
MIT Open Access Articles

Conv-RAM: An Energy-efficient SRAM with
Embedded Convolution Computation for Low-

power CNN based Machine Learning Applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Biswas, Avishek and Anantha P. Chandrakasan. "Conv-RAM: An Energy-efficient
SRAM with Embedded Convolution Computation for Low-power CNN based Machine Learning
Applications." 2018 IEEE International Solid-State Circuits Conference (ISSCC), February 2018,
San Francisco, California, USA, Institute of Electrical and Electronics Engineers (IEEE) March
2018 © 2018 IEEE

As Published: http://dx.doi.org/10.1109/ISSCC.2018.8310397

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/122467

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/122467
http://creativecommons.org/licenses/by-nc-sa/4.0/

Conv-RAM: An Energy-efficient SRAM with Embedded Convolution Computation for Low-power CNN based

Machine Learning Applications

Avishek Biswas, Anantha P. Chandrakasan

Massachusetts Institute of Technology, Cambridge, MA

Convolutional Neural Networks (CNN) provide state-of-the-art results in a wide variety of machine learning

(ML) applications, ranging from image classification to speech recognition. However, they are highly

computation-intensive and require huge amounts of storage. Recent works have strived towards reducing the

size of the CNNs, eg. [1] proposed a binary-weight-network (BWN), where the filter weights (wi’s) are +1/-1

(with a common scaling factor per filter: ‘α’). This leads to a significant reduction in the amount of storage

required for the wi’s, making it possible to store them entirely on-chip. However, in a conventional all-digital

implementation [2-3], reading the wi’s from the on-chip SRAMs leads to a lot of data movement per

computation and hence, makes them energy-hungry. To reduce data-movement, and subsequently energy,

we propose an SRAM-embedded convolution computation architecture (Fig. 1), which does not require

reading the wi’s explicitly from the memory. To the best of our knowledge, this is the first work to demonstrate

on silicon SRAM-based convolutions for CNNs. Prior works on embedded ML classifiers have focused on 1b

outputs [4] or small number of output classes [5], both of which are not sufficient for CNNs. In this work we

use 7b for inputs/outputs, which was found to be sufficient to maintain a good accuracy for most of the popular

CNNs [1]. The convolution operation is implemented as voltage-averaging (Fig. 1), due to the wi’s being binary

and the averaging factor (1/N) implementing the weight-coefficient ‘α’ (with a new scaling factor, M :

implemented off-chip).

Fig. 2 shows the overall architecture of the 256x64 conv-SRAM (CSRAM) array. It is divided into 16 local

arrays, each with 16 rows to reduce the area overhead of the ADCs and the local analog multiply-and-average

(MAVa) circuits. Each local array is meant to store the binary weights, in the 10T bitcells (w i’s: ‘0’ for +1, ‘1’

for -1), for each individual 3-D filter in a conv-layer. Hence, each local array has a dedicated ADC to compute

its partial convolution outputs (YOUT). The input-feature-map values (XIN) are fed into column-wise DACs

(GBL_DAC), which pre-charge the global read bit-lines (GRBL) and the local bit-lines (LBL) to an analog

voltage (Va) proportional to the digital X IN code. The GRBLs are shared by all the local arrays, implementing

the fact that in CNNs each input is shared/processed in parallel by multiple filte rs. Fig. 3 shows the schematic

of the proposed GBL_DAC circuit. It consists of a cascode PMOS stack biased in the saturation reg ion to act

as a constant current source. The GRBL is charged with this current for a time T ON, directly proportional to

the XIN code. To have a better linearity of TON vs XIN, there should be only 1 ON pulse for every code to avoid

multiple charging phases. This is not possible to generate using signals with simple binary weighted pulse-

widths. To address this issue, we propose an implementation in which the 3 MSBs of XIN are used to select

the ON pulse-width for the first half (TD56 = ‘1’) and the 3 LSBs for the second half (TD56 = ‘0’). An 8-to-1 mux

with 8 timing signals is shared during both the phases, to reduce the area overhead and the number of timing

signals to route. In this way we could generate a single ON pulse for each X IN code, as shown for codes 63

and 24 in Fig. 3. This DAC architecture performs better than binary-weighted PMOS charging DACs [4] in

terms of mismatch and linearity. This is because the same PMOS stack is used to charge the GRBL for all

input codes. And the pulse-widths of the timing signals typically have less variations compared to those arising

from PMOS VT mismatch.

After the DAC pre-charge phase, the w i’s in a local array are locally evaluated by turning on a RWL, as shown

in Fig. 4. Next, the appropriate local bit-lines are shorted together horizontally to evaluate the average. This

is implemented by the local MAVa circuit, which passes the voltages of the LBLT and LBLF to the positive

(VpAVG) and negative (VnAVG) voltage rails, depending on the sign of the input X IN (ENP is ON for XIN >0, ENN

is ON for XIN <0). The difference of VpAVG and VnAVG voltages is fed to a charge-sharing based ADC

(CSH_ADC) to get the digital value of the computation (YOUT). As seen from the histogram in Fig. 1, algorithm

simulations showed that YOUT has a peak around 0 and is typically limited to +/- 7 (for a full scale of +/- 31).

