
MIT Open Access Articles

CONV-SRAM: An Energy-Efficient SRAM With
In-Memory Dot-Product Computation for

Low-Power Convolutional Neural Networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Biswas, Avishek and Anantha P. Chandrakasan. "CONV-SRAM: An Energy-Efficient
SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural
Networks." IEEE Journal of Solid-State Circuits 54, 1 (January 2019): 217 - 230 © 2018 IEEE

As Published: http://dx.doi.org/10.1109/jssc.2018.2880918

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/122468

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/122468
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

Conv-SRAM: An Energy-Efficient SRAM with
In-Memory Dot-product Computation for

Low-Power Convolutional Neural Networks
Avishek Biswas, Member, IEEE, and Anantha P. Chandrakasan, Fellow, IEEE

Abstract—This work presents an energy-efficient SRAM with
embedded dot-product computation capability, for binary-weight
convolutional neural networks. A 10T bit-cell based SRAM array
is used to store the 1-b filter weights. The array implements dot-
product as a weighted average of the bit-line voltages, which
are proportional to the digital input values. Local integrating
ADCs compute the digital convolution outputs, corresponding
to each filter. We have successfully demonstrated functionality
(> 98% accuracy) with the 10,000 test images in the MNIST
hand-written digit recognition dataset, using 6-b inputs/outputs.
Compared to conventional full-digital implementations using
small bit-widths, we achieve similar or better energy-efficiency,
by reducing data transfer, due to the highly parallel in-memory
analog computations.

Index Terms—in-memory computation, dot-product, energy-
efficient SRAM, machine learning, edge-computing, analog com-
puting, convolutional neural networks, binary weights

I. INTRODUCTION

ARTIFICIAL intelligence (AI) and machine learning (ML)
are changing the way we interact with the world around

us. Speech recognition [1] allows us to interact with “smart”
devices more naturally using our voices. Facial recognition
[2] enables using our faces to get access to devices in a
more intuitive manner, instead of traditional passcodes. As
we think about extending machine intelligence to more and
more devices around us, in the “Internet-of-Things” (IoT),
“edge-computing” i.e. computing on these edge devices vs. the
“cloud” becomes increasingly important. There are a multitude
of reasons for this. Firstly, “edge-computing” enables the
devices to make fast decisions locally, without having to
wait for the “cloud”. Secondly, it can significantly reduce the
communication traffic to the “cloud”, by only sending the criti-
cal/relevant information and filtering out the rest of the massive
amount of data the edge-devices may collect. Furthermore,
“edge-computing” helps in improving the security of the data
by keeping it local (within the devices), rather than having
to send sensitive information to the “cloud”. While “edge-
computing” promises significant benefits for IoT devices, it
also has certain requirements. The circuits to run the compute
algorithms must be very energy-efficient to extend the battery-
life of these IoT devices, most of which have a very limited
energy budget and would be “always-ON”. Additionally, in

A. Biswas is with Kilby Labs, Texas Instruments Incorporated, Dallas, TX
75243, USA (email: avishek.biswas@alum.mit.edu).

A. P. Chandrakasan is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139, USA.

many applications, the local decision-making has to be done
in real-time (e.g. self-driving cars), to make them practical.

Convolutional neural networks (CNN) provide state-of-the-
art results in a wide variety of AI/ ML applications, ranging
from image classification [3] to speech recognition [1]. How-
ever, they are highly computation-intensive and require huge
amounts of storage. Hence, they consume a lot of energy when
implemented in hardware and are not suitable for energy-
constrained applications e.g. “edge-computing”.

CONV
Layer

FC
Layer

Low-Level
Features

High-Level
FeaturesCONV

Layer

DOG
CAT

CAR
SHIP

Input
Classification

X Y
W

Feature Extraction

…

…

…

…

…

…

IFMP (X) OFMP (Y)Filter (W1*)
1

C
1*

M

1

CR

R
H

H

E

E

…

…

…

… …

IFMP (X) OFMP (Y)Filter (W2*)
1

C
1

M

1
CR

R R

R
1

1

2*

X Y
W

Fig. 1. Basics of a typical convolutional neural network (CNN) for a
classification problem, showing the structure for the CONV and FC layers
[4], [5].

CNNs typically consist of a cascade of convolutional
(CONV) and fully-connected (FC) layers (Fig. 1) [4], [5], with
some non-linear layers in between (not shown in the figure).
The CONV layers extract different features of the input and
the FC layers combine these features to finally assign the input
to one of the many pre-determined output classes. For each
of the CONV/FC layers, there is a set of 3-D filters (Wk),
which are applied on the 3-D input feature-map (IFMP) to
that layer and generate its 3-D output feature-map (OFMP).
Each 3-D filter/input consists of mutliple 2-D arrays, each of
which corresponds to a different “channel” (1 to C). When a
3-D filter (Wk) is applied on the input (X), an element-wise
multiplication is performed, followed by an addition of the
partial products to compute the convolution output (Yk). For
CONV layers the 3-D filter is applied on the shifted input to
compute the next element in the 2-D OFMP. Each individual
filter corresponds to a different channel in the 3-D OFMP.
Therefore, the fundamental operation for both the CONV and
FC layers can be simplified to a dot-product or a multiply-
and-accumulate (MAC) operation, as shown in equation (1).

2

Yx,y,k =

C∑
c=1

R∑
j=1

R∑
i=1

Wi,j,c,k ×Xx+i,y+j,c

1 ≤ (x+ i), (y + j) ≤ H,
1 ≤ x, y ≤ b(H −R)/Sc+ 1 (= E),

1 ≤ k ≤M

(1)

where H is the width/height of the IFMP (with padding),
E is the OFMP width/height (for a stride S), R is the filter
width/height, C is the number of IFMP/filter channels and M
is the number of filters/OFMP channels for a given CONV/FC
layer. The width and height of the feature-maps/filters are
assumed to be same for simplicity and also because it is very
common in most of the popular CNNs.

In general, CNNs use real-valued inputs and weights. How-
ever, in order to reduce their storage and compute complexity
recent works have strived towards using small bit-widths to
represent the input/filter-weight values. [6] proposed a binary-
weight-network (BWN), where the filter weights (wi’s) can
be trained to be +1/-1 (with a common scaling factor per
3-D filter: α). This leads to a significant reduction in the
amount of storage required for the wi’s, making it possible
to store them entirely on-chip. BWN’s also simplify the MAC
operation to an add/subtract operation, since α is common for
a given 3-D filter and it can be incorporated after finishing
the entire convolution computation for that filter. As shown
in [6], this algorithm does not compromise much on the
original classification accuracy of the CNN, obtained using
full precision weights. BWN performs better than binary-
connect [7], which does not incorporate the scaling factor of α
per filter, and also binarized-neural-networks [8], where both
weights and activations are constrained to ±1.

Memory

Compute

O
ut

pu
t

Huge amount of
data transfer

to/from
memory

Memory with
Embedded

Computation

Conventional all-digital
implementation

Proposed Memory-embedded
implementation

Buffer
Buffer

In
pu

t

O
ut

pu
ts

In
pu

t

No explicit data read

Much less
data

transfer

Fig. 2. Comparison of conventional approach vs. proposed approach of
memory-embedded convolution computation, for processing of CNNs.

In the conventional all-digital implementation of CNNs [4],
[5], [9], with the memory and the processing elements being
physically separate, reading the wi’s and the partial sums
from the on-chip SRAMs lead to a lot of data movement per
computation [10] and hence, make them energy-hungry. This
is because, in modern CMOS processes, the energy required to
access data from memory can be much higher than the energy
needed for a compute operation with that data [11]. To address
this problem, we present an SRAM-embedded convolution
computation architecture [12], conceptually shown in Fig. 2.

Embedding computation inside memory has two significant
benefits. Firstly, data transfer to/from the memory is greatly re-
duced, since the filter-weights are not explicitly read and only
the computed output is sent outside the memory. Secondly, we
can take advantage of the massively parallel nature of CNNs
to access multiple memory addresses simultaneously. This is
because we are only interested in the result of the computation
using the memory data and not the individual stored bits.
Therefore, a much higher memory bandwidth can be achieved
with this approach, overcoming some of the major limitations
posed by the conventional “von-Neumann bottleneck”.

This paper is organized as follows. Section II explains
the concept of memory-embedded convolution computation as
voltage averaging in SRAMs. Section III presents the overall
architecture. Section IV highlights the key contributions of this
work, compared to prior in-memory computing approaches.
Section V discusses the details of the different circuitry
involved in the embedded convolution computation. Section VI
presents the measurement results. Finally, concluding remarks
are discussed in section VII.

