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Abstract

With the rapid growth of information technology, network systems have become in-
creasingly complex. In particular, designing network control policies requires knowl-
edge of underlying network dynamics, which are often unknown, and need to be
learned.

Existing reinforcement learning methods such as Q-Learning, Actor-Critic, etc.
are heuristic and do not offer performance guarantees. In contrast, model-based
learning methods offer performance guarantees, but can only be applied with bounded
state spaces.

In the thesis, we propose to use model-based reinforcement learning. By ap-
plying Lyapunov analysis, our algorithm can be applied to queueing networks with
unbounded state spaces. We prove that under our algorithm, the average queue back-
log can get arbitrarily close to the optimal result. We also implement simulations to
illustrate the effectiveness of our algorithm.

Thesis Supervisor: Eytan Modiano
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Chapter 1

Introduction

1.1 Background and Motivation

With the rapid growth of information technology, the network systems have become
increasingly complex, making it harder to obtain explicit knowledge of system dynam-
ics. For instance, due to security or economic concerns, a number of network systems
are built as overlay networks, e.g. caching overlays, routing overlays and security
overlays [23]. In these cases, only the overlay part is fully controllable by the network
administrator, while the underlay part remains uncontrollable and/or unobservable.
The "black box" components make network control policy design challenging.

In addition to the challenges brought by unknown system dynamics, many of the
current network control algorithms (e.g. MaxWeight [25] and Drift-plus-Penalty [18])
aim at stabilizing the system, instead of optimizing performances metrics such as
queueing backlog or delay.

To overcome above challenges, it is desirable to apply inference and learning
schemes. A natural solution is reinforcement learning, which optimizes the decision
policy by repeatedly interacting with the environment and estimating the unknown
dynamics from the received feedbacks. Reinforcement learning methods provide a
framework that enables the design of learning policies for general networks. Re-
inforcement learning methods can be roughly divided into two types: model-free

reinforcement learning (e.g. Q-learning [28], policy gradient [24]) and model-based
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reinforcement learning (e.g. UCRL [13], PSRL [20]). Since model-based reinforce-
ment learning methods offer explicit performance guarantees, we focus on model-based
reinforcement learning framework in this work.

Almost all existing model-based reinforcement learning methods only work for
finite-state-space systems. However, network systems are usually modeled to have
unbounded buffer sizes. Therefore, we aim at designing a model-based reinforcement
learning method, which is capable for optimizing countable-state MDPs with unknown

dynamics.

1.2 Problem Formulation

We target at optimizing the average queue backlog of a general discrete-time queueing
network system with possibly unknown dynamics.

The system consists of a set of nodes and links. Each node maintains one or more
queues for the undelivered packets, and each queue has unbounded buffer size. The
system may have arbitrary topology and operation scheme, and these dynamics can
be partially or fully unknown to us.

To fit the problem into stochastic process framework, we only consider the discrete-
time network systems with time-invariant stochastic schemes, i.e. under a fixed
stochastic control policy, the increment/decrement of each queue backlog has i.i.d.

distribution over time.

1.3 Related Works

1.3.1 Stochastic Network Optimization

MaxWeight algorithm is a widely-applied network control policy proposed by [25].
It can be applied to general multi-server networks with arbitrary topology and the
servers can be interdependent. MaxWeight algorithm has been proved to be throughput-
optimal (i.e. can stabilize the system whenever the system is stabilizable). Moreover,

MaxWeight algorithm does not require explicit system dynamics but only the current
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queue backlog, which enables it to be applied to complex systems. Extended from
MaxWeight, the work in [18] considers the metric of faireness (i.e. to what extent
can all traffic gets served). The authors introduced Drift-plus-Penalty algorithm and
showed that the optimum regarding fairness can be approached arbitrarily with a

trade-off on end-to-end delays.

Both MaxWeight algorithm and Drift-plus-Penalty algorithm work well for general
network systems and have throughput performance guarentees. Yet our work goes

beyond stabilizing queue backlog to optimize the queue backlog.

1.3.2 Overlay Network

To design control policies for overlay networks, an intuitive solution is: firstly esti-
mating the parameters of the underlay components, then applying classic network
control techniques based on the estimated dynamics. A number of different learning

methods have been applied.

A popular method is probing, i.e. sending probe packets at a certain time intervals
and collect tunnel information. For instance, the works in [10, 16] gathers direct and
indirect path information by collecting traceroute and ping data. In [21], simulation

results illustrate that the probing approach could achieve optimal throughput.

With the rapid development of machine learning techiques, reinforcement learning
has become increasingly popular. In [22], the authors apply Q-learning algorithm in
overlay non-cooperative multi-agent wireless sensor networks (WSNs) to achieve op-
timal mutual response between two agents. The work in [7] applies neural network in
reinforcement learning and improves scalability compared with probe-based inference

methods.

The probing methods usually work in the ad-hoc manner for different problem
settings, while reinforcement learning methods applied to network control so far usu-
ally lack rigorous performance guaranteed. Our algorithm overcomes both issues: it

works for general network with rigorous performance guarantees.
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1.3.3 Model-Based Reinforcement Learning

We consider the model-based reinforcement learning methods that are developed from
multi-armed bandit problems, since these algorithms tend to be more tractable in

analysis.

UCRL (Upper Confidence Reinforcement Learning) is proposed in [13]. UCRL
offers a mathematically rigorous reinforcement learning method that is able to solve
Markov decision process with unknown parameters (e.g. transition probability, re-
ward function). UCRL works in an episodic manner: at the beginning of each episode,
we first estimate the parameters (e.g. simply using sample mean of history data) and
calculate a confidence bound. We then construct a set that consists of all the MDPs
whose parameters fall into the confidence bound. Finally, we select the most opti-
mistic MDP (i.e. the one with the minimum average cost) and apply the optimistic
solution during this episode. When the current episode meets the termination crete-
ria, start the next episode and repeat the same procedure. Since the true MDP is
inside the confidence set with high probablity, and the confidence interval decays with
the learning progress, we asymptotically learn the true optimal policy. The work in

[19] extends UCRL to continuous state sapce using Holder continuity assumption.

PSRL (Posterior Sampling for Reinforcement Learning), proposed in [20], shares
a similar scheme with UCRL. PSRL maintains a posterior (conditioned on the history
data) distribution of parameters. At the beginning of each episode, instead of selecting
the most optimistic MDP, PSRL now only samples an MDP from the maintained
posterior distribution. PSRL harvests similar performance as UCRL, yet requires

less computation.

However, nowadays, the buffer sizes of practical network systems tend to be large
or even unbounded, for which it is hard to directly apply the original UCRL and
PSRL due to heavy computation. A modified PSRL algorithm is proposed in [27],
which can deal with MDPs with large state space. It requires the MDP to have finite
bias span, which is unrealistic for the MDP problems with unbounded cost functions.

Yet in our case, the cost function is just the queue backlog, which might grow to
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infinity.
Our algorithm is inspired by the model-based reinforcement learning methods, yet
we propose a new approach which can help us deal with large scale (or even countably

infinite) network systems.

