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Abstract

It has long been known current helmet test methodology suffers from a missing connection
between helmet test standards and the relevance to injury prevention. One of the tests in
the protocol consists of impacting the helmet material plates with a high-velocity projectile
and the performance assessment is based on the permanent deformation of the backing-
material, Roma Plastilina clay. This work focuses on the development of a computational
framework to develop a deeper understanding of the mechanical response of Roma Plastilina
clay. Prior work has focused on the development of a clay model based on Cam-clay theory.
In this work, it is shown this model failed to adequately capture the mechanical response
across the range of strain rates of interest. To address this deficiency, the previous model
formulation is extended to a more general rate-dependence model of the power-law type.
Three impact tests are used to calibrate the modified constitutive model for the clay: one
low-velocity test and two high-velocity tests. The low-velocity test is a drop test used
to ensure the clay is well-conditioned for the high-velocity tests in which a high-velocity
projectile impacts a plate with a clay backing. The final clay deformation for all three tests
is compared against experimental data to ensure the accuracy of the clay model. Finally,
to improve simulation efficiency, scalability of the computational framework is tested. It is
concluded the computational framework is an effective tool for modeling Roma Plastilina
clay. The constitutive model for the Roma Plastilina clay is validated, tested and final
material parameters are determined that characterize the clay behavior over a large range
of impact rates. The modified clay model is used to explore the phenomenon of separation
between the plate and clay which was previously believed to only occur with hard plate
materials.

Thesis Supervisor: Radil Radovitzky
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background and Objectives

Over the past 10 years, more than 250,000 cases of traumatic brain injury (TBI) have been

documented in service men and women [1]. The high rate of TBI has led to research on how

well the helmets protect the service members on the battlefield and how the helmets can be

improved. TBI threats for soliders have a wide range including blasts or explosions, bullets,

falls and vehicle accidents [2].

To this end, numerous studies have been supported by Program Executive Office Sol-

dier Protection and Individual Equipment (PEO-SPIE). One such study utilized animals to

develop transfer functions enabling the creation of human head injury criteria [3]. With a

transfer function, an estimate can be created to determine the intensity of a threat causing

head trauma with a particular protection system. Additional research has been pursued by

the US Army Research Laboratory (ARL) to better understand the properties of the hel-

met materials and the mechanical functions that occur during impact. These studies have

shown the dependence and sensitivity of critical material parameters to provide guidance for

improved ballistic protection [4].

Although work has been done modeling helmets and creating transfer functions, a crucial

step in fulfilling the vision of a complete science-based approach to helmet design and testing

is missing. This step involves establishing a connection between helmet testing standards

and their relevance for injury prevention. In order to address this question, the testing
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methods need to be evaluated to ensure the results are truly measuring the desired effects.

This should ensure that helmets that pass a test standard will actually improve soldier safety.

To better understand the testing methods, the objective of this work is to develop sim-

ulation and analytical tools to assist Project Manager Soldier Protection and Individual

Equipment (PM-SPIE) in the validation or invalidation of current helmet test methodology

using existing test data. A validated computational framework is needed that can reproduce

experimental results conducted in the past by PM-SPIE. The type of tests considered in-

clude those in the standard helmet testing protocol as well as simplified tests. The simplified

tests are the main focus of this thesis as they can be used to improve the modeling of the

materials used for the overall standard helmet testing protocol. The simplified tests that

are used include a drop test and flat-plate high-velocity impacts which are used to calibrate

the clay backing-material. The goal of this work is to successfully obtain a Roma Plastilina

model that accurately reproduces the results from the experimental tests. Once an accurate

model of the materials is obtained, it can be applied to testing and design of new helmets to

help reduce the occurrence of traumatic brain injuries.

1.2 Approach

Current helmet test methodology and materials are incorporated into a computational frame-

work to aid in the analysis of materials for various test setups. In order to model the ex-

periments used in the helmet test protocol, each individual material and configuration must

be implemented, calibrated and tested as discussed in detail in this work. The final result

of this work is a Roma Plastilina clay parameter set that has been calibrated over a large

variation in strain rate from quasi-static to high velocity.

The first major step is the model of the Roma Plastilina used in all experimental tests.

To accurately model the helmet test protocol, Roma Plastilina clay must be modeled using a

single set of material parameters for a large range of impact velocities (6m/s to 743m/s) which

correlates to a wide range of peak strain rates (500/s to 50,000/s). Various implementations

and models of Roma Plastilina have been pursued, but have focused on either a single strain

rate or a smaller range of strain rates [5, 6, 7, 81. Some work by Carton looked at strain
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rates from 0.1/s to 10,000/s but found the material parameters were a function of the strain

rate requiring varying stiffnesses to match experimental results [9]. Modeling the Roma

Plastilina for this work requires the implementation of material-specific constitutive models

which are able to produce accurate results over a wide range of strain rates using a single

set of parameters to characterize the material. The approach used is the variational Cam-

clay theory of plasticity proposed by Ortiz and Pandolfi [10] which is discussed in detail

in Chapter 2. The Cam-clay theory comes from observations of soil in laboratory tests

showing soils, when loaded, will reach a critical state in which they are able to sustain

plastic deformation at constant volume 1101. Prior work on the implementation of the Cam-

clay theory found the constitutive model could be calibrated for a singular strain rate [11].

However, while simulating different strain rates, it was found this constitutive model does

not adequately characterize the full range of strain rates. Within Chapter 2, a modification

to the rate dependency of the Cam-clay theory is proposed and implemented in order to

allow for the material to be characterized by one parameter set for a variety of strain rates.

The modification involved changing the linear rate-dependence to an arbitrary power-law

rate dependence. The adequacy of the Cam-clay model for the purposes of drop and high-

velocity tests will be assessed by simulation. The Cam-clay model is deemed appropriate if

it captures the back face deformation as seen in experimental high-velocity impact tests (flat

plate with clay-backing) and indentation depth for drop tests.

The Dyneema plate used in the high-velocity impact experiments is a complex structure

with a high strength-to-weight ratio that involves many layers of oriented polyethylene fibers

embedded in a resin matrix [12, 13]. Plate models include a detailed layup and fiber ori-

entation are not computationally efficient leading to simplified homogenized or orthotropic

continuum models [4]. To be computationally efficient and for simplicity, the Dyneema plate

is modeled by adopting a plasticity model based off J2-flow theory [14]. The formulation

of plasticity model with assumed power-law forms for both hardening and rate sensitivity

is discussed in Appendix A. The plasticity model simplifies the Dyneema structure leading

to improved computational run-time, however, there is reduced accuracy from the missing

characteristics of the layers and fiber orientation [4]. While this plasticity model is already

implemented within the computational framework used, the material parameters need to
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be calibrated using experimental results to accurately depict the behavior of the particular

Dyneema plate configuration used. The model is deemed appropriate if the final back face

deformation and shape matches that of the experimental plates from experiments.

The computational framework used for the tasks within this work is discussed in Chapter

3. The continuum mechanics formulation is discussed along with the explicit Newmark solver

which is used in all simulations for this work. Additionally, the problems in this work require

a projectile to impact either the plate or the clay. This led to the need for a contact algorithm

that could be used for both the drop test and high-velocity impact simulations. The contact

algorithm allows the projectile to act as a rigid material as discussed in Appendix B and

the penalty parameter selection shown in Section 3.2. Looking at experimental plates from

the high-velocity impact tests, it is seen that the Dyneema plate undergoes penetration

and delamination between the layers. These observations led to the need to model fracture

within the plate. The Discontinuous Galerkin (DG) method is used in combination with the

cohesive zone model to simulate the fracture and delamination of the plate [15]. Additionally,

the DG method allowed for a free boundary between the clay and plate so the two materials

could act as they do in the experiments.

In Chapter 4, the Roma Plastilina model is calibrated using the drop test experimental

configuration and the high-velocity impact experimental set-up. There are three experimen-

tal configurations that are analyzed 116]. The first is a drop test experiment that is used to

ensure that the material is properly conditioned for the high-velocity impact experiments.

The second experiment involved attaching a plate of Dyneema to the top face of a clay block

then launching a 9mm projectile at the plate and measuring the final deformation of the

clay material which is related to the maximum back-face deformation of the plate. The third

test also involves a plate but the projectile is different and is called a Threat M. Once again,

after each experiment the final deformation of the material is measured. The experimental

setup as well as the clay deformation will be discussed later but images are shown in Figure

1-1 and Figure 1-2 to provide an initial view of the experimental setups and results. A group

of parameter sets are proposed from the drop test experiment. The high-velocity impact

experiments are then used to narrow the parameter sets to find a single set that properly

characterized the Roma Plastilina for a wide range of impact velocities. At the end of Chap-
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Figure 1-1: Experimental set up for high-velocity impacts

ter 4, the final Roma Plastilina parameters are given which adequately model the material

under a wide range of strain rates.

The simulated high-velocity impacts are computationally heavy due to the DG method

that increases the number of degrees of freedom compared to the continuous Galerkin (CG)

method. The computation time also increases with the cohesive zone model as interface

calculations are needed to verify if fracture has occurred. The simulations are run in parallel

to reduce the computational time. In order to optimize the parallelization of the simulations,

the scalability of the computational framework was tested. Scalability of the simulations

is a measure of its capacity to effectively utilize an increasing number of processors and

performance statistics are used to guide the design and application of code [17, 18J. To

test the scalability, the simulations where run on the ARL Centennial HPC system [19J.

