P

min E r (3.7)
n

S.. A,. = A,, Vl E U (3.8)
nEs

'rn A -Ai p, Vn E S (3.9)
1:nES.,

Ain = 0, Vn S,, (3.10)

r", Ain > 0, Vl, n. (3.11)

Note that P is a convex optimization problem, and hence has a unique optimal

solution. We have the following proposition.

75

Proposition 6. Let r* = (r*,.. .,r*) be the optimal solution to the optimization

problem P associated with the server farm. The queue lengths at the servers satisfy

that for any 6 > 0, for each n,

lim P -r* < 6 =1
t--+oo t

Proof. The proposition follows by applying the results from two papers by Shah and

Wischik 147,481. We defer the details to the appendix. 0

Proposition 6 establishes that under JSQ, the growth rate of queue lengths (over

time) converges to the optimal solution to P in probability. It characterizes the queue

length behavior under JSQ in both under-load and over-load regimes. In the former

case, the solution is the zero vector, which implies that queues do not grow with time;

in the latter case, the optimal solution is the "most balanced" overflow rate that is

achievable, and the overflow rate under JSQ converges to that.

Further, we consider the optimization problem P', which is a modified version of

P that removes the non-negativity constraints on rn and replace constraint (3.9) with

equality:

min Ern

s.t. Ain = A, Vl c U
nEs,

rn = E An - n, Vn S
l:nCSu,

hAn = 0, Vn S,,

Ai _ 0, Viln.

7' is also convex and has unique optimal solution. If we consider an (virtual) alternate

network dynamics that allow the queues to go negative, i.e., Qn(t + 1) = Qn(t) -

bn(t) + an(t), then we can link the queue length behavior under JSQ in such alternate

76

dynamics with the solution to P'.4

Proposition 7. Let * = (i*,..., i*) be the optimal solution to the optimization

problem P' associated with the server farm having the alternate dynamics . The

queue lengths at the servers satisfy that for any 6 > 0, for each n,

li I (Q ,(t) -limp P M t *
t--oo0 t n <K =1. (3.12)

Proof. The proof is the same as Proposition 6. l

By expanding the limit expression (3.12), we obtain the following corollary.

Corollary 3. Under the alternate dynamics, if minn i* > 0, then Ve > 0, there exists

a T > 0 such that for all t > T,

{
Proof. Take 6 = ' minr f* > 0, by Proposition 7, for each n,

limP
t-+Oo

QM(t)
t

Hence, fix a e > 0, for each n, there exists a Tn,, such that for all t > Tn,,,

P Qr(t) >1--
- N

Q,(t) C
<-.

Let T = max,1 Tn,. By union bound, we have for all t > T_

P {3n, Qn(t)
t

Taking the complement, it follows that

P Vn, Qn(t)
t

1 - C.

4Under the alternate dynamics, JSQ specifies that the dispatchers route traffic to servers with
the minimum queue length value.

77

Vn, Qn (t) > fn> -E
2

*
<-==* p

< f n* <
2 -

> n* >
2 -

f *

El

The two optimization problem 7 and P' differ only in the non-negativity con-

straints of rn's. Our next result shows that their optimal solutions are identical

under certain condition. For two vectors r and F, we write r > f if Vn, rn > rn;

r > i if Vn, rn fn; r = i if Vn, rn = n .

Proposition 8. Let r* be the optimal solution to P and F* be the optimal solution

to P'. For any n, r* > 0, then r* = f*.

Proof. We first show a simplified version of Proposition 8: if r* > 0, then r* =

and then extend the proof to the original version. We prove the simplified version by

establishing two claims: (i). Under the condition that r* > 0, if i* > 0, then r* = f*

and (ii). Under the condition that r* > 0, i* > 0. These two claims combined yield

the proposition.

We start with the first claim. Observe that if r* > 0 in the optimal solution

to P, then the corresponding constraint (3.9) must be satisfied with equality, since

otherwise we can decrease r* and obtain a better solution. Therefore, r* must be

feasible to P'. Conversely, if some f > 0 is feasible to P', then it must also be

feasible to P. Combining these, we have under the condition that r* > 0, if i* > 0,

then r* is feasible to P' and F* is feasible to P. Since both P and P' have unique

optimal solution and they have the same objective function, we have r* = f*. We

now proceed to establish the second claim. If there is an n such that f* < 0, we

consider a dispatcher 1 such that n E S,,,. We claim that for all n' E S 1 , F*,, < 0.

Since otherwise if there is a n' E S, with '* > 0, we can increase Ain and decrease

A, and form a vector i' with 11f'||2 < 11i*11 2 , which contradicts the optimality of

f*. We repeat this argument for other user dispatchers that have connections to S,

until we arrive at a subset of servers S' that satisfies: (i). i* < 0 for all n E S' and

(ii). there does not exist a user dispatcher that has connection to both servers in S'

and servers in S\S'. This implies that in the optimization problem 7P, it is feasible

to have r, = 0 for all n c S' since the constraints for n E S' and n c S\S' do not

interfere with one another. Hence, by setting the entries in r* that correspond to all

78

n E S' to zero, we obtain a better solution to P, which contradicts the optimality

of r*. Hence, we prove the second claim, and conclude the proof of: if r* > 0, then

r* =r*.

Now, for an arbitrary n such that r* > 0, again, consider some dispatcher 1 such

that n c S,. We have r*, > 0 for all n' E S,, since otherwise one can decrease A

and increase An for some n' with r*, < 0 and obtain a better r than r*. Repeating

this argument, by a similar reasoning as above, we will arrive at a subset of servers S'

that satisfies r* > 0 for all n E S' and there is no user dispatcher that has connection

to both S' and S\S'. Therefore, we can decompose P into two parts that correspond

to S' and S\S' respectively. Applying the previously proved simplified version to the

part of S', we have r*, = r*, for all n' E S', which include the n we start with. Hence,

we conclude the proof of the proposition. D

3.3.2 Transience of Markov Chain

In this section, we introduce a sufficient condition for transience of countable-state

Markov Chain. It will play a key role in establishing that the policy we propose

achieves the goal of the network DoS attack problem. The condition, stated in Lemma

7, is adapted from Theorem 2.2.7 in [49].

Lemma 7. Let L be an irreducible countable-state discrete-time Markov Chain with

state space A. Let X(t) denote the state of the chain at time t. The chain L is

transient, if there exist a non-negative function (Lyapunov Function) f(a), a E A, a

positive integer k, and e > 0, -y> 0, such that, setting A = {a : f(a) > y} $ 0, the

following conditions hold:

1. E[f(X(t + k)) - f(X(t)) I X(t)=aj] ;> c, for all t, and a, E A,.

2. for some d > 0, the inequality f(ai) - f(aj) < -d implies that the one-step

transition probability from ai to aj is zero.5

5 The original version of Theorem 2.2.7 in [491 states this condition as "the inequality If(ai) -
f (aj) I < d implies that the one-step transition probability from ac to a3 is zero". One can easily
show from the proof of Theorem 2.2.7 in 149] that the original condition can be relaxed to the one

we state in this paper.

79

Furthermore, let X(O) be a state such that f(X(O)) c Ay. Define the stopping time

T = inf{t > 1 : f(X(t)) < -y I X(0)}. If the above two conditions hold, then

P-r = oO} > 0.

The lemma can be interpreted as a converse of the Foster-Lyapunov theorem.

It states that, if we can find a Lyapunov function on the state space such that in

conditioning on a subset of states, the Lyapunov function has positive k-slot drift,

then the Markov Chain is transient.

