
Multiphysics Modeling of Activity Transport and
Evolution of CRUD and Steam Generator Oxides in

Pressurized Water Reactors
by

Alicia M. Elliott
B.E., Stony Brook University (2015)

Submitted to the Department of Nuclear Science and Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Nuclear Science and Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2018

© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Nuclear Science and Engineering

August 23, 2018
Certified by. .

Michael P. Short
Associate Professor of Nuclear Science and Engineering

Thesis Supervisor
Certified by. .

Kord Smith
KEPCO Professor of the Practice of Nuclear Science and Engineering

Thesis Reader
Accepted by .

Ju Li
Battelle Energy Alliance Professor of Nuclear Science and Engineering and

Professor of Materials Science and Engineering
Chairman, Department Committee on Graduate Students

Multiphysics Modeling of Activity Transport and Evolution of

CRUD and Steam Generator Oxides in Pressurized Water Reactors

by

Alicia M. Elliott

Submitted to the Department of Nuclear Science and Engineering
on August 23, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Nuclear Science and Engineering

Abstract

Fouling deposits of corrosion products on fuel cladding, known as crud, in the core of light
water reactors can cause a variety of operational issues. Buildup of radioactive crud and
corrosion products on ex-core structures, such as steam generators and piping, can cause
increased radiation fields and higher dose exposures for plant workers. To better understand
the mechanisms of corrosion product activity transport and evolution in the primary coolant
loop, a crud source term and activity transport code that can predict the concentration of
active isotopes in a primary loop over time and plant operating parameters was developed,
implementing mechanistic models for soluble corrosion product dissolution and precipitation.
The code described in this thesis tracks activated isotope deposition throughout the primary
loop with spatial and temporal resolution, without the use of empirical rate constants derived
from plant measurements, to predict primary loop activity buildup. Developed in C++ using
the MOOSE Framework, this code can be easily coupled to other multiphysics codes through
the MOOSE MultiApp system. A set of input file generation scripts, written in Python,
were developed to calculate thermodynamic parameters for chemical reactions added to the
simulation, and easily set up simulation input files in a “user-friendly” format. The open
source code described in this work, Ouroboros, is available freely for future improvements
and adaptations to implement additional mechanisms and more rigorous models. This code
is the first step towards a long term effort to develop an open source, fully mechanistic
crud source term model including all mechanisms for activity transport in pressurized water
reactors.

Thesis Supervisor: Michael P. Short
Title: Associate Professor of Nuclear Science and Engineering

Acknowledgments

First and foremost, I would like to thank Mitsubishi Heavy Industries (MHI) of Japan for

funding the work presented in this thesis. I also wish to thank Professor Kord Smith, my

thesis reader, for his feedback and time spent reviewing my thesis.

I’d like to thank my advisor, Professor Mike Short, for guiding me throughout this thesis

work. Mike, your advice and input throughout my time at MIT has been of immeasurable

value to me. You provided a supportive environment for me to develop my computational

skills and explore a research niche that I love. I truly cannot thank you enough; your impact

on my development as a scientist will never be forgotten.

I want to thank Marina Dang for her mentoring and guidance throughout my time at

MIT. Marina, you have been so much more than just my manager in the NSE Comm Lab.

I consider you my “MIT Mom” for all the nurturing you’ve provided me. I wouldn’t be

completing this degree without your guidance and kindness over these years. Thank you.

I also want to acknowledge the rest of the Comm Lab team, especially Leigh Ann Kesler,

Patrick White, and Cody Dennett. Thanks for the impromptu coaching sessions and all of

the laughs. I can always count on you guys to make me smile.

A huge thanks to Briana Hiscox and Travis Labossiere-Hickman; you two have been there

for me through so many late nights in NW12, struggling with psets, and dealing with life in

general. I love you guys. I don’t know what I’d do without you.

Thanks also to AJ Pawel, Monica Gehrig, and Landon Crawford, who helped keep me

sane during the final months of writing this thesis. From debating Buzzfeed quiz results, to

impromptu trail runs, to rock climbing adventures, your company and support (and many

laughs) have been paramount towards the completion of this thesis.

Finally, I want to thank my wonderful family - Mom, Dad, Jonas, and Emma. You

have been my biggest supporters from day one, I can always count on you to be there for

me. Whether it’s spontaneous visits home to escape the hustle and bustle of Cambridge, or

making up weird inside jokes (that Mom and Dad don’t quite understand), I’m always sure

to gain some perspective and feel how much you care for me. Thank you. I love you, always.

6

Contents

1 Introduction 17

1.1 Motivation (The CRUD problem) . 17

1.1.1 Pressurized water reactors . 18

1.1.2 Crud and steam generator oxides in PWRs 19

1.1.3 Modeling activity accumulation in primary loop oxides 21

1.2 Thesis objectives . 22

2 Background 25

2.1 Mechanisms for activity transport . 25

2.2 Previous models and codes . 26

2.2.1 Castelli model (corrosion source term) 27

2.2.2 CPAIR-P . 30

2.2.3 ACE-II . 31

2.2.4 MIGA-RT . 32

2.2.5 PACTOLE . 32

2.2.6 Macdonald Model . 33

2.2.7 Comparison of previous models . 38

2.3 MOOSE Framework . 38

3 Chemistry/Physics of Model (Methods) 41

3.1 Original Ouroboros code . 41

3.2 Modifications and additions to Ouroboros 43

3.2.1 Corrosion growth source term . 43

7

3.2.2 Corrosion release source term . 44

3.2.3 Surface/saturated concentration . 45

3.2.4 Rate of dissolution/precipitation of soluble species 50

3.3 Mass balance equation set . 51

3.3.1 Coolant mass balance (Global ODEs) 51

3.3.2 Oxide mass balance (Nodal ODEs) 52

3.3.3 Accumulated activity . 53

3.4 Comparison with previous models . 53

4 Computational Methods &

Code Structure 55

4.1 Coolant concentrations: ODE implementation 56

4.1.1 Elemental coolant concentrations . 56

4.1.2 Isotopic coolant concentrations (nonactivated) 59

4.1.3 Activated isotopic coolant concentrations 60

4.1.4 Sample input block . 62

4.2 Oxide concentrations: nodal ODE implementation 64

4.2.1 Nonactive oxides . 65

4.2.2 Activated oxides . 68

4.2.3 Sample input block . 70

4.3 Auxiliary calculations (AuxKernels) . 71

4.4 Input syntax and variable names . 75

4.5 Calculation of Gibbs energies . 78

4.6 Input file generation script . 79

4.6.1 ChemicalThermodynamics module 85

5 Results 93

5.1 Problem Setup . 93

5.1.1 Simulation parameters . 93

5.1.2 Chemistry . 96

5.1.3 Corrosion growth rates . 96

8

5.2 Validation and sensitivity studies . 98

5.2.1 Surface concentration trends . 98

5.2.2 Isotope concentrations in bulk coolant 100

5.2.3 Spatial accumulated activity . 102

5.2.4 Temporal activity accumulation . 108

5.3 Sensitivity studies . 109

5.3.1 Activity accumulation pH sensitivity study 109

5.3.2 Growth rate sensitivity study . 111

6 Conclusions and Future Work 115

6.1 Implications of this work . 115

6.2 Limitations in scope . 116

6.3 Future Work . 117

6.4 Concluding thoughts . 118

A Typical PWR Parameters 125

B Code snippets (Object classes) 127

B.1 Ion class . 127

B.2 Oxide class . 129

B.3 Reaction class . 130

B.4 Isotope class . 132

B.5 Element class . 133

C Sample input file 135

9

10

List of Figures

1-1 Schematic of PWR systems (primary and secondary loops) [3] 18

2-1 Mechanisms for activity transport at metal-oxide and oxide-coolant interface

of primary loop structures [22]. 26

2-2 Variables and processes represented in Castelli corrosion source term model [23]. 28

2-3 Processes and rate constants in Castelli corrosion source term model [23]. . . 28

2-4 MOOSE Application architecture [32] . 39

2-5 MOOSE code breakdown example [32] . 39

5-1 Electrochemical corrosion potential profile used for test case (based on Mac-

donald) . 95

5-2 Temperature profile used for test case . 95

5-3 Normalized surface concentration trends along primary loop; the temperature

dependence is well represented by all elements (nodal temperature profile is

represented by the dashed line). 98

5-4 Gibbs energy values along loop for each reaction 99

5-5 Bulk coolant isotope concentrations . 100

5-6 Bulk coolant isotope concentrations reported by Macdonald et al. [5] 101

5-7 Bulk coolant activated isotope concentrations 102

5-8 Bulk coolant activated isotope concentrations reported by Macdonald et al. [5] 103

5-9 Accumulated activity per node per isotope 104

5-10 Accumulated activity per node per isotope reported by Macdonald et al. [5] . 105

5-11 Total accumulated activity per node . 105

5-12 Spatial distribution of accumulated activity from iron isotopes 106

11

5-13 Spatial distribution of accumulated activity from cobalt isotopes 106

5-14 Spatial distribution of accumulated activity from zirconium isotopes 107

5-15 Activity accumulation over fuel cycle . 108

5-16 Iron accumulated activity per node with varied pH 109

5-17 Cobalt accumulated activity per node with varied pH 110

5-18 Accumulated activity, varying corrosion growth rates of iron, full fuel cycle . 111

5-19 Accumulated activity, varying corrosion growth rates of iron, over two months 112

5-20 Accumulated activity from cobalt, varying corrosion growth rates of nickel . 113

5-21 Accumulated activity from cobalt, varying corrosion growth rates of nickel,

over one month . 113

12

List of Tables

1.1 Half-life, thermal neutron capture cross sections (fast neutron capture for
58Ni), and natural abundance (𝜇) of activated species [9–16] 20

2.1 Variables in CPAIR-P . 31

2.2 Reactions considered by Macdonald et al. for calculating local pH at each

primary loop node . 34

2.3 Variables in Macdonald et al. model . 35

2.4 Equations in model developed by Macdonald et al. 36

4.1 ODEKernel variable names and descriptions 75

4.2 NodalKernel variable names and descriptions 76

4.3 AuxKernel variable names and descriptions 77

5.1 Solve parameters . 94

5.2 Parameters . 94

5.3 Reactions considered for dissolution/precipitation 96

5.4 Diffusivities for O2
− in base metals; calculated using an Arrhenius relationship

at a temperature of 582 K. 97

5.5 Corrosion rate constants used to obtain fixed thicknesses of oxide growth from

corrosion . 111

A.1 Typical PWR fuel rod parameters - based on Seabrook Station Reactor (from

Todreas & Kazimi, Appendix K) . 125

A.2 Typical PWR Design Parameters - based on Seabrook Station Reactor (from

Todreas & Kazimi, Appendix K) . 126

13

14

Nomenclature

Acronyms

304SS Type 304 Stainless Steel

316SS Type 316 Stainless Steel

A600 Inconel 600/Alloy 600

A690 Inconel 690/Alloy 690

AOA Axial Offset Anomaly

BC Boundary Condition

BWR Boiling Water Reactor

CILC CRUD-Induced Localized Corrosion

CIPS CRUD-Induced Power Shift

CRUD Chalk River Unidentified Deposits

ECP Electrochemical Corrosion Potential

FEM Finite Element Method

IC Initial Condition

INL Idaho National Laboratory

LWR Light Water Reactor

15

MOOSE Multiphysics Object Oriented Simulation Environment

NPP Nuclear Power Plant

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PETSc Portable, Extensible Toolkit for Scientific Computation

PWR Pressurized Water Reactor

SNB Subcooled Nucleate Boiling

Physics Constants

𝑁𝐴 Avogadro Constant 6.022140857× 1023𝑚𝑜𝑙−1

𝑅 Gas Constant 8.3144598 𝐽/𝑚𝑜𝑙 −𝐾

Other Symbols

Δ𝐺0
𝑓 Standard Gibbs free energy of formation

𝜌 Density

𝐷𝑖 Diffusivity of species i 𝑚2/𝑠

𝐺 Mass flux 𝑘𝑔/𝑚2 − 𝑠

𝑉 Constant Volume

Chemical Notation

[Fe2+] Molar concentration of Fe2+ 𝑚𝑜𝑙/𝑚3

54Fe, Fe-54 Iron isotope with 54 nucleons

Fe2+ Iron ion with 2+ charge

Mi+, Mi – Metal ion with i+ or i- charge

16

Chapter 1

Introduction

1.1 Motivation (The CRUD problem)

Global energy production is central to much of the modern world, and increasing energy

demands necessitate the use of a diverse mix of energy sources to provide reliable, affordable

electricity. However, not all energy sources are equal, especially as concerns over environ-

mental carbon emissions and global climate change increasingly dictate the mix of energy

sources utilized. The second largest source of low-carbon electricity generation is nuclear

fission, which accounts for approximately 11 percent of the worldwide energy portfolio [1].

The International Atomic Energy Agency (IAEA) reported that as of 2017, 448 nu-

clear power plants (NPPs) were operational worldwide. Of these, pressurized water reactors

(PWRs) make up approximately 65 percent, with 289 plants total. As of December 2016,

an additional 51 new reactors under construction (of 61 total) are PWRs. The second

most abundant NPPs are boiling water reactors (BWRs) (17.4%, 78 plants), followed by

pressurized heavy-water reactors (PHWRs) (10.9%, 49 plants). With 20 percent of annual

electricity generation in the United States coming from 99 operating nuclear plants - includ-

ing 65 PWRs - finding solutions to common operational problems is crucial to maintaining

this component of the US clean energy portfolio [2].

17

1.1.1 Pressurized water reactors

Pressurized water reactors are a type of “light water” cooled and moderated nuclear reactors

(commonly referred to as light water reactors, or LWRs). “Light” water refers to the use

of “normal” water (H2O) in contrast to “heavy” water (D2O or 2H2O) - water in which the

hydrogen isotope contains a neutron, making it “heavy” hydrogen (also called deuterium). In

a BWR, the water is allowed to boil in the core to release steam, which goes through a turbine

to convert the steam energy into electricity. The water coolant in PWRs is pressurized to

approximately 15-16 MPa to prevent boiling in the reactor core.

Figure 1-1: Schematic of PWR systems (primary and secondary loops) [3]

The main components of a PWR make up the primary and secondary coolant loops, which

work together to take heat produced by fission in the reactor core and convert it to electricity

with turbine systems; Figure 1-1 presents a schematic of these components. The primary

loop is entirely inside of the containment structure, and consists of the reactor core, steam

generator, and piping between these two components (referred to as the hot leg and cold leg,

for the segment bringing hot coolant water from the core to the steam generator and the

segment bringing cooler water from the steam generator back to the core, respectively). The

secondary loop interfaces with the primary loop in the steam generator, where heat from

the primary loop coolant is transferred to the secondary loop coolant. The separation of

18

these two loops allows for containment of radioactive materials and fission products within

the primary loop and containment structure, decreasing the risk for radioactive material

contamination or release in the turbine and generator systems.

1.1.2 Crud and steam generator oxides in PWRs

In a pressurized water reactor (PWR), corrosion of materials in the primary loop, includ-

ing steam generator components, hot leg piping, core components, and cold leg piping, is

constantly occurring due to the exposure of these materials to the coolant. Primary loop

materials are dissolved into the coolant, forming aqueous metal ions and releasing particulate

oxides into the coolant. Particulate and ionic release is dependent on many environmental

factors, including temperature, electrochemical potential, pH, local fluid properties, and sol-

ubilities of different chemical species in the coolant [4, 5]. Crud (Chalk River Unidentified

Deposits), the name of fouling deposits made of these corrosion products, can deposit on the

fuel rod clad surfaces. The predominant phases of crud found in PWRs are non-stoichiometric

nickel ferrite spinel (NixFe3–xO4) and nickel oxide or nickel metal [4]. Interactions between

the crud and coolant can dissolve or dislodge particulates and ions into the coolant, which

then circulate the primary loop.

Crud deposits in the core of nuclear reactors cause a variety of operational issues, par-

ticularly in PWRs. These issues include CRUD-induced power shift (CIPS)/axial offset

anomaly (AOA) and CRUD-induced localized corrosion (CILC), which have been the sub-

ject of many industrial and academic efforts to understand, predict, and reduce the impacts

of these problems [6]. CIPS/AOA is a phenomenon when the axial power distribution shifts

towards the bottom of the core; this occurs when crud deposits preferentially on the upper

portions of PWR fuel rods due to subcooled nucleate boiling (SNB). Boron then deposits

in pores of the crud. Boron has a large thermal neutron capture cross section (3600 barns),

allowing it to absorb neutrons easily [7]. This causes local flux depressions in areas with

more crud (thus, more boron), and the overall downward shift of the power distribution [8].

This shift in the power distribution reduces the control rod worth during the initial stages of

control rod insertion. The downward shift also causes “fresher” fuel near the top of the core,

which increases reactor power unexpectedly during restart because deposited boron dissolves

19

Reaction 𝑡1/2 (days) 𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒 (b) 𝜇 (at. %)
54Fe(n,𝛾)55Fe 1001.56 2.25 5.845
58Fe(n,𝛾)59Fe 44.495 1.314 0.2819
50Cr(n,𝛾)51Cr 27.7025 15.37 4.3452
58Ni(n,p)58Co 71.3 0.105 68.0769
58Co(n,𝛾)59Co stable 1855 n/a
59Co(n,𝛾)60Co 1925.28 37.5 100
94Zr(n,𝛾)95Zr 64.032 0.04987 17.380

Table 1.1: Half-life, thermal neutron capture cross sections (fast neutron capture for 58Ni),
and natural abundance (𝜇) of activated species [9–16]

out of the crud during reactor shutdown. Crud deposition onto fuel cladding also leads to

increased temperatures at the clad-crud interface, which causes sharp temperature gradients

in the clad. These gradients induce faster local corrosion rates in areas with thicker crud

growth, and this process is called CILC [8].

However, there is another operational problem caused by crud that has not been ex-

amined with the same mechanistic treatment and level of detail in modeling in the open

literature: buildup of radioactive corrosion products outside of the core. Nickel based alloys

and austenitic stainless steels (such as 316 or 304 grade) are commonly used materials for

PWR steam generators, and austenitic stainless steel is commonly used for hot and cold leg

piping [5]. Zirconium-based alloys (such as Zircaloy-4) are typically used in the fuel cladding

and other in-core structures [5]. These alloys contain iron, nickel, chromium, zirconium,

and cobalt - all of which can undergo neutron capture to form activated isotopes with half-

lives ranging from 1 month to over 5 years (see Table 1.1). As corrosion products formed

from these materials are transported through the core, they are subject to high neutron flux

and can undergo neutron capture to form radioactive isotopes (“activated species”). These

aqueous corrosion products and crud particulates, both activated and nonactivated, can be

transported out of the core and deposit on the walls of the cold leg, hot leg, and steam

generator components. Corrosion products then deposit on primary loop structures; oxides

formed on these structures become radioactive as activated species are deposited.

Deposition of activated species outside of the core yields higher radiation dose rates for

workers who maintain the primary loop systems, as the accumulated radioactivity outside

of the core remains long after the plant is shut down [5, 6]. Typical radiation protection

20

guidelines emphasize the principle of ALARA ("as low as is reasonably achievable"), which

“means making every reasonable effort to maintain exposures to radiation as far below the

dose limits in this part as is practical” [17]. The annual occupational dose limit, specified

in NRC Regulations, are 5 rem per person [17]. In 1979, degradation of steam generator

tubing from corrosion product buildup at Surry Unit 2 necessitated their replacement [18].

According to a report from the US Environmental Protection Agency, 150 people received

occupational exposure above the 5 rem limit in 1976 due to PWRs; 72 of these occurred at

Surry [19]. Similarly, in 1977, there were 93 exposures above the dose limit due to PWRs,

with 64 of those at Surry [19]. Maintenance of the steam generators in the years prior to

this replacement, as well as during the replacement operations, led to significantly higher

exposures for workers at Surry.

1.1.3 Modeling activity accumulation in primary loop oxides

Models to predict the behavior that creates these problems are of great interest to the

nuclear energy community, and have traditionally been understood through careful exper-

imental evaluations and development of correlations or semi-empirical relations to predict

crud buildup and behavior in reactors. However, mechanistic models are lacking - and semi-

empirical models do not hold up well for reactors with substantially different geometries or

operating conditions than the reactor for which the model was optimized. To obtain a better

understanding of activity buildup on the primary side for modern PWRs, a model for activ-

ity transport that is based upon the mechanisms of processes is needed [5]. By simulating

this process using the mechanisms, instead of empirical relations from measurements, new

plants can be modeled with greater accuracy. Such models can aid in the design process

as well, by choosing construction materials based on minimization of the corrosion products

that lead to high accumulated activity in ex-core primary loop structures. Physics-informed

designs and renovations to plants can help to minimize the exposure of primary-side workers

to high doses of radiation, which is increasingly important as regulations on accumulated

worker doses become stricter.

Current activity transport codes are based on empirical or semi-empirical models and

correlations that are highly plant-specific, making it difficult to adapt these codes to new

21

reactor styles, geometries, or coolant chemistry conditions. As such, these codes are no

longer adequate for accurately predicting behavior in modern PWRs with transient operating

conditions. Additionally, many of these codes are not open-source, which makes it difficult

to study and modify the models to simulate new plants or add new models for mechanisms

of physical processes being simulated.

1.2 Thesis objectives

The objective of this thesis is the development of a code that can predict the concentration of

active isotopes in a primary loop as function of time and plant operating parameters - with

a mechanistic treatment instead of empirical - for versatility to apply to a broad range of

PWR geometries. This code was developed in C++ using the Multiphysics Object Oriented

Simulation Environment (MOOSE). MOOSE is an open source finite element framework

developed by the Idaho National Laboratory, designed to solve tightly coupled sets of partial

differential equations on arbitrary geometries using implicit numerical methods and finite

element methods. MOOSE is not specifically adapted for any particular field or application,

and the MOOSE MultiApp Transfer System facilitates coupling of different MOOSE Appli-

cation codes to obtain high-fidelity multiphysics simulations of large-scale systems [20, 21].

An activity transport model developed by Macdonald et al. [5] was adapted for implementa-

tion using modular code design in a MOOSE application; this facilitates future coupling to

high-fidelity thermal hydraulic, fuel performance, neutron transport, and coolant chemistry

codes for transient multiphysics feedback. This model, as well as the ability to track the

isotopic inventory, was added to an existing crud source term code, Ouroboros, a C++ code

that uses the MOOSE Framework.

The model implemented in this code uses plant-specific parameters such as temperature,

chemical characteristics, hydrodynamic properties, and electrochemical properties, minimiz-

ing the use of empirical-based models and parameters, to determine activity transport in

the PWR primary loop. This treatment allows for detailed modeling of a broader style of

plants, whose geometries and coolant chemistry do not need to have been previously studied

in terms of activity transport, in order to provide better estimates of isotope uptake and

22

deposition throughout the primary loop. Mechanisms for precipitation or dissolution rates

are represented - not using empirical rate constants, which vary plant to plant dependent

upon the many parameters mentioned previously.

Operating parameters for PWRs are carefully considered, as it is a delicate balancing

act to optimize plant performance while also achieving conditions to minimize crud, activity

buildup, and other corrosion mechanisms (and stress corrosion cracking). For example, the

pH must be controlled within a narrow window; too low pH can cause more crud release via

accelerated primary side corrosion, while too high pH can increase Zircaloy corrosion and

impact stress corrosion cracking by destabilizing the passive oxide film normally responsible

for protecting the underlying alloy [4]. By studying and modeling these processes to obtain a

deeper understanding of the mechanisms that drive them, plant parameters, materials, and

designs can be chosen to reduce the activity buildup in PWRs.

Development of an activity transport code implementing multiple physical processes for

mass transport is not a trivial task; developing a fully mechanistic modeling code, with

high spatial and temporal resolution on scales that vary by orders of magnitude, is even

less so. As such, it is vital to note that the end goal for developing a fully mechanistic

model is a long-term goal, and will require many iterations upon the code with improved

assumptions and equations as complexity is added and modification of physics for non-ideal

conditions are considered. To complete such a model, it is necessary to begin with many

assumptions that simplify the complexities greatly and may remove some of the nuances

of the real processes that occur; for example, many codes reviewed in this thesis assume a

uniform neutron flux distribution in the core to obtain an estimate on the correct order of

magnitude, with activation by thermal neutrons alone. Neutronics models can obtain high

levels of detail for the transient neutron flux over the fuel cycle, which could be considered

in the model. However, the truly interesting physics and chemistry - the mechanisms not yet

understood - are those of kinetics of dissolution and precipitation, of mass transport, and

of isotopic exchange. By simplifying the neutronics (crudely, yet sufficiently for this type

of model), the effects of modifying the mechanisms represented in the model can be easier

studied and understood. Once a better understanding for the mechanisms is gained, and the

model is no longer limited by that understanding, more detailed secondary physics can be

23

implemented to gain better spatial and temporal resolution that is closer to reality.

24

Chapter 2

Background

This chapter presents a summary of prior work that has been performed to understand

activity transport and buildup in PWRs, as well as a brief introduction to the Multiphysics

Object Oriented Simulation Environment (MOOSE) framework.

2.1 Mechanisms for activity transport

Figure 2-1 details the mechanisms responsible for activity transport in the primary loop.

The mechanisms of mass transport differ based on the state of the corrosion product (i.e.

soluble ions vs. nonsoluble particulates). Metallic ions are released into the coolant from

metal corrosion reactions, oxide dissolution reactions, and dissolution of particulates within

the coolant. Ions are removed by precipitation of oxides onto primary loop structures,

incorporation of ions into existing or growing oxides, and precipitation to form particulates

within the coolant. Particulates are released into the coolant through erosion of oxides or

formation by precipitation of ions in the coolant; removal of particulates occurs by dissolution

into ions or deposition onto primary loop structures.

Currently, the mechanisms believed to be responsible for ion mass transport are coolant

convection (transport throughout loop) and chemical solubility (dissolution/precipitation).

Turbulent flow in the coolant is responsible for transporting particles throughout the loop,

and erosion from coolant turbulence is governed by a force balance between hydrodynamic

forces and adherent forces between the particle and the wall. Multiple possible mechanisms

25

Figure 2-1: Mechanisms for activity transport at metal-oxide and oxide-coolant interface of
primary loop structures [22].

have been described for particulate deposition; these include turbulent diffusion (momentum

transfer), Brownian diffusion (for small particles), inertial impaction (large particles), sedi-

mentation in horizontal piping (due to gravity), and thermophoresis. These vary depending

on parameters and assumptions or simplifications considered in each model.

2.2 Previous models and codes

Activity accumulation in PWRs is certainly not a new issue to the nuclear power industry;

multiple models have previously been established to quantify the buildup of radioactivity in

the primary loop systems [5, 22]. These codes have been developed over many decades, and

approaches and assumptions used in each differ vastly depending on previous models and

on the desired end use for which each particular code was developed. Many of the models

were developed or calibrated for a particular PWR plant design or operating conditions. The

models/codes are briefly described in the following subsections.

26

2.2.1 Castelli model (corrosion source term)

Castelli published a crud source term model in Nuclear Corrosion Modeling: The Nature of

CRUD in 2009 [23]. The model represents a one dimensional PWR primary coolant loop,

with four types of mass balance equations for each element modeled to account for the cor-

rosion oxide sublayers and surface layers, aqueous solubles, and aqueous particulates. Four

nuclide activation reactions are included (59Co(𝑛, 𝛾)60Co, 64Zn(𝑛, 𝛾)65Zn, 58Ni(𝑛, 𝑝)58Co,
58Fe(𝑛, 𝛾)59Fe). The mass balance equations are loosely coupled nonlinear partial differential

equations, which are solved through linearization and iterative finite differencing methods.

