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Abstract

Boeing is the prime contractor for building the National Aeronautics and Space
Administration (NASA) Space Launch System (SLS) core stage for upcoming
exploration missions beyond low earth orbit. Due to the rigorous demands of safety on
crew-rated spacecraft, the entire vehicle undergoes captive hot-fire testing before being
delivered to NASA for actual flight operations. The hot-fire test is controlled by a suite
of computers used to control the rocket segment and critical infrastructure interactions
during the test. The complexity of the software and hardware used to control the test
makes it difficult for traditional safety approaches to identify potentially unsafe system
interactions by focusing only on component failures rather than overall system
interactions. Traditional chain-of-failure safety analyses and reviews take significant
resources and time to conduct while leaving possible gaps.

This thesis discusses a method for analyzing safety of rocket test controllers by
characterizing key indicators and developing a systems-based approach for hazard
analysis using Systems-Theoretic Process Analysis (STPA).

A resulting case study is applied for examination of a portion of the rocket testing
controller system for comparison to traditional chain-of-failure events analyses. Appling
STPA in the case-study resulted in 83% of the total work time needed to complete a
comparable "ascent phase" analysis using FMEA. The STPA results are the same or
meet a similar intent to those resolved in the FMEA with not gaps between the two
methods. The recommended mitigation and constraints resulting from STPA are
arguably more intuitive than those of the FMEA.
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Chapter 1

1 Introduction

This chapter gives a synopsis of the project motivation, objectives of the thesis, and provides an

overview of the thesis approach.

1.1 Thesis Objective

Boeing is the prime contractor for building the National Aeronautics and Space

Administration (NASA) Space Launch System (SLS) core stage for upcoming exploration

missions beyond low earth orbit. Due to the rigorous demands of safety on crew-rated

spacecraft, the core stage undergoes captive hot-fire testing of its four RS-25 engines and all of

its systems before being delivered to NASA for actual flight operations on Exploration Mission-

1 (EM-1). The hot-fire test is controlled by a suite of computers that control the vehicle and

critical interactions with the test infrastructure. Traditional chain-of-failure safety approaches

such as Failure Modes and Effect Analysis (FMEA) for analysis of such complex software and

hardware focus on component failure rather than unsafe system interactions. A newer systems-

based approach, System-Theoretic Process Analysis (STPA), may be applied for examination of

the rocket testing controller system to improve efficiency and safety-engineering of hot-fire

testing operations of the SLS core stage in future iterations.

With new space launch programs, the engineering and manufacturing organization must

not only build the first rocket, but must construct a completely new system to design, build, and

test a new rocket line. This includes methods of production and validation. Validation can be

done in one of four ways: test (against measurable requirements), analysis, demonstration, or
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inspection. Testing is the most thorough and required for the SLS core stage final validation.

The program components of the launch system are developed through concurrent engineering

and understood iteratively as the project matures. Often, at the tail end of the evolving

requirements chum is the rocket test and finalization of the supporting test equipment due to the

nature of its reliance on vehicle specifications. Due to natural schedule constraints, the testing

phase is often under the most condensed timeline pressure as preceding vehicle development

encounters changes or delays. This environment of requirements volatility and intensifying

schedule pressure leads to higher potential for introducing unsafe conditions into the launch

vehicle testing controller as it is at the tail end of the requirements chum.

Full-scale hot-fires and the rocket launch itself are two of the most dangerous aspects of

space launch development. The high-mix, low-volume production of such vehicles does not

enable a universal approach to testing since each mission design requires extensive technical

modification from one iteration of the vehicle to the next. Thus application of the same test

controller is insufficient to apply to multiple platforms. Testing of the launch vehicle to ensure

its safety and reliability is extensive, time-consuming, and expensive. The test controllers of

such tests are critical to performing a safe hot-fire test and can be extremely complex. The safety

of the launch vehicle test is a balance between applying appropriate corrective action to

potentially unsafe actions of the test article system and avoiding erroneous test aborts due to

improper or overly conservative safety constraints.

1.2 Project

The main focus and basis of research involves the test controller component of the captive

hot-fire test, which encompasses the full suite of validation testing of the Space Launch System

core stage, as controlled by the "Stage Controller" (SC) computer architecture and software.
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Improving the ability to perform test firing of the current and future iterations of the Space

Launch System may be approached in a way that minimizes schedule risk and cost by

examination of the test controller using a newer system-based method of hazard analysis.

1.3 Research

This thesis will perform an examination of potential leading indicators that may introduce

unsafe system interactions into the rocket test controller design and product. Next, it will

develop a methodology for a system-based approach of rocket testing controllers, and then

discuss methods of improving safety engineering from a systems-safety approach.

The examination method will utilize a model and data analysis approach to understand

sources of introducing unsafe interactions into the final product. The thesis will utilize this

model to develop a simulation to determine risk to indicators along with a discussion on strategy

to deal with sources of risk.

A contemplation of traditional hazard analyses will examine merits and issues of various

methods. A basis for a newer approach for systems-based hazard analysis, using Systems-

Theoretic Process Analysis, will be introduced along with a detailed methodology for analysis.

A case study will apply a systems-based hazard analysis to the rocket testing controller

during the "ascent phase" of the captive hot fire test. A discussion of the results will determine

the merits and issues with the methodology.

Further discussion will introduce techniques to minimize leading indicators of inducing

hazards and improving safety-engineering using a systems safety approach. This method will be

applicable to a number of products that may be at the tail end of a concurrent engineering project

such as rocket testing controllers.
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1.4 Major Findings

Appling STPA in the case-study resulted in 83% of the total work time needed to complete

a comparable "ascent phase" analysis using FMEA. The STPA results are the same or meet a

similar intent to those resolved in the FMEA with no gaps between the two methods. The

recommended mitigation and constraints resulting from STPA are arguably more intuitive than

those of the FMEA. This is likely due to the methodology of STPA which employs logical

systems-based reasoning to explore the system's emergent properties and all possible causes as

opposed to FMEA's failed-component approach which focuses mainly on hardware component

failures.

Analyzing the data for the overall development of the system over an eight month period

reveals requirements volatility ranging from <1% to 26.8% for the total system requirements

from all four categories (overall system, hardware, system software, and user apps and displays).

This volatility represents a risk to program schedule and further increases risk to inducing defects

that cause safety-critical hazards.

Probabilistic simulation results show that the probability of schedule delays due to

requirements volatility is >64%. The combined effects of requirements volatility increases

schedule risk and defect rates. Schedule risk may lead to other sources of hazards being

introduced into the system by management attempting to make-up lost schedule time by

directing employees to work overtime. This may further lead to compounding sources of

induced hazards into the system during development, as shown in Section 3.1.

1.5 Content Summary

Chapter 1 of this thesis provides an overview of the project context and goals. Chapter 2

covers background for research and details the current space launch industry, NASA and the SLS
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program, and Boeing's history with the program. Chapter 2 also includes an overview of rocket

testing and control approaches and methods. Chapter 3 covers the literature review, detailing the

current engineering process, sources for introducing risk in concurrent engineering products, and

methods for analysis of leading indicators. It also gives an overview of common methods for

traditional hazard analyses and covers the philosophy behind system-based hazard analysis.

Chapter 4 covers analysis of hazard sources being introduced into the design. Chapter 5 provides

in-depth coverage of the procedures for Systems-Theoretic Process Analysis (STPA). Chapter 6

performs a case-study applying STPA to the rocket testing controller during the "ascent phase"

of the SLS captive hot-fire test. Chapter 7 concludes with a discussion of the merits and

challenges of these methods along with techniques to incorporate them into system design and

safety engineering practices for future interactions.

In this thesis, several terms are used interchangeably, particularly with regards to the

products being discussed, the SLS core stage and the rocket testing controller. The SLS core

stage is referred to interchangeably throughout the thesis as the test article, rocket, vehicle, core

stage, and SLS. While the most accurate description of the test article under testing is the SLS

core stage, these terms refer to this section of the overall Space Launch System. The captive hot-

fire test controller is referred to as the test controller, stage controller, and rocket testing

controller.
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Chapter 2

2 Background

This chapter provides the necessary background for follow-on literature review and research

discussion. The first section covers the current space launch industry and past human

exploration launch vehicle development. Section 2.2 provides an overview of NASA and the

SLS program's history. Section 2.3 covers the SLS prime contractor, the Boeing Company, and

its relationships with NASA and its objectives. Section 2.4 provides a primer on the

foundational components of rocket testing and control.

2.1 Former and Current Industry

From the perspective of space exploration as a current industry, many facets of historical

and contemporary underpinnings have an effect the Space Launch System (SLS) program.

NASA's history with successes and failures have some interesting implications on the manner of

how NASA defines and approaches risk whether from a program success or safety perspective.

The next sub-section discusses the retirement of the Space Transportation System (STS),

typically referred to as the Space Shuttle, the reasons why it was deemed unsafe, and the need for

a replacement capability to get beyond low earth orbit (LEO). Finally, the last sub-section

provides context behind the start of the Constellation Project and the transition to the current

authorized Space Launch System (SLS).

2.1.1 NASA and Disruption

In the years leading up to the turn of the century, NASA enjoyed a multitude of mission

successes. The Viking program launched in 1975, landed successfully on Mars in 1976 on two

19



separate missions. The immensely public success opened an entire scientific enterprise with the

next steps ostensibly imminent. However, the subsequent decades endured major failures.

The Viking program was $5 Billioni running over 15 years from inception through

operational completion. In 1977, Voyager, a $1 Billion program was successful, on time, and on

budget. However, beginning with Galileo in 1986, a trend developed with cost overruns and

schedule delays as shown in the table below [1].

Table 1. NASA missions run over budget and behind schedule leading up to the 2000s [1].

Program Year Cost, Years to build Issues

Voyager 1977 $1 Billion 5 Years On time, on

schedule

Galileo 1986 $3 Billion 10 years 3x cost

overrun, 7

years behind

Mars Observer 1992 $2 Billion 8 years 2x cost

overrun, 4

years behind

Hubble Space 1993 $3 Billion 15 years 6x cost

Telescope overrun, 6

years behind

'All costs are adjusted to 2018 dollars
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Cassini/CRAF 1997 $5 Billion 7 years 2x cost

overrun, 3

years behind

These programs were technically and scientifically sound, well-staffed with highly competent

scientists and engineers, but they went over budget and fell well behind schedule. One

interesting analysis as to why these programs went over schedule and budget is from Rob

Manning, the Chief Spacecraft Engineer, NASA Jet Propulsion Laboratory:

The more money that's involved, the less risk people want to take. The less risk

people want to take, the more they put into their designs, to make sure their

subsystem is super-reliable. The more things they put in, the more expensive the

project gets. The more expensive it gets, the more instruments the scientists want to

add, because the cost is getting so high that they're afraid there won't be another

opportunity later on- they figure this is the last train out of town. So little by little,

the spacecraft becomes gilded. And you have these bad dreams about a spacecraft so

bulky and so heavy it won't get off the ground- never mind the overblown cost. [...]

That boils down to the higher the cost, the more you want to protect your

investment, so the more money you put into lowering your risk. It becomes a

vicious cycle [1].

While Manning is referring to scientific robotic missions, it is important to mark the

distinction between human and robotic spaceflight. Human spaceflight is more risk-averse

by nature of having to protect the livelihood of a crew. However, some points of analysis
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from Manning's reflection may hold merit for human spaceflight programs. The results of

the missions leading up to the 2000s are successive failures, as shown in the table below:

Table 2. NASA Mission results leading up to the 2000 [1]

Program Year Issues Mission

Results

Voyager 1977 On time, on Success

schedule

Galileo 1986 3x cost overrun, Antenna

7 years behind Failure

Mars Observer 1992 2x cost overrun, Lost in Space

4 years behind

Hubble Space 1993 6x cost overrun, Flawed Mirror

Telescope 6 years behind

Cassini/CRAF 1997 2x cost overrun, Hugely De-

3 years behind scoped

The consecutive results of these over-budget and delayed programs impacted NASA's

reputation, government funding, and rippled through the organization. In 1993, after widely

publicized issues with the Hubble Space Telescope, NASA, the United States Congress, and

President agree that NASA needed to move away from multi-billion dollar science missions and

impose strict budgetary amounts and rules. The resulting budgets were to be small and inflict

harsh program cancelation policies if they went over budget.
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In 1995, the Jet Propulsion Laboratory, came up with Mars Pathfinder for $0.15 Billion.

It was on time (34 months), on budget, and 100% successful. The Pathfinder program quickly

built a small, focused spacecraft, taking risks only small budgets allow, and bounced the lander

onto the surface using an innovative combination of new technology, proven engineering, and

hard-won experience. The result was for 1 / 2 0 th of the price and for 1/3 rd of the development time

of the Viking program. A team of around 100 employees were able to plan, design, build, and

execute the successful landing of a rover on Mars with compelling scientific results. The success

defined the era of Better, Faster, and Cheaper for robotic space programs [1].

The method that captures the success of Pathfinder can be characterized by the Lean

Innovation Cycle, as shown in Figure 1:

Figure 1. The Lean Innovation Cycle [1]

Using the framework of build, measure, learn, and the corresponding seven steps from

the Lean Innovation Cycle, Pathfinder was able to break from the traditional program mold and

achieve success. The steps as applied to Pathfinder were:

23



1. Describe the Hypothesis: Landing on Mars and roving (as opposed to orbiting)

provided a compelling technical demonstration for scientific exploration on another planet,

paving the way for further exploration.

2. Identify Assumptions: Using innovation and targeted risk acceptance enabled the

program to keep a very low budget compared to other programs.

3. Identify Biggest Risks: The highest cost and largest risk is entry, descent, and landing

of the rover. Maintaining low cost options, required new innovations. It was feasible to conduct

a direct entry from deep space and use airbags to "just get it down," as a trade-off between cost,

risk, and schedule.

4. Plan a Test: The program tested things extensively instead of adding redundancy.

They emphasized reuse of spare parts where possible. The program also engaged the public

early and often, with full transparency.

5. Build Something Simple: To keep on track, the program needed to build the smallest,

simplest system possible. The need to remain on budget and on schedule was highly

emphasized. The key was to prevent scope creep, by not allowing afterthoughts or nice-to-have

features to be included in the design. Cheaper science missions should open the possibility of

many more inexpensive follow-on missions in which to include those additional features.

6. Test Assumptions: The program's ultimate test was the first lending attempt on Mars

using the new system.

7. Analyze and Rethink: The science community, the public, and NASA were excited

that they had proven way to land and conduct science on Mars for relatively low cost. This led

to the approval to launch more rovers, landers, and orbiters. This proposal involves repeating

this cycle, each time building on past success, retiring risks, and raising excitement.
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The strength of the Lean Innovation Cycle stems from the advantages of a prioritized task

list that avoids making a big list of features and prevents scope-creep. The iterative nature

allows a natural way to test if the program's assumptions were correct along the way. Other

similar names for this cycle are the virtuous feedback cycle and agile development. Space

Exploration Technologies Corporation (SpaceX) is a notorious proponent of this method, using a

fail-fast technique to keep cost down and schedule on track. Their application of the lean

innovation cycle steps may take the form of the following:

1. Describe Hypothesis: The major barrier to commercial space access is the widespread

disbelief that a single private company can develop and launch a rocket

2. Identify Assumptions: A successful launch of a small rocket will lead to money for

increasingly larger rockets.