The Centennial system has 1,784 compute nodes with 40 cores per node which allows for
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(a) Threat M (b) 9mm

Figure 1-2: Final clay deformation of clay from Threat M and 9mm impacts

simulations to be run on a large number of processors. In order to better understand the

number of processors and the size of problem that could be effectively run, a scalability

analysis was completed. The results are shown and discussed in Chapter 5, and provide

insight into the parallel computing capability of the code with large problem sizes. The

analysis of the scalability provides the ability to select the number of computation nodes

optimal for a given problem size.

As part of the work with the cohesive zone model, the application of the framework to

fragmentation of pressurized tanks was explored. In Chapter 6, a Saturn V helium tank

simulation is discussed including the tank mesh, pressurization characteristics and fracture

mechanics. The goal of the pressurized tank simulations is to generate a fragmentation

catalog which can help determine how many fragments are created due a particular failure.

18
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Chapter 2

Constitutive Model of Roma Plastilina

Clay

In order to model the drop test and high-velocity impact experiments, a model of the Roma-

Plastilina clay is required. The model used for the clay is a variational Cam-clay theory

of plasticity by Ortiz and Pandolfi, which is a variation of the original Cam-clay theory by

Scholfield and Worth [10, 20]. The main concepts are derived from observations of soil in

laboratory tests and is heavily based on a critical state in which the soil or clay can sustain

plastic deformation at constant volume. The constitutive model is discussed in further detail

in Section 2.1. While testing different configurations of the clay, it was found that the model

did not accurately characterize the material with large ranges of impact velocities (i.e. strain

rates). The material could be calibrated to a low strain rate but would act overly stiff for

high strain rates or could be calibrated to high strain rates and act too soft for low strain

rates. Due to this behavior, the Cam-clay theory is modified to have a power-law rate

dependency replace the original linear rate dependency shown in Section 2.2. In Section 2.2,

the convergence conditions for this modification, as well as the validation and testing, are

also discussed to show consistency with the derivation.
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2.1 Summary of Original Model Formulation

For this work, the variational Cam-clay theory of plasticity by Ortiz and Pandolfi is used to

model the Roma Plastilina [10]. This theory, as mentioned above, is better suited to model

the behavior of Roma Plastilina as compared to other models that rely heavily on metal

plasticity theory. The formulation of the original variational Cam-clay theory of plasticity

is highlighted below with the major equations. The full formulation, with derivation of the

following equations, can be seen in the work by Ortiz and Pandolfi [101. The implementation

of the original variational Cam-clay theory of plasticity into computational framework, as

well as testing of the original theory can be seen in the work by Fronk [11].

2.1.1 Governing Equations

To begin, the main assumption in the governing equations is the multiplicative decomposition

of the deformation gradient F given by Equation (2.1) where F' and FP are the elastic and

plastic parts, respectively, of the deformation gradient.

F = FeFP (2.1)

Free Energy

Ortiz and Pandolfi assumed that the elasticity and the specific heat of the material are

independent of the preconsolidation pressure leading to the free energy given by Equation

(2.2) where We is the elastic strain-energy and WP is the stored energy of cold work [10].

A(F, FP, T, q) = We(Ce, T) + WP(T, q, FP) (2.2)

Focusing on the elastic strain-energy, the volumetric and deviatoric responses are decoupled

for simplification giving Equation (2.3) where J' is the Jacobian of the elastic deformation

and Cedev is the deviatoric elastic right Cauchy-Green deformation tensor.

We(Ce, T) = Wevol(Je, T) + We'dev(Ce'dev, T) (2.3)

20



The volumetric and deviatoric components are given by Equations (2.4) and (2.5), respec-

tively, where 0e is the elastic volumetric strain, K is the isothermal bulk modulus, aT is

the thermal expansion coefficient, To is the reference absolute temperature, po is the mass

density per unit undeformed volume, C, is the specific heat. For the deviatoric portion, A is

the shear modulus and ee is the deviatoric portion of the logarithmic elastic strain.

K T
W T) - [0' - 3acT(T - T0 )]2 + poC' T i - log (2.4)

2 TO

Wedev = ie|2  (2.5)

Flow Rule

The flow rule for this theory is assumed to be the von Mises flow rule shown in Equation

(2.6) where EP is the effective plastic strain and M is a tensor which defines the direction of

plastic flow f21j.

FPFP-1 = APM (2.6)

Ortiz and Pandolfi discuss the defining characteristic of the Cam-clay theory being that M

can be any symmetric tensor that satisfies the kinematic constraint in Equation (2.7) where

a is the internal friction coefficient and Mdev is the deviatoric part of M 1101.

2 (trM)2 +-MAdev MAdev = 1 (2.7)
0Z 3

Rate-sensitivity law

The rate-sensitivity law is originally assumed to be a linear rate-sensitivity and is given by

the dual kinetic potential in Equation (2.8) where 77 is a viscosity constant.

*b = f(P)2 (2.8)
2

The original rate-sensitivity law will be analyzed and modified in Section 2.2
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2.1.2 Yield Criterion and Hardening Rule

Yield Criterion

The yield criterion is given by Equation (2.9) in which p is pressure, q is stress and a is the

internal friction angle which is related to the friction angle # by Equation (2.10)

q2 + a2(p _ PO)2 = 02q0

6 sin q
3 - sin #

(2.9)

(2.10)

From the yield criterion, the yield surface is generated as shown in Figure 2-1.

q

PC PO

A

P

Figure 2-1: Yield surface in the (p, q)-plane, preconsolidation pressure pc and geometrical
interpretation of the internal friction coefficient a

Hardening Rule

The hardening rule for the Cam-clay constitutive model is used to characterize the mecha-

nisms of compression and swelling in granular mediums. The hardening characteristics are

22
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Figure 2-2: Strain rate versus time of the two main test types analyzed in this work

W

0 012

determined by the normal consolidation relation given by Equation (2.11) where pref and

OP are material constants.ref

(2.11)Pc = Pref sinh P
ref

The stored energy function corresponding to the normal consolidation relation is given by

Equation (2.12) by integrating over the volumetric plastic strain, OP.

OP
WCP(OP) = Pref Oe cosh O 1

ref
(2.12)

2.2 Power Law Rate Dependence Modification

For the application of the work, the clay is tested over two largely different strain rates. The

first strain rate is generated from the drop test experiment in which the ball is dropped at a

velocity of approximately 6.3 m/s producing a maximum strain rate of approximately 600

1/s and then tapers down to 0 1/s as the ball is caught in the clay as seen in Figure 2-2a.

The second strain rate is from the high-velocity impact tests, in which the clay is topped by

the Dyneema plate and then impacted with either a 9mm or Threat M, the maximum strain

rate is closer to 55000 1/s and then again tapering to 0 1/s as the bullet gets stopped and

the plate separates from the clay as seen in Figure 2-2b.

With the linear rate-sensitivity, the clay is overly rate dependent at high strain rates
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causing the material to be stiff. To improve the rate dependency, a power law rate dependence

was implemented that allows for the ability to use one set of parameters over a wide span of

strain rates. The dual kinetic potential for the power law rate-sensitivity is given by:

* CA = + - M(2.13)
M + I ep

where m is the rate-sensitivity exponent, eP is a reference plastic strain rate, and o-, is the

yield stress which is calculated using the yield criterion. Using the derivation in Section 2.1,

the rate-sensitivity term in the original formulation, Equation (2.8), can be replaced with

the power law rate-sensitivity, Equation (2.13), directly. This results in a formulation that

allows for more control in the strain rate dependency of the Cam-clay material compared to

the original formulation.

2.2.1 Power Law Rate-Sensitivity Implementation and Testing

Convergence and Conditions

A Newton-Raphson iteration is used to solve for the incremental plastic strain Ad and

phase angle # as shown by Ortiz and Pandolfi [10. The first condition of the power law rate-

sensitivity equation is the plastic strain can not be negative so that condition was added to

the Newton-Raphson to ensure that at the end of each iteration the value of the plastic strain

is positive. Once the power law rate-sensitivity replaced the linear rate-sensitivity equation,

the stability of the calculation of the phase angle improved, but began to oscillate with

various tests of material parameters. It was determined Newton-Raphson would solve for a

particular phase angle with a small change in the angle, but as the incremental plastic strain

converged, the phase angle would start to oscillate between angles that varied by a period or

more. The same angle was being calculated, but the change in the angle was approximately

27r, leading to the Newton-Raphson not converging for the phase angle. For this reason, a

condition was added to the Newton-Raphson that forces the angle to be between 0 and 27r.

Once this was implemented, the Newton-Raphson converged to a solution for the incremental

plastic strain and the phase angle.

To test the convergence of the Newton-Raphson, a simple hydrostatic compression test
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Figure 2-4: Power Law rate-sensitivity overlaid with Linear rate-sensitivity with forced equiv-
alence by setting r7 in the linear model to be equal to the calculated o-o. Various strain rates
are shown to see that the rate dependency is equal for this comparison

material to equal o- from the power law rate-sensitivity material. Figure 2-4 illustrates that

by forcing this equivalence, the power law rate sensitivity overlays the linear rate sensitivity

leading to the understanding that the power law rate-sensitivity was implemented correctly.