The corrosion source term includes corrosion growth (conversion of base metals/alloys to

oxides) and corrosion release (release of metal ions into the reactor coolant) [23]. Elements

oxidize proportional to the weight percents in the reactor materials; the oxides formed are

typically spinels (AB2O4, where A is a divalent metal ion and B is a trivalent metal ion),

regardless of the base metal being oxidized. The spinel oxides most commonly found in

PWRs are magnetite (Fe3O4), nickel ferrite (NiFe2O4), ferrous chromite (FeCr2O4), and

nickel chromite (NiCr2O4) [23]. The oxide-based crud source term on 300- and 600-series

alloys forms with two distinct layers of oxides: a chromium-rich sublayer at the alloy interface,

and an iron-rich surface layer of “large tetrahedral crystals,” which are easily dislodged into

the coolant (see Fig. 2-2) [23].

The expression for rate of change of corrosion growth, using “thick film” growth kinetics,

is as follows:

𝜕𝑤

𝜕𝑡
=

𝑘𝑝

2
√
𝑡

where 𝑤 is the mass density of corrosion products on the surface (in milligrams of corro-

sion products per square decimeter of wetted area) in the primary loop, 𝑘𝑝 is the corrosion

growth rate for the particular alloy, and 𝑡 is the exposure time [23].

This model includes 4 mass balance equations per nuclide; two solid phases (one for

each oxide layer - elWsub and elWsur), and two aqueous phases (solubles, elCs and particu-

lates, elC𝑝). The physicochemical processes that couple these phases are represented by rate

constants (𝑘𝑠, 𝑘𝑟, 𝑘𝑑𝑝, 𝑘𝑒, 𝑘𝑑); descriptions of the processes can be found in Fig. 2-3.

27

Figure 2-2: Variables and processes represented in Castelli corrosion source term model [23].

Figure 2-3: Processes and rate constants in Castelli corrosion source term model [23].

28

The Castelli model consists of the following general set of equations. Hydraulic diam-

eter is represented as 𝑑ℎ, the coolant equilibrium saturated concentration is 𝐶𝑠𝑎𝑡, natural

abundance of an isotope is 𝜇, and radioactive decay parameter is 𝜆.

Corrosion growth/release

Subsurface source:
𝜕𝑊

𝜕𝑡
=

𝑘𝑝 − 𝑘𝑟√
𝑡

(2.1)

Soluble source:
𝜕𝐶𝑠

𝜕𝑡
=

4𝑘𝑟

𝑑ℎ
√
𝑡

(2.2)

Particulate deposition/erosion

Surface layer source:
𝜕𝑊

𝜕𝑡
= 𝑘𝑑𝑝𝐶𝑝 − 𝑘𝑒𝑊 (2.3)

Coolant source:
𝜕𝐶𝑝

𝜕𝑡
=

4

𝑑ℎ
(𝑘𝑒𝑊 − 𝑘𝑑𝑝𝐶𝑝) (2.4)

Hydrothermal crystallization/dissolution

Surface layer source:
𝜕𝑊

𝜕𝑡
= 𝑘𝑠(𝐶𝑠 − 𝐶𝑠𝑎𝑡) (2.5)

Soluble source:
𝜕𝐶𝑠

𝜕𝑡
= − 4

𝑑ℎ
(𝐶𝑠 − 𝐶𝑠𝑎𝑡) (2.6)

Radioactive source/decay

𝜕𝐶𝑎𝑐𝑡𝑖𝑣𝑒

𝜕𝑡
= 𝜇𝐶𝑛𝑜𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝜑− 𝜆𝐶𝑎𝑐𝑡𝑖𝑣𝑒 (2.7)

This set of equations is written for each element/isotope of interest in the system. Rate

coefficients/constants are used from measurements reported in published literature, accord-

ing to Castelli. The coolant equilibrium saturated concentration, 𝐶𝑠𝑎𝑡, is dependent on

temperature, pH, solid surface phases facing the coolant, and concentration of dissolved hy-

drogen in the coolant [23]. This is calculated from equilibrium thermodynamic equations

to relate the solid phase to the dissolved phase in the coolant using the dissolution reaction

29

equilibrium constant. Though it is not obvious from a simple inspection of this equation set,

“the ability to predict 𝐶𝑠𝑎𝑡 is key to the success of the entire fundamental modeling system”

according to Castelli.

2.2.2 CPAIR-P

CPAIR-P is a time-dependent corrosion product activity code, originated in Pakistan by

Mirza et al [24–26]. The model for the activated species mass balance involves five processes,

as can be seen in Equations 2.8. Corrosion products are activated from neutron capture in the

core, and removed by radioactive decay, water purification processes, deposition on primary

loop structures, and coolant leakage. Local concentration gradients in the primary loop are

not considered in this model, and precipitation/dissolution is modeled as being proportional

to the concentration fraction of a given species in the coolant. Empirical removal rates are

used in this model, based on published data on PWRs. Dissolution and deposition rates from

experimental data are used. This code implements an implicit, fourth-order Runge-Kutta

scheme to solve the coupled set of ODEs. The mechanisms for rates of the physical processes

considered in the mass balance are not modeled, and are empirically determined [5, 26].

𝑑𝑛𝑤

𝑑𝑡
= 𝜎Φ𝐸𝑁𝑤 −

[︃∑︁
𝑗

𝜖𝑗𝑄𝑗

𝑉𝑤

+
∑︁
𝑘

𝑙𝑘
𝑉𝑤

+ 𝜆

]︃
𝑛𝑤 +

𝐾𝑝

𝑉𝑤

𝑛𝑝 +
𝐾𝑐

𝑉𝑤

𝑛𝑐 (2.8a)

∑︁
𝑗

𝜖𝑗𝑄𝑗 = 𝜖𝐼𝑄𝐼 + 𝜖𝑝𝑄𝑝 + 𝜖𝑐𝑄𝑐 + 𝜖𝐹𝑄𝐹 (2.8b)

𝑆𝑤(𝑡) =
𝐶(𝑡)𝑆𝑁𝐴

𝑉𝑤𝐴
𝑓𝑛𝑓𝑠 (2.8c)

Empirical removal rates are used in this model, based on published data on PWRs. Dis-

solved boron concentration is a function of time based on measured plant operational data.

Group constant cross sections are calculated by another code, based on plant-specific core

design parameters including power density, core geometry, number of assemblies, linear heat

rate, coolant pressure, and inlet/outlet coolant temperatures. Precursor species concentra-

tions are considered to have a source term from the corrosion rates producing each species

(see Eq. 2.8c).

30

𝑛𝑤 activated concentration in coolant
𝑁𝑤 nonactive concentration in coolant
𝜎 group constant cross section
Φ𝑒 effective 1-group neutron flux
𝑛𝑝 activated concentration in piping
𝑛𝑐 activated concentration in core

𝜖𝐼𝑄𝐼 removal rate in coolant from ion exchanger
𝜖𝑝𝑄𝑝 deposition rate in piping
𝜖𝑐𝑄𝑐 deposition rate in core
𝜖𝐹𝑄𝐹 removal rate in coolant from filters
𝑙𝑘 leakage rate from 𝑘th leak
𝐾𝑝 removal rate from piping deposits
𝐾𝑐 removal rate from core deposits
𝑆𝑤 Source term for precursor concentration in coolant
𝐶(𝑡) corrosion rate as function of time
𝑆 wetted area of primary loop
𝐴 atomic weight of precursor
𝑓𝑛 natural abundance of isotope
𝑓𝑠 fraction of element present in construction material

Table 2.1: Variables in CPAIR-P

2.2.3 ACE-II

ACE-II is an empirical activity transport code that was developed for modeling Japanese

PWRs [5, 22, 27]. The model considers formation of an inner and outer oxide layer from

corrosion in the primary loop, and both particulates and metal ions are released into the

coolant from erosion and dissolution of the outer oxide layer, respectively. These species

are activated from neutron flux in the core (either in the aqueous state or by activation

and release of CRUD from core internal structures), and both activated and non-activated

species precipitate throughout the primary loop. This code also includes isotopic exchange,

where the activated species that precipitate diffuse through the outer oxide, inner oxide,

and into the base construction materials of the primary loop. Mass transport is considered

by using empirically determined solubilities for corrosion products. Rates of various kinetic

processes are represented by experimentally measured rate constants, which are specific to

a particular plant for which the code is optimized. The code implements iron, nickel, and

cobalt elemental mass balance calculations and tracks activated 58Co and 60Co [22]. ACE-

II includes models to account for the effect of pH on erosion and deposition rates, which

31

can be significant for particulates due to surface charge effects [22]. However, the empirical

nature of ACE-II could lead to difficulty when modeling reactors with different operating

parameters, geometries, or coolant chemistry [5, 6]. Corrosion rates, soluble species mass

transfer coefficients, and aqueous solubilities of nickel and cobalt used were estimated from

measured plant data [22].

2.2.4 MIGA-RT

MIGA-RT is a code developed by Dinov for predicting activity buildup in PWRs and their

Russian counterpart, water-water energetic reactors (VVERs) [5,22,28,29]. The code models

steady-state conditions, as temporal variation is not included, and transients are considered

by changing the water chemistry conditions in the simulation at each statepoint desired

throughout the fuel cycle. Soluble and particulates are considered, though particulates are

considered more thoroughly; Dinov implemented an analytical model for determining mass

transfer coefficients of particulates based on sticking probabilities and surface conditions

within the primary loop [5,27]. This code includes activation of ionic and particulate corro-

sion products for two nuclides: 58Ni(𝑛, 𝑝)58Co, and 59Co(𝑛, 𝛾)60Co. Solubilities of corrosion

products in nonstoichiometric nickel ferrite are calculated using thermodynamic stability

models. Magnetite (Fe3O4), nickel oxide, and nickel metal phases are also included in ther-

modynamic solid-phase stability calculation [22]. MIGA-RT was used to determine the

activity buildup in the primary loop of Cruas-1, and was validated with data from EBO-1

(Bohunice NPP), Loviisa 1 and 2, and Beznau NPP [22].

2.2.5 PACTOLE

Developed in France by Commissariat a l’Energie Atomique (CEA) with collaboration from

Electricite de France (EDF) and Framatome, the PACTOLE code for activity transport

implements many analytic solutions to equations for calculating concentrations [5, 22, 30].

The main assumption in this code is that corrosion products are released from oxides di-

rectly into the coolant. The corrosion oxides, as in the ACE-II code, are treated as an inner

and outer oxide layer, and the rate of dissolution of ions is proportional to the inner ox-

32

ide thickness, while the rate of particulate erosion is proportional to the outer oxide layer

thickness. The mechanism for precipitation of dissolved species is modeled by considering

concentration gradients and saturated concentrations of species in the coolant. Mechanisms

for precipitation of particulates are also implemented, including gravitational settling, tur-

bulent diffusion, and thermophoresis [5]. Main advantages of this code include the use of

predominantly analytic or mechanisms-based models with many physicochemical processes

represented, including treatment of both soluble and particulate corrosion products.

2.2.6 Macdonald Model

Macdonald et al. developed an activity transport model with the intent of avoiding the

use of empirical data, which would prevent it from being used for a variety of plants and

conditions [5]. This model focuses on the impact of physicochemical, hydrodynamic, and

electrochemical properties of the system, in addition to thermal hydraulic parameters. The

primary loop is discretized into 15 nodes, and these properties are calculated at each node

along the primary loop based on local conditions [5]. A detailed model for calculating the

local electrochemical corrosion potential (ECP) is implemented; this potential varies with

temperature, pH, thermal hydraulic parameters, and local concentrations of electroactive

species from water radiolysis reactions (see Table 2.2) that includes lithium and boron,

which are commonly used to control the primary loop pH. In this code, local pH is cal-

culated based on a system of 8 chemical reactions that includes lithium and boron, which

are commonly used to control the primary loop pH. The local ECP is determined using a

“mixed potential model” that takes into consideration the electrochemical potentials of each

electroactive species calculated, and accumulates the total ECP by summing each species’

potential weighted by the local species concentration [5].

The dissolution and precipitation of corrosion products in the coolant is modeled by con-

sidering the saturation concentration of corrosion products in the coolant near the coolant-

clad/oxide interface along the primary loop.

33

Chemical Reaction
1 B(OH)3 +OH− = B(OH)4

−

2 2B(OH)3 +OH− = B2(OH)7
−

3 3B(OH)3 +OH− = B3(OH)10
−

4 4B(OH)3 + 2OH− = B4(OH)14
2−

5 5B(OH)3 + 3OH− = B5(OH)18
3−

6 Li+ +OH− = LiOH
7 Li+ + B(OH)4

− = LiB(OH)4
8 H2O = H+ +OH−

Table 2.2: Reactions considered by Macdonald et al. for calculating local pH at each primary
loop node

Model Equations

Processes represented in each equation of this model can be found in Table 2.4, and nomen-

clature can be found in Table 2.3.

The dissolution and precipitation of corrosion products in the coolant is modeled by con-

sidering the saturation concentration of corrosion products in the coolant near the coolant-

clad/oxide interface along the primary loop. Concentrations of an aqueous species (𝐵)

released by an electrochemical reaction between an oxide or metal (𝐴) (Eq. 2.9a) are de-

termined by the Nernst equation (Eq. 2.9b) under the assumption of local equilibrium

conditions.

𝑎A+ 𝑥H+ + 𝑧𝑒− → 𝑏B + 𝑐H2O (2.9a)

𝐸 = 𝐸0 − 2.303𝑅𝑇

𝑧𝐹
log𝑄𝑟𝑥𝑛 (2.9b)

𝐶𝑠,𝑖,𝑗 = 10

[︃
𝑧
𝑏

𝐹
2.303𝑅𝑇

(︃
−Δ𝐺0

𝑓,𝑖
𝑧𝐹

−ECP

)︃
−𝑥

𝑏
pH

]︃
(2.9c)

The reaction quotient 𝑄𝑟𝑥𝑛 for the reaction in Eq. 2.9a can be written as:

𝑄𝑟𝑥𝑛 =
𝑎𝑏𝐵𝑎

𝑐
H2O

𝑎𝑎𝐴𝑎
𝑥
H+

The activity of water (𝑎H2O) and the activity of the solid oxide (𝑎𝐴) can be set equal to 1 by

convention. This model lets E = local ECP, 𝐸0 =
−Δ𝐺0

𝑓,𝑖

𝑧𝐹
, and expands the logarithm term to

34

Symbol Description

𝐶𝑠,𝑖,𝑗 Surface/saturation concentration of ion 𝑖 at 𝑗
𝐶𝑏,𝑖 Bulk coolant concentration of ion 𝑖
𝐶𝑛

𝑏,𝑖𝑠𝑜,𝑝 Bulk coolant concentration of isotope
𝐶𝑏,𝑒𝑙𝑒𝑚𝑒𝑛𝑡 Bulk coolant concentration of element̃︀𝐶𝑝𝑟𝑒𝑐𝑖𝑝,𝑖𝑠𝑜,𝑗 Concentration of activated, precipitated isotope at section 𝑗̃︀𝐶𝑏,𝑖𝑠𝑜,𝑝 Bulk coolant concentration of activated isotope
𝑅𝑖,𝑗 Release rate of ion 𝑖 at section 𝑗
𝑅𝑛,−

𝑖,𝑗 Negative values of release rate (precipitation)
𝑅𝑛,+

𝑖,𝑗 Positive values of release rate (dissolution)
𝐷𝑖,𝑗 Diffusivity of ion 𝑖 at section 𝑗
𝑆ℎ𝑗 Sherwood number at 𝑗
Δ𝐺0

𝑓,𝑖 Change in Gibbs energy of formation of 𝑖
𝜑𝑗 Neutron flux of section 𝑗
𝐴𝑗 Wetted area of section 𝑗
𝐿𝑗 Length of section 𝑗
𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒 Neutron capture cross-section of isotope
𝜇 Natural abundance of isotope
𝜆𝑝 Decay constant for isotope from modeled reaction 𝑝

Table 2.3: Variables in Macdonald et al. model

substitute in 𝑝𝐻 = − log 𝑎H+ . The activity of ion B is replaced with its molar concentration

by assuming a dilute solution. Some additional algebraic rearrangement yields an expression

for the saturation or surface concentration of species 𝐵 that is used in this model, see Eq.

2.9c.

Concentrations of the aqueous species due to chemical reaction is determined using rate

theory of equilibrium reactions. For a reaction 𝑎A + 𝑥H+ → 𝑏B + 𝑐H2O, the reaction rate

constant K is calculated by:

𝐾 =
𝑎𝑏𝐵𝑎

𝑐
H2O

𝑎𝑎𝐴𝑎
𝑥
H+

= exp

(︂−Δ𝐺0
𝑓,𝑖

𝑅𝑇

)︂
Applying the same conventions on the activity of water and the solid oxide as used for

electrochemical reactions and using the definition of pH to substitute 𝑎𝑥
H+ = 10−𝑥𝑝𝐻 , this

expression can be rearranged to Eq. 2.10:

𝐶𝑠,𝑖,𝑗 =

[︂
10−𝑥𝑝𝐻 exp

(︂−Δ𝐺0
𝑓,𝑖

𝑅𝑇

)︂]︂−𝑏
(2.10)

35

Eqn. Processes represented
2.10 Surface concentration of ion i at location j - dissolution due to chemical reaction
2.9c Surface concentration of ion i at location j - due to electrochemical reaction
2.11 Diffusivity of ion i at location j
2.12 Rate of dissolution/precipitation of ion i at location j
2.13 Total rate of change of ion i in bulk coolant
2.14 Dissolution, activation, and precipitation of nonactivated isotope
2.15 Activation, decay, precipitation of activated isotope
2.16 Precipitation build-up of activated isotope

Table 2.4: Equations in model developed by Macdonald et al.

The rate of release or deposition of ionic species into and out of the bulk primary coolant

is driven by the concentration gradient between the local surface concentration and the

bulk coolant. This rate is impacted by the species diffusivity in the coolant at the local

temperature, which is also a function of the mass transfer coefficient, 𝑘𝑐. The mass transfer

coefficient is important in describing mass transport in non-steady state conditions of fluids

with turbulent flow and mixing [31]. The effects of turbulent mixing are significant in this

system and cannot be neglected, so the mass transfer coefficient is implemented in calculating

the species diffusivity to account for this effect. Diffusivity is calculated using a typical

Arrhenius-type expression, taking into account the local temperature; see Eq. 2.11.

𝐷𝑖,𝑗 = 𝐷0
𝑖 exp

[︂
𝑘𝑐𝑖,𝑗
𝑅

(︂
1

𝑇𝑗

− 1

298.15

)︂]︂
(2.11)

The species rate of release and deposition is determined by a mass transport equation,

driven by the concentration gradient from the local surface concentration and the bulk

coolant, that considers diffusive and convective transport properties; see Eq. 2.12. This

expression incorporates effects from the hydrodynamic properties of the coolant through the

Sherwood number, 𝑆ℎ. The Sherwood number is a dimensionless number that represents

the ratio of convective to diffusive mass transfer rates.

𝑅𝑖,𝑗 = 𝐷𝑖,𝑗
𝑆ℎ𝑗𝐴𝑗𝑐

𝐿𝑗

(𝐶𝑠,𝑖,𝑗 − 𝐶𝑏,𝑖) (2.12)

If the surface concentration is greater than the bulk concentration, the species will be

released and move away from the interface to the bulk coolant. Likewise, if the bulk concen-

36

tration is greater than the saturation/surface concentration, the species will precipitate out

of the coolant at this interface. The release rate is also dependent on the wetted area (𝐴𝑗)

and length of the node (𝐿𝑗), which varies by material and primary loop component.

The total bulk concentration of an ionic species is calculated by integrating the release/de-

position rates of the species along each node of the primary loop (Eq. 2.13).

𝑑𝐶𝑛
𝑏,𝑖

𝑑𝑡
=
∑︁
𝑗

𝑅𝑖,𝑗 (2.13)

The isotopic species balance equations contain terms accounting for dissolution into the

coolant, loss to activation by neutron capture, and loss from precipitation out of the coolant

(Eq. 2.14). Isotopes are dissolved in proportion to their natural abundance, 𝜇, and pre-

cipitate in proportion to the ratio of the bulk concentration of the isotope to the bulk

concentration of the parent element in the coolant.

𝑑𝐶𝑏,𝑖𝑠𝑜,𝑝

𝑑𝑡
= 𝜇𝑝

⎛⎜⎝
∑︀

𝑒𝑙𝑒𝑚𝑠

∑︀
𝑗

𝑅𝑛,+
𝑖,𝑗∑︀

𝑗

𝑉 𝑜𝑙𝑗

⎞⎟⎠−∑︁
𝑗

𝐶𝑛
𝑏,𝑖𝑠𝑜,𝑝𝜑𝑗𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒 −

(︃
𝐶𝑛

𝑏,𝑖𝑠𝑜,𝑝

𝐶𝑛
𝑏,𝑒𝑙𝑒𝑚

)︃⎛⎜⎝
∑︀

𝑒𝑙𝑒𝑚𝑠

∑︀
𝑗

𝑅𝑛,−
𝑖,𝑗∑︀

𝑗

𝑉 𝑜𝑙𝑗

⎞⎟⎠ (2.14)

Similarly, activated isotopes are modeled with balance equations that account for acti-

vation via neutron capture, loss by radioactive decay, and loss by precipitation (Eq. 2.15)

Isotopes are assumed to precipitate in proportion to the ratio of the bulk concentration of

the isotope to the bulk concentration of the parent element.

𝑑 ̃︀𝐶𝑏,𝑖𝑠𝑜,𝑝

𝑑𝑡
=
∑︁
𝑗

𝐶𝑛
𝑏,𝑖𝑠𝑜,𝑝𝜑𝑗𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒 − 𝜆𝑝

̃︀𝐶𝑏,𝑖𝑠𝑜,𝑝 −

(︃ ̃︀𝐶𝑛
𝑏,𝑖𝑠𝑜,𝑝

𝐶𝑛
𝑏,𝑒𝑙𝑒𝑚𝑒𝑛𝑡

)︃⎛⎜⎝
∑︀

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

∑︀
𝑗

𝑅𝑛,−
𝑖,𝑗∑︀

𝑗

𝑉 𝑜𝑙𝑗

⎞⎟⎠ (2.15)

Using these balance equations, a full system mass balance is represented, and the activity

buildup is quantified from the concentrations of precipitated activated isotopes (Eq. 2.16).

̃︀𝐶𝑛+1
𝑝𝑟𝑒𝑐𝑖𝑝,𝑖𝑠𝑜,𝑗 = (1− 𝜆𝑝Δ𝑡) ̃︀𝐶𝑛

𝑝𝑟𝑒𝑐𝑖𝑝,𝑖𝑠𝑜𝑡𝑜𝑝𝑒,𝑗 +
̃︀𝐶𝑏,𝑖𝑠𝑜,𝑝𝑁𝑉Δ𝑡𝜆𝑝

𝐶𝑏,𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐴𝑗

∑︁
𝑖∈𝑒𝑙𝑒𝑚

𝑅𝑛,−
𝑖,𝑗 Δ𝑡 (2.16)

37

2.2.7 Comparison of previous models

With the exception of PACTOLE and the model by Macdonald et al., these codes are all

based on empirical or semi-empirical models and correlations that are highly plant-specific,

making it difficult to adapt these codes to new reactor styles, geometries, or coolant chemistry

conditions. Many of the models were developed or calibrated for a particular PWR plant

design or operating conditions, which limits the versatility in applying the models to other

PWRs. Development of codes with more mechanistic-based models to replace empirical

models could improve the accuracy of modeling modern PWRs with transient operating

conditions and new designs.

2.3 MOOSE Framework

The Multiphysics Object Oriented Simulation Environment (MOOSE) is an open source

finite element framework developed by the Idaho National Laboratory (INL). The MOOSE

framework uses fully-coupled and implicit multiphysics solvers (such as the Portable, Ex-

tensible Toolkit for Scientific Computation (PETSc) developed by Argonne National Labo-

ratory), and harnesses the finite element library libMesh for automatic parallelization and

mesh adaptivity, among other features [20,21].

The MOOSE framework is physics-agnostic; that is, the framework is designed to solve

tightly coupled sets of partial differential equations (PDEs) on arbitrary geometries using

implicit numerical methods and finite element methods, and is not specifically adapted for

any particular field or application. MOOSE-based applications have been developed for a va-

riety of physics problems, including nuclear reactor fuel performance modeling (BISON), hy-

drothermal and geothermal systems (FALCON), and phase field modeling of microstructural

evolution (MARMOT). Length scales of these physics vary from micrometers to hundreds

of meters, and the timescales can vary from fractions of a second to decades [20,21].

Developed in C++, the MOOSE framework uses an object-oriented approach to develop

extensible sub-systems to represent physics, set up meshes, applying boundary conditions

and material properties, and execute solves (Figure 2-4 presents a high-level overview of

the MOOSE framework architecture). MOOSE development is focused on providing “plug-

38

Figure 2-4: MOOSE Application architecture [32]

Figure 2-5: MOOSE code breakdown example [32]

and-play” capabilities for modeling different physics, materials, initial/boundary conditions,

and solve types to allow scientists and engineers to develop models efficiently by removing

the need for users to develop or implement nonlinear solvers, discretization schemes, or

parallelization capabilities. Users can add new physics by creating a “Kernel,” a MOOSE

object that represents the “weak form” of a single term in a PDE (see Figure 2-5) [32]. Each

term is added individually to the MOOSE Application input file, making it simple to modify

the physics being solved.

39

40

Chapter 3

Chemistry/Physics of Model (Methods)

This chapter presents the chemistry and physics considered in this model, the set of equations

and their assumptions/simplifications, and a comparison of this model with prior models.

The MOOSE implementation of this model is discussed in detail in the next chapter.

3.1 Original Ouroboros code

At the outset of this work, a bare-bones crud source term modeling code had previously

been developed using the MOOSE framework. This code, Ouroboros, implemented two

ordinary differential equations (ODEs) that determine the concentration and release rate

of soluble species from construction materials into the coolant and the release of soluble

species from crud, and a calculation of oxide thickness, all of which evolve in time. These

equations, while included in the modified version of Ouroboros, are not implemented in

the model/simulations presented in this thesis. The equations have been included here for

completeness and documentation of the code.

The release rate of soluble species from construction materials is calculated using Equa-

tion 3.1, where 𝐷𝑖 is diffusivity of species 𝑖, 𝐶𝑖 is concentration of species 𝑖, 𝑁𝐷 is number

density, th is oxide thickness, 𝑁𝐴 is Avogadro’s number, and wp is the wetted perimeter of

the section.

𝑅𝑖 =
𝐷𝑖 · 𝐶𝑖 · wp ·𝑁𝐷

th ·𝑁𝐴

(3.1)

41

Oxide thickness is determined using Equation 3.2, where th is the oxide thickness, offset

is the offset for starting oxide thickness, prefact is the prefactor for growth, and 𝑃 is the

thickness power. Oxide thickness is independent of concentrations, just the thickness power,

which is constant in each region.

th = offset · prefact(𝑡𝑃) (3.2)

The crud concentration ODE is represented by Equation 3.3, where R is deposition rate,

which is from the growth of the outer oxide crystal layer.

𝑑𝐶

𝑑𝑡
= 𝑅 · wp (3.3)

The soluble species coolant concentration ODE is Equation 3.4, where R is soluble metal

release rate from diffusion of soluble species through the oxide (Eqn. 3.1).