II. CONCEPT OF SRAM-EMBEDDED COMPUTATION

The basic operation involved in evaluating convolutions (Y)
for CNNs is the dot-product of the 3-D IFMP (X) and the
filter-weights (W), as shown in equation (1). It can be re-
written by flattening the 3-D tensor into a 1-D vector to obtain
equation (2), where the 2-D subscripts (x, y) have been omitted
for simplicity.

Yk =

R×R×C∑
i=1

Wk,i ×Xi (2)

Equation (2) can be further simplified for the case of binary
filter-weights (wi’s) to get equation (3a), where αk is the
common coefficient for the kth filter. If αk is expressed as
a ratio of two integers (Mk, N : number of elements added per
dot-product in 1 clock cycle), then we get equation (3b).

Yk = αk

R×R×C∑
i=1

wk,i ×Xi, wi ∈ (+1,−1) (3a)

=
Mk

N

R×R×C∑
i=1

wk,i ×Xi, Mk, N ∈ I+ (3b)

Now, if we separate out the scaling factor of Mk (which can
be incorporated after computing the entire dot-product), we get
the expression for the effective convolution output (YOUT) as:

YOUT,k =
1

N

R×R×C∑
i=1

wk,i ×XIN,i (4)

where XIN is the effective convolution input, i.e. scaled
version of the original input X , limited to 7-b (includes 1-b
sign). For energy-efficient computation with multi-bit values
inside the memory, equation (4) has to be implemented in the
analog domain, as shown in equation (5).

3

VY AV G,k =
1

N

R×R×C∑
i=1

wk,i × Va,i (5)

31.1: Conv-RAM: An Energy-Efficient SRAM with Embedded Convolution Computation for Low-Power CNN-Based Machine Learning Applications© 2018 IEEE
International Solid-State Circuits Conference 11 of 48

Binary-Weight CONV as Averaging in SRAMs

𝑌𝑂𝑈𝑇,𝑘 =
1

𝑁

𝑖

𝑤𝑘,𝑖 × 𝑋𝐼𝑁,𝑖

𝑉𝑌_𝐴𝑉𝐺,𝑘 =
1

𝑁

𝑖

𝑤𝑘,𝑖 × 𝑉𝑎,𝑖

DACADC 1

MAV2

3

MAV: Multiply-and-Average

YOUT: Convolution Output || w: Binary Filter Weight || XIN: Convolution Input

Digital Domain

Analog Domain

Fig. 3. Concept of embedded convolution computation as averaging in
SRAMs for binary-weight convolutional neural networks.

The equivalence of equations (4) and (5), conceptually
shown in Fig. 3, becomes apparent in 3 key steps. First,
the digital inputs (XIN ’s) are converted into analog voltages
(Va’s) using digital-to-analog converters (DAC). Then, the
analog voltages are multiplied by the corresponding 1-bit filter-
weights (wi’s), which are stored in a memory array. This is
followed by averaging over N terms to get the analog-averaged
convolution output voltage (VY AV G). These constitute the
second step: multiply-and-average (MAV). Finally, in the last
step, the analog-averaged voltage is converted back into the
digital domain (YOUT) using an analog-to-digital converter
(ADC), for further processing. It may be noted that if the 3-D
filter size (R×R×C) is greater than N, the above-mentioned
3-step process is repeated multiple (Nr) times using R×R×C ′
(≤ N) elements in each cycle, where Nr = C/C ′. The partial
outputs (from the ADC) can then be further added digitally
(outside the memory) to get the final convolution output.

III. OVERALL ARCHITECTURE

Fig. 4 shows the overall architecture of the 16 Kb Conv-
SRAM (CSRAM) array, consisting of 256 rows by 64 columns
of SRAM bit-cells. It is divided into 16 local arrays, each
with 16 rows. Each local array is meant to store the binary
filter-weights (wi’s) for a different 3-D filter in a CONV/FC
layer. wi is stored in a 10T SRAM bit-cell as either a digital
‘0’ or a digital ‘1’, depending on whether its value is +1
or −1 respectively. The 10T bit-cell consists of a regular 6T
bit-cell and 2 decoupled read-ports. Each local array has its
analog averaging circuits (MAVa’s) and a dedicated ADC to
compute the partial convolution outputs (YOUT ’s). Sharing
these circuits for 16 rows in a local array reduces the area
overhead. The IFMP values (XIN ’s) are fed into column-wise
DACs, which convert the digital XIN codes to analog input
voltages on the global bit-lines (GRBL’s). The GRBL’s are
shared by all the local arrays, implementing the fact that in
CNNs each input is shared/processed in parallel by multiple
filters. With this architecture, the 16 Kb CSRAM array can
process a maximum of 64 convolution inputs and compute 16
convolution outputs in parallel.

Fig. 5(a) shows the simulated test error-rates for the MNIST
dataset with the LeNet-5 CNN, consisting of 2 CONV layers

Local SRAM Array #0

1-bit filter weights

Local Analog Averaging

….…. w0 w63

Local SRAM Array #15

Local Analog Averaging

YOUT,0

YOUT,15

DAC

XIN,0

7

7

7

DAC

XIN,63
7

GRBL0 GRBL63

Convolution Inputs

Convolution O
utputs

Fi
lte

r #
0

Fi
lte

r #
15

ADC

ADC

Fig. 4. Overall architecture of the Conv-SRAM (CSRAM) showing local
arrays, column-wise DACs and row-wise ADCs to implement convolution as
weighted averaging.

(C1, C3) and 2 FC layers (F5, F6). The number of bits
to represent the IFMP/OFMP values are varied from 8 to
4. Lower bit-width helps in reducing the area/power costs
of the DAC and ADC circuits involved for the convolution
computations. However, as seen from Fig. 5(a), the error rate
starts to increase steeply for <7-b. Hence, 7-b is chosen
as the target bit-width for the DAC/ADC circuits. With 7-b
(including the sign bit) the voltage resolution needed on a 1
V scale is 1 LSB = 1/26 ≈ 15.6 mV. Next, the effect of the
averaging factor (‘N ’) on the test error-rate is observed. A high
value of ‘N ’ would decrease the area/power overhead of the
ADC by amortizing it over more MAV operations per clock-
cycle. However, higher ‘N ’ can also degrade the computation
accuracy due to increased quantization by averaging. This is
more crticial for CNN layers with smaller filter sizes. As
shown in Fig. 5(b) for layer F6, with a 3-D filter size of 120,
the error-rate steeply increases as ‘N ’ is varied from 15 to
120. For the other 3 layers of LeNet-5, the 2-D filter size is
5 × 5. Hence, a minimum N = 25 is required to fit at-least
one full filter channel per CSRAM row. We chose N = 64 to
fit 2 channels for 5×5 filters, without sacrificing much on the
error rate.

0
2
4
6
8
10
12
14
16

0

2

4

6

8

10

4 5 6 7 8

DA
C/
AD

C
Co

st
 (n

or
m
al
ize

d)

Te
st
 E
rr
or
 R
at
e
(%

)

No. of bits for IFMP/OFMP

0

2

4

6

8

10

12

0

1

2

3

4

5

6

10 30 50 70 90 110 130 150

AD
C
Co

st
 (n

or
m
al
ize

d)

Te
st
 E
rr
or
 R
at
e
(%

)

Averaging factor (N)

F6 F5 C3

(a) (b)

Fig. 5. Simulated results for the MNIST dataset with the LeNet-5 CNN by
varying: (a) bit-width to represent IFMP/OFMP values, (b) averaging factor
(N).

The number of rows (Nrows) per local array in the CSRAM

4

determines the unit capacitance (CLBL), which is used for all
the analog operations required for the in-memory convolution
computation. For every column in a local array, there is a
corresponding MAVa circuit. Hence, a higher value of Nrows

would decrease the area-overhead of MAVa, by amortizing
it over multiple rows. It also reduces variation of the CLBL

value, which helps in improving accuracy of the computations.
However, a high value of Nrows means a high CLBL, which
translates to increased energy costs. It would also lead to less
throughput for a given SRAM size, since fewer outputs would
be computed per cycle. Therefore, Nrows = 16 is chosen as a
trade-off. It may be noted that with Nrows = 16, the thermal
noise (kTC) is < 1 mV, which is well below 1 LSB = 15.6 mV.