With the power law rate sensitivity successfully implemented, the compression test can

be used to get an understanding of how the new parameters, m and e', impact the rate

dependency or behavior of the Cam-clay under various loading rates. In Figure 2-5, the

same set of parameters was analyzed while changing the m parameter to discern how the

stress is impacted for various strain rates. As m increases, the dependence on the rate

begins to reduce. With a large value of m the expectation is that there would be little to

no dependence on the strain rate. Figure 2-5 illustrates that as m increases, the material

for high strain rates begins to behave like the material at lower strain rates. This includes

yielding earlier as well as hardening in the same way. Looking at the derivative of the power
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Figure 2-3: Convergence of Newton Raphson while using Power Law rate-sensitivity

was used which involves compressing the material at the same rate in all three principle di-

rections. The convergence at the quadrature point at a random point in time was collected to

get a number of samples. This collection of samples gives insight into the overall convergence

behavior of the Newton-Raphson. With the added conditions for the Newton-Raphson, the

convergence of the iteration is quadratic as is expected for a Newton-Raphson scheme. The

convergence is shown in Figure 2-3.

Validation and Testing

As discussed in the work by Fronk, a hydrostatic compression test was used to verify the

implementation of the Cam-clay material [11]. The modification to use the power law rate-

sensitivity does riot have experimental data to verify the implementation other than forcing

the linear and power law rate-sensitivities to be equal by setting m and 0 to 1, which

produces the same equation as long as o is equal to 71. Because o is calculated using the

preconsolidation pressure and the internal friction, Tj was set in the linear rate-sensitivity
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law rate-sensitivity, Equation (2.14), the power of 1/m produces this behavior because as m

increases, the dependence on the inner term decreases.

o- g1 +- (2.14)

For the reference plastic strain rate, the impact on the behavior of the material can be

illustrated using Figure 2-6, in which, m is held constant at 1 but ' is changed. As e

is increased, the magnitude of the stress at higher strain rates decreases as the inner term

of Equation (2.14) decreases. Based off the graphs in Figure 2-6, with a high value of a

the stress will converge to the yield stress and maintain that stress as the strain continues

to increase. The inner term of Equation (2.14) will approach 1 as e approaches infinity

thus the stress approaches the yield stress, illustrating that the power law rate-sensitivity

modification is correctly implemented.
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Figure 2-5: Stress versus strain curves of various strain rates showing the model response for
hydrostatic compression test subject to various rate-sensitivity exponents with a fixed reference

plastic strain rate of 1.
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Figure 2-6: Stress versus strain curves of various strain rates showing the model response for
hydrostatic compression test subject to various reference plastic strain rates with a fixed rate-

sensitivity exponent of 1.
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Chapter 3

Computational Framework

To simulate and model the test protocols, a computational framework entitled SUMMIT,

developed at MIT under the direction of Raul Radovitzky, was used. SUMMIT is a solid

mechanics code that is focused on large-scale simulations for materials and structures. The

capabilities of the framework, include but are not limited to, continuous and discontiuous

Galerkin methods, multi-scale simulations, explicit dynamics and higher order methods [22,
23, 24]. In addition, SUMMIT has a wide variety of constitutive models and the capability to

quickly add and test new materials. SUMMIT is also highly scalable, which will be further

discussed in Chapter 5, which offers many benefits with highly complex problems. The major

features of SUMMIT that are used for the test protocol simulations are discussed below

and include the continuum mechanics formulation, the contact algorithm for the projectile,

discontinuous Galerkin (DG) method, and the cohesive zone model used for fracture and

separation.

3.1 Continuum Mechanics Formulation

The base mathematical formulation for modeling finite deformation is based off deformation

of a material and the linear momentum balance equation. The deformation gradient F

is the deformation in the current configuration to the reference configuration as shown in

Equation (3.1) where Xj is the material point coordinates in the reference geometry, xi is

the material point coordinates in the current configuration, and p(X, t) is the Lagrangian of

31



the displacement vector. In Equation (3.2), the governing equation of the linear momentum

balance is given where po is the initial density, j5 is the acceleration, P is the first Piola-

Kirchoff stress tensor and B is the force per unit mass subjected on the body.

F - -(~ (3.1)ax. - axj

Poo = VO .p +poB in BO (3.2)

The first Piola-Kirchhoff stress is determined from the relationship between the PK stress

and the Cauchy stress, og, shown in Equation (3.3) where J is the Jacobian derived from

the determinant of the deformation gradient.

Pij = JaijF- (3.3)

J = detF (3.4)

The weak form of Equation (3.2) can be determined by multiplying the equation by a test

function Ph and integrating over the domain which produces Equation (3.5) which can be

summed over each element in the finite element problem. Within Equation (3.5), T is the

applied traction.

(Po~ - 6Wh + Ph: Vo6p=h) dV p B JP . V + 6,Wd - VdIS (3.5)

This weak form is the basis for continuous Galerkin (CG) methods.

3.2 Contact Algorithm

In this work, high-velocity impacts are modeled and an efficient way of modeling the impactor

is needed. The contact algorithm prevents interpentration of objects which come in contact

and is used to determine the resulting contact forces. In addition, the contact algorithm

allows the impactor to be modeled as a rigid body with mass, without the need of a meshed

object. The contact algorithm is needed for the drop test simulations, as well as the high-
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velocity impact simulations in Chapter 4. The contact algorithm was implemented in the

initial work by Fronk and is summarized in Appendix B [11].

The most important parameter for the contact algorithm is the penalty parameter as

discussed in Appendix B. For the application of this project, the penalty parameter is de-

pendent on the problem (type of material and type of impactor) in which it is applied.

For the radius of the sphere, the size of the impactor for a given experiment is used which

produces the desired undeformable object to impact the various surfaces. For the penalty

parameter, two different values are used. For the drop test simulations and the high-velocity

impact simulations, discussed in Chapter 4, the penalty parameter used was 4x10 8 and

1x10", respectively.

3.3 Description of Fracture - Discontinuous Galerkin and

Cohesive Zone Model

3.3.1 Discontinuous Galerkin (DG) Formulation

Discontinuous Galerkin (DG) methods allow for discontinuities within the problem domain

which is beneficial in problems where fracture may occur or separation of elements is needed.

For the application of the helmet test protocol, the plate and clay need to be able to separate

in order to act as they do in experiments. With a continuous Galerkin (CG) method, the two

materials must remain in contact throughout the simulation. The elements are not allowed

to separate because the formulation is purely continuous. This is not physical as in the

experiments, the two materials act separately and are not permanently joined. Employing a

DG method for the helmet system allows for this separation between the clay and Dyneema

plate.

Another use of the DG method is to model the delamination and fracture within the plate

during an impact. The plate used in the experiments has plies and shows some separation

between the plies occurring when some plies displace further than others. With a detailed

mesh, the damage to the plate can be shown using the DG method. The DG method would

allow the impactor to penetrate the plate producing delamination between the plies.
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To achieve separation, delamination, and fracture, an explicit-dynamics spatial DG for-

mulation is used. The explicit-dynamics spatial DG formulation for non-linear solid dynamics

is discussed in further detail in the work by Noels and Radovitzky but the main points of

the formulation are highlighted below [23].

To get the weak form of the problem, the continuum equations are first stated in material

form by Equations (3.6),(3.6) and (3.6) with p being the deformation mapping where po :

BO -+ R+ is the initial density, i is the partial differentiation with respect to time at a fixed

X, B is a force per unit mass subjected to the body, P is the first Piola-Kirchhoff stress

tensor, N is the unit surface normal to the reference configuration and the boundary surface

aBO is split into the Dirichlet portion 8 DBO and the Neumann portion aNBO. To integrate

the system, displacement and velocity initial conditions are needed.

po46=Vo-P+poB VtcT (3.6)

p=i VXEDBO Vt c T (3.7)

P.N=T VXE&NBO Vt E T (3.8)

To formulate the DG method for a large class of materials, a variational constitutive

framework is needed. This framework is discussed in Section 2.1 and Appendix Section

A.1.1.

DG discretization

In the DG discretization, Noels and Radovitzky start by defining an admissable test function

6 h E X [ [231. Integration over the body in the reference configuration of Equation (3.6)

multiplied by the test function leads to a weak formulation which consists of finding (p E Xk

and Ph E Sk such that Equation (3.9) holds 123].

(po45h - VO - Ph) - 6phdV = j poB6WhdV V6ph E Xk Vt c T (3.9)
0 e 00
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With Equation (3.8) and the test function, the divergence theorem can be applied to produce

Equation (3.10).

Ze fOe (POh * 6Wh + Ph : V6(Ph)dV - Ze N Ph - 6PhdS

=Ze fN hdS + Z poB -6WhdV V 6 Ph E Xk Vt c T (3.10)

The term on the interior boundary ( 1Q' may include fields that are discontiuous and therefore

can have different values on either side of a surface. This is a defining characteristic of DG

methods which address this problem with the concept of numerical flux. A full description

of numerical flux is given in the work by Noels and Radovitzky [23]. Including numerical

flux in Equation (3.9), the weak formulation simplifies to Equation (3.11) where the jump

,[Oe] = 9+ - .- , and mean ,(o) = [++ *-], operators are defined on the space of the trace

of functions which can adopt multiple values on the interior boundary.

