
MIT Open Access Articles

eeDTLS: Energy-Efficient Datagram Transport 
Layer Security for the Internet of Things

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Baneerjee, Utsav et al. "eeDTLS: Energy-Efficient Datagram Transport Layer Security 
for the Internet of Things." 2017 IEEE Global Communications Conference, December 2017, 
Singapore, Singapore, Institute of Electrical and Electronics Engineers (IEEE), January 2018 © 
2017 IEEE

As Published: http://dx.doi.org/10.1109/glocom.2017.8255053

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/122466

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/122466
http://creativecommons.org/licenses/by-nc-sa/4.0/


eeDTLS: Energy-Efficient Datagram Transport
Layer Security for the Internet of Things

Utsav Banerjee∗, Chiraag Juvekar∗, Samuel H. Fuller† and Anantha P. Chandrakasan∗
∗Massachusetts Institute of Technology, Cambridge, MA, USA

†Analog Devices Inc., Norwood, MA, USA

Abstract—In the fast growing world of the Internet of Things
(IoT), security has become a major concern. Datagram Transport
Layer Security (DTLS) is considered to be one of the most
suited protocols for securing the IoT. However, computation and
communication overheads make it very expensive to implement
DTLS on resource-constrained IoT sensor nodes. In this work,
we profile the energy costs of DTLS 1.3, using experimental
models for cryptographic computations and radio-frequency (RF)
communications. Based on this analysis, we present eeDTLS, a
low-energy variant of DTLS, that provides the same security
strength as DTLS, but has lower energy requirements. By
employing a combination of packet size reduction and optimized
handshake computations, eeDTLS can provide up to 45% energy
savings in a typical IoT use case. eeDTLS can be implemented
in conjunction with any low-energy IoT RF protocol, and the
proposed energy models and protocol optimizations can also be
used to improve the energy efficiency of custom IoT security
architectures.

I. INTRODUCTION

The Internet of Things (IoT) envisions a scenario where a
large variety of wireless electronic devices sense data from
their surrounding environments, process the data to obtain
useful information, and communicate this information to the
cloud. Researchers estimate that there will be over 50 billion
wireless connected devices by 2020. On one hand, IoT enables
fundamentally new and innovative applications, but on the
other, these devices are attractive targets for cyber attackers,
thus making IoT security a major concern. According to a
security survey from 2016 [1], only 10% IoT products have
adequate security features. The number of sensors in an IoT
network can vary from tens (e.g., smart home and health-
care solutions) to thousands (e.g., agricultural and industrial
automation) depending on the application. These devices must
operate unattended for extended periods of time, and are either
battery-powered or rely on energy harvesting, thus making
them severely energy-constrained. Therefore, it is of utmost
importance to consider energy efficiency when designing se-
curity protocols for such networks.

Since IoT will be integrated with the conventional Internet,
most IoT devices are expected to use Internet Protocol (IP)
addresses as unique identifiers, and IPv6 will be used to fulfill
the large address space requirements. Therefore, IP-based
security protocols become the first choice for securing the IoT.
Transport Layer Security (TLS) is a cryptographic protocol
widely used by the Internet community to provide secure and
reliable data communications for applications such as e-mail
and financial transactions, and this forms the basis of HTTPS

(secure HTTP). TLS has been standardized by the Internet
Engineering Task Force (IETF) [2] to secure connection-based
Internet services such as Transmission Control Protocol (TCP).
TLS-secured TCP-based applications form the backbone of
the Internet, but TCP is not suitable for low-power wire-
less networks, primarily because of protocol overheads. The
User Datagram Protocol (UDP) has emerged as the trans-
port layer protocol-of-choice for the IoT. UDP-based services
are connection-less and light-weight, hence they require low
bandwidth and minimal memory usage on embedded devices.
The Datagram Transport Layer Security (DTLS) protocol is
based on TLS, and is intended to secure UDP-based commu-
nications. Connection-less services are unreliable, and present
unique challenges such as packet re-ordering, packet loss and
packet fragmentation. DTLS is designed to not only handle
these problems seamlessly, but also counter replay and denial-
of-service (DoS) attacks. DTLS has also been standardized by
the IETF [3], and is considered as one of the most suited
protocols for securing the IoT [4].