𝑑𝐶

𝑑𝑡
= 𝑅 · wp =

𝐷𝑖 · 𝐶𝑖 · wp ·𝑁𝐷

th ·𝑁𝐴

· length (3.4)

42

3.2 Modifications and additions to Ouroboros

3.2.1 Corrosion growth source term

The corrosion growth model was implemented from the Castelli model:

𝜕𝑤

𝜕𝑡
=

𝑘𝑝

2
√
𝑡

where 𝑤 is the mass density of the surface (in milligrams of alloy per square decimeter

of wetted area) in the primary loop, 𝑘𝑝 is the corrosion growth rate for the particular alloy,

and 𝑡 is the exposure time [23]. For simplicity, it is assumed that the corrosion growth rate

𝑘𝑝 is constant, regardless of alloy, for each element considered. This is easily modified by

using a function to set the value of 𝑘𝑝 in each region of the primary loop. For consistency

in units, the calculation implemented in Ouroboros also uses the molar mass of the oxide

created (𝑀𝑀𝑜𝑥𝑖𝑑𝑒) and the wetted area of the section to output the concentration of solid

oxide phase in moles per unit time.

𝑑𝑚𝑜𝑥𝑖𝑑𝑒

𝑑𝑡
=

𝑘𝑝𝑤𝑎

2
√
𝑡

Note that the units of 𝑘𝑝 are typically expressed in mass per unit area per
√
𝑡𝑖𝑚𝑒.

Elements oxidize proportional to their weight percent in the alloy; the rate is thus weighted

by the weight percent of the alloy to get the elemental concentration [23].

𝑑𝑚𝑒𝑙𝑒𝑚

𝑑𝑡
= 𝑤𝑡%× 𝑘𝑝𝑤𝑎

2
√
𝑡

To get this to a volumetric concentration of moles, this must be converted from mass to

moles. The concentration is also converted from a “surface” concentration (𝑚𝑜𝑙𝑠/𝑚2) to a

“volumetric” concentration (𝑚𝑜𝑙𝑠/𝑚3) by multiplying by 𝑑ℎ
4

.

𝑅𝑐𝑜𝑟𝑟 =
𝑑𝑛𝑒𝑙𝑒𝑚

𝑑𝑡
=

𝑘𝑝 · 𝑤𝑎
2
√
𝑡 ·𝑀𝑀𝑜𝑥𝑖𝑑𝑒

𝑑ℎ
4

(3.5)

43

3.2.2 Corrosion release source term

Derivation of metal ion release rate calculation

Metal ions are assumed to be released by solid state diffusion from the base metal through

the oxide layer of corrosion products into the coolant. The rate is a flux across the top oxide

surface times the area of that surface. The rate is derived using Fick’s first law for the flux,

with a constant source of the element 𝐶𝑚𝑒𝑡𝑎𝑙 at 𝑥 = 0 and assuming 𝐶 = 0 at 𝑥 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠.

𝐽 = −𝐷𝑑𝐶

𝑑𝑥
= −𝐷 𝐶𝑚𝑒𝑡𝑎𝑙 − 0

0− 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
= 𝐷

𝐶𝑚𝑒𝑡𝑎𝑙

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

So the rate can be expressed as:

𝑅 = 𝐽 · 𝑤𝑎 = 𝐷
𝐶𝑚𝑒𝑡𝑎𝑙

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
𝑤𝑎

If the concentration is given in 𝑚𝑜𝑙𝑠/𝑚3, then the units on this rate is 𝑚𝑜𝑙𝑠/𝑠. Solving

the ODE over all nodes will get the total number of moles released from metal ion diffusion

into the coolant. The concentration of element in the alloy can be calculated from the mole

fraction of the element in the alloy (𝑥𝑒𝑙𝑒𝑚 = 𝑚𝑜𝑙𝑒𝑠𝑖
𝑚𝑜𝑙𝑒𝑠𝑎𝑙𝑙𝑜𝑦

) and the density of the alloy.

𝐶𝑎𝑙𝑙𝑜𝑦 =
𝜌𝑎𝑙𝑙𝑜𝑦

𝑀𝑀𝑎𝑙𝑙𝑜𝑦

𝐶𝑒𝑙𝑒𝑚 = 𝐶𝑎𝑙𝑙𝑜𝑦 × 𝑥𝑒𝑙𝑒𝑚

The alloy composition is usually given by weight percents; this can be converted easily

to mole fractions. Note that molar mass is 𝑀𝑀𝑖 =
𝑚𝑎𝑠𝑠𝑖
𝑚𝑜𝑙𝑒𝑠𝑖

𝑤𝑡% =
𝑚𝑎𝑠𝑠𝑒𝑙𝑒𝑚

𝑚𝑎𝑠𝑠𝑎𝑙𝑙𝑜𝑦,𝑡𝑜𝑡
−→ 𝑚𝑎𝑠𝑠𝑒𝑙𝑒𝑚

𝑚𝑎𝑠𝑠𝑎𝑙𝑙𝑜𝑦,𝑡𝑜𝑡
×

𝑚𝑎𝑠𝑠𝑎𝑙𝑙𝑜𝑦
𝑚𝑜𝑙𝑒𝑠𝑎𝑙𝑙𝑜𝑦
𝑚𝑎𝑠𝑠𝑒𝑙𝑒𝑚
𝑚𝑜𝑙𝑒𝑠𝑒𝑙𝑒𝑚

=
𝑚𝑜𝑙𝑒𝑠𝑒𝑙𝑒𝑚
𝑚𝑜𝑙𝑒𝑠𝑎𝑙𝑙𝑜𝑦

= 𝑥𝑒𝑙𝑒𝑚

𝑥𝑒𝑙𝑒𝑚 = 𝑤𝑡%× 𝑀𝑀𝑎𝑙𝑙𝑜𝑦

𝑀𝑀𝑒𝑙𝑒𝑚

To express the element concentration in terms of known quantities:

44

𝐶𝑒𝑙𝑒𝑚 =
𝜌𝑎𝑙𝑙𝑜𝑦

𝑀𝑀𝑎𝑙𝑙𝑜𝑦

× 𝑥𝑒𝑙𝑒𝑚 =
𝜌𝑎𝑙𝑙𝑜𝑦

𝑀𝑀𝑎𝑙𝑙𝑜𝑦

× 𝑤𝑡%× 𝑀𝑀𝑎𝑙𝑙𝑜𝑦

𝑀𝑀𝑒𝑙𝑒𝑚

∴ 𝐶𝑒𝑙𝑒𝑚 =
𝜌𝑎𝑙𝑙𝑜𝑦

𝑀𝑀𝑒𝑙𝑒𝑚

× 𝑤𝑡%

And finally the full rate expression is:

𝑅𝑐𝑜𝑟𝑟,𝑀𝑅 = 𝐷
𝜌𝑎𝑙𝑙𝑜𝑦 · 𝑤𝑡% · 𝑤𝑎

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ·𝑀𝑀𝑒𝑙𝑒𝑚

(3.6)

This gives the moles of metal ions released from diffusion through the corrosion product

oxide layer per unit time. An alternative, less simplified assumption would be to make the

driving force for the diffusion flux (concentration gradient across the oxide) use the coolant

ion concentration as the concentration at the oxide-coolant interface. However, for this

preliminary model, the assumption of zero concentration at the surface of the oxide will

suffice, because typical ion saturated concentrations range from parts per billion to fractions

of one part per billion in PWRs [33].

It is important to note that the diffusivity in this expression is that of a metal ion diffusing

through the solid oxide layer, and differs from the diffusivity used in other parts of this model.

The solid state diffusivity is determined using an Arrhenius relation, 𝐷𝑖 = 𝐷0 exp (−𝐸𝐴/𝑅𝑇).

3.2.3 Surface/saturated concentration

The dissolution of ions from oxides into the coolant is driven by the coolant saturated

concentration; this concentration is determined from equilibrium relations of chemical and

electrochemical dissolution reactions between the metal, oxides, and coolant. It is a function

of temperature, pH, electrochemical potential (ECP), the Gibbs free energy of formation of

the reaction, and the stoichiometry of each reaction. This gives the equilibrium concentration

of the ions in the coolant near the oxide surface.

The saturated concentration calculation is implemented from the Macdonald model, us-

ing the Nernst equation for electrochemical equilibrium and expressions from equilibrium

thermodynamics for chemical reactions between solid oxides and dissolved ions (dissolu-

45

tion/precipitation reactions). These equations are derived in the following sections.

Nernst Equation Derivation

The Nernst equation can be derived from expressions for Gibbs free energy under standard

conditions; 𝐸 is the potential difference of redox cell, 𝐹 is the Faraday constant, and 𝑧 is

the number of electrons transferred in the electrochemical reaction considered.

Δ𝐺 = −𝑧𝐹𝐸 (3.7)

At standard conditions, this is expressed as:

Δ𝐺0 = −𝑧𝐹𝐸0 (3.8)

The Gibbs free energy of a reaction is determined by the following expression:

Δ𝐺 = Δ𝐺0 +𝑅𝑇 ln𝑄 (3.9)

where Q is the chemical reaction quotient. For reaction 𝑎A+ 𝑥H+ + 𝑧𝑒− → 𝑏B + 𝑐H2O,

where A is a solid oxide species and B is the ionic species formed, Q is written as:

𝑄 =
(𝑎𝐵)

𝑏(𝑎H2O)
𝑐

(𝑎𝐴)𝑎(𝑎H+)𝑥
(3.10)

𝑎𝐵 is the activity of species B - the numerator is the products, and the denominator is

reactants (note that electrons are not included in this expression).

Converting the natural log to a base 10 log is trivial; substituting the expressions for Δ𝐺,

Δ𝐺0 (eqns. 3.7, 3.8) into equation 3.9, with some algebraic rearrangement, gives the Nernst

equation:

𝐸 = 𝐸0 − 2.303𝑅𝑇

𝑧𝐹
log10𝑄 (3.11)

46

Derivation of electrochemical equilibrium concentration

Substituting the expressions for Δ𝐺, Δ𝐺0, and 𝑄 from equations 3.7, 3.8, and 3.10 into

equation 3.9 yields:

− 𝑧𝐹𝐸 = −𝑧𝐹𝐸0 +𝑅𝑇 ln

[︂
(𝑎𝐵)

𝑏(𝑎H2O)
𝑐

(𝑎𝐴)𝑎(𝑎H+)𝑥

]︂
(3.12)

For this reaction, the activity of water (𝑎H2O) can be set equal to 1 by convention.

The activity of the solid oxide (𝑎𝐴) is set equal to 1 for consistency with the assumptions

presented by Macdonald et al. Future work could revisit these assumptions to implement a

more rigorous approximation of the activities for the oxide and aqueous ions.

This, along with some algebraic rearrangement, allows the expression to be simplified to

𝐸 = 𝐸0 − 𝑅𝑇

𝑧𝐹
ln

[︂
(𝑎𝐵)

𝑏

(𝑎H+)𝑥

]︂
(3.13)

After converting the natural log to a base 10 log, this expression then becomes

𝐸 = 𝐸0 − 2.303𝑅𝑇

𝑧𝐹
log10

[︂
(𝑎𝐵)

𝑏

(𝑎H+)𝑥

]︂
(3.14)

The log term can be expanded by the properties of logarithms:

log10

[︂
(𝑎𝐵)

𝑏

(𝑎H+)𝑥

]︂
= 𝑏 log10(𝑎𝐵)− 𝑥 log10(𝑎H+) (3.15)

Substituting this expression into equation 3.14 then gives:

𝐸 = 𝐸0 − 2.303𝑅𝑇

𝑧𝐹

[︁
𝑏 log10(𝑎𝐵)− 𝑥 log10(𝑎H+)

]︁
(3.16)

For this model, the potential E is substituted with the local electrochemical potential,

ECP. Also, from the definition of pH, one can substitute in pH = − log10(𝑎H+) to get the

following:

𝐸𝐶𝑃 = 𝐸0 − 2.303𝑅𝑇

𝑧𝐹

[︁
𝑏 log10(𝑎𝐵) + 𝑥pH)

]︁
(3.17)

Algebraic rearrangement to isolate the activity term of ion B yields:

47

log10(𝑎𝐵) =
𝑧

𝑏

𝐹

2.303𝑅𝑇

(︁
𝐸0 − 𝐸𝐶𝑃

)︁
− 𝑥

𝑏
pH (3.18)

Assuming a dilute solution, the activity of ion B can be replaced with its molar con-

centration [𝐵], and by inverting the logarithm (exponentiate with base 10), the following

expression is used to calculate the molar concentration of ionic species B:

[𝐵] = 10

[︂
𝑧
𝑏

𝐹
2.303𝑅𝑇

(︁
𝐸0−𝐸𝐶𝑃

)︁
−𝑥

𝑏
pH

]︂
(3.19)

If the reaction is reversed

The only modification to reverse the reaction is the reaction quotient, Q - the numerator and

denominator are swapped - so 𝑄 =
(𝑎H+)𝑥

(𝑎𝐵)𝑏
. When the logarithm of this term is expanded, it

becomes:

log10

[︂
(𝑎H+)𝑥

(𝑎𝐵)𝑏

]︂
= 𝑥 log10(𝑎H+)− 𝑏 log10(𝑎𝐵) (3.20)

Substituting in the definition of pH (pH = − log10 𝑎H+) this becomes

log10

[︂
(𝑎H+)𝑥

(𝑎𝐵)𝑏

]︂
= −𝑥pH− 𝑏 log10(𝑎𝐵) = −1 *

[︀
𝑥pH + 𝑏 log10(𝑎𝐵)

]︀
(3.21)

Putting this expression into the Nernst equation gives:

𝐸 = 𝐸0 +
2.303𝑅𝑇

𝑧𝐹

[︁
𝑏 log10(𝑎𝐵) + 𝑥pH

]︁
(3.22)

Rearranging this to get an expression for the concentration of species B gives:

[𝐵] = 10

[︂
𝑧
𝑏

𝐹
2.303𝑅𝑇

(︁
𝐸𝐶𝑃−𝐸0

)︁
−𝑥

𝑏 pH

]︂
(3.23)

Note that equation 3.23 is almost identical to equation 3.19 - the only difference is the

electrochemical potential difference. To make these mathematically equivalent, the sign on

48

the stoichiometric coefficient, z, must be flipped. This should also modify the calculation

of 𝐸0 =
−Δ𝐺0

𝑓

𝑧𝐹
; however, this is easily mitigated by taking the absolute value of 𝑧 in this

expression.

𝑧

𝑏

𝐹

2.303𝑅𝑇

(︁−Δ𝐺0
𝑓

|𝑧|𝐹
− 𝐸𝐶𝑃

)︁
→ −𝑧

𝑏

𝐹

2.303𝑅𝑇

(︁−Δ𝐺0
𝑓

|𝑧|𝐹
− 𝐸𝐶𝑃

)︁
Distributing the negative sign from the outside gives

𝑧

𝑏

𝐹

2.303𝑅𝑇

(︁−(−Δ𝐺0
𝑓)

|𝑧|𝐹
+𝐸𝐶𝑃

)︁
→ 𝑧

𝑏

𝐹

2.303𝑅𝑇

(︁
𝐸𝐶𝑃 −

−Δ𝐺0
𝑓

|𝑧|𝐹

)︁
≡ 𝑧

𝑏

𝐹

2.303𝑅𝑇

(︁
𝐸𝐶𝑃 −𝐸0

)︁
So to reverse the reaction (such that product B is now a reactant), the sign of z for that

reaction must be negated, and the final expression is written as:

[𝐵] = 10

[︂
−𝑧
𝑏

𝐹
2.303𝑅𝑇

(︁
𝐸0−𝐸𝐶𝑃

)︁
−𝑥

𝑏 pH

]︂
(3.24)

Surface concentration calculation implemented

The calculation for the surface concentration of ion 𝑖 due to an electrochemical reaction is

implemented using Equation 3.25.

𝑎A+ 𝑥H+ + 𝑧𝑒− → 𝑏B + 𝑐H2O

𝐶𝑠,𝑖 = 10

[︂
𝑧
𝑏

𝐹
2.303𝑅·𝑇

(︂
−Δ𝐺0

𝑓,𝑖
𝑧𝐹 −ECP

)︂
−𝑥

𝑏 pH

]︂
(3.25)

49

The calculation for the surface concentration of ion 𝑖 due to a chemical reaction is im-

plemented using Equation 3.26.

𝑎A+ 𝑥H+ → 𝑏B + 𝑐H2O

𝐶𝑠,𝑖 =

[︂
10𝑥·𝑝𝐻 exp

(︂−Δ𝐺0
𝑓,𝑖

𝑅 · 𝑇

)︂]︂−𝑏
(3.26)

3.2.4 Rate of dissolution/precipitation of soluble species

The dissolution/precipitation (ion release) rate from the Macdonald model was implemented

in Ouroboros, as the mechanisms behind the dissolution/precipitation reaction are included.

It considers the concentration gradient from the coolant-oxide interface (saturated concen-

tration) to the bulk coolant, the mass transfer coefficient 𝑘𝑐, the ion diffusivity (as a function

of temperature and 𝑘𝑐), and the Sherwood number (based on coolant properties like density,

viscosity, Reynolds number, and also the species diffusivity).

This rate is implemented using Equation 3.27. A positive value for 𝑅𝑖 indicates that

the bulk concentration in the coolant is less than the saturated concentration, thus driving

dissolution of oxides (source term to coolant concentration, loss term to oxide concentra-

tion). A negative value indicates that the bulk concentration has exceeded the saturated

concentration, which drives precipitation of oxides (loss term to the coolant concentration,

source term to oxide concentration).

𝑅𝑖 = 𝐷𝑖 · 𝑆ℎ · wa (𝐶𝑠,𝑖 − 𝐶𝑏,𝑖) (3.27)

The diffusivity of species is calculated using an expression from the Macdonald model,

Equation 3.28.

𝐷𝑖 = 𝐷0
𝑖 exp

[︂
𝑘𝑐𝑖
𝑅

(︂
1

𝑇
− 1

298.15

)︂]︂
(3.28)

The release rate of isotopes into bulk coolant is calculated by adding the total release

rate (positive values) for all ions of that element, and weighting that value by the natural

50

abundance of that isotope. For example, the natural abundance of 54Fe is 5.85%, so the

release rate of 54Fe added to the coolant is the total release rate of all Fe ions in coolant

multiplied by 0.0585.

The precipitation rate of isotopes is weighted by the ratio of concentration of that isotope

in coolant to the concentration of all isotopes of the same element in coolant (the elemental

bulk concentration). For example, if calculating the precipitation rate of 54Fe and the coolant

also contains 55Fe, 58Fe, and 59Fe, then the precipitation rate of 54Fe is calculated by adding

together the total precipitation rate of all Fe ions, and multiply that by the 54Fe concentration

divided by the total Fe concentration in coolant, which includes 54Fe, 55Fe, 58Fe, and 59Fe.

3.3 Mass balance equation set

This model includes global ordinary differential equations (ODEs) to determine values in the

primary loop coolant, and nodal ODEs (solved on each node to obtain a value at each node)

to determine values in the oxide layer.

3.3.1 Coolant mass balance (Global ODEs)

Coolant concentrations are implemented using global ODEs (single equation solved for the

entire system) to determine a single value for the bulk coolant. A single scalar value is

calculated to represent the “bulk” concentration of each constituent species, as it is assumed

that the coolant concentration is approximately uniform throughout the loop, due to the

high flow rates and coolant velocities of a typical primary loop. Spatial resolution in the

coolant would require a fine temporal resolution to capture the effects of fluid transport

affecting local coolant concentrations. For this model, larger timesteps are desirable as the

system quickly approaches an equilibrium-like state where chemical kinetics slows signifi-

cantly. Finer timesteps would not improve the accuracy of this model significantly, given the

many approximations and simplifications made to study the chemical kinetics of interest.

Future work could implement this finer spatial and temporal resolution as physics coupling

to include fluid dynamics/thermal hydraulics effects are implemented.

51

Elements

Elemental coolant source terms include metal release from corrosion and dissolution from

the oxide layer; loss terms include precipitation to the oxide layer.

𝑑𝐶𝑒𝑙𝑒𝑚
𝑏

𝑑𝑡
=
∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑐𝑜𝑟𝑟,𝑀𝑅 +
∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑑𝑖𝑠𝑠𝑜𝑙(+) −
∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−) (3.29)

Isotopes

Nonactivated isotopes are added to the coolant through dissolution of oxides (proportional

to the isotope’s natural abundance, 𝜇), and removed by precipitation (proportional to the

isotope’s concentration in the coolant) and activation by neutron capture.

𝑑𝐶𝑖𝑠𝑜
𝑏

𝑑𝑡
= 𝜇

∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑑𝑖𝑠𝑠𝑜𝑙(+) −
𝐶𝑖𝑠𝑜

𝑏

𝐶𝑒𝑙𝑒𝑚
𝑏

∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−) −
∑︁
𝑛𝑜𝑑𝑒𝑠

𝐶𝑖𝑠𝑜
𝑏 𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝜑 (3.30)

Activated isotopes

Activated isotopes in the coolant are produced from activation of nonactive parent isotopes,

and removed by radioactive decay and precipitation to the oxide layer (proportional to the

coolant concentration).

𝑑𝐶𝑎𝑐𝑡
𝑏

𝑑𝑡
=
∑︁
𝑛𝑜𝑑𝑒𝑠

𝐶𝑖𝑠𝑜
𝑏 𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝜑−

𝐶𝑎𝑐𝑡
𝑏

𝐶𝑒𝑙𝑒𝑚
𝑏

[︃∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−)

]︃
− 𝜆𝑎𝑐𝑡𝐶

𝑎𝑐𝑡
𝑏 (3.31)

3.3.2 Oxide mass balance (Nodal ODEs)

An oxide concentration value for each species of interest is calculated at every node to obtain

good spatial resolution. Equations for elemental and activated isotope concentrations are

implemented; nonactivated isotopes are not computed in the oxide, as it is assumed that all

activated species are created in the coolant due to neutron flux activation in the core, and

activation of oxides in the core is negligible compared to that in the coolant.

52

Elements

Oxide elemental sources in this model include corrosion growth and precipitation from the

coolant, and loss terms represented are due to corrosion metal release and oxide dissolution.

Note that in the case of precipitation, 𝑅𝑑𝑖𝑠𝑠𝑜𝑙/𝑝𝑟𝑒𝑐𝑖𝑝 will be negative, and will be a source term

in this expression.

𝑑𝐶𝑒𝑙𝑒𝑚
𝑜𝑥

𝑑𝑡
= 𝑅𝑐𝑜𝑟𝑟 −𝑅𝑐𝑜𝑟𝑟,𝑀𝑅 −𝑅𝑑𝑖𝑠𝑠𝑜𝑙/𝑝𝑟𝑒𝑐𝑖𝑝 (3.32)

Activated isotopes

Activated isotopes in the oxide layer are only added through precipitation of activated iso-

topes from the coolant, and are lost only through radioactive decay. Dissolution of activated

oxides is neglected.

𝑑𝐶𝑎𝑐𝑡
𝑜𝑥

𝑑𝑡
=

𝐶𝑎𝑐𝑡
𝑏

𝐶𝑒𝑙𝑒𝑚
𝑏

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−) − 𝜆𝑎𝑐𝑡𝐶
𝑎𝑐𝑡
𝑜𝑥 (3.33)

3.3.3 Accumulated activity

Activity of an oxide at any quadrature point is determined by Equation 3.34 (with units of

Becquerels, or 𝑠−1). Integrating this over the entire primary loop yields the total accumulated

activity.

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
∑︁

𝑖𝑠𝑜𝑡𝑜𝑝𝑒𝑠

𝑚𝑜𝑙𝑠𝑎𝑐𝑡𝑜𝑥 ×𝑁𝐴 × 𝜆𝑎𝑐𝑡 (3.34)

3.4 Comparison with previous models

One of the major differences between this model and prior codes is the inclusion of spa-

tial resolution for the oxide composition and activity. Additionally, rates for ion solubility

(dissolution/precipitation) source term are implemented using mechanistic models adapted

from Macdonald, and this model also implements a corrosion source term (oxide growth and

metal release). This is an improvement over models using empirical or semi-empirical kinetic

53

rates determined from experiments or plant measurements, such as CPAIR-P and ACE-II.

This model lacks the detailed water chemistry and electrochemical potential calculation

included in the Macdonald model. The electrochemical potential across the loop is approxi-

mated from results of Macdonald et al. and implemented using a function for each region of

the primary loop [5]. The value for pH is also assumed constant. Future work to calculate

local values for pH and ECP can be implemented into the code for this model with little

difficulty (see Chapter 4 for details). This applies to thermal hydraulic and neutronic param-

eters as well, which are represented by single values or by mathematical functions to vary the

parameter by region. Particulates are not treated in this model (included in PACTOLE-2),

and the oxide is treated as a single layer instead of a separate inner and outer oxide layer

(included in ACE-II, PACTOLE-2). Future work to add a particulate model could be easily

integrated into this code due to its modular nature (see Chapter 4 for further discussion).

The thickness of the oxide is calculated based on local oxide elemental concentrations, an

improvement over the previous model used in Ouroboros (Eq. 3.2).

Though the oxide growth term due to corrosion (adapted from the Castelli model) uses

an empirical rate constant, this can be easily modified in the future, and still presents an

improvement to models that do not consider this source term. As Castelli writes, “With so

much uncertainty in our ability to describe these fundamental source terms, one wonders

how or why anyone would choose to proceed from this point. The answer is quite clear, at

least to me. Modeling of these phenomena must start somewhere, and even if the initial

set of data is somewhat flawed, it will always be possible to improve it, in time, as new

investigations are performed in the future” [23]. Though this model is not entirely mecha-

nistic, using empirical rates and crude assumptions to simplify the problem, it implements

small improvements to prior models, replacing empirical rates with more mechanistic-based

physics where possible. Over time, the aim is to replace more and more of these empirical

components and simplifications to develop a model that is increasingly representative of the

physics and chemistry driving the system.

54

Chapter 4

Computational Methods &

Code Structure

The MOOSE Framework was developed to solve large systems of tightly coupled PDEs using

implicit numerical methods. MOOSE Kernels are “PDE operators representing physics,”

which are applied to Variables in the MOOSE problem [32]. MOOSE also provides a

system for solving systems of coupled global and nodal ODEs by using MOOSE ODEKernels

and NodalKernels, respectively.

The equations used in this model involve many coupled ODEs - including global ODEs

and nodal ODEs (to obtain a fine spatial resolution). While this set of ODEs could have been

solved and implemented in another language or framework (such as Python or FORTRAN), the

C++-based MOOSE framework offers a system to “loosely couple” multiple MOOSE-based

applications using the MultiApp/Transfer systems. The MultiApp system provides the

ability to easily transfer data between physics occurring on different length scales or time

scales [21]. Thus, the MOOSE framework was chosen to facilitate future integration of this

code with existing codes, such as the MOOSE-based crud chemistry code, MAMBA-BDM [8].

This chapter details the structure and MOOSE implementation of these ODEs in the

Ouroboros source term code. Coupling global and nodal ODEs can be quite challenging,

particularly when using an implicit numerical scheme to solve the coupled system. As such,

some assumptions and simplifications were made to facilitate this coupling as these equations

were implemented using MOOSE Kernels. These assumptions are presented in the following

55

sections.

4.1 Coolant concentrations: ODE implementation

4.1.1 Elemental coolant concentrations

Concentration of each element in the bulk coolant is represented using a global ODE (Eq.

3.29), implemented in the code using a MOOSE ODEKernel to represent each component

of the ODE. The equation is broken up into three pieces: the time derivative term, the

corrosion release source term, and the dissolution/precipitation rate term.