.(p (P h h + Ph : Vo0e(h)dV - f'e 6Ph (Ph) . N-dS

T.6phdS + J 2 poB - 6(PhdV V 6 ph cXk Vt E T (3.11)

In Equation (3.11), it is assumed that the constitutive law is enforced strongly from the

compatible deformation gradient, Fh = VOph. Also, the displacement compability must be

weakly enforced aiding in numerical stability. To do this, a quadratic stabilization term in

I[ b, [6 PbJ is used. For non-linear mechanics, the terms must be proportional to [owh] 0

N- : C : [Wh] 0 N- where C is the tangent moduli of the material. Using this term,

the displacement jumps are stabilized in the numerical solution, and the material relations

at large displacements are considered. The final formulation consists of finding Ph E

such that Equation (3.12) holds where h, is the element size and 3 > 0 is the stabilization

parameter.

IBOh PoPh 64h + Ph: V06(PhdV + f&B [PhJ (Ph) . N-dS

4-fBBh h (9 N- : ((C) : [Ph] 0 N-dS

Bo B - 6WhdV + faNBO Ph 'TdS VWh G Xk Vt E T (3.12)
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3.3.2 Cohesive Zone Model

For simulation the lose of material strength during fracture, a cohesive zone model is utilized.

A cohesive zone model for fracture is based off the idea of considering fracture as a process of

separation in material close to the tip of a forming crack [15]. In order to model the gradual

decline in the strength of a material as the elements separate a Traction Separation Law

(TSL) is used. The formulation used within SUMMIT and for this project is an extrinsic

approach with a linear irreversible softening law [15, 24, 251. This model works well for ma-

terials that exhibit initially rigid response along the fracture surfaces. Due to the low strain

failure of the Dyneema, as well as the brittle behavior of the matrix material, the extrinsic

approach is reasonable for the application. The linear irreversible softening law is one of

the most widely-used extrinsic cohesive laws and was originally proposed by Camacho and

Ortiz [25]. The formulation of this approach is summarized below based off the formulation

in Seagraves and Radovtizky work [151 and is tested using a bar spall simulation.

Formulation

The cohesive zone model is based on the use of the TSL. The TSL becomes active when

the criterion in Equation (3.13) is satisfied where a, and at are the normal and tangential

stress, respectively, 0 represents the ratio of G1Ic/G,, and oc is the critical effective cohesive

strength.

ac O <; 2 + 7-t (3.13)

Once the traction separation law is initiated, the effective separation 6 in Equation (3.14),

is used to determine the effective cohesive traction, Equation (3.15). In Equation (3.14), A,,

and At are normal and tangential component of the separation.

5 = t +An (3.14)

T = 'o6,q (3.15)
86

In Equation (3.15), #(6, q) is the free energy density. For the particular case of the linear

irreversible softening law, the effective cohesive traction is given by Equation (3.16) where
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Figure 3-1: T-6 relationship for the linear decreasing extrinsic law [15]

omax is the largest separation the crack experiences before closure or the current size of the

crack as it grows. In Equation (3.16), 6, is the separation where complete decohesion (T = 0)

occurs and Tmax is the effective traction at 6 = 6 max Figure 3-1 depicts the relationship

between T and 6 as the traction separation law progresses based off Equation (3.16).

ac 1 - ) for

I T-6 for <6
max

6 > 0, 6 = 6max

0, or 6 < 6 max

The total work of separation for the linear softening law is:

1
sep = U (3.17)

which is directly related to the Griffith critical energy release rate.

Bar Spall Test

The cohesive zone model shown above was tested with a simple bar spall test. The bar spall

test was utilized in the work by Radovitzky et al. [24] to validate the discontinuous Galerkin

and cohesive element behavior. This spall test was implemented in SUMMIT to confirm no

errors existed in the prior implementation of the cohesive zone model. The bar spall consists

of a rod of Neohookean material subjected to a tensile wave created by applying a normal
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Figure 3-2: Structured 3D Mesh for Bar Spall test with 480 elements

velocity at each end of the bar. For the bar spall test shown here, the velocity oil the ends of

the rod is 6.046 m s-'. The Neohookean material is defined by a Young's Modulus of 260 GPa

and a Poisson's Ratio of 0 with a density of 3690kg/m 3. The necessary cohesive parameters

are the Griffith critical energy release rate and the critical stress from which the critical

separation can be calculated using Equation (3.17). The Griffith critical energy release rate

is 34 J/M2 and the critical stress is 360 MPa giving a critical separation of 0.188 Pm.

Using the above material parameters, the bar spall simulation is set up using the mesh

shown in Figure 3-2. Applying the velocity to each end, the tension wave propagates to the

center then the two waves combine, making a stress high enough to create fracture as can

be seen in Figure 3-3b. The displacement also becomes constant in the two halves as the

separation has occurred as seen in Figure3-3a. Based off the results of the bar spall test, the

implementation is correct and verified.
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Figure 3-3: Left: X-displacernent as the velocity is applied at the time, velocity progresses
toward the center of bar until frac occurs then both sides separate. Right: Stress in the
x-direction shows a wave propagate towards the center, create fracture and then reflect until
it dissipates. The final images have increased displacement to illustrate successful fracture.
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Chapter 4

Model Calibration and Results

Using the material constitutive models for the Roma Plastilina clay and the Dyneema plate,

discussed in Chapter 2 and Appendix A, respectively, the experimental tests are simulated

and the material models are calibrated to obtain results that are within the desired range of

the experimental tests. There are three tests that are used to calibrate the material. The first

is a drop test which is characterized as a low strain rate test. This experiment is originally

used to make sure that the clay is conditioned properly prior to high-velocity impact tests

and has set bounded that determine if the clay is conditioned properly or not. This test is

discussed in Section 4.1 and is used to help provide more information about the clay behavior

under an impact. Using the parameters obtained from the drop test experiment, the next

two tests are both high strain rate simulations as they involve high-velocity projectiles. The

first test is a high-velocity impact with a 9mm projectile and the second is an unknown

projectile called Threat M. The tests and material calibration for these two threats are

discussed in Section 4.2. The high-velocity projectile tests have a slight added complexity

as there is an plate plate on top of the plate which absorbed the majority of the impact

from the projectiles. To reduce the number of variables in the calibration, a set of Dyneema

parameters were selected as discussed in Section 4.2.2.

To determine a starting point for the material calibration, literature on the characteri-

zation of Roma Plastilina or modeling clay was used [9, 8, 6, 5, 71. The work by Hernandez

focused on low strain rates associated with drop test experiments [6, 5, 7]. Hernandez's work

on clay did not have a large range of strain rates, but the work from Buchely offered the
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Figure 4-1: Left: Experimental Drop Test set up with impactor dropped from 2 m, Right:
Simulation Drop Test set up with sphere impactor positioned at top surface of clay and given
a kinetic energy equal to the potential energy at 2 m

largest range of strain rates (2300/s to 17,900/s) [8]. Buchely provided information about

how the material parameters may change at higher strain rates. For the Young's Modulus,

a range of 1.73 MPa to 11.64 MPa was observed for the Roma Plastilina while the yield

stress was between 0.08 MPa and 0.153 MPa and the Poisson's ratio was observed at 0.43

[8]. Based on the goal of finding a single parameter set for the clay material, in this work, the

ranges of parameters from literature were used as a starting point. However, with different

model formulations, the material parameters proposed by Buchely were slightly deviated

from the values when calibrating in SUMMIT. The following sections discuss the process of

obtaining one parameter set for a variety of impacts.

4.1 Low Strain Rate - Drop Test Simulations

4.1.1 Mesh and Impactor

The drop test simulation is used to calibrate the clay parameters. The drop test, used by the

Army Research Laboratory (ARL) for verifying the clay is well conditioned for high-velocity

impact experiments, consists of a clay block 0.305 m wide by 0.305 m long by 0.1 m high,

impacted with a 1 kg impactor [261. The impactor is a cylinder with a hemisphere on the

end impacting the top surface of the clay after being dropped from a height of two meters

as shown in Figure 4-1.

To simulate the ARL drop test configuration, the setup is modified to reduce compu-

tational time and impactor complexity. The simulated drop test uses a clay block with
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Figure 4-2: Clay mesh for the drop test simulation, includes a clay box 0.305 in wide by

0.305 m long by 0.1 m high which consists of 263,000 tetrahedral elements

the same dimensions as the experimental clay block, however the simulation impactor is

positioned on the surface of the clay. At this point, the simulation impactor is given a ve-

locity based on the initial potential energy the impactor had at 2 m which corresponds to

6.261 m s-1. The impactor is modeled as a sphere due to the contact algorithm discussed in

Appendix B. A mesh of the impactor is not needed as the radius of 0.0225 m can be set as

the contact radius. Using the contact algorithm, the impactor is a single point representing

the sphere impactor. The upper cylindrical portion of the experimental impactor is ignored

but is considered acceptable as discussed in Fronk's prior work [11].