The DTLS protocol has been tried and tested for over a
decade, and provides strong security guarantees. However,
computation and communication overheads make DTLS very
expensive for energy-constrained IoT devices. In this work,
we present a comprehensive study of the energy costs of
DTLS version 1.3. We consider the Bluetooth Low Energy
(BLE) physical and link layer protocol as a case study, and
use energy models for cryptographic computations and radio-
frequency (RF) communications to analyze how the energy
consumption varies over different IoT use cases. Based on
this analysis, we present an optimized energy-efficient variant
of DTLS – eeDTLS, that can be used to achieve improved
energy-efficiency while providing the same security guarantees
of DTLS.

II. OVERVIEW OF DTLS 1.3

The Network Working Group of IETF is in the process
of standardizing the next version of TLS – TLS 1.3. Both
TLS 1.3 [5] and DTLS 1.3 [6] currently exist in the form
of working drafts. (D)TLS consists of two layers – record
protocol and handshake protocol. The record protocol encrypts
application layer payloads, fragments and encapsulates them
into structured packets, called records, and provides message
authentication. The handshake protocol allows the communi-
cating parties (client and server) to negotiate security settings,
perform mutual authentication and establish a secure channel



Fig. 1. Overview of DTLS 1.3 handshake protocol with mutual authentication
and key exchange (blue arrows represent handshake messages and green
arrows represent application data; dashed arrows indicate that the messages
are encrypted).

for the exchange of encrypted records. (D)TLS 1.3 proposes
a major overhaul of the handshake protocol, removes support
for weaker cryptographic primitives and adds stronger security
measures than its predecessor.

Fig. 1 shows the message flow for a full DTLS 1.3
handshake with digital certificate-based mutual authentication
and Diffie-Hellman key exchange [7]. The client begins the
DTLS handshake by sending a ClientHello message containing
details about supported cipher suites, public-key parameters
and key shares for key exchange. The server then computes
a stateless cookie and sends it in the HelloRetryRequest
message. Next, the client sends another ClientHello, but now
with the cookie it received from the server, and the server
replies with a ServerHello containing its key share and selected
security parameters. This procedure ensures that attackers can-
not mount DoS attacks on the client or the server using forged
handshake requests [3]. The remaining part of the handshake
is completely encrypted using keys derived from the Diffie-
Hellman shared secret. The server continues the handshake
with an EncryptedExtensions message containing additional
protocol settings, and a CertificateRequest message to indicate
that it requires client authentication. These are followed by
the server’s Certificate and a CertificateVerify message that
authenticates the server’s side of the key exchange. The server
ends this flight of messages with a Finished message that
authenticates the handshake and confirms the security of the
encrypted channel. The client replies with its own set of
Certificate, CertificateVerify and Finished messages. Since
UDP packets may be lost, the DTLS 1.3 server is required

TABLE I
ENERGY CONSUMPTION OF SYMMETRIC CRYPTOGRAPHY ALGORITHMS

– EXPERIMENTAL RESULTS ON ARM CORTEX-M0+

Cryptographic Computation Energy
AES-128-GCM Auth-Encrypt 0.121 µJ/B

AES-128-GCM Auth-Decrypt 0.124 µJ/B

AES-256-GCM Auth-Encrypt 0.141 µJ/B

AES-256-GCM Auth-Decrypt 0.145 µJ/B

SHA-256 Message Digest 0.043 µJ/B

SHA-256 HMAC (64-Byte Key) 0.052 µJ/B

SHA-512 Message Digest 0.089 µJ/B

SHA-512 HMAC (128-Byte Key) 0.122 µJ/B

TABLE II
ENERGY CONSUMPTION OF ELLIPTIC CURVE CRYPTOGRAPHY

ALGORITHMS – EXPERIMENTAL RESULTS ON ARM CORTEX-M0+

Cryptographic Computation Energy
P-256 ECDHE 33.06 mJ/Op

P-256 ECDSA-Sign 12.36 mJ/Op

P-256 ECDSA-Verify 34.02 mJ/Op

P-384 ECDHE 69.26 mJ/Op

P-384 ECDSA-Sign 25.43 mJ/Op

P-384 ECDSA-Verify 70.42 mJ/Op

P-521 ECDHE 143.92 mJ/Op

P-521 ECDSA-Sign 52.08 mJ/Op

P-521 ECDSA-Verify 145.49 mJ/Op

to acknowledge the receipt of this final set of messages with
an Ack message. This ends the handshake, and the two parties
can now exchange ApplicationData encrypted under a new set
of keys derived from the handshake parameters.