3. Identify Biggest Risks: The largest risk is system integration which is mitigated by

using the least costly test as possible, an inchoate small rocket.

4. Plan a Test: Build a company to design, prove, and integrate the completely new

engine and rocket

5. Build Something Simple: SpaceX develops and builds the first Falcon 1 rocket.

6. Test Assumptions: The first three launches fail. The cycle iterates and the fourth is a

success. This leads to an investment surge and burgeoning development of the larger Falcon 9

rocket.

7. Analyze and Rethink: SpaceX's strategy is to maintain the current pace with larger

rockets, cycling to learn, with the eventuality of getting to Mars.

NASA's unmanned past and reoccurring entanglement with the Lean Innovation Cycle is

now being used in a similar capacity by companies like SpaceX to develop manned spacecraft
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and rockets. As shown, the lean innovation cycle worked well for unmanned space missions in

NASA's past. Perhaps in NASA's future manned programs such cycles may be used to help

prevent scope creep and minimize the complicated requirements developments that introduce

sources of hazard into the rocket's design. Leading into current development of SLS was a story

of triumph and tragedy with the Space Shuttle and the canceled Constellation Program of the

early 2000s.

2.1.2 Shuttle Retirement

The Space Transportation System, commonly referred to as the Space Shuttle program,

was operational from 1982 to 2011, flying 135 missions. It was a partially reusable spacecraft

system capable of accessing low earth orbit and landing to a runway for retrofit. The shuttle

system included the Orbiter Vehicle (OV) with three Rocketdyne RS-25 main engines, two

recoverable four-segment Solid Rocket Boosters (SRBs), and an expendable External Tank (ET)

for liquid oxygen (LOX) and liquid hydrogen (LH2) fuel for the main engines.

Of the total missions, two were lost in mission accidents, including lives of all seven

astronauts on each orbiter. The first was the Challenger SRB O-ring disaster in 1986, where a

ruptured O-ring caused vehicle breakup and disintegration on launch. The second was the

Columbia Thermal Protection System (TPS) failure in 2003, where ET foam shedding on launch

struck the leading edge of the OV's wing, degrading the viability of the TPS, and causing

breakup and disintegration on re-entry.

A NASA risk assessment study concluded that the agency had underestimated the level

of risk involved in operating the Shuttle. There was a 1 in 10 chance of a catastrophic disaster

during the first 25 flights but safety improvements had later improved the risk ratio to 1 in 90 as
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shown in Figure 2. The corresponding underestimations on part of the original Probabilistic Risk

Assessment (PRA) studies conducted are indicated by a red "x" on Figure 2.
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Figure 2. Space Shuttle Probability of Catastrophic Loss of Vehicle and Crew [2]

A NASA report on Shuttle Risk Progression states [2]:

The results indicated that the Shuttle risk tends to follow a step function as opposed

to following a traditional reliability growth pattern where risk exponentially

improves with each flight. In addition, it shows that risk can increase due to trading

safety margin for increased performance or due to external events. Due to the risk

drivers not being addressed, the risk did not improve appreciably during the first 25

flights. It was only after significant events occurred such as Challenger and

Columbia, where the risk drivers were apparent, that risk was significantly

improved. One lesson learned from the [Space Shuttle Program] is understanding

risk drivers are essential in order to considerably reduce risk. This will enable the
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new program to focus time and resources on identifying and reducing the

significant risks.

For several reasons, safety included, congress cancelled the program with its final

mission taking place in 2011. The Space Transportation System was justified with the intent to

provide frequent low-cost, low-risk, high-capacity access to low earth orbit. It ended with

reusability as the fatal flaw in its design, however. With the knowledge of risks and hazards

associated with STS, NASA moved to replace it with a more traditional rocket/booster launch

vehicle within Project Constellation. While supporting space shuttle flights for roughly $1

Billion per launch, NASA was struggling to make the budget work to begin developing a new

vehicle without canceling the shuttle program first.

2.1.3 Project Constellation

Prior to the cancelation of the Space Shuttle, the United States planned to build a new

manned spaceflight program called Constellation. The goal was to be able to regain astronaut

experience beyond low earth orbit with completion of the International Space Station, return to

the moon, and then on to Mars. In 2009, the Augustine Committee found that with an already

staggering budget estimated to cost $230 Billion (2004) however, the project was deemed

infeasible without a substantial increase in funding. The project was effectively cancelled

between 2010 and 2011 along with the retirement of the space shuttle, with no replacement for

the United States capability to execute manned spaceflight launches domestically.

2.2 NASA and the Space Launch System

With budget constraints and a political wind shift, NASA and the U.S. Congress were

forced to significantly reduce the cost of their manned spaceflight launch program if they wanted
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to pass a new authorization act. The Space Launch System is the first exploration-class rocket

since the Apollo-era Saturn V rocket. Designed to take humans beyond low earth orbit, SLS is

designed for deep space missions that will send Orion or other cargo to the Moon and beyond.

By comparison with the International Space Station (ISS), the launch vehicle needs to reach a

speed of 24,500 mph to achieve successful trans-lunar injection, 7,000 mph faster than ISS and

nearly 1,000 times farther. Future upgrades will provide more power for human exploration to

Mars and robotic missions to Saturn and Jupiter. To achieve the power required, the Core Stage

has two 5-segment Solid Rocket Boosters and four RS-25 Rocket Engines that provide the

necessary thrust [3].

2.2.1 New authorization for Space launch system

To reduce the cost, NASA announced its selection for a new launch system design in

September 2011, similar in capability to Constellation, but for much less cost, on the order of

estimated $7 Billion (2014). The Space Launch System (SLS) planned for re-use of space

shuttle components to help offset the cost. Three block upgrades were initially planned for the

SLS: Block 1 (95 metric ton payload capacity), Block lB (105 metric ton payload capacity), and

Block 2 (130 metric ton payload capacity). Each block will use the same core stage rocket

produced by Boeing, with four main RS-25 engines and shuttle-derived solid rocket boosters, but

Block I B will feature the Exploration Upper Stage (EUS), a more powerful second stage than

Block 1, and Block 2 will include upgraded advanced solid rocket boosters.

The NASA Authorization Act of 2010 included the first provisions for the new Space

Launch System. SLS is being built by more than 1,000 companies from across the United States.

Every NASA center plays a role in some form in supporting its development. The SLS Program

at NASA's Marshall Space Flight Center works closely with the Orion Program, managed by
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NASA's Johnson Space Center in Houston, and the Exploration Ground Systems at Kennedy

Space Center (KSC). All three programs are managed by the Exploration Systems Development

Division within the Human Exploration and Operations Mission Directorate at NASA

Headquarters in Washington D.C. The Core Stage and Exploration Upper Stage are being

designed in Huntsville, Alabama and built at NASA's Michoud Assembly Facility in New

Orleans. The program introduces a host of new technological improvements, such as new

manufacturing techniques that include a friction-stir welding tool that is the largest of its kind in

the world [3].

2.2.2 SLS Development

Aerojet Rocketdyne of Sacramento, California, is upgrading an inventory of 16 RS-25

shuttle engines to SLS performance requirements, including a new engine controller, nozzle

insulation and required operation at 512,000 pounds of thrust. Two shuttle-derived solid rocket

boosters are being used for the initial flights of the SLS. To provide the additional power needed

for the rocket, the prime contractor for the boosters, Northrop Grumman, of Redondo Beach,

California, has modified the original shuttle's configuration of four propellant segments to a five-

segment version. The design includes new avionics, propellant design and case insulation, and

eliminates the recovery parachutes [3].

In the recent years, the SLS program has progressed similarly to other rationally large

NASA missions, with delays, over-runs, and occasional issues. Being crew-rated however, the

threshold for risk is higher than that of United States commercial rocket sector and unmanned

robotic science missions. SLS is different from commercial rockets because of its scale and

complexity. Commercial rockets are not yet crew-rated and do not require the more stringent

risk mitigation efforts in their design and testing that SLS does. Although commercial crew
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programs are being developed for low earth orbit ferry missions, the mission variables are far

less complex than the exploration class rocket that is SLS. Despite the challenges and high

threshold, the program is continuing through several milestones. In 2013, the program

completed the Preliminary Design Review (PDR) which encompasses all aspects of the system

design. In 2014, Block 1 entered into full-scale development. In 2017, however, NASA

announced that the schedule for the maiden flight would be delayed to 2019.

2.2.3 The Current NASA Design Process

Understanding the current NASA design process requires a foundation in modem

systems engineering. Systems engineering started to become prevalent in the 1950s when

systems were becoming significantly more complex, especially in the missile industry. Program

managers struggled with an informal design and manufacturing process that often resulted in

systems that did not completely satisfy the objectives and intent of their program. This lack of a

structured process also led to projects being late and over budget. System engineering is the

attempt to put structure into the design and manufacturing of a system in order to improve the

results of the engineering effort [4]. The process and phases of system engineering are

commonly illustrated as the most basic "V-Model" as shown in Figure 3.

Concept Operation, Maintenance,
Development and System Evolution

Requirements Manufacturing
Engineering

System Test

System and Evaluatio
Architecture System
Development Integration

System Design and
Development

Figure 3. Basic Systems Engineering "V-Model" [4]
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The "V-Model's" basic premise is that the best results ensue if a structured step-wise

process is used from beginning to end. The left side of the "V" represents the basic design

process. The right side of the "V" shows the later stages in development when assurance and

manufacturing take place. The process begins with developing the system concepts first and

then defining the basic goals and constraints on the system. From there, various feasibility and

other analyses may be conducted to refine the program's design and form, thereby saving later

resources from low-viability design options. The next step involves requirements engineering

where detailed requirements are developed for the system based on the earlier definitions of

basic goals and constraints in the system concept phase. The last step in the left side of the "V"

is the system architecture development where a high-level design of the system is created before

detailed design and development. In right side of the "V-Model" process, the various

components are integrated and go through a testing and evaluation phase. Lastly, the model is

completed with final manufacturing and usage of the product [4]. When iterated, the process

becomes a product life-cycle which is important to understanding for future applications of

systems-based hazard analysis approaches.

Further applicability to the software intensive systems is an understanding of requirements

engineering. The "V-Model" only has requirements listed on the left side of the "V," however,

requirements are rarely all-inclusive from the program's outset. As the design matures, the

refinement process naturally generates more understanding of the problem being solved which

results in additions, deletions, or modifications of previously existing requirements and

constraints. In some instances, serious problems during development may occasionally require

the project to completely revert to an earlier phase [4].
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The current systems engineering process is adapted from this model for NASA programs,

as illustrated in Figure 4 below.

Requirements flow down Realized products
from level above to level above

V IE3*WCAL MANAGERENT
PROCESSES

SYSTEIII PRODUCT
DESIGN Technical Planning REALIZATION

PROCESSES Process PROCESSES

Requirements Definition 10 ehia lnigProduct Transition Process

Processes Technical Control 9. Product Transition

1. Stakeholder Expectations Processes
Definition 11. Requirements Management

2. Technical Requirements 12. Interface Management Evaluation Processes
Definition 13. Technical Risk Management 7. Product Verification

14. Configuration Management 8. Product Validation
15. Technical Data Management

Technical Solution Technical Assessment Design Realization
Definition Processes Process Processes

3. Logical Decomposition 16. Technical Assessment 5. Product Implementation
4. Design Solution Definition 6. Product Integration

Technical Decision Analysis
Process

17. Decision Analysis

Requirements flow down Realized products
to level below from level below

System design processes Product realization processes
applied to each work breakdown applied to each product

structure model down and up and across
across system structure system structure

Figure 4: The NASA Systems Engineering Design Process [5]

NASA categorizes this as a systems engineering engine. It includes three major processes:

1. System Design Process

2. Technical Management Process

3. Product Realization Process

The steps within the System Design Process relate to the left side of the "V-Model." Their intent

is to define and baseline stakeholder expectations, generate and baseline technical requirements,

and convert the technical requirements into a design solution that will satisfy the base-lined

stakeholder expectations. Designers not only develop the design solutions to the products
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intended to perform the operational functions of the system, but also establish requirements for

the products and services that enable each operational/mission product in the system structure.

The steps within the product realization process represent the right side of the "V-Model." They

are applied to each operational/mission product in the system structure starting from the lowest

level product and working up to higher level integrated products. These processes are used to

create the design solution for each product and to verify, validate, and transition up to the next

hierarchical level products that satisfy their design solutions and meet stakeholder expectations

as a function of the applicable life-cycle phase. The technical management processes are used to

establish and evolve technical plans for the project, to manage communication across interfaces,

to assess progress against the plans and requirements for the system products or services, to

control technical execution of the project through to completion, and to aid in the decision

making process. This is a communication-based integrated system of processes used to manage

an iterative "V-Model." The three major processes within the NASA systems engineering

engine are used both iteratively and recursively:

Iterative - the application of a process to the same product or set of products to correct a

discovered discrepancy or other variation from requirements.

Recursive - is adding value to the system by the repeated application of processes to

design next lower layer system products or to realize next upper layer end products

within the system structure. This also applies to repeating application of the same

processes to the system structure in the next life-cycle phase to mature the system

definition and satisfy phase success criteria.
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When applied iteratively and recursively, a product lifecycle emerges. As the program's

lifecycle moves forward through maturation, a series of milestones are put in place to manage the

evolution. The program lifecycle and its phases are illustrated in Figure 5.
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Figure 5. NASA Project Life-cycle takes a program from concept study through program closeout [51

Several milestones are required for human space flight review as show by the blue triangles. At

the time of this thesis, the SLS core stage is currently in Phase C: Final Design and Fabrication

and past the Critical Design Review (CDR) milestone.

NASA organizes the program structure into a tiered hierarchy based on major systems,

sub-systems, and sub-components as illustrated in Number 6 below for the Space Shuttle

Program which fell under the Space Transportation System (STS).
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Number 6. NASA Program Tiered Organizational Hierarchy [5]

A similar organizational hierarchy is used for the Space Launch System. The rocket testing

controller falls on Tier 3 under Avionics as a type of special test equipment (STE).

The systems engineering interface between the customer, NASA, and the implementing

organization, Boeing, is shown in Figure 7, below. System functional requirements and interface

control diagrams determine what the system must do and how it interacts with other

organizations' systems. The requirements are further expanded into each sub-tier with more

particularization.
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Figure 7. The implementing organization designs their end product based on a requirements flow-down 151

The major components fit together in a bottom-up realization process from the smallest

components coming together with each other to form the end product in the next higher level.

The lower tier end products are verified against their specified requirements and validated

against stakeholder expectations and concept of the operation (ConOps) as shown in Figure 8,

below.
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Figure 8. Sub-tier components coming together to create an end product [51

The rocket testing controller is designed within this structure against requirements derived from

the entire rocket system since it must interact with them. Further the rocket test controller is

used in the final validation of Boeing's Tier 1 End Product, the SLS core stage integrated with

four RS-25 rocket engines. The requirements change over the life-cycle of the program with

design maturation. Internal Requirements Revision (IRR) and Engineering Change Process

(ECPs) drive these requirements changes in the development cycle.