IV. KEY CONTRIBUTIONS OF THIS WORK

While there are a few different approaches [13]–[17] for
in/near-memory computing, the proposed architecture has
some key contributions, which provide significant benefits over
prior work. The first key feature of our approach is the robust-
ness to SRAM bit-cell Vt variations. SRAM bit-cells use near-
minimum transistor sizes available in a given CMOS process
and hence, suffer from transistor mismatch and variation. For
example, if we consider the discharge current (Icell) through
an SRAM bit-cell (shown in Fig. 6) we can observe that it
has a significant spread from its mean value (σ ≈ 30%µ).
Now, when Icell is used to modulate the analog voltage (Va)
on the bit-line [13]–[15], [17], there is a wide variation in
the Va value and it cannot be controlled very well. This
compromises the computation accuracy and extra algorithmic
techniques might be required to compensate for that. [13]
uses the ‘AdaBoost’ technique, in which the results of many
weak classifiers are combined to get a more accurate final
result. However, this would lead to an increase in the number
of computations and the energy required. [15] proposed an
on-chip training to compensate for chip-to-chip variations.
However, this would incur energy and timing penalty required
to re-train the network corresponding to every single chip. In
our approach (Fig. 6), the analog voltage (Va) is directly sent
to the bit-lines using global DACs at the periphery. Since the
global DACs can be upsized, with their area being amortized
over mutliple rows (256 in this case), the variation due to it is
significantly less compared to that of the bit-cell. Furthermore,
the SRAM bit-cell is only used to multiply Va by the 1-b filter
weight (wi) stored in it, using full signal swing locally. That
means, the purpose of the SRAM bit-cell is to discharge one
of its local bit-lines to 0, it is not used to control Va. Hence,
given enough time for the worst-case bit-cell discharge, the
computation accuracy does not suffer from local bit-cell Vt
variations.

The second key feature of our approach is the improvement
of the dynamic voltage range for the analog computations
without disturbing any bit-cell. In the conventional approach
(with 6T SRAM bit-cells) [13], [14], [17], where multiple
word-lines (WL) are activated for the same bit-line, there
might be a situation where one of the accessed bit-cells in
that column is in pseudo-write mode (Fig. 7). This is because
multiple activated bit-cells in that column can discharge a bit-
line to a very low voltage, which could overwrite the data

DAC

IN

GBL
a

10T

x16LB
LT

LB
LFRWL

a

DACIN

G
lo

ba
l C

ol
Lo

ca
l C

ol

6T

x16x128

G
BL

T

G
BL

F

dd

WL

dd a

G
lo

ba
l C

ol MAV

cell

RWL

cell

dd

Conventional Proposeda cell a cell

VDD = 1.2V
VWL = 0.6V
SS 25˚C

(a.u.)

µ ≈ 3.1 (a.u.)
σ ≈ 1.1 (a.u.)

Icell (a.u.)

Fig. 6. Comparison of the conventional and proposed approaches of using
SRAM bit-cells for embedded analog computations.

stored (Qk = ‘1’) in the disturbed bit-cell. Hence, the bit-
line voltage range has to be limited to prevent any write-
disturb. In our approach, 10T bitcells are used which de-couple
the read and the write ports, to prevent any write-disturb.
Furthermore, each bit-cell is read independently in parallel
without sharing any bit-lines. And hence, the discharge on
one bit-line cannot affect another accessed bit-cell. Thus, we
can utilize a wide voltage range (close to full-rail) for the
analog computations, without disturbing any bit-cell. It may
be noted that, although a 10T bit-cell has more transistors
than a 6T, it can be designed using smaller sized devices,
compared to a 6T bit-cell. This is because, unlike a 6T, a
10T bit-cell does not have conflicting sizing requirements to
achieve high margins for both read and write operations. In
addition, due to the limitations of 6T bit-cells for in-memory
analog computations, network augmentation, i.e. larger sized
neural networks, might be required to compensate for lower
computation accuracy. Larger neural networks translate to
increased storage requirement for filter-weights on-chip and
hence, increased SRAM size. Therefore, overall, our 10T bit-
cell based in-memory architecture is not necessarily higher
area than a 6T based design.

The third key feature of our work, which distinguishes it
from other “in-memory” computing approaches [14], [16], is
the use of the inherent bit-line capacitances in the SRAM
array to implement the computations. This precludes the need
for extra area-intensive capacitors, which would be otherwise
required at the SRAM periphery [14] to implement some of
the analog computations.

Finally, this work supports multi-bit resolution for the inputs
and outputs of the dot-products, compared to [13] (output: 1-b)
and [16], [17] (both input/output: 1-b). This helps in achieving
higher classification accuracy for a neural-network of a given
size.

All the key features, described above, make our proposed
architecture scalable i.e. multiple CSRAM arrays can operate
in parallel to run larger neural networks.

5

G
BL

T

G
BL

F

WL0

WL1

WLk

0 1

0 1

1 0

Conventional

Proposed

Write
Disturb

WL

0 1 1 00 1

LBLT0 LBLF0 LBLT1 LBLF1 LBLTk LBLFk

No Write Disturb

GBLT
GBLF

Vdd

Vdd

0

0

Qk

Qk

Data
Flip

1

1

1

1

a,0 a,1 a,k

a,T a,F

Va,T

Va,F

VWL

0

WLx

Fig. 7. Comparison of the conventional and proposed approaches on write-
disturb issue of SRAM bit-cells during compute mode.

V. CIRCUITS FOR THE 3-PHASE CONV-SRAM OPERATION

A. Phase-1: DAC

During the first phase of the Conv-SRAM (CSRAM) op-
eration the digital convolution input (XIN) is converted into
an analog voltage (Va) using a column-wise digital-to-analog
converter (GBL DAC). The analog voltage is used to pre-
charge the global read bit-line (GRBL) and the local bit-
lines (not shown in Fig. 4) in the SRAM array. Each GRBL
is shared by all the 16 local arrays and hence, they get the
same value of the analog pre-charge voltage. This implements
the fact that in a given CNN layer (CONV/FC) each input is
processed simultaneously by multiple filters. Furthermore, all
the 64 column-wise GBL DACs operate in parallel and can
send a maximum of 64 analog inputs to the CSRAM array in
one clock cycle.

Fig. 8 shows the schematic of the proposed GBL DAC
circuit. It consists of a cascode PMOS stack biased in the sat-
uration region to act as a constant current source. The GRBL
is charged with this fixed current for a time tON , which is
determined by the ON pulse-width. tON is modulated based
on the digital input code (XIN [5 : 0]), using a digital-to-
time converter. To achieve a very good linearity of Va vs
XIN or tON vs XIN , there should be a single continuous
ON pulse for every input code, to avoid non-linearities due
to multiple charging phases. This is not possible to generate
by simply using 6 timing signals with binary-weighted pulse-
widths. However, it may be generated using 26 or 64 timing
signals and a 64:1 mux. But that would consume a lot of area,
which is not ideal for a circuit that needs to be replicated for
each column of the SRAM array. To address this issue, we
present a 2-phase architecture in which the 3 MSBs of XIN

are used to select the ON pulse-width for the first half of
charging and the 3 LSBs for the second half. A control signal
(TD56) is used to choose between the 2 phases. In this way
an 8-to-1 mux, with 8 timing signals, can be shared during
both the phases, to reduce the area overhead and the number

ON

ON
Vbiasp

VDD,DAC

GRBL
RST

MP1

MP2

MN

8:
1

M
U

X

ON

2:1 MUX

SEL[2:0]3

XIN[5:3]

x3

XIN[2:0]

01

0

7TD63
TD54
TD45
TD36
TD27
TD18
TD9
TD0

TD56

Digital Inputs

Analog Output: Va
(GRBL Pre-charge Voltage)

9t0

18t0

27t0

36t0

45t0

54t0

63t0

56t0

7t0

TD63

TD54

TD45

TD36

TD27

TD18

TD9

TD0

TD56

RST

ON

GRBL XIN = 63

XIN = 24

1V

0

Global
Timing
Signals

Phase A Phase B

Select
Signal

Fig. 8. Schematic of the column-wise GBL DAC circuit, showing the digital-
to-time converter (bottom-left) and time-to-analog converter (top-left). Also
shown are the timing signals and operation waveforms for 2 input codes
(right).

of timing signals to route. A tree-based architecture, using 2:1
unit mux’s, is used for the 8:1 mux to equalize the mux-delay
for different control bits.

To design the pulse-widths of the 8 timing signals, we need
to express XIN in terms of its 2 components:

XIN,dec = 8× kA + kB ,

kA = Decimal(XIN [5 : 3]),

kB = Decimal(XIN [2 : 0])

(6)

where kA and kB are the decimal values for the 3 MSBs
and the 3 LSBs of XIN respectively. Since kA and kB can
have any integer values from 0 to 7, the pulse-widths of the
timing signals (TD’s) are chosen as:

tTD9k
= 8× kt0 + kt0 = 9× kt0
k ∈ (0, 1, .., 7)

(7)

where t0 is the minimum time resolution. A delay-line
architecture, with a controllable unit delay of t0, is used to
generate 64 time-delayed signals from the input clock. Then
the appropriate signals are combined using NOR gates to
generate the TD’s. This is done at the global level and the
generated TD’s are buffered and routed to all the GBL DACs.
A higher value of t0 reduces the non-linearities from the timing
generation circuitry, at the cost of increased clock cycle time.