III. DTLS OVER BLE - ENERGY MODELS & CASE STUDY

In order to analyze the energy costs of DTLS and make
necessary optimizations, it is important to have accurate energy
models for the cryptographic computations and RF communi-
cations. In this section, we discuss the energy models used to
motivate eeDTLS, along with a comprehensive analysis of the
energy consumption of DTLS 1.3 handshake and application
data for some typical IoT use cases.

A. Software Profiling of Cryptographic Algorithms

DTLS owes its security to cryptographic algorithms of
varying complexity, such as symmetric key encryption, hash-
ing, public key authentication and key exchange. However,
they also add to the computation cost of DTLS, which is a
serious concern for resource-constrained embedded devices
that constitute the IoT. To accurately profile the energy re-
quirements of these cryptographic primitives, we implemented
them in software on the NXP FRDM-KL25Z evaluation board,
which contains an ultra-low-power 90nm ARM Cortex-M0+
micro-processor running at 48 MHz [8]. The software was
implemented as bare-metal C code using the open-source
cryptographic libraries from ARM mbedTLS [9]. Total energy



consumption of the processor core and memory is reported
(Tables I and II).

Table I shows our experimental results for symmetric
cryptography algorithms – AES (Advanced Encryption Stan-
dard) [10] and SHA-2 (Secure Hash Algorithm) [11]. We
implemented AES-GCM (Galois Counter Mode) with 12-byte
initialization vector (IV) and 13-byte additional authenticated
data (AAD). For SHA-2, we implemented both Message
Digest (MD) and Hash-Based Message Authentication Code
(HMAC). Energy consumption is reported per byte of input
message. Table II shows experimental results for ECDHE
(Elliptic Curve Diffie-Hellman Key Exchange) and ECDSA
(Elliptic Curve Digital Signature Algorithm) [12]. Energy
consumption is reported per operation for ECDHE, ECDSA-
Sign and ECDSA-Verify. The NIST standard prime curves P-
256, P-384 and P-521 were used for this analysis. Windowing
methods, with window size W = 3, were used for faster ellip-
tic curve operations, along with efficient modular arithmetic
owing to the special structure of the NIST primes. Larger
window sizes could not be used due to memory constraints
of the processor. Clearly, the elliptic curve cryptography
(ECC) algorithms are significantly more expensive compared
to AES and SHA, and will contribute to majority of DTLS
computation costs, as will be discussed later.

Fig. 2. Bluetooth Low Energy 4.2 data packet structure (all sizes in bytes).

B. Energy Model for BLE

BLE is the low-energy version of Bluetooth [13] that
operates at 1 Mbps data rate, and employs adaptive frequency
hopping spread-spectrum to communicate over the unlicensed
2.4 GHz ISM band. Energy consumption of BLE is much
lower than other RF protocols like IEEE 802.15.4 [14], thus
making it the popular choice for IoT applications. Fig. 2 shows
a standard BLE 4.2 data packet. The 4 byte access address is
the physical address of the slave device. The PDU (Physical
Data Unit) header contains control flags and the payload
size (in bytes), while the L2CAP (Logical Link Control and
Adaptation Protocol) header contains information about packet
fragmentation. The payload can be up to 251 bytes long, and
its integrity is protected by a 3-byte CRC (Cyclic Redundancy
Check).