2.3 The Boeing Company

Boeing is the prime contractor with NASA for the design, development, test and

production of the launch vehicle cryogenic stages, as well as development of the avionics suite

which include the Core Stage (CS) and Exploration Upper Stage (EUS). Boeing Defense, Space,

and Security out of Huntsville, Alabama, is designing the SLS core stage, including the avionics
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that will control the vehicle during flight. The SLS avionics computer software is being

developed by NASA at Marshall Space Flight Center in Huntsville. The core stage is being built

by Boeing at NASA's Michoud Assembly Facility in New Orleans. All major structures are

built and are being outfitted for Exploration Mission-1, and Boeing has started building

structures for Exploration Mission-2. Part of the contract for the core stage includes ground

support equipment and structural testing. Structural test articles are built and tested to ensure

loading, stresses, and environmental effects are reasonable. Boeing's progress is given in the

timeline below [6]:

Table 3. Boeing Progress on SLS.

Date News Release

June 21, 2012 Boeing Successfully Completed Key Reviews of Space Launch System
Dec 21, 2012 Boeing Completed Preliminary Design Review for Space Launch System Core Stage
July 2, 2014 NASA and Boeing Signed Space Launch System Contract
April 23, 2015 Boeing Named John Shannon Space Launch System Vice President
June 8, 2016 Boeing Awarded $200 million in Space Contracts to Small Businesses
April 3, 2017 Boeing Unveiled Deep Space Concepts for Moon and Mars Exploration

Core Stage 1 poses a unique challenge because it is a first-time build that is also a flight article.

With the first round of building, Boeing is experimenting while also learning how to build the

first flight vehicle, maintaining configuration and quality controls sufficient to enable the EM-I

test flight with high confidence. With the first iteration, a responsibility to develop a system to

build several more rockets is being designed and improved concurrently alongside the first

rocket itself. Part of maintaining high confidence is the testing phase. A captive hot-fire test

will be used to provide Boeing and NASA with the confidence to go ahead with EM-1. To test

the rocket, it needs some form of special test equipment to control it.
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2.4 Rocket Test and Control

As of 2012, the John C. Stennis Space Center (SSC), located on the banks of the Pearl

River at the Mississippi-Louisiana border, is NASA's largest rocket engine test facility.

Presently, over 30 local, state, national, international, private, and public companies and agencies

use SSC for their rocket testing facilities. The B1/B2 test stand was originally built in the 1960s

to simultaneously test the five F 1 engines of the complete Saturn V first stage from 1967 to

1970. During the shuttle era it was modified to test the RS-25 Space Shuttle Main Engine.

The stand is a dual-position, vertical, static-firing stand supporting a maximum dynamic

load of 11 million pounds-force (lbf). Stennis now leases the BI test position to Pratt & Whitney

Rocketdyne for testing of RS-68 engines for the Delta IV launch vehicle. NASA is currently

preparing the B2 test position to test the SLS core stage during the upcoming captive hot-fire

testing. It has been an involved process that mirrors work done during the Main Propulsion Test

Article (MPTA) Project at Stennis in the 1970s, when a space shuttle external tank, simulated

orbiter and three main engines were installed on the stand and test fired just as during an actual

launch. Now, the stand will provide an upgraded rendition of the shuttle main propulsion test

with its test of the SLS core stage with one very large difference. The SLS being tested is not a

mockup; the stage to be tested will actually fly. Because this will be an actual flight article, the

plan calls to exercise extreme care. The SLS core stage, with four RS-25D rocket engines, will

be installed on the stand for propellant fill and drain testing and two hot-fire tests.
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The work to prepare the stand for the stage testing was divided into three phases:

restoration of the stand to its original design condition, buildout of the stand to accommodate the

larger SLS core stage and completion of the special test equipment interfaces (structural,

mechanical, and electrical) needed for testing, such as extending the derrick crane atop the stand

by 50 feet, repositioning the 1.2-million-pound original shuttle MPTA framework structure,

adding another 1 million pounds of steel to extend the structure to accommodate the larger SLS

stage and upgrading the massive high-pressure industrial water system to provide as much as

335,000 gallons of water per minute to the stand during test operations [7].

Once installed, the core stage will undergo chill-down and hot-fire tests. To control of

the complex system, special test equipment is being developed by Boeing. As shown in Figure

9, modem complexity of the SLS core stage requires significant resource allocation toward

software development.

Test Controller Development Employees by
Type

4.90% 4.90%
* Management

8.82%

* Integration

* Hardware

n Software

Figure 9. Test Controller Employees are made up of >81% Software Engineers

The proportionality of management, integration, and hardware-type employees to the

number of software-type employees indicates the potential for increased focus needed for
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software-related safety considerations of the special test equipment for the SLS core stage rocket

testing controller design.
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Chapter 3

3 Literature Review

This chapter will provide a review of the academic literature surrounding safety engineering in

general, and specifically, in the field of hazard analysis. The first section covers the current

hazard analysis standards used within NASA. Section 3.2 covers traditional accident models and

a look at their issues and merits. Section 3.3 provides the basis and philosophy behind systems

thinking applied to hazard analysis and introduces Systems-Theoretic Accident Modeling and

Processes (STAMP) and System-Theoretic Process Analysis (STPA). Section 3.4 covers prior

case studies and discussion of these types of hazard analyses.

3.1 Sources of Hazards

To begin to understand safety of the rocket testing controller, an examination of sources of

hazards is needed. Hazards can arise from several different areas and different reasons within

the design of a product. The following definitions are required to understand hazards before

detennining their sources:

System - a set of components that act together as a whole to achieve some common goal,

objective, or end. A system may contain subsystems and may also be part of a larger

system [4].

Loss - involves something of value to stakeholders. Losses may include a loss of human

life or human injury, property damage, environmental pollution, loss of the mission, loss of

reputation, loss or leak of sensitive information, or any other loss that is unacceptable to

the stakeholders.
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Hazard - a system state or set of conditions, together with a particular set of worst-case

environmental conditions, that will lead to a loss.

The rocket testing controller has the following qualities:

" Exists at a low tier in the product structure

" Is driven by requirements from multiple stakeholders

" Is software intensive

" Is involved with a highly dangerous test

These qualities make the rocket testing controller susceptible to a few specific sources of hazards

that are described in the following sections. The following sections will outline potential sources

of hazards, how these hazards are induced in a system such as a rocket testing controller, and

some review and discussion from literature on ways to analyze these sources and mitigate them.

3.1.1 Effect of Concurrent Engineering on Requirements for n-Order Subsystems

The method being used for development of the Space Launch System is called concurrent

engineering, as opposed to traditional serial or sequential engineering. In serial engineering,

products are designed in sequence or in a linear fashion. Concurrent engineering is a systematic

approach to the integrated, concurrent design of products and their related processes, including

manufacture and support. Concurrent engineering is also known as simultaneous engineering.

During development, different stages run simultaneously, rather than consecutively. The intent

is to decrease product development time and also the time to market or delivery, leading to

improved productivity and reduced costs. This approach is intended to cause the developers

from the outset, to consider all elements of the product life cycle from conception to disposal,

including quality, cost, schedule, and user requirements [8].
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For a subsystem at a lower tier, with multiple stakeholders such as the rocket test

controller this may be a source of fluid requirements as the design matures through the product

design. Viewing the tiers as an n-order system, lower tiers experience a higher order of effects

due to requirements propagation. Figure 10 demonstrates this example of propagation of

requirements through a 4-order tiered system:

Major Sub-system Sub-
Orm systems groups systems

(Order-i) (Order-2) (Order-3) (Order-4)

4-K-

Figure 10. Requirements Propagation through an n-Order System
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In this example, five (5) requirements modifications, additions, or deletions at the program level

has anywhere from zero to 35 requirements changes at the sub-system level by the time it

propagates throughout the lower levels, depending on how the sub-system interacts with the

overall change as defined through ConOps and interface control documents.

The propagation is not instantaneous but takes time to filter downstream to lower tiers. A

sub-system group in order-3 may require numerous work hours to determine what changes must

be made to an order-4 sub-system. This propagation effect leads to a time-lag between order-I

issuing requirements changes and order-4 receiving updated design requirements as it is at the

tail end of the change.

3.1.2 Requirements Volatility Correlated to Lower Quality

Requirements volatility is an important risk factor for software projects. High

requirements volatility can cause cost and schedule overruns, making the goals of the project

hard to achieve. Studies show that requirements volatility has a high impact on project

performance [9]. This typically increases pressure on managers to keep up and make up lost

schedule time. Requirements are the foundation of the software release process. They provide

the basis for estimating costs and schedules as well as developing design and testing

specifications. Thus, adding to, deleting from, or modifying existing requirements that have

been agreed to by both clients and maintainers during the execution of the software maintenance

process impacts the cost, schedule, and quality of the resulting product [10].
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3.1.3 Requirements, Quality, and the Link to Safety

Complex systems will tend to have higher volatility due to the number of interacting

components. Another cause of volatility is the weak domain knowledge by the development

team which performs an incomplete analysis of the requirements [11]. This may be higher in a

concurrent engineering environment such as SLS. Estimating requirements volatility is

important in order to predict the risk that the project is going off track. High requirements

volatility has an impact on the quality of the software product (i.e., increasing defect density) and

the project performance (i.e., schedule delays, cost overruns, and amount of rework).

Requirements volatility is considered to be a major source of risk to the management of large and

complex software projects [II]. The following definitions help define metrics to assess these

risks:

Defect density - a quality metric, defined as number of confirmed defects detected in

software during a defined period of development divided by the size of the software. It is

measured in defects per number of lines of code, often in thousands of lines of code

(KLOC) or million lines of code (MLOC).

Safety-critical defects - a defect to a safety-critical system or life-critical system whose

failure or malfunction may result in one (or more) of the following outcomes: death or

serious injury to people, or loss or severe damage to equipment or property.

Intuitively, a higher defect density causes schedule delays by causing rework to fix the defects

and further increases the probability of a safety critical defect not being observed and passing

onto the final release. Studies provide a positive correlation between defect density and post-

release safety critical defects. In one case for software development for the U.S. Department of

Defense, as many as 20 post-release Safety Critical Defects were found in a program with 2.8
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MLOC and defect density of 46.1 defects/MLOC [12]. Defects occur for similar reasons to

safety oversights. Thus, volatility can result in unwanted induced hazards by changes not being

fully corrected throughout the existing system design.

3.1.4 Measuring Requirements Volatility

In order to analyze volatility, the following definitions are required for understanding of

the measurement.

Requirement Change - an added, deleted, or modified requirement from the original

source document

Requirement change types are:

Added - a new requirement placed into the revision after the initial plan of record is

agreed upon

Deleted - a previously agreed on requirement that is removed from the new revision afte

the initial plan of record is agreed upon

Modified - a requirement in which the original intent was determined to be incorrect an

thus altered after previous agreed upon revision [10].

Each of these changes require additional work for the end-product developers that they apply to.

The amount of work fluctuates with the volatility in these changes. To analyze the volatility a

measurement is needed. One widely-accepted measure of volatility is from [10] is:
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Requirements Volatility = Added+Deleted+Modified 100 (1)Total Requirements in Revision

Requirement volatility represents the total change traffic applied to an agreed-to-release plan. It

can be greater than 100% if changes occurred more than the total number of original

requirements planned for the release [10]. One consideration is to use standard deviation or the

total requirements by revision, T. However, standard deviation of total requirements by revision,

as a measure of volatility does not effectively account for the time factor of requirements

changes since revisions are not always released on an equal time scale. The author of [9]

suggests another possibility to measure volatility is to use the sizes of revisions which can also

semi-automate the metrics collection. The measures of size of requirements documents are good

indicators of the number of changes for (use case-based) requirements documents. The results

show that the size measure "number of lines" (of a requirements document) is a good predictor

of volatility [9]. The author of [9] proposes requirements volatility to be defined as the amount

of changes to a requirements document over time and measure it as the sum of the change

densities of a requirements document.

Volatility = E Nrevision Nchange (2)
=1 N words

Equation (2) provides an alternative operational definition of requirements volatility. It is a

function of number of changes (Nchange), time measured in number of revisions (Nrevision), and size

of the requirements document measured in Nwords [9]. Depending on what data is available, both

equations (1) and (2) provide applicable functions to analyze requirements volatility.

3.1.5 Effect of Requirements Volatility on Schedule (Service Length)

Requirements volatility effects the service length of development which can impact

program schedule and cost. With increasing program schedule comes increased pressure on tail-
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end development sub-systems such as the rocket test controller to push for completion toward the

originally scheduled completion date. If the completion date does not move, a number of factors

may be managed in order to meet the completion date including: working longer hours or

overtime, hiring more employees, value stream mapping and program risk reduction measures,

and reducing scope of the project through re-prioritization of efforts. Examining each of these in

more detail one can see the benefits and risks to each one with regard to the safety concerns.

" Working longer hours or overtime: Several adverse effects have been determined through

research between extended hours or overtime and software development. Notable areas

that are adversely effected are cognitive effects, mood and interpersonal effects, health

effects and team performance. While the total number of faults associated with the

implementation activities was lower than the design phase, one study noted that stress

and human nature from such effects contributed to 730% of the implementation faults [13].

" Hiring more employees: The training time for new employees requires pulling resources

away from ongoing projects for on-the-job training and onboarding. To get a new hire

indoctrinated on the current complexity of the project takes significant time and

resources. This approach is often too late in the program life-cycle to be an effective

solution.

" Value stream mapping and program risk reduction measures: Attempting to find waste

and optimize work flow is one approach that can be effective in reducing the

development time. It takes resources away from current development but can often help

streamline efforts and improve overall quality. An issue with this approach is the

required resources and time away from development that employees will need to interact

with the value-stream mapping team. After changes are recognized, implementing them
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takes time and resources to enact through effective change management that may detract

from ongoing projects.

* Reducing scope of the project through re-prioritization of efforts: Managers may be able

to effectively reduce the scope of the project by prioritization of changed and added

requirements. This can help to focus the team on what critical functions or features must

be completed and which of those are perhaps not as important. This leaves room for

interpretation and may avoid missing the desired intent of the overall design by potential

mis-prioritization, however it can be an effective strategy for optimizing the team's

resourcefulness towards more value-added development.

3.1.6 Queuing Theory and Service Length

Queuing theory and simulation of requirements volatility may be used to demonstrate

sources of schedule impact which is linked to a higher defect rate and safety concerns. If

requirements flow is viewed from an engineering level as a process flow, then queuing theory as

show in Figure 11, can be applied to characterize the flow:

Arrivals queuing system: items in -- Departures
queue & items in service

Flow of items through a queuing system

Figure 11. Schematic View of a Queuing System [141

This flow of arrivals and departures are effected by work ongoing within the box, that represent

the queue and work. This system is characterized by the process flow diagram in Figure 12

where the triangle represents the queue and the box represents the work being done on the units

being processed.
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Figure 12. Process Flow Diagram used for Queuing Theory

The system is further characterized by the following variables and equation.

p A (3)

where,

ki is the arrival rate measured in units of work per unit time

pii is the service rate measured in units of work per unit time

pi is capacity utilization of the system

The effected buildup rate is thus:

buildup rate = Ai - [ (4)

For this model we assume no storage capacity constraint, as requirements do not take up physical

inventory space. If we characterize requirements as the unit of work, this model may be used to

analyze the effects of requirements changes over time as arriving units of work and the

developers as performing the required service to write code for those requirements.