To understand how the 2-phase charging technique works,
let us consider two XIN values of 24 and 63, as shown in
Fig. 8. For XIN = 24 = 8 × 3 + 0, kA is 3 and kB is 0.
Hence, TD9×3 or TD27 is used in phase A and TD0 is used
in phase B, to select the pulse-width of the ON timing signal.
Similarly, for the code XIN = 63 = 8×7+7, both kA and kB
are 7 and hence, TD63 is used in both the charging phases.

In addition to the linearity aspect of the DAC transfer
function, this architecture also performs better in terms of de-

6

vice mismatch, compared to binary-weighted PMOS charging
DACs [13]. This is because, here, the same PMOS stack is
used to charge the global bit-line for all input codes, rather
than having to use smaller PMOS devices for small input
values. Furthermore, the pulse-widths of the globally generated
timing signals have less variations typically, compared to those
arising from local Vt-mismatch in the PMOS devices [13].

It may be noted that, a one-time calibration is required
to set the maximum value of the analog pre-charge voltage
for the maximum input code (XIN,max). The maximum pre-
charge voltage should be kept lower than the supply voltage
of the GBL DAC, to ensure that the PMOS cascode stack is
operating in the saturation region as a constant current source.
For a given t0, the calibration can be achieved by tuning the
externally provided bias voltage (Vbiasp) of the PMOS stack.
During calibration, all DACs are fed the same input value of
XIN,max. In a given clock cycle, first, the GBL DAC pre-
charges the GRBL to an analog voltage (Va). Then, Va is
compared to an externally provided reference voltage Vref
(typically kept at 1 V in this work). The comparison is done
by the column-wise sense-amplifiers (SA), which are already
present for normal read-out of the SRAM. All the 64 SAs
operate in parallel and use the same Vref to provide 64
comparison outputs simultaneously. Vbiasp is monotonically
increased from 0 V until majority of the SAs (> 50%) flip their
outputs (‘1’ to ‘0’), at which point the calibration is achieved.
In this work, a 5 mV step-size is used to tune Vbiasp.

B. Phase-2: Multiply-and-Average

The second phase of the Conv-SRAM operation involves
the mutliplication of the analog input voltages (Va’s) with the
1-b filter weights (wi’s) and averaging over N values. This
multiply-and-average (MAV) operation is done in parallel for
all the 16 local arrays, each storing the wi’s for a different
3-D filter when running a CONV/FC layer.

VY AV G,k =
1

N

N∑
i=1

wk,i × Va,i, 0 ≤ k ≤ 15, N ≤ 64

VY AV G = V pAVG − V nAVG

(8)

Fig. 9 shows the details for the MAV operation for one local
array. It starts by turning on the read word-line (RWL) for
the selected row in the local array. This leads to discharging
of one of the local bit-lines (LBLT,LBLF) in each column,
depending on the wi stored in the corresponding 10T bit-cell.
A positive wi (+1) is stored as a digital ‘0’ and a negative
wi (−1) as a digital ‘1’. It may be noted that, the local bit-
lines have been pre-charged to the same analog voltage (Va,i)
as its corresponding global bit-line (GRBL) during phase-
1. Therefore, at the end of weight evaluation, the difference
between the local bit-line voltages represents the product of the
analog voltage (Va,i) and the 1-b weight (wi). For example, the
bit-cell in the ‘0th’ column stores a −1 and hence, ∆VLBL,0 =
VLBLT,0 − VLBLF,0 = −Va,0.

The weight multiplication/evaluation step is completed by
turning off the RWL. After that, the appropriate local bit-lines
are shorted together horizontally to evaluate the average. The

PCHG

RWL

ENP

ENN

XIN : D
AC

wi : M
ult.

LBLT0

LBLF0

w0 = -1
(Q0 = ‘1’)

VpAVG

VnAVG

Va0

0

Sign(XIN,0)
= ‘0’

Average

Local MAVa

PCHG

ENNENP ENN ENP

10T
(w63)

Local MAVa

LB
LT

63

LB
LF

63

LB
LT

0

LB
LF

0

G
RB

L

RWL
x16 x16

Col. #0 Col. #63

6T
(w0)Q Q

10T

VpAVG
VnAVG

PCHG

ΔVLBL,i
= Va,i × wi

Fig. 9. Architecture of a 16×64 local array of the Conv-SRAM, showing the
10T bit-cells storing the filter weights and local analog multiply-and-average
(MAVa) circuits. Also shown are typical operation waveforms (bottom) for
one column.

positive and negative parts of the average as obtained on two
separate voltage rails, V pAVG and V nAVG, respectively. This
is implemented by the local MAVa circuits, which pass the
voltages of the LBLT ’s and LBLF ’s to either the V pAVG

or the V nAVG voltage rails, depending on the sign of the
input XIN . If the input for the particular column is positive
(XIN > 0) ENP is turned on, otherwise ENN is on.
ENP and ENN are digital control signals which are globally
routed and shared column-wise by all the 16 local arrays.
The switches controlled by ENP and ENN are implemented
using NMOS pass transistors, since the final V pAVG, V nAVG

voltages would be closer to 0 V than Vref . On the other hand,
the switches controlled by PCHG use CMOS transmission
gates, since they need to pass a wide range of voltages from
0 V to Vref (∼ 1 V), during phase-1 (DAC pre-charge).

The fully-differential nature of the averaging architecture
helps in mitigating many common-mode noise issues, e.g.
clock coupling noise from the control switches, capacitance
variation of the local bit-lines and the voltage rails due to
different process corners, etc. This helps in improving the
accuracy of the dot-product computations with our approach.

It may be also noted that during this phase, when the
SRAM bit-cell is actually used for weight-evaluation, the
time required does not have a huge variation. Fig. 10 shows
the simulated local bit-line discharge time (tdis,LBL) in the
slowest process corner (SS). As seen from the figure, even the
6σ value of tdis,LBL is merely 500 ps, which is much smaller
than the total clock period (≈ 100 ns). This shows that bit-cell
Vt variations do not dominate the overall computation time.
The longer clock period is justified due to the highly parallel
processing in the compute mode.

7

BL WL

Fig. 10. Variation of the local bit-line discharge time for weight evalua-
tion/multiplication in phase-2.

C. Phase-3: ADC

The third and last phase of the Conv-SRAM operation is
the analog-to-digital conversion of the dot-product outputs,
with multi-bit resolution. The difference of the analog average
voltages (V pAVG and V nAVG) is fed to an ADC to get
the digital value of the computation (YOUT). This is done
in parallel for all the 16 local arrays, producing outputs
corresponding to 16 different filters simultaneously.

Choosing the ADC architecture is crucial since it would be
replicated multiple times in the CSRAM array. Hence, area and
power consumption are key metrics to consider. In addition,
the typical distribution of the ADC outputs (YOUT ’s) should
also be considered to find the more appropriate architecture.
As seen from simulation results in Fig. 11, for a typical CONV
layer with a full scale input range of ±31, YOUT has an
absolute mean value of ±1.3 and is typically limited to ±7.
Hence, a serial integrating ADC architecture is more suitable
in this scenario, compared to other area-intensive (e.g. SAR)
and more power-hungry ones (e.g. flash). In spite of its serial
nature, in most cases we can expect the ADC to finish its
operation within a few cycles, due to the particular YOUT

distribution.

Fig. 11. Simulated distribution of the partial convolution output from the
ADC (YOUT), for a typical CONV layer (C3) in the LeNet-5 CNN.

Fig. 12 shows the architecture of the proposed integrating
ADC (CSH ADC). It consists of 3 main parts: a charge-
sharing based integrator, a sense-amplifier (SA) and a logic
block. Capacitive charge-sharing with replica bit-lines is used
to implement the integration. The use of replica bit-lines helps

to track the local bit-line capacitance better in the presence
of process and temperature variations. The SA has a standard
StrongARM latch-type architecture. PMOS devices are chosen
for the input differential pair of the SA, since the common
mode voltages of V pAVG and V nAVG signals are expected to
be closer to the GND rail. The logic block provides the timing
signals for the charge-sharing (PCHR, EQP , EQN) and the
SA comparison (SA EN), using the globally provided timing
signals (φ1, φ2). It also has a counter to count the number of
cycles it takes to finish the ADC operation and that provides
the digital output of the dot-product computation.