3.3.3 Monotonicity Property of JSQ

We present a sample path-wise bound regarding the queue length vector of JSQ server

farm with the alternate dynamics. Consider a server farm with servers {S1, . . , sN}

and dispatchers {ui, ... , UL}, where all dispatchers use JSQ routing. The arrivals

and services at each time slot are upper bounded by C. We assume that the queues

evolve under the alternate dynamics (as in Proposition 7), which means that all

the realized services equal the offered services and the queue lengths can become

negative. Consider a sample path of such system. Observe that if we are given

an initial queue length vector Q(0) = {Q,(0), ... , Q,(0)}, sequence of arrivals at

user dispatchers (AU(0), A(1),..) where each Au(t) = (A"(t), . . . , Au (t)) specifies

the arrivals at time t, sequence of offered services at servers (b(0), b(1)) where

each b(t) = (b,(t), ... , bN(t)) specifies the offered services at time t, and certain tie-

breaking rule, then the queue length vector at each future time slot can be fully

determined. Therefore, consider two JSQ server farms whose traffic arrivals and

services are identical random variables, one has initial queue length vector Q(0) and

the other has Q (0). We can couple the (random) queue length vectors at time slot

t of the two system in a sample path-wise manner. At each sample path with some

common sequences of arrivals (Au(0), Au(1), . . .) and services (b(O), b(1), .. .), let Q(t)

and Q(t) be the (deterministic) queue length vectors Q(0) and Q(0) evolve into at t

under the sequence, respectively. Since the arrivals and services of the two systems are

identical random variables, the above procedure forms a coupling. If we can prove

80

some relation between deterministic queue length vectors Q(t) and Q(t), we will

obtain that the two random queue length vectors satisfy such relation in a stochastic

sense. The following proposition gives one such relation.

Proposition 9. If Q(O) > C(0), then at each time t, for all n,

Qn(t) Qn(t) - N1 LC,

where N1 = N! + 1. The result holds for arbitrary tie-breaking rules that the two

systems use.

Proof. We defer rigorous proof to Appendix 3.8.2 and gives some intuition here. Sup-

pose that the system is performing JSQ with the finest granularity, i.e., for each packet

that arrives at some dispatcher, the dispatcher sends the packet to the server with

the shortest queue (among the ones that it is connected to) and the queue lengths

are updated immediately afterwards. Then, one can actually show that under certain

tie-breaking, Q,,(t) > Q(t) for all n, t. The argument is that such relation is invariant

through any packet transmission, provided that the ties are breaking appropriately.

The additional MILC factor in Proposition 9 accounts for different tie-breaking rules,

and that the JSQ in our model does not need to be at such fine granularity. D

3.4 Optimal Oblivious Adversary Injection Policy

In this section, we design an optimal oblivious adversary injection policy, that achieves

the goal whenever it is feasible and does not require knowledge of network statistics.

From the proof of Theorem 5, we observe that intuitively an optimal policy should be

able to identify a subset of servers that satisfies the val-condition and appropriately

allocate adversary dispatchers' traffic to the subset of servers without over-expending

budget on any single server (c.f. constraint (3.9)). For an optimal policy to be

oblivious, it needs to achieve the two aforementioned tasks based solely on queue-

length information rather than network statistics. Before introducing such policy, we

first present an intermediate policy that is optimal but semi-oblivious, in the sense

81

that it achieves the second task without relying on network statistics, i.e., given a

subset of servers that satisfies the val-condition, the policy achieves the goal decides

the adversary injection based on queue length information only. The policy, called

"Target-JSQ policy", brings out a key idea and paves the way to the optimal oblivious

policy. Therefore, we first present and analyze the Target-JSQ policy.

3.4.1 Target-JSQ Policy

As its name suggests, the Target-JSQ policy works by identifying a subset of servers

that satisfies the val-condition, and then making all the adversary dispatchers that

have connection to that subset send packets to the servers following JSQ rule. For-

mally, let S' be a subset that satisfies the val-condition. For all the adversary dis-

patchers vm such that Svm n S' z 0, at each time slot, vm send its packets to the

servers in S 5' n S' with the shortest queue. Other adversary dispatchers send packets

arbitrarily (or do not send packets at all). Theorem 6 establishes the optimality of

the Target-JSQ policy.

Theorem 6. Suppose S' C S satisfies the val-condition and all the adversary dis-

patchers that have connections to S' inject traffic (only) to S' according to the JSQ

rule, then we have

3n E S', lim EQnt]> 0.
t-+00 t

Proof. Define Vs, as the subset of adversary dispatchers that have connections to S',

i.e., Vs, = {vm I S, n 5' / 0}, and recall that Us, is defined to be the subset of

user dispatchers that only have connection to S', i.e., Us, = {ul I Su C S'}. Since

S' satisfies the val-condition, Us, is non-empty. If Vs, is empty, then A(U') < 0,

which means that the total rate of incoming user traffic to S' is greater than the total

service rate of S'. Hence, the theorem vacuously holds. Therefore, we can assume

that Vs, is not empty. For simplicity, we consider the case where the adversary

dispatchers in Vs, inject packets to S' according to the JSQ rule, and other adversary

dispatchers send nothing to the servers. The argument applies to the case where other

adversary dispatchers inject arbitrarily as well. Now, we study the system formed

82

by user dispatchers U, adversary dispatchers Vs, and servers S, with Vs, only have

connections to S'. Note that the system is a server farm where all the dispatchers

(U U Vs,) employ JSQ routing. Therefore, the queue length growth rates observe

Proposition 6. Let P be the optimization problem in Proposition 6 that associates

with the system and r*, .* be the optimal solution to P. We will use A'* and A*

to denote the component in A* that correspond to user dispatcher ul and adversary

dispatcher vyin, respectively.

For the subset of servers S', the total incoming rate of adversary traffic equals

Zmev, , which by definition, is greater than or equal to val(S'). The total in-

coming rate of user traffic is at least ~ Au. Since S' satisfies the val-condition,

we have ZEVS, Am+ Z us, Au > s . It follows by summing up constraints

(3.9) of P over all n E S' that r* must have positive entry. Let ' be the set of servers

in S' whose corresponding entry is positive in r*, i.e., 5' = {s, E S' I r* > 0}. By

the above reasoning, ' 0. We will show in the following lemma that there must

exist user dispatcher ul such that S., C ', which means that the user traffic from u1

can only go to servers in '.

Lemma 8. There exists user dispatcher ul such that S,, C '.

Proof. Assume for the sake of contradiction that there is no such user dispatcher ul,

that is, every user dispatcher has connection to S\S'. Under this condition, we first

establish the following claim.

Claim 3. The optimal solution A* must satisfies that A*, = 0, A* = 0forallnE',

user dispatcher ul and adversary dispatcher vm that have connection to server in S\S'.

Proof of Claim 3: If the claim does not hold, then we can decrease some positive

A* (or A*n) by a small amount 6 > 0 and add to A* , (or A* ,) with n' E S\9'. This

will result in that r* > 0 decreases by 6 and r*, = 0 increases by 6, thereby obtaining

a r with a smaller value of Z, r2, which contradicts the optimality of r*.

Based on Claim 3, we proceed to show the following.

83

Claim 4. If there is no user dispatcher u1 with S, C ', then

S 5 A > val(S') -E p (3.13)
mEVsI nES'\S' nES'

Proof of Claim 4: Let Vs' be the subset of adversary dispatchers that only have

connections in k. Note that VS, C VS,. By Claim 3, we have A*,m = 0 for all

m (/s',n E S'. Therefore,

MiVs' nES'\S' m Vst nES'\S'

A*, 5 A. (3.14)
nmS's'

Now, recall the linear program LP(S') that defines val(S'). Let {f*} m n be a set of

optimal solution to LP(S'). We have by the definition of %S',

S f~n = E f~n , Pn. (3.15)
mJYs/ nES' mEYsi nE.' ng'

Furthermore,

5 f5m 7 (AV 5 A*, (3.16)
mgfs, nES' m s' mElVs/ nES'\S'

where the first part follows from Constraint (3.3) of LP(S') and the second part

follows from (3.14). Hence, combining (3.15) and (3.16), we have,

val(S') - I in 5 f + = *f n 1n

n~g' mrs' 9nES' mgVs, nES' nG

< mL An)

mv s' nES' mEVs' nES'\S'

which conclude the proof of Claim 4.