Queuing theory, may be used to determine the length or volume inside the triangle

portion of the process flow using the principle of the conservation of work flow. Conservation

of work flow is defined by Little's law [14]:

LS = AW (5)

where,

Ls = average number of items in the queuing system, also referred to as Work in Process (WIP)
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W = average waiting time in the system for an item, also referred to as cycle time

= average number of items arriving per unit time, also referred to as throughput

Through the propagation of requirements due to concurrent engineering as show above,

the model can be further expanded with multiple tiers to show the delay in design propagation

and filter downstream of changes using an expanded tandem process flow diagram as shown in

Figure 13.

L1: number in queue

Figure 13. Tandem Process Flow Diagram

Thus, the arrival rate at process two is determined to be the minimum of the arrival rate of

process one or service rate of process one, as show in equation (6).

A2 = min(A I ,It 1 ) (6)

However, process 1 work is not characterized as full work in engineering the

requirement, but could be merely a systems engineering analysis of downstream effects on sub-

system designs. Therefore tandem queuing theory would be difficult to characterize using the

above method since characterizing the upstream i would be inconsistent.

As a result of requirements volatility, to further describe the system, G-G-N queuing

theory may be applied. Since this volatility creates an unpredictable arrival rate it may be further

characterized as the stochastic inter-arrival of requirements. The figure below illustrates the

process flow as characterized by the G-G-N queuing theory.
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avg arrival
rate X = I/E[A

inter-arrival time FIFO
distribution A N servers

CA . l avg capacity
utilization

*p = X / (N x p)

Avg queue length Lq avg individual
Avg ueueservice rate p = I1/E[S]

avg system
service rate = N x P

service time
distribution S
Cs = a[S] / E[S]

Figure 14. G-G-N Queuing Theory Diagram

This model is simplified by assuming and infinite queue size, first-in-first-out (FIFO), and

p < 1. An acceptable approximation is therefore [14]:

_p 2(N+1) ___(7

Lq = - x 2 (7)
i-p 2

where,

Lq is the average queued number waiting to be worked on (requirements needing fulfillment)

N is the number of servers (developers with a capacity to perform work on requirements)

CA is the coefficient of variation for inter-arrival times

Cs is the coefficient of variation for service times

The number at the server location, Ls as provided by Little's Law, and the number in the

queue, Lq can therefore be used to determine the overall number in the system, L, as shown in the

diagram and equation below.
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q L

Figure 15. Sum of Service and Queue Length to Determine Work-in-Progress Length

L = Lq + LS (8)

The arrival distribution as characterized by the stochastic arrival of requirements changes that

drives volatility is defined as distribution, A. Determining the standard deviation of distribution

A, T[A] and the expected value of distribution A, E[A], it is possible to calculate the coefficient

of variation of inter-arrival as shown if the following equation:

CA [A] (9)
E[A]

Further, the same can be applied for a stochastic distribution of variable service, S to determine

the coefficient of variation of service, Cs. This can be assumed to be constant and thus Cs = 1.

Through statistical analysis of requirements data, distribution A can be modeled to follow a

probability distribution function to determine the characteristics of the arrival process.

As the variability of arrival is increased, the coefficients of variation affect the number in

the queue and thereby the wait time, as illustrated in Figure 16 below.
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Figure 16. Increasing Variability of Requirements (Volatility) Increases the Queue Size and Waiting Time

Thus, the volatility and variability of requirements change has an increasing impact on the

program schedule.

3.1.7 Discussion on Requirements Volatility as a Source of Hazards

The combined effects of requirements volatility increases schedule risk and defect rates.

Schedule risk may lead to other sources of hazards being introduced into the system by

management attempting to make-up lost schedule such as using employee overtime. This may

further lead to compounding sources of induced hazards into the system during development as

discussed earlier in Section 3.1.5.

3.2 Current Safety Standards

The current NASA philosophy on safety is geared towards reducing probabilities of failure

to an acceptable level through reliability, simplicity, robustness, and fault tolerance. As briefly

mentioned, crew-rated spaceflight focuses on safety and reliability as a primary objective,

whereas scientific and robotic missions may have higher levels of risk acceptance commensurate

to the program's mission and budget [5]. Risk and reliability analysts are understood to be
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critical for integration into the design phase to avoid adding in reliability features as an after-

thought. However, it is acknowledged that risk and reliability analysts often perform their

analysis on the design after it has been formulated, rather than designing with safety as a design

driver.

Current practice specifies that preliminary reliability analyses occur as the design matures.

The design and concept of operations should also be thoroughly examined for accident initiators

and hazards that could lead to mishaps. Additionally, current practice calls for conservative

estimates of likelihood and consequences of the hazards to be used as a basis for applying design

resources to reduce the risk of failures. Finally, current practice aspires to fully consider all

failure modes and take the entire system into account.

The NASA Systems Engineering Handbook characterizes a reliable system as one that

"ensures mission success by functioning properly over its intended life" [5]. Effort should be

made to reduce the probability of failure to the lowest acceptable level through simplicity, proper

design, and proper application of reliable parts and materials. Additional consideration should

be given to ensure robustness and fault tolerance, meaning it can tolerate failures and variations

in its operating parameters and environments.

The level of safety and reliability that is designed and built into the system depends on the

information needed and the type of mission. For crew-rated systems, this is the primary

objective throughout the design process. For science missions, safety and reliability is usually

commensurate with the funding and level of risk a program is willing to accept. These

considerations should be an intricate part of the system design processes. Current methods

attempt to maximize the benefit from the reliability analysis by integrating the risk and reliability

analysts within the design teams. However, in many cases, the reliability and risk analysts
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perform the analysis on the design after it has been formulated. In such a case, safety and

reliability features are added on or outsourced rather than designed in which may result in an

unrealistic analysis that is not focused on risk drivers and does not provide full value to the

design. Current analyses are designed to evolve to answer key questions about design trades as

the design matures.

NASA-STD- 8729.1, Planning, Developing, and Maintaining an Effective Reliability and

Maintainability (R&M) Program outlines engineering activities that should be tailored for each

specific project. In the early phases of a project, risk and reliability analyses help designers

understand the relationship between requirements, constraints, and resources. This is intended to

uncover key relationships and drivers so they can be properly considered. Current standards call

for designers to go beyond the requirements in order to understand any implicit dependencies

that may emerge as the design concept matures. The standard acknowledges that the design

requirements will not necessarily correctly capture all risk and reliability issues. It gives

guidance that the systems engineer should develop a system strategy on how to allocate and

coordinate reliability, fault tolerance, and recovery between systems both horizontally and

vertically within the architecture to meet the total mission requirements. This is intended to

enable designers to be aware of the impacts that their decisions have on overall safety.

The design and concept of operations should be thoroughly examined for accident

initiators and hazards that could lead to potential mishaps. During the latter phases of a project,

conservative estimates of likelihood and consequences of the hazards are used as a basis for

applying design resources to reduce the risk of failures. The team uses risk assessments and

reliability techniques to verify that the design is meeting its risk and reliability goals and to help

develop mitigation strategies when the goals are not met or discrepancies occur [5].
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3.3 Traditional Accident Models

Traditional accident models are chain-of-failure-events causality models. They work by

decomposing the system into smaller components, examining and analyzing each component in

isolation, and then combining the results in order to understand the behavior of the composed

components. System reliability is usually evaluated by assessing the reliability of the individual

components and then the component reliabilities are combined mathematically to evaluate the

system reliability. Several assumptions are required for this traditional approach to be valid:

* Separation and individual analysis does not distort the phenomenon or property of

interest

* Each component or subsystem operates independently. If events are modeled, then they

are independent except for the immediately preceding and following events.

* Components act the same when examined separately as when they are playing their part

in the whole.

* Components and events are not subject to feedback loops and other indirect interactions.

0 The interactions among the components or events can be examined pairwise and

combined into a composite value.

Such traditional hazard analysis methods are based on decomposition and therefore on

these assumptions. The basic approach involved is to divide the system into components,

assume that accidents are caused by component failure, calculate the probability of failure of

each component separately, and later combine the analysis results (based on assumptions about

the types of interactions among components that can occur) into a system reliability figure,

which is assumed to be a measure of safety or risk. Common approaches that use this theoretical

basis are Failure Modes and Effects Analysis (FMEA) and Failure Modes and Effects Criticality
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Analysis (FMECA). Further modifying the event-chain model to include "deviations" as the

event or condition to be considered, is the basis for fault tree analysis (FTA), event tree analysis

(ETA), fault hazard analysis (FHA), and hazard and operability analysis (HAZOP).

Preliminary Hazard Analysis (PHA) - Preliminary hazard analysis is a "what if'

process that considers the potential hazard, initiating event scenarios, effects, and

potential corrective measures and controls. The objective is to determine if the hazard

can be eliminated, and if not, how it can be controlled. A PHA is performed early based

on the functions performed during the mission [5].

Failure Modes and Effects Analyses (FMEAs) - FMEAs are bottom-up analyses that

identify the types of failures that can occur within a system and identify the causes,

effects, and mitigating strategies that can be employed to control the effects of the

failures [5].

The initial estimates of failure rates or failure probability might be based on comparison to

similar equipment, historical data (heritage), failure rate data from handbooks, or expert

elicitation. They do not account for emergent properties of including existing parts in a new

system.

Various mitigation efforts are used as to improve the results of traditional analyses. If

accidents are assumed to be caused by failure events, then it makes sense that the approach to

preventing accidents is to eliminate the events or to put barriers between the events so that one

failure does not cause another event down the chain. These include accident prevention design

techniques used such as redundancy, barriers, high component integrity and overdesign, fail safe

design, and, for humans, the use of operational procedures, checklists, and training. These

60



design features are used to reduce the probability of the failure events occurring or of them

propagating.

The failure events require the assumption that they are stochastic for probabilities or

likelihood to be determined. However, software and humans do not satisfy this assumption.

The greatly increased complexity in our systems today (which is made possible primarily by the

use of software) is creating systems where the approach is no longer as effective. It is much

more difficult today to anticipate, understand, plan, and guard against all potential system

behavior before operational use of our systems. Complexity is creating "unknowns" that cannot

be identified by breaking the system behavior into chains of events. In addition, complexity is

leading to important system properties (such as safety) not being related to the behavior of

individual system components but rather to the interactions among the components. Accidents

can occur due to unsafe interactions among components that have not failed and, in fact, satisfy

their requirements.

Problems did not stem from individual component failures but from flaws in the system

engineering process that resulted in flawed system designs. Decomposition-based analysis

cannot identify such causes of accidents including human error, software requirements errors,

and system design flaws.

3.4 Systems-Based Hazard Theory

As introduced earlier, systems theory was developed post-World War II as a means to

understand and cope with nascent complexity of increasingly intricate technological systems. In

particular, some of the initial uses of systems theory were part of the 1950s missile development

programs. The following definitions are required to understand systems theory:
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System - A set of things (referred to as system components) that act together as a whole

to achieve some common goal, objective, or end.

State - A set of relevant properties describing the system at any time. The components

of the state that are relevant depend on how the boundaries are drawn between the system

and its environment.

Environment - Usually defined as the set of components (and their properties) that are

not part of the system but whose behavior can affect the system state. Therefore the

system has a state at a particular time and the environment has a state. The concept of an

environment implies that there is a boundary between the system and its environment.

A system can be divided into subsystems and components, but may also be part of a larger

system. This proposes that a "system of systems" requires a treatment different than that of the

original system. However general system engineering and analysis methods and techniques are

applicable to all systems, including a "system of systems" which is actually still just a system as

much as any other. Unique aspects of systems theory that make it interesting for application to

hazard analysis are that system components do not necessarily need to be directly connected to

interact, making non-linear interdependencies possible. Systems can be treated as whole, rather

than a sum of their parts. This means that systems can exhibit emergent properties, a crucial

aspect of applying systems theory to hazard analysis.

Emergent Properties - These properties "emerge" when the components of a system

interact, which may be different than the properties resulting from the summation of the

individual components. Emergent properties arise from relationships among the parts of

the system, that is, by how they interact and fit together. Full treatment of emergent
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properties can only be done by taking all their technical and social aspects into account

that effect the system as illustrated in Figure 17.

Emerget properties
(aIseomcompisimNracons)

The whole ks greawe than
the swn of It pwrt

System componewsinteradin
drec and indrecways

Figure 17. Emergent Properties Arise From Complex System Interactions [41

When a controller is added to the system, it provides control actions and gets feedback to

determine the impact of the control actions. The basis of theory implies that this arrangement

acts like a standard feedback control loop as illustrated in Figure 18.

Controler
Conrolling emergent properties
(e.g., enforcing safety constaints)

- Indiidual component behavor
- Component interacions

ControlAcions Feedback

System components interact in
dired and indirect ways

Figure 18. Control Actions and Feedback Imposed on a System [4]
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If safety is considered early in the design process, relatively simple design features can

act as controls to improve safety without also increasing complexity and cost. The effect is

maximized by including it in a design that completely eliminates all hazardous states. A

compromise to this may be a design where such hazards are rare and easy to handle if they do

occur. On a final level, a design may react to the occurrence of hazards by minimizing the

resulting damage (although the least desirable option it may be required in particular degraded

modes of operation).

Three types of design techniques are currently provided in an attempt to "control" safety.

The first is to use an intrinsically or inherently safe design. Such a design is not capable of

producing the hazard of concern. For example, the system design may not have sufficient energy

to cause an explosion. Potential toxic substances may be replaced with non-toxic substitutes.

Risk of lost infornation over a communication network may be solved with more direct

communication methods where feasible. However, if an intrinsically safe design is not possible,

the use of passive or active control mechanisms may be possible.

Passive controls - A passive control mechanism is a physical interlock that prevents the

system from entering a hazardous state without any overt control action. They do not

require a positive action in order to be effective, but instead rely on basic physical

principles, such as gravity.

Such controls are often designed into the system to ensure that it essentially fails into a safe state,

hence the term fail-safe.

Active Control - in contrast to passive control, active control requires a (hazardous)

condition to be detected and corrected. These often involve the use of computers and the

basic control loops.
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Within a system, an active control commands, directs, or regulates the behavior of other devices

or processes using control loops as shown in Figure 19. The controller hosts a process model to

understand the feedback and a control algorithm to provide the appropriate response.

Controller

Control Process
Algorithm Model

Control
Actions Feedback

Controlled Process

Figure 19. Basic Control Loop [4]

In order to control a process, the controller must have a purpose, which can include maintaining

constraints on the behavior of the controlled process. Control actions are implemented by

actuators. In order to know what control actions are necessary, the controller must be able to

determine the current state of the system. Such information about the state of the system is

provided by sensors and is calledfeedback.

As a comparison, passive controls are more reliable that active controls. Passive controls

usually depend on physical principles providing for a simpler design, while active controls

depend on less reliable detection and recovery mechanisms usually resulting in more complex

designs. For instance, in an active control, the failure or hazardous state may not be detected or

it may be detected but not corrected or it may not be corrected in time to prevent a loss.