Fig. 12 also shows the waveforms for a typical CSH ADC
operation. It starts by sending a SA EN pulse from the ADC
logic block to the SA. The SA compares V pAVG and V nAVG,
and sends its outputs (SAOP , SAON) to the ADC logic
block. The first comparison determines the sign of the output,
e.g. for the case shown in Fig. 12, YOUT is positive since
V pAVG is higher than V nAVG. After the first comparison,
the lower of the 2 voltage rails (V nAVG) is integrated by
charge-sharing it with a reference local bit-line (BLNref),
using the equalize signal (EQN in this case). The reference
bit-line, which replicates the local bit-line capacitance, was
pre-charged during the SA comparison using the PCHR

signal to Vref (= 1 V in this work). Therefore, the step-
size of the integration is ≈ Vref

N , where N is the number of
SRAM local columns that were averaged. The pre-charge and
equalize/integrate operations, along with the SA comparison,
continue until the lower voltage rail (V nAVG) exceeds the
higher one (V pAVG). When this happens, the SA outputs
flip indicating the end-of-conversion (EOC). After this, no
more timing pulses are generated. A counter in the ADC
logic block counts the number of equalize pulses (EQN) it
takes to reach EOC and that generates the digital value of
the convolution/dot-product output (YOUT), which is +4 for
the example shown in Fig. 12.

FLIP

FLIP

FLIPAVG

AVG
SA_EN

OUT

OS

CLK

FLIP

Cycle 0: “Odd” Cycle 1: “Even”

Fig. 13. Circuit for the 2-cycle offset-cancellation technique for the SA in
CSH ADC.

It may be noted that YOUT is directly affected by the SA
offset voltage (VOS), which can degrade the overall compu-
tation accuracy due to incorrect ADC outputs. To address
this issue, we propose a simple 2-cycle offset-cancellation
technique, using a flipping mux at the input of the SA (Fig.
13). During the first/even cycle of this 2-cycle period, FLIP
= ‘0’. Hence, V pAVG and V nAVG are passed to the positive
and negative input terminals of the SA respectively. Therefore,

8

10T

BL
P r

ef

BL
N

re
f

x16

Ref. Col.
“0”

PCHR PCHREQP EQN

Vref

Charge-sharing + integration

VpAVG
VnAVG

ADC

Local SRAM Array
<N columns>

Local MAVa

VpAVG
VnAVG

CSH_ADC
Logic

+ +VpAVG

VnAVG

SA_EN

Convolution
output
YOUT

7SA

PC
H

R

EQ
P

EQ
N

EVAL

SAOP

SAON

0

ADCMAVa

EVAL

SA_EN PCHR

EQN

VpAVG

VnAVG

EQP

SAON

SAOP

tADC

BLNref Vref

ΔVADC ≈Vref/N

Compare Integrate EOC

YOUT = +4

From
CSH_ADC
Logic

To
CSH_ADC
Logic

Sent
Globally
to ADC’s

ϕ2

ϕ1

ϕ2ϕ1

Fig. 12. Architecture (left) for the charge-sharing based ADC (CSH ADC) for 1 local array of the Conv-SRAM and typical waveforms (right) for the digital
output (YOUT) computation for the convolution (dot-product) operation.

YOUT,0 = ADC(V yAVG,0 − VOS). The output in this cycle
is exactly same as in the conventional case (without the
flipping mux). However, during the next odd cycle, the inputs
to the SA are flipped by setting FLIP = ‘1’. Hence, a
differential voltage of (V nAVG − V pAVG) = −V yAVG is
applied to the input of the SA. To get the correct polarity at
the output of the ADC, another negation is applied by the ADC
logic block. This results in YOUT,1 = −ADC(−V yAVG,1 −
VOS) = ADC(V yAVG,1 + VOS), as compared to YOUT,1 =
ADC(V yAVG,1−VOS) for the conventional case. Finally, we
add the YOUT ’s for the 2 consecutive cycles to accumulate the
partial results for the convolution. With our proposed 2-cycle
approach the effect of VOS is inherently canceled since:

YOUT = YOUT,0 + YOUT,1

= ADC(V yAVG,0 + V yAVG,1)
(9)

On the other hand, for the conventional case the effect of
VOS adds up since:

YOUT = ADC(V yAVG,0 + V yAVG,1 − 2× VOS) (10)

and this makes the accumulation result further inaccurate.
It may be noted that, the benefits of this offset-cancellation
technique comes without any extra timing and power penalty,
as long as an even number of cycles are required to finish a
full convolution computation. This can be easily expected for
most CNNs.

VI. MEASURED RESULTS

The 16 Kb CSRAM array was implemented in a 65-nm LP
CMOS process. The die photo in Fig. 14 shows the relative
area occupied by the different key blocks. The bit-cell array
(ARY) along with its peripheral circuitry occupies 73.1% of
the total CSRAM area, 8.2% is occupied by the GBL DACs,

8.6% by the local MAVa circuits, 7.3% by the CSH ADCs
and the rest by global timing circuits. The test-chip summary
is shown in Table I.

Fig. 14. Die micro-photograph in a 65-nm CMOS process.

A. Circuit Characterizations

Fig. 15 shows the measured transfer function of the 6-b
GBL DAC. With Vref = 1 V and t0 ≈ 250 ps, a 5-b voltage
resolution is effectively achieved in measurements. Hence, we
set the LSB of XIN to ‘0’. To estimate the DAC analog
output voltage (Va), VGRBL for the 64 columns of the CSRAM
are compared to an external voltage (Vref) by column-wise
SAs, as explained before for DAC calibration (Section V-A).
For each XIN , the Vref at which more than 50% of the
SA outputs flip is chosen as an average estimate of Va. As
mentioned before, an initial one-time calibration is needed to
set Va,max = 1 V for XIN = 31 (max. input code). The supply
voltage for the DACs is fixed at 1.2 V, to keep the PMOS

9

TABLE I
TEST-CHIP SUMMARY

Technology 65-nm
CSRAM size 16 Kb
CSRAM area 0.063 mm2

Array
organization

256×64
(10T bit-cells)

column DACs 64
row ADCs 16
Max. # MAVs 64×16

Supply voltages
1.2 V (DAC),
0.8 V (array),

1 V (rest)
Main clock freq.
(compute mode) 5 MHz

ADC clock freq. 250 MHz

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

400

500

600

700

800

900

1000

1100

31 29 27 25 23 21 19 17

D
N

L
(L

SB
)

V
a

(m
V

)

XIN (scaled to 5-b)

Va Videal DNL

Fig. 15. Measured transfer function of GBL DAC at Vdd,DAC = 1.2 V,
with Vref = 1 V and t0 ≈ 250 ps.

stack in them operating in the saturation region (as a constant
current source). It can be seen from Fig. 15 that there is a
good linearity in the DAC transfer function with DNL < 1
LSB. Since the SAs have NMOS input-pair, low values of Va
cannot be properly estimated. Hence, the characterization is
done till XIN = 16 (or Va ≈ 500 mV).

0.6

0.8

1

1.2

1.4

1.6

1.8

‐11
‐9
‐7
‐5
‐3
‐1
1
3
5
7
9
11

0 1 2 3 4 5 6 7

EA
DC

(p
J)

YO
U
T

XIN (scaled to 5‐b)

w: '0' (+1)
w: '1' (‐1)

Fig. 16. Measured transfer function and energy consumption of CSH ADC
at Vdd,ADC = 1 V, Vdd,ARY = 0.8 V and fADC = 250 MHz.

Fig. 16 shows the transfer function of the CSH ADC,
operating at 1 V and a clock frequency of 250 MHz (gen-
erated on-chip with a free-running VCO). The array voltage
(Vdd,ARY) is kept at 0.8 V to reduce the clock-coupling noise
from the WL’s, when reading the weights. To characterize

the CSH ADCs, all XIN ’s are fed the same input code, all
wi’s are written the same value and then the ADC outputs
(YOUT ’s) are observed. The measurement results show a good
linearity in the overall transfer function and low variation in
the YOUT values, which is due to the fact that the variation
in BL capacitance (used in CSH ADC) is much lower than
transistor Vt-variation. It can be also seen from Fig. 16 that
the energy/ADC scales linearly with the input/output value,
which is expected for the integrating ADC topology.

|Y
OUT

 | (scaled to 5-b)
-1 0 1 2 3

N
o.

 o
f o

cc
ur

en
ce

s

0

5

10

15

20

25

30
X

IN
 = 0

w/o OC
w/ OC

|Y
OUT

 | (scaled to 5-b)
3 4 5 6 7 8

N
o.

 o
f o

cc
ur

en
ce

s

0

5

10

15

20

25
X

IN
 = 4

w/o OC
w/ OC

Fig. 17. Measured distribution of convolution output values (YOUT) from
CSH ADC with and without the offset-cancellation (OC) technique, for two
values of the input code (XIN).

The effect of the offset-cancellation (OC) technique for
the SA (in the CSH ADC) is also characterized, as shown
in Fig. 17 for two different input codes. It can be clearly
seen that the OC helps in reducing the variation of the YOUT

values, leading to a better computation accuracy for the dot-
products/convolutions.