The mesh for the drop test simulation is shown in Figure 4-2. The mesh contains approx-

imately 263,000 tetrahedral elements. The mesh is refined at the impact point to accurately

capture the clay response. During the impact the elements experience high distortion and us-

ing smaller elements helps to mitigate the numerical instabilities leading to mesh refinement

at the impact point [111. The outer region is not refined since there is little deformation or

mesh distortion and has minimal impact on the clay indentation. The drop test simulations

are run using continuous Galerkin elements preventing fracture or separation of elements.
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Parameter Set E(MPa) p po(MPa) m a e_ Depth (mm)
1 20 0.4 1 2 10 100 26.8
2 20 0.4 1 2 13 200 26.6
3 20 0.4 1 2 15 300 26.0
4 15 0.4 1 2 10 100 27.3
5 20 0.4 1 30 20 100 26.4
6 20 0.4 1 5 15 100 26.2
7 20 0.4 0.1 2 35 100 25.1
8 5 0.4 1 2 12 100 26.1

Table 4.1: Cam-clay Parameter Sets that produce clay indentation with range of calibration
for experimental drop tests with p = 1529 kg/m 3, Vref = 0.75. The experimental drop test
depth is 25.4t2.5 mm

4.1.2 Results

In order for the drop test results to be deemed calibrated, the depth of the impact must be

within the acceptable bounds of clay indentation between 22.9 mm and 27.9 mm as specified

by ARL. A clay specimen with an indentation depth measured within the acceptable bounds

is considered well-conditioned and can be used for the high-velocity impact experiments.

A variety of parameter sets that produce a clay indentation within the experimental

range mentioned above are determined. The parameter sets are shown in Table 4.1. Multiple

parameter sets are used to allow for further refinement at higher strain rates (Section 4.2).

In the Table 4.1 it is seen that a wide variety of parameters can produce the depth required

to meet the ARL clay calibration criteria. Although only eight parameter sets are shown,

roughly 70 different parameter sets were found which also fit within the range specified. The

results shown here are a sampling of those parameter sets but focus on the parameter sets

that will be shown in Sections 4.2 and 4.3.

In Figure 4-3, the final time step of the eight parameter sets of Table 4.1 are shown.

Based on the images, the impactors enters the clay and pushes the clay to the side creating

a bulge outside the impact point. Depending on the parameters, the bulge is more or less

pronounced. As seen in Figure 4-3g a high internal friction angle reduces the build up of

material around the impactor. The high internal friction angle increased the friction within

the material preventing it from sliding leading to reduced bulging. It can also be seen in

Figure 4-3e, that a high rate sensitivity exponent will lead a large amount of build up along

the edge of the impact region. Based on the power law rate-sensitivity discussed in Section

2.2, a high rate sensitivity exponent lessens the rate dependence producing a constant stress
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Parameter Effect of decreasing parameter

Young's Modulus Increase
Preconsolidation Pressure Increase
Rate Sensitivity Exponent Decrease
Internal Friction Angle Increase
Reference Plastic Strain Rate Decrease

Table 4.2: Effect of varying parameters on final clay indentation

after yield. The constant stress allows for higher strains leading to more build up of material.

The bulging up of clay is also seen in the experimental drop test so the resulting shape of

the simulation qualitatively matches the experiments.

Based of the results of the various tests run, the effect each parameter has on the final

depth of the clay can be determined in order to help guide further calibration for higher or

lower strain rates. Table 4.2 reflects the effect each parameter has on the final indentation in

the clay when independently decreased. When increasing each parameter independently the

opposite affect is seen thus not shown in Table 4.2. Some of the observations can be checked

by comparing against understanding of the parameter meaning while others are less intuitive

and thus offer more insight into the material behavior. For example, increased indentation

for decreased elastic modulus. However, it was not initially clear how the preconsolidation

pressure, rate sensitivity exponent, internal friction angle, and reference plastic strain rate

affected the indentation as they were manipulated. But, from the results of the various

simulations the relations shown in Table 4.2 serve as guides to obtain desired indentation

depths for various parameter sets.

4.2 High Strain Rate - High-velocity Impact Simulations

4.2.1 Mesh and Impactors

The high-velocity impact simulations are set up differently than the drop test since there is

a smaller impactor moving at a higher speed with a plate of plate over the clay. The clay

is used to measure the maximum back-face deformation of the Dyneema plate. Figure 4-4

shows the mesh primarily used for the impact simulations. The mesh contains 41,000 linear
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

(g) Set 7 (h) Set 8

Figure 4-3: Clay shape for eight clay parameters sets that are valid options and hold to criteria for
experimental tests
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(a) Full view of mesh (b) Side view cut with materials

Figure 4-4: The clay and plate system has 41,000 tetrahedral elements with local refinement

around the point of impact. The blue material indicates Dyneema while the red material
indicates Roma Plastilina Clay.

tetrahedral elements and includes mesh refinement at the impact point. The mesh contains

two materials. The first is the thin Dyneema plate and the second is the block of Roma

Plastilina clay on the bottom. The Dyneeia plate has a width of 0.3n, length of 0.3 m and

height of 0.011m. The clay has the same width and length but has a height of 0.089 m as

specified by the experimental configuration. The plate mesh is refined in a cylinder region

that is slightly larger than the 9mm impact in order to include edge effects from the impact.

This refinement continues down into the clay where the top face of the clay has the same

refinement. The mesh is not refined on the boundaries, as these regions do not encounter

large distortion and no localized refinement is needed.

There are two high-velocity projectiles considered, 9nini and Threat M. The 9mm models

a 9mm bullet and has an impact velocity of 427 m/s. The Threat M, on the other hand,

is a smaller bullet having an impact velocity of approximately 743 m/s. Both impactors

are modeled using a sphere similar to that used in the drop test experiments. For the 9mm

bullet the sphere has a radius of 0.0045 m, while the Threat M has an approximate radius

of 0.00391 in. Although the spherical shape does not match the shape of standard bullets,

the sphere impactor is transferring energy into the plate the same way the bullet would so

without adding complexity of the bullet getting damaged, thus results that are in the desired

range were produced.

To get an accurate result with the clay, the high-velocity impact simulations are tested
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Figure 4-5: Cross-section of the plate cut through the center after impact from 9mm threat

and calibrated to ensure that the results are within the expected range to fully define the

clay. The parameter sets from the drop test experiments are used as a starting point to

determine the best set of parameters for the high strain rate simulations. Having a variety

of options and an understanding how the material parameters shape the indentation (shown

in Table 4.2, helps to calibrate the clay to work for both the low strain rate and high strain

rate simulations.

Plate Configuration

Prior to modeling the plate as a single layer of material as shown in 4-4, the Dyneema plate

was tested in various configurations to determine how best to successfully model the physical

behavior of the material in the experiments. From the samples provided by ARL, the plate

appears to have penetration through several layers on the top face and there is delamination

between the penetrated layers and the rest of the plate as seen in Figure 4-5.

To model the penetration and then delamination of the Dyneema, a few different config-

urations were tested which integrated varying meshes and use of the cohesive zone model.

The first configuration tested involved placing a cylinder the width of the projectile at the

impact point and making the plate two layers as shown in Figure 4-6a. This configuration

allowed for penetration into the material by forcing fracture paths along the vertical that

was approximately the width of the projectile as shown in Figure 4-6b. From the impact

simulation it is clear that the configuration in Figure 4-6a produces the fracture seen in
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(a) Cylinder at impact point and plate in two (b) Displacement of plate after impact with 9mm

layers threat

Figure 4-6: Dyneema plate configuration with two layers and a cylinder that puts a fracture path

on the vertical

the experiments, but that the two layers of resolution was not enough to have delamination

occur in the area desired. Additionally, if the vertical cohesive strength was too low, then

the whole cylinder would displace and fully separate and the clay would only be impacted

by the cylinder of material.

The problems with the two layer configuration led to a Dyneema configuration in which

a cylinder was still used, but the Dyneema was separated into 5 layers to offer more freedom

in the delamination point of the plate. In Figure 4-7a, the mesh is shown of the five layer

configuration in which the first four layers have the cylinder added, but the last layer is

continuous to prevent full separation of the cylinder from the rest of the plate. This configu-

ration was implemented to allow for control in the penetration depth for the plate but led to

fracture that was all along the cylinder and then a inaccurate back-face shape was created

from the cylinder impacting the continuous layer at the bottom of the plate. There was de-

lamination within the regions desired, but the large vertical fracture paths posed problems in

producing adequate shaping on the backface of the plate. Additionally, the imposed vertical

fracture paths are not allowing the material to fracture where it may actual fracture in the

experiments.

To mitigate the problems from the imposed vertical fracture paths, an eight layer config-

uration without imposed vertical fracture paths was implemented to allow vertical fracture

to occur naturally. The shift from five layers to eight layers was done to give more resolution

to the material and to produce layers that are approximately one element thick to aid in
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(a) Cylinder at impact point and plate in five (b) Displacement of plate after impact with 9mm

layers with a continuous bottom layer threat

Figure 4-7: Dyneema plate configuration with 5 layers and a cylinder that puts a fracture path on

the vertical

(a) Dyneema plate in eight layers with all con- (b) Displacement of plate after impact with 9mm

tinuous layers threat

Figure 4-8: Dyneema plate configuration with five layers and a cylinder that puts a fracture path

on the vertical

the vertical shearing seen in the experiments. The mesh shown in Figure 4-8a shows the

eight layers and Figure 4-8b shows the displacement of the plate after the impact from the

9mm projectile. This configuration produced the delamination in a similar manner as seen in

the experimental results. Although the delamination occurred, the vertical fracture did not

occur at the edges of the impactor, but rather below the impact where the stress is higher.