Unfortunately, passive controls tend to be more restrictive in terms of design freedom. Thus

they are not always practical to implement in complex systems.
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Control loops have two operational modes that are important for understanding STPA:

feedback control and feed-forward control. Often feedback and feed-forward control are used in

tandem. The following definitions are important to understanding control modes:

Feedback Control - this mode of control uses feedback to update the controller's model

of the process. Other information may also be part of the process model, such as

environmental information (outside air temperature) or basic information about natural

temperature fluctuations. The controller uses the process model to decide what control

actions to provide, in order to change the state of the (controlled process) to stay within

the required range.

Feed-forward Control - this mode of control uses a model of the current state of the

process and the future and then provides a control action without specific feedback to

identify the need. This is used to anticipate an upcoming state.

Shaping Actions - control actions that attempt to maintain a safe state by maintaining

assumptions, preventing hazards (unsafe states in the controlled process), and controlling

migration of the process to states of higher risk. Shaping actions provide a type of feed-

forward control and may be passive or active.

Hedging or Contingency Actions - control actions that provide a type of feedback

control as they involve monitoring the system for signs of increasing risk and responding

accordingly. Hedging actions that include monitoring the effectiveness of the shaping

actions provide a combination of feed-forward and feedback control.

Controllers may use the following means to reduce or eliminate hazards from component failures

and unsafe interactions [15]:

1. Design: this includes redundancy, interlocks, barriers, or fail-safe design.
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2. Process: this includes development processes, manufacturing processes and procedures,

maintenance processes, and general system operating processes.

3. Social controls: this includes government regulation, culture, insurance, law, courts, or

individual self-interest. Human behavior can be partially controlled through the design of

the societal or organizational incentive structure.

System-Theoretic Accident Model and Processes (STAMP) is a relatively new model based

on systems theory. It expands the traditional model of causality beyond a chain of directly-

related failure events or component failures to include more complex processes and unsafe

interactions among system components. STAMP also provides the theoretical foundation for

STPA among other hazard analysis tools by treating safety as a dynamic control problem rather

than a failure prevention problem. Noted advantages of using STAMP are [15]:

" It works on very complex systems because it works top-down rather than bottom-up.

" It includes software, humans, organizations, safety culture, and more as causal factors in

accidents and other types of losses without having to treat them differently or separately.

" It allows creating more powerful tools, such as STPA, accident analysis (CAST),

identification and management of leading indicators of increasing risk, and organizational

risk analysis among other things.

" It includes chain-of-failure events model as a subset so tools built on STAMP can include

as a subset all the results derived using the older safety analysis techniques making it a

powerful characteristic.

" It can be used for any system property, including cybersecurity, because STAMP applies

to any emergent property.
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STAMP provides a set of assumptions about how accidents occur that underlie other tools

mentioned already: STPA (System-Theoretic Process Analysis) and CAST (Causal Analysis

based on Systems Theory).

CAST - is a retroactive analysis method that examines an accident/incident that has

occurred and identifies the causal factors that were involved.

STPA - is a proactive analysis method that analyzes the potential cause of accidents

during development so that hazards can be eliminated or controlled.

STPA-type analysis is increasingly needed for today's complex, software-intensive systems and

is most effective when integrated into the organization. Structuring the STPA process into

systems engineering processes is the most effective. Additional benefits of STPA over

traditional hazard analysis techniques are [ 15]:

" Very complex systems can be analyzed. "Unknown unknowns" that were previously

only found in operations can be identified early in the development process and either

eliminated or mitigated. Both intended and unintended functionality are handled.

* Unlike the traditional hazard analysis methods, STPA can be started in early concept

analysis to assist in identifying safety requirements and constraints. These can then be

used to design safety (and security) into the system architecture and design, eliminating

the costly rework involved when design flaws are identified late in development or

during operations.

Many evaluations and comparisons of STPA to more traditional hazard analysis methods,

such as fault tree analysis (FTA), failure modes and effects criticality analysis (FMECA), event

tree analysis (ETA), and hazard and operability analysis (HAZOP) have been done. STPA

consistently provides better results, costs less, and requires less time. In all of these evaluations,
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STPA found every causal scenario found by more traditional analyses, but also identified many

more, often software-related and non-failure type scenarios that the traditional methods did not

find. For these reasons, an exponentially increasing amount of companies are now starting to use

STPA for other system properties such as quality, security, and production engineering [15].

3.5 Systems-Based Hazard Analysis Applicability

This section covers real-world scenarios where STPA is applicable. Section 3.5.1 covers

the application of STPA to the failure of the Mars Polar Lander in 1999. Section 3.5.2 covers the

Boeing 787 Dreamliner Battery Failure Application.

3.5.1 Mars Polar Lander Failure Application

On January 3, 1999, NASA launched the Mars Polar Lander, a 290-kilogram robotic

lander designed to study the soil and climate of Planum Australe, a region near the southern pole

of Mars. On December 3, 1999, after completing the descent phase, the lander communication

was never reestablished with Earth. A post-mortem analysis determined the most likely root

cause was premature termination of the descent engines prior to the lander touching the surface,

causing it to strike the planet at a velocity outside of the design envelope as shown in Figure 20.
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Figure 20. Mars Polar Lander Accident Illustration

Typical means of arresting descent speed involve the Martian atmosphere, a parachute, and

descent engines. As soon as the spacecraft lands, the software must immediately shut down the

descent engines to avoid damage to the spacecraft. The feedback for the engine control unit

software to process this command was provided by sensors on the landing legs that were highly

sensitive. Upon deployment of the landing legs, false sensor signals generated noise as feedback

to the engine control unit [16]. This was expected behavior but was not in the software

requirements.

Traditional chain-of-failure models did not detect the lacking requirement. Systems-based

analysis however offers a means to detect such an emergent property of the landing sequence

which may have prevented the missing requirement. More thoroughly, the software was

operating too soon in the descent sequence, another property that is captured in STPA but not
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FMEA. In an attempt to more evenly distribute the computational load on the control unit

processor, the software engineers decided to begin sensing feedback from the landing legs earlier

than designed. For this reason, the software thought that the spacecraft had already landed and

shut off the descent engines while the spacecraft was still 40 meters about the planet surface [4].

3.5.2 Boeing 787 Dreamliner Battery Failure Application

On January 7, 2013, smoke was discovered in the aft cabin of a Japan Airlines (JAL)

Boeing 787-8 while parked at a gate at Boston's Logan International Airport (BOS) in

Massachusetts. Maintenance crew in the cockpit also observed that the auxiliary power unit

(APU) had automatically shut down. Upon immediate inspection of the aft electronic equipment

bay, heavy smoke was identified coming from the cover of the APU battery case as well as two

distinct flames at the electrical connector located at the front. The battery model used for the

APU was also the same model used for the 787 main battery.

Eleven days later, on January 16, 2013, an incident involving the main battery occurred

aboard a 787 airplane being operated in Japan during a flight from Yamaguchi to Tokyo. The

pilots reacted quickly to make an emergency landing at Takamatsu Airport (TAK), Japan, shortly

after takeoff. After the BOS and TAK events, the FAA subsequently grounded the US-based

787 fleet.

Prior to product release of the 787, as part of a compliance demonstration with specific

FAA battery requirements and 14 CFR Part 25 airworthiness standards, Boeing performed a

safety assessment to determine the potential hazards of various Electrical Power System (EPS)

failure conditions. Boeing determined that the rate of occurrence of cell venting for the 787

battery would be about 1 in 10 million flight hours. However, at the time of the BOS and TAK
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incidents (both of which involved cell venting), the in-service 787 fleet had accumulated less

than 52,000 flight hours.

The NTSB determined the root cause of the BOS incident was an internal short circuit

within a cell of the APU lithium-ion battery, which led to thermal runaway that cascaded to

adjacent cells, resulting in the release of smoke and fire [17]. However, the problems did not

stem from individual component failures but from flaws in the system engineering process that

resulted in flawed system designs. The incident resulted from Boeing's failure to incorporate

design requirements to mitigate the most severe effects of an internal short circuit within an APU

battery cell and the FAA's failure to identify this design deficiency during the type design

certification process.

Traditional decomposition-based post-accident analyses cannot identify these types of

causes of accidents which include human error, software requirements errors, and system design

flaws. In the event of a battery malfunction, part of the environmental control system was

designed to remove any smoke through cooling duct fans by actuating electric valves. However,

the unit providing power to the environmental control system simultaneously shut down due to

the battery malfunction. As a result, the valves could not be actuated and smoke being generated

by the APU battery could not be effectively directed outside the passenger cabin and battery

compartment [4]. It is possible that the emergent properties and human errors in the systems

engineering leading up to these incidents may have been captured by a systems-based hazard

analysis such as STPA.
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Chapter 4

4 Hazard Source Data Analysis and Simulation Results

This chapter covers the data gathered on requirements for the rocket test controller, analysis of

the data, modeling of the data, and the simulation results.

4.1 Requirements Data Collection

Literature on requirements volatility shows that it increases schedule pressure and defect

rates in software production. To determine if this is a potential source in the rocket test

controller being studied, data is compiled on the requirements.

The test controller has four major sources of requirements that are broken into four

categories:

1. Overall System

2. Hardware

3. System Software

4. User Apps and Displays (UAD) Software

Using the source revisions published for each requirement category and methodology established

in Chapter 3.1.4, the requirements can be counted. Figure 21 shows the total number of

requirements for the rocket test controller over a five year period.
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Figure 21. Test Controller Requirements by Type

The number of requirements categorizes this as a large project. The graph appears to show an

exponential increase in the total number of requirements for the rocket test controller as the

program matured. Additional introspection of the software components of the system reveals a

more drastic case as shown in Figure 22.
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Test Controller Software (System and
UAD) Requirements (2013-2018)
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Figure 22. Test Controller Software Requirements Over Five Years (System and User Apps and Displays)

The graph reveals an exponential increase and later fluctuation in software requirements.

This appears consistent with project maturation for a lower-tier end product undergoing

concurrent engineering. The later fluctuations are an indication of software requirements

volatility that requires further analysis as a potential source of increased risk to inducing hazards

into the system.

4.2 Requirements Data Analysis

Since revisions are not released on a regular time basis and are released on an as-needed

basis, the revisions do not provide an accurate representation of how the rate of requirements

count increase or decrease. Further, the number of requirements does not account for all of the
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work needed because it does not include requirements modifications or deletions. To do that

requires analyzing a constant time scale and a count of changes (additions, deletions, and

modifications).

Analyzing the data for the overall system over an eight month period reveals volatility

ranging from <1% to 26.8% for the total system requirements from all four categories (overall

system, hardware, system software, and user apps and displays).

Test Controller Requirements Volatility
(November 2017 to June 2018)

0.3 - ---- -

0.25

0.15
E

0.1

0.05- -

0
1 2 3 4 5 6 7 8 9 10 11 12 13

Requirements System Data Pull

Figure 23. Test Controller Requirements Volatility over an Eight Month Window

Narrowing the scope to the software over a seven month period during the same timeframe

reveals volatility ranging 6.1% to 3 9.8% for the combination of both system software and user

apps and displays requirements.
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Figure 24. Test Controller Software Requirements Volatility over a Seven Month Window.

This volatility represents a risk to program schedule and further increases risk to inducing defects

that cause safety-critical hazards.

To compare the two, the graphs from Figure 23 and Figure 24 may be overlaid. The

result indicates that software requirements are a major source of the total system requirements

volatility as shown in Figure 25.
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Figure 25. Test Controller Requirements Volatility Overlay during an Eight Month Window

Intuitively, this makes sense, because the basis for the hardware remains relatively stable as the

major components and connections to the rocket are established but the nuanced changes of the

rocket design are handled by the test controller's software.

4.3 Data Comparison

The risk to schedule that requirements volatility poses to a program is a particular source

of risk that can result in potential induced hazards into the end product system. Requirements

data may be compared to schedule data to garner further insight. Figure 26 shows a graph of the

schedule change data collected from monthly management reviews for a seven month period.

Negative numbers are associated with schedule improvements, whereas a positive number of

days is associated with a schedule delay.
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June 2018)
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Figure 26. Schedule Changes for the Test Controller System over a Seven Month Window

The data shows two 60 to 70 day schedule delays within the seven month window. Further

context reveals managerial decisions as outlined in earlier discussions in Chapter 3.1.5 were

applied to "course correct" the schedule to make up for the schedule delay, as represented in the

respective decreases on the graph in Figure 26.

A comparison of the software requirements volatility to changes in the schedule is given

in Figure 27.

79



Comparioson of Software Requirements Volatiltiy
to Schedule Change (December 2017 - June 2018)
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Figure 27. Comparison of Software Requirements Volatility to Schedule Delays

The graph in Figure 27 shows that a schedule delay reported in period 6 is correlated to a 40%

software requirements volatility in period 5. Schedule delays are further associated with cost

overruns and lower quality. Although lost schedule days may be regained through managerial

efforts, these techniques perhaps bring negative conditions that are conducive to inducing

hazards into the software development.

4.4 Modeling and Simulation Results

To further investigate potential scenarios and the relationship with schedule delays, a

model may be constructed using queuing theory as outlined in Chapter 3.1.6.

A baseline model may be created using that has no variation, using the following values

show in Table 4 below.
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Table 4. Baseline Model Values for G-G-N Queuing Model with no Variation

Variable Value Units

Arrival Rate, A 112 reqs/month

Service Rate, p 5 reqs/month
Number of developers, N 30 servers
Capacity utilization, p 0.746667

Coefficient of Variation of Arrivals, CA 1

Coefficient of Variation of Service, Cs 1
Standard Deviation, a[A] 1 reqs/month

Expected Value, E[A] 1 reqs/month

Interpolating data from monthly management review timelines, the original bum down plan for

requirements can be estimated at 2700 requirements over two years. This results in an original

arrival rate of 112.5 requirements per month. Assuming a 40-hour work week and 20 work days

per month, results in 800 work hours per month. This results in an estimated 80 m-hours, on

average, needed per requirement. Based on these values from Table 4 and calculation of m-

hours required based on the given service rate, the following queue results are obtained:

Table 5. Results of G-G-N Queuing Model with no Variation

Variable Value Units Time Units

Length of Queue, Lq 0.395646 reqs 31.65168 hours

Length of Service, Ls 22.4 reqs 1792 hours

Total Production, L 22.79565 reqs 1823.652 hours

The result in the total production time with no variability is 1823 m-hours needed to be

scheduled amongst employees as per the original bum down plan with no variability.
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As a comparison, the G-G-N queue may be modified to show the impact of variability on

the schedule. Assuming due to variability, a doubled effort through factors such as overtime and

process streamlining is provided by management, causing an effective increase in the service

rate, j, from 5 requirements per month to 10 requirements per month. The mean and standard

deviation are calculated from the requirements change data to determine the new arrival rate, k,

and to characterize the arrival cumulative distribution function, A.