84

Again, by Claim 3, we have

In

lEU nES'\S' lEUS'

IEUs1

in
nES'\S'

nES'

Then, summing up constraints (3.9) of P over n E S'\9', we obtain

r*

nES'\S'

A*r + Z 5 A* -5m n
nESI\S"' :nESl nES'\S' m:n ESvTm nES'\S'

A* + 5 A* - E Pn

1EUs' nES'\S' rnEVs, nES'\S' nES'\S'

> Ai + val(S') - E n- 5n Pn

IEUs' nES' nES'\S'

A + val(S') - 1p: = val(S') - A(S') > 0,
lEUs' nES'

where Inequality (3.18) follows from rearrangement of the sums,

follows from (3.17) and Inequality (3.20) follows from Claim 4.

definition of S', Zns'\sr* = 0, which contradicts (3.21). Hence,

a ul such that S, E '. This concludes the proof of the lemma.

Inequality (3.19)

Observe that by

there must exists

0

Based on Lemma 8, invoking Proposition 6, we have that for all n E 9', for any

6 > 0, limt,, P{|f I - r*I < 6} 1, i.e., 4n?) converges to r* in probability.

As in our system, limt, Qn(t) exists almost surely, we have that n converges to

r* > 0 with probability 1 for all n E S'. Since there exists user dispatcher ul with

S, C S' it implies that limt,, W > 6 with probability 1 for some 6 > 0.

As Qu(t)/t's are non-negative random variables, limt+. ZnES' E[Q.(t)I > 0. It follows

that 3n E 9', limt E[Q"(t)] > 0.00 t

Based on Theorem 6, we obtain the following corollary.

Corollary 4. If the network DoS problem is feasible, then there exists a non-empty

subset of user dispatchers U', such that if all the adversary dispatchers that have

85

(3.17)
IEUs'

(3.18)

(3.19)

(3.20)

(3.21)

connection to SUr =U UL, S, send packets to Su, according to the JSQ rule, the

system will become a JSQ server farm. Let r* be the solution to the optimization

problem P that corresponds to the JSQ server farm, then r* > 0 for all n G Su.

Proof. From Theorem 6, Lemma 8 and their proofs, it is straightforward to show that

S,, in Lemma 8 is one that satisfies the condition of the corollary. E

Theorem 6 and Corollary 4 together imply that if the network DoS problem is

feasible, then the adversary can achieve the goal by injecting traffic to the subset

Su, of servers that correspond to some subset U' of user dispatchers following the

JSQ rule. Furthermore, when the adversary dispatchers do so, all the queues in the

aforementioned subset will grow with time. In the sequel, we will refer to such subsets

of server as vulnerable sets and define the collection of vulnerable sets as So. Formally,

So = {Su, I U' satisfies the condition in Corollary 4}. Typically So is a sub-collection

of all subsets of servers that satisfies the val-condition. For example, again consider

Figure 3-2, although S2 and S3 both satisfy the val-condition, S3 is a vulnerable set

(S3 E So) but S2 is not, since the queue with si E S2 does not grow with time if all

the adversary dispatchers inject traffic following JSQ to S2 .

Now, we have discovered an optimal adversary injection policy that only requires

the adversary dispatchers to perform JSQ routing to a vulnerable set of servers.

Such JSQ-operation can automatically allocate budget to servers in some vulnerable

set without "wasting" adversary traffic. To design an optimal oblivious policy, the

remaining task is to identify a vulnerable set without relying on network statistics,

which is what we will do in the following section.

3.4.2 The Min-Zero Policy

In this section, we present the optimal oblivious adversary injection policy - the

Min-Zero policy. It uses the idea of the Target-JSQ policy and aims to identify a

vulnerable set based (only) on queue-length information.

At each time slot t, the adversary maintains a target subset of user dispatchers

and a corresponding target subset of servers, which are denoted as U(t) and S(t),

86

with U(t) C U, S(t) C S and S(t) = Uueve>Su. All the adversary dispatchers that

have connections to S(t) send packets to S(t) in a JSQ fashion, and other adversary

dispatchers send packets arbitrarily. Then, after the servers finished their service at

current slot, the adversary checks if minnes(t) Qn(t) = 0 (hence the name, Min-Zero).

If so, then at next slot, the adversary choose U(t + 1) uniformly at random from all

non-empty subsets of user dispatchers and set S(t + 1) accordingly; otherwise, set

U(t + 1) = U(t) and S(t + 1) = S(t). We formally present the Min-Zero policy in

Algorithm 4.

Algorithm 4 The Min-Zero Policy
Input: Server set S = {S1,..., sn}, user dispatcher set U ={u1 , ... , u}, adversary

dispatcher set V = {vi,... , vm}

1: Initialize: U(0) := a random non-empty subset of U

S(0) := UuEU(O) Sul
2: for t =0,1,2,... do
3: Each adversary dispatchers vm such that Sm n S(t) z 0 sends packets to

Sm n S(t) following the JSQ rule.

4: All other adversary dispatchers send packets arbitrarily. After the service phase

of current time slot t

5: if minnES(t) Qn(t) = 0 then

6: U(t + 1) := nonempty subset of U chosen uniformly at random.

7: S(t + 1) := E~t1 U m Sul
8: else
9: U(t + 1) :=U(t),7 S(t + 1) := S(t).

Obviously, the Min-Zero policy is oblivious. We now proceed to establish its

optimality in Theorem 7.

Theorem 7. Under the Min-Zero policy, there exists a queue n with limt >

0 if the network DoS attack problem is feasible.

Proof. First, by the execution of the Min-Zero Policy, it is straightforward to see

that the evolution of the system follows an irreducible discrete-time countable-state

Markov Chain with state (Q(t), S(t)). We will prove the theorem by invoking Lemma

7 with a suitably constructed Lyapunov function.

87

The Lyapunov function we define on the state space is

f(Q(t), S(t)) =1{S(t) E So, mill {Qn(t)} > TC1}.
nES(t)

min {Qn(t)} - TCi ,

with 1 { } denoting the indicator function, T being a large number that does not grow

with time6 and will be specified later, and C1 = (M + L)C being an upper bound.

on the sum of arrivals/service that a queue can receive. Due to the boundedness of

arrivals and services, we can first easily verify that the Markov Chain satisfies the

second condition in Lemma 7. We proceed to show that it also satisfies the first

condition, i.e., it has positive expected drift under certain set. Specifically, we will

prove that

E [f ((Q(t + T), S(t + T)) - f((Q(t), S(t)) I f(Q(t), S(t)) > 0] ; e, Vt.

Note that since f only takes integer value, the above corresponds to setting k T,

y 1/2 and Ay accordingly in Lemma 7.

Before presenting the technical proof, we first give some intuition. Notice that

the construction of the Lyapunov function f ensures that it takes positive value only

in the states where the adversary is targeting some vulnerable subset, and will not

change its target in the following T time slots. Conditioning on such states, the T-slot

drift is roughly equal to the drift of the minimum queue length in the target subset

S(t). Since S(t) is vulnerable, we can take T to be suitably large (but still a constant)

and invoke Proposition 6 to show that the queue lengths in S(t) all grow at a positive

rate over the T time slots. This suggests that the Markov Chain satisfies the first

condition in Lemma 7.

To make the intuition concrete, we first lower bound the drift. Conditioning

on any t such that f(Q(t), S(t)) > 0, without loss of generality and for notational

convenience, we assume t = 0. It follows that the adversary's target will not change

6Our choice of T will depend on the network size and network statistics, but the Min-Zero policy

does not.