BLE networks, called piconets, are comprised of multiple
slave devices connected to a master device which coordinates
all the communications, that is, a piconet is inherently in star
topology. Slave devices are in sleep for most of the time,
except for periodic connection events when the slave wakes
up to communicate with the master. Connection events always
start with a packet being sent by the master, and the slave has
to wait for 150 µs, called Inter-Frame Space (IFS), before
transmitting data. Table III shows the energy consumed by
the TI CC2540 BLE transceiver [15], [14] during different

phases of a connection event, when it has to transmit data to
the master. The energy spent by a BLE 4.2 slave device during
transmission (ET ) and reception (ER) of data can be modeled
using the following equations [14]:

ET = EWUP + nlHDRERX + (2n− 1)EIFS+

(nlHDR + lP )ETX + ESLP

ER = EWUP + (nlHDR + lP )ERX+

(2n− 1)EIFS + nlHDRETX + ESLP

where lHDR (= 14 bytes) is the total size of BLE header
and trailer structures, lP is the total payload being transmitted
/ received, and n is the number of fragments the payload gets
divided into.

TABLE III
ENERGY CONSUMPTION OF BLE TRANSCEIVER DURING DIFFERENT

PHASES OF CONNECTION EVENT [14]

Phase Energy
Wake-Up and Pre-Processing EWUP = 15 µJ

Receive (RX) ERX = 0.528 µJ/B

Inter-Frame Space (IFS) EIFS = 6.75 µJ

Transmit (TX) ETX = 0.672 µJ/B

Post-Processing and Sleep ESLP = 33.6 µJ

C. DTLS over BLE

Using these models, we can now accurately analyze the
energy consumption of a duty-cycled BLE sensor node com-
municating with a cloud server using a DTLS-protected secure
channel. Although absolute values of RF energy consump-
tion may vary among different commercial transceivers, this
analysis is sufficient to predict the energy trends is typical
IoT applications. As case study, we consider a DTLS 1.3
connection with the following parameters:

• The negotiated cipher suite is TLS ECDHE
ECDSA WITH AES 128 GCM SHA256, and the
elliptic curve used for ECDHE and ECDSA is P-256.
These primitives guarantee a security level of 128 bits.

• Only end-point certificates, signed using P-384 ECDSA
by a trusted certification authority (CA), are exchanged
during handshake (assuming the CA public key is known
to both parties).

Fig. 3 shows the structure of a DTLS-protected BLE packet
with encrypted application data. Since the total BLE 4.2
payload size is restricted to 251 bytes, maximum size of
the encrypted data in a single packet is 174 bytes. Larger

Fig. 3. Structure of DTLS-protected BLE packet with additional headers
contributed by IPv6, UDP and DTLS (all sizes in bytes). The encrypted
application data can be up to 174 bytes long, and message authentication
is provided by the AES-GCM tag.



TABLE IV
ENERGY COSTS OF DTLS 1.3 – COMPUTATIONS AND COMMUNICATIONS

Protocol Phase Payload Energy (µJ) Cryptographic Computation Details
(Bytes) Compute RF

ClientHello (T) 180 16528 305.4 0.5 × P-256 ECDHE

HelloRetryRequest (R) 50 - 130.8 -

ClientHello + Cookie (T) 210 - 325.6 -

ServerHello (R) 130 - 173.0 -

Handshake Traffic - 16565.8 - 0.5 × P-256 ECDHE + 1 × SHA-256-MD (570 Bytes) +
Key Generation 8 × SHA-256-HMAC (32 Bytes each)

EncryptedExtensions + 50 6.2 139.2 1 × AES-128-GCM-Auth-Decrypt (50 Bytes)
CertificateRequest (R)

Server Certificate (R) 600 70497.4 642.5 1 × AES-128-GCM-Auth-Decrypt (600 Bytes) +
1 × P-384-ECDSA-Verify

Server CertificateVerify + 130 34093.4 181.5 1 × AES-128-GCM-Auth-Decrypt (130 Bytes) +
Server Finished (R) 1 × P-256-ECDSA-Verify + 1 × SHA-256-MD (1300 Bytes) +

2 × SHA-256-HMAC (32 Bytes each)

Client Certificate (T) 600 72.6 773.2 1 × AES-128-GCM-Auth-Encrypt (600 Bytes)

Client CertificateVerify + 130 12465.4 211.2 1 × AES-128-GCM-Auth-Encrypt (130 Bytes) +
Client Finished (T) 1 × P-256-ECDSA-Sign + 1 × SHA-256-MD (2030 Bytes) +