1.4 Our Contributions

There exist a number of works on network control that aim at stabilizing the queue
backlog, yet the works on minimizing queue metrics (e.g. queue backlog, delay)
remain insufficient. Our algorithm goes beyond stability and targets at optimality.

Even among the existing works on queue backlog optimization, most of them
propose ad-hoc solutions for some specific scenarios. Our approach is applicable to
a broad range of network problems (e.g. scheduling, routing) and does not require
explict knowledge on the operation scheme.

Moreover, for MDP optimization problems with average cost criterion (in con-
trast to discounted cost criterion), almost none of existing methods are applicable
to countably infinite state MDP. Specifically, the classical model-based reinforcement
learning method (UCRL and PSRL) can only solve finite state MDPs. Our algorithm

utilizes drift analysis tools and is able to solve countably infinite state MDPs.

1.5 Thesis Outline

Chapter 2 illustrates the mathematical model of the studied network system under
MDP framework, followed by the required assumptions and discussions on them.
Chapter 3 presents the proposed algorithm, performance analysis and simulation

results. Final conclusions are given in Chapter 4.
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Chapter 2

Model

In this chapter, we formulate the mathematical models for the targeted queueing
systems. In Section 2.1, we model the system as a countable-state MDP (Markov
decision process). However, directly solving the countable-state MDP is ususally
infeasible. Therefore, we construct a corresponding truncated finite-state MDP to
approximate the true MDP in Section 2.2. In Section 2.3 we state and discuss the

assumptions.

2.1 Countable-State Markov Decision Process

As stated in Section 1.2, we consider a discrete-time network system with time-
invariant stochastic schemes and aim at minimizing the average queue backlog with
unbounded buffer sizes. The problem is especially suitable to be modeled as an MDP,
with queue backlog vectors as states and the long-term average queue backlog as the
objective function.

More specifically, the MDP M is modeled as follows:

- State space S

We denote the number of queues as D. We define the set of D-dimensional queue

backlog vectors @ as the state space, i.e. S=Nx .- x N.
N—— ——
D

- Action space A
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The exact form of action space depends on the problem setting. For instance, in
server allocation problem where D parallel queues compete for the service of a single
server [26], the action is the queue served by the server at each time slot and the
action space is naturally the set of queue indexes. We define the action space as A

and assume that |A| < co.

- State-transition function p (can be unknown to us)

We define that, when taking action a at state @, the probability of transiting to
state Q' as p (Q' | Q,a).

We assume that the number of new arrived and served packets during each time
slot are both bounded. Therefore, for every Q(t), there exists a constant W such

that
1Q(t+1) — Q(t)]loo < W.

We also define the set of states within the one-step reachable region of Q as

R(@Qa)2{@ es:p(Q1Qa) >0},

and R = maxQeS,aeA|R (Q, a)|.

- Cost function ¢ (Q)

Since we aim at minimizing the average queue backlog, we define the cost function
as ¢(Q) = >, Qi. We denote the optimal average queue backlog as p*, and the

corresponding optimal policy as 7*.

2.2 Truncated Markov Decision Process

Model-based reinforcement learning techiques usually operate in episodic manner: for
each episode the system dynamics are estimated and an approximated optimal policy
is obtained based on the learned dynamics. However, there is no effective solution for

general countable-state MDPs with optimal average cost (in contrast to discounted
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cost) criteria. Therefore, we introduce truncation scheme to our algorithm.

We imagine a truncated queueing system with threshold U: the system has exact
dynamics as the real one, with the only difference that each queue has buffer size
U. In the truncated system, for each queue, when the queue backlog reaches U, new

packets to the queue will get dropped.

The truncated queueing system can be modeled as a finite-state MDP M with
state space of S £ {0,1,--- ,U}D. M shares the same action space A and cost
function ¢ (Q) as M. For this case, we denote the optimal average queue backlog in
M as 0%, and the corresponding optimal policy as 7*.

The state-transition function p needs to be modified. For simplicity, we first define
amapping TR(-): § — S that describes the packet dropping scheme in the truncated
System:

Q=TR(Q) 2 {min{U,Q:}}_,

By the definition of the truncated system, for each Q' € S, p (Q’ | Q, a) is, when
action a is taken at state @, the probability to transfer to states Q" € S such that
TR(Q") = Q'. Specifically, we define that

S(Q)é{Qes:TR(Q)ZQ}_

Then for each @ € S and any a € A, the state-transition function p can be

expressed as

PQ1Qa)= > p@Q"1Q.a).
Qres(@)

2.3 Preliminaries

In this sectiom, we introduce the required assumptions for performance analysis.
We further illustrate that our assumptions are natural under the queueing network

settings.
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2.3.1 Existence of a Known Stabilizing Policy

We first need to control the performance degradation brought by the unboundedness
of the state space.

As introduced in Section 1.3.1, a large number of queueing systems can be stablized
by stochastic control policies (e.g. MaxWeight) that does not require the knowledge
of system dynamics. Stabilizing policies usually have negative Lyapunov drifts. By
applying Theorem 3 in [3], we can upper bound the probability for queue backlog to
grow large.

s

Therefore, we define that Q. = max; Q; and make a natural assumption as

follows to control the unboundedness of the state space.

Assumption 1. There ezists a known policy 7o, a Lyapunov function ®¢(Q) <
aQ% . with a,co > 0 and €g, By > 0, such that for any Q(t) € S, when Qmqs(t) = Bo,

max

we have

E., [cbo (Q(t+1)) — B (Q(1)) | Q(t)] < —éo.

A broad class of queueing systems have been proven to have 7y as Assumption 1.
For instance, stabilizing policies are proposed for dynamic server allocation problem
[1, 8, 26], multiclass routing network [5, 12, 15, 14, 4], inventory control [17, 9] etc.,

all with linear or quadratic forms of Lyapunov functions.

2.3.2 Lyapunov Drift Under the Optimal Policy

Denote the optimal policy of the truncated system as 7*. We further assume that 7*

has negative drift under sub-quadric Lyapunov function.

Assumption 2. For any U > 0, under #* there exists a Lyapunov function b;Q%,,. <
P*(Q) < byQP,, with by,by > 0 and 0 < f < 2 and &,B* > 0, such that for any
Q(t) € S, when Quax(t) = B* > 0, we have

By [ (Q(t+1) - (Q() | Q)] < =&

22



We further assume that there esists by > 0, such that for any Q(t) € S,

& (Q(t+1)) - " (Q(t)) < byUm= 1,

2.3.3 First Hitting Time Under the Optimal Policy

Due to mathematical requirements, it is required for us to impose some restrictions

over the communication properties on the truncated MDP.

Assumption 3. In the truncated system M, there exists ¢ > 0, such that for any
Q, Q' € S, we have
minE [T,q| < cl@ - QI

where T is the policy applied to S.

2.3.4 Error Tolerence for MDP Estimation

As the learning process proceeds, the estimation for M becomes increasingly accurate.
However, the parameters to estimate are real numbers, and it is impossible for us to
obtain the exact M (due to the density of real numbers).