B. Test Case: MNIST Dataset

CNN
Layers:

C1 S2 C3 S4 F5 F6
5×5
CONV

5×5
CONV

2×2
MAXPOOL

5×5
FC

1×1
FC

2×2
MAXPOOL

28×28×6

28×28×1

14×14×6

10×10×16

5×5
×16

1×1×120 1×1
×10Input

0

9

12345678

Fig. 18. Architecture of the LeNet-5 CNN, showing the sizes of the feature
maps (top) and the filters (bottom).

To demonstrate the functionality for a real CNN architec-
ture, the MNIST hand-written digit recognition dataset is used
with the LeNet-5 CNN [18]. As shown in Fig. 18, LeNet-5
consists of 2 CONV layers (C1, C3) and 2 FC layers (F5,
F6). In addition, there are 2 sub-sampling or max-pooling
layers (S2 and S4, following layers C1 and C3 respectively)
and a non-linear ReLU layer (R5 after layer F5). Only the
CONV/FC layers, which involve majority of the computations,
are implemented on-chip by the CSRAM array. The non-linear
layers are implemented in software. Fig. 19 shows the test
setup used to automatically run the 4 CONV/FC layers, one

10

TABLE II
PARAMETER MAPPING FOR THE CONV/FC LAYERS OF LENET-5 CNN TO

THE CSRAM ARRAY

Parameters (↓) C1 C3 F5 F6
3-D Filter size 5×5×1 5×5×6 5×5×16 1×1×120
3-D Filters 6 16 120 10
Local ARYs used 6 16 15† 10
IFMP channels/row 1 2 2 30*

Rows, Col.s/local ARY 1, 25 3, 50 8, 50 4*, 30*

col.s for AVG (N) 32 50 50 32
operations/cycle 25×6×2 50×16×2 50×15×2 30*×10×2
† Repeated 8 times to cover all the 120 filters
* 15 columns and 8 rows mapping used at VDD = 0.8 V

after the other, on the test-chip. Data is transferred back and
forth between MATLAB (running on a host PC) and the test-
chip, via an FPGA board. Table. II shows the detailed mapping
of the 4 CONV/FC layers to the CSRAM array to compute
the convolutions. Let us first consider layer C3. It has a filter
size of 5 × 5, with 6 input channels and 16 output channels
(number of 3-D filters). Each of the 16 3-D filters are mapped
to one of the 16 local arrays in the CSRAM. Since each row
in the local array has 64 bit-cells, a maximum of 2 (= b 64

5×5c)
input channels can fit per row. Therefore, 3 (= 6

2) rows are
required in each local array to fit the entire 3-D filter. In
every clock cycle, 50 (= 5 × 5 × 2) XIN ’s are sent through
a buffer (shift-registers) to the CSRAM array to compute 16
partial convolution outputs. Thus, the CSRAM array processes
50 × 16 × 2 operations (1 MAV = 2 OPs: 1 multiply + 1
add/average) per clock cycle. For layer F5, the entire filter
cannot fit at once in the CSRAM array (due to its limited 16
Kb size in the test-chip). Hence, the entire process, explained
above, is repeated multiple times to finish all the computations.
However, having multiple CSRAM arrays operating in parallel
can easily alleviate this problem, by fitting all the filter weights
together on-chip.

0 1 2 3 4 5 6 7 8 9
Output Classes

Pr
ob

.

CNN Input CNN Output

Opal-Kelly
FPGA Board

Conv-RAM
Testchip PCB

User Input
(Handwritten

Digit)

1. Send & write weights (wi’s) into Conv-RAM
2. Send inputs (XIN’s) for the CONV/FC layer
3. Get outputs (YOUT’s) & process in MATLAB

Runs 1 CONV/FC layer
computations at a time

USB 2.0
JTAG

USB 2.0
to PC

XEM-3001
FPGA BoardOutputs to FPGA Board

Inputs from FPGA Board
USB 2.0 from PC to
XEM-3001 Board

Host PC running
MATLAB

Conv-RAM Test-chip

Fig. 19. Test setup for automatically running the 4 CONV/FC layers of
LeNet-5 CNN on Conv-SRAM, for a given input image (28× 28).

Fig. 20 shows the measured error rate for the 10,000 test
images in the MNIST dataset, with the 4 CONV/FC layers
being successively implemented on-chip. 3 different chips are

measured, each experiment is repeated multiple times, and the
average value of the error rate is reported. We tested 2 different
versions of LeNet-5: with and without Batch-Normalization
(BN) layers preceeding the CONV/FC layers. Without BN
layers (‘v1’) we achieve a classification error rate of 2.5%
after all the 4 layers. The error rate is improved to 1.7%
by using the BN layers (‘v2’). This is mostly because BN
normalizes the convolution inputs for every layer, with a mean
around 0 and also limits the maximum value of the inputs.
Hence, after input quantization to 6-b, its features are better
preserved compared to an un-normalized input distribution.
The measured error rate, which is close to the expected value
from an ideal digital implementation, shows the robustness of
the CSRAM architecture to compute convolutions. The error
rate for the MNIST dataset is improved by 8.3% compared
to prior work on in/near-memory compute [13], [16], where a
10% error rate was achieved. Next, we tested functionality at
a lower voltage setting of Vdd,DAC = 1 V and the rest of the
circuits operating at Vdd (rest) = 0.8 V, with a clock period
of 400 ns. The maximum DAC pre-charge voltage (Va,max),
corresponding to the maximum input code, is calibrated to 0.8
V. Hence, the magnitude of 1 LSB is ∼ 26 mV (instead of
32 mV for the previous case with Va,max = 1 V). Fig. 21
shows the measured error rate for this set of voltages. Due to
reduced analog voltage precision, the error rates are slightly
higher, with ‘v1’ achieving 3.4% and ‘v2’ achieving 1.9% for
the MNIST test dataset.

0.00
1.00
2.00
3.00
4.00
5.00

C1 C3 F5 F6

Er
ro
r R

at
e
(%
)

Layer successively implemented by CSRAM

v1: w/o BN v2: w/ BN

Ideal (v1)
~1.56%

Ideal (v2)
~1.19%

Fig. 20. Measured error rate for the 10K images in the MNIST test dataset
using LeNet-5 CNN, with and without BN, at Vdd = Va,max = 1V.

0.00
1.00
2.00
3.00
4.00
5.00

C1 C3 F5 F6

Er
ro
r R

at
e
(%
)

Layer successively implemented by CSRAM

v1: w/o BN v2: w/ BN

Ideal (v1)
~1.56%

Ideal (v2)
~1.19%

Fig. 21. Measured error rate for the 10K images in the MNIST test dataset
using LeNet-5 CNN, with and without BN, at Vdd = Va,max = 0.8V.

The distributions of the partial convolution outputs from the
ADC (YOUT ’s) are shown in Fig. 22, for all the 4 CONV/FC
layers. For each of these layers, YOUT has a mean around ≈
1 LSB, which justifies the use of the serial ADC topology to
compute it. Fig. 23 shows the distributions of the convolution
inputs (XIN ’s) for the 4 layers. XIN ’s have been properly

11

CONV Layer C1

-10 -5 0 5 10
YOUT

0

2

4

6
N

o.
 o

f o
cc

ur
en

ce
s

106 CONV Layer C3

-10 -5 0 5 10
YOUT

0

0.5

1

1.5

2

N
o.

 o
f o

cc
ur

en
ce

s

106

FC Layer F5

-10 -5 0 5 10
YOUT

0

2

4

6

N
o.

 o
f o

cc
ur

en
ce

s

105 FC Layer F6

-5 0 5
YOUT

0

0.5

1

1.5

2

N
o.

 o
f o

cc
ur

en
ce

s

104

Abs. Mean
 ~0.3 LSB

Abs. Mean
 ~1.3 LSB

Abs. Mean
 ~0.8 LSB

Abs. Mean
 ~1.0 LSB

Fig. 22. Measured distribution of the partial convolution outputs (YOUT ’s)
for the 4 different CONV/FC layers of the LeNet-5 CNN.

scaled and quantized to 6-b (including sign bit) before being
sent to the CSRAM array to compute the convolutions. As seen
from the figure, all the layers have a high proportion of 0’s for
the XIN ’s. This helps in reducing the GBL DAC energy to
convert and send them to the columns of the CSRAM array.

CONV Layer C1

-10 0 10 20 30
XIN

0

1

2

3

4

N
o.

 o
f o

cc
ur

en
ce

s

105 CONV Layer C3

-20 0 20
XIN

0

2

4

6

8

N
o.

 o
f o

cc
ur

en
ce

s

105

FC Layer F5

-20 0 20
XIN

0

2

4

6

N
o.

 o
f o

cc
ur

en
ce

s

104 FC Layer F6

0 10 20 30
XIN

0

2

4

6

8

10

N
o.

 o
f o

cc
ur

en
ce

s

104

Abs. Mean ~ 4.7
0's = 45.2%
'0'-bits = 76%

Abs. Mean ~ 6.7
0's = 57.8%
'0'-bits = 79%

Abs. Mean ~ 3.1
0's: 80.3%
'0'-bits = 91%

Abs. Mean ~ 8.0
0's: 14.7%
'0'-bits = 68%

Fig. 23. Measured distribution of the 6-b convolution inputs (XIN ’s) for
the 4 different CONV/FC layers of the LeNet-5 CNN.