Table 6. Model Values for G-G-N Queuing Model with Variation Data

Variable Value Units

Arrival Rate, A 294 reqs/month
Service Rate, V 10 reqs/month
Number of developers, N 30 servers
Capacity utilization, p 0.98

Coefficient of Variation of Arrivals, CA 0.6156

Coefficient of Variation of Service, Cs 1
Standard Deviation, a[A] 181 reqs/month

Expected Value, E[A] 294 reqs/month

Based on the values from Table 6 and the calculation of m-hours required based on the

given service rate, the following queue results are obtained:

Table 7. Results of G-G-N Queuing Model with Variation Data

Variable Value Units Time Units

Length of Queue, Lq 29.405 reqs 2352 hours

Length of Service, L, 29.4 reqs 2352 hours
Total Production, L 58.805 reqs 4704 hours
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The results from Table 5 can be compared to the results from Table 7 to determine the

impact to schedule induced by the volatility of software requirements over the seven month

window. The result is a total schedule increase (delay) of 12 days per the model as shown below

in Table 8.

Table 8. Schedule Impact Results from Requirements Volatility

Value Units

2880.767494 rn-hours
360.0959367 rn-days
12.00319789 total days increase with N servers

This model may be used to examine various scenarios using a simulation. To perform a

simulation, first, the requirements distribution must be determined from the data in Chapter 4.1

to determine the requirements arrival rate, 2 ,j, measured in units of work per unit time. Fitting the

data to an applicable best-fit distribution required checking several common distribution types to

arrive at one that best approximates the arrival set, including normal, exponential

Beta, Gamma, Extreme Value, and Weibull. Comparing Probability-Probability Plot (P-P Plot)

and Quantile-Quantile Plot (Q-Q Plot) results among distributions arrives at a generalized

extreme value (GEV) distribution introduced by Jenkinson (1955) that best characterized the

cumulative distribution function [18]:
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F (s; exp(-(1 + s)-'/
exp (- exp(-s))

using the standardized variable,

S x- 11

where,

pt E R, is the location parameter

a > 0, is the scale parameter

E R, is the shape parameter

The software requirements changes data is fit to a distribution with the values s =

214.63 and ( = 133.40 as shown in graph of the CDF in Figure 28 below.
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Figure 28. Fitted GEV CDF of Requirements Changes

Using the distribution as a substitute for the arrival rate, the risk to schedule delays from

requirements volatility can be simulated. When iterated over 100 times, the probability of

schedule delays due to requirements volatility is >64% as shown in Figure 29 below.
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Figure 29. Schedule Delay Risk Simulation Results

Intuition behind the results suggests that there is a 36% probability that requirements may change

in a drastic manner by way of more deletions than there are additions or modifications, resulting

in some reduction in schedule. In the majority of cases, the simulation of requirements volatility

on schedule impact indicates adverse schedule sway.
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Chapter 5

5 Analysis Approach - Systems-Theoretic Process Analysis

This chapter covers the methodology and approach to implement STPA on the rocket testing

controller. Section 5.1 provides a thorough description of the STPA methodology with a primer

on how to apply each step. Section 5.2 provides an overview of the strategy for STPA

implementation on the rocket testing controller and means of analysis.

5.1 Description of STPA Methodology

This section describes the methodology to complete a study using System-Theoretic Process

Analysis (STPA). The STPA methodology consists of four steps:

1. Define Purpose of the Analysis

2. Model the Control Structure

3. Identify Unsafe Control Actions

4. Identify Loss Scenarios

1) Define 2) model 3) Identify 4) Identify
Purpose of the Control Unsafe Control Loss

the Analysis R Structure Ac&lions Scenanos

F gI 
I 

-

T- sg

identify Losses Hazards

DefineI 6

ss EnvironmentI
boundarv _j6

Figure 30. Visualization of STPA Steps 1 through 4 [41
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Together the four steps form an iterative process that is continuously refined as show in Figure

31 below.

Step 1: Deline PIm of the Andyuis

1. What kind of losses will the analysis aim to prevent?
a) Loss of human life (traditional hazard analysis)
b) Security
c) Rivacy
d) Performance
e) Other system parameters

2. What is the system being analyzed and what is the
system boundary?

Step 2: Model the Control Structure

1. Model the hig-evel system as a set of feedback
control loops.

2. iteratively refine the control structure to capture
more detail about the system.

Step 4 Identify Loss Scenarios
1. Identify reasons why unsafe control actions might

occur.
a) inconect feedback, inadequate

requirements, design errors, component
failures

b) Safe control action provided but not
followed or executed properly

2. Drive refined architecture, requirements,
mitigations, and/or redesign.

3. Define appropriate test cases and drive test plans.

Step 3: idenify Unsafe Control Actions

1. Analyze control actions to see how they lead to
losses defined in step 1.

2. Use unsafe control actions to create functional
requirements for the system.

Figure 31. STPA Iterative Methodology and Steps

These steps are defined in further detail in the following sections.

5.1.1 Define Purpose of the Analysis

The first step in STPA is to define the purpose of the analysis. This step includes the

following sub-steps, as shown in Figure 32:

1. What kind of losses will the analysis aim to prevent?

a) Loss of human life (traditional hazard analysis)
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b) Security

c) Privacy

d) Performance

e) Other system parameters

2. What is the system being analyzed and what is the system boundary?

STPA

1) Define 2) Model 3) Identify 4) Identify
Purpose of -0 the Control -0 Unsafe Control -p Loss

the Analysis Structure Actions Scenarios

1) Define Purpose of
the Analysis
Identify Losses, Hazards

Define
System Environment

boundary

System

I--------.

Figure 32. STPA Step 1: Define the Purpose of the Analysis 141

5.1.2 Model the Control Structure

Step 2 of STPA is modeling the control structure. This step includes the following sub-steps:

1. Model the high-level system as a set of feedback control loops.

2. Iteratively refine the control structure to capture more detail about the system.
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STPA

" ) Defie 2) Model 3) Identify 4) Identify
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th Ansis structure Actions Scenarios

2) Model the Control
Structure

Figure 33. STPA Step 2: Model the Control Structure [41

5.1.3 Identify Unsafe Control Actions

Step 3 of STPA is identifying unsafe control action. This step includes the following sub-steps:

1. Analyze control actions to see how they lead to losses defined in step 1.

2. Use unsafe control actions to create functional requirements for the system.

sTPA

1) Define 2) Mode1 3) kdkntify 4) Identify
Purpose of -0 the Control Unmafe Control -0 Loss

the Analysis Structure Actions Scenarios

3) Identify Unsafe
Control Actions

Figure 34. STPA Step 3: Identify Unsafe Control Actions [41
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a) Incorrect feeback, uneinadlequanteuremets deinroscmonnaiue

b)4 Saedonronatioscnroided bu noollnod oro ctedn prpel

derive system requirements or
. Dmitigations

Figure 35. Identifying Types of Unsafe Control Actions

5.1.4 Identify Loss Scenarios

Step 4 of STPA is identifying loss scenarios. This step includes the following sub-steps:

1. Identify reasons why unsafe control actions might occur.

a) Incorrect feedback , inadequate requirements, design errors, component failures

b) Safe control action provided but not followed or executed properly

2. Drive refined architecture, requirements, mitigations, and/or redesign.

3. Define appropriate test cases and drive test plans.

STP
1) Define 2) Mode 1 3) Identity 4) Mduntify

Purpose of .. *the Control -0 Unsafe Control -t Low
the Analysis Structure Actions Scenwimo

4) Identify Loss
Scenarios

Figure 36. STPA Step 4: Identify Loss Scenarios [41
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Figure 37. Identifying Types of Loss Scenarios
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Figure 38. Systems-based Analysis of Unsafe Control Actions
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5.2 STPA Implementation and Analysis Strategy

Implementation and analysis occurs in three phases. Phase I consists of gathering

information on the rocket test controller's concept of operations, design requirements, interface

control documents, detailed design drawings, test requirements, hazard reports, and the failure

modes and effects analysis. Phase 2 is to implement STPA in a case study involving a particular

use case of the rocket's "ascent phase." This particular use case was chosen because it involves

the most significant use of the test controller, test article, and test environment for the captive

hot-fire test of the rocket's four main engines and core stage. Phase 3 involves comparison of

the STPA results to the FMEA results. This includes a comparison of the time required to

perform each respective analysis. Finally, the results and analysis will be used to discuss the

benefits, challenges, forward work, and implementation plan for incorporating STPA in the

system engineering process.
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Chapter 6

6 Case Study of STPA Application to SLS Rocket Test Controller

Chapter 6 covers a case study of applying Systems-Theoretic Process Analysis to a particular use

case of the SLS rocket test controller. The steps of STPA are applied to the test controller for the

"ascent phase" use case throughout sections 6.1 through 6.6. Finally, section 6.7 details the

results and analyzes STPA in comparison to FMEA.

6.1 Purpose, Environment, and Boundary Definition

Step 1 is to define the purpose, environment, and boundary of the analysis. The purpose of

the analysis, the boundary, and the environment of the rocket test controller during the "ascent

phase" use case are first defined as:

Purpose: Mitigate loss of life or injury to people, loss of or damage to the test

article (rocket stage), loss of or damage to objects outside of the test article

(infrastructure), and loss of the mission (test failure).

Boundary: The system includes all of the rocket test controller end-item

components and the operator workstations.

Environment: The applicable surrounding systems include the test article, test

infrastructure, associated test operators, and immediate vicinity.

6.2 Identifying Losses, Hazards, and Constraints

The second part of step one is then to define particular losses as derived from

the purpose of the analysis and then branch those into associated system hazards and
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system-level constraints. Four particular losses are defined from the purpose as

shown in Table 9.Table 9. STPA Case Study: Identification of System-level Losses.

Table 9. STPA Case Study: Identification of System-level Losses.

SDescription
Li Loss of life or injury to people (test operators, technicians)

L2 Loss of or damage to the test article (rocket core stage)

L3 Loss of or damage to objects outside of the test article (test stand and
infrastructure)

L4 Loss of mission (incomplete, failed, or aborted test)

The losses are then used to identify the various hazards that would lead to

such losses and identifies the associated losses that correspond to each hazard as

shown below in Table 10.

Table 10. STPA Case Study: Identification of System-level Hazards.

HazrdsDescription Associated

HI Controller exposes people (operators) to adverse test emissions, L1, L4
heat, pressure, vibration, or acoustics

H2 Controller allows test article component integrity to be lost L2, L4

H3 Controller allows test support infrastructure component L3, L4
integrity to be lost

H4 Controller allows test article or supporting infrastructure (test L2, L3
stand controls) to become uncontrolled

H5 Controller causes test abort condition L4

H6 Controller does not properly capture test data L4

The hazards are then used to derive the system-level constraints for the associated hazards as

shown in Table 11 below.
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Table 11. STPA Case Study: Derivation of System-level Constraints from Hazards

SCl

SC2

SC3

SC4
SC5
SC6

SC7

Controller must not allow people to be exposed to adverse

test emissions, heat, pressure, vibration, or acoustics

Controller must not allow test article component loss of

structural integrity

Controller must not allow test support infrastructure
component loss of structural integrity

Controller must maintain control of the test article and

supporting infrastructure

Controller must not cause a test abort condition

Controller must properly capture all test data

If the controller detects a violation of constraints then the

controller must safely abort the test

Hl,

H2,

H3,

H4,
H5
H6

H1,

H5

H5

H5

H5

H2, H3, H4

6.3 Control Structure Modelling

Step 2 of STPA is to model the control structure of the rocket test controller. This process

is designed to be iterative. Figure 39. STPA Case Study: High-level Environment Feedback

Control Structure Model shows the high-level environment and analysis boundary which is

represented by a dashed line. The arrows going down represent control actions and the arrows

going up represent feedback.
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Figure 39. STPA Case Study: High-level Environment Feedback Control Structure Model

Upon iteration, a more-detailed low-level control structure is modeled as shown in Figure

40 below. The physical boundaries are represented by black dashed lines. The analysis

boundary of the rocket test controller is represented by the blue dashed line. The "highest"

controller within the analysis boundary is the software component of the rocket test controller

that interacts with the test operator(s), called user applications and displays (UADs). UADs are

part of the test control workstation(s) which represent the physical hardware component that test

operator(s) interact with to control the rocket test. The "lowest" level within the analysis

boundary is between the power supply and analog signal rack(s), the data processing rack, and

the command and control (C2) rack which are generally the controllers within the boundary that

interact with the test article and test stand/environment. The general logic flow results in actions

given from top to bottom and feedback is received from bottom to top.
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Figure 40. STPA Case Study: Low-level Feedback Control Structure Model

6.4 Identifying Unsafe Control Actions

Step 3 of STPA is to identify unsafe control actions. First, the intended control actions

required by the rocket test controller to during the "ascent phase" must be listed. Eight control

actions are identified, as listed in Table 12 below.
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Table 12. STPA Case Study: "Ascent Phase" Control Actions for a Rocket Test Controller

1. Engine Start Monitoring

2. Engine Throttle Profile

3. Systems Monitoring and Responses

4. Thrust Vector Control Actuation Profile

5. Engine Cutoff Monitoring

6. Safing

7. Recycle

8. Advance to Shutdown Command Sequencing

Next each control action is analyzed using the following logic in conjunction with the feedback

control structure from Figure 40 to determine whether an action (or no action) could lead to a

hazard:

1. Not providing the control action leads to a hazard

2. Providing the control action leads to a hazard

3. Providing a potentially safe control action too late, too early, or in the wrong order

4. A continuous control action is stopped too soon or applied too long

Unsafe control actions are listed and labeled "UCA #" and each is linked to a higher order hazard from step

1, for traceability. The unsafe control actions represent area for design consideration that will be examined

further in step 4. The unsafe control actions for the case study are shown in

Table 13 below.
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Table 13. STPA Case Study: Unsafe Control Actions Table.

1. Engine Start
Monitoring

2. Engine Throttle
Profile

3. Systems
Monitoring and
Responses

4. Thrust Vector
Control Actuation
Profile

UCA 1.1: Engine N/A UCA 1.2: Engines N/A
start monitoring not are started when

initiated when parameters are not

commanded during at nominal levels

automatic launch [H2, H4, H5]
sequence [H2, H3, UCA 1.3: Engines
H4, H5] are started before

data acquisition is
ready [H6]

UCA 2.1: Throttling N/A UCA 2.2: Throttling N/A
profile is not profile is initiated

initiated [H5] too early in the test
[H5]
UCA 2.3: Throttling
profile is too late in
the test [H5]

UCA 3.1: Off- UCA 3.2: Wrong UCA 3.4: Off- N/A
nominal thresholds off-nominal nominal thresholds

and nominal ranges thresholds, nominal and nominal ranges
are not transmitted ranges, or condition are set too early,

[H2, H3, H5] sets are selected or causing a premature
incorrectly abort [H5]
interpreted [H2, H3, UCA 3.5: Off-
H4, H5] nominal thresholds
UCA 3.3: Corrupted and nominal ranges
off-nominal are set too late,
thresholds or resulting in
nominal ranges are parameters
transmitted [H2, H3, exceeding
H4 H5] thresholds with no

abort [H2, H3, H4]

UCA 4.1: N/A UCA 4.2: N/A
Gimbaling profile is Gimbaling profile is
not initiated [H5] initiated too early in

the test [H5]
UCA 4.3 Gimbaling
profile is initiated
too late in the test
[H5]
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5. Engine Cutoff
Monitoring

6. Safing

7. Recycle

8. Advance to
Shutdown
Command
Sequencing

UCA 5.1: Engine
cutoff monitoring
not provided when
commanded during
main engine cutoff
sequence [H3, H6]

UCA 6.1: Safing
profile not initiated
after the hot fire test
[H3, H5]
UCA 6.2: Safing not
provided while
workers are present
in the test area [HI]

UCA 5.2: Engine N/A
cutoff monitoring
provides false
readings and aborts
test [H5]

N/A

UCA 7.1: LOX and N/A
LH2 draining is not
commenced when
required by test
profile resulting in
unstable
configuration [H2,
H3, H4]
UCA 8.1: Advance UCA 8.2: Advance
to shutdown to shutdown
command procedure initiated
sequencing is not while nominal
initiated when off- values are still
nominal redline maintained [H5, H6]
values are reached
or during loss of
vehicle control [H2,
H3, H5]

UCA 6.3: Safing
profile is initiated
too early in the test
causing an abort
[H5]
UCA 6.4 Safing
profile is initiated
too late in the test
[H3, H5]
UCA 7.2: LOX and
LH2 draining is
commenced when
other systems are
not ready [H2, H3]

UCA 8.3: Advance
to shutdown
procedure is
provided too late in
preempting loss of
vehicle or after an
off-nominal redline
condition is reached
[H2, H3]

The last part of step 3, is to determine controller constraints from the unsafe control actions.