2 × SHA-256-HMAC (32 Bytes each)

Server Ack (R) 20 2.48 123.4 1 × AES-128-GCM-Auth-Decrypt (20 Bytes)

Application Traffic - 69.7 - 1 × SHA-256-MD (1350 Bytes) +
Key Generation 7 × SHA-256-HMAC (32 Bytes each)

Total Handshake Energy (µJ): 150.3× 103 3.00× 103

ApplicationData (T) 32 3.9 145.4 1 × AES-128-GCM-Auth-Encrypt (32 Bytes)

application data get fragmented into n = dlP /174e packets,
where lP is the total number of bytes to be transmitted. An
un-encrypted packet has very similar structure, except for the
absence of the 16-byte AES-GCM tag, that is, n = dlP /190e.

Table IV provides a detailed analysis of the energy spent
by a DTLS 1.3 client device in cryptographic computations
and RF communications, both during the handshake and the
application data phases. Typical sizes of DTLS handshake
messages are provided (rounded to the nearest ten bytes),
along with the computations required to generate them [5]. (T)
and (R) indicate whether packets are transmitted or received

Fig. 4. Percentage of total computation energy spent in DTLS handshake,
for application data rates of 32 bytes per hour, per 30 minutes, and per 10
minutes. Session durations vary from 1 day to 365 days.

respectively. We have assumed that the client periodically
transmits 32 bytes of data in the ApplicationData phase, that is,
after the handshake is completed. Average energy consumption
of DTLS handshake computations, on the FRDM-KL25Z
running the mbedTLS stack [9], was measured to be 157 mJ,
which is close to our estimate in Table IV.

As conjectured earlier, the handshake computations are
largely due to the infrequent, but expensive, ECC operations.
Fig. 4 shows the fraction of total computation energy that is
spent in performing the handshake. With a typical data rate
of 32 bytes per hour, the handshake accounts for 82% of the
total computation energy in case of year-long sessions, and
99% for week-long sessions. This percentage becomes lower
for faster data rates, e.g., 32 bytes per 10 minutes, which may
apply to applications with real-time data requirements.

In order to analyze how much the RF transceiver contributes
to the total energy consumption, we consider two prototypical
scenarios – (a) session duration = 1 year (365 days), and
(b) session duration = 1 week (7 days), both at the same
data rate of 32 bytes per hour, so that 8760 packets are
sent in (a), and 168 packets in (b). Session durations are
typically determined by how often the DTLS authentication
handshake is performed, which in turn depends on the security
requirements of the IoT application. Fig. 5 shows the energy
breakdown for these two use cases. “Application Data RF”
accounts for 87% of the total energy in (a), while “Handshake
Compute” accounts for 84% of the total energy in (b). For



both use cases, “Application Data Compute” and “Handshake
RF” consume relatively negligible energy. Therefore, we need
to reduce the energy costs of both “Application Data RF” and
“Handshake Compute” in order to minimize overall energy
consumption.

Fig. 5. Energy breakdown of DTLS session computations and communica-
tions, for session durations of (a) 1 year and (b) 1 week, with data rate of 32
bytes per hour.

IV. ENERGY-EFFICIENT DTLS
From the results discussed in the previous section, we

realize that different IoT applications will require different op-
timizations to achieve energy-efficiency. We follow a two-step
approach to optimize the protocol, which we call “eeDTLS” –
packet optimizations to reduce “Application Data RF” energy,
and handshake optimizations to reduce “Handshake Compute”
energy.

A. Packet Optimizations

The only way to reduce energy consumption of the RF
transceiver, without modifying its circuitry or physical layer
protocols, is to have smaller packets. We propose to optimize
the following components of the packet structure:

• 48-byte UDP and IPv6 headers
• 13-byte DTLS header
• 16-byte AES-GCM tag

BLE headers are left untouched because we want eeDTLS
to be easily portable over different physical and link layer
protocols.

Fig. 6. IoT network architecture, with sensor nodes (SN) and a gateway, for
UDP/IPv6 packet optimizations. The gateway maintains a mapping table and
stored connection context, which it uses to fill in UDP/IPv6 headers before
sending data to the cloud.