To simplify our analysis, we make the assumption that if we estimate the state-
transition function accurate enough (i.e. within a certain error bound), the solution

to the estimated MDP is the same as 7*. The assumption is as follows.

Assumption 4. There exists a Ap > 0, such that for any finite-state MDP M' with

the same state space, action space and cost function as M, if the condition that
|5 (1@a) =9 (1Q.a), <2p

holds for each (Q,a), then the optimal policy to M' is also 7*.

Notice that in most queueing networks, when system dynamics (e.g. exogenous
arrival rates, service rates, channel capacities) varies slightly, the optimal policy re-

mains the same. Therefore, the assumption is reasonable for queueing systems.
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Chapter 3

Main Results

In this chapter, we present our algorithm and performance analysis, which are the
main results of our work.

We illustrate our algorithm in Section 3.1. In Section 3.2, We present our per-
formance results from both exploration and exploitation perspectives. Section 3.2.1
serves as the exploration part, in which we discussed the number of episodes it takes
for our algorithm to obtain 7*. While in Section 3.2.2, we turn to exploitation per-
formance, showing that as learning process proceeds, PDGRL utilizes the learned
(sub-)optimal policies increasingly frequently and harvests the average queue backlog

close to the optimal one. Proofs are given in Section 3.4.

3.1 Algorithm

We propose PDGRL (Piecewise Decaying e-Greedy Reinforcement Learning) alsorithm.
For simplicity, we partition S into S™ 2 {Q € S : Qe < U} and S £ S\ S™.
PDGRL operates in episodic manner: at the beginning of episode k, we uniformly
draw a real number £ € [0,1]. If £ < I/Vk (£ €) (where 0 < I < 1), we do
exploration during the episode by applying purely random policy 7 4nq (i.€. selecting
actions uniformly) for states in S™, while still apply 7o for the rest states. If £ > ¢,
we enter exploitation stage: we first estimate the parameters of M using sample

means, then solve the estimated system and obtain a sub-optimal policy 7. For the
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rest of the episode, we apply 7 for states in S and 7y otherwise. When visits to
states in S™ exceed Ly, = L - vk (where L > 0), PDGRL enters episode k + 1 and
repeat the process above.

The detailed algorithm is as Algorithm 1.

Algorithm 1 The PDGRL algorithm
1: Input: A, U >2W + (B'/b)Y#,1>0,L >0
2. Initialization: ¢+ 1, N(-,-) < 0, P(-,-) + 0
3: for episodes k + 1,2,--- do
4 Set Ly + L-Vk, e l/\/E and uniformly draw £ € [0, 1].
if £ < ¢ then

5

6 T 4= Trand-

7. else

8 For each Q,Q" € 8™ and a € A, estimate that p (Q' | Q, a) =
P(Q,a,Q")/N(Q,a) for N(Q,a) > 0and p (Q’ | Q,a) = 1/|R(Q,a)| oth-

erwise.
9: Solve the estimated MDP M, and obtain the estimated optimal policy 7y.
10: T 4= Ty
11: end if

12:  while visits to states in S is smaller that L; do

13: Take a; = 7i* (Q(t)) for Q(t) € S™ and a, = mo (Q(2)) for Q(t) € S™.

14: Implement a; to the real system and observe the next state Q(t + 1).
15: if Q(t) € S™ then

16: N(Q(t),ar) + N (Q(¢),ar) + 1.

o P(QU).anTR(QU+1)) P (Q(),a0 TR(Q(+1)) +1
18: end if

19: t+—t+1.

20: end while

21: end for

22: Qutput: estimated optimal policy 7

3.2 Performance Analysis

We illustrate the performance of our algorithm from both exploration and exploita-
tion perspectives. We first prove that PDGRL can learn 7* with arbitrarily high
probability, which illutrates that PDGRL explores different states sufficiently to ob-
tain an accurate estimation of M. We then show that PDGRL exploits the estimated

optimal policy and has a tight gap to the true optimal result p*.
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3.2.1 Convergence to the Optimal Policy (Exploration)

We define p™™ (Q) as the stationary probability of @ under the policy that applies
7 to states in S and 7’ to states in S,
The following theorem shows that, with arbitrarily high probability, PDGRL

learns 7* within finite number of episodes (see Section 3.4.1 for the proof).

Theorem 1. For any 0 < § < 1, PDGRL learns 7* within k* < oo episodes with

probability at least 1 — §. Specifically, k* is upper bounded as

2 2 2J* +4)! . J+2 (K * 12J*+2
k*<5<K0+J*+%-(J 44 JE,(”LJ 1) :

where
2r+t1y DA
4] Al log Z24A
L\/ KQ(AP)2 . minQegin pﬂrﬂnd+7{0 (Q) ’

J =
and Kq is a constant.

Note that Theorem 1 only provides a loose upper bound for k*. By applying a
tighter inequality in Eq (A.12), we expect Theorem 1 to have a much tighter upper
bound.

3.2.2 Average Queue Backlog (Exploitation)

Theorem 1 indicates that PDGRL explores (i.e. samples) state-transition functions
of each (Q,a) in M sufficiently. The following theorem shows that PDGRL makes
a balanced trade-off between exploration and exploitation (see Section 3.4.2 for the

proof). We define t; as the starting time of the £ episode.

Theorem 2. Applying PDGRL to M, the expected average queue backlog is upper

bounded as

E [ :il > Qi(t)] 40 < [y D+max{2a,7} )

li =
Kl—r+noo tx P exp (Umin{ﬁ,2—ﬁ})
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Theorem 2 gives us an asymptotically optimal result regarding the threshold pa-
rameter U: by increasing U, the long-term average queue backlog approaches p*

exponentially fast.

3.3 Numerical Experiments

3.3.1 Problem Setting

We consider a simple server allocation problem: exogenous packets arrive to two
nodes according to Bernoulli process with rate A; and A, respectively. Both nodes
have unbounded buffers. At each time slot, a central server need to select one of the
two queues to serve. The selected queue ¢ is served successfully with probability p;.

Specifically, the system model and parameters are as Figure 3-1.

Q,(t)
4 =02— [[[}. . Pr=03

~~._/[ Central
19¢3) _.-="7\_Server
Ap=01— [[[}"p,=08

Figure 3-1: System model

According to [26], whenever A;/p + A2/p2 < 1, a stabilizing policy is to always
serve the node with the longest connected queue (LCQ). Therefore, we can use LCQ
policy as my. Note that in our setting, the channels are always connected, mp is
actually serving the node with the longest queue (LQ).

On the other hand, according to cu-rule in [8], the optimal policy 7* that minimizes
the average queue backlog is to select the node with the largest successful transmission
rate among all the nonempty queues.

In the model depicted in Figure 3-1, 7* is to serve node 2 whenever it is nonempty.
However, since node 1 has larger arrival rate and smaller successful transmission rate,
queue in node 1 is easier to get queued up. Therefore, we would expect mg to serve

node 1 more frequently and there exists a gap to the result under 7*.
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3.3.2 Results

When conducting simulation, we compare the performances under four policies:
(LCQ), PDGRL, 7* (true optimal policy) and #* + 7 (applying 7* for @ € S and
7o otherwise). Note that the #* + m policy is exactly the best policy PDGRL can

learn. We simulate it to study the convergence rate of PDGRL.