Fig. 24 shows the overall energy consumption of the
CSRAM array for running the different layers of LeNet-5,
with Vdd,DAC = 1.2 V, Vdd,ARY = 0.8 V, Vdd (rest) = 1 V
and fclk = 5 MHz. Of the 4 CONV/FC layers in LeNet-5,
the energy consumptions while running layers C1 and F6 are
lower than that of layers C3 and F5. This is because layers
C1 and F6 do not fully utilize the entire CSRAM array, due
to their small filter sizes. However, that also translates to a
lower energy-efficiency for these layers (Table III), since the
energy is amortized over fewer MAV operations. A higher
array utilization in layer C3 (all 16 local arrays) helps in
achieving an energy-efficiency of 38.8 TOPS/W (‘v1’), by
consuming 41.3 pJ of energy for 50×16×2 = 1600 operations.

Whereas, for ‘v2’ (with BN), layer F5 achieves the best
energy-efficiency of 40.3 TOPS/W, utilizing 15 of the 16 local
arrays. Fig. 24 also shows the energy breakdown for the 3
major components: GBL DAC, ARY+MAVa and CSH ADC.
The energy for the GBL DACs is limited by the bit-precision
requirement for representing the IFMP values. Whereas, the
energy for the ARY, MAVa and CSH ADC circuits can be
scaled down by scaling their supply voltages while sacrificing
speed. Fig. 25 shows the measured energy consumption of the
CSRAM array, with Vdd,DAC = 1 V, Vdd (rest) = 0.8 V and fclk
= 2.5 MHz. The reduced supply voltages help in decreasing
the energy consumption, leading to better energy-efficiency
numbers (Table IV).

0

10

20

30

40

50

60

v1 v2 v1 v2 v1 v2 v1 v2

C1 C3 F5 F6

En
er
gy
 (p

J)

LeNet‐5 CNN Layer

GBL_DAC ARY & MAVa CSH_ADC

v1: w/o BN, v2: w/ BN

Fig. 24. Measured energy consumption of the CSRAM array when running
the 4 different CONV/FC layers of the LeNet-5 CNN, with Vdd,DAC = 1.2
V, Vdd,ARY = 0.8 V, Vdd (rest) = 1 V and fclk,main = 5 MHz.

TABLE III
MEASURED ENERGY-EFFICIENCY* (TOPS/W) FOR THE CONV/FC

LAYERS OF LENET-5 CNN, AT Vdd = 1V

Type (↓) C1 C3 F5 F6
v1: without BN 14.8 38.8 38.8 24.3
v2: with BN 14.7 33.5 40.3 23.2
* 1 MAV = 1 multiply + 1 average = 2 OPs, with 6-b inputs and 1-b weights

0
5
10
15
20
25
30
35

v1 v2 v1 v2 v1 v2 v1 v2

C1 C3 F5 F6

En
er
gy
 (p

J)

LeNet‐5 CNN Layer

GBL_DAC ARY & MAVa CSH_ADC

v1: w/o BN, v2: w/ BN

Fig. 25. Measured energy consumption of the CSRAM array when running
the 4 different CONV/FC layers of the LeNet-5 CNN, with Vdd,DAC = 1 V,
Vdd (rest) = 0.8 V and fclk,main = 2.5 MHz.

Recent hardware implementations [5], [9], [16], [19]–[21]
for NNs have focused on reduced bit-precisions to achieve
higher energy-efficiency. Table V presents comparison with

12

TABLE V
COMPARISON WITH PRIOR WORK ON LOW BIT-WIDTH HARDWARE IMPLEMENTATIONS OF ML ALGORITHMS

Metric This work ISSCC’17
[9]

JSSC’17
[5]

JSSC’17
[13]

JSSC’18
[14]

JSSC’18
[16]

CICC’18
[19]

ISSCC’18
[20]

Tech. (nm) 65 28 40 130 65 65 28 65
Voltage (V) 1 0.715 0.8 - 1 0.55 0.66 0.65

Computation
Mode

In-Memory,
mixed-signal Digital Digital

In-
Memory,
mixed-
signal

In-
Memory,
mixed-
signal

Near-
Memory,

digital
Digital Digital

ML Algo. CNN
(4-layer)

FC-DNN
(4-layer)

CNN
(5-layer) SVM1 k-NN2 FC-DNN

(12-layer)
CNN

(5-layer) CNN

ML Dataset MNIST MNIST MNIST MNIST MNIST MNIST MNIST FER2013

MAC(V)’s
per classification 406.8K 334.3K 406.8K 3.65K1 16.4K 768.1K 15M -

Classification
Accuracy

98.3% (1V)
98% (0.8V) 98.36% 98% 90% 92%2 90.1% 97.4% -

bits for
IFMP/OFMP 6 8 6 5/1 8 2 1 16

bits for
Weights 1 8 4 1 8 1 1 1

SRAM Size
(KB) 2 1024 144 2 16 102.1 328 256

Peak
Throughput
(GOPS)3

8 (1V)
4 (0.8V) 10.7 102 57.61 10.2 380.2 90 368.6

Peak Energy
Efficiency
(TOPS/W)

40.34 (1V),
51.34 (0.8V)

1.86
(0.345)5

1.75
(0.663)5

11.511

(46.0)5 1.94 6.0 130
(24.12)5 50.6

1 SVM: Support Vector Machine with 45 binary classifiers, each with 81 inputs, i.e. 81× 45 MACs per 10-way classification
2 k-NN: k-Nearest Neighbor, only 4-output classes (out of 10) were demonstrated with 100 test images
3 We assume 2 operations (OPs) for 1 MAV (1 mult. + 1 avg.), similar to a MAC (1 mult. + 1 acc.)
4 Does not include energy to access IFMP/OFMP memories
5 Assuming a 65-nm implementation and Energy ∝ (Tech.)2

TABLE IV
MEASURED ENERGY-EFFICIENCY* (TOPS/W) FOR THE CONV/FC

LAYERS OF LENET-5 CNN, AT Vdd = 0.8V

Type (↓) C1 C3 F5 F6
v1: without BN 19.7 49.6 48.9 17.0
v2: with BN 19.6 51.3 49.6 16.5
* 1 MAV = 1 multiply + 1 average = 2 OPs, with 6-b inputs and 1-b weights

prior work, both conventional digital [5], [9], [19], [20] and
in-memory approaches [14], [16]. It should be noted that,
while [5], [9], [16], [19], [20] are full systems, the main
focus of this work was to demonstrate in-memory computation
capability for CNNs. Hence, ours does not include the energy
for IFMP/OFMP memories. However, for the MNIST dataset
with LeNet-5 CNN, we estimate [22] those to have only small
contributions to the overall energy-efficiency per MAV opera-
tion, due to the high parallelism supported by our in-memory
approach. Furthermore, as seen from Fig.s 23 and 22, both
the inputs (XIN ’s) and the partial outputs (YOUT ’s) have a
high proportion of ‘0’s. Hence, in future work, data-dependent
memory architectures e.g. 8T SRAMs, [23], [24] can be
used to store and access the inputs/outputs. [23], [24] take
advantage of data properties to significantly reduce memory-
access energy, which would be highly useful here. Compared
to [5], [9], we achieve > 27× improvement in energy-

efficiency, due to the massively parallel in-memory analog
computations. Our work achieves similar energy-efficiency
numbers as [19] (considering a simplified technology scaling
model), while using 6-b for IFMP/OFMP, compared to 1-b in
[19]. Whereas, we achieve similar classification accuracy as
[19] on MNIST, using ∼ 37× less MAC/MAV operations per
classification. Our numbers are also comparable to the energy-
efficiency of [20] (not quoted for MNIST), which uses 1-b for
weights. Next, we compare our results to an in-memory mixed-
signal computing approach [13], which implements a support
vector machine (SVM) algorithm with 45 binary-classifiers,
for a 10-way MNIST digit classification. We achieve similar
energy-efficiency as [13], while improving the classification
accuracy from 90% to > 98%. This is because, we mitigate the
problem of degraded computation accuracy, caused by SRAM
bit-cell variation. Although [13] can run at a higher speed,
it only supports 1-b output resolution, compared to 6-b in
our case. When compared to a near-memory approach [16],
which uses only 1-b for IFMP/OFMP, we still achieve 8.5×
improvement in energy-efficiency. This is because, our ap-
proach exploits high parallelism of accessing multiple memory
addresses simultaneously, without the need to sequentially and
explicitly read out the data (filter weights) from the memory.
We also achieve a higher classification accuracy compared
to [16], because of using 6-b for inputs/outputs. Finally, our

13

work also achieves better classification accuracy than prior
in-memory approach [14], although it supports 8-b weights.
This is because we reduce the effect of bit-cell variation
when evaluating the weights. In addition, our approach benefits
from more parallelism, by supporting 16 different dot-product
computations per array per cycle, compared to 1 for [14].