𝑑𝐶𝑒𝑙𝑒𝑚
𝑏

𝑑𝑡
=
∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑐𝑜𝑟𝑟,𝑀𝑅 +
∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑑𝑖𝑠𝑠𝑜𝑙(+) −
∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−) = 𝑅𝑒𝑙𝑒𝑚
𝑡𝑜𝑡𝑎𝑙

Difficulty in properly coupling the summed nodal rates for each source/sink term neces-

sitated a simplification in the implementation of this ODE. A postprocessor, which accumu-

lates the value of a parameter over the entire spatial domain (all nodes) at each timestep,

was used to compute the effective dissolution/precipitation rate per element at the beginning

of each timestep. This rate (effectively a constant over each timestep) was coupled into an

ODEKernel that returns a constant rate term. While this assumption does remove some of

the implicit coupling from this system, it lifts some of the computational burden of solving

the full, tightly coupled system while still allowing the use of an implicit numerical scheme.

This approach still provides an improvement over a fully explicit scheme, in both compu-

tational cost and coupling, despite this simplification. The metal release term is computed

in its own ODEKernel. Applying each of these kernels to the scalar variable for the coolant

concentration fully represents this ODE in this system.

Time derivative term

The time derivative term is implemented using an existing MOOSE ODEKernel, named

ODETimeDerivative (see Listing 4.1). In computing the residual, this code returns the time

derivative of the scalar variable to which this kernel is applied.

56

Dissolution/precipitation term

The constant dissolution/precipitation rate term is implemented using an ODEKernel that

returns -1 * rate. In the case where there are multiple reactions/species with dissolution/-

precipitation reactions in the coolant mass balance, this kernel is simply applied once for

each reaction in the mass balance (see input example in Listing 4.3).

1 Real ODETimeDerivative :: computeQpResidual ()

2 {

3 return _u_dot[_i];

4 }

5 Real ODETimeDerivative :: computeQpJacobian ()

6 { if (_i == _j)

7 return _du_dot_du[_i];

8 else

9 return 0;

10 }

Listing 4.1: ODETimeDerivative Kernel

1 Real ImplicitODEVariableRate :: computeQpResidual ()

2 { // the term of the ODE without the time derivative term

3 return -1 * _rate;

4 }

Listing 4.2: ImplicitODEVariableRate ODEKernel

1 [./ dp_Fe2p_Fe3O4_cool_bulk]

2 type = ImplicitODEVariableRate

3 variable = conc_fe_cool

4 pp_rate = pp_releaserate_Fe2p_Fe3O4

5 loop_volume = pp_volume_tot

6 [../]

7 [./ dp_Fe2p_Fe2O3_cool_bulk]

57

8 type = ImplicitODEVariableRate

9 variable = conc_fe_cool

10 pp_rate = pp_releaserate_Fe2p_Fe2O3

11 loop_volume = pp_volume_tot

12 [../]

Listing 4.3: Input example for using ImplicitODEVariableRate to calculate the release rate

for Fe2+ from Fe2O3 and Fe3O4

Metal release term

The metal release rate due to corrosion growth is implemented in MetalReleaseODE. As this

is a global rate, the diffusivity, weight percent (of the element within the base construction

materials), wetted area, density, and thickness are volume-averaged scalar values for the

entire loop, evaluated using a postprocessor at the beginning of each timestep. This rate is

calculated using Equation 3.6:

𝑅𝑐𝑜𝑟𝑟,𝑀𝑅 = 𝐷
𝜌𝑎𝑙𝑙𝑜𝑦 · 𝑤𝑡% · 𝑤𝑎

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ·𝑀𝑀𝑒𝑙𝑒𝑚

1 Real MetalReleaseODE :: computeQpResidual ()

2 {

3 Real release;

4 release = (_diffusivity[_i] * _wt[_i] * _wa[_i] * _dens[_i])

5 / (_thickness[_i] * _MM_elem);

6

7 return -1*release;

8 }

Listing 4.4: MetalReleaseODE ODEKernel

1 [./ mr_fe_cool_bulk]

2 type = MetalReleaseODE

3 variable = conc_fe_cool

58

4 diffusivity = diffusivity_elemavg_fe

5 wt_percent = wtpercent_elemavg_fe

6 thickness = thick_elemavg

7 wetted_area = WA_elemavg

8 alloy_density = density_elemavg

9 loop_volume = pp_volume_tot

10 MM_elem = 0.055845

11 [../]

Listing 4.5: Input example for using MetalReleaseODE to calculate the release rate of Fe

due to corrosion growth and release

4.1.2 Isotopic coolant concentrations (nonactivated)

Nonactive isotope bulk coolant concentration mass balance is computed using Equation 3.30.

Each component of this ODE is included in a single ODEKernel, called ImplicitODENonActive.

𝑑𝐶𝑖𝑠𝑜
𝑏

𝑑𝑡
= 𝜇

∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑑𝑖𝑠𝑠𝑜𝑙(+) −
𝐶𝑖𝑠𝑜

𝑏

𝐶𝑒𝑙𝑒𝑚
𝑏

∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−) −
∑︁
𝑛𝑜𝑑𝑒𝑠

𝐶𝑖𝑠𝑜
𝑏 𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝜑

1 Real ImplicitODENonActive :: computeQpResidual ()

2 {

3 // the term of the ODE without the time derivative term

4 Real my_var = _mu * _dissol / _vol - _u[_i] * _nc / _vol - (_u[_i] / ←˒

_elemconc[_i])* abs(_precip / _vol);

5

6 //to prevent unphysical negative concentrations - cannot remove ←˒

from coolant if coolant concentration is zero

7 if (_u[_i] < 0.) my_var = _mu * _dissol / _vol;

8

9 return -1*my_var;

10 }

Listing 4.6: ImplicitODENonActive ODEKernel

59

1 [./ conc_fe54_cool_bulk_nonact]

2 type = ImplicitODENonActive

3 variable = conc_fe54_cool

4 elem_conc = conc_fe_cool

5 natural_abundance = 0.00585

6 ncapture_pp = ncapture_fe54_pp

7 dissolrate = pp_total_dissol_rate_fe

8 preciprate = pp_total_precip_rate_fe

9 loop_volume = pp_volume_tot

10 [../]

Listing 4.7: Input example for using ImplicitODENonActive to calculate the bulk coolant

concentration of 54Fe

4.1.3 Activated isotopic coolant concentrations

Activated isotopes are implemented similarly to the nonactive isotopes. Equation 3.31 is

implemented in a single ODEKernel that contains the neutron activation source term and

both the precipitation and radioactive decay loss terms.

𝑑𝐶𝑎𝑐𝑡
𝑏

𝑑𝑡
=
∑︁
𝑛𝑜𝑑𝑒𝑠

𝐶𝑖𝑠𝑜
𝑏 𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝜑−

𝐶𝑎𝑐𝑡
𝑏

𝐶𝑒𝑙𝑒𝑚
𝑏

[︃∑︁
𝑛𝑜𝑑𝑒𝑠

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−)

]︃
− 𝜆𝑎𝑐𝑡𝐶

𝑎𝑐𝑡
𝑏

1 Real ImplicitODEActive :: computeQpResidual ()

2 { Real my_var;

3 if (_elemconc[_i] > 0. && _u[_i] > 0.)

4 my_var = _nonact[_i] * _nc/_vol - _lambda * _u[_i] - (u[_i] / _elemconc[_i]) ←˒

* abs(_precip/_vol);

5 // cannot remove if concentration is zero:

6 else if (_u[_i] <= 0.) my_var = _nonact[_i] * _nc/_vol;

7 else my_var = 0;

8 return -1*my_var;

9 }

Listing 4.8: ImplicitODEActive ODEKernel

60

1 [./ conc_fe55_cool_bulk]

2 type = ImplicitODEActive

3 variable = conc_fe55_cool

4 elem_conc = conc_fe_cool

5 nonactive_conc = conc_fe54_cool

6 lambda = 8.01e-09

7 ncapture_pp = ncapture_fe54_pp

8 preciprate = pp_total_precip_rate_fe

9 loop_volume = pp_volume_tot

10 [../]

Listing 4.9: Input example for using ImplicitODEActive to calculate the bulk coolant

concentration of 55Fe

61

4.1.4 Sample input block

To demonstrate how these ODEKernels are used to set up these ODEs in Ouroboros, a

sample input block that implements all three of these ODEs for iron is provided (Listing

4.10). Two ion-oxide reactions are included (Fe2+ → Fe2O3 and Fe2+ → Fe3O4) and one

isotope activation reaction (54Fe(𝑛, 𝛾)55Fe). The primary loop is spatially represented from

𝑥 = 0 to 78 meters. The equations represented by this input sample are shown below.

Bulk coolant concentration of element Fe:

𝑑𝐶Fe
𝑐𝑜𝑜𝑙

𝑑𝑡
=

𝑥=78𝑚∑︁
𝑥=0

𝑅𝑐𝑜𝑟𝑟,Fe(𝑥) +
𝑥=78𝑚∑︁
𝑥=0

𝑅Fe2+→Fe2O3

𝑑𝑖𝑠𝑠𝑜𝑙/𝑝𝑟𝑒𝑐𝑖𝑝 (𝑥) +
𝑥=78𝑚∑︁
𝑥=0

𝑅Fe2+→Fe3O4

𝑑𝑖𝑠𝑠𝑜𝑙/𝑝𝑟𝑒𝑐𝑖𝑝 (𝑥)

Bulk coolant concentration of nonactivated isotope 54Fe:

𝑑𝐶Fe54
𝑐𝑜𝑜𝑙

𝑑𝑡
= 𝜇Fe54

𝑥=78𝑚∑︁
𝑥=0

[︀
𝑅Fe2+→Fe2O3

𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑥) +𝑅Fe2+→Fe3O4
𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑥)

]︀
− 𝐶Fe54

𝑐𝑜𝑜𝑙

𝑥=78𝑚∑︁
𝑥=0

𝜎Fe54
(𝑛,𝛾)Φ(𝑥)

− 𝐶Fe54
𝑐𝑜𝑜𝑙

𝐶Fe
𝑐𝑜𝑜𝑙

𝑥=78𝑚∑︁
𝑥=0

[︀
𝑅Fe2+→Fe2O3

𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑥) +𝑅Fe2+→Fe3O4
𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑥)

]︀
Bulk coolant concentration of activated isotope 55Fe:

𝑑𝐶Fe55
𝑐𝑜𝑜𝑙

𝑑𝑡
= 𝐶Fe54

𝑐𝑜𝑜𝑙

𝑥=78𝑚∑︁
𝑥=0

𝜎Fe54
(𝑛,𝛾)Φ(𝑥)− 𝜆Fe55𝐶Fe55

𝑐𝑜𝑜𝑙

− 𝐶Fe55
𝑐𝑜𝑜𝑙

𝐶Fe
𝑐𝑜𝑜𝑙

𝑥=78𝑚∑︁
𝑥=0

[︀
𝑅Fe2+→Fe2O3

𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑥) +𝑅Fe2+→Fe3O4
𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑥)

]︀

62

1 [ScalarKernels]

2 [./ td_conc_fe_cool]

3 type = ODETimeDerivative

4 variable = conc_fe_cool

5 [../]

6 [./ mr_fe_cool_bulk]

7 type = MetalReleaseODE

8 variable = conc_fe_cool

9 diffusivity = diffusivity_elemavg_fe

10 wt_percent = wtpercent_elemavg_fe

11 thickness = thick_elemavg

12 wetted_area = WA_elemavg

13 alloy_density = density_elemavg

14 loop_volume = pp_volume_tot

15 MM_elem = 0.055845

16 [../]

17 [./ dp_Fe2p_Fe3O4_cool_bulk]

18 type = ImplicitODEVariableRate

19 variable = conc_fe_cool

20 pp_rate = pp_releaserate_Fe2p_Fe3O4

21 loop_volume = pp_volume_tot

22 [../]

23 [./ dp_Fe2p_Fe2O3_cool_bulk]

24 type = ImplicitODEVariableRate

25 variable = conc_fe_cool

26 pp_rate = pp_releaserate_Fe2p_Fe2O3

27 loop_volume = pp_volume_tot

28 [../]

29

30 [./ td_conc_fe54_cool]

31 type = ODETimeDerivative

32 variable = conc_fe54_cool

33 [../]

34 [./ conc_fe54_cool_bulk_nonact]

35 type = ImplicitODENonActive

36 variable = conc_fe54_cool

37 elem_conc = conc_fe_cool

38 natural_abundance = 0.00585

63

39 ncapture_pp = ncapture_fe54_pp

40 dissolrate = pp_total_dissol_rate_fe

41 preciprate = pp_total_precip_rate_fe

42 loop_volume = pp_volume_tot

43 [../]

44

45 [./ td_conc_fe55_cool]

46 type = ODETimeDerivative

47 variable = conc_fe55_cool

48 [../]

49 [./ conc_fe55_cool_bulk]

50 type = ImplicitODEActive

51 variable = conc_fe55_cool

52 elem_conc = conc_fe_cool

53 nonactive_conc = conc_fe54_cool

54 lambda = 8.01e-09

55 ncapture_pp = ncapture_fe54_pp

56 preciprate = pp_total_precip_rate_fe

57 loop_volume = pp_volume_tot

58 [../]

59 []

Listing 4.10: Input example for global ODE coupling for iron

4.2 Oxide concentrations: nodal ODE implementation

Oxide concentrations are implemented using NodalKernels. These MOOSE Kernels are

used to solve ODEs on each quadrature point (node) of the problem domain, thus giving spa-

tial resolution not present when solving global ODEs for scalar variable values. Implementing

these ODEs withNodalKernels requires the use of nodal variables and auxvariables.

The time derivative piece of nodal ODEs is implemented almost exactly the same way

as in ODETimeDerivative. The TimeDerivativeNodalKernel differs slightly as it com-

putes on each quadrature point ([_qp]) for the nodal variable; the residual computation

for ODETimeDerivative and TimeDerivativeNodalKernel can be found in Listing 4.1 and

4.11, respectively.

64

1 Real TimeDerivativeNodalKernel :: computeQpResidual ()

2 {

3 return _u_dot[_qp];

4 }

Listing 4.11: TimeDerivativeNodalKernel Kernel

4.2.1 Nonactive oxides

Oxide concentrations of nonactivated elements are represented by Equation 3.32 and imple-

mented using three NodalKernels to represent each process in the expression.

𝑑𝐶𝑒𝑙𝑒𝑚
𝑜𝑥

𝑑𝑡
= 𝑅𝑐𝑜𝑟𝑟 −𝑅𝑐𝑜𝑟𝑟,𝑀𝑅 −𝑅𝑑𝑖𝑠𝑠𝑜𝑙/𝑝𝑟𝑒𝑐𝑖𝑝

Corrosion growth source term

NodalCorrosionGrowth calculates an oxide growth rate due to corrosion, Equation 3.5 .

𝑅𝑐𝑜𝑟𝑟 =
𝑑𝑛𝑒𝑙𝑒𝑚

𝑑𝑡
=

𝑘𝑝 · 𝑤𝑎
2
√
𝑡 ·𝑀𝑀𝑜𝑥𝑖𝑑𝑒

𝑑ℎ
4

1 Real NodalCorrosionGrowth :: computeQpResidual ()

2 {

3 Real tot_rate = 0.5 * _rateconst[_qp] * _wa[_qp] * (std::pow(_t , -0.5)) / (_MM_ox);

4 tot_rate = tot_rate * (_dh[_qp]/4);

5

6 return -1 * tot_rate;

7 }

Listing 4.12: NodalCorrosionGrowth Kernel

65

1 [./ corr_Fe2O3]

2 type = NodalCorrosionGrowth

3 variable = conc_Fe2O3_ox_nodal

4 rate_constant = cg_rate_const_fe

5 wetted_area = wet_area

6 MM_oxide = 0.15969

7 [../]

Listing 4.13: Input example for using NodalCorrosionGrowth to calculate the oxide growth

rate of Fe2O3 due to corrosion

Corrosion metal release loss term

NodalMetalRelease implements Equation 3.6 for the corrosion release loss term. This loss

term kernel is the complement to the MetalReleaseODE coolant concentration source term

kernel, and is calculated on each individual node instead of a scalar metal release term for

the entire loop.

𝑅𝑐𝑜𝑟𝑟,𝑀𝑅 = 𝐷
𝜌𝑎𝑙𝑙𝑜𝑦 · 𝑤𝑡% · 𝑤𝑎

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ·𝑀𝑀𝑒𝑙𝑒𝑚

1 Real NodalMetalRelease :: computeQpResidual ()

2 {

3 Real release = 0;

4 release = (_diffusivity[_qp] * _wt[_qp] * _wa[_qp] * _dens[_qp]) / (_thickness[_qp] * ←˒

_MM_elem)*(_vol[_qp] / _loopvol);

5 release = release * (_dh[_qp]/4);

6 if (_oxconc[_qp] <= 0.) release = 0.;

7

8 return release;

9 }

Listing 4.14: NodalMetalRelease Kernel

66

1 [./ mr_Fe2O3_ox]

2 type = NodalMetalRelease

3 variable = conc_Fe2O3_ox_nodal

4 diffusivity = base_fe_diffusivity

5 wt_percent = base_fe

6 thickness = aux_thick

7 wetted_area = wet_area

8 equiv_vol = my_volume

9 loop_volume = pp_volume_tot

10 alloy_density = metal_density

11 oxide_conc = conc_Fe2O3_ox_nodal

12 MM_elem = 0.055845

13 [../]

Listing 4.15: Input example for using NodalMetalRelease to calculate the nodal release rate

of Fe from Fe2O3

Dissolution/precipitation release term

NodalDissolPrecip simply applies the appropriate source/loss rate from dissolution or pre-

cipitation. It also checks to ensure oxide concentrations or coolant concentrations are not

zero to prevent nonphysical solutions with negative concentrations. This is implemented

using a Heaviside function; if the solid oxide concentration at this point is zero and the rate

indicates dissolution, the Heaviside function returns 0, otherwise it returns 1. This coefficient

is multiplied onto the rate to force the rate to zero if dissolution cannot occur. Likewise,

the function is also used to ensure that if the rate indicates precipitation, there is a nonzero

bulk coolant concentration that will allow for precipitation to occur.

1 Real NodalDissolPrecip :: computeQpResidual ()

2 {

3 int H = 1;

4 Real rr = _release[_qp] * (_dh[_qp]/4);

5 //check oxide conc for dissolution to prevent nonphysical negative concentrations

6 H = evaluateHeaviside (-1*rr, _u[_qp]);

7 //check coolant conc for precipitating

8 if (H==1) H = H * evaluateHeaviside(rr , _cbs [0]);

67

9 rr = H * rr;

10

11 return rr;

12 }

13 int NodalDissolPrecip :: evaluateHeaviside(Real rate , Real my_conc)

14 {

15 int _heaviside;

16 //if concentration (of solid) is 0 and rate is negative , evaluate to zero.

17 if (my_conc <= 0. && rate <= 0.) _heaviside = 0;

18 //else , evaluate to 1.

19 else _heaviside = 1;

20

21 return _heaviside;

22 }

Listing 4.16: NodalDissolPrecip Kernel

1 [./ dp_Fe2p_Fe2O3]

2 type = NodalDissolPrecip

3 variable = conc_Fe2O3_ox_nodal

4 release_rate = releaserate_Fe2p_Fe2O3

5 bulk_conc = conc_fe_cool

6 [../]

Listing 4.17: Input example for using NodalDissolPrecip to calculate the nodal

dissolution/precipitation rate for Fe2O3

4.2.2 Activated oxides

The concentration of activated isotopes in oxides is represented by Equation 3.33. This ODE

is implemented in a single NodalKernel, PrecipRate, that includes both the precipitation

source term and radioactive decay loss term.

𝑑𝐶𝑎𝑐𝑡
𝑜𝑥

𝑑𝑡
=

𝐶𝑎𝑐𝑡
𝑏

𝐶𝑒𝑙𝑒𝑚
𝑏

𝑅𝑝𝑟𝑒𝑐𝑖𝑝(−) − 𝜆𝑎𝑐𝑡𝐶
𝑎𝑐𝑡
𝑜𝑥

68

1 Real PrecipRate :: computeQpResidual ()

2 {

3 Real my_rate;

4 Real my_precip = abs(_precip[_qp]) * (_dh[_qp]/4);

5

6 if (_cbs [0] > 0. && _iso [0] >= 0.)

7 {

8 if (_u[_qp]>0) my_rate = (_iso [0]/ _cbs [0]) * my_precip - _lambda * _u[_qp];

9 else my_rate = (_iso [0]/ _cbs [0]) * my_precip ;

10 // ensure the concentration does not go negative

11 if (_u[_qp] <=0 && my_rate <0.) my_rate =0.;

12 }

13 else my_rate = 0.;

14

15 return -1*my_rate;

16 }

Listing 4.18: PrecipRate Kernel

1 [./ precip_fe55_act_ox_fe54]

2 type = PrecipRate

3 variable = conc_fe55_oxide_active

4 precip_rate = total_precip_rate_fe

5 elem_conc = conc_fe_cool

6 iso_conc = conc_fe55_cool

7 lambda = 8.01e-09

8 [../]

Listing 4.19: Input example for using PrecipRate to calculate the nodal precipitation and

decay rate of 55Fe in the oxide

69

4.2.3 Sample input block

A sample input block to demonstrate use of these NodalKernels to implement nodal ODEs

for iron is provided (Listing 4.20). One ion-oxide reactions is included (Fe2+ → Fe2O3) and

one isotope activation reaction (54Fe(𝑛, 𝛾)55Fe).

1 [NodalKernels]

2 [./ td_conc_Fe2O3_ox_nodal]

3 type = TimeDerivativeNodalKernel

4 variable = conc_Fe2O3_ox_nodal

5 [../]

6 [./ corr_Fe2O3]

7 type = NodalCorrosionGrowth

8 variable = conc_Fe2O3_ox_nodal

9 rate_constant = cg_rate_const_fe

10 wetted_area = wet_area

11 MM_oxide = 0.15969

12 [../]

13 [./ dp_Fe2p_Fe2O3]

14 type = NodalDissolPrecip

15 variable = conc_Fe2O3_ox_nodal

16 release_rate = releaserate_Fe2p_Fe2O3

17 bulk_conc = conc_fe_cool

18 [../]

19 [./ mr_Fe2O3_ox]

20 type = NodalMetalRelease

21 variable = conc_Fe2O3_ox_nodal

22 diffusivity = base_fe_diffusivity

23 wt_percent = base_fe

24 thickness = aux_thick

25 wetted_area = wet_area

26 equiv_vol = my_volume

27 loop_volume = pp_volume_tot

28 alloy_density = metal_density

29 oxide_conc = conc_Fe2O3_ox_nodal

30 MM_elem = 0.055845

31 [../]

32 [./ td_conc_fe55_oxide_active]

70

33 type = TimeDerivativeNodalKernel

34 variable = conc_fe55_oxide_active

35 [../]

36 [./ precip_fe55_act_ox_fe54]

37 type = PrecipRate

38 variable = conc_fe55_oxide_active

39 precip_rate = total_precip_rate_fe

40 elem_conc = conc_fe_cool

41 iso_conc = conc_fe55_cool

42 lambda = 8.01e-09

43 [../]

44 []

Listing 4.20: Input example for nodal ODE coupling for iron

4.3 Auxiliary calculations (AuxKernels)

Intermediate calculations are implemented using AuxKernels. These compute a value for an

intermediate variable (AuxVariable) upon each timestep or each solver iteration (specified

in the input block).

Surface concentrations

The most crucial calculation for this model is the saturated/surface concentration for each

reaction, Equation 3.25. This calculation is implemented in EchemSurfaceConcentration.

𝐶𝑠,𝑖 = 10

[︃
𝑧
𝑏

𝐹
2.303𝑅·𝑇

(︃
−Δ𝐺0

𝑓,𝑖
𝑧𝐹

−ECP

)︃
−𝑥

𝑏
pH

]︃

Note that the Gibbs energy for the reaction is computed at each quadrature point based

upon the enthalpy change and entropy change for the reaction, and the temperature. This

auxkernel calculation must be executed at the beginning of the simulation, when the system

is initialized, to ensure that values for saturated concentrations are set before the first dis-

solution/precipitation rate calculation is executed. This calculation is also only needed on

initialization, as the temperature, pH, and electrochemical corrosion potential variables do

71

not vary temporally in this version of the code. This is set in the input block through the

execute_on parameter (see Listing 4.22). Should temporal evolution of temperature, pH,

or electrochemical potential be added to future versions of the code, this option will need to

be modified to execute on each linear or nonlinear solver iteration or on each timestep, in

addition to execution upon initialization.

1 Real EchemSurfaceConcentration :: computeValue ()

2 { Real R = 8.314;

3 Real F = 96485.33289; // Faraday constant , Coulomb/mol

4 Real gibbs = _dH - _T[_qp] * _dS;

5 Real E0 = (-1 * gibbs) / (abs(_z) * F);

6 Real temp1 = (_z / _b) * F / (2.303 * R * _T[_qp]);

7 Real temp2 = (_x / _b) * _pH;

8 Real expon = temp1 * (E0 - _ECP[_qp]) - temp2;

9 Real value = std::pow(10.0, expon);

10

11 return value;

12 }

Listing 4.21: EchemSurfaceConcentration Kernel

1 [./ surface_conc_Fe2p_Fe3O4_aux]

2 type = EchemSurfaceConcentration

3 variable = surfconc_Fe2p_Fe3O4

4 x = 8

5 b = 3

6 z = 2

7 delta_H = -292220.0

8 delta_S = -279.86

9 execute_on = 'initial '

10 [../]

Listing 4.22: Input example for using EchemSurfaceConcentration to determine the

saturated/surface concentration for Fe2+ in equilibrium with Fe3O4

72

Dissolution/precipitation release rates

Dissolution and precipitation rates for each species are calculated on each node using Equa-

tion 3.27 , which is implemented in the ReleaseDepositionRate AuxKernel.

𝑅𝑖 = 𝐷𝑖 · 𝑆ℎ · wa (𝐶𝑠,𝑖 − 𝐶𝑏,𝑖)

1 Real ReleaseDepositionRate :: computeValue ()

2 {

3 Real _release_rate = _diffusivity[_qp] * _sherwood[_qp]

4 * _wet_area[_qp] * (_surf_conc[_qp]*(4/ _dh[_qp])- (_cbs [0]));

5

6 return _release_rate;

7 }

Listing 4.23: ReleaseDepositionRate Kernel

1 [./ releasedepositionrate_Fe2p_Fe3O4]

2 type = ReleaseDepositionRate

3 variable = releaserate_Fe2p_Fe3O4

4 bulk_conc = conc_fe_cool

5 surf_conc= surfconc_Fe2p_Fe3O4

6 species_diffusivity = diffusivity_Fe2p

7 sherwood_number = sherwood_Fe2p

8 wetted_area = wet_area

9 hydraulic_diameter = hydr_diameter

10 execute_on = 'initial timestep_begin '

11 [../]

Listing 4.24: Input example for using ReleaseDepositionRate to calculate the release rate

of Fe2+ from Fe3O4

Local oxide activity

The activity contribution for each active isotope present in oxides at each node is calculated

using Equation 3.34 and implemented in ActivityOxideCalc. The value output is in units

73

of Becquerels per square meter.