88

over the next T time slots. Therefore, S(T) = S(O) E So. It follows that

f ((Q(T), S(T)) - f ((Q(0), S(0))

=I{S(T) E Solin {Q(T)} > TCi}- min {Qn(T)} - TC)
nE S(T) (nES(T)

- 1{S(O) E So, min {Q(0)} > TC} - min {Q(0)} - TC)
nES(O) (nES(O)

=-I{ min {Qn(T)} > TC1}. min {Q(T)} - TCi
nES(T) (nES(T)

- (min) {Q(0)} - TCI

> (min {Q(T)} - TC - min {Q(0)} - TC1)
nES(O) (nES(O)

= min {Qn(T)} - min {Qn(0)}
nES(0) nES(0)

Hence, we have

E [f((Q(T), S(T)) - f ((Q(0), S(0)) 1 f(Q(0), S(0)) > 0]

>E min {Q(T)} - min {Q 1 (0)} I f(Q(0), S(0)) > 0 (3.22)
[nES(0) nES(O)] (

We proceed to establish that the RHS of (3.22) is positive. Let Q*(0) = minnEs(o) Qn(0)

and C(0) = (Q*(0), ... , Q*(0)). Based on this, we define random vector Q(t) as the

resulting queue length vector at t under the Min-Zero policy starting from state

(Q(0), S(0)) at 0. We couple Q(t) and Q(t) in the same probability space by equal-

ing their corresponding sequences of arrivals (to the dispatchers) and services on each

sample path. We further define Q"(t) as Q(t) - Q(0). It is clear that Q0 (t) has

the same distribution as a random vector that is the result of performing the same

sequence of routing actions (as in Q(t)) starting from a all-zero queue length vector

under the alternate dynamics for 0 < t < T(i.e., all the realized services equal the

offered services and queue lengths can be negative). By Proposition 9, we have that

on each sample path, Q,(t) ;> Q(t) - N1 (L + M)C for all n and t < T. It follows

that Q7,(t) > Q0(t) + Q*(0) - Ni(L + M)C for all n and t < T.

Observe that for 0 < t K T, Q0 (t) evolves as the queue length vector of a server

89

farm employing the JSQ routing under the alternate dynamics. Consider the sub-

server farm formed by servers in S(O), user dispatchers and adversary dispatchers that

have connection to S(O). Since S(O) E So, i.e., it is a vulnerable set, by Corollary 4,

the optimal solution r* of its corresponding optimization problem P satisfies r* > 0.

Then, by Proposition 8, the optimal solution f* to its corresponding optimization

problem P' under the alternate dynamics satisfies f* = r* > 0. Set c = ES(0) as
m

iffES(O) ;n > 0. We invoke Corollary 3, and obtain that if T > Ts(o) (defined in
CminESoa) f t4C1

Corollary 3), for all t with Ts((O) < t <T,

P {VnE Q0(t) 2*(), t 2 f

Therefore, for all t > Tes(o), we have

P Vn E S(0),

P Vn E S(0),

--> P Vn E S(0),

Q",(t) if*
t 2(

f*t

On (t) fn 2 *0 SO

Qn W) > 2 * + Q*(0) -NICI > I - Cs(O)=> P Vn E S(0),

-> min Q(t) L + Q*(0) -NICj > I - Es(O).
nES(O) *t 1

On the other

Now, we set

have that

hand, we also have minnES(O) Qn(t) Q*(t) - Cit with probability 1.

the previously mentioned T as maxso)EsE max{Tes(o , minn S ;;}, we

E [min {Qn(T) - min {Q (o)}0) f (Q(0), S(0)) > 0
nGs(O) nES(O)I

-s(o)) minES(O) f (1 - s(o))NlC1 - cs()ClT

>minnES(O) IT _ N1C1 > N1 C1 > 0.
4

This establishes that the Markov Chain is transient. More importantly, by Lemma

90

7, conditioning on any initial condition (Q(0), S(0)) such that f(Q(0), S(O))>0, the

stopping time

7-(w) = inf{t > 1 : f ((Q(t, w), S(t, w))) = 0}

satisfies that P{T= oo} > 0. It is straightforward to establish that there exist Ei > 0

and t, such that the system will reach from any initial condition to some state with

positive value of f in ti steps with probability at least ei. Combining the previous

reasoning, we have that there exists To and co > 0, such that P{f(Q(t), S(t)) >

0, Vt > To} > co, which implies that on those set of sample paths (with probability

at least co), after To, the adversary dispatchers injects traffic to a vulnerable subset of

servers according to JSQ and never change the target. Since the number of vulnerable

subset is finite, invoking Proposition 6, we have that there exists a vulnerable subset

S' such that Us, , 0 and with probability at least c' > 0,

Vn E S', lim > 6 > 0,
t-+oo t

where 6 is determined by the optimization problem P corresponding to the server

farm where adversary dispatchers injecting to S' according to JSQ. It follows that,

En E S', with probability at least e', lim 1 >, Q"(t)/t > 6', for some 6' > 0. Therefore,

we conclude that on the whole sample space,

E [Qu(t)]
]n, lim > 0. (3.23)

t-+oo t

Hence the Min-Zero policy achieves the goal and we conclude the proof. L

Remark: (i) Switching Threshold: in Algorithm 4 (line 5), we set the switching

threshold as 0. It is clear from the proof that the policy remains optimal under any

other positive constant switching threshold. Intuitively, the convergence time of the

algorithm, i.e., the time it takes the adversary to identify a vulnerable set and does

not switch target further, depends on the threshold. An over-low a threshold would

force the adversary to switch prematurely while an over-high threshold would make

91

the adversary switch too infrequently. (ii) Distributed Implementation: Algorithm

4 describes the Min-Zero policy in a centralized fashion, but the policy can be easily

implemented in a distributed way. In the distributed implementation, each adversary

dispatcher maintains its own target subset of servers, sneds traffic to the target set

according to the JSQ rule, and switch if the minimum queue length in the target

subset hits zero. The optimality of the distributed implementation can be shown

using similar method. This feature also makes the Min-Zero policy more attractive

in practice. We will explore the aforementioned two aspects of the policy in the

simulations.

3.5 Simulations

In this section, we evaluate the Min-Zero policy through simulations. We focus on

studying how the parameters of the network and the policy influence the performance

of the policy. Specifically, on the network side, we investigate the effects that net-

work size and network load have on the convergence time of the Min-Zero policy,

respectively; on the policy side, we investigate the impact of switching threshold and

distributed implementation on the convergence time. In the following, we will first

introduce the simulation environment, and then present the simulation results.

3.5.1 Simulation Setting

Network Data: We use two sets of server network data. In the first set, for each

N (number of servers) in {100, 150,200, ... , 500}, we generate 20 networks with N

servers, [N/4J user dispatchers and FN/10] adversary dispatchers. Each user dis-

patcher is connected to [N/5] servers (selected uniformly at random). The service

rate at each server is a binomial random variable B(p, 1/2) with y uniformly sampled

from {20,... , 50}. The arrival rate at each user dispatcher is a binomial random

variable B(p, 1/2) with p uniformly sampled from {20, ... , 50}. Each adversary dis-

patcher has connections to [N/5] servers and injection rate as a binomial random

variable. The connections and the mean injection rate (budget) are randomly assigned

92

such that the overall network load p (total arrival/total service) of the network equals

0.75.7 In the second set, for each network load p in {0.75, 0.80, 0.85, 0.90, 0.95}, we

generate 20 networks with 200 servers, 50 user dispatchers and 20 adversary dispatch-

ers. The service rates and user traffic arrival rates are sampled similarly as in the

first set, while the connections and budgets of adversary dispatchers are randomly

generated such that the network load equals p in expectation.

Variants of Min-Zero policy: In the simulation, we run the Min-Zero policy with

switching threshold (0,10,50,200) to evaluate its performance dependence on the

threshold. We also run the distributed version of Min-Zero with threshold 0 (de-

scribed in the final remark of Section 3.4) to compare the performance of centralized

and distributed implementations.