Header compression schemes have been proposed in [16],
which can reduce the sizes of UDP and IPv6 headers. In this
work, we exploit some properties of the network architecture
to completely eliminate these headers. We assume that all

sensor nodes are connected to a gateway device in star
topology, which is the default architecture for BLE (Fig. 6).
The gateway maintains an address translation table that maps
BLE physical addresses of the client nodes into corresponding
UDP ports. This table is used to translate BLE packets into
valid UDP/IPv6 packets that can be sent through existing IP-
based cloud infrastructure, and vice-versa.

Fig. 7. (top) Standard 13-byte DTLS header (all sizes in bytes), and (bottom)
Optimized 3-byte eeDTLS header.

Next, we propose to reduce the 13-byte DTLS record header
to a fixed size of 3 bytes (Fig. 7), unlike the variable-size
header compression proposed in [17]. “Protocol Version” is
constant, and “Length” can be inferred from the physical layer
(PDU) header, so these fields are omitted. We use 2 bits
for “Content Type”, which has three possible values; and 3
bits for “Epoch”, which can vary from 0 to 5 (when non-
forward-secret key updates are not allowed). The number of
bits assigned to the sequence number is dictated by our final
optimization – truncated AES-GCM tags. According to [18],
AES-GCM tags can be truncated to 32 bits, provided the same
encryption key is not used for more than 215 packets, each
up to 256 bytes in length. This sets the upper limit for the
DTLS sequence number to 215 − 1, that is, 15 bits. Since the
header size must be a multiple of 8 bits, the upper 4 bits are
set to 0xF, which indicates that eeDTLS is being used. The
complete 13-byte record header is used as AAD for AES-
GCM, therefore security is preserved. Using truncated tags
mandates performing a handshake after every 215 transmitted
packets, but this number is large enough for typical IoT
applications.

Fig. 8. Optimized eeDTLS packet over BLE, with 91% reduction in protocol
overheads (all sizes in bytes).

Fig. 8 shows the optimized eeDTLS packet. Protocol over-
heads have been reduced by 91%, from 77 bytes to 7 bytes. By
pushing the protocol overheads to their lower limit, we have
also increased the maximum encrypted data size to 244 bytes,
which further improves energy efficiency by allowing the
client node to buffer sensor data, and reduces fragmentation of
packets (n = dlP /244e for eeDTLS). “Application Data RF”
energy is reduced by 33%, which is smaller than the reduction
in number of bytes. This is due to the energy consumed by
the duty-cycled RF transceiver to wake up and power down.



B. Handshake Optimizations

ECDSA certificates constitute a bulk of the handshake
energy consumption. In energy-constrained IoT applications,
it is fair to assume that the client and the server can cache each
other’s public keys to authenticate the key exchange, for which
we use two seldom-used TLS extensions – “Client Certificate
URL” [19] and “Cached Information” [20]. This not only
reduces the Certificate messages to few tens of bytes, but also
eliminates the need to verify CA signatures in the certificates,
which is particularly helpful because CA signatures use higher
security levels. In our case study, the optimized handshake has
47% lower energy consumption.

C. Analysis of eeDTLS

Fig. 9 summarizes the energy benefits of eeDTLS for our
two test scenarios. For case (a) with 1 year session, packet
optimizations provide 28% energy reduction, and handshake
optimizations provide an additional 7%. For case (b) with
1 week session, packet optimizations provide only 4% en-
ergy reduction, while handshake optimizations provide 42%.
Therefore, packet optimizations provide energy benefits for
use cases with less frequent handshakes (a), while handshake
optimizations help with applications where handshakes need to
be performed more frequently (b). Overall, eeDTLS provides
33% and 45% energy reduction respectively for (a) and (b).

Fig. 9. Energy benefits of eeDTLS, for session durations of (a) 1 year and
(b) 1 week, with data rate of 32 bytes per hour.