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑚𝑜𝑙𝑠𝑎𝑐𝑡𝑜𝑥 ×𝑁𝐴 × 𝜆𝑎𝑐𝑡 ×
1

𝑤𝑎

1 Real ActivityOxideCalc :: computeValue ()

2 { // number of moles of active oxide * NA * lambda = 1/s -> becquerels

3 Real NA = 6.022 E23; // Avogadro 's number , 1/mols

4

5 // returns value in Becquerel/m^2

6 return _c[_qp] * NA * _lambda / _wa[_qp];

7 }

Listing 4.25: ActivityOxideCalc Kernel

1 [./ activity_aux_fe55]

2 type = ActivityOxideCalc

3 variable = oxide_active_fe55

4 oxide_conc = conc_fe55_oxide_active

5 wetted_area = wet_area

6 decay_parameter = 8.01e-09

7 execute_on = timestep_end

8 [../]

Listing 4.26: Input example for using ActivityOxideCalc to calculate the activity

contribution of precipitated 55Fe

74

4.4 Input syntax and variable names

Variable Description Input type Input syntax
_u[_i] variable this kernel

acts on
Variable name variable = var_name

ImplicitODEVariableRate

_rate
rate of change
(constant)

Postprocessor
name pp_rate = pp_name

MetalReleaseODE
_diffusivity Average diffusivity

Postprocessor
name

diffusivity = pp_name
_wt Weight percent of

elem in base material
wt_percent = pp_name

_wa Avg wetted area wetted_area = pp_name
_dens Avg base alloy density alloy_density = pp_name
_thickness Avg oxide thickness thickness = pp_name
_MM_elem Molar mass of alloy Float MM_elem = 0.055845

ImplicitODENonActive
_mu Natural abundance of

isotope
Float natural_abundance = 0.00585

_dissol Total dissolution rate
along loop

Postprocessor
name

dissolrate = pp_name

_nc Total neutron capture
along loop

ncapture_pp = pp_name

_precip Total precipitation
rate along loop

preciprate = pp_name

_vol Total loop volume loop_volume = pp_name
_elemconc Element bulk coolant

concentration
Variable name elem_conc = bulk_conc_var

ImplicitODENonActive
_lambda Radioactive decay pa-

rameter for isotope
Float lambda = 8.01e-9

_nonact Nonactive isotope
coolant concentration

Variable name nonactive_conc = var_name

Table 4.1: ODEKernel variable names and descriptions

75

Variable Description Input type Input syntax
_u[_qp] variable this kernel

acts on
Variable
name

variable = var_name

NodalCorrosionGrowth
_wa[_qp] Nodal wetted area AuxVariable

name

wetted_area = name
_rateconst[_qp] Corrosion rate rate_constant = name
_dh[_qp] Hydraulic diameter hydraulic_diameter = name
_MM_ox Molar mass of oxide Float MM_oxide = 0.15969

NodalMetalRelease
_diffusivity[_qp] Ion diffusivity through

oxide

AuxVariable
name

diffusivity = var_name

_wt[_qp] Weight percent of ele-
ment in base alloy

wt_percent = var_name

_dens[_qp] Density of base alloy alloy_density = var_name
_thickness[_qp] Oxide thickness thickness = var_name
_vol[_qp] Node volume equiv_vol = var_name
_loopvol Total volume Postprocessor

Name
loop_volume = pp_name

_MM_elem Base alloy molar mass Float MM_elem = 0.055845
_oxconc[_qp] Oxide concentration Variable

name
oxide_conc = var_name

NodalDissolPrecip
_release[_qp] Ion release rate Variable

name

release_rate = var_name
_cbs[0] Element bulk coolant

concentration
bulk_conc = var_name

PrecipRate
_precip[_qp] Nodal precipitation

rate Variable
name

precip_rate = var_name

_iso[0] Nonactive isotope
bulk concentration

iso_conc = var_name

_lambda Radioactive decay pa-
rameter for isotope

Float lambda = 8.01e-9

Table 4.2: NodalKernel variable names and descriptions

76

Variable Description Input type Input syntax
_u[_qp] variable this kernel

acts on
Variable
name

variable = var_name

EchemSurfaceConcentration
_dH Enthalpy change from

reaction Float

delta_H = -292220.0

_dS Entropy change from
reaction

delta_S = -279.86

_T[_qp] Temperature Variable
name

temp = var_name

_z Electrons tranferred
in reaction

Integer

z = 2

_b Stoichiometry coeffi-
cient of ion

b = 3

_x Stoichiometry coeffi-
cient of H+

x = 8

ReleaseDepositionRate
_diffusivity[_qp] Ion diffusivity

AuxVariable
name

species_diffusivity = name
_sherwood[_qp] Sherwood number sherwood_number = var_name
_surf_conc[_qp] Surface concentration

of ion
surf_conc = var_name

ActivityOxideCalc
_c[_qp] Activated oxide con-

centration
Variable
name

oxide_conc = var_name

_lambda Radioactive decay pa-
rameter for isotope

Float decay_parameter = 8.01e-9

Table 4.3: AuxKernel variable names and descriptions

77

4.5 Calculation of Gibbs energies

The most crucial component of this model is the saturated/surface concentration equilibrium

calculation for each dissolution reaction; this calculation requires the Gibbs energies for that

reaction. The Gibbs energy of a system, as derived from the second law of thermodynamics,

is defined by Equation 4.1 [34].

𝐺 = 𝐻 − 𝑇𝑆 (4.1)

For a constant temperature system that undergoes a state change (such as a chemical

reaction), the Gibbs energy changes with the following relation [34]:

Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 (4.2)

Accurate thermodynamic data can be difficult to find for all reactions of interest at appro-

priate temperatures. For this work, the Gibbs energies for each reaction were approximated

using the fundamental thermodynamic definitions based on the enthalpy and entropy of

reactants and products, and the temperature.

Δ𝐺𝑟𝑥𝑛 = 𝐺𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 −𝐺𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

= 𝐻𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 −𝐻𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 − 𝑇 (𝑆𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − 𝑆𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠)

= Δ𝐻𝑟𝑥𝑛 − 𝑇Δ𝑆𝑟𝑥𝑛

The Gibbs energy is calculated at each node with local temperature dependence included.

This calculation is included in EchemSurfaceConcentration, which requires the user to

provide values for enthalpy and entropy of the reaction. As part of this work, a Python

module was created to calculate the enthalpy, entropy, and Gibbs free energy for reactions of

interest, and output the results as a list of Python dictionary objects containing the desired

properties. This output object is used in a script to automatically create input files that

include multiple sets of reactions and adds all the necessary variables, auxvariables, kernels,

78

auxkernels, and postprocessors to set up the system of ODEs necessary. See Listing 4.31 for

code and demonstration of how this module/script is used.

4.6 Input file generation script

The structure of this problem, with sets of elements/isotopes/ions coupled, naturally lends

itself to an object-oriented approach for setting up the input file/problem. As such, an object-

oriented Python script for input file generation was written that provides users a simpler way

to set up new problems while ensuring the proper coupling is maintained between elements,

isotopes, and reactions within the problem. Users input the elements, isotopes, ions, and

oxides, along with certain properties (molar mass, decay constant, neutron capture cross

section, etc.) and the set of ion-oxide dissolution reactions to include; see Listing 4.27. The

input generation script uses the Python module written to generate the thermodynamic

data for reactions, and gets the enthalpy and entropy change for each reaction from the

output. The ions, oxides, and isotopes are linked to ensure the proper variables, kernels,

and postprocessors are added to the input file. The file created from this process can then

be input to Ouroboros to run the simulation. Codes for object classes and sample input file

generated from this script can be found in Appendices C and B.

Note that this script differs from the MOOSE CustomActions system, which can be used

to automatically add MOOSE objects to a simulation. The CustomActions system does

not write out a file with all of the inputs to MOOSE; instead, it sets up the solve directly

within MOOSE, and the user must look at the code for each CustomAction to see what

objects and parameters are being added to the simulation. In contrast, this Python script

writes out a full Ouroboros input file including all auxkernels, kernels, variables, and other

parameters. The input files created are long, but it is simple to understand exactly which

physics is being applied to which variables and how everything is coupled. The script is

fairly straightforward, mostly full of "write" statements and calls to methods that write a

generic MOOSE block and fills it with the desired components (see Listing 4.28 for examples

of these methods and their outputs). As additional MOOSE kernels, auxkernels, etc. are

created to add new physics to Ouroboros, this script can be easily modified to set up the

79

input file desired.

80

1 from scripting import Element , Isotope , Ion , Oxide

2 # add element object instances

3 fe = Element('fe', 55.845E-3)

4 ni = Element('ni', 58.6934E-3)

5 co = Element('co', 58.933E-3)

6 #add isotope object instances

7 fe54 = Isotope('fe54', 'fe55', 8.01E-9, 0.00585 , 2.9E-28)

8 fe58 = Isotope('fe58', 'fe59', 1.81E-7, 0.000028 , 1.3E-28)

9 ni58 = Isotope('ni58', 'co58', 1.08E-7, 0.68077 , 4.6E-28)

10 co58 = Isotope('co58', 'co59', 0, 1E-5, 1.9E-25)

11 co59 = Isotope('co59', 'co60', 4.17E-9, 0.9999999 , 2.07E-27)

12 #add ion object instances

13 fe2p = Ion('Fe2p')

14 ni2p = Ion('Ni2p')

15 co2p = Ion('Co2p')

16 #add oxide object instances

17 fe3o4 = Oxide('Fe3O4 ', 231.533E-3)

18 fe2o3 = Oxide('Fe2O3 ', 159.69E-3)

19 nio = Oxide('NiO', 74.6928E-3)

20 coo = Oxide('CoO', 74.9326E-3)

21

22 #add isotope objects to the element

23 fe.addIsotope ([fe54 , fe58])

24 ni.addIsotope ([ni58])

25 co.addIsotope ([co58 , co59])

26 # add ions to element objects

27 fe.addIon ([fe2p])

28 ni.addIon ([ni2p])

29 co.addIon ([co2p])

30 # add oxides to element objects

31 fe.addOxide ([fe2o3 , fe3o4])

32 ni.addOxide ([nio])

33 co.addOxide ([coo])

34

35 my_reactions= ['NiO + 2H+ -> Ni2+ + H2O',

36 'Fe3O4 + 8H+ + 2e- -> 3Fe2+ + 4H2O',

37 'Fe2O3 + 6H+ + 2e- -> 2Fe2+ + 3H2O',

38 'CoO + 2H+ -> Co2+ + H2O']

39 #call method to create a new input file using these elements , isotopes , and reactions

40 generateFile(my_elements = ['fe'], reactions_included = my_reactions , my_ph = 6.9)

Listing 4.27: User input sample for Ouroboros input file generation script

81

1 addVariable(f, var_name , my_order , my_family , my_initial_condition , my_scaling):

2 """ adds variable block that looks like:

3 [./ var_name]

4 order = my_order

5 family = my_family

6 initial_condition = my_initial_condition

7 scaling = my_scaling

8 [../]

9

10 example use:

11 addVariable(f, oxide.ox_conc , 'FIRST ', 'LAGRANGE ', 1E-9, oxide.scaling)

12 """

13

14 addTD(my_type , f, var_name):

15 """ adds appropriate time derivative block:

16 [./ td_var_name]

17 type = TimeDerivativeNodalKernel

18 variable = var_name

19 [../]

20

21 example:

22 addTD('Nodal ', f, oxide.ox_conc)

23 """

24

25 addFunctionIC(f, var_name , my_function):

26 """ adds FunctionIC block:

27 addFunctionIC(f, 'metal_density ', metaldensity_func)

28

29 [./ metal_density_IC]

30 type = FunctionIC

31 variable = metal_density

32 function = 'if(x<4.587 , 6550, if(x >22.798&x<28.493 , 8470, 8000))'

33 [../]

34 """

35

36 addPP(f, var_name , pp_type , block_name , execute_string):

37 """ adds postprocessor block

38

39 addPP(f, 'metal_density ', 'ElementIntegralVariablePostprocessor ', 'avg_dens ', '\'←˒

initial timestep_begin\'')

40

41 output:

82

42 [./ avg_dens]

43 type = ElementIntegralVariablePostprocessor

44 variable = metal_density

45 execute_on = 'initial timestep_begin '

46 [../]

47 """

48

49 addGenericBlock(f, blockname , var , mytype , params , varparams):

50 """ adds a block as specified; parameters needed for a particular block are

51

52 myparams = ['oxide_conc ', 'release_rate ', 'bulk_conc ']

53 myvars = [oxide.ox_conc , rxn.releaserate , elem.cool_conc]

54 addGenericBlock(f, 'dp_' + rxn.name , oxide.ox_conc , 'NodalDissolPrecip ', myparams , myvars)

55

56 output:

57 [./ dp_Ni2p_NiO]

58 type = NodalDissolPrecip

59 variable = conc_NiO_ox_nodal

60 oxide_conc = conc_NiO_ox_nodal

61 release_rate = releaserate_Ni2p_NiO

62 bulk_conc = conc_ni_cool

63 [../]

64 """

Listing 4.28: Methods used for Ouroboros input file generation script. These methods,

written in Python, output different types of MOOSE blocks to write a custom Ouroboros

input file for desired variables, initial conditions, functions, auxkernels, kernels, and

postprocessors.

83

1 f.write("[Variables]\n\n") # add Variables block

2

3 # create variables for each element desired

4 for elem in elements:

5 # create oxide nodal element variable for each oxide

6 for oxide in elem.oxides:

7 oxide.setOxideConcentration('conc_ ' + oxide.name + '_ox_nodal ')

8 addVariable(f, oxide.ox_conc , 'FIRST ', 'LAGRANGE ', 1E-9, oxide.scaling)

9

10 # create element coolant scalar variable

11 elem.setCoolConcentration('conc_ ' + elem.name + '_cool ')

12 addVariable(f, elem.cool_conc , 'FIRST ', 'SCALAR ', 1E-9, elem.scaling)

13

14 for isotope in elem.isotopes:

15 # create isotope coolant scalar variable

16 isotope.setCoolConc('conc_ ' + isotope.name + '_cool ')

17 # 'if' prevents multiple of same isotope variable for Ni/Co decay chains

18 if not (isotope.name == 'co59'):

19 addVariable(f, isotope.cool_conc , 'FIRST ', 'SCALAR ', 1E-50, isotope.←˒

cool_scaling)

20

21 # create oxide nodal activated isotope variable

22 isotope.setActOxConc('conc_ ' + isotope.activated + '_oxide_active ')

23 addVariable(f, isotope.act_ox_conc , 'FIRST ', 'LAGRANGE ', 0.0 , isotope.←˒

act_ox_scaling)

24

25 # create activated isotope coolant scalar var

26 isotope.setActCoolConc('conc_ ' + isotope.activated + '_cool ')

27 # 'if' prevents multiple of same isotope variable for Ni/Co decay chains

28 if not (co_and_ni and isotope.name == 'ni58'):

29 addVariable(f, isotope.act_cool_conc , 'FIRST ', 'SCALAR ', 0.0, isotope.←˒

act_scaling)

30 f.write("[]\n\n") # close Variables block

Listing 4.29: Code snippet to add variables automatically

84

4.6.1 ChemicalThermodynamics module

1 class ChemicalThermodynamics:

2 """

3 simple chemical thermodynamics "library" with enthalpies , entropies , and gibbs ←˒

energies of reactions

4 """

5 def __init__(self):

6 self.reactions = []

7 self.data = []

8 self.convertEnthalpy = True

9 print "\nCHEMICAL THERMODYNAMICS LIBRARY"

10 print "Created for use with Ouroboros CRUD Chemistry Code"

11 print "https :// github.com/shortlab/ouroboros"

12 print "Author: Alicia M. Elliott , aliciae@mit.edu\n"

13 print "Initializing\n"

14 self.generate ()

15

16 def addThermoData(self , data):

17 # format of data = [species , enthalpy , entropy , gibbs]

18 my_data = {

19 'species ': data[0],

20 'H':data[1],

21 'S': data[2],

22 'G':data[3],

23 }

24 self.data.append(my_data)

25

26 def getSpeciesData(self , species):

27 #returns the dictionary of thermo data input for a given species name

28 my_species = filter(lambda data: data['species '] == species , self.data)

29 return my_species [0]

30

31 def createThermoDatabase(self):

32 #creates the lookup dictionary for species thermo data

33 # format of list inputs:

34 # ['Ni2+', dH =-54.0 kJ/mol , S = -128.9 J/mol -K, dG = -45.6 kJ/mol]

35 print "Generating thermodynamic property dictionaries ..."

36 my_list = [

37 ['H2O', -285.83, 69.91, -237.18] ,

38 ['H+', 0., 0., 0.],

85

39 ['Ni2+', -54.0, -128.9, -45.6],

40 ['NiO', -239.7, 37.99 , -211.7],

41 ['Ni', 0., 29.87 , 0.],

42 ['Fe2+', -89.1, -137.7, -78.9],

43 ['Fe3+', -48.5, -315.9, -4.7],

44 ['Fe3O4 ', -1118.4, 146.4, -1015.5] ,

45 ['Fe2O3 ', -824.2, 87.4, -742.2],

46 ['Cr2O3 ', -1139.7, 81.2, -1058.1],

47 ['Co2+', -58.2, -113.0, -54.4],

48 ['Co3+', 92.0, -305.0, 134.0] ,

49 ['Co', 0., 30.4, 0.],

50 ['CoO', -237.94, 52.97, -214.22] ,

51 #all data above this comment were found in "Principles of Modern Chemistry , ←˒

Fourth Edition"

52 # Appendix D, "Standard Chemical Thermodynamic Properties"

53 # Authors: Octoby , Gillis , Nachtrieb

54 # ISBN 0 -03 -024427 -7

55

56 ['Cr2+', -143.5, -100.0, -146.0],

57 ['Cr3+', -238.0, -317.0, -194.5],

58 # chromium ion data derived from:

59 #Dellien I., Hall F. M. and Hepler G. L. (1976) Chemical Reviews , 76, 283.

60 #doi: 10.1021/ cr60301a001

61

62 # values for zr4+ from:

63 #Paul Scherrer Institut , Authors Tres Thoenen , Enzo Curti , report #TM -44-14-04

64 #Title: The PSI/Nagra Chemical Thermodynamic Database 12/07 (Update of the ←˒

Nagra/PSI TDB 01/01): Data Selection for Zirconium

65 # date: 05/05/2014

66 ['Zr4+', -608.5, 39.08 , -528.5],

67

68 #ZrO2 data from:

69 # US Department of Commerce , National Bureau of Standards (NBS) Selected ←˒

Values of Chemical Thermodynamic Properties

70 # Tables for Elements 54 through 61 in the Standard Order of Arrangement , NBS←˒

Technical Note 270-5

71 # Nat. Bur. Stand. (U.S.), Tech. Note 270-5, 49 pages (Mar. 1971)

72 ['ZrO2', -1100.56, 50.38, -1042.82]

73]

74 for sp in my_list:

75 my_data = []

76 for item in sp:

77 my_data.append(item)

86

78 self.addThermoData(my_data)

79 #Generating thermodynamic property dictionaries ...

80 print "\t\t\t\t\t\t\t\t\t\t\t\t DONE\n"

81

82 ####################

83

84 def addReaction(self , label , reactants , products , ion=None , oxide=None , x=None , b=None←˒

, electrons =0):

85 rxn = {

86 'label ': label ,

87 'reactants ': reactants ,

88 'products ': products ,

89 'e-':electrons ,

90 'ion':ion ,

91 'solid ':oxide ,

92 'x':x,

93 'b':b,

94 }

95 self.reactions.append(rxn)

96

97 def getReaction(self , reaction):

98 my_reaction = filter(lambda rxn: rxn['label '] == reaction , self.reactions)

99 return my_reaction [0]

100

101 def addRP(self , react , stoich):

102 # input format: ['NiO ', 'H+'], [1, 2]

103 my_list = []

104 for i,j in zip(react , stoich):

105 my_list.append ({'name': i, 'coeff ': j})

106 return my_list

107

108 def createReactionDatabase(self):

109 # a cumbersome , yet effective , method for creating the thermodynamic lookup ←˒

dictionary for reactions of interest

110 print "Generating reactions database\n"

111 #add 'NiO + 2H+ -> Ni2+ + H2O'

112 reactants = self.addRP(['NiO', 'H+'], [1, 2])

113 products = self.addRP (['Ni2+', 'H2O'], [1, 1])

114 self.addReaction('NiO + 2H+ -> Ni2+ + H2O', reactants , products , 'Ni2p', 'NiO', ←˒

2, 1, electrons =0)

115

116 # add 'Ni2+ + 2e- -> Ni'

117 reactants = self.addRP(['Ni2+'],[1])

87

118 products = self.addRP (['Ni'],[1])

119 self.addReaction('Ni2+ + 2e- -> Ni', reactants , products ,'Ni2p', 'Ni',0 , 1, ←˒

electrons =-2)

120

121 #add Fe3O4 + 8H+ + 2e- -> 3Fe2+ + 4H2O

122 reactants = self.addRP(['Fe3O4 ', 'H+'], [1, 8])

123 products = self.addRP (['Fe2+', 'H2O'], [3, 4])

124 self.addReaction('Fe3O4 + 8H+ + 2e- -> 3Fe2+ + 4H2O', reactants , products ,'Fe2p', ←˒

'Fe3O4 ', 8, 3, electrons =2)

125

126 #add 'Fe2O3 + 6H+ + 2e- -> 2Fe2+ + 3H2O'

127 reactants = self.addRP(['Fe2O3 ', 'H+'],[1, 6])

128 products = self.addRP (['Fe2+', 'H2O'],[2, 3])

129 self.addReaction('Fe2O3 + 6H+ + 2e- -> 2Fe2+ + 3H2O', reactants , products ,'Fe2p', ←˒

'Fe2O3 ', 6, 2, electrons =2)

130

131 # add 'Fe2O3 + 6H+ -> 2Fe3+ + 3H2O

132 reactants = self.addRP(['Fe2O3 ', 'H+'],[1, 6])

133 products = self.addRP (['Fe3+', 'H2O'],[2, 3])

134 self.addReaction('Fe2O3 + 6H+ -> 2Fe3+ + 3H2O', reactants , products ,'Fe3p', 'Fe2O3←˒

', 6, 2, electrons =0)

135

136 # add '3Fe3+ + 4H2O + e- -> Fe3O4 + 8H+'

137 reactants = self.addRP(['Fe3+', 'H2O'],[3, 4])

138 products = self.addRP (['Fe3O4 ', 'H+'],[1, 8])

139 self.addReaction('3Fe3+ + 4H2O + e- -> Fe3O4 + 8H+', reactants , products ,'Fe3p', '←˒

Fe3O4 ', 8, 3, electrons =-1)

140

141 #add 'Cr2O3 + 6H+ + 2e- -> 2Cr2+ + 3H2O'

142 reactants = self.addRP(['Cr2O3 ', 'H+'],[1, 6])

143 products = self.addRP (['Cr2+', 'H2O'],[2, 3])

144 self.addReaction('Cr2O3 + 6H+ + 2e- -> 2Cr2+ + 3H2O', reactants , products , 'Cr2p',←˒

'Cr2O3 ', 6, 2, electrons= 2)

145

146 # add 'Cr2O3 + 6H+ -> 2Cr3+ + 3H2O'

147 products = self.addRP (['Cr3+', 'H2O'],[2, 3])

148 self.addReaction('Cr2O3 + 6H+ -> 2Cr3+ + 3H2O', reactants , products , 'Cr3p', '←˒

Cr2O3 ', 6, 2, electrons =0)

149

150 #add 'ZrO2 + 4H+ + Zr4+ + 2H2O'

151 reactants = self.addRP(['ZrO2', 'H+'], [1, 4])

152 products = self.addRP (['Zr4+', 'H2O'],[1, 2])

88

153 self.addReaction('ZrO2 + 4H+ -> Zr4+ + 2H2O', reactants , products , 'Zr4p', 'ZrO2',←˒

4, 1, electrons =0)

154

155 # add 'Co2+ + 2e- -> Co'

156 reactants = self.addRP(['Co2+'], [1])

157 products = self.addRP (['Co'], [1])

158 self.addReaction('Co2+ + 2e- -> Co', reactants , products , 'Co2p', 'Co', 0, 1, ←˒

electrons =-2)

159

160 # add 'CoO + 2H+ -> Co2+ + H2O'

161 reactants = self.addRP(['CoO', 'H+'], [1,2])

162 products = self.addRP (['Co2+', 'H2O'],[1, 1])

163 self.addReaction('CoO + 2H+ -> Co2+ + H2O', reactants , products , 'Co2p', 'CoO', 2,←˒

1, electrons =0)

164

165 #add 'Co3+ + 3e- -> Co'

166 reactants = self.addRP(['Co3+'], [1])

167 products = self.addRP (['Co'],[1])

168 self.addReaction('Co3+ + 3e- -> Co', reactants , products , 'Co3p', 'Co', 0, 1, ←˒

electrons =-3)

169

170 #add 'Co3+ + H2O + e- -> CoO + 2H+'

171 reactants = self.addRP(['Co3+', 'H2O'], [1, 1])

172 products = self.addRP (['CoO', 'H+'], [1,2])

173 self.addReaction('Co3+ + H2O + e- -> CoO + 2H+', reactants , products , 'Co3p', 'CoO←˒

',2, 1, electrons =-1)

174

175 print "\t\t\t\t\t\t\t\t\t\t\t\t DONE\n"

176

177 def getH(self , my_species):

178 return my_species.get('H')

179

180 def getS(self , my_species):

181 return my_species.get('S')

182

183 def getG(self , my_species):

184 return my_species.get('G')

185

186 def calculateEnthalpy(self , rxn):

187 rdata = 0.

188 pdata = 0.

189 for r, p in zip(rxn.get('reactants '), rxn.get('products ')):

190 #get the enthalpies for each species

89

191 rdata = rdata + (r['coeff ']) * self.getSpeciesData(r['name'])['H']

192 pdata = pdata + (p['coeff ']) * self.getSpeciesData(p['name'])['H']

193 delta_H = pdata - rdata

194 if self.convertEnthalpy:

195 # convert units from kJ/mol to J/mol

196 delta_H = delta_H * 1000

197 return delta_H

198

199 def calculateEntropy(self , rxn):

200 rdata = 0.

201 pdata = 0.

202 for r, p in zip(rxn.get('reactants '), rxn.get('products ')):

203 # get the enthalpies for each species

204 rdata = rdata + (r['coeff ']) * self.getSpeciesData(r['name'])['S']

205 pdata = pdata + (p['coeff ']) * self.getSpeciesData(p['name'])['S']

206 delta_S = pdata - rdata

207 return delta_S

208

209 def generate(self):

210 self.createThermoDatabase ()

211 self.createReactionDatabase ()

212 print "***"

213 print "Reactions Available :\n"

214 for r in self.reactions:

215 print r['label ']

216 r['dH'] = self.calculateEnthalpy(r)

217 r['dS'] = self.calculateEntropy(r)

218 print "\nTo add additional reactions , modify the library code."