We first implement the simulation under U = 5, and the result is as Figure 3-2.

6 T T T T T T T T T
 — L1
——PDGRL
5} * )
1
o —_
Q
3
= i
o
c
<@
[
=5
> = —
=
= s ot s o —
s
o
22t .
o
(0]
>
<C
ol i
0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
t x10*

Figure 3-2: Simulation results under U = 5

Figure 3-2 shows that PDGRL beats 7, and quickly converges to 7*+mp. However,

the gap to 7* still exists.

From Theorem 2, we know that when U grows, the average queue backlog of
PDGRL approaches the optimal result exponentially fast. We then set U = 10 and

repeat the simulation.
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Figure 3-3: Simulation results under U = 10

From Figure 3-2, we can see that now PDGRL still converges to 7* + mg fast, and

the gap between PDGRL and 7* almost diminishes, as indicated by Theorem 2.

3.4 Appendices

3.4.1 Proof of Theorem 1

We denote Ni(Q,a) as the number of times that (Q,a) is selected during episode
k. The following lemma illustrate that after after a certain number of episodes,
Trand Samples every (Q,a) sufficiently with relatively large (e.g. greater than 1/2)

probability (see Appendix A.1 for the proof).

Lemma 1. Under algorithm 1, there exists Ky > 0 such that for any k > Ko,

prete (Q) - L
2lA]

Pr {Nk(Q, a) > %

i
! ﬂ-kn — WTand} >

for each Q € 8™ and a € A.
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We also-have the following lemma on the number of samples for each (Q,a) re-

quired to estimate M accurate enough (see Appendix A.2 for the proof).

Lemma 2. If for any Q € 8™ and a € A

2 2r—i—1(U+ 1)D|AI
N(Qva’) 2 (Ap)2 : ]-Og 5 y

then with probability at least 1 — §/2, the optimal solution of the estimated truncated
MDP 1s exactly 7*.

Based on Lemma 1 and Lemma 2, we are able to prove that as the learning process
proceeds, each (Q,a) will be sampled sufficiently for M to be estimated accurately
enough. The following theorem provides an upper bound for the expected number of

required episodes k* (See Appendix A.3 for the proof).

Lemma 3.

. Com @A) 4T (K + T+ 1)
E[k]<K0+J +€ J*!-l2J*+2 -

K(J%),

R+1 D

. 4{.A|log2 (U6+1) |.A|

whE’l‘e J - [Lm(Ap)z'minQesin p"'rand"”"O(Q) .

Using Lemma 3 and apply Markov’s inequality, we have a probablistic upper
g

bound for k*:

(3.1)

with probability at least 1 — 6/2.
By taking a union bound over the events of Lemma 2 and Eq (3.1), we have that

with probability at least 1 — 4,

K< S| Ko+ T + —-

2 72 (@) AT (K g g )M

which completes the proof of Theorem 1.
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3.4.2 Proof of Theorem 2

From the design of PDGRL and Theorem 1, we observe that after a certain number of
episodes, PDGRL selects 7 as i with high probability. In the following lemma, we
provide an upper bound for the expected average queue backlog under the piecewise
policy that applies 7* to states inside S** and my to states outside S°** (since Lemma.
4 plays core role in analyzing the performance, we place the proof in Section 3.4.3).
Define the beginning of episode k as t, and the length of episode k as Lj,, the following

lemma holds.

Lemma 4. The expected episodic backlog conditioned on wi"(-) = @*(-) is upper

bounded as follows.

lim E | &5k
Pl L exp (Umin{8:2-8})

tet+Li—1 D+max{2
Qi(t , [J D+max{2a,7}
00 | w+0< ).

To analyze the overall expected queue backlog, we need to further consider two
possible cases: we may never learn 7*, and even if we have successfully learned 7*,
Trang May be selected as mi" with small but positive probability. The following lemma
provides an upper bound for the overall expected queue backlog (See Appendix A.4
for the proof).

Lemma 5. Under PDGRL, the overall expected queue backlog is upper bounded as

follows.

ti ) D+max{2a,v}
. t=1 Z@ Qz (t) ok U 14+2a
AR [ tx =7 O o ey ¥ Y

where L}, is the actual episode length of episode k, i.e. Ly plus the time spent in Sout,

By taking § = U 22" L.exp (—Umi“{'g’z_ﬁ}), we have an upper bound for the overall

expected queue backlog as follows.

ti ) D+max{2a,v}
; (it _
tﬁ2@<1:ﬁ+o<zf ),

tr exp (U™n{5.2-5})

lim E

K—oo

32



which completes the proof.

3.4.3 Proof of Lemma 4

For simplicity, we partition S as follows.

,

ZR2IQES: Qe < U —2W}
ZnalQeS:U—-2W +1< Qe <U-W}
.

ZeelQeS:U-W+1< Qe <U}

Zggtté{QESZQmax>U+1}

\

We further define that Z™ = Z!" U Zi? and Z°* = Zgyt U Zo4

out *
1k -I-L;c -1

We define the regret of episode kas > .5, * (3, Qi(t) — p*). We also define 7,
and T,°“* as the set of time slots that Q(¢) is in Z* and Z°* during episode k. We

then can decompose average episodic regret as follows.

[ tit+L,—1 ~x
— g CGQi(T) — .
h IE t=ty ( 1 Q ( ) P ) I mn

k—o0 L;c ko= 7}
[ Sy (2, Qi) = )
= lim E | =% ( : ) |7 =7+ | + (3.2)
k—oo Lk
[ S ey (5, Qi) = 7*)
lim E | 2% ( ; ) | 7t =77 . (3.3)
k—oo Lk

We obtain an upper bound for Eq (3.2) in the following lemma (see Appendix A.5
for the proof).

Lemma 6.

e (S0 -5

’
k—o00 Lk

| Mt =% | =p" T (Z;Z) -0 (UD”) :

For Eq (3.3), we also obtain an upper bound in the following lemma (see Appendix
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A.6 for the proof).

Lemma 7.

lim E ZteTk‘"‘t (Z,/Qz(t) - ﬁ ) | .

k—o0 Lk

;’Cn — 7| = pﬁ-*+7r0 (Zg;t) NG) (UD+2a) )

We further propose the following lemma to upper bound p* +m (Zg’d‘) and p™ tmo (Zg’(}‘t)
(see Appendix A.7 for the proof).

Lemma 8.

pir*+7r0 (ZZ2> +pﬁ*+wo (Zg;t) — O (exp (_Umin{ﬂ,2—,3})> .