V. CONCLUSION AND FUTURE WORK

In this work, we have described energy models for cryp-
tographic computations and RF communications in a DTLS-
secured IoT device, and used them to analyze the energy
costs of DTLS 1.3 over BLE 4.2. Based on this analysis,
we have presented eeDTLS, an optimized low-energy variant
of the DTLS protocol that retains its strong security and
authentication properties. Our optimizations can provide up
to 33% reduction in energy for long DTLS sessions, and up
to 45% reduction for short sessions. Although BLE has been
used for our case study, these optimizations can be seamlessly

ported to any other RF protocol, e.g., IEEE 802.15.4, etc.
Also, our energy models can be used to analyze custom IoT
security protocols, and determine appropriate optimizations.
Since “Handshake Compute” is a significant portion of the en-
ergy consumption, this also motivates the design of dedicated
energy-efficient hardware for the cryptographic operations in
DTLS, especially public-key algorithms like ECC.

ACKNOWLEDGMENT

The authors would like to thank Joshua Nekl from Analog
Devices Inc. for useful discussions. The authors acknowledge
financial support from the Irwin and Joan Jacobs MIT Presi-
dential Fellowship, the Qualcomm Innovation Fellowship and
Analog Devices Inc.

REFERENCES

[1] IOActive Press Release, “Less Than 10% of Internet of Things (IoT)
Products Have Adequate Security According to Practitioner Survey,”
June 2016. [Online]. Available: http://www.ioactive.com/news-events/iot-
products-have-inadequate-security-according-to-practitioner-survey.html

[2] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” IETF RFC, vol. 5246, August 2008.

[3] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” IETF RFC, vol. 6347, January 2012.

[4] S. L. Keoh, S. S. Kumar and H. Tschofenig, “Securing the Internet
of Things: A Standardization Perspective,” in IEEE Internet of Things
Journal, vol. 1, no. 3, pp. 265-275, June 2014.

[5] E. Rescorla, “The Transport Layer Security (TLS) Protocol Ver-
sion 1.3,” IETF Internet-Draft, March 2017. [Online]. Available:
https://tlswg.github.io/tls13-spec/

[6] E. Rescorla and H. Tschofenig, “The Datagram Transport Layer Secu-
rity (DTLS) Protocol Version 1.3,” IETF Internet-Draft, October 2016.
[Online]. Available: https://tools.ietf.org/html/draft-rescorla-tls-dtls13-00

[7] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644-654, Novem-
ber 1976.

[8] NXP Semiconductors, “Kinetis KL25 Sub-Family: 48 MHz Cortex-M0+
Based Microcontroller with USB,” Data Sheet, Rev. 5, August 2014.

[9] ARM Holdings, ARM mbedTLS. [Online]. Available: https://tls.mbed.org
[10] NIST, “Advanced Encryption Standard (AES),” NIST Technical Report,

FIPS PUB 197, November 2001.
[11] NIST, “Secure Hash Standard (SHS),” NIST Technical Report, FIPS PUB

180-4, March 2012.
[12] Certicom Research, “SEC 1: Elliptic Curve Cryptography,” Standards

for Efficient Cryptography, Version 2.0, May 2009.
[13] Bluetooth SIG, “Bluetooth Specification 4.2.” [Online]. Available:

https://www.bluetooth.com/specifications/bluetooth-core-specification
[14] M. Siekkinen, M. Hiienkari, J. K. Nurminen and J. Nieminen, “How

Low Energy is Bluetooth Low Energy? Comparative Measurements
with ZigBee/802.15.4,” IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), pp. 232-237, April 2012.

[15] Texas Instruments Inc., “CC2540: 2.4GHz Bluetooth Low Energy
System-on-Chip,” Data Sheet, June 2013.

[16] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby and
C. Gomez, “IPv6 over BLUETOOTH (R) Low Energy,” IETF RFC, vol.
7668, October 2015.

[17] S. Raza, D. Trabalza and T. Voigt, “6LoWPAN Compressed DTLS
for CoAP,” IEEE International Conference on Distributed Computing in
Sensor Systems, pp. 287-289, May 2012.

[18] NIST, “Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC,” NIST Special Publication, vol.
800-38D, November 2007.

[19] D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension
Definitions,” IETF RFC, vol. 6066, January 2011.

[20] S. Santesson and H. Tschofenig, “Transport Layer Security (TLS)
Cached Information Extension,” IETF RFC, vol. 7924, July 2016.