Performance Metric: We use the convergence time of the policy as our perfor-

mance metric. Theoretically, the convergence time of the policy is defined as the time

when the adversary dispatchers identify a vulnerable subset and never switch after

that. For ease of computation, in centralized Min-Zero policies, we calculate the con-

vergence time as the time slot that the last "switch" happens, and in the distributed

version, we calculate it as the first time slot such that the number of user packets in

a queue exceeds 1000. By examining the queue length trajectories in our simulations,

we have confirmed that the policies do converge in all the instances and the computed

convergence times well approximate the theoretical definition. Note that the results

presented in each setting are averaged over 20 network instances.

3.5.2 Simulation Results

Network Size

We plot the results on the first set of data (varying network sizes) in Figure 3-

3. A somewhat counter-intuitive observation is that the convergence times of all

variants of Min-Zero decrease with the size of the network. One possible explanation

is that among the networks we generated, the larger ones may have a larger portion of

7The procedure does not guarantee that the generated instances are feasible. But we found that

all the instances we generated in the simulations were indeed feasible.

93

- Threshold =0
- -5-- Threshold = 10
- &Threshold =50

-EB- Threshold = 200
Distributed

rr4

150 200 250 300 350
Number of Servers

400 450 500

Figure 3-3: Convergence
sizes.

-

0

times of variants of Min-Zero on networks with different

600 1
550 -- Threshold=0 -

500 -5'- Threshold = 10

450 Threshold =50
[5 -E3-Threshold =200

400- Distributed
350
300
250
200.
150 -
10
50

U
0.75 0.80 0.85

Network Load

0.90 0.95

Figure 3-4: Convergence times of variants of Min-Zero on networks with different

loads.

94

-j

700

600

E 500

u 400

300'

o 200

aI
100

I

100

vulnerable subsets, making identifying a vulnerable subset easier. Another interesting

finding is that, the higher the threshold, the more sensitive the policy is to the network

size. This can be attributed to that in larger networks, the variance of arrival to

servers is larger. Such variance directly affect the switching frequency of Min-Zero

variants with larger threshold, which translates to influence on the convergence time.

Network Load

We plot the results on the second set of data (varying network loads) in Figure 3-4.

We observe that the policies converge faster on networks with larger load. This is not

surprising as increasing the load generally increases the number of vulnerable subsets,

which in turn speeds up the convergence.

Variants of Min-Zero Policy

From Figures 3-3 and 3-4, we see that among the centralized policies, the conver-

gence speed decreases as the switching threshold increases. This suggest that simply

setting the threshold as zero may be the most desirable in practice. Furthermore,

distributed version of Min-Zero converges slower than its centralized counterpart, but

the gap becomes small in large networks.

3.6 Generalization to Multihop Networks

In this section, we extend our results to multi-hop networks. We first give the model

and problem formulation in the multi-hop setting, and then present the counterparts

of our previously obtained results in this setting. Since many of the proofs are similar

to their single-hop counterparts and the notations are considerably heavier in the

multi-hop case, we will only give proof sketches and focus the differences to the proof

of single-hop results.

95

3.6.1 Model and Problem Formulation

Consider a network represented as directed graph g(K, E) with K denoting the set

of nodes and E c K x K denoting the set of links. For each node n E M, let Out(n)

be its outgoing neighbors, i.e., Out(n) = {n' c K, (n, n') c E}. We assume that

the network users send traffic from a single source s E K to a single destination

d E JV.8 To avoid unnecessary complexity, we require that there exists a path in g

from each n c K\{d} to d. Additionally, there are a set of adversarial source nodes

{v 1 , . . . , VM} such that each node vm in the set has connection to a subset Kvm g K

of network nodes. Note that in our model, there are links from adversarial source

nodes to network nodes, but no links in the opposite direction.

The system evolves in discrete time. Each network node n E K is associated with

a queue, with Q,(t) denoting the queue length at time t. For each link e = (n, n') E S,

we use be(t) or ba,,(t) to represent the offered transmission on the link at t, i.e., at most

be(t) packets can be sent through e. At each time slot, A,(t) user packets arrive at

source node s, and A,([) packets arrive at adversary source yin, for Vm C {Vi, . .. , VM}.

Similar as in the single-hop case, we assume that be(t)'s, A,(t)'s and AX (t)'s to be

independent random variables with bounded support and are i.i.d across time with

Ebe(t)] = c, E[As(t)] = As, E[Avm(t)] = A. Here, we can consider ce's as the capacity

of the links, A, as the user traffic rate, and AV = (A,, A) as the adversary budget

vector.

The network nodes (including s) employ the following routing policy. At time t,

each node n except d performs the following procedure for each packet in its queue:

1. Pick n' with the minimum queue length Qn,(t) in {n' E Out(n), Qn,(t) >

Qn(t), number of packets transmitted from n to n' is less than ban,(t)}.

2. If such n' exists, send the packet to n'; otherwise, hold the packet in the queue.

The destination node d instantly absorbs all the packets it receives, and thus Qd(t) = 0

for all t. Such routing policy can be considered as each node sending packets to its

8 Extension to multiple sources is straightforward by creating a super-source node.

96

outgoing neighbors according to the JSQ rule, which is a local implementation of the

throughput-optimal back-pressure routing policy in our setting 116, 501. Each adver-

sarial source node injects traffic to the network nodes it has connection to following

certain adversary policy. Without loss of generality, we assume that the capacities of

links from adversarial source nodes to network nodes are infinity so that the amount

of traffic that adversarial source nodes can inject is only constrained by the budget.

Once sent to network nodes, the adversarial traffic will be merged with user traffic

and delivered to d through the network nodes. Define av,,(t) as the packets injected

from adversarial source vm to node n with E ncAr n)'(t), bav (t) as the

packets sent from n to n' at t, we can write the queue length evolution as:

Qn(t + 1) =[Qn(t) + amn(t) + 1Ln=sAs(t)+
m:nEjfv

S bnn(1 -M ban(t)]+-
n':nEOut(n') n'EOut(n)

Similar as in the single-hop setting, we break down each Q, into user traffic part Qun

and adversary traffic part Qv. Here, we omit the evolution of Qu and Qv for ease of

readability.

Based on the above preliminaries, we define the multihop version of network DoS

attack problem.

Definition 6 (Multi-hop Network DoS Attack Problem). The Multi-hop Network

DoS Attack problem seeks an adversary injection policy under which there exists some

network node n with limt_,0 E[Q(t)] .

We give an example of the multi-hop network DoS attack problem is in Figure

3-5. In the example, the adversary can achieves the goal by v, injecting all traffic to

n, and v2 injecting all traffic to n4 .

3.6.2 Feasibility Region

Now, we proceed to present a necessary and sufficient condition for the Multi-hop

Network DoS Attack problem to be feasible. It is based on a generalization of the

97

S 3 n

33

3n4 3 n,

4 EV

Figure 3-5: Illustration of the multi-hop network model. v1 and v2 are the adversary

sources. The capacities are labeled beside the links.

val-condition.

We define s-d cut of the network as a partition (S,.\S) of network nodes such

that s E S and d E A\S. The capacity of cut (S, PJ\S) is defined as Cap(S)

ZnES,n'Eg\s,(n,n')e cn'. For each s-d cut (S,KV\S), we further define A(S)

Cap(S) -A,. We next generalize the val function to s-d cuts. Intuitively, for an s-d cut

(S, K\S), val(S) equals the maximum amount of traffic that the adversarial source

nodes can send through (S, K\S). Formally, for (S, J\S), let Out(S)= UnES Out(n)

and Vs {vm I IV, n S $ 0}. We define a flow-network gs(VS, S) such that:

Ks = S U Out(S) U Vs U {s', d'}, i.e., Afs consists of nodes in S, S's outgoing neigh-

bors, adversarial source nodes that have connection to S', a pseudo-source s' and a

pseudo-destination d'; 8 s consists of the links between S U Out(S) in E, the links from

Vs, to S, (s', n) for each n E Vs, and (n, d') for each n E Out(S). The capacities of

links in Es are defined as follows. For link (n, n') with n, n' E SU Out(S), its capacity

is equal to cnn,. For link starting from the pseudo-source to adversarial source node

(s', Vm), the capacity is equal to Av . The capacities of other links are infinity. Based

98

on such capacitated flow network gs, we define

val(S) := the maximum value of s-d in gs,

where the definition of s-d flow is standard [51] and we omit here. An illustration of

the extended val-condition is given in Figure 3-6.