By combining Lemma 6, Lemma 7 and Lemma 8, we have

th+Li=1 D D+max{2a,v}
. t=ty Zz Q'L (t) n __ ~% o o~% U
ICILIEQIE L;c | Me =7 =F + 0 exp (Umin{ﬁ,Z*ﬁ}) ’

which completes the proof.
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Chapter 4

Conclusion

In this work, we apply model-based reinforcement learning framework to general
queueing networks with unbounded state space. We propose PDGRL algorithm,
which applies e-greedy exploration scheme. We then use Lyapunov analysis and prove
that the average queue backlog can get arbitrarily close to the minimal average queue
backlog under oracle policy. Numerical experiment results are consistent with our

analysis.
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Appendix A

Proofs

A.1 Proof of Lemma 1

In the prof, we only discuss the episodes that applies T 4n4.

Under Assumption 1 and Assumption 3, by applying Foster-Lyapunov theorem,
we can show that under the policy that applies T,qng to states in S™ and mp to
states in S°%, the corresponding Markov chain is positive recurrent with stationary

distribution pﬂ'rand+ﬂ'0 )

Define NJe"¢*™ (Q) as the numebr of times that Q is selected during episode k.
For an irreducible positive recurrent Markov chain on countable state space, we have

the mixing property that for any given

- lerrand'i'ﬂ'o (Q)

i Trand 70 . 1 Al
g 73 p Q)  wpl, (A1)

for each Q € S, where L) is the actual length of episode k.
k

Since L; > Ly = L- vk, Eq (A.1) can be further expressed as

g N (Q)

— Trand 70
Jim =y p @  wpl (A.2)

Since under m,qnq+mo, for each Q € S, we take each a € A with equal probability

37



IA%I’ then according to strong law of large number, we have

N7r'rand+7r0 1
o y;n ]S'Wrand“f‘Tr(EQ’ a) = j wp17 (AS)
Nyrand ()00 Ny @ A

for each Q@ € S™ and a € A.

Also note that according to Eq (A.2), Ny7"*™ (Q) — oo as k — oo for p™rendt™ (Q) >

0, Eq (A.3) can be further expressed as

Nﬂ—rand‘*_ﬂ(] 1
lim kfrr,dermEQ, @) = w.p.l. (A4)

Since both Eq (A.2) and Eq (A.4) are almost sure convergence to constants, the

multiplication rule for limit holds, i.e.

fim N;rrand'f‘ﬂO(Q’a) — lm N,::r'rand+7m (Q) - NZ’“"d+WO(Q,a)
k—o0 L;c k—o0 L;c Ngra"d+7r0 (Q)
o NTTUQ)y NET(Qu)
frares L, k—oo  NJrerd¥T0 ()
pﬂ'rand+770 Q

for each Q € S and a € A.

Note that almost sure convergence indicates convergence in probability, for any
e > 0, we have
Tan +
N;f d+7o (Q’ (1) pﬂ'mnd"‘ﬂ'o (Q)

: _ .
kll_)Iglo Pr 7 A > € 0, (A.5)

for each Q@ € S and a € A.

Given a Q € 8™ and a € A, by taking € = Iﬁ%’_;% in Eq (A.5), we have that
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there exists Ky < oo such that when k > K,

<
Ly 2/A

< Pr N]:rrand+7r0(Q’ a) < pﬂrand+770 (Q)
h Ly T 24

Pr {Né’md*’m(cz, Q) _ Pt (Q) }

N’;’:rrand‘l'wo (Q, a) pwrand+ﬁo (Q)

Ly, | A]

pﬂrand+7r0 (Q)

<P >
' 2/ A]

1

< A6
2SHA (A.6)

for each Q@ € S and a € A.

By taking a union bound over §" and A in (A.6), we have that when k& > K, for
each Q € S™ and a € A,

Sin

Pr { N (Qua) _ prnt™ (@) } 1

1
< < , Al = =,
Ly 2| A 2|5 | A| Al 2

which completes the proof.

A.2 Proof of Lemma 2

According to [29], for a probabiliy distribution over n; distinct events, the L'— devi-
ation of the true distribution p and the empirical distribution p based on ny samples

from the true distribution p is upper bounded as

2
l > e} < (2™ —2)exp <~7—1—2§€—) :
1

By definition, for each (Q,a), n; = IR(Q,a)I < R. By taking ny > (—A%? .

Pr {H;s(- 1Q.a) = (-1 Qa)
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R+1 D
log LU;I)——MJ, we have

Pr{ Y 5@ 1Q.0)-HQ|Q,a) > Ap
Q' eR(Q,a)

2 R+1 D
<(2F —2)-exp (—— (A2p) . (Ai?)z -log 27U ;‘ 1) IAI)

)
<.
T2(U +1)P|A|

By taking a union bound over each @ € S and a € A, we have

Pr {there exists (@, a) such that H;ﬁ (1Q.a)—p(| Q,a)”l > Ap}

o

5
O — DAl ==
Sswao CHYVTM=S

which completes the proof.

A.3 Proof of Lemma 3

We define event

Trand+7T0 (Q) . Lk
2| Al

Bk = {T‘-;Cn = Trand> Nk(Qaa) > L ,VQ € Sinva' € -A} .

From Lemma 1, when k > K, at least p™andt™ (Q) - L - \/Ky/(2|A|) samples can

be obtained for each (@, a) if By is true. Therefore, a sufficient condition to obtain J

3AlJ
L~/ KO'minQeSi" p"rand*“"ro (Q)

samples for each (Q,a) is that By occurs for J* £ [ ] times.

Denote m* as the number of episodes needed for By to occur for J* times when
k > Ky. Then we have

E[k*] < E[m"].
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For n > 1, we have

Pr{m* > Ko+ J* +n}
= Pr {from episode Ko+ 1 to Ko+ J* + n, Trang is not selected for at least n times}

_pr U B

Ko+1<ki<ka< - <kn<Ko+J*+n

< Z Pr {Ekl,k'z,"-,kn} . (A?)

Ko+1<ki<ka<---<kn<Ko+N+n

where Ej, g, ... k, is defined as the event that during episodes ky, k2, - - - , kp, By does

NOT occur.

By applying Lemma 1, we have

Pr{By} > = - Pr{mana is selected at episode k} = —=.

2k

DN

Therefore, for any Ko < k1 < ko < --- < k, < Ko + N 4+ n, we have

Pr{E, < 1—— ) < ({1- . A.8
F{ B} Hl ( Mz;) ( wm) (A8)
By inserting Eq (A.8) into Eq (A.7), we have

Pr{m* > Ko+ J* +n}

< J +n .<1_ l )
n 2VKy+ J*+n

_(J*+n)-(J*+n—1)"'(n+1). 1— [ )n
o J*! WK+ J*+n
1 . l "
<— - (JF A iy . A9
L (1 ) (A9)

Since for x > 0, natural logarithm can be upper bounded as

loge <z —1.
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We therefore have

nlog(l— l )g— nl
2\/K0+J*+n 2\/K()+J*+TL

which indicates

(1 - : ) < exp (— i ) (A.10)
o0vEKo + J* 1 o0VKo + J* + 1

By inserting Eq (A.10) into Eq (A.9), we have

1 J* J*
Pr{m*>Kg+J*+n}<‘ﬁ' ( +7l)

nl '
exp ( 2VKot+J*+n )