219 print "***\n\n"

Listing 4.30: ChemicalThermodynamics code

90

1 # This code snippet is from the method generateFile ()

2 # reactions_included is set from the input parameters of the method

3 # (see user input sample for input file generation script)

4

5 thermo = chem.ChemicalThermodynamics () #initialize ChemicalThermodynamics

6

7 for reaction in reactions_included: # loop over all reactions from user input

8 #get dictionary with calculated thermodynamic parameters for reaction

9 r = thermo.getReaction(reaction)

10

11 #create instance of Reaction object , and set parameters from dictionary

12 r_obj = Reaction(r['solid '], r['x'], r['e-'], r['b'], r['ion'], r['label '], r['dH'], r←˒

['dS'])

13 reactions.append(r_obj) #add Reaction object to the list of reactions

14

15 for rxn in reactions: # loop over all Reaction objects

16 rxn.setRxnName () # sets name of reaction object from label

17

18 for element in elements: # loop over all elements

19 for oxide in element.oxides: # loop over all oxides

20 if rxn.oxide == oxide.name: # find oxide for this reaction

21 for ion in element.ions:

22 if ion.name == rxn.ion: # ensure reaction ion exists

23 oxide.addRxn(rxn) # link oxide to reaction object

24 print '\t\tReaction added to Oxide %s' % (oxide.name)

25 ion.reactions.append(rxn) # link ion to reaction object

26 print '\t\tReaction added to Ion %s\n\n' % (ion.name)

Listing 4.31: Code for linking oxide/ion/reactions and using ChemicalThermodynamics

module output

91

92

Chapter 5

Results

5.1 Problem Setup

The test case used for validation and sensitivity studies was set up based largely upon the

test case presented in Macdonald. General parameters can be found in Tables 5.1 and 5.2.

5.1.1 Simulation parameters

A primary loop with total length of 78m, core length of 4.587m, and steam generator length

of 5.695m was used for all test cases, and each simulation represents a 12 month fuel cycle.

While fuel cycles are typically 18 to 24 months long, 12 months was chosen for consistency

with Macdonald et al. to more easily compare results. A piecewise constant function was used

to input the temperature, electrochemical corrosion potential, hydraulic diameter, wetted

area, and coolant velocity along the loop. The electrochemical corrosion potential profile

for the loop is presented in Figure 5-1, and the temperature profile is presented in Figure

5-2. Using the built-in solvers from the MOOSE framework, a preconditioned Jacobian-Free

Newton Krylov method was used to solve the coupled system, and an implicit midpoint time

integration scheme was used. Tolerances for linear and nonlinear solve steps can be found

in Table 5.1.

93

Loop length 78.0 m
Core length 4.587 m
Steam generator length 5.695 m
nx 78
ny 1
Finite element type QUAD9
Solve type PJFNK
Preconditioner hypre boomerAMG
Time integration scheme Implicit midpoint
End time 31536000 s (1 year)
Linear tolerance 1.0e-5
Linear max iterations 15
Nonlinear relative tolerance 1.0e-4
Nonlinear absolute tolerance 1.0e-6
Nonlinear max iterations 10

Table 5.1: Solve parameters

End (m) Region 𝑑ℎ (m) Velocity (𝑚/𝑠) Wet area (𝑚2)
0.854

Core

0.004 7.93 1400
3.416 0.004 5.06 4200
4.270 0.004 5.32 1400
4.587 0.011 5.00 235.2
8.137

HL
0.400 4.00 452.96

14.982 0.736 15.98 50
22.797 0.736 5.5 200
28.493 SG 0.0169 5.25 4050
35.767

CL

0.7874 5.12 200
43.178 0.7874 12.40 150
64.355 0.6985 15.73 100
78.124 0.5200 5.50 911.94

Table 5.2: Parameters

94

Figure 5-1: Electrochemical corrosion potential profile used for test case (based on Macdon-
ald)

Figure 5-2: Temperature profile used for test case

95

5.1.2 Chemistry

The set of dissolution-precipitation reactions used in the test cases are presented in Table

5.3. To fully model the complex chemistry present in an actual plant, hundreds of reactions

would be required. As such, these reactions are a representative selection to demonstrate

the functionality of the code for multiple elements and oxides.

No. Oxide Ion Reaction Δ𝐻𝑟𝑥𝑛

(kJ/mol)
Δ𝑆𝑟𝑥𝑛

(J/mol-K)
1 Fe3O4 Fe2+ Fe3O4 + 8H+ + 2 e− → 3Fe2+ + 4H2O -292.22 -279.86
2 Fe2O3 Fe2+ Fe2O3 + 6H+ + 2 e− → 2Fe2+ + 3H2O -211.49 -153.07
6 NiO Ni2+ NiO + 2H+ → Ni2+ +H2O -100.13 -96.98
9 ZrO2 Zr4+ ZrO2 + 4H+ → Zr4+ + 2H2O -79.6 128.52
11 CoO Co2+ CoO + 2H+ → Co2+ +H2O -106.09 -96.06

Table 5.3: Reactions considered for dissolution/precipitation

At each node, the following oxide concentrations are tracked:

Fe3O4,Fe2O3,NiO,ZrO2,CoO

5.1.3 Corrosion growth rates

A value for the corrosion growth rate constant, 𝑘𝑝, for 304SS was provided by Castelli [23]. To

make a rough approximation for other materials, it was assumed that the corrosion growth

(oxidation of metal) is limited by the diffusion of oxygen into the base metal. For example,

to adjust the rate for A600 and Zr4, the rate from 304SS was weighted by a ratio of the

diffusivity of oxygen in the main element of the new alloy, to the diffusivity of oxygen in iron

(the main constituent of 304SS). This would scale the corrosion oxide growth rate by some

orders of magnitude to provide an approximate corrosion rate; future work should include

the mechanisms of corrosion growth instead of an empirical rate constant. An intermediate

improvement would be to use a measured or calculated corrosion growth rate constant for

A600 and Zr4.

Assuming the oxidation growth rate is proportional to the diffusivity of O2
− in the base

metal of construction materials:

96

𝑘𝑎𝑙𝑙𝑜𝑦
𝑃 =

𝐷𝑜𝑥
𝑎𝑙𝑙𝑜𝑦

𝐷𝑜𝑥
304𝑠𝑠

× 𝑘304𝑠𝑠
𝑝

Diffusivities were computed using an Arrhenius relationship at a temperature of 582 K.

𝐷 = 𝐷0 exp

(︂
−𝐸𝑎

𝑘𝑏𝑇

)︂
Values used for prefactors, activation energies, and calculated diffusivities can be found

in Table 5.4.

Alloy 𝐷0 (𝑚2/𝑠) 𝐸𝐴 (𝑒𝑉) Source 𝐷𝑐𝑎𝑙𝑐 (𝑚2/𝑠) 𝐷𝑎𝑙𝑙𝑜𝑦/𝐷304𝑠𝑠 𝑘𝑚𝑜𝑑
𝑝

304SS 2.91e-7 0.93 [35] 2.75e-15 1 1.16
A600 4.9e-6 1.7 [36] 9.41e-21 3.42e-6 3.97e-6
Zr-4 9.4e-6 2.267 [37] 2.23e-25 8.11e-11 9.41e-11

Table 5.4: Diffusivities for O2
− in base metals; calculated using an Arrhenius relationship at

a temperature of 582 K.

97

5.2 Validation and sensitivity studies

Validation was performed by replicating certain results presented by Macdonald et al. These

include spatial surface concentration trends, temporal bulk coolant concentration evolution,

temporal and spatial activity accumulation.

5.2.1 Surface concentration trends

Surface concentration is dependent upon local temperature, pH, electrochemical potential,

and Gibbs energy values for each element’s dissolution reaction. These results were deter-

mined assuming no local variation in pH, and a fixed electrochemical potential profile along

the primary loop.

Figure 5-3: Normalized surface concentration trends along primary loop; the temperature
dependence is well represented by all elements (nodal temperature profile is represented by
the dashed line).

The surface concentration values presented in Fig. 5-3 were calculated by averaging

the values over the elements whose positions correspond to those of the nodes described

in Macdonald et al. Nodes 1-3 include the core, 4-6 include the hot leg, 7-11 include the

98

steam generator, and 12-15 are the cold leg. The temperature dependence for saturation of

each element is apparent. Nodes in higher temperature regions (hot leg, nodes 4-7) have

greater surface concentrations than the average along the primary loop, and lower surface

concentrations in areas with lower temperatures (cold leg, nodes 12-15).

Figure 5-4: Gibbs energy values along loop for each reaction

The Gibbs energy for each reaction was calculated at each node as a function of the node

temperature.

Δ𝐺𝑟𝑥𝑛(𝑇) = Δ𝐻𝑟𝑥𝑛 − 𝑇Δ𝑆𝑟𝑥𝑛

As the Gibbs energy scales linearly with temperature, the values calculated along the

loop should yield approximately the same trend and shape as the temperature profile along

the loop. Figure 5-4 presents the calculated Gibbs energies along the loop for each of the

5 chemical reactions represented. The trends for NiO/Ni2+, CoO/Co2
+, Fe2O3/Fe2

+, and

Fe3O4/Fe2
+ follow the same shape as the temperature profile, differing in magnitude due

to the different entropy changes for each reaction. The Gibbs energy profile for ZrO2/Zr4
+

is inverse in the slopes; this is explained by the opposing sign on the reaction entropy as

compared with the other reactions, which negates the slope in this linear relationship.

99

5.2.2 Isotope concentrations in bulk coolant

Temporal changes in bulk coolant concentrations of precursor isotopes during the first hours

of the fuel cycle are presented in Figure 5-5. Concentrations for each isotope rise sharply

during the first 3 hours. This increase is followed by a slight decrease as the coolant con-

centrations become saturated and converge to a stable value. This slight dip is not present

in the results presented by Macdonald (Fig. 5-6); the concentrations here also converge to

a stable coolant concentration much sooner than in those presented by Macdonald. These

differences could be attributed to the additional corrosion release source term that is present

in this model and not included in the Macdonald model.

Figure 5-5: Bulk coolant isotope concentrations

Note the difference in magnitude between each precursor isotope; the ordering of these

isotopes appear to correlate with the Gibbs energies of different element reactions. Gibbs

energies decrease in magnitude in the following order: NiO > CoO > Fe2O3 > Fe3O4 > ZrO2.
59Co is the exception to this; the nickel reaction has a higher Gibbs energy, so one

might anticipate a higher saturated concentration and bulk coolant concentration as a result.

However, 59Co differs from the other precursor isotopes in this system as there are 2 source

100

Figure 5-6: Bulk coolant isotope concentrations reported by Macdonald et al. [5]

terms. As with the other isotopes, there is a source term from corrosion release/dissolution.

Dissolution for each isotope is proportional to the natural abundance of that isotope; 59Co

has a natural abundance of approximately 100%, while 58Ni is approximately 68%. As such,

the dissolution source term of 58Ni is reduced. The additional source term for 59Co is from

the neutron capture reaction from 58Co. The large capture cross section for 59Co (1855

barns) makes this source term significant.

The bulk concentration of activated isotopes in the coolant, shown in Figure 5-7, shows

similar trends. The concentrations rise sharply at the beginning of the fuel cycle before

reaching a stable value after the first 10 to 20 hours. Note that the concentrations for

activated isotopes are related to those of precursors; these activated isotopes reach stable

values in fewer hours than the results presented by Macdonald (Fig. 5-8), and this could

be attributed to the faster convergence of the precursor isotope concentrations from the

additional source term.

The behavior of 58Co during the first 15 hours of the fuel cycle does not follow the same

trend as for other isotopes. The concentration drops to a seemingly converged value, then

rises to a new converged value between hours 10 and 20. This could be a result of numerical

stability and convergence issues from the coupling of variables in the system. If the residual

101

Figure 5-7: Bulk coolant activated isotope concentrations

for certain variables is orders of magnitude smaller than the largest variable residual, some

variables can be “oversolved” as the numerical solver tries to reduce the residuals of all

coupled variables in order to find a well-converged solution.

5.2.3 Spatial accumulated activity

Figure 5-9 presents the nodal accumulation of activity per activated isotope. Each isotope

appears to follow a similar trend, with higher accumulation near nodes 6, 13, and 14, and

the least accumulation in the core. Note that 55Fe and 59Fe accumulate activity in the core,

while the remaining isotopes do not. One possible explanation for this behavior is that

there are two oxides (and two dissolution reactions) present for the iron isotopes; the release

rates for Fe2+ → Fe2O3 are positive, indicating dissolution in the core, while Fe2+ → Fe3O4

precipitates. The remaining isotopes have positive release rates within the core; the absence

of oxide precipitation prevents the accumulation of activity within oxides.

Figure 5-11 presents the total accumulated activity per node at the end of one 12 month

fuel cycle. Note the maximum activity accumulated at node 6 (end of hot leg) and node 14

102

Figure 5-8: Bulk coolant activated isotope concentrations reported by Macdonald et al. [5]

(cold leg). The largest contributions to the total activity come from 58Co.

Figures 5-12, 5-13, and 5-14 present the activity accumulation per element over the

primary loop. Precipitation rates impact the activity accumulation, and are directly propor-

tional to the saturated concentration at each point. Lower saturated concentrations drive

precipitation, which would suggest that more activity would accumulate in regions with

lower saturated concentrations, such as the cold leg. This is seen in for iron, cobalt, and

zirconium as shown in Figures 5-12, 5-13, and 5-14. However, this does not account for the

accumulation in the hot leg. The precipitation rate is also dependent on thermal hydraulic

parameters (such as the Sherwood number, coolant velocity, etc.) and the wetted areas in

each region. The hydraulic diameter and coolant velocity in the hot leg are greater than in

the core and steam generator, which might explain this accumulation. The sharp increases

and decreases can be explained by the use of piecewise functions to represent certain system

properties in different regions along the primary loop.

The activity accumulation of iron isotopes (Fig. 5-12) shows some accumulation in the

core, with a sharp decrease along the steam generator. Cobalt and zirconium, however,

have little to no accumulation in the core. This is likely due to the absence of precipitation

reactions in that region. Note the difference in the activity scales between these isotopes;

103

Figure 5-9: Accumulated activity per node per isotope

cobalt dominates, and zirconium activity buildup is negligible in comparison.

104

Figure 5-10: Accumulated activity per node per isotope reported by Macdonald et al. [5]

Figure 5-11: Total accumulated activity per node

105

Figure 5-12: Spatial distribution of accumulated activity from iron isotopes

Figure 5-13: Spatial distribution of accumulated activity from cobalt isotopes

106

Figure 5-14: Spatial distribution of accumulated activity from zirconium isotopes

107

5.2.4 Temporal activity accumulation

Activity accumulation increases exponentially during the first month of the fuel cycle, then

begins to level off to a nearly linear increase for the remainder of the fuel cycle. The difference

in magnitude for each element is as would be expected, due to the significantly longer half

life of cobalt.

Figure 5-15: Activity accumulation over fuel cycle

108

5.3 Sensitivity studies

5.3.1 Activity accumulation pH sensitivity study

Figure 5-16: Iron accumulated activity per node with varied pH

Figures 5-16 and 5-17 present results of varying pH on activity accumulation for iron and

cobalt. Each of these results show a decrease in activity accumulation with increasing pH.

The relationship between the saturated concentration and pH is ∝ 10−pH. Increasing pH

would cause the saturated concentration to decrease, which should then drive the precipi-

tation rate. As the precipitation rate increases, activity accumulation should also increase.

However, this does not account for the effect of pH and electrochemical corrosion poten-

tial (ECP), which has the same relationship with saturated concentration as pH, and could

potentially impact this behavior significantly if it were included.

109

Figure 5-17: Cobalt accumulated activity per node with varied pH

110

5.3.2 Growth rate sensitivity study

To look at the impact of pH and of corrosion growth rates on temporal activity accumulation,

a sensitivity study was performed. Corrosion growth rates were selected to obtain particular

oxide thicknesses in the absence of dissolution or precipitation reactions; the values and

thicknesses are presented in Table 5.3.2.

Element 20𝜇m 40𝜇m 60𝜇m 80𝜇m 100𝜇m
Fe 6.6 9.0 11.01 12.7 14.1

Ni/Co 4.3 6.0 7.4 8.5 9.55
Zr 2.7 5.3 7.8 10.3 13.1

Table 5.5: Corrosion rate constants used to obtain fixed thicknesses of oxide growth from
corrosion

Figure 5-18: Accumulated activity, varying corrosion growth rates of iron, full fuel cycle

Figure 5-18 presents the accumulated activity over a full fuel cycle for each growth rate

of iron. At this scale, the activity accumulation appears to be identical for each. Figure 5-19

presents a zoomed in view of these results over months 6 to 8. This view clearly shows some

differences between each growth rate, with increasing activity accumulation as growth rate

increases, as would be expected. Higher growth rates should provide a larger source term

111

for elements, which could yield higher precipitation as the coolant concentration saturates

and excess material precipitates, and also a higher concentration of activated species in the

coolant.

Figure 5-19: Accumulated activity, varying corrosion growth rates of iron, over two months

Figures 5-20 and 5-21 present the same results for nickel growth rates (cobalt is included

in these results, but cobalt growth rate was not changed). Figure 5-20 is similar to 5-18, as

the difference in accumulation cannot be seen on the long time scale. Figure 5-21 does not

show any clear trend in activity accumulation from cobalt with changing nickel growth rate.

A possible explanation for this is that the growth rate for nickel source is changed without

changing the cobalt source terms; as the majority of activity accumulation does come from
58Co, increasing the 58Ni should increase activity accumulation. However, increasing 58Co

can also increase 59Co as more activation occurs. Activity is highly sensitive to the decay

parameter of the activated isotope; since 59Co is stable, an increase in the activation of 58Co

to 59Co could lead to less activity accumulation. Future studies to investigate this result

could investigate the impact of varying nickel growth rate without including the cobalt source

terms.

112

Figure 5-20: Accumulated activity from cobalt, varying corrosion growth rates of nickel

Figure 5-21: Accumulated activity from cobalt, varying corrosion growth rates of nickel, over
one month

113

114

Chapter 6

Conclusions and Future Work

As stated in the introduction of this thesis, the objective of this work was to develop a code

that can predict the concentration of active isotopes deposited throughout the primary loop

over time and varied operating parameters.

This code implements many components of the mechanistic model for activity transport

by Macdonald et al. [5]. Mechanisms for dissolution and precipitation of corrosion products

are represented, with an emphasis on the saturated coolant concentrations as a driving force

for these processes. Calculation of Gibbs energies for dissolution reactions are temperature-

dependent and calculated upon each node, instead of using constant values from experimental

measurements. While the detailed electrochemical potential and pH calculation models used

by Macdonald are not implemented, an additional corrosion growth/release source term was

added based upon the modeling effort of Castelli [23]. Buildup of crud in the core (from

subcooled nucleate boiling) and crud particulate activation/release is not explicitly included

in this model; however, existing models for crud growth and chemistry (such as MAMBA-

BDM) can be coupled to this source term code using the MOOSE MultiApp/Transfer

system.

6.1 Implications of this work

The main result of this work is an open source activity transport code, which is avail-

able freely for future improvements and adaptations to implement additional mechanisms

115

and more rigorous models. This code can be easily coupled to other multiphysics codes -

such as thermal hydraulic, crud microstructure/fluid interactions, and neutronics - using the

MOOSE MultiApp system. The code is capable of providing spatial (nodal) resolution of

local activity and oxide concentrations/compositions due to dissolution/precipitation and

corrosion growth.

The model implemented is predominantly mechanistic, and the coupled stiff equation set

is solved using implicit numerical methods instead of explicit to allow faster, more stable

solves. Implementation of this model using the MOOSE framework, with modular code

structures, makes it simple to add new physics couplings, make more rigorous assumptions,

and investigate the effects of each piece easily by adding or removing kernels from a simula-

tion.

This work also provides a “user-friendly” input file generation method that includes com-

putation of thermodynamic data for reactions desired, and ensures that all required pieces

of physics and variables are linked properly for each solve. Users need not write input files

on the order of 1500 lines by hand, reducing the time required to set up a new simulation

case.

By using a mainly mechanistic model, the main assumptions made do not require oper-

ating parameters/geometry to be limited according to a plant that has already been studied.

As such, physics-informed designs for plants, looking at different operating parameters and

materials/geometries, can be used to reduce dose rates for primary-side workers.

6.2 Limitations in scope

As the system considered in this model is large and complex, many assumptions had to be

made in order to begin with a preliminary model. These include the assumption of constant

pH and electrochemical potential, loop temperature profile, and neutron flux profile in the

core. These assumptions, however, can be easily removed in the future by simply adding the

appropriate physics as MOOSE Kernels to vary those parameters temporally.

Additionally, the model is not fully mechanistic; empirical corrosion growth rates were

used in implementing the corrosion growth and release source term from the Castelli model.

116

Gibbs energies of dissolution reactions are calculated from thermodynamic data that is in-

herently difficult to determine/measure, and any assumptions made in determining those

values (particularly from experimental results) are carried into this model. As better ther-

modynamic data becomes available, these uncertainties and limitations can be reduced. The

results presented here use a small selection of dissolution/precipitation reactions to demon-

strate the functionality of the code. There are many more reactions that should be added

to more closely represent a real system.

This model is not fully implicit; there is some explicit behavior from the coupling between

the global ODEs and nodal calculations, which uses postprocessor values (to aggregate nodal

values along the whole loop and obtain a scalar value). The postprocessor value is calculated

on the beginning or end of a timestep or upon each linear or nonlinear solver iteration, and

therefore is not fully implicit when used as a temporal rate of change in the global ODEs,

introducing some instability in the model.

Validation data for activity buildup can be difficult to come by, as plant measurements of

this data are typically proprietary. At the time of this thesis, a publicly accessible dataset for

primary loop activity measurements and crud chemistry in operational PWRs was not found.

A dataset similar to the BEAVRS benchmark (Benchmark for Evaluation And Validation

of Reactor Simulations) with plant data for crud/oxide chemistry, activity buildup, etc.

would be instrumental towards future development of crud source term models and activity

transport codes [38]. With such a dataset, model predictions could be validated against

actual plant data, and a mechanistic approach could be used to “tune” the code and correct

the underlying physics represented in the models and more closely represent the true physics

occurring in real PWRs as models are developed.

6.3 Future Work

Throughout this work, many assumptions and simplifications were necessary in order to

develop this preliminary model. As such, there is plenty of opportunity for future improve-

ments to the model and the code. While there are many possibilities, a few suggestions are

listed here which could significantly improve the assumptions made in this model.

117

Possible future directions and improvements:

• Implementation of detailed water chemistry models for calculating pH and electro-

chemical corrosion potential

• Adding more precise thermodynamic data for Gibbs energy calculations

• Coupling with subchannel thermal hydraulics codes for thermal hydraulic parameters,

feedback

• Coupling with neutronics codes for neutron flux profiles, neutron capture cross sections

• Coupling with crud chemistry codes (MAMBA-BDM) to implement localized dissolu-

tion/precipitation from transients of fluid flow through crud

• Implementation of multiple activation and decay chains, fast neutron capture, etc.

• Implementation of a larger set of dissolution reactions

• Implementation of a two-layer crud microstructure, with an outer and inner oxide

• Addition of particulates to the crud source term

6.4 Concluding thoughts

In the words of Castelli, “With so much uncertainty in our ability to describe these funda-

mental source terms, one wonders how or why anyone would choose to proceed from this

point. The answer is quite clear, at least to me. Modeling of these phenomena must start

somewhere, and even if the initial set of data is somewhat flawed, it will always be possible

to improve it, in time, as new investigations are performed in the future” [23].

The code developed and described in this thesis is capable of predicting activated isotope

deposition throughout the primary loop with spatial and temporal resolution, without the

constraint of a particular plant’s operating parameters or geometries, to obtain reasonable

estimates of loop activity.

118

As codes for activity transport continue to implement additional mechanistic- based

physics models, the mechanisms that govern activity transport will be better understood.

While there is much future work to be done, this code is the first step towards a long term

effort to develop an open source, fully mechanistic model which includes all mechanisms for

activity transport in PWRs.

119

120

Bibliography

[1] Key world energy statistics, international energy agency. "http://www.iea.org/
publications/freepublications/publication/KeyWorld2017.pdf", 2017.

[2] International atomic energy agency, nuclear power reactors in the world: Reference data
series no. 2. "https://www-pub.iaea.org/MTCD/Publications/PDF/RDS_2-37_web.
pdf, 2017.

[3] Tennessee Valley Authority. Pressurized water reactor schematic. "https://
commons.wikimedia.org/wiki/File:PWR_nuclear_power_plant_diagram.svg", Ac-
cessed April 12 2018.

[4] Jiaxin Chen. On the interaction between fuel crud and water chemistry in nuclear power
plants. Swedish Nuclear Power Inspectorate (SKI) Report, 00:5(SKI Project Number
97252, ISSN 1104-1374), 2000.

[5] Digby D. Macdonald, Mirna Urquidi-Macdonald, John H. Mahaffy, Amit Jain, Han Sang
Kim, Vishisht Gupta, and Jonathan Pitt. Electrochemistry of water-cooled nuclear
reactors. Nuclear Energy Education Research (NEER) Final Technical Progress Report,
2006.

[6] Iva Betova, Martin Bojinov, and Timo Saario. Start-up and shut-down water chemistries
in pressurized water reactors. VTT Research Report, No VTT-R-00699-12, 2012.

[7] ENDF/B-VII.1 Boron-10. "http://www.nndc.bnl.gov/sigma/getDataset.jsp?
evalid=15516".

[8] M.P. Short, D. Hussey, B.K. Kendrick, T.M. Besmann, C.R. Stanek, and S. Yip. Mul-
tiphysics modeling of porous CRUD deposits in nuclear reactors. Journal of Nuclear
Materials, 443(1-3):579–587, 2013.

[9] ENDF/B-VII.1 Iron-54. "http://www.nndc.bnl.gov/exfor/servlet/
E4sGetEvaluation?EvalID=25307&req=19786".

[10] ENDF/B-VII.1 Iron-58, national nuclear data center (NNDC) sigma, brookhaven na-
tional laboratory. "http://www.nndc.bnl.gov/exfor/servlet/E4sGetEvaluation?
EvalID=25311&req=19787".

121

http://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf
http://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/RDS_2-37_web.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/RDS_2-37_web.pdf
https://commons.wikimedia.org/wiki/File:PWR_nuclear_power_plant_diagram.svg
https://commons.wikimedia.org/wiki/File:PWR_nuclear_power_plant_diagram.svg
http://www.nndc.bnl.gov/sigma/getDataset.jsp?evalid=15516
http://www.nndc.bnl.gov/sigma/getDataset.jsp?evalid=15516
http://www.nndc.bnl.gov/exfor/servlet/E4sGetEvaluation?EvalID=25307&req=19786
http://www.nndc.bnl.gov/exfor/servlet/E4sGetEvaluation?EvalID=25307&req=19786
http://www.nndc.bnl.gov/exfor/servlet/E4sGetEvaluation?EvalID=25311&req=19787
http://www.nndc.bnl.gov/exfor/servlet/E4sGetEvaluation?EvalID=25311&req=19787

[11] ENDF/B-VII.1 Chromium-50, national nuclear data center (NNDC) sigma,
brookhaven national laboratory. "http://www.nndc.bnl.gov/exfor/servlet/
E4sGetEvaluation?EvalID=25300&req=19789".

[12] ENDF/B-VII.1 Cobalt-59, national nuclear data center (NNDC) sigma, brookhaven
national laboratory. "http://www.nndc.bnl.gov/sigma/index.jsp?as=59&lib=
endfb7.1&nsub=10".

[13] ENDF/B-VII.1 Cobalt-58, national nuclear data center (NNDC) sigma, brookhaven
national laboratory. "http://www.nndc.bnl.gov/sigma/getSection.jsp?evalid=
15022&mf=1&mt=451".

[14] ENDF/B-VII.1 Zirconium-94, national nuclear data center (NNDC) sigma, brookhaven
national laboratory. "http://www.nndc.bnl.gov/exfor/servlet/X4sShowData?db=
e4&op=get_e4&req=19791&ii=157&File=E4R19791_e4.txt".

[15] Chart of nuclides, national nuclear data center (NNDC) sigma, brookhaven national
laboratory. "https://www.nndc.bnl.gov/chart/chartNuc.jsp".