This prevented the shearing of the material as the stress was released in the middle of the

layer, which minimized the stress at the impact edges. In an attempt to see more vertical

fracture, the cohesive strength was lowered, but this produced instabilities in the material

that led to failure of the simulation.
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p E(GPa) v I a(MPa) E" Ie m n
1026 25 0.15 100 3.5e-3 1.4e2 1 10

Table 4.3: Dyneema Parameter Set used for high-velocity impact simulations

After testing the various configurations of the Dyneema plate, it was decided that the

best and simplest way to model the plate was using a single layer of material that produced

a final back-face shape that matched the back-face shape of the experiments. Although

the delamination is not included in this model, the energy absorbed by the delamination

is assumed small and did not lead to large differences in the final results. For the vertical

fracture, in order to simulate this without using explicit fracture, the Dyneema material

needs to be softer than standard material models indicate to allow for more plasticity. The

increased plasticity will allow for more energy absorption which is the result of the fracture.

4.2.2 Dyneema Parameters

For the high-velocity impact simulations, the Dyneema parameters used are shown in Table

4.3 with the variables described in Appendix A. These parameters were determined using the

experimental plates along side the simulations. The experimental plates have a permanent

back-face shape and when the simulations are completed, the plate also creates a back-face

permanent deformation shape. The parameter set used for the simulation was generated by

comparing the two final back-face shapes and proposed material parameters from literature

[12, 27, 28, 29, 30]. This parameter set may be slightly different compared to true Dyneema

due to the lack of penetration and the use of a single layer in the simulated plate.

4.2.3 9mm Threat

The simulation results using an optimized material parameter set (Table 4.4) are shown

in Figure 4-9. There are three material parameter sets shown. Each set produces slightly

different results in the depth as seen in Table 4.4 and will be discussed below.

It can be seen that by increasing the internal angle of friction and the reference plastic

strain rate, the shape of the clay deformation changes. With the higher angle, the de-

formation of the clay becomes more of a hole as opposed to a smooth indentation. The
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Parameter Set E(MPa) p po(M Pa) m a i Depth (mm)
1 20 0.4 1 2 10 100 19.6
2 20 0.4 1 2 13 200 20.4
3 20 0.4 1 2 15 300 20.6

Table 4.4: Cam-clay Parameter Sets for 9mm projectile tests with p - 1529 kg/rm 3, Vrej -

0.75. Experimental clay depth is 23.5 0.82 mm for the 9mm projectile.

(a) Set 1

(b) Set 2

(c) Set 3

Figure 4-9: Clay Shape for 9mm high-velocity impact simulations with various parameters sets
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Figure 4-10: Comparison between 9mm high-velocity impact simulations and experimental
impact simulations for parameter set 3.

experimental results show the shape of the clay after the impact is closer to that of a hole so

the parameter sets with a higher angle are more desired. The best parameter set for the clay

is parameter set 3 where the greatest indentation depth is achieved. From the experimental

data, the average depth is 23.5 0.82 mm without the use of pads. The values shown in

Table 4.4 are below the average depth from the experimental by about 12%. This difference

in the clay indentation depth is a factor of the lack of penetration in the simulated plate thus

more energy is being absorbed by the plate than is happening in the experiments. Addition-

ally, there could be more concentration of energy in the experiments due to the penetration

and then subsequent deformation of the projectile. However, with the simplified panel, the

results are within a reasonable 2 standard deviations of the average result.

The results of the simulated high-velocity impact test can be compared with scans pro-

vided by ARL that illustrate the final shape of the clay. Shown in Figure 4-10, the clay shape

after impact is over laid the scans of the experimental high-velocity impact experiments. The

top lines reflect the final plate shape for both the experiment and the simulations. The sim-

ulated plate is higher in the plot than the experimental plate because the simulated plate

is allowed to move vertically and after the impact of the high-velocity projectile, it vibrates
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Parameter Set E(MPa) p po(MPa) m a 0 Depth (mm)
1 20 0.4 1 2 10 100 26.5
2 20 0.4 1 2 13 200 28.0
3 20 0.4 1 2 15 300 28.1

Table 4.5: Cam-clay Parameter Sets for Threat M projectile tests p = 1529 kg/rM 3, Vref

0.75. Experimental clay depth is 31.6 4.73mm for the Threat M.

and separates from the clay. The simulated clay has a general shape comparable with the

experimental result.

4.2.4 Threat M

The Threat M is a smaller impactor (7.8 mm diameter) but is fired at a higher velocity

(approximately 743 m/s). With material type, weight and size being unknown due to re-

stricted information, the simulations are estimations based off other high-velocity projectiles

that travel around 743 m/s. Using the plate and clay simulation described in Section 4.2.1,

the clay deformation created by the impactor is shown in Table 4.5. The results are also

visualized in Figure 4-11 to illustrate how the modification of the clay affected the shape of

the final clay deformation. In the experiments, the clay depth was 31.6 4.73mm without

pads. Based off this average and range, the clay deformation matched is within the desired

range for the Threat M. finalparameters

4.2.5 Clay and Plate Separation

Originally, simulations were run with the clay and plate staying in contact throughout the

simulation. This was enforced by having a normal continuous Galerkin boundary between

the two materials instead of a discontinuous Galerkin boundary. Because the plate was not

deforming to the full depth of approximately 23mm, the clay was not reaching the desired

depth. To combat this, a contact interface condition is added between the plate and the

clay. The contact interface is a variation of the discontinuous Galerkin method described

above. Rather than using stress and critical distance to determine separation, the contact

algorithm is used. Once the proper plate-clay interface was implemented the plate and clay

can separate when the plate stops deforming even though the clay may continue to deform.

The contact plate-clay interfaces acts as it would in the experiments since the clay will be
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(a) Set 1

(b) Set 2

(c) Set 3

Figure 4-11: Clay shape for Threat M high-velocity impact simulations with various parameter

sets
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Threat Type Backface Deformation without Pads Backface Deformation with Pads
9mm 23.5 0.82 0.3+0.06
Threat M 31.6 4.73 16.6 0.35

Table 4.6: Experimental depth of clay after impact with both high-velocity projectiles and
two different configurations (with or without padding). The t gives a range of one standard
deviation

in contact with the plate and will not have any force holding the two materials together.

This allows the plate and clay to act as two separate materials, as opposed to being forced

to move together as would occur in the continuous Galerkin method.

It is seen in high-velocity impact simulations that the clay and plate always separate

soon after the impact. The excess energy from the bullet that is not absorbed by the plate

is transferred through the plate into the clay. The energy in the clay makes it continue to

deform even though the plate has stopped deforming. The clay and plate interaction seen

in the simulation goes against what is thought to occur during the experiments. However,

based off the physics and strength of the material, the plate cannot deform to the indentation

depth of 23mm. Therefore, in order for the clay to indent 23mm, there must be separation

and transfer of energy between the clay and plate. This shows that the experiment for the

plate and clay is not accurately showing the greatest back-face deformation, but rather the

amount of energy transferred into the clay.

This conclusion matches well with the results seen in the simulations when looking at

the back-face deformation. As shown in Table 4.6 in impacts without padding, the 9mm

bullet creates a clay indentation of approximately 23mm and the Threat M creates a clay

indentation of approximately 32mm. With padding, the 9mm creates a clay indentation of

approximately 0.3mm while the Threat M still creates an indentation of 16.6mm. For the

clay to only show the back face deformation, the change in indentation depth from adding

the padding should be similar. However, there is a much larger change in the 9mm case.

There is more energy transfer in the Threat M case since it has higher energy leading to a

less significant change in the clay indentation.
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Parameter Set E(AMIPa) p po(MPa) m a | 0 1 Depth (mm)
3 20 0.4 1 2 15 1 300 1 27.8

Table 4.7: Selected Cam-clay parameter set that produce clay indentation with range of
calibration for experimental drop tests and high-velocity impact experiments with p = 1529
kg/M 3 , Vref = 0.75

4.3 Final Roma Plastilina Model Parameters

Given the results in the previous sections and the desired range of results from the helmet test

experiments, the parameter set 3 is chosen as the best parameter set. This value matches well

with the low strain rate and the high strain rate for the Threat M. The set of parameters

is slightly off from the value for the 9mm threat due to confounding factors such as the

behavior of the projectile or damage in the plate. The parameter set is successfully able to

produce accurate results over a wide range of rates which is a point of difficulty for modeling

Roma Plastilina.
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Chapter 5

Scalability of SUMMIT

Scalability is used to determine how efficient a simulation is when increasing the number

of processors for a particular problem. It is used to determine the best configuration to

run a simulation depending on the problem size and the computational resources available.

Strong scaling is a case when the problem size is fixed but the number of processors are

increased. The goal of a program is to scale linearly meaning the increase in speed is equal

to the increase in the number of processors. For example, a simulation is scaled linearly if it

takes 20 minutes on 1 processor and it takes 10 minutes on 2 processors. For the scalability

done in this work, the ARL Centennial HPC system is used [19]. The Centennial system

has 1,784 compute nodes with 40 cores per node which allows for simulations to be run on a

large number of processors. An allocated amount of hours is given and in order to effectively

use the hours, an optimal number of processors is desired. In the following sections, strong

scaling of the drop test and high-velocity impact simulations are shown and discussed.