Therefore, we have

E[k*]

N

m’]

Pr{m* > i}

i

El
2

:K0+J*+2Pr{m* > Ko+ J*+n}

n=1
1 & J*+n)"
<Ko+ J"+ 55 D ( ) (A.11)
" n=1 €XpP (2\/‘—Knl=)
ot+J*+n
Since for u > 0, we have
© ok w2+

k=0
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Therefore, for n > 1

2J* +4) - 472 (Ko + J* +n) " H2
(nl)QJ*—M

(J* + n)J*

; <(J>k + n)J* . (
oxp (—zm)
(2J* +4)! - 472 (Ky + J* +n)T 2

<(Ko+ J*+n)” -

(nl)zJ*+4
N\ 2J*+2
:(2J*+4)!.4J*+2. 1+M i
nl 2
. Ko+ J\* 1
<(2J* 4 4) 4772 <1+°—;r—{—) gt (A.13)

Insert Eq (A.13) into Eq (A.11), we therefore have

1 i (J* +n)”

J*! ex nl
n=1 XD\ UKot +n

. (2]* +4)| _4J*+2_ (K0+ J* +l)2J*+2 oo 1
<K0+J + —

E k] <Ko+ J* +

Jx! .20 +2 7
T QTR (K g )Y
:K()+J + E . J*!.Z2J*+2 ’

which completes the proof.
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A.4 Proof of Lemma 5

During episode k, @ can exit into S°* for at most L, times, and each time the
expected regret is uniformly upper bounded by O (U'*2*) from Eq (A.49). Therefore,

for any policy 7 that is applied to S, we have

te+ Ly —1

t=tg

=0 (\/E U1+2°‘) . (A.14)

From Lemma 3, we know that there exists a k* < oo such that 7i*(-) # 7*(-) when

k > k* with probability at most 1 — (1 — 0)(1 — €x) < 6 + €.

Also, by applying Lemma 4, there exists a k; < oo such that when & > k;, we

have

L' —1 ~% max{2c
‘]ttk:—:‘jk i (Zz Ql(t) - P ) l qin — ¥ <§ .0 yPmextzan
7 k ) exp (Umin{ﬂ,2~,6})

o UD+max{2a,'y}
- exp (Umin{ﬁﬂ—ﬁ}) )

E

Therefore, for any k > ko £ max{k*, k1 }, the overall expected episodic regret can
g
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be bounded as

E| > [le®-7
ti+Lj —1
=Pr{m() =70} E| Y (Y- IO =70

+Pr {W,’C"() # fr*(-)} N0, (\/E U1+2a)
ngc.(,)( {7 D-+max{2a,7} )+ (6+e)- (\/E~U1+2°‘)

exp Umm{BQ ﬁ})

UD-{—max{Qa ~}
=I' .0
k exp Umln{ﬁQ ,3})

Lo 5 VE - Ut o U1+2a).

We finally can bound the expected average regret as

K—oo [57%
tK+1 -1
K—o0 I tK+1 —1
i th+L—1 Y
_ lim E Zszl Zt’-c——tk k (Zz Q’L(t) —p )
= 7 /
Koo | Zk:l Lk
[ k21 e - K ty+Ly—1 .
— . i t) — o _ A i t —
— lim E k=1 t=t}, K(SJ:ZQ() P) 1 lim E Zk~k2 t=t) K(Z,ZQ() P)
K—oo 1 Lk . K—00 3 Lk
[ — L ~ ’ UD+max{2a,'y}
E [y S (S0 - 7)) reia L O ((——)>
< lim — T + lim E —
K—oo Zk:l Lk K—oo Zk:1 Lk
>k, O (5 Nk Uy U1+2a>
+ Him 7 : (A.15)
K—o0 Ek:l Lk

For the first term in Eq (A.15), since the numerator is finite, while the denominator
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~ grows to infinity as K — oo, we have

B[ SR (e - )]
lim = = 0. (A.16)
K—o00 Zk:l Lk:

For the second term in Eq (A.15), since the big-O term holds for every k > ko,

we simply have

Iim E oy
K—oo Ek:l Lkz

K UD+max{2a,v}
Zk:k; L;c -0 (W) UD+ma.x{2a;y}
=0 oy ) AT

Since the sum of square roots can be bounded as

27 o 2n +1)3

< L —

3\§ﬂ\ T

the third term in Eq (A.15) can be further bounded as

ZkK_k O (5\/EU1+2a n U1+2a) O (%Uf_;r_l)l L SUM2 KU1+20‘>

lim 7 < lim -
K—o0 Zk:l Ly K—o00 L. 2};7
3
L 1 3 42 U1+2a
= Kl'linoo (] (1 + E) oU + W
—0 (U | (A.18)

By inserting Eq (A.16), Eq (A.17) and Eq (A.18) into Eq (A.15), we have

D+max{2a,v}
=O( v +6U1+2“),

(S Qult) — 7)
: t=1 i el
lim E oxp (Umin{ﬁg_ﬁ})

K—oo tK

which completes the proof.
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A.5 Proof of Lemma 6

By Proposition 5.5.1 in [2], when applying #* to M, there exists h*(-) such that the
for each Q € Z™, the following Bellman equation holds:

PR @=3 0+ > 5(Q1Q7(Q) h(Q). (A.19)

Qesin

Note that Eq (A.19) works for M, and we extend it to M for analysis afterwards.
By the truncation scheme in Section 2.2, for each Q € Z™, Q' € §™ and a € A, we

have

F(Q1Q.7 Q) =r(QQ,7(Q).

Therefore, Eq (A.19) can be rewritten as

R @=3 Qi+ > p(Q1Q7(Q) h(Q), (A.20)

QI eSin

for each Q € Z™".

During episode k, @ may enter Z and leave Z™ for multiple times. We define the
process starting from @Q entering Z™ to leaving Z™ as an "enter and leave" process.
For an "enter and leave" process, we define Q" and Q' as its first and last state in
Z"_ We classify the "enter and leave" processes according to (Q°", Q') pairs. Note

that according to the setting in Section 2.2, we have Q*, Q" € Z7.

We denote that, during 7", "enter and leave" processes with (Q°", Q') occur
for N.(Q°", Q') times, and when they occur for the i** time, the start and end time
slots are ¢{%(Q®", Q") and te.(Q°", Q") separately.In addition to "enter and leave"
processes, it is posssible that at the beginning or at the end of episode k, Q € Zm,
For episode k, define 7,3 as the set of time slots that @ € Z™ before the first "enter

and leave" process starts, k"éo as the set of time slots that Q € Z™ after the last
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"enter and leave" process ends. We therefore can make the following decomposition.

E|Y (Saw-s) m -
~t€7;§" e

—i | 3 (i (@) = [i* (@(e+ ) 1 Q] ) 17 = 7

Ne(Qem,Qle) 1 (Q°.Q)

=E > > (E*(Q(t))—lE[E*( t+1) | Q(t )D +

Qen’leezg’g 7=1 tztivﬁ_(Qen’Qle)

~ S

2H(Qe". Q)

(A.21)

El > D Qt)-5)Im=7 (A.22)

teT,g’j;)uT,;"’;o i

We then proceed to bound the value of (3.2) and (3.3) over L; (conditioned on

7" = 7*) separately.