[16] K.J.R. Rosman and P.D.P. Taylor. Isotopic composition of the elements 1997 (technical
report). Pure Appl. Chem., 70(1):217–235, 1998.

[17] 10 CFR 20, standards for protection against radiation. "https://www.nrc.gov/
reading-rm/doc-collections/cfr/part020/index.html".

[18] G.R. Hoenes, M.A. Mueller, and W.D. McCormack. Radiological assessment of steam
generator removal and replacement: update and revision (nureg/cr-1595), 1980.

[19] US EPA Office of Radiation Programs; ORP/TAD-79-11. Summary of occupational
radiation exposure at nuclear power plants 1969 through 1977, 1977.

[20] Derek Gaston, Chris Newman, Glen Hansen, and Damien Lebrun-Grandié. MOOSE: A
parallel computational framework for coupled systems of nonlinear equations. Nuclear
Engineering and Design, 239(10):1768–1778, 2009.

[21] Derek R. Gaston, Cody J. Permann, John W. Peterson, Andrew E. Slaughter, David
Andrš, Yaqi Wang, Michael P. Short, Danielle M. Perez, Michael R. Tonks, Javier
Ortensi, Ling Zou, and Richard C. Martineau. Physics-based multiscale coupling for
full core nuclear reactor simulation. Annals of Nuclear Energy, 84:45–54, 2015.

[22] S. Anthoni et al. Modelling of transport of radioactive substances in the primary circuit
of water cooled reactors. Technical report, International Atomic Energy Agency (IAEA),
(IAEA-TECDOC-1672), 2012.

[23] Roy Castelli. Nuclear Corrosion Modeling: The Nature of CRUD. Butterworth-
Heinemann, 2009.

[24] Mirza et al. Simulation of corrosion product activity in pressurized water reactors under
flow rate transients. Annals of Nuclear Energy, 25:331 – 345, 1998.

122

http://www.nndc.bnl.gov/exfor/servlet/E4sGetEvaluation?EvalID=25300&req=19789
http://www.nndc.bnl.gov/exfor/servlet/E4sGetEvaluation?EvalID=25300&req=19789
http://www.nndc.bnl.gov/sigma/index.jsp?as=59&lib=endfb7.1&nsub=10
http://www.nndc.bnl.gov/sigma/index.jsp?as=59&lib=endfb7.1&nsub=10
http://www.nndc.bnl.gov/sigma/getSection.jsp?evalid=15022&mf=1&mt=451
http://www.nndc.bnl.gov/sigma/getSection.jsp?evalid=15022&mf=1&mt=451
http://www.nndc.bnl.gov/exfor/servlet/X4sShowData?db=e4&op=get_e4&req=19791&ii=157&File=E4R19791_e4.txt
http://www.nndc.bnl.gov/exfor/servlet/X4sShowData?db=e4&op=get_e4&req=19791&ii=157&File=E4R19791_e4.txt
https://www.nndc.bnl.gov/chart/chartNuc.jsp
https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/index.html
https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/index.html

[25] N. Mirza et al. Computer simulation of corrosion product activity in primary coolants
of a typical pwr under flow rate transients and linearly accelerating corrosion. Annals
of Nuclear Energy, 30:831–851, 2003.

[26] Rubina Nasir, Sikander M. Mirza, and Nasir M. Mirza. Evaluation of corrosion product
activity in a typical PWR with extended cycles and flow rate perturbations. World
Journal of Nuclear Science and Technology, 07(01):24–34, 2017.

[27] K.A. Burrill and P. Menut. A description of the activity transport computer codes in
the IAEA benchmarking exercise. In Water Chemistry of Nuclear Reactor Systems 8,
pages 519 – 526, Bournemouth, UK, 2000.

[28] K. Dinov. Modeling of activity transport in PWR by computer code MIGA. In 1st
meeting of the IAEA Coordinated Research Program on Activity Transport Modeling,
Toronto, Canada, 1997.

[29] K. Dinov et al. Modeling of VVER light water reactors activity buildup. In ICONE 8:
Proceedings of the Eighth International Conference on Nuclear Engineering, Baltimore,
USA, 2000.

[30] D. Tarabelli et al. Status and future plans of the PACTOLE code predicting the ac-
tivation and transport of corrosion products in PWRs. In Proceedings of 1998 JAIF
International Conference on Water Chemistry in Nuclear Power Plants, pages 301 –
305, Kashiwakazi, Japan, 1998.

[31] Maria Cristina Annesini, Luigi Marrelli, Vincenzo Piemonte, and Luca Turchetti. Arti-
ficial Organ Engineering. Springer-Verlag, 2016.

[32] MOOSE framework website. "http://mooseframework.org/moose/", Accessed April
20 2018.

[33] M.P. Short. The particulate nature of the crud source term in light water reactors.
Journal of Nuclear Materials, 2018.

[34] Peter Atkins and Julio de Paula. Physical Chemistry Volume 1: Thermodynamics and
Kinetics. W. H. Freeman, 2010.

[35] Jun Takada and Masao Adachi. Determination of diffusion coefficient of oxygen in
alpha-iron from internal oxidation measurements in fe-si alloys. Journal of Materials
Science, 21(6):2133–2137, 1986.

[36] Jong-Wan Park and Carl J. Altstetter. The diffusion and solubility of oxygen in solid
nickel. Metallurgical Transactions A, 18(1):43–50, 1987.

[37] J. Paul Pemsler. Diffusion of oxygen in zirconium and its relation to oxidation and
corrosion. Journal of The Electrochemical Society, 105(6):315, 1958.

[38] N. Horelik, B. Herman, B. Forget, and K. Smith. Benchmark for evaluation and val-
idation of reactor simulations (BEAVRS), v1.0.1. Proc. Int. Conf. Mathematics and
Computational Methods Applied to Nuc. Sci. and Eng., 2013. Sun Valley, Idaho.

123

http://mooseframework.org/moose/

124

Appendix A

Typical PWR Parameters

Fuel Rod Parameter Symbol Value Units

Pellet percent of theoretical density 95 %
Rod-to-rod pitch 𝑃 12.6 mm

Fuel rod outside diameter 𝐷 9.5 mm
Cladding thickness 𝑡𝑐𝑙𝑎𝑑 0.572 mm

Fuel-cladding gap (cold) 𝑡𝑔𝑎𝑝 0.0826 mm
Fuel pellet diameter 𝐷𝑓 8.192 mm
Fuel pellet length 𝐿𝑓 9.8 mm

Total fuel rod height 3.876 m
Heated fuel height 𝐿 3.658 m

Percent of energy deposited in fuel rods 97.4 %
Peak Linear Heat Generation Rate (LHGR) 𝑞′0 44.62 kW/m

Core average LHGR < 𝑞′ > 17.86 kW/m
Core average subchannel flow rate (interior) �̇�𝑐𝑙 0.335 kg/s
Core average subchannel flow rate (edge) �̇�𝑐𝑙 0.159 kg/s

Core average subchannel flow rate (corner) �̇�𝑐𝑙 0.0759 kg/s
Subchannel flow area (interior) 𝐴𝑓𝑐ℎ 8.79 x 10−5 𝑚2

Subchannel flow area (edge) 𝐴𝑓𝑐ℎ 4.27 x 10−5 𝑚2

Subchannel flow area (corner) 𝐴𝑓𝑐ℎ 2.07 x 10−5 𝑚2

Core average subchannel mass flux (interior) 𝐺𝑐ℎ 3807 𝑘𝑔
𝑚2𝑠

Core average subchannel mass flux (edge) 𝐺𝑐ℎ 3734 𝑘𝑔
𝑚2𝑠

Core average subchannel mass flux (corner) 𝐺𝑐ℎ 3661 𝑘𝑔
𝑚2𝑠

Table A.1: Typical PWR fuel rod parameters - based on Seabrook Station Reactor (from
Todreas & Kazimi, Appendix K)

125

Parameter Symbol Value Units

Thermal power �̇�𝑡ℎ 3411 MWth
Net electric power �̇�𝑒 1148 MWe

Efficiency 𝜂 33.7 %
Nominal pressure p 15.51 MPa

Total core pressure drop Δ𝑝𝑐𝑜𝑟𝑒 0.197 MPa
Core inlet temperature 𝑇𝑖𝑛 293.1 °C
Core exit temperature 𝑇𝑒𝑥𝑖𝑡 326.8 °C
Core coolant flow rate �̇�𝑐𝑜𝑟𝑒 17476 kg/s
Number of assemblies 𝑁𝑎 193

Active core equiv diameter 3.37 m
Coolant mass in primary circuit 354 metric tons
Fuel enrichment (initial core) r 1.6/2.4/3.1 %

Fuel enrichment (reloads) r 3.1/3.4/4.2 %
Number of loops 4

Cycle length 12 months
Average discharge burnup 33000 MWd/tU

Fuel inventory 89 tHM
Fuel inventory 101 t(UO2)

Average core power density 104.5 𝑘𝑊𝑡ℎ/𝐿
Average core specific power 38.3 𝑘𝑊𝑡ℎ/𝑘𝑔𝐻𝑀

Configuration 17x17
Fuel rods per assembly 𝑁𝑟𝑜𝑑𝑠 264

Channel width 𝑙𝑐ℎ 214.0 mm
Assembly pitch 𝑙 215.0 mm

Core average flow rate per assembly �̇�𝑎 89.8 kg/s
Core average assembly mass flux 𝐺𝑎 3675.4 𝑘𝑔

𝑚2𝑠

Table A.2: Typical PWR Design Parameters - based on Seabrook Station Reactor (from
Todreas & Kazimi, Appendix K)

126

Appendix B

Code snippets (Object classes)

B.1 Ion class

1 class Ion(object):

2 """ An ion used in ion -oxide chemical reactions

3

4 ATTRIBUTES:

5 self.name: name of ion (string)

6 self.reactions: list of Reaction objects for reactions including this ion

7 self.diffusivity: name of diffusivity variable for this ion (string)

8 self.diff_prefactor: value of diffusivity prefactor for this ion (float)

9 self.kc: name of mass transfer coefficient variable for this ion (string)

10 self.schmidt: name of Schmidt number variable for this ion (string)

11 self.sherwood: name of Sherwood number variable for this ion (string)

12 """

13

14 def __init__(self , name):

15 self.name = name

16 self.reactions = []

17

18 def setDiffusivity(self , myname):

19 self.diffusivity = myname

20

21 def setDiffPrefactor(self , myvalue):

22 self.diff_prefactor = myvalue

23

24 def setKC(self , myname):

127

25 self.kc = myname

26

27 def setSchmidt(self , myname):

28 self.schmidt = myname

29

30 def setSherwood(self , myname):

31 self.sherwood = myname

Listing B.1: Ion object class

128

B.2 Oxide class

1 class Oxide(object):

2 """ An oxide used in ion -oxide chemical reactions

3

4 ATTRIBUTES:

5 self.name: name of oxide (string)

6 self.reactions: list of Reaction objects for reactions including this oxide

7 self.molar_mass: molar mass of oxide (float)

8 self.ox_conc: name of oxide concentration variable (string)

9 """

10

11 def __init__(self , name , molar_mass):

12 self.name = name

13 self.reactions = []

14 self.molar_mass = molar_mass

15

16 def addRxn(self , rxn):

17 self.reactions.append(rxn)

18

19 def setOxideConcentration(self , myname):

20 self.ox_conc = myname

Listing B.2: Oxide object class

129

B.3 Reaction class

1 class Reaction(object):

2 """ A chemical reaction between oxides and ions

3

4 ATTRIBUTES:

5 self.oxide: name of oxide in this reaction (string)

6 self.x: stoichiometry coefficient for H+

7 self.z: number of electrons

8 self.b: stoichiometry coefficient for ion

9 self.ion: name of ion in this reaction (string)

10 self.label: chemical reaction for this object (string)

11 self.dH: Enthalpy change of reaction

12 self.dS: Entropy change of reaction

13 self.surfconc: name of surface concentration variable (string)

14 self.preciprate: name of precipitation rate variable (string)

15 self.dissolrate: name of dissolution rate variable (string)

16 self.releaserate: name of release rate variable (string)

17 self.oxide_obj: Oxide object for oxide in this reaction

18 self.name: string to represent reaction name (ion and oxide names)

19 """

20

21 def __init__(self , oxide , x, z, b, ion , label , dH, dS):

22

23 self.oxide = oxide

24 self.x = x

25 self.z = z

26 self.b = b

27 self.ion = ion

28 self.label = label

29 self.dH = dH

30 self.dS = dS

31

32 def printRxn(self):

33 print self.label

34 # string format for self.label:

35 # '\t%d %s + %d H+ + %d e- --> %d %s + %d H2O' %(self.a, self.oxide , self.x, ←˒

self.z, self.b, self.ion , self.c)

36

37 def setSurfConc(self , myname):

38 self.surfconc = myname

130

39

40 def setPrecipRate(self , myname):

41 self.preciprate = myname

42

43 def setDissolRate(self , myname):

44 self.dissolrate = myname

45

46 def setReleaseRate(self , myname):

47 self.releaserate = myname

48

49 def addOxideObject(self , myoxide):

50 self.oxide_obj = myoxide

51

52 def setRxnName(self):

53 self.name = self.ion + '_' + self.oxide

54

55 def setHrxn(self , myval):

56 self.dH = myval

57

58 def setSrxn(self , myval):

59 self.dS = myval

Listing B.3: Reaction object class

131

B.4 Isotope class

1 class Isotope(object):

2 """ A chemical isotope of an element

3

4 ATTRIBUTES:

5 self.name: name of isotope (string)

6 self.activated: name of activated isotope (string)

7 self.decay: radioactive decay parameter (float)

8 self.natural_abundance: natural abundance of isotope (float)

9 self.sigma: neutron capture cross section of isotope (float)

10 self.cool_conc: name of isotope coolant concentration variable (string)

11 self.act_cool_conc: name of activated coolant concentration variable (string)

12 self.act_ox_conc: name of isotope coolant concentration variable (string)

13 self.ncapture: name of isotope neutron capture variable (string)

14 self.active_oxide: name of oxide isotope activity variable (string)

15 """

16

17 def __init__(self , isotope , active , decay , mu, capture):

18 self.name = isotope

19 self.activated = active

20 self.decay = decay

21 self.natural_abundance = mu

22 self.sigma = capture

23

24 def setCoolConc(self , myname):

25 self.cool_conc = myname

26

27 def setActCoolConc(self , myname):

28 self.act_cool_conc = myname

29

30 def setActOxConc(self , myname):

31 self.act_ox_conc = myname

32

33 def setNCapture(self , myname):

34 self.ncapture = myname

35

36 def setActiveOxide(self , myname):

37 self.active_oxide = myname

Listing B.4: Isotope object class

132

B.5 Element class

1 class Element(object):

2 """ A chemical element

3

4 ATTRIBUTES:

5 self.name: name of element (string)

6 self.MM_metal: molar mass of element (float)

7 self.isotopes: list of objects of isotopes of this element

8 self.ions: list of objects of ions of this element

9 self.oxides: list of object of oxides of this element

10 self.oxide_conc: list of names of oxide concentration variables

11 self.cool_conc: name of isotope coolant concentration variable (string)

12 self.preciprate: name of precipitation rate variable (string)

13 self.dissolrate: name of dissolution rate variable (string)

14 self.releaserate: name of release rate variable (string)

15 self.wtperc_elemavg: name of average weight percent variable (string)

16 self.diffusivity_elemavg: name of average diffusivity variable(string)

17 self.base_diff: name of diffusivity variable (string)

18 self.e0: name of diffusion activation energy variable(string)

19 self.d0: name of diffusion prefactor variable (string)

20 self.e0_func: function to represent e0 values along loop (string)

21 self.d0_func: function to represent d0 values (string)

22 self.corr_rate_const: function for element corrosion rate along loop (string)

23 """

24

25 def __init__(self , element , molar_mass):

26 self.name = element

27 self.MM_metal = molar_mass

28 self.isotopes = []

29 self.ions = []

30 self.oxides = []

31 self.oxide_conc = []

32

33 def addIon(self , ions):

34 for ion in ions:

35 self.ions.append(ion)

36

37 def addOxide(self , oxides):

38 for oxide in oxides:

39 self.oxides.append(oxide)

133

40

41 def addIsotope(self , isotopes):

42 for isotope in isotopes:

43 self.isotopes.append(isotope)

44

45 def setCoolConcentration(self , myname):

46 self.cool_conc = myname

47

48 def addOxideConcentration(self , myname):

49 self.oxide_conc.append(myname)

50

51 def setWtPercentElemAvg(self , myname):

52 self.wtperc_elemavg = myname

53

54 def setDiffElemAvg(self , myname):

55 self.diffusivity_elemavg = myname

56

57 def setBaseDiff(self , myname):

58 self.base_diff = myname

59

60 def setPrecipRate(self , myname):

61 self.preciprate = myname

62

63 def setDissolRate(self , myname):

64 self.dissolrate = myname

65

66 def setReleaseRate(self , myname):

67 self.releaserate = myname

68

69 def setE0andD0(self , e0, d0):

70 #used to calculate diffusivity of metal element through oxide from corrosion

71 self.e0 = e0

72 self.d0 = d0

73

74 def setFunc_E0D0(self , e0func , d0func):

75 self.e0_func = e0func

76 self.d0_func = d0func

77

78 def setCorrRateConst(self , my_const):

79 self.corr_rate_const = my_const

Listing B.5: Element object class

134

Appendix C

Sample input file

1 ###############################

2 ######## GLOBALPARAMS #########

3 ###############################

4 [GlobalParams]

5 pH = 6.5

6 temperature = temp

7 water_viscosity = viscosity

8 water_density = density

9 reynolds = reynolds

10 hydraulic_diameter = hydr_diameter

11 velocity = cool_velocity

12 ECP_var = ECP

13 wetted_area = wet_area

14 loop_volume = pp_volume_tot

15 []

16

17 ###############################

18 ############ MESH #############

19 ###############################

20 [Mesh]

21 type = GeneratedMesh

22 dim = 2

23 nx = 78

24 ny = 1

25 xmax = 78

26 elem_type = QUAD9

27 []

135

28

29 ###############################

30 ############ VARS #############

31 ###############################

32 [Variables]

33 [./ conc_NiO_ox_nodal]

34 order = FIRST

35 family = LAGRANGE

36 initial_condition = 1e-09

37 [../]

38

39 [./ conc_ni_cool]

40 order = FIRST

41 family = SCALAR

42 initial_condition = 1e-09

43 [../]

44

45 [./ conc_ni58_cool]

46 order = FIRST

47 family = SCALAR

48 initial_condition = 1e-50

49 scaling = 10

50 [../]

51

52 [./ conc_co58_oxide_active]

53 order = FIRST

54 family = LAGRANGE

55 initial_condition = 0

56 scaling = 100000

57 [../]

58

59 [./ conc_CoO_ox_nodal]

60 order = FIRST

61 family = LAGRANGE

62 initial_condition = 1e-09

63 [../]

64

65 [./ conc_co_cool]

66 order = FIRST

67 family = SCALAR

68 initial_condition = 1e-09

69 scaling = 1e+10

70 [../]

136

71

72 [./ conc_co58_cool]

73 order = FIRST

74 family = SCALAR

75 initial_condition = 1e-50

76 scaling = 1e+10

77 [../]

78

79 [./ conc_co59_oxide_active]

80 order = FIRST

81 family = LAGRANGE

82 initial_condition = 0

83 scaling = 1e+10

84 [../]

85

86 [./ conc_co59_cool]

87 order = FIRST

88 family = SCALAR

89 initial_condition = 0

90 scaling = 1e+10

91 [../]

92

93 [./ conc_co60_oxide_active]

94 order = FIRST

95 family = LAGRANGE

96 initial_condition = 0

97 scaling = 1e+50

98 [../]

99

100 [./ conc_co60_cool]

101 order = FIRST

102 family = SCALAR

103 initial_condition = 0

104 scaling = 1e+10

105 [../]

106 []

107

108 ###############################

109 ########### AUXVARS ###########

110 ###############################

111 [AuxVariables]

112 [./ thick_elemavg]

113 order = FIRST

137

114 family = SCALAR

115 initial_condition = 0

116 [../]

117 [./ WA_elemavg]

118 order = FIRST

119 family = SCALAR

120 initial_condition = 0

121 [../]

122 [./ density_elemavg]

123 order = FIRST

124 family = SCALAR

125 initial_condition = 0

126 [../]

127 [./ dummy_scalar]

128 order = FIRST

129 family = SCALAR

130 initial_condition = 0

131 [../]

132 [./ dummy_scalar_1]

133 order = FIRST

134 family = SCALAR

135 initial_condition = 1

136 [../]

137 [./ aux_thick]

138 order = FIRST

139 family = LAGRANGE

140 initial_condition = 1e-08

141 [../]

142 [./ aux_thick_act]

143 order = FIRST

144 family = LAGRANGE

145 initial_condition = 0

146 [../]

147 [./ activity_oxide]

148 order = FIRST

149 family = LAGRANGE

150 initial_condition = 0

151 [../]

152 [./ metal_density]

153 order = FIRST

154 family = LAGRANGE

155 [../]

156 [./ cg_rate_ni]

138

157 order = FIRST

158 family = LAGRANGE

159 initial_condition = 0

160 [../]

161 [./ cg_rate_const_ni]

162 order = FIRST

163 family = LAGRANGE

164 [../]

165 [./ cg_rate_co]

166 order = FIRST

167 family = LAGRANGE

168 initial_condition = 0

169 [../]

170 [./ cg_rate_const_co]

171 order = FIRST

172 family = LAGRANGE

173 [../]

174 [./ oxide_density]

175 order = FIRST

176 family = LAGRANGE

177 initial_condition = 1200

178 [../]

179 [./ reynolds]

180 order = FIRST

181 family = LAGRANGE

182 initial_condition = 0

183 [../]

184 [./ density]

185 order = FIRST

186 family = LAGRANGE

187 initial_condition = 0

188 [../]

189 [./ viscosity]

190 order = FIRST

191 family = LAGRANGE

192 initial_condition = 0

193 [../]

194 [./ temp]

195 order = FIRST

196 family = LAGRANGE

197 [../]

198 [./ nflux]

199 order = FIRST

139

200 family = LAGRANGE

201 [../]

202 [./ cool_velocity]

203 order = FIRST

204 family = LAGRANGE

205 [../]

206 [./ wetted_perimeter]

207 order = FIRST

208 family = LAGRANGE

209 initial_condition = 0

210 [../]

211 [./ hydr_diameter]

212 order = FIRST

213 family = LAGRANGE

214 [../]

215 [./ ECP]

216 order = FIRST

217 family = LAGRANGE

218 [../]

219 [./ wet_area]

220 order = FIRST

221 family = LAGRANGE

222 initial_condition = 0

223 [../]

224 [./ equiv_node_length]

225 order = FIRST

226 family = LAGRANGE

227 [../]

228 [./ specific_area]

229 order = FIRST

230 family = LAGRANGE

231 initial_condition = 0

232 [../]

233 [./ effective_wet_area]

234 order = FIRST

235 family = LAGRANGE

236 [../]

237 [./ effective_volume]

238 order = FIRST

239 family = LAGRANGE

240 [../]

241 [./ my_volume]

242 order = FIRST

140

243 family = LAGRANGE

244 initial_condition = 0

245 [../]

246 [./ base_fe]

247 order = FIRST

248 family = LAGRANGE

249 [../]

250 [./ base_ni]

251 order = FIRST

252 family = LAGRANGE

253 [../]

254 [./ base_cr]

255 order = FIRST

256 family = LAGRANGE

257 [../]

258 [./ base_zr]

259 order = FIRST

260 family = LAGRANGE

261 [../]

262 [./ base_co]

263 order = FIRST

264 family = LAGRANGE

265 [../]

266 [./ dummy]

267 order = FIRST

268 family = LAGRANGE

269 initial_condition = 0

270 [../]

271 [./ molarmass_base]

272 order = FIRST

273 family = LAGRANGE

274 initial_condition = 0

275 [../]

276 [./ total_oxide_conc]

277 order = FIRST

278 family = LAGRANGE

279 initial_condition = 0

280 [../]

281 [./ surfconc_Ni2p_NiO]

282 order = FIRST

283 family = LAGRANGE

284 initial_condition = 0

285 [../]

141

286 [./ preciprate_Ni2p_NiO]

287 order = FIRST

288 family = LAGRANGE

289 initial_condition = 0

290 [../]

291 [./ dissolrate_Ni2p_NiO]

292 order = FIRST

293 family = LAGRANGE

294 initial_condition = 0

295 [../]

296 [./ releaserate_Ni2p_NiO]

297 order = FIRST

298 family = LAGRANGE

299 initial_condition = 0

300 [../]

301 [./ diffusivity_Ni2p]

302 order = FIRST

303 family = LAGRANGE

304 initial_condition = 0

305 [../]

306 [./ kc_Ni2p]

307 order = FIRST

308 family = LAGRANGE

309 initial_condition = 0

310 [../]

311 [./ schmidt_Ni2p]

312 order = FIRST

313 family = LAGRANGE

314 initial_condition = 0

315 [../]

316 [./ sherwood_Ni2p]

317 order = FIRST

318 family = LAGRANGE

319 initial_condition = 0

320 [../]

321 [./ dummy_flux_Ni2p]

322 order = FIRST

323 family = LAGRANGE

324 initial_condition = 0

325 [../]

326 [./ wtpercent_elemavg_ni]

327 order = FIRST

328 family = SCALAR

142

329 initial_condition = 0

330 [../]

331 [./ diffusivity_elemavg_ni]

332 order = FIRST

333 family = SCALAR

334 initial_condition = 0

335 [../]

336 [./ base_ni_diffusivity]

337 order = FIRST

338 family = LAGRANGE

339 initial_condition = 0

340 [../]

341 [./ total_precip_rate_ni]

342 order = FIRST

343 family = LAGRANGE

344 initial_condition = 0

345 [../]

346 [./ total_dissol_rate_ni]

347 order = FIRST

348 family = LAGRANGE

349 initial_condition = 0

350 [../]

351 [./ e0_ni]

352 order = FIRST

353 family = LAGRANGE

354 [../]

355 [./ d0_ni]

356 order = FIRST

357 family = LAGRANGE

358 [../]

359 [./ ncapture_ni58]

360 order = FIRST

361 family = LAGRANGE

362 initial_condition = 0

363 [../]

364 [./ oxide_active_co58]

365 order = FIRST

366 family = LAGRANGE

367 initial_condition = 0

368 [../]

369 [./ surfconc_Co2p_CoO]

370 order = FIRST

371 family = LAGRANGE

143

372 initial_condition = 0

373 [../]

374 [./ preciprate_Co2p_CoO]

375 order = FIRST

376 family = LAGRANGE

377 initial_condition = 0

378 [../]

379 [./ dissolrate_Co2p_CoO]

380 order = FIRST

381 family = LAGRANGE

382 initial_condition = 0

383 [../]

384 [./ releaserate_Co2p_CoO]

385 order = FIRST

386 family = LAGRANGE

387 initial_condition = 0

388 [../]

389 [./ diffusivity_Co2p]

390 order = FIRST

391 family = LAGRANGE

392 initial_condition = 0

393 [../]

394 [./ kc_Co2p]

395 order = FIRST

396 family = LAGRANGE

397 initial_condition = 0

398 [../]

399 [./ schmidt_Co2p]

400 order = FIRST

401 family = LAGRANGE

402 initial_condition = 0

403 [../]

404 [./ sherwood_Co2p]