5.1 Drop Test Simulation

The drop test simulation was run on the ARL Centennial HPC system starting with a fixed

problem size then increasing the number of processors. The drop test simulation is compiled

from SUMMIT and is using continuous Galerkin. The problem size was then increased by

dividing each element into eight individual elements which increased the problem size by

a factor of eight. This was repeated three additional times to get five different problem
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Scalability for Droptest Simulation
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Figure 5-1: Fixed Problem Size scalability for Drop test Simulations (CG, 1st-order tetra-
hedrals) on ARL Centennial HPC System (SGI ICE XA - 2.6 PFLOPS)

sizes that are run over aii increased number of processors. For the drop test problem, the

largest problem size used was 1.08 billion elements and the number of processors increased

from 1 to 32,768 by a factor of two. The results are shown in Figure 5-1. The simulation

is said to have strong scaling since the scaling curves follow the reference linear scaling. As

the number of processors increases, the speed up slowly starts to diverge from the linear

line. In order to optimize the simulation, the problem should be run while still on the linear

line. Depending on the size of the problem, Figure 5-1 can be used to determine the correct

number of processors to use.

Another way to look at the scalability of a program is to fixed the number of elements on

a processor. So when the number of elements is increased by a factor of eight, the number of

processors also needs to be increased by a factor of eight. The desired result is a flat line as

there should be no change in the time needed to solve. Figure 5-2 shows this result for the
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Figure 5-2: Fixed number of Elements per processors scalability for Drop test Simulations
(CG, 1st-order tetrahedrals) on ARL Centennial HPC System (SGI ICE XA - 2.6 PFLOPS)

drop test simulation. It can be seen that with less elements per processor, it is not always

beneficial to use more processors. For the drop test simulation, the scaling starts to diverge

after 256 processors when there are less than 65,000 elements per processor.

For the drop test simulation used, SUMMIT shows strong scaling. The information

acquired from the scalability plots above helps to determine how best to optimize the par-

allelization to effectively use allocated hours. The scaling can also be applied to similar

problems that use similar models such as continuous Galerkin first-order elements with a

explicit Newmark integrator. The scaling may not significantly change with different mate-

rials.

61

104



5.2 High-Velocity Impact Simulation

The high-velocity impact simulations have different scaling compared to the drop test simula-

tions since they are done using the discontinuous Galerkin method instead of the continuous

Galerkin method increasing the number of degrees of freedom in a problem leading to a

higher computational time. A similar process to the one used for the drop test simulations

was used for the high-velocity impact simulations. A fixed problem size was used then ele-

ments were divided into eight individual elements to create a new problem size that is eight

times larger than the first. This was completed two more times to generate four different

problem sizes to use for the scalability test. For the high-velocity impact simulations, the

largest mesh was 20.7 million elements which is approximately 82.8 million degrees of free-

dom. For these simulations, due to the smaller size of the mesh, the maximum number of

processors used was 4,096. The scalability results of the high-velocity impact simulations

utilizing the ARL Centennial HPC System are shown in Figure 5-3. As can be seen, the

high-velocity impact simulations have strong scaling for the problem sizes and number of

processors tested. The scaling holds to the linear line until starting to slightly diverge from

the path. The main difference between this scalability curve and the prior plots is the change

from continuous Galerkin to discontinuous Galerkin. Figure 5-3 can be used to determine

how best to run the high-velocity impact simulations as well as other simulations that use

discontinuous Galerkin first-order tetrahedrals.

Overall, SUMMIT shows strong scaling for both continuous Galerkin and discontinuous

Galerkin with first-order tetrahedrals using an explicit newmark solver. 4.

62



Scalability for Impact Simulation

101

0.

E

100

10-1

10-2

10-3

101 102

Number of Processors

Figure 5-3: Fixed Problem Size Scalability for High-velocity Impact Simulations (DG, 1st-
order tetrahedrals) on ARL Centennial HPC System (SGI ICE XA - 2.6 PFLOPS)
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Chapter 6

Application to Fracture of Saturn V

Pressurized Tanks

As part of the work with the cohesive zone model, the application of the framework to

fragmentation of pressurized tank was explored. For this problem, the goal was to simulate

pressurized tank failure in order to determine fragment size and distribution. This project

was collaborated on with the Engineering Risk Assessment team at NASA and called for the

use of the computational framework discussed in Chapter 3. One benefit of using SUMMIT

for this task is the cohesive zone model which allows for mass conservation aiding in the

determination of fragment size and distribution. To model the pressurized tank, a single tank

size and type was chosen to reduce variables in the problem. The tank chosen is a Helium

tank from the Saturn V rocket. The pressurization rate selection process is discussion in the

following section and is used for all further full failure problems. In the following sections,

the model configuration and loading schemes are discussed and the full tank failure problem

is demonstrated.

6.1 Model Configuration and Loading

To model the fracture of an over-pressurized tank, a sphere is used to simplify the geometry.

The sphere used has similar dimensions and wall thickness of a Helium tank on the Saturn

V rocket made of titanium. The radius is 0.3429 meters with a wall thickness of 0.0084582

65



(a) SUMMIT Sphere Mesh - Full
(b) SUMMIT Sphere Mesh - Cut through

Figure 6-1: Sphere meshes for over-pressurization simulations

meters which gives a radius-wall thickness ratio of 40.54:1 [311. The mesh for the titanium

sphere is shown in Figure 6-la, and a view of a cut through the tank wall in Figure 6-1b

to illustrate that although the element size is approximately that of the thickness, there are

portions of the mesh which still have two elements through the thickness. The SUMMIT

mesh shown consists of 103,621 elements.

Prior to testing the over-pressurization, the pressurization rate is determined. To check

the affect of various pressurization rates, the operating pressure of 3000 psi or 20.684 MPa

is applied and then held. This results in a ramp up of pressure then a leveling out. The

tank was tested with a variety of pressurizations rates of 100 GPa/sec, 10 GPa/sec and 1

GPa/sec. The stress and radial displacement were tracked to determine which pressurization

was best for the over-pressurization problem. The desire is a rate that produces minimal

material oscillation to eliminate compounding effects for fracture. Of the rates tested, 1

GPa/sec produces the least amount of oscillation and the oscillations it does produce have

a low amplitude and long period making them negligible. Thus, the tank is pressurized at a

rate of 1 GPa/sec to the point of fracture.

To simulate fracture, the cohesive zone model discussed in Section 3.3.2 is used and the

material model is a Johnson-Cook plasticity model. This model has been calibrated to the
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Stress vs Normalized Time
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Figure 6-2: Various pressurization rates
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(b) Radial displacement from pressurization

effect on stress and radial displacement

Parameter Value
Young's Modulus (GPa) 113.8e9
1/ 0.342
A (GPa) 1.09796
B(GPa) 1.09196

O 1
C 0.014
n 0.93
m 1.1

Table 6.1: Johnson-Cook parameters for Titanium Ti-6A1-4V

material parameters provided by the Federal Aviation Administration on the material prop-

erties of the Johncon-Cook model for Titanium 6A1-4V [32]. Additionally, the basic material

properties for Titanium 6A1-4V are obtained from ASM 133]. The material parameters are

shown in Table 6.1 and have been converted to SI units.

6.2 Results

As discussed above, the tanks are continuously pressurized past operating levels to a pressure

that produces stresses well above the ultimate stress of titanium leading to fracture. Figure

6-3 shows fragmentation of the tank in SUMMIT under these pressurization conditions.

Due to the mesh non-uniformity there are various angles of element interfaces along the

hoop of the sphere. Fracture may occur in certain areas of the mesh before other areas

because of the angle of element interfaces to the direction of max stress. This can be seen
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in Figure 6-3b in the blue zones where fracture has started to occur and stress is being

released from the point of the initial crack. Overall, if the mesh interface is perpendicular

to the max stress, there is higher likelihood of fracture. This side affect of the mesh creates

non-uniform fracture. Additionally, the mass of the overall tank is maintained due to the

fracture occurring at the interface, however this leads to single elements or "crumbs" that

have broken off of the larger fragments as the pressure continues to rise as shown in Figure

6-3c. The number of crumbs could be reduced by having the pressure reduce or evacuate

once fracture initially occurs.

Different meshes and pressurizations create different fracture behavior as can be seen in

Figure 6-4. Depending on the meshing, fracture will occur at different locations due to the

angle of the elements to the direction of max stress as discussed above.
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A

(a) Prior to fracture

(b) Fracture begins

(c) Fracture complete

Figure 6-3: Over-pressurization of 40:1 Titanium tank using Johnson Cook Model with
Cohesive Zone Model. In the figures, the von Mises stress is shown with high values in red
and low values in blue.
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(a) Configuration 2

(b) Configuration 3

(c) Configuration 4

Figure 6-4: Different pressurization and mesh configurations that produce different fracture
behavior
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Chapter 7

Conclusions

The objective of this research was to develop and calibrate a set of material models that can

be used to gain a better understanding of the mechanical response of Roma Plastilina. This

task involved simulating three different test configurations and using those configurations to

determine a single set of parameters that could be used to classify the Roma Plastilina clay

material.