For (A.21), we have the following lemma (see Appendix A.8 for the proof).

Lemma 9. For every Q°*, Q% ¢ ZZS’;

Nk(Qe",Qle en le
I}LTEOE Zi:l L/ (Q Q ) | It!n = F* < p'fr*+7ro (Qen) X CDUH"Y.

For Eq (A.22), similar to Eq (A.39) in the proof of Lemma 9, it can be upper

bounded as follows.

E| ) Y Qit) =5 | |7 = 7| < 4eNU™. (A.23)

€Tk oV Tkl
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By combining Lemma 9 and Eq (A.23), we have

lim E

k—oo

< ¥

Qen’Qleezgg

7 (2) DU 40

_ n
_IZbd

Siern (55 Qilt) — 7°)

| i = 77

Ly,

. 4eNUH
T +mo eny | 14+ li peyy

:pﬁ'*-{-wo (Zgg) . 0 (UD+7) )

where (A.24) holds because |Z{7| = (U — W)P — (U — 2W)P = O (UP1).

A.6 Proof of Lemma 7

(A.24)

We define the set of time slots that Q@ € Z2 as b‘c’i‘,ﬁ and the set of time slots that

Q € 25 as Ty We therefore have the following decomposition.

. Zte’]’k""’ (Zz Qi(t) - ﬁ*) in | ~x
L I TS
k
| D Ci @ =7
= I}Lm E LI | 7Tk =T +
° k
, Yierow, (T Qi) =)
khm E 77 | 7t =7
—00 k
For Eq (A.25), we have
‘ Ciergn (L Qi) =)
kli)m E 77 | Tt =7
& k
e [PUTE ] e g

For Eq (A.26), we have the following analysis.

49

(A.25)

(A.26)

(A.27)



During episode k, @ may exit S and return back to S for multiple times. We
define the process from the time that @Q just exits S™ to the time that @ is just
about to return back to S as an "exit and return" process. For an "exit and return"
process, we define Q°® as the last state before exiting and Q"¢ as the first state after
returning back. We classify the "exit and return" processes according to (Q%, Q")

pairs. Note that according to the setting in Section 2.2, we have Q®*, Q" € Z*.

We denote that, during 7,°*, "exit and return" processes with (Q*, Q") occur
for N/ (Q®, Q™) times, and when they occur for the i*" time, the start and end time

slots are #;%(Q°*, Q™) and #;5,(Q°*, Q") separately.

We define R; (Q*, Q") as the regret from #7(Q, Q™) to £5(Q°, Q™). We
therefore can decompose E [Z seTou (Zl Qilt) — ﬁ*)] as

El > (Y -7
_t€7;%’ifk i

N’/C(Qex,Qre)
—FE > R (Q**, Q) (A.28)

Qem’QreeZ{:‘;i 1=1

We then proceed to bound the value of (A.28) over L} (conditioned on 7j* = 7*).

We have the following lemma (see Appendix A.9 for the proof).

Lemma 10. For every Q°", Q' € Z2¥,

{VIIC(QeZ"QTe) R, ex re ) . 2 2DW U w 1+2a
hm E 21:1 - 1 (Q ) Q ) | legn — ﬁ_* g pr —+mo (Qe:r)_ a ( 2+ ) )
k—o0 Lk €0



By combining Lemma Eq 10, Eq (A.28) and Eq (A.27), we have

lim E ZteTk‘Wf (Zz Qi(t) - :5*)

[
k—o00 Lk

|y =7

2a2DW (U + W)!H2e

2
€0

gpfr*_;_m) (Zggt) . DU + Z pfr*+7ro (Qem) .
QCE,QTEEZI‘)’;”
QCLQDW(U + W)1+2a

€

:pfr*+71—0 (Zg;t) . DU +pir*+7ro (Z(Zjut) lZl?;t| .

:pir*—f—?ro (Z{,’(}‘t) o) (UD+2a) 7 (A.29)

where Eq (A.29) holds because | Zgy| = U — (U — W)P = O (UP?).

A.7 Proof of Lemma 8

In Assumption 2, we define a Lyapunov function @*() on 8". To extend it to S, we

define ®'(-) as follows

(i)* if Sm
v l@ T (A.30)
0 if Q € Sou

In the following lemma, we prove that ®'(-) has similar drift properties as &)*()

does (see Appendix A.10 for the proof).

Lemma 11. When Q(t) € {Q €8 :B* < Quar < U},
Ermo [2(Q(t+1)) — (Q(1) | Q(t)] < —&".

It has been proven in [3] that for a Markov chain with negative Lyapunov drifts, the
probability for Lyapunovvalues to grow large decays exponentially, as the following
Lemma states.

Lemma 12 (Theorem 3 in [3]). Given a nonnegative Lyapunov function ®(-), if for

o1



®(Q) > B, we have

E|2(Q(t+1) -2 (Q®) | Q)] < — (A.31)

Then for m > 0, the stationary distribution for the states that satisfy ® (Q) > B can

be upper bounded as follows.

1

S A.32
s o

Pr{q) Q) > B +m} <

where V' is the maximum value of drifts.

~\B ~
In our case, when @' (Q) > ¢, (B*) £ B’, we have Qe > B* and ®(-) has
negative drift upper bounded by —é&*. Also, by Assumption 2, V < byU™>{#-10} By

applying Lemma 12, we have

P () + T (2
=Pr{U —2W + 1 < Qoo < U}
<Pr{51Qfs > b1(U = 2W), Qax < U |
<Pr{®(Q) >b(U —2w)}

zpr{cp' Q) > B + b (U —2W)° — B'}
1

- by (U—2W)P-B’

t+5) 7

N

(A.33)

Since for x > 0, the following inequality holds.

log(1 >
og(l + x) e
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We therefore have

bi(U—-2W)? — B €
( a + 1} -log 1+V

U 2WY - B &
- 2V Ve
bi(U—2W)F — B &
= 2b3Umax{5—1,0} ’ bgUmax{ﬁ—l,o} P
= (ymne-ea) (A.34)

By inserting (A.34) into (A.33), we have
pfr*+7r0 (ng) _+_p-,}*+7ro (Zgiut) .y (exp (_Umin{2—ﬁ,;@}>) (A35)

which completes the proof.

A.8 Proof of Lemma 9

Define Y;"(Q°", Q') as the time interval between the starting time of the i** and
(i+ 1) "enter and leave" process with (Q°*, Q¢). By the Markovian property of the
system, Y;"(Q", Q*)’s are i.i.d. and H;(Q®", Q%)’s are also i.i.d.