Hence, a serial integrating ADC architecture is more apt in this scenario, compared to other area -intensive

(e.g. SAR) and more power-hungry ones (e.g. flash). A PMOS-input sense-amplifier (SA) is used to compare

VpAVG and VnAVG, and its output is fed to the ADC logic block. After the first comparison, which determines

the sign of YOUT, capacitive charge-sharing is used to integrate the lower of the 2 voltage rails with a reference

local column that replicates the local bit-line capacitance. This is continued until the voltage of the integrating

rail exceeds the other one, at which point the SA output flips. This triggers the end of conversion and no

further SA_EN pulses are generated for the SA. Fig. 4 shows the waveforms for a typical cycle of operation.

To reduce the effect of the SA offset voltage on the YOUT value, a mux has been used at the input of the SA

to flip the inputs in alternate cycles.

The 256x64 CSRAM array was implemented in a 65nm LP CMOS process. Fig. 5 shows the measurement

results for the GBL_DAC, which is used in the 5b mode by setting the LSB of X IN to ‘0’. To estimate the DAC

analog output voltage (Va), VGRBL for the 64 columns are compared to an external V ref voltage by column-wise

SA’s, used in the SRAM global read circuit. For each XIN, the Vref at which more than 50% of the SA outputs

flip is chosen as an average estimate of Va. An initial one-time calibration is needed to set Va = 1V for XIN =

31 (max. input code). As seen from Fig. 5, there is a good linearity in the DAC transfer function with DNL <

1LSB. Fig. 5 also shows the overall transfer function of the system consisting of the GBL_DAC, MAV a and

CSH_ADC circuits. For this experiment, all X IN’s are fed the same code, all wi’s are written the same value

and then the YOUT outputs are observed. The measurement results show good linearity in the overall transfer

function and low variation in the YOUT values, which is due to the fact that the variation in BL capacitance

(used for averaging and CSH_ADC) is much lower than transistor VT variation. The offset cancelation

technique further helps in reducing YOUT variation. It can be also seen from Fig. 5 that the energy/ADC scales

linearly with the output code, which is expected for the integrating ADC topology.

To demonstrate the functionality for a real CNN architecture, the MNIST hand-written digit recognition dataset

is used with the LeNet-5 CNN. 100 test images are run through the first two computation-intensive

convolutional layers (C1, C3). We achieve a classification accuracy of 99%, which shows the robustness of

the CSRAM architecture to compute convolutions. The distributions of YOUT in Fig. 6, show that both layers

has a mean ~1LSB, which justifies the use of the serial ADC topology. Fig. 6 also shows the overall energy

of computation along with the different components. Layers C1 and C3 consume 4.23pJ and 3.56pJ per

convolution, computing 25 and 50 MAV operations in each cycle respectively. Layer C3 achieves the best

energy efficiency of 28.1 TOPS/W compared to 11.8 for layer C1, since C1 uses only 6 of the 16 local arrays.

Compared to prior works, we achieve >16x improvement in energy-efficiency, and >60x higher FOM (Fig. 6)

due to massively parallel in-memory analog computations. This demonstrates that the proposed SRAM-

embedded architecture is capable of highly energy-efficient convolution computation that could enable low

power ubiquitous ML applications for a smart Internet-of-Everything.

[Placeholder for Acknowledgements]

References:

[1] M. Rastegari, et al., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks”,

arXiv:1603.05279, 2016.

[2] J. Sim, et al., “A 1.42TOPS/W Deep Convolutional Neural Network Recognition Processor for Intelligent IoE

Systems”, ISSCC 2016, pp 264-265.

[3] B. Moons et al., “A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets”, VLSI

Circuits 2016, pp. 1-2.

[4] J. Zhang, et al., “A machine-learning classifier implemented in a standard 6T SRAM array”, VLSI Circuits 2016,

pp. 1-2.

[5] M. Kang, et al, “A 481pJ/decision 3.4M decision/s Multifunctional Deep In-memory Inference Processor using

Standard 6T SRAM Array”, arXiv:1610.07501, 2016.

Fig. 1: Concept of embedded convolution computation as averaging in SRAMs for binary-weight convolutional neural
networks.

Fig. 2: Overall architecture of the Conv-SRAM (CSRAM) showing local arrays, column-wise DACs and row-wise
ADCs to implement convolution as weighted averaging.

Fig. 3: Schematic and timing diagram for the column-wise GBL_DAC circuit.

Fig. 4: Architecture for the row-wise multiply-and-average, CSH_ADC circuits and operation waveforms for
convolution computation.

Fig. 5: Measured performance of the GBL_DAC and CSH_ADC circuits in the CSRAM array and the effect of the
offset cancelation technique.

Fig. 6: Measurement results (energy and output distribution) for the first 2 conv-layers of the LeNet-5 CNN for MNIST
dataset; comparison with prior works.

Fig. 7: Die micro-photograph and test-chip summary.