V1

3 .

4 c -> s .--- ---------. -- ns --d',

4n n
4 %

Figure 3-6: Illustration of the extended val-condition: Consider the s-d cut (S, A\S)
with S ={s, n1, n4}. As = 4, Cap(S) = 9 and val(S) = 6. Therefore, the cut satisfies
the extended val-condition.

Now, we are ready to define the extended val-condition, which leads to establishing

the feasibility region of the multi-hop network DoS attack problem.

Definition 7 (Extended val-condition). An s-d cut (S,N\S) satisfies the extended

val-condition if val(S) > A(S).

Theorem 8. The Multi-hop Network DoS Attack problem is feasible if and only if

there exists an s-d cut that satisfies the extended val-condition.

Proof. Note that under any adversary injection policy, the network g can be con-

sidered as a network that employs Back-pressure routing with multiple sources and

single destination. The proof follows similar line as that of Theorem 5, and addi-

tionally relies on the following observation regarding single-commodity back-pressure

network, which can be obtained from results in [50].

99

Observation 2. For each sample path, if limnt Q,(t)/t > 0 for some n E K, then

for all n' G Out(n), the time average traffic rate from n to n' equals c,, .

We first show the sufficiency of the condition. If some cut (S,.\S) satisfies the

extended val-condition, we consider the randomized adversary injection policy given

by the max-flow that defines val(S). Then on an arbitrary sample path (except a

set of measure zero), there must exist node n with limt, 0, Q,(t)/t > 0. Let S' be

the set of nodes n with limte, 0 Qa(t)/t > 0. We claim that s E S', and that the

adversary achieves the goal directly follows. To justify the claim, suppose for the

sake of contradiction s S', then the time average traffic rate from s to S' must be

zero, and the overflow of S' is caused solely by adversary traffic. Let S = S' n S. We

have that the adversary traffic that goes through the cut (S, Ar\S) does not pass S.

Let A be the time average rate of adversarial traffic that goes from S\S to K\S. By

the definition of the val function, we have that

Cnn' - A - A < Cap(S) - val(S) - A < 0, (3.24)
nES\S,n' EA\S

which leads to a contradiction since (3.24) implies that there exists node not in S'

whose queue length also grows linearly with time at some positive rate. l

We now proceed to the necessity part. If there exists a policy that achieves

the goal. There must exists a sample path at which the user part of some queue

grows at positive rate with time. Pick such a sample path, let S be the set of

nodes whose queue length grow with time at positive rate on the sample path. It

is easy to see that (S,AF\S) is an s-d cut. We proceed to show that it satisfies the

extended val-condition. Let A' be the total adversarial traffic injection rate under

the policy. Denote rU, rv respectively as the sum of user and adversary parts of

queue length growth rates of nodes in S, and p', pv respectively as the total rates

of user and adversary traffic that goes through the cut (S,K\S). Based on the

definitions, we have Av = pv + rv and As = pu + rU. Further by Observation 2, we

100

have pv + pU = Cap(S). It follows that

val(S) + A, = pU + r" + val(S)

= pU + val(S) - Cap(S) - ru + Cap(S)

> pU + pV - Cap(S) + r' + Cap(S)

= ru + Cap(S) > Cap(S).

Hence, (S, K\S) satisfies the extended val-condition and we conclude the proof.

3.6.3 The Multi-hop Min-Zero Policy

Theorem 8 gives the feasibility region of the multi-hop network DoS attack problem

based on the extended val-condition. In this section, we show that in the multi-

hop case, there also exists an optimal adversarial injection policy that achieves the

feasibility region without relying on the knowledge of network statistics. The policy

we come up with, presented in Algorithm 5, is essentially a multi-hop version of the

Min-Zero policy.

Algorithm 5 The Multi-hop Min-Zero Policy

Input: Multi-hop Network G(K, E), adversary source nodes V ={V, .. . , V,}

1: Initialize: (S(O),AP\S(O)) := a random s-d cut of g.
2: for t=0,1,2,... do
3: All adversary source nodes vm such that A/m n S(t) z 0 send packets to A/rN n

S(t) following the JSQ rule.
4: All other adversary dispatchers send packets arbitrarily.

After the transmission of current time slot t:
5: if minnES(t) Q-(t) = 0 then
6: (S(t + 1), .A\S(t + 1)) an s-d cut chosen uniformly at random.
7: else
8: S(t + 1) := S(t).

We establish the optimality of the Multi-hop Min-Zero policy in the following

theorem.

Theorem 9. Under the Multi-hop Min-Zero policy, there exists a network node n

with limt, E[Qu(t)] > 0 if the multi-hop network DoS attack problem is feasible.

101

Proof. (Sketch) The proof follows the same road-map of that of Theorem 7. First,

we establish multi-hop counterparts of Propositions 6 and 7 in Proposition 10 which

will be given in the Appendix 3.8.1. Following similar ideas and using Proposition

10, we can generalize Theorem 6 and Corollary 4 to multi-hop networks, that is,

if the problem is feasible, then there exists an s-d cut that satisfies the extended

val-condition and by each adversary source node v,, injecting to M'm n s following

the JSQ rule, all the queues in S grow with time, i.e., Vn E S, limt,' E[Q.(t)] > 0.
t

Define the set of all such s-d cuts as vulnerable cuts So. Next, we again interpret the

network dynamics under the Multi-hop Min-Zero policy as a Markov Chain with state

(Q(t), S(t)). We construct the same Lyapunov function as in the proof of Theorem

7 by choosing an appropriate T:

f(Q(t), S(t)) =1{S(t) E So, min {Q,(t)} > TC1 }-
neS(t)

min {Qn(t)} - TC,
nES(t)

where C1 = (IAFI + M)C is an upper bound on the change of queue length at ann

node in one time slot. By a similar coupling bound as Proposition 9, together with

Proposition 10, we establish the positive expected T-slot drift of f conditioned on

f((Q(t), S(t)) > 0. Invoking Lemma 7, we demonstrate that the Markov chain is

transient. Finally, going through the same reasoning as in Theorem 7, we show that

there exists n such that limt , 0 [> 0, which concludes the proof. L
t

3.7 Chapter Summary

In this chapter, we studied the fundamental limit of volume-based network DoS at-

tack. Under single-hop server farm, we first proposed a necessary and sufficient

condition on the budget of the adversary for a successful attack to be feasible, which

served as the feasibility region of the network DoS attack. We then designed an

optimal adversary injection policy that does not rely on knowledge of network statis-

tics - Min-Zero, under which the attack is successful whenever the condition is met.

102

Complementing the theoretical analysis, we further evaluated the performance of the

Min-Zero policy through simulations. Finally, we generalized our results including

feasibility region of the attack and optimal injection policy to multi-hop networks.

3.8 Chapter Appendix

3.8.1 Proof of Propositions 6, 7 and Their Multi-hop Gener-

alization

We prove Propositions 6 and 7 by applying the results in [47,48]. As stating the

results involve heavy additional notations and modeling in [47,48], we do not present

them here rigorously, but simply describe them at an intuitive level and show how to

apply them to prove our propositions.

The relevant results are Theorem 1 in [471 and Corollary 4.4 in [48]. Theorem 1

in [47] considers the fluid model of switch networks that employ Max-Weight schedul-

ing, which subsume the JSQ server farm considered in this paper as a special case.

It establishes that the fluid model solution divided by time converges to the optimal

solution of certain optimization problem. Projecting this onto our case, the opti-

mization problem corresponds to P in Proposition 6 and P' in Proposition 7 under

the alternative dynamics. Corollary 4.4 in [48] shows the convergence of scaled queue

length vector of network (single-hop or multi-hop) under Max-Weight (Back-pressure)

routing to the corresponding fluid model solution. Combining these two results, set-

ting the parameter t (different with t in our model) in Corollary 4.4 of [481 as 1, it

follows that in our model Q(t)/t converges to the solution to P (or P' under the

alternate dynamics) in probability, which concludes the proof of Propositions 6 and

7.