A material model of Cam-clay was used with a rate-dependency modification that aids

in the use of one material set for a large range of impact velocities. By replacing the linear

rate dependence with a power law rate dependence, the Cam-clay model allows for more

flexibility of the rate dependence in the model, thus making the material suitable for any

range of strain rates and impact velocities given proper calibration.

Using the power law rate dependence Cam-clay model, as well as the other computational

tools, the Cam-clay material model successfully captures the behavior of the drop test and

the Threat M. The final depth of the clay is within the range required and the shape of the

clay resembles that of the clay as seen in the experiments. The 9mm projectile had a depth

that was outside the desired range but still within two standard deviations of the average

and therefore is still a reasonable result. The difference in this depth can come from the

Dyneema model as the material that is being used does not capture the energy of the impact

in the same behavior as in experiments where penetration and then delamination occurs.

Although the model of the Dyneema does not capture this behavior, the results of the clay

are minimally off demonstrating that these differences are not significant to the Cam-clay
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model but rather cause minor changes in the final depth of the clay parameters.

While studying the behavior of the clay and the plate, it was found that the armor

separates from the clay early in the impact and thus the clay is behaving based on the

energy transfer rather than from the direct contact of the armor. This separation is only

noticeable in simulations that are run with discontinuous Galerkin elements with no cohesion

between the clay and armor. As discussed in Chapter 4, this idea coincides well with the

results seen in the experiments where the final depth of the clay with pads and without are

not related by a deformation distance, but rather by an energy absorption level.

Future work on the Roma Plastilina model is related to acquiring more data points of

different strain rates or impact velocities that could help to further develop the clay model.

More data points would allow for a further calibration of the material. This would help to

eliminate gaps within the strain rate range. Additionally, adding these models and parameter

sets to the full helmet test protocol would test if the material is properly calibrated.

Applying the cohesive zone model to other problems, the over-pressurization of tanks was

also analyzed. For this additional work, the goal was to model fracture of the titanium tank

in an over-pressurization case. This case was successfully implemented and tested in which

a number of fragments were created and along the crack edges "crumbs" were formed as is

expected in fracture of this manner. Although some simulations were successful, there were

also cases that had a large amount of ring that occurred when the stress was released which

caused oscillation that caused the simulations to crash. Future work on this would need to

focus on minimizing the oscillations and providing more stability to the fracture paths. Once

the oscillations are minimized, a method for fragment counting and size calculation needs

to be implemented in order to start creating a fragment catalog. The pressurized tank work

allowed for further application of the cohesive zone model and further work can be done to

improve the fracture behavior of metals.
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Appendix A

Constitutive Model of Dyneema

To develop a computational modeling framework for simulating the helmet test protocol, a

model of the Dyneema plate response was adopted. The plate tested is made of ultra-high

molecular weight polyethylene (UHMWPE) which is built into a composite called Dyneema.

This material has been studied at a variety of impact rates and is well characterized within

those rates [29, 281. The Dyneema modeled in this study is a 12" x 12" panel that has 79

plies. To model 79 plies with finite elements, would require a large number of small elements

and would not be computationally efficient. For this reason, the Dyneema model of this study

has been simplified to aid in the computational time needed to solve the problem. To model

the Dyneema, a single ply is used and is modeled using a J2-flow theory of plasticity with

a power-law rate dependence. Although this does not accurately model the penetration of

the plate, the back-face shape from the simulations with the computational plate produces

results similar to those of the experimental results. In the following sections, the model

formulation and the material parameters used for the simulations will be discussed.
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A.1 Model Formulation

A.1.1 Governing Equations

Similarly to the Cam-clay governing equations, the deformation gradient is decomposed into

an elastic part Fe and a plastic part FP:.

F = FFP (A.1)

The flow rule is chosen to be a specific form for the J2-flow theory of plasticity. The flow

rule is:

(A.2)

where P is the effective plastic strain rate. A primary characteristic of the J2-flow theory of

plasticity is that M can be any symmetric tensor that must satisfy the kinematic constraint:

tr(M) = 0

2
2M -M = 1
3

(A.3)

(A.4)

By restricting attention to isotropic hardening, EP is the only internal variable of the material

and the free energy becomes:

A(F, FP, T, EP) = We(Ce, T) + WP(T, EP) (A.5)

where WP is the plastic stored energy and We is the elastic strain energy density which can

be decoupled into the volumetric ,W',v", and deviatoric ,Wedev, elastic responses:

We(Ce, T) = We'Ov(det(Fe), T) + We'dev(e- 2 / 3 Ce, T) (A.6)

where det(Fe) is the Jacobian of the elastic deformation and Je- 2/3 Ce is the deviatoric

elastic right Cauchy-Green deformation tensor.

The equation of state for the J2-flow theory of plasticity can be given by Equation (A.7)

78

-PFP- = eM



with the assumption that the isothermal bulk modulus and specific heat at constant volume

are constant.

We'Vol (e, T) = [Oe - 3oeT(T - To)]2 + poCvT 1 - log (A.7)
2 TO

where K is the isothermal bulk modulus, aT is the thermal expansion coefficient, To is a

reference absolute temperature, po is the mass density per unit undeformed volume, and

C, is the specific heat per unit mass at constant volume. And the deviatoric elastic strain-

energy is given by Equation (A.8) with y being the shear modulus and ee is the deviatoric

logarithmic elastic strain.

Wedev - e (A.8)

By discretizing the system, incremental deformations can be solved for in At time steps. An

incremental energy function using logarithmic elastic strains is defined [21, 14]:

fn(Fn+1, Tn+I; En+1, M) =

We(F e+1, Tn+1 ) + WP(Tn+1 , E +) + At V*(AEP/At) (A.9)

where 0* is the dual kinetic potential that will later be given and is used to determine the

rate-sensitivity of the material. The effective work-of-deformation density can be defined by

minimizing fn with respect to the effective plastic strain, En+ and direction of plastic flow,

M:

Wn(Fn+1 , Tn+1) = min fn(Fn+1, Tn+1 ; En+1, M) (A.10)
En+1,M

and is subject to a plastic irreversibility constraint:

AEP = EPn+ - EP ; (A. 11)

According to [21, 14], the effective work-of-deformation acts as a potential for the first Piola-

Kirchhoff stress tensor in the form:

Pn+1 = W (Fn+1 , Tn+1 ) (A.12)
i9Fn+1
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And the tangent moduli from the linearization of Equation (A.12) results in the symmetric

tensor,

02wnDPn+1 = 19 W (Fn+ I, Tn+ 1) (A. 13)
aFn+1OFn+1

After expressing the elastic strain energy in terms of logarithmic elastic strains and

following similar steps as above, the following stress equation is defined:

9,
(E")= ( 1 ) + 9 p LE + * (AEP/At) (A.14)

which can be solved for the unknown En+1 using a Newton-Raphson iteration under the

irreversibility constrain (A.11). Using the calculated value, the stresses can be updated.

A.1.2 Power Law assumptions

For the material to be considered a J2-flow theory of plasticity with power-law, a power-

law form needs to be assumed for both hardening and rate-sensitivity. The stored energy

function for the power-law is:

n-uo(T)" [- ( - (n+1)/n
WP = + - (A. 15)

n + 1EO

where n is the hardening exponent, EP is a reference plastic strain, and ao(T) is the flow

stress with an assumed thermal-softening law:

T )'
co(T) = ( - T (A.16)

TM

where o is the yield stress, Tm is the melting temperature, and 1 is the thermal softening

exponent. The dual kinetic potential used to determine the rate -sensitivity of the material

is defined by:

mu rg iP\-~ (m+1)/m

*= 4 11+ (-ii (A.17)
m + 1 L 0 -

where m is the rate-sensitivity exponent, P is the reference plastic strain and a is the yield

stress.
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Appendix B

Summary of Contact Algorithm

Figure B-1 depicts the various elements needed for the contact algorithm. The contact

algorithm uses the mesh object and the impactor and produces an interpenetration zone by

giving a radius, r, away from the impact node. At each time step, the contact algorithm

checks every quadrature point on the surface and determines if the impactor is in contact

with the quadrature point. A quadrature point is in contact if the distance, d, between the

quadrature point and the contact node is less than the radius. If the distance is less than

the radius then the quadrature point is in contact and a residual contact force is determined.

The contact force is determined using Equation (B.1) in which 6 is the difference between

the radius and the distance between the two points. This penalty contact force is applied

to the quadrature point. Then this process is repeated for every quadrature point along the

surface and then the resulting contact forces are assembled into one global force vector and

that global force vector is applied to the contact node. This step by step process is shown

in Figure B-2 as it occurs at each time step.

Fpenat, = 6 * p (B.1)

The penalty parameter, p, determined the resulting initial magnitude of the contact

force and is calibrated for a given problem. The penalty parameter determines the amount

of contact force that is generated by the contact of two objects. If the penalty parameter is

too low, the impactor will not have a high enough stopping force causing interpenetration
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delta = r - d

Impacor

Quadrature point

Figure B-1: Illustration of the penalty contact algorithm objects and variables [11]

of material and a penalty parameter that is too high will create too large of a force leading

to inaccurate results.
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Force acting on
quadrature point

Individual forces are
assembled into one
global force vector

Figure B-2: Process of the penalty algorithm
surface [11]

Forces acting on all
quadrature points

Assembled global

force 

vector

for contact of the impactor and the mesh
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