Since L, > LVk and L) — oo as k — 0o, then according to the renewal reward

throrem, for every Q°*, Q" € Zi, we have

va:kl(Qen,Qle) Hi(Qenane) | i _ | E [Hl(Qen,Qle)}

lim K k=T - E [Ylin(Qen, Qle)] :

14

(A.36)

However, directly computing E [Y;™"(Q®", Q)] is not straightforward. We have
the bound that for every Q°", Q" € Zi",

E [Yf"(Qen, Qle)] > E [Interval between visits to Q°"]. (A.37)

Also, From Assumption 3, Assumption 1 and Foster-Lyapunov Throrem, under

=
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7* + 7o the Markov chain is positive recurrent. Therefore we have

1

. A.38
E [Interval between visits to Q¢"] ( )

pﬁ-* +7o (Qen) —

Inserting Eq A.37 and A.38 into A.36, we have

!
k—o0 Lk

Nk(Qe"lee) H. en le ) .
lim | | =i @R fr*] <y Q™) B [M(@Q, Q")

For Hl (Qen’ Qle)a

E[H(Q".Q")]

theL Q")

=E > (ﬁ* Q1) —E [E* (Q(t+1)) | Q(t)D

=17 (Q, Q')

5 [ir (Qui@.@) - i (@@ +1) Q(t)H

_ te, (Qm,Ql)—1
cEl Y (R@er-E[i@er)Qw))

=t (Q<™, Q)

- i (@uzi @ @) - B | (@@ +1)] (A.39)

Define that H £ maxgezm

h* (Q)I From the analysis following the proof of
Proposition 5.5.1 in [2], (@) — h* (Q) can be interpreted as the minimum of the
expected cost to reach Q' from @ for the first time, when the cost is defined as
c¢(Q) — p*. Apply Assumption 3, and note that ¢(Q) < NU, we thus have that for
each Q,Q’' € Z™,

Q) — R (Q) <E [Tg;Q,] . NU < eNU™., (A.40)

By inserting (A.40) into (A.39), we complete the proof of Lemma 9.
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A.9 Proof of Lemma 10

Define Y/(Q®, Q") as the time interval between the starting time of the i and
(i + 1) "exit and return" process with (Q¢*, Q™). By the Markovian property of
the system, Y/(Q®,Q")’s are i.i.d. and R; (Q°",Q™)’s are also i.i.d.

Since L) > LVk and L, — 00 as k — oo, then according to the renewal reward

throrem, for every Q®*, Q™ € ZZ* we have

| E[R(Q=, Q)]

N (Qe=,Q¢) . exr re )
lim E 2iz) R (Q7, Q) |t =7 = : :
E [Y’l (Qeac’ Qre)}

’
k—o00 Lk

(A.41)

However, directly computing [E [Yl’ (Q”,Q”)] is not straightforward. We have
the bound that for every Q%*, Q™ € Z2*,

E [Yl’ (Q°, Q’”e)] > E [Interval between visits to Q°*] . (A.42)

Also, From Assumption 3, Assumption 1 and Foster-Lyapunov Throrem, under

7* + 7 the Markov chain is positive recurrent. Therefore we have

- 1
T (QET) = : A4
P (@) E [Interval between visits to Q¢*] (A.43)
Inserting Eq A.42 and A.43 into A.41, we have
N’Q(Qem’QTE) ex re
. = RZ Q 7Q in ~ % * 4 ex ex re
lim | |22 Tl V| aip = 0| = 70 (@) - E[RU(Q™, Q)]
k—o00 Lk
(A.44)

We now come to bound R; (Q%*,Q"¢). Define 7(Q*, Q) as the time spent in the
"exit and return” processes with (Q°*, Q™). Define S22 {Q € S : U + 1 < Qee < U + W}
According to the proof of Theorem 1.1 in Chapter 5 of [6], for any (Q*, Q™), we
have the uniform upper bound that
maxgpegeout Po (Q U+ W)
E [1(Q, Q)] < ——=2k 0(Q) AU+ W) & f0 (A.45)

€0 €0
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Theorem 6.3.4 in [11] states that for a nonempty state set B, and a state s, If

there exists a constant C' such that

E(Tos] < C- iy (A.46)
Then for p > 1
E[T7,5) <pl-C”- Fly (A7)

where Fyg =5 > Pr{s, ¢ B,0 <v<n,s, € B|so=s}.
Therefore, we can bound E [72 (QOUt,Qi")] for any (Q°*, Q™) in the manner
that

E [72 (QO’“, Q”")} < 212, (A.48)

For R; (Q%*, Q™), the queue length can grow to at most D - (U + Wr(Q°, Q”’)).

Therefore, we have

E [Rl (Qex’ Qre)} <E [D . (U + WT(Qem’ Qre)) . 7—(626.’/7:7 Qre)]
<D(U + W)Ty + 2DWT?

<L2DW(U + W)T3

_202DW(U +W)*+>e

2
€0

(A.49)

By inserting (A.49) into (A.44), we complete the proof of Lemma 10.

A.10 Proof of Lemma 11

From Assumption 2, we know that in the virtual truncated system M, we have
Es- [#7(Q( +1) - Q) | Q)| < ¢ (A.50)

when Q(t) € {Q € 8 B' < Quar < v}

We then turn to the real system M. Since the state-transition functions remain
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exactly the same Q € Z™, we have

Eeesm [#(Q(t+ 1) ~ ¥(Q(1) | Q)] = B [8°(Q(t + 1)) - $"(Q(1) | Q(1)]
(A.51)

For Q(t) € Z£4*, notice that it is possible that Q(t + 1) is in $°*, which makes

(A.51) no longer hold. In this case, we need more intricate calculation:

Es-ino [2/(Q(t+ 1) — ¥(Q(1) | Q(1)]
= —d(Q) + > P (Q1Q1),7(Q()) - ' (Q)
QER(Q(1)7(Q(1)))

— Q) + 3 p(Q1QM),7(Q(1) - " (Q)

QeR(Q(),7*(Q(1))nNS™

+ 2 p(Q1QM),T(QE))) -0 (A.52)
QeR(Q(1),7*(Q(1) )nSeut

QER(Q(),7*(Q(1))nS™™
" 2 P(QIQM).T(Q() - (TR(Q)) (A.53)
QeR(Q(1),7*(Q(t) )nSent

=—d"(Q(1) + > p(Q1Q(M),7(Q®)) - (TR(Q)), (A.54)
QER(Q(). 7 (Q(1))

where (A.52) comes from (A.30), (A.53) holds because ®*(-) is nonnegative and (A.54)
comes from the property that for Q@ € S™, TR(Q) = Q.
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We further have

Yo p(@1QM),#(Q®) - & (TR(Q)
QeR(Q(),7*(Q(1)))

= > (@) 3 »(Q1QM),7(QW)) (A.55)

Q'eR(Q(1),7*(Q(1))NS™" Qes(Q")

= 2. (@1Q1),7 (@) - (@) (A.56)
Q'eR(Q(1),7(Q(1))nS™

—E: [$(Q(t+1) | Q1) (A.57)

where (A.55) is obtained by rewriting the summation according to the values of
TR (Q) and (A.56) comes from the definition in Section 2.2.
By combining (A.51), (A.54) and (A.57), we complete the proof of Lemma 11.
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