VII. CONCLUSIONS

This paper presents an SRAM-embedded convolution (dot-
product) computation architecture for running binary-weight
neural networks. We demonstrated functionality with the
LeNet-5 CNN on the MNIST hand-written digit recogni-
tion dataset, achieving classification accuracy close to digi-
tal implementations and much better than prior in-memory
approaches. This is made possible by our variation-tolerant
architecture and also the support of multi-bit resolutions of
input/output values. Compared to conventional digital accel-
erator approaches using small bit-widths, we achieve similar
or better energy-efficiency, by overcoming some of the major
limitations of memories in traditional computing paradigms.
This is because our architecture can significantly reduce data
transfer by running massively parallel analog computations
inside the memory. The results indicate that the proposed
energy-efficient, SRAM-embedded dot-product computation
architecture could enable low power ML applications (e.g.
“always-ON” sensing) for “smart” devices in the Internet-of-
Everything.

ACKNOWLEDGMENT

This project was funded by Intel Corporation. The authors
thank Vivienne Sze and Hae-Seung Lee for helpful technical
discussions.

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep Neural Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, Nov 2012.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the
Gap to Human-Level Performance in Face Verification,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, June 2014,
pp. 1701–1708.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1097–1105.

[4] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, Jan 2017.

[5] B. Moons and M. Verhelst, “An Energy-Efficient Precision-Scalable
ConvNet Processor in 40-nm CMOS,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 4, pp. 903–914, April 2017.

[6] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
ArXiv e-prints, Mar. 2016.

[7] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
Deep Neural Networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems 28, 2015, pp. 3123–
3131.

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks,” in Advances in Neural Information Pro-
cessing Systems 29, 2016, pp. 4107–4115.

[9] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G. Y.
Wei, “A 28nm SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-
network engine with >0.1 timing error rate tolerance for IoT appli-
cations,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), Feb 2017, pp. 242–243.

[10] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the
IEEE, vol. 105, no. 12, pp. 2295–2329, Dec 2017.

[11] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in 2014 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), Feb 2014, pp. 10–14.

[12] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in 2018 IEEE International Solid
- State Circuits Conference - (ISSCC), Feb 2018, pp. 488–490.

[13] J. Zhang, Z. Wang, and N. Verma, “In-Memory Computation of a
Machine-Learning Classifier in a Standard 6T SRAM Array,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 4, pp. 915–924, April 2017.

[14] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A Multi-
Functional In-Memory Inference Processor Using a Standard 6T SRAM
Array,” IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 642–655,
Feb 2018.

[15] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42pJ/decision
3.12TOPS/W robust in-memory machine learning classifier with on-chip
training,” in 2018 IEEE International Solid - State Circuits Conference
- (ISSCC), Feb 2018, pp. 490–492.

[16] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Moto-
mura, “BRein Memory: A Single-Chip Binary/Ternary Reconfigurable
in-Memory Deep Neural Network Accelerator Achieving 1.4 TOPS at
0.6 W,” IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 983–
994, April 2018.

[17] W. Khwa, J. Chen, J. Li, X. Si, E. Yang, X. Sun, R. Liu, P. Chen, Q. Li,
S. Yu, and M. Chang, “A 65nm 4Kb algorithm-dependent computing-in-
memory SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel
product-sum operation for binary DNN edge processors,” in 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), Feb 2018, pp.
496–498.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[19] B. Moons, D. Bankman, L. Yang, and B. M. . M. Verhelst, “BinarEye:
An always-on energy-accuracy-scalable binary CNN processor with all
memory on chip in 28nm CMOS,” in 2018 IEEE Custom Integrated
Circuits Conference - (CICC), April 2018.

[20] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. J. Yoo, “UNPU:
A 50.6TOPS/W unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in 2018 IEEE International Solid -
State Circuits Conference - (ISSCC), Feb 2018, pp. 218–220.

[21] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable Convolutional Neural Network processor in 28nm
FDSOI,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), Feb 2017, pp. 246–247.

[22] A. Biswas, “Energy-Efficient Smart Embedded Memory Design for IoT
and AI,” Ph.D. dissertation, Massachusetts Institute of Technology, June
2018.

[23] A. Biswas and A. P. Chandrakasan, “A 0.36V 128Kb 6T SRAM with
energy-efficient dynamic body-biasing and output data prediction in
28nm FDSOI,” in ESSCIRC Conference 2016: 42nd European Solid-
State Circuits Conference, Sept 2016, pp. 433–436.

[24] C. Duan, A. J. Gotterba, M. E. Sinangil, and A. P. Chan-
drakasan, “Energy-Efficient Reconfigurable SRAM: Reducing Read
Power Through Data Statistics,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 10, pp. 2703–2711, Oct 2017.

14

Avishek Biswas (S’12 - M’18) received the B.Tech.
degree in electronics and electrical communication
engineering from the Indian Institute of Technology
(IIT), Kharagpur, India in 2012, and the S.M. and
Ph.D. degrees in electrical engineering and computer
science from the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, in 2014 and 2018
respectively.

Since June 2018, he has been with Kilby Labs,
Texas Instruments Incorporated, Dallas, TX, USA.
His research interests include circuit and algorithm

co-design for low power neural networks, specifically focussing on in-
memory computation architectures. Dr. Biswas has done internships with Intel
Corporation, Hillsboro, Oregon, USA and also with CEA Leti, Grenoble,
France, working on low-power, application-specific memory design.

Dr. Biswas was the recipient of the President of India Gold Medal from
IIT Kharagpur in 2012 and the Merrill Lynch Fellowship from MIT in 2012.

Anantha P. Chandrakasan (M’95 - SM’01 - F’04)
received the B.S, M.S. and Ph.D. degrees in Elec-
trical Engineering and Computer Sciences from the
University of California, Berkeley, in 1989, 1990,
and 1994 respectively. Since September 1994, he has
been with the Massachusetts Institute of Technology,
Cambridge, where he is currently the Joseph F. and
Nancy P. Keithley Professor of Electrical Engineer-
ing.

He was a co-recipient of several awards including
the 1993 IEEE Communications Society’s Best Tu-

torial Paper Award, the IEEE Electron Devices Society’s 1997 Paul Rappaport
Award for the Best Paper in an EDS publication during 1997, the 1999 DAC
Design Contest Award, the 2004 DAC/ISSCC Student Design Contest Award,
the 2007 ISSCC Beatrice Winner Award for Editorial Excellence and the
ISSCC Jack Kilby Award for Outstanding Student Paper (2007, 2008, 2009).
He received the 2009 Semiconductor Industry Association (SIA) University
Researcher Award. He is the recipient of the 2013 IEEE Donald O. Pederson
Award in Solid-State Circuits.

His research interests include micro-power digital and mixed-signal inte-
grated circuit design, wireless microsensor system design, portable multimedia
devices, energy efficient radios and emerging technologies. He is a co-author
of Low Power Digital CMOS Design (Kluwer Academic Publishers, 1995),
Digital Integrated Circuits (Pearson Prentice-Hall, 2003, 2nd edition), and
Sub-threshold Design for Ultra-Low Power Systems (Springer 2006). He is
also a co-editor of Low Power CMOS Design (IEEE Press, 1998), Design of
High-Performance Microprocessor Circuits (IEEE Press, 2000), and Leakage
in Nanometer CMOS Technologies (Springer, 2005).

He has served as a technical program co-chair for the 1997 International
Symposium on Low Power Electronics and Design (ISLPED), VLSI Design
’98, and the 1998 IEEE Workshop on Signal Processing Systems. He
was the Signal Processing Sub-committee Chair for ISSCC 1999-2001, the
Program Vice-Chair for ISSCC 2002, the Program Chair for ISSCC 2003,
the Technology Directions Sub-committee Chair for ISSCC 2004-2009, and
the Conference Chair for ISSCC 2010-2014. He is the Conference Chair for
ISSCC 2015. He was an Associate Editor for the IEEE Journal of Solid-State
Circuits from 1998 to 2001. He served on SSCS AdCom from 2000 to 2007
and he was the meetings committee chair from 2004 to 2007. He was the
Director of the MIT Microsystems Technology Laboratories from 2006 to
2011. Since July 2011, he is the Head of the MIT EECS Department.