These are shown in Table 14 below.
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Table 14. STPA Case Study: Controller Constraints Identified for each Unsafe Control Action.

Unsafe Control Action Controller Constraints

UCA 1.1: Engine start monitoring not initiated when commanded during
automatic launch sequence [H2, H3, H4, H5]

UCA 1.2: Engines are started when parameters are not at nominal levels
[H2, H4, H5]
UCA 1.3: Engines are started before data acquisition is ready [H6]

UCA 2.1: Throttling profile is not initiated [H5]

UCA 2.2: Throttling profile is initiated too early in the test [H5]

UCA 2.3: Throttling profile is too late in the test [H5]

UCA 3.1: Off-nominal thresholds and nominal ranges are not transmitted
[H2, H3, H5]
UCA 3.2: Wrong off-nominal thresholds, nominal ranges, or condition sets
are selected or incorrectly interpreted [H2, H3, H4, H5]

UCA 3.3: Corrupted off-nominal thresholds or nominal ranges are

transmitted [H2, H3, H4 H5]
UCA 3.4: Off-nominal thresholds and nominal ranges are set too early,
causing a premature abort [H5]

UCA 3.5: Off-nominal thresholds and nominal ranges are set too late,
resulting in parameters exceeding thresholds with no abort [H2, H3, H4]

UCA 4.1: Gimbaling profile is not initiated [H5]

UCA 4.2: Gimbaling profile is initiated too early in the test [H5]

UCA 4.3 Gimbaling profile is initiated too late in the test [H5]

UCA 5.1: Engine cutoff monitoring not provided when commanded during
main engine cutoff sequence [H3, H6]

UCA 5.2: Engine cutoff monitoring provides false readings and aborts test

[H5]

C1. 1: Controller must monitoring engine start when commanded during
automatic launch sequence [UCA 1.1]
C 1.2: Engines must not be started when parameters are off-nominal [UCA
1.3]
C1.3: Engines must not be started before data acquisition is ready [UCA 1.4]

C2. 1: Throttling profile must be initiated when commanded [UCA 2.1]
C2.2: Throttling profile must initiated at the correct moment in the test [UCA
2.2, UCA 2.3]
C2.2: Throttling profile must initiated at the correct moment in the test [UCA
2.2, UCA 2.3]
C3.1: Off-nominal thresholds and nominal ranges must be transmitted [UCA
3.1]
C3.2: Correct off-nominal thresholds, nominal ranges, or condition sets must
be selected and correctly interpreted [UCA 3.2]
C3.3: Off-nominal thresholds or nominal ranges must be uncorrupted [UCA
3.3]
C3.4: Off-nominal thresholds and nominal ranges must not be set too early
[UCA 3.4]
C3.5: Off-nominal thresholds and nominal ranges must not be set too late
[UCA 3.5]
C4. 1: Gimbaling profile must be initiated when commanded [UCA 4.1]

C4.2: Gimbaling profile must be initiated on time during the test [UCA 4.2,
UCA 4.3]
C4.2: Gimbaling profile must be initiated on time during the test [UCA 4.2,
UCA 4.3]
C5. 1: Engine cutoff monitoring must be provided when commanded during
main engine cutoff sequence [UCA 5.1]
C5.2: Engine cutoff monitoring must not provide false readings [UCA 5.2]



UCA 6.1: Safing profile not initiated after the hot fire test [H3, H5] C6. 1: Safing profile must be initiated after the hot fire test [UCA 6.1]

UCA 6.2: Safing not provided while workers are present in the test area [Hi] C6.2: Safing must be provided while workers are present in the test area [Hi]

UCA 6.3: Safing profile is initiated too early in the test causing an abort[H5] C6.3: Safing profile must be initiated on time during the test [UCA 6.2, UCA
6.3]

UCA 6.4 Safing profile is initiated too late in the test [H3, H5] C6.3: Safing profile must be initiated on time during the test [UCA 6.2, UCA
6.3] * Redundant Control

UCA 7.1: LOX and LH2 draining is not commenced when required by test C7. 1: LOX and LH2 draining must be commenced when required by test

profile resulting in unstable configuration [H2, H3, H4] profile [UCA 7.1]

UCA 7.2: LOX and LH2 draining is commenced when other systems are not C7.2: LOX and LH2 draining must not be commenced when other systems

ready [H2, H3] are not ready [UCA 7.2]

UCA 8.1: Advance to shutdown command sequencing is not initiated when C8. 1: Advance to shutdown command sequencing must be initiated when

off-nominal redline values are reached or during loss of vehicle control [H2, off-nominal redline values are reached or during loss of vehicle control

H3, H5] [UCA 8.1]

UCA 8.2: Advance to shutdown procedure initiated while nominal values C8.2: Advance to shutdown procedure must not be initiated while nominal

are still maintained [H5, H6] values are still maintained [UCA 8.2]

UCA 8.3: Advance to shutdown procedure is provided too late in preempting C8.3: Advance to shutdown procedure must be provided in time to avoid loss

loss of vehicle or after an off-nominal redline condition is reached [H2, H3] of vehicle and after an off-nominal redline condition is reached [UCA 8.3]



6.5 Identifying Loss Scenarios

STPA step 4 is the final step in the analysis cycle before iterating back at step 1. This step

begins with identifying loss scenarios that would cause the unsafe control actions to occur and

identifies scenarios in which control actions are improperly executed or not executed that may

also cause an unsafe control action to occur. The results of the case study are shown in Table 15

below.

Table 15. STPA Case Study: Determining Causes of Losses for each Unsafe Control Action

Unsafe Control Action Loss Causal Scenarios Mitigations

UCA 1.1: Engine start
monitoring not initiated when
commanded during automatic
launch sequence [H2, H3, H4,
H5]

UCA 1.2: Engines are started
before data acquisition is
ready [H6]

UCA 2.1: Throttling profile is
not initiated [H5]

UCA 2.2: Throttling profile is
initiated too early in the test
[H5]

LCS 1.1.1 Engine start monitoring is not initiated
when commanded during automatic launch
sequence because loss of signal to test article
from improper connection.
LCS 1.1.2 Engine start monitoring is not initiated
when commanded during automatic launch
sequence because C2 rack power interruption due
to test article induced vibration or atmospherics.
LCS 1.2.1 Engines are started before data
acquisition is ready because the test sequence is
incorrectly programmed
LCS 1.2.2 Engines are started before data
acquisition is ready because vehicle health and
status monitoring is incorrectly monitored in test
control software process model

LCS 2.1.1 The throttling profile is not initiated
because a hardware connector fails in the C2 rack-
LCS 2.1.2 The throttling profile is not initiated
because the test sequence is incorrectly
programmed

LCS 2.2.1 Throttling profile is initiated too early
in the test because the test sequence is incorrectly
programmed

Hardware quality
assurance and testing.
C2 Rack power
hardening, condition
monitoring, and
automatic backup
source

Software quality
assurance and testing.

Hardware quality
assurance and testing.
Software quality
assurance and testing.
Redundant C2 rack
capability and hard
switchover in no
throttle profile situation

Software quality
assurance and testing.
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Insafe Control Action Loss Cansal Scenarios itigations

UCA 2.3: Throttling profile LCS 2.3.1 Throttling profile is initiated too late in Software quality
is too late in the test [H5] the test because the test sequence is incorrectly

programmed.
LCS 2.3.2 The throttling profile is not initiated
because of IRIG timing mismatch between C2
rack and test article

UCA 1.1: Engine start LCS 1.1.1 Engine start monitoring is not initiated
monitoring not initiated when when commanded during automatic launch
commanded during automatic sequence because loss of signal to test article
launch sequence [H2, H3, H4, from improper connection.
H5] LCS 1.1.2 Engine start monitoring is not initiated

when commanded during automatic launch
sequence because C2 rack power interruption due
to test article induced vibration or atmospherics.

UCA 1.2: Engines are started LCS 1.2.1 Engines are started before data
before data acquisition is acquisition is ready because the test sequence is
ready [H6] incorrectly programmed

LCS 1.2.2 Engines are started before data
acquisition is ready because vehicle health and
status monitoring is incorrectly monitored in test
control software process model

UCA 3.1: Off-nominal LCS 3.1.1 Off-nominal thresholds and nominal
thresholds and nominal ranges ranges are not transmitted because of a hardware
are not transmitted [H2, H3, connection was improperly made
H5] LCS 3.1.1 Off-nominal thresholds and nominal

ranges are not transmitted because of a hardware
connection was not installed

UCA 3.2: Wrong off-nominal LCS 3.2.1 Wrong off-nominal thresholds,
thresholds, nominal ranges, or nominal ranges, or condition sets are selected or
condition sets are selected or incorrectly interpreted because test configuration
incorrectly interpreted [H2, control improperly programmed and verified
H3, H4, H5] LCS 3.2.2 Wrong off-nominal thresholds,

nominal ranges, or condition sets are selected or
incorrectly interpreted because process model
incorrectly programmed

UCA 3.3: Corrupted off- LCS 3.3.1 Corrupted off-nominal thresholds or
nominal thresholds or nominal nominal ranges are transmitted because data
ranges are transmitted [H2, transfer and processing performance saturation
H3, H4 H5] LCS 3.3.2 Corrupted off-nominal thresholds or

nominal ranges are transmitted because hardware
reading, writing, and memory failures causing
loss of data integrity

UCA 3.4: Off-nominal
thresholds and nominal ranges
are set too early, causing a
premature abort [H5]

LCS 3.4.1 Off-nominal thresholds and nominal

assurance and testing.
Redundant C2 rack
capability and hard
switchover in late
throttle profile situation

Hardware quality
assurance and testing.
C2 Rack power
hardening, condition
monitoring, and
automatic backup
source

Software quality
assurance and testing.

Hardware quality
assurance and testing.
Independent
verification of
successful data transfer
to test article

Require test
configuration
verification
Software quality
assurance and testing.

Software quality
assurance and testing.
Hardware quality
assurance and testing.
Require independent
verification of data
integrity from end-to-
end
Software quality

ranges are set too early, causing a premature abort assurance and testing.
because the test sequence is incorrectly
programmed
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Unsafe Control Action Loss Causal Scenarios

UCA 3.5: Off-nominal LCS 3.5.1 Off-nominal thresholds and nominal Software quality

thresholds and nominal ranges ranges are set too late, resulting in parameters assurance and testing.

are set too late, resulting in exceeding thresholds with no abort because the Independent

parameters exceeding test sequence is incorrectly programmed. verification of

thresholds with no abort [H2, LCS 3.5.2 Off-nominal thresholds and nominal successful data transfer

H3, H4] ranges are set too late, resulting in parameters to test article

exceeding thresholds with no abort because of Require independent

incorrect software process model timing validation and

LCS 3.5.3 Off-nominal thresholds and nominal C2 rack condition

ranges are set too late, resulting in parameters monitoring

exceeding thresholds with no abort because of

insufficient software control algorithm
LCS 3.5.4 Off-nominal thresholds and nominal

ranges are set too late, resulting in parameters
exceeding thresholds with no abort because of

stale data or data latency in transfer
LCS 3.5.5 Off-nominal thresholds and nominal

ranges are set too late, resulting in parameters
exceeding thresholds with no abort because of

IRIG timing mismatch between C2 rack and test

article

UCA 4.1: Gimbaling profile is LCS 4.1.1 Gimbaling profile is not initiated Software quality

not initiated [H5] because of an insufficient software control assurance and testing.

algorithm Hardware quality

LCS 4.1.2 Gimbaling profile is not initiated assurance and testing.

because of a loss of connection to test article from Redundant C2 rack

C2 rack. capability and
switchover

UCA 4.2: Gimbaling profile is LCS 4.2.1 Gimbaling profile is initiated too early

initiated too early in the test in the test because the test sequence is incorrectly

[H5] programmed.

UCA 4.3 Gimbaling profile is LCS 4.3.1 Gimbaling profile is initiated too late
initiated too late in the test in the test because the test sequence is incorrectly

[H5] programmed.
LCS 4.3.2 Gimbaling profile is initiated too late
in the test because insufficient software control

algorithm

UCA 5.1: Engine cutoff LCS 5.1.1 Engine cutoff monitoring not provided

monitoring not provided when when commanded during main engine cutoff

commanded during main sequence because of loss of signal to test article

engine cutoff sequence [H3, from improper connection.

H6]

Software quality
assurance and testing.

Software quality
assurance and testing.

Hardware quality
assurance and testing.
Redundant C2 rack
capability and hard
switchover in loss of
communication
situation
Require independent
manual shutoff
capability in test control
center
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usafe Control Action Loss Causal Scenarios Mitigations

UCA 5.2: Engine cutoff
monitoring provides false
readings and aborts test [H5]

UCA 6.1: Safing profile not
initiated after the hot fire test
[H3, H5]

UCA 6.2: Safing not provided
while workers are present in
the test area [HI]

UCA 6.3: Safing profile is
initiated too early in the test
causing an abort [H5]

UCA 6.4 Safing profile is
initiated too late in the test
[H3, H5]

UCA 7.1: LOX and LH2
draining is not commenced
when required by test profile
resulting in unstable
configuration [H2, H3, H4]

UCA 7.2: LOX and LH2
draining is commenced when
other systems are not ready
[H2, H3]

LCS 5.2.1 Engine cutoff monitoring provides Software quality
false readings and aborts test because of incorrect assurance and testing.
software process model. Hardware quality
LCS 5.2.2 Engine cutoff monitoring provides assurance and testing.
false readings and aborts test because of stale data
or data latency in transfer.

LCS 6.1.1 Safing profile not initiated after the hot Software quality
fire test because the test sequence is incorrectly assurance and testing.
programmed. Hardware quality
LCS 6.1.2 Safing profile not initiated after the hot assurance and testing.
fire test because a hardware connector fails in the
C2 rack.