One can straightforwardly extend Theorem 1 in [47] to the multi-hop network

in our model. Combining again with Corollary 4.4 in [48], it leads to Proposition

10 that we use in extending our results to multi-hop networks. Consider a directed

network g(.N~, E) evolving in discrete time. The network g has a single destination

103

node d and multiple sources. The external traffic arrivals and offered transmission of

network links are independent random variables and are i.i.d. across time. The time

average external traffic arrival rate at node n is denoted as An (A, = 0 if n is not a

source), and the time average offered transmission rate at link (n, n') E E is denoted

as cnn. Note that under our assumptions, the time average rates are equal to the

mean of the corresponding random variables. The network operates under the (local)

back-pressure policy introduced in Section 3.6. Consider the following optimization

problem Pm:

min) rn

n

fS ,n + rn + An >_ fn-, Vn E V\{d}
n':(n',n)EE n':(n,n')EE

0 < fn n car,', V(n, n') E 8

rn > 0, Vn E A.

It is easy to verify that Pm is a convex optimization problem and thus have a unique

optimal solution. Now, we are ready to present the proposition in the multi-hop

setting.

Proposition 10. Let r* = (r*,. .. ,r*) be the optimal solution to the optimization

problem Pm associated with the multi-hop network. The queue lengths satisfy that for

any 6 > 0

(n Q(t)lim P -r* < ,(=).

t-+00 t

Note that Proposition 10 is the counterpart of Proposition 6 in the multi-hop

setting. One can easily extend Proposition 7 to the multi-hop setting in almost

identical fashion, which we omit here.

104

3.8.2 Proof of Proposition 9

Define dn(t) as QO(t) - Qn(t). We have dn(0) < 0 for all n, and if we can show

that dn(t) < N1 LC, then we prove the proposition. We first give three observations

regarding d(t):

1. EZ dn(t) = dn (0) 0 for all t.

2. Service at server n does not change dn(t).

3. If dn(t + 1) > dn(t) > 0, then there exists an n' such that d, (t) > dn(t).

The three observations are justified as follows. Since in the alternate dynamics,

Qn(t + 1) = Qn(t) + an(t) - bn(t) = Qn(t) + J, ai1n(t) - bn(t), we have

N N N L t-1 N t-i

>Qn(t) = Qn(0)+ ZZ ain(i) -Z b(i)
n=1 n=1 n=1 1=1 i=O n=1 i=0

N L t-1 N t-1

= Qn(0) + 3 (i) - - bn(Z) (3.25)
n=1 1=1 i=0 n=1 i=O

Since Q and Q evolve under the same sequence of {a(i)} and {b(i)}, (3.25) validates

the first observation. The second observation can be seen from the fact that after

some service bn(t) for server n at time t, Qn(t) and Q(t) both decrease by an amount

of bn(t). Hence, dn(t) cannot be changed by services. The third observation can be

established as follows: if at t, d4(t) > 0 and dn(l) increases at the next time slot, then

there must exist a dispatcher ul (with non-zero arrival at t) such that following the

JSQ rule, ul sends packets to n under queue length vector is Qn(t) but does not send

packets to n under Q, (t). It follows that there exists n' such that Q, (t) > Q, (t) while

Qn'(t) Qn(t). This implies that d4,(t) = Qn,(t) - Qn'(t) ;> Qn(t) - Qn(t) = d4(t).

By Observation (2), we do not need to consider services. Hence, we focus on

arrivals to queues from dispatchers and proceed to prove the proposition. Suppose

for the sake of contradiction that there exists a time t and server ni such that d, (t) >

N1LC. We take t, to be the smallest t that satisfies the above condition. Since at

each time slot, the total arrival to a server is at most LC, t, > N 1. Due to the same

105

reason, we have dn(ti - 1) > (N1 - 1)LC. By definition of t1, we have d,(t) < N1LC

for 0 < t < t1 , and in. particular, dn,(ti - 1) < da,(ti). Hence, by observation (3),

there must exists another server n2 such that dn2 (ti - 1) > dn1 (11 - 1) > (N1 - 1)LC.

Next, consider the function d, (t) + d 2 (t), let t 2 be the largest time slot such that

0 < t2 < t1 - 1 and dn1 (t2 + 1) + d,12 (t 2 + 1) > dn,(t2) + d 2 (t2). Such t 2 must exist

as da, (0) + dn2 (0) < 0 while dn1 (ti - 1) + dn2 (tl - 1) > 2(N1 - 1)LC. Note that since

dni(t) + dn2 (t) does not increase from t2 + 1 to ti - 1, we have for t 2 + 1 < t < ti - 1

dn, (t) + dn2() > dn, (ti - 1) + dn2 (tl - 1) > 2(N1 - 1)L C.

Combining this with dn(t) < N1 LC for n =ni,n2 ,t < ti, we have dn(t2 + 1) >

(Ni - 2)LC and dn(t2) > (N1 - 3)LC for n ni, n2 . Since d, + dn2 increases at t2,

there must exists a dispatcher such that it sends packets to some n C {i, n 2} (w.l.o.g.

n = ni) under Q but does not send packets to either ni or n 2 under Q. Following

similar reasoning as in establishing observation (3), we have that there exists n 3 such

that dn3 (t2) > dn1 (t2) > (M - 3)LC. Applying the same argument with the largest

time slot t3 (0 t 3 < t2 - 1) at which the function dni(t) + dn2 (t) + da3 (t) increases,

we have for t3 + - t < t2 - 1

dni (t) + dn2 (t) + dn3 (t) > dn, (t2 - 1) + dn2(t 2 - 1) + dn3 (t2 - 1)

> 3(N1 - 3)LC.

And we have dn(t3+1) > (3(N 1-3)-2N 1)LC = (N1-9)LC and ds(t3) > (N1 -10)LC

for n = ni, n 2 , n3. It follows that there exists another n4 with dn, > (N1 - 10)LC.

Repeating such argument, we will find a time tN such that dn(tN) > LC for all n,

which implies that En= dn(tN) > NLC. This contradicts observation (1). Thus, we

conclude the proof.

106

Bibliography

[1] S. T. Zargar, J. Joshi and D. Tipper, "A survey of defense mechanisms against

distributed denial of service (DDoS) flooding attacks", in IEEE communications

surveys & tutorials, Vol. 15, No. 4, pp. 2046-2069, 2013

[2] G. S. Paschos and L. Tassiulas, "Sustainability of Service Provisioning Systems

Under Stealth DoS Attacks", in IEEE Trans. on Control of Network Systems,
Vol. 4, No. 4, pp. 749-760, 2017.

[3] M. Guirguis, A. Bestavros, I. Matta and Y. Zhang, "Reduction of quality (RoQ)

attacks on internet end-systems". in Proc. Annual Joint Conference of the IEEE

Computer and Communications Societies, Vol. 2, pp. 1362-1372. IEEE, 2005.

[4] X. Luo and R. K. C. Chang, "On a New Class of Pulsing Denial-of-Service Attacks

and the Defense", in NDSS, 2005.

[5] https: //www.msspalert . com/cybersecurity-research/
kaspersky-lab-study-average-cost-of-enterprise-ddos-attack-totals-2m/

[6] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in the IoT: Mirai
and other botnets", in Computer, Vol. 50, No. 7, pp. 80-84, 2017.

[7] R. Braga, E. de Souza Mota and A. Passito, "Lightweight DDoS flooding attack

detection using NOX/OpenFlow", in IEEE LCN, Vol. 10 pp. 408-415, 2010.

[8] A. Compagno, M. Conti, P. Gasti and G. Tsudik, "Poseidon: Mitigating interest

flooding DDoS attacks in named data networking", in IEEE LCN, pp. 630-638,
2013.