LCS 6.2.1 Safing not provided while workers are Software quality
present in the test area because of an incorrect assurance and testing.
software process model Redundant C2 rack
LCS 6.2.2 Safing not provided while workers are capability and hard
present in the test area because parameters are not switchover in stale da
at nominal levels due to insufficient software situation
control algorithm
LCS 6.2.1 Safing not provided while workers are
present in the test area because of stale data or
data latency provides false nominal indication

LCS 6.3.1 Safing profile is initiated too early in Software quality
the test causing an abort because the test assurance and testing.
sequence is incorrectly programmed.

ta

LCS 6.4.1 Safing profile is initiated too late in the Software quality
test causing an abort because the test sequence is assurance and testing.
incorrectly programmed. Redundant C2 rack
LCS 6.4.2 Safing profile is initiated too late in the capability and hard
test causing an abort because of insufficient switchover in stale data
software control algorithm. situation
LCS 6.4.3 Safing profile is initiated too late in the Require independent
test causing an abort because of stale data or data manual safing
latency in transfer capability in test control

center

LCS 7.1.1 LOX and LH2 draining is not Require independent
commenced when required by test profile manual draining
resulting in unstable configuration because loss of command capability in
communication with test article from connector test control center
not installed correctly Software quality
LCS 7.1.2 LOX and LH2 draining is not assurance and testing
commenced when required by test profile with actual test stand
resulting in unstable configuration because interface.
insufficient software control algorithm.

LCS 7.2.1 LOX and LH2 draining is commenced Software quality
when other systems are not ready because the test assurance and testing.
sequence is incorrectly programmed.
LCS 7.2.1 LOX and LH2 draining is commenced
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Unsafe Control Action Loss Causal Scenarios

when other systems are not ready because of

insufficient test control software process model

UCA 8.1: Advance to
shutdown command
sequencing is not initiated
when off-nominal redline
values are reached or during
loss of vehicle control [H2,
H3, H5]

UCA 8.2: Advance to

shutdown procedure initiated

while nominal values are still

maintained [H5, H6]

LCS 8.1.1 Advance to shutdown command Redundant C2 rack

sequencing is not initiated when off-nominal capability and hard

redline values are reached or during loss of switchover in loss of

vehicle control because of insufficient software communication

process model situation

LCS 8.1.2 Advance to shutdown command Require independent

sequencing is not initiated when off-nominal manual shutoff

redline values are reached or during loss of capability in test control

vehicle control because of insufficient software center

control algorithm Software quality

LCS 8.1.3 Advance to shutdown command assurance and testing.

sequencing is not initiated when off-nominal Hardware quality

redline values are reached or during loss of assurance and testing.

vehicle control because of hardware User application and

communication improperly connected to test display standards for

article off-nominal redline

LCS 8.1.4 Advance to shutdown command monitoring and

sequencing is not initiated when off-nominal displays.

redline values are reached or during loss of Test operator training

vehicle control because of processing on off-nominal redlines

performance saturation prevents timely recognition and

recognition of off-nominal redline condition applicable procedures.

LCS 8.1.5 Advance to shutdown command

sequencing is not initiated when off-nominal

redline values are reached or during loss of

vehicle control because user apps and displays do

not present redline situation adequately to warn

test operator(s).

LCS 8.2.1 Advance to shutdown procedure Software quality

initiated while nominal values are still maintained assurance and testing.

because of insufficient software process model User application and

LCS 8.2.2 Advance to shutdown procedure display standards for

initiated while nominal values are still maintained off-nominal redline

because of insufficient software control algorithm monitoring and

LCS 8.2.3 Advance to shutdown procedure displays.

initiated while nominal values are still maintained Test operator training

because user apps and displays do not present on off-nominal redlines

redline situation adequately to warn test recognition and

operator(s). applicable procedures.
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UCA 8.3: Advance to
shutdown procedure is
provided too late in
preempting loss of vehicle or
after an off-nominal redline
condition is reached [H2, H3]

II oss Causal Scenarios ,Iitigations

LCS 8.3.1 Advance to shutdown procedure is

provided too late in preempting loss of vehicle or

after an off-nominal redline condition is reached

because hardware communication improperly
connected to test article
LCS 8.3.2 Advance to shutdown procedure is

provided too late in preempting loss of vehicle or

after an off-nominal redline condition is reached

because of processing performance saturation

prevents timely recognition of off-nominal
redline condition LCS 8.3.3
Advance to shutdown procedure is provided too

late in preempting loss of vehicle or after an off-

nominal redline condition is reached because user

apps and displays do not provide adequate
reaction time test operator(s).

Redundant C2 rack
capability and hard
switchover in loss of
communication or stale
data situation
Require independent
manual shutoff
capability in test control
center
Independent
verification of
monitored conditions
and responses that
require automated
advance to shut down if
test operator reaction
time is less than TBD
seconds required.

6.6 Deriving System Requirements and Mitigations

The causes of the losses in step 4 were used to determine mitigations to offset such

scenarios from occurring. These include design considerations (such as hardening or

redundancy), software programming considerations, procedural considerations (such as limiting

how the system is used by the operators), and quality assurance checks. Combined with the

system-level constraints from step 1 and the controller constraints from step 3, it is possible to

derive additional system requirements and mitigation strategies to obtain a safer system as

defined in the purpose in step 1. If used in conjunction with the design process, early on in the

systems engineering "V," STPA can be iterated to further refine the design with safety in mind

from the beginning.

6.7 Analysis and Results

STPA for the "ascent phase" of the analysis resulted in 83% of the total work time needed

to complete a comparable "ascent phase" analysis using FMEA analysis. The STPA results are
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the same or meet a similar intent to those resolved in the FMEA with not gaps between the two

methods. The recommended mitigation and constraints resulting from STPA are arguably more

intuitive than those of the FMEA. This is likely due to the methodology of STPA which

employs logical systems-based reasoning to explore the system's emergent properties and all

possible causes as opposed to FMEA's failed-component approach which focuses mainly on

hardware component failures.
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Chapter 7

7 Conclusion and Recommendations for Forward Work

This chapter provides concluding thoughts and summarizes the work of this thesis. Section 7.1

discusses the benefits of using STPA while Section 7.2 covers the challenges. Further, section

7.2 includes recommendations for forward work. Finally, Section 7.3 covers specific methods to

integrate STPA into a systems engineering process in a complex aerospace design environment

such as the rocket testing controller for SLS.

7.1 Benefits

STPA offers several benefits over traditional hazard methods. It requires little

understanding of the underlying theoretical and mathematical foundation to be useful. It is

further shown to require less time and resources to employ and can be integrated into the entire

systems engineering design process. It is easier to incorporate from the beginning of the design

process because it uses a top-down methodology rather than bottom-up methodology like

FMEA. In addition, modem complexity is leading to important system properties (such as

safety) not being related to the behavior of individual system components but rather to the

interactions among the components, which STPA takes into account. Accidents can occur due to

unsafe interactions among components that have not failed and, in fact, still satisfy their

requirements. Therefore the goal of STPA is a more thorough systems-based method that can

identify emergent properties that may be missed by traditional methods.

Traditional hazard analyses such as Failure Modes and Effects Analysis (FMEA) and

Failure Modes and Effects Criticality Analysis (FMECA) are based on system decomposition

that involve dividing the system into components. They assume that accidents are caused by
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component failure, calculate the probability of failure of each component separately, and later

combine the analysis results into a system reliability figure, which is assumed to be a measure of

safety or risk. They often only consider failures that can lead to a critical loss rather than all

failures. These models assume that all components in the system are able to be defined

stochastically for the probabilities or likelihood to be determined. The probability of each

component failing is combined into chains of directly related physical or functional failure

events. Unfortunately, software and humans do not satisfy this assumption. The assumptions

underlying the decomposition-based approach to traditional hazard analysis are relatively true for

the type of electromechanical systems built in less complex designs and still hold for certain

properties in newer high-technology, software-intensive systems. However, the greatly

increased complexity in our systems today (which is made possible primarily by the use of

software) is creating systems where the approach is no longer as effective. It is much more

difficult today to anticipate, understand, plan, and guard against all potential system behavior

before operational use of our systems. Complexity is creating "unknowns" that cannot be

identified by breaking the system behavior into chains of events [4].

7.2 Challenges and Forward Work

Additional forward work to consider includes automating STPA processes for steps 3 and

4, integrating STPA into the systems engineering design process from beginning to end, using

prediction analysis for scheduling decisions impact, and additional means of increasing

requirements clarity using natural language processing techniques.

Automating steps 3 and 4 is possible for certain design aspects of a repetitive nature.

Employing cloud computing and enhanced software functionality can reduce repetitive tasks and

make the STPA process even quicker. Further, by integrating STPA into the engineering process
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from beginning to end, emergent properties can be found and discovered early in the process to

avoid expensive redesign or safety issues found in PRAs and FMEAs that often occur too late in

the process. Implementing STPA across such a large organization poses a significant change

management challenge that should not be taken lightly. Further, it poses challenges to the

working relationship and mutual understanding between a government agency with specific

standards and the private company as the prime contractor to what are acceptable methods of

hazard analysis.

Monthly measures may be used to predict man-hours and schedule effects in order to build

an effective prediction system using techniques like linear regression analysis alongside of

queuing optimization models to minimize the total cost of the combined waiting cost (cost of

schedule delays) and the service cost (cost of employees) as shown in Figure 41 [9].

0)
E

.

Total Requirements Development Cost

C0 Service Cost = CostN

0

Queuing Cost = CostqN

Number of developers, N

Figure 41. Using metrics to minimize schedule and cost impacts.

Additionally, the Lean Innovation Cycle offers the advantages of a prioritized task list that

avoids making a big list of features and prevents scope-creep. The iterative nature allows a

natural way to test if the program's assumptions were correct along the way.
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Lastly, advances in natural language processing (NLP) may be incorporated into

requirements databases to make sure requirements are written clearly and match overall

program-wide system requirements to prevent inducing software defects based on inconsistent or

potentially poorly-written requirements.

7.3 Integrating STPA into Your System Engineering Process

For larger organizations, major challenges, as mentioned earlier, involve changing the

culture, changing the standard processes used, and training large numbers of people to use newer

and different methods than they have in the past. Regarding training, experience shows that the

most effective approach to introducing STPA is an interactive method with hands-on exercises

used to reinforce the process. The organization should expect that employees with significant

experience using traditional hazard analysis techniques may have the most difficulty learning or

accepting STPA. For very large organizations in which thousands of people need to be trained,

using a "train-the-trainer" approach may be desirable. The most effective way to produce STPA

experts who can serve as future trainers and facilitators is to immerse candidates in real projects

where STPA is actively used and even shadowing other facilitators.

STPA is the most useful when it is integrated into the design effort and not performed as

an independent effort by a separate group. Therefore, for large projects, an STPA facilitator may

be assigned as the expert whom will then break up the process into smaller components that can

be done successfully by individuals or by small groups of experts. The facilitator may provide

some initial STPA training at the start of the project, and should be able to answer any related

questions that arise during the project. The facilitator can identify and schedule tasks that may

be done in parallel by different groups. Eventually the facilitator can bring these components

together into the overall analysis. Facilitators may also lead the meetings and manage the
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interactions among the team members. The facilitator generally reviews the results during the

process and at the end of the process to ensure the method is being followed correctly and that no

gaps occurred. At the conclusion of the project, the facilitator may compile the results into a

final report and ensure the findings are provided to the appropriate functions as a means of

providing traceability.

During the initial design process, the early control structure model can be used to help

identify the areas of expertise that will be needed. Those with background or experience in

testing are often excellent choices for an STPA team. Testers can be quite knowledgeable and

able to find problems that may have been overlooked because their job involves constantly

questioning the assumptions and claims that have been made. They rarely assume that

requirements, specifications, or design decisions are completely correct, an excellent

characteristic for STPA team members. Initial skepticism by those deeply involved in a project

design is quickly overcome when they find UCAs or scenarios that had not been previously

identified.

With regard to cost and return on investment, STPA is very efficient. Typically, the first

use is most costly because of learning costs, but the cost quickly drops off as experience is

gained. With regard to the time required, Figure 42 shows the relative amount of time spent by

all STPA team members on a recent industry project. For most industry STPA projects, most of

the time is spent learning how the system to be analyzed works (which would need to be done for

any method that identifies hazard causes), and actually not spent learning STPA or performing

STPA itself. Roughly a quarter of the time is spent finding answers to "what if' technical

questions about the system that were not considered previously. A relatively small amount of

time is typically spent actually learning STPA and following the process [4].
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0 Learning how the

system works

29% 1 6 Learning STPA

50% Applying STPA

11%
Finding answers to

10% technical questions

raised

Figure 42. Relative amount of time spent on different tasks 141.

Most of the time is spent exploring real concerns in the system that can immediately be used to

drive decisions and provide insight about how to make improvements. Organizations in past use

cases reported that STPA requires about 2 or 3 orders of magnitude less time and resources than

the more traditional hazard analysis techniques and produces more complete results [4].
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List of Acronyms

APU Auxiliary Power Unit

BOS Boston's Logan International Airport

C Controller Constraint

C2 Command and Control

CAST Casual Analysis Using Systems Theory

CDR Critical Design Review

ConOps Concept of the Operation

CS Core Stage

ECP Engineering Change Process

ECU Engine Control Unit

EM Exploration Mission

EPS Electrical Power Systems

ET External Tank

ETA Event Tree Analysis

EUS Exploration Upper Stage

FHA Fault Hazard Analysis

FIFO First-In-First-Out

FMEA Failure Mode and Effects Analysis

FMECA Failure Modes and Effects Criticality Analysis

FTA Fault Tree Analysis

GEV Generalized Extreme Value

GUI Graphical User Interface
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HAZOP Hazard and Operability Analysis

IPT Integrated Product Team

IRR Internal Requirements Revision

ISS International Space Station

ITAR International Traffic in Arms Regulations

JAL Japan Airlines

KLOC Thousand Lines Of Code

KSC Kennedy Space Center

LCS Loss Causal Scenario

LEO Low Earth Orbit

LH2 Liquid Hydrogen

L02 Liquid Oxygen

MAF Michoud Assembly Facility

MLOC Million Lines of Code

MPS Main Propulsion System

MPTA Main Propulsion Test Article

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

NTSB National Transportation Safety Board

OV Orbiter Vehicle

PDR Preliminary Design Review

PHA Preliminary Hazard Analysis

PRA Probabilistic Risk Assessment
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RS-25D Rocket System 25 (Space Shuttle Main Engine)

SC Stage Controller

SLS Space Launch System

SME Subject Matter Expert

SpaceX Space Exploration Technologies Corporation

SRB Solid Rocket Boosters

SSC Stennis Space Center

STPA Systems-Theoretic Process Analysis

STAMP Systems-Theoretic Accident Modeling and Processes

STE Special Test Equipment

STS Space Transportation System

S&MA Safety & Mission Assurance

TAK Takamatsu Airport

TCC Test Commit Criteria

TPS Thermal Protection System

TVC Thrust Vector Control

UADs User Apps and Displays

UCA Unsafe Control Actions

WIP Work in Progress
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