[9] S. Neumayer, A. Efrat and E. Modiano, "Geographic max-flow and min-cut under

a circular disk failure model", in Computer Networks, Vol. 77, pp. 117-127, 2015.

[10] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, "Assessing the vulnerabil-

ity of the fiber infrastructure to disasters", in IEEE/A CM Trans. on Networking,

Vol. 19, No. 6, pp. 1610-1623, 2011.

[11] A. Sanjab, S. Walid and T. Bagar, "Prospect theory for enhanced cyber-physical

security of drone delivery systems: A network interdiction game", IEEE ICC,
2017.

107

[12] R. K. Wood, "Deterministic network interdiction", in Mathematical and Com-
puter Modelling, Vol. 17, No. 2, pp. 1-18, 1993.

[13] K. J. Cormican, D. P. Morton and R. K. Wood, "Stochastic network interdiction",
in Operations Research, Vol. 46, No. 2, pp. 184-197, 1998.

114] V. Gupta, M. H. Balter, K. Sigman and W. Whitt, "Analysis of join-the-shortest-
queue routing for web server farms", in Performance Evaluation, Vol. 64, No.
9-12, pp. 1062-1081, 2007.

[15] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus and A. Greenberg, "Join-Idle-
Queue: A novel load balancing algorithm for dynamically scalable web services",
in Performance Evaluation, Vol. 68, no. 11, pp. 1056-1071, 2011.

[16] L. Tassiulas and A. Ephremides, "Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio net-
works", in IEEE Conference on Decision and Control, pp. 2130-2132, 1990.

[17] C. Phillips, "The network inhibition problem", in Proc. ACM STOC, 1993.

[18] R. Zenklusen, "Network flow interdiction on planar graphs", in Discrete Applied
Mathematics, Vol. 158, No. 13, pp. 1441-1455, 2010.

[19] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg, "A
decomposition-based pseudoapproximation algorithm for network flow inhibi-
tion", in Network Interdiction and Stochastic Integer Programming, pp. 51-68,
2003.

[20] J. 0. Royset, and R. K. Wood, "Solving the bi-objective maximum-flow network-
interdiction problem", in INFORMS Journal on Computing, Vol. 19, No. 2, pp.
175-184, 2007.

[21] C. Lim and J. C. Smith, "Algorithms for discrete and continuous multicommodity
flow network interdiction problems", in IIE Transactions, Vol. 39, No. 1, pp. 15-
26, 2007.

[22] D. Bertsimas, E. Nasrabadi and J. B. Orlin, "On the power of randomization in
network interdiction", in Operations Research Letters, Vol. 44, No. 1, pp. 114-120,
2016.

[23] J. Zheng and D. A. Castai6n, "Dynamic network interdiction games with imper-
fect information and deception", in IEEE ICC, pp. 7758-7763, 2012.

[24] J. C. Smith, M. Prince and J. Geunes, "Modern network interdiction problems
and algorithms", in Handbook of Combinatorial Optimization, Springer, pp. 1949-
1987, 2013.

125] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan and D. P. Williamson, "Ad-
versarial queuing theory" in Journal of the A CM, Vol. 48, No. 1, pp. 13-38, 2001.

108

[26] D. Gamarnik, "Stability of adaptive and nonadaptive packet routing policies in
adversarial queueing networks" in SIAM Journal on Computing, Vol. 32, No. 2,
pp. 371-385, 2003.

[27] A. Goel, "Stability of networks and protocols in the adversarial queueing model
for packet routing", in Networks: An International Journal, Vol. 37, No. 4,
pp.219-224, 2001.

[281 S. Lim, K. Jung and M. Andrews, "Stability of the max-weight protocol in ad-
versarial wireless networks", in IEEE/ACM Trans. on Networking, Vol. 22, No.
6, pp. 1859-1872, 2014.

[29] Q. Liang and Modiano, "Network utility maximization in adversarial environ-
ments", in IEEE INFOCOM, pp. 594-602, 2018.

[30] Q. Liang and E. Modiano, "Minimizing Queue Length Regret Under Adversarial
Network Models", in Proc. of the ACM on Measurement and Analysis of Com-
puting Systems, Vol. 2, No. 1, pp.11, 2018.

[31] S. Wang and N. Shroff, "Security game with non-additive utilities and multi-
ple attacker resources", in Proc. of the ACM on Measurement and Analysis of
Computing Systems, Vol. 1, No. 1, pp.13, 2017

[32] M. H. Manshaei, Q. Zhu, T. Alpcan, T. BacA ar and J-P Hubaux, "Game theory
meets network security and privacy", in ACM Computing Surveys, Vol. 45, No.
3, pp. 25, 2013.

[33] D. Niyato and E. Hossain, "Dynamics of network selection in heterogeneous wire-
less networks: An evolutionary game approach", in IEEE Trans. on Vehicular
Technology, Vol. 58, No. 4, pp. 2008-2017, 2009.

[34] I. Aad, JP. Hubaux and E. W. Knightly, "Impact of denial of service attacks
on ad hoc networks", in IEEE/ACM Trans. on Networking, Vol. 16, No. 4, pp.
791-802, 2008.

[35] B. Wang, Y. Zheng, W. Lou and YT. Hou, "DDoS attack protection in the era of
cloud computing and software-defined networking", in Computer Networks, Vol.
81 pp. 308-319, 2015.

[36] M. Ficco and M. Rak, "Stealthy denial of service strategy in cloud computing",
in IEEE Trans. on Cloud Computing, Vol. 3, No. 1, pp. 80-94, 2015.

[37] A. Ben-Tal, L. El Ghaoui and A. Nemirovski, "Robust optimization", Vol. 28,
Princeton University Press, 2009.

[38] C. Chekuri and M. Pal, "A recursive greedy algorithm for walks in directed
graphs", in IEEE FOCS, 2005.

109

[39] V.V. Vazirani, "Approximation algorithms", Springer Science & Business Media,
2013.

[40] D. Granata and A. Sgalambro, "Network Interdiction through Length-Bounded
Critical Disruption Paths: a Bi-Objective Approach", in Electronic Notes in
Discrete Mathematics, Vol. 52, pp. 375-382, 2016.

[41] R.K. Ahuja, T. L. Magnanti and J. B. Orlin, "Network flows", Pearson Education,
2014.

[42] D. Bertsimas and JN. N. Tsitsiklis, "Introduction to linear optimization", Athena
Scientific, 1997.

[43] M. Ripeanu, I. Foster and A. Iamnitchi, "Mapping the Gnutella Network: Prop-
erties of Large-Scale Peer-to-Peer Systems and Implications for System Design",
in IEEE Internet Computing Journal, 2002.

[44] A. Bj6rklund, T. Husfeldt and S. Khanna, "Approximating longest directed paths
and cycles", in International Colloquium on Automata, Languages, and Program-
ming, Springer, 2004.

[45] R.M. Karp, "Reducibility among combinatorial problems", in Complexity of com-
puter computations, Springer, pp. 85-103, 1972.

[46] https: //www. cloudflare. comr/learning/ddos/what-is-a-ddos-attack/

[471 D. Shah and D. Wischik, "Fluid models of congestion collapse in overloaded
switched networks," in Queueing Systems, vol. 69, no. 2, pp: 121, 2011.

[48] D. Shah and D. Wischik, "Switched networks with maximum weight policies:
Fluid approximation and multiplicative state space collapse," in The Annals of
Applied Probability, vol. 22, no. 1, pp: 70-127, 2012.

[49] G. Fayolle, V. A. Malyshev and M. V. Men'shikov, "Topics in the constructive
theory of countable Markov chains," Cambridge university press, 1995.

[50] L. Georgiadis, L. Tassiulas, "Optimal overload response in sensor networks", in
IEEE Trans. on Information Theory, Vol. 52, No. 6, pp. 2684-2696, 2006.

[51] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, "Network flows", 1988.

110