405 order = FIRST

406 family = LAGRANGE

407 initial_condition = 0

408 [../]

409 [./ dummy_flux_Co2p]

410 order = FIRST

411 family = LAGRANGE

412 initial_condition = 0

413 [../]

414 [./ wtpercent_elemavg_co]

144

415 order = FIRST

416 family = SCALAR

417 initial_condition = 0

418 [../]

419 [./ diffusivity_elemavg_co]

420 order = FIRST

421 family = SCALAR

422 initial_condition = 0

423 [../]

424 [./ base_co_diffusivity]

425 order = FIRST

426 family = LAGRANGE

427 initial_condition = 0

428 [../]

429 [./ total_precip_rate_co]

430 order = FIRST

431 family = LAGRANGE

432 initial_condition = 0

433 [../]

434 [./ total_dissol_rate_co]

435 order = FIRST

436 family = LAGRANGE

437 initial_condition = 0

438 [../]

439 [./ e0_co]

440 order = FIRST

441 family = LAGRANGE

442 [../]

443 [./ d0_co]

444 order = FIRST

445 family = LAGRANGE

446 [../]

447 [./ ncapture_co58]

448 order = FIRST

449 family = LAGRANGE

450 initial_condition = 0

451 [../]

452 [./ oxide_active_co59]

453 order = FIRST

454 family = LAGRANGE

455 initial_condition = 0

456 [../]

457 [./ ncapture_co59]

145

458 order = FIRST

459 family = LAGRANGE

460 initial_condition = 0

461 [../]

462 [./ oxide_active_co60]

463 order = FIRST

464 family = LAGRANGE

465 initial_condition = 0

466 [../]

467 []

468

469 ###############################

470 ########### KERNELS ###########

471 ###############################

472 [NodalKernels]

473 [./ td_conc_NiO_ox_nodal]

474 type = TimeDerivativeNodalKernel

475 variable = conc_NiO_ox_nodal

476 [../]

477

478 [./ corr_NiO]

479 type = NodalCorrosionGrowth

480 variable = conc_NiO_ox_nodal

481 oxide_percentage = 1.0

482 rate_constant = cg_rate_const_ni

483 unit_conversion = 0.0001

484 wetted_area = wet_area

485 MM_oxide = 0.0746928

486 equiv_vol = my_volume

487 loop_volume = pp_volume_tot

488 base_material = base_ni

489 [../]

490 [./ dp_Ni2p_NiO]

491 type = NodalDissolPrecip

492 variable = conc_NiO_ox_nodal

493 oxide_conc = conc_NiO_ox_nodal

494 release_rate = releaserate_Ni2p_NiO

495 bulk_conc = conc_ni_cool

496 [../]

497 [./ mr_NiO_ox]

498 type = NodalMetalRelease

499 variable = conc_NiO_ox_nodal

500 diffusivity = base_ni_diffusivity

146

501 wt_percent = base_ni

502 thickness = aux_thick

503 wetted_area = wet_area

504 equiv_vol = my_volume

505 loop_volume = pp_volume_tot

506 alloy_density = metal_density

507 oxide_conc = conc_NiO_ox_nodal

508 MM_elem = 0.0586934

509 scaling = 1e-12

510 [../]

511

512 [./ td_conc_co58_oxide_active]

513 type = TimeDerivativeNodalKernel

514 variable = conc_co58_oxide_active

515 [../]

516

517 [./ precip_co58_act_ox_ni58]

518 type = PrecipRate

519 variable = conc_co58_oxide_active

520 precip_rate = total_precip_rate_ni

521 elem_conc = conc_ni_cool

522 iso_conc = conc_co58_cool

523 lambda = 1.08e-07

524 equiv_vol = my_volume

525 loop_volume = pp_volume_tot

526 [../]

527

528 [./ td_conc_CoO_ox_nodal]

529 type = TimeDerivativeNodalKernel

530 variable = conc_CoO_ox_nodal

531 [../]

532

533 [./ corr_CoO]

534 type = NodalCorrosionGrowth

535 variable = conc_CoO_ox_nodal

536 oxide_percentage = 1.0

537 rate_constant = cg_rate_const_co

538 unit_conversion = 0.0001

539 wetted_area = wet_area

540 MM_oxide = 0.0749326

541 equiv_vol = my_volume

542 loop_volume = pp_volume_tot

543 base_material = base_co

147

544 [../]

545 [./ dp_Co2p_CoO]

546 type = NodalDissolPrecip

547 variable = conc_CoO_ox_nodal

548 oxide_conc = conc_CoO_ox_nodal

549 release_rate = releaserate_Co2p_CoO

550 bulk_conc = conc_co_cool

551 [../]

552 [./ mr_CoO_ox]

553 type = NodalMetalRelease

554 variable = conc_CoO_ox_nodal

555 diffusivity = base_co_diffusivity

556 wt_percent = base_co

557 thickness = aux_thick

558 wetted_area = wet_area

559 equiv_vol = my_volume

560 loop_volume = pp_volume_tot

561 alloy_density = metal_density

562 oxide_conc = conc_CoO_ox_nodal

563 MM_elem = 0.058933

564 scaling = 1e-12

565 [../]

566

567 [./ td_conc_co59_oxide_active]

568 type = TimeDerivativeNodalKernel

569 variable = conc_co59_oxide_active

570 [../]

571

572 [./ precip_co59_act_ox_co58]

573 type = PrecipRate

574 variable = conc_co59_oxide_active

575 precip_rate = total_precip_rate_co

576 elem_conc = conc_co_cool

577 iso_conc = conc_co59_cool

578 lambda = 0

579 equiv_vol = my_volume

580 loop_volume = pp_volume_tot

581 [../]

582

583 [./ td_conc_co60_oxide_active]

584 type = TimeDerivativeNodalKernel

585 variable = conc_co60_oxide_active

586 [../]

148

587

588 [./ precip_co60_act_ox_co59]

589 type = PrecipRate

590 variable = conc_co60_oxide_active

591 precip_rate = total_precip_rate_co

592 elem_conc = conc_co_cool

593 iso_conc = conc_co60_cool

594 lambda = 4.17e-09

595 equiv_vol = my_volume

596 loop_volume = pp_volume_tot

597 [../]

598 []

599

600 [ScalarKernels]

601

602 [./ td_conc_ni_cool]

603 type = ODETimeDerivative

604 variable = conc_ni_cool

605 [../]

606

607 [./ mr_ni_cool_bulk]

608 type = MetalReleaseODE

609 variable = conc_ni_cool

610 diffusivity = diffusivity_elemavg_ni

611 wt_percent = wtpercent_elemavg_ni

612 thickness = thick_elemavg

613 wetted_area = WA_elemavg

614 alloy_density = density_elemavg

615 loop_volume = pp_volume_tot

616 MM_elem = 0.0586934

617 scaling = 1e-12

618 [../]

619 [./ dp_Ni2p_NiO_cool_bulk]

620 type = ImplicitODEVariableRate

621 variable = conc_ni_cool

622 pp_rate = pp_releaserate_Ni2p_NiO

623 loop_volume = pp_volume_tot

624 [../]

625

626 [./ td_conc_ni58_cool]

627 type = ODETimeDerivative

628 variable = conc_ni58_cool

629 [../]

149

630

631 [./ conc_ni58_cool_bulk_nonact]

632 type = ImplicitODENonActive

633 variable = conc_ni58_cool

634 elem_conc = conc_ni_cool

635 natural_abundance = 0.68077

636 ncapture_pp = ncapture_ni58_pp

637 dissolrate = pp_total_dissol_rate_ni

638 preciprate = pp_total_precip_rate_ni

639 loop_volume = pp_volume_tot

640 [../]

641 [./ conc_co58_cool_bulk]

642 type = ImplicitODEActive

643 variable = conc_co58_cool

644 elem_conc = conc_ni_cool

645 nonactive_conc = conc_ni58_cool

646 lambda = 1.08e-07

647 ncapture_pp = ncapture_ni58_pp

648 preciprate = pp_total_precip_rate_ni

649 loop_volume = pp_volume_tot

650 [../]

651

652 [./ td_conc_co_cool]

653 type = ODETimeDerivative

654 variable = conc_co_cool

655 [../]

656

657 [./ mr_co_cool_bulk]

658 type = MetalReleaseODE

659 variable = conc_co_cool

660 diffusivity = diffusivity_elemavg_co

661 wt_percent = wtpercent_elemavg_co

662 thickness = thick_elemavg

663 wetted_area = WA_elemavg

664 alloy_density = density_elemavg

665 loop_volume = pp_volume_tot

666 MM_elem = 0.058933

667 scaling = 1e-12

668 [../]

669 [./ dp_Co2p_CoO_cool_bulk]

670 type = ImplicitODEVariableRate

671 variable = conc_co_cool

672 pp_rate = pp_releaserate_Co2p_CoO

150

673 loop_volume = pp_volume_tot

674 [../]

675

676 [./ td_conc_co58_cool]

677 type = ODETimeDerivative

678 variable = conc_co58_cool

679 [../]

680

681 [./ conc_co58_cool_bulk_nonact]

682 type = ImplicitODENonActive

683 variable = conc_co58_cool

684 elem_conc = conc_co_cool

685 natural_abundance = 1e-05

686 ncapture_pp = ncapture_co58_pp

687 dissolrate = pp_total_dissol_rate_co

688 preciprate = pp_total_precip_rate_co

689 loop_volume = pp_volume_tot

690 [../]

691

692 [./ td_conc_co59_cool]

693 type = ODETimeDerivative

694 variable = conc_co59_cool

695 [../]

696

697 [./ conc_co59_cool_bulk]

698 type = ImplicitODEActive

699 variable = conc_co59_cool

700 elem_conc = conc_co_cool

701 nonactive_conc = conc_co58_cool

702 lambda = 0

703 ncapture_pp = ncapture_co58_pp

704 preciprate = pp_total_precip_rate_co

705 loop_volume = pp_volume_tot

706 [../]

707 [./ conc_co59_cool_bulk_nonact]

708 type = ImplicitODENonActive

709 variable = conc_co59_cool

710 elem_conc = conc_co_cool

711 natural_abundance = 0.9999999

712 ncapture_pp = ncapture_co59_pp

713 dissolrate = pp_total_dissol_rate_co

714 preciprate = pp_total_precip_rate_co

715 loop_volume = pp_volume_tot

151

716 [../]

717

718 [./ td_conc_co60_cool]

719 type = ODETimeDerivative

720 variable = conc_co60_cool

721 [../]

722

723 [./ conc_co60_cool_bulk]

724 type = ImplicitODEActive

725 variable = conc_co60_cool

726 elem_conc = conc_co_cool

727 nonactive_conc = conc_co59_cool

728 lambda = 4.17e-09

729 ncapture_pp = ncapture_co59_pp

730 preciprate = pp_total_precip_rate_co

731 loop_volume = pp_volume_tot

732 [../]

733 []

734

735 ###############################

736 ######### AUXKERNELS ##########

737 ###############################

738 [AuxKernels]

739 [./ total_oxide_conc_aux]

740 type = SumVariableValues

741 variable = total_oxide_conc

742 vars_to_sum = 'conc_NiO_ox_nodal conc_CoO_ox_nodal '

743 execute_on = 'initial timestep_end '

744 [../]

745 [./ total_oxide_act_aux]

746 type = SumVariableValues

747 variable = activity_oxide

748 vars_to_sum = 'oxide_active_co58 oxide_active_co59 oxide_active_co60 '

749 execute_on = 'initial timestep_end '

750 [../]

751 [./ total_dissol_rate_ni_aux]

752 type = SumVariableValues

753 variable = total_dissol_rate_ni

754 vars_to_sum = 'dissolrate_Co2p_CoO '

755 execute_on = timestep_begin

756 [../]

757 [./ total_precip_rate_ni_aux]

758 type = SumVariableValues

152

759 variable = total_precip_rate_ni

760 vars_to_sum = 'preciprate_Co2p_CoO '

761 execute_on = timestep_begin

762 [../]

763 [./ total_dissol_rate_co_aux]

764 type = SumVariableValues

765 variable = total_dissol_rate_co

766 vars_to_sum = 'dissolrate_Co2p_CoO '

767 execute_on = timestep_begin

768 [../]

769 [./ total_precip_rate_co_aux]

770 type = SumVariableValues

771 variable = total_precip_rate_co

772 vars_to_sum = 'preciprate_Co2p_CoO '

773 execute_on = timestep_begin

774 [../]

775 [./ thickness_aux]

776 type = OxideGrowthNodal

777 variable = aux_thick

778 oxide_conc = total_oxide_conc

779 wetted_area = wet_area

780 equiv_vol = my_volume

781 density_oxide = 5368.0

782 molar_mass = 0.234379

783 execute_on = 'initial timestep_end '

784 [../]

785 [./ activity_aux_co58]

786 type = ActivityOxideCalc

787 variable = oxide_active_co58

788 oxide_conc = conc_co58_oxide_active

789 wetted_area = wet_area

790 decay_parameter = 1.08e-07

791 equiv_vol = my_volume

792 execute_on = timestep_end

793 [../]

794 [./ activity_aux_co59]

795 type = ActivityOxideCalc

796 variable = oxide_active_co59

797 oxide_conc = conc_co59_oxide_active

798 wetted_area = wet_area

799 decay_parameter = 0

800 equiv_vol = my_volume

801 execute_on = timestep_end

153

802 [../]

803 [./ activity_aux_co60]

804 type = ActivityOxideCalc

805 variable = oxide_active_co60

806 oxide_conc = conc_co60_oxide_active

807 wetted_area = wet_area

808 decay_parameter = 4.17e-09

809 equiv_vol = my_volume

810 execute_on = timestep_end

811 [../]

812 [./ molarmass_basemat]

813 type = MolarMassAux

814 variable = molarmass_base

815 fe = base_fe

816 ni = base_ni

817 zr = base_zr

818 co = base_co

819 cr = base_cr

820 execute_on = initial

821 [../]

822 [./ n_corrgrowth_ni]

823 type = CorrosionGrowthAux

824 variable = cg_rate_ni

825 rate_constant = cg_rate_const_ni

826 unit_conversion = 1e-07

827 [../]

828 [./ n_corrgrowth_co]

829 type = CorrosionGrowthAux

830 variable = cg_rate_co

831 rate_constant = cg_rate_const_co

832 unit_conversion = 1e-07

833 [../]

834 [./ effective_wetarea]

835 type = EffectiveWetArea

836 variable = wet_area

837 wetted_area = effective_wet_area

838 total_loop_length = 78

839 eq_length = equiv_node_length

840 nx = 78

841 execute_on = 'initial timestep_begin '

842 [../]

843 [./ effective_vol]

844 type = EffectiveWetArea

154

845 variable = my_volume

846 wetted_area = effective_volume

847 total_loop_length = 78

848 eq_length = equiv_node_length

849 nx = 78

850 execute_on = 'initial timestep_begin '

851 [../]

852 [./ visc]

853 type = Reynolds

854 variable = viscosity

855 property = viscosity

856 execute_on = timestep_end

857 [../]

858 [./ reyn]

859 type = Reynolds

860 variable = reynolds

861 property = reynolds

862 execute_on = timestep_end

863 [../]

864 [./ dens]

865 type = Reynolds

866 variable = density

867 property = density

868 execute_on = initial

869 [../]

870 [./ ni_ox_diff]

871 type = Reynolds

872 variable = base_ni_diffusivity

873 property = oxide_diffusivity

874 E0_elem = e0_ni

875 D0_elem = d0_ni

876 execute_on = initial

877 [../]

878 [./ surface_conc_Ni2p_NiO_aux]

879 type = EchemSurfaceConcentration

880 variable = surfconc_Ni2p_NiO

881 x = 2

882 b = 1

883 z = 0

884 delta_H = -100130.0

885 delta_S = -96.98

886 execute_on = 'initial '

887 [../]

155

888 [./ flux_aux_Ni2p]

889 type = SpeciesDiffusivity

890 variable = dummy_flux_Ni2p

891 kc_species = kc_Ni2p

892 species_diffusion_prefactor = 1.81e-07

893 surface_concentration_species = surfconc_Ni2p_NiO

894 bulk_conc = conc_ni_cool

895 diff_coupledvar = diffusivity_Ni2p

896 get_flux = true

897 ox_diffusivity = base_ni_diffusivity

898 [../]

899 [./ kc_Ni2p_aux]

900 type = MassTransferCoefficientAux

901 variable = kc_Ni2p

902 surface_concentration_species = surfconc_Ni2p_NiO

903 bulk_conc = conc_ni_cool

904 species_flux = dummy_flux_Ni2p

905 execute_on = timestep_begin

906 [../]

907 [./ diff_Ni2p_aux]

908 type = SpeciesDiffusivity

909 variable = diffusivity_Ni2p

910 kc_species = kc_Ni2p

911 species_diffusion_prefactor = 1.81e-07

912 surface_concentration_species = dummy

913 bulk_conc = dummy_scalar

914 diff_coupledvar = dummy

915 ox_diffusivity = base_ni_diffusivity

916 [../]

917 [./ schmidt_Ni2p_aux]

918 type = SchmidtNumber

919 variable = schmidt_Ni2p

920 species_diffusivity = diffusivity_Ni2p

921 [../]

922 [./ sherwood_Ni2p_aux]

923 type = Sherwood

924 variable = sherwood_Ni2p

925 schmidt_number = schmidt_Ni2p

926 [../]

927 [./ releasedepositionrate_Ni2p_NiO]

928 type = ReleaseDepositionRate

929 variable = releaserate_Ni2p_NiO

930 bulk_conc = conc_ni_cool

156

931 surface_concentration_species = surfconc_Ni2p_NiO

932 species_diffusivity = diffusivity_Ni2p

933 sherwood_number = sherwood_Ni2p

934 wetted_perimeter = pp_wa_avg

935 wetted_area = wet_area

936 base_matprop = base_ni

937 loop_volume = pp_volume_tot

938 equiv_vol = my_volume

939 hydraulic_diameter = hydr_diameter

940 execute_on = 'initial timestep_begin '

941 [../]

942 [./ preciprate_Ni2p_NiO_aux]

943 type = DissolutionPrecipitationRate

944 variable = preciprate_Ni2p_NiO

945 precipitate = true

946 bulk_conc = conc_ni_cool

947 surface_concentration_species = surfconc_Ni2p_NiO

948 releasedepositionrate_species = releaserate_Ni2p_NiO

949 execute_on = timestep_begin

950 [../]

951 [./ dissolrate_Ni2p_NiO_aux]

952 type = DissolutionPrecipitationRate

953 variable = dissolrate_Ni2p_NiO

954 precipitate = false

955 bulk_conc = conc_ni_cool

956 surface_concentration_species = surfconc_Ni2p_NiO

957 releasedepositionrate_species = releaserate_Ni2p_NiO

958 execute_on = timestep_begin

959 [../]

960 [./ ncapture_ni58_aux]

961 type = NeutronCapture

962 variable = ncapture_ni58

963 neutron_flux = nflux

964 bulk_conc = dummy_scalar_1

965 capture_xs = 4.6e-28

966 [../]

967 [./ co_ox_diff]

968 type = Reynolds

969 variable = base_co_diffusivity

970 property = oxide_diffusivity

971 E0_elem = e0_co

972 D0_elem = d0_co

973 execute_on = initial

157

974 [../]

975 [./ surface_conc_Co2p_CoO_aux]

976 type = EchemSurfaceConcentration

977 variable = surfconc_Co2p_CoO

978 x = 2

979 b = 1

980 z = 0

981 delta_H = -106090.0

982 delta_S = -96.06

983 execute_on = 'initial '

984 [../]

985 [./ flux_aux_Co2p]

986 type = SpeciesDiffusivity

987 variable = dummy_flux_Co2p

988 kc_species = kc_Co2p

989 species_diffusion_prefactor = 1.81e-07

990 surface_concentration_species = surfconc_Co2p_CoO

991 bulk_conc = conc_co_cool

992 diff_coupledvar = diffusivity_Co2p

993 get_flux = true

994 ox_diffusivity = base_co_diffusivity

995 [../]

996 [./ kc_Co2p_aux]

997 type = MassTransferCoefficientAux

998 variable = kc_Co2p

999 surface_concentration_species = surfconc_Co2p_CoO

1000 bulk_conc = conc_co_cool

1001 species_flux = dummy_flux_Co2p

1002 execute_on = timestep_begin

1003 [../]

1004 [./ diff_Co2p_aux]

1005 type = SpeciesDiffusivity

1006 variable = diffusivity_Co2p

1007 kc_species = kc_Co2p

1008 species_diffusion_prefactor = 1.81e-07

1009 surface_concentration_species = dummy

1010 bulk_conc = dummy_scalar

1011 diff_coupledvar = dummy

1012 ox_diffusivity = base_co_diffusivity

1013 [../]

1014 [./ schmidt_Co2p_aux]

1015 type = SchmidtNumber

1016 variable = schmidt_Co2p

158

1017 species_diffusivity = diffusivity_Co2p

1018 [../]

1019 [./ sherwood_Co2p_aux]

1020 type = Sherwood

1021 variable = sherwood_Co2p

1022 schmidt_number = schmidt_Co2p

1023 [../]

1024 [./ releasedepositionrate_Co2p_CoO]

1025 type = ReleaseDepositionRate

1026 variable = releaserate_Co2p_CoO

1027 bulk_conc = conc_co_cool

1028 surface_concentration_species = surfconc_Co2p_CoO

1029 species_diffusivity = diffusivity_Co2p

1030 sherwood_number = sherwood_Co2p

1031 wetted_perimeter = pp_wa_avg

1032 wetted_area = wet_area

1033 base_matprop = base_co

1034 loop_volume = pp_volume_tot

1035 equiv_vol = my_volume

1036 hydraulic_diameter = hydr_diameter

1037 execute_on = 'initial timestep_begin '

1038 [../]

1039 [./ preciprate_Co2p_CoO_aux]

1040 type = DissolutionPrecipitationRate

1041 variable = preciprate_Co2p_CoO

1042 precipitate = true

1043 bulk_conc = conc_co_cool

1044 surface_concentration_species = surfconc_Co2p_CoO

1045 releasedepositionrate_species = releaserate_Co2p_CoO

1046 execute_on = timestep_begin

1047 [../]

1048 [./ dissolrate_Co2p_CoO_aux]

1049 type = DissolutionPrecipitationRate

1050 variable = dissolrate_Co2p_CoO

1051 precipitate = false

1052 bulk_conc = conc_co_cool

1053 surface_concentration_species = surfconc_Co2p_CoO

1054 releasedepositionrate_species = releaserate_Co2p_CoO

1055 execute_on = timestep_begin

1056 [../]

1057 [./ ncapture_co58_aux]

1058 type = NeutronCapture

1059 variable = ncapture_co58

159

1060 neutron_flux = nflux

1061 bulk_conc = dummy_scalar_1

1062 capture_xs = 1.9e-25

1063 [../]

1064 [./ ncapture_co59_aux]

1065 type = NeutronCapture

1066 variable = ncapture_co59

1067 neutron_flux = nflux

1068 bulk_conc = dummy_scalar_1

1069 capture_xs = 2.07e-27

1070 [../]

1071 []

1072

1073 [AuxScalarKernels]

1074

1075 [./ WA_elemavg_aux]

1076 type = PostprocessorAux

1077 variable = WA_elemavg

1078 pp = pp_wetted_area_tot

1079 execute_on = 'initial timestep_begin '

1080 [../]

1081 [./ thick_elemavg_aux]

1082 type = PostprocessorAux

1083 variable = thick_elemavg

1084 pp = avg_thickness

1085 execute_on = 'initial timestep_begin '

1086 [../]

1087 [./ dens_elemavg_aux]

1088 type = PostprocessorAux

1089 variable = density_elemavg

1090 pp = avg_dens

1091 execute_on = 'initial timestep_begin '

1092 [../]

1093 [./ wtpercent_elemavg_ni_aux]

1094 type = PostprocessorAux

1095 variable = wtpercent_elemavg_ni

1096 pp = pp_wtpercent_elemavg_ni

1097 execute_on = 'initial timestep_begin '

1098 [../]

1099 [./ diffusivity_elemavg_ni_aux]

1100 type = PostprocessorAux

1101 variable = diffusivity_elemavg_ni

1102 pp = pp_diffusivity_elemavg_ni

160

1103 execute_on = 'initial timestep_begin '

1104 [../]

1105 [./ wtpercent_elemavg_co_aux]

1106 type = PostprocessorAux

1107 variable = wtpercent_elemavg_co

1108 pp = pp_wtpercent_elemavg_co

1109 execute_on = 'initial timestep_begin '

1110 [../]

1111 [./ diffusivity_elemavg_co_aux]

1112 type = PostprocessorAux

1113 variable = diffusivity_elemavg_co

1114 pp = pp_diffusivity_elemavg_co

1115 execute_on = 'initial timestep_begin '

1116 [../]

1117 []

1118

1119 ###############################

1120 ############# ICS #############

1121 ###############################

1122 [ICs]

1123 [./ metal_density_IC]

1124 type = FunctionIC

1125 variable = metal_density

1126 function = 'if(x<4.587 , 6550, if(x >22.798&x<28.493 , 8470, 8000))'

1127 [../]

1128 [./ effective_wet_area_IC]

1129 type = FunctionIC

1130 variable = effective_wet_area

1131 function = 'if(x<0.855 , 1400, if(x<3.416 , 4200, if(x<4.27, 1400, if(x<4.587 , 235.2, ←˒

if(x<8.137 , 452.96 , if(x<14.982 , 50, if(x<22.797 , 200, if(x<28.493 , 4050, if(x←˒

<35.767 , 200, if(x<43.178 , 150, if(x<64.355 , 100, 911.94)))))))))))'

1132 [../]

1133 [./ effective_volume_IC]

1134 type = FunctionIC

1135 variable = effective_volume

1136 function = 'if(x<0.855 , 10.7, if(x<3.416 , 31.74 , if(x<4.27 , 10.7, if(x<4.587 , 11.05,←˒

if(x<8.137 , 4.46, if(x<14.982 , 15.83, if(x <22.797 ,18.07 , if(x<28.493 , 151.4, ←˒

if(x<35.767 , 17.99, if(x<43.178 , 18.33 , if(x<64.355 , 46.47 , 22.5)))))))))))'

1137 [../]

1138 [./ equiv_node_length_IC]

1139 type = FunctionIC

1140 variable = equiv_node_length

161

1141 function = 'if(x<0.855 , 0.854, if(x<3.416 , 2.562, if(x<4.27 , 0.854 , if(x<4.587 , ←˒

0.317, if(x<8.137 , 3.55, if(x<14.982 , 6.845, if(x<22.797 , 7.815, if(x<28.493 , ←˒

5.696, if(x<35.767 , 7.274, if(x<43.178 , 7.411, if(x<64.355 , 21.177 , 13.769))))))←˒

)))))'

1142 [../]

1143 [./ hydr_diameter_IC]

1144 type = FunctionIC

1145 variable = hydr_diameter

1146 function = 'if(x<4.27, 0.004 , if(x<4.587 , 0.0111 , if(x<8.137 , 0.4, if(x<22.797 , ←˒

0.7360 , if(x<35.767 ,0.0169 , if(x >35.767&x<64.355 ,0.7874 , if(x<78.124 ,0.6985 , ←˒

0.52)))))))'

1147 [../]

1148 [./ ECP_IC]

1149 type = FunctionIC

1150 variable = ECP

1151 function = 'if(x<4.27, -0.01171*(x -4.27) -0.8, if(x<22.797 , -0.8 ,if(x <28.493 ,0.0088*(x←˒

-28.493) -0.75,-0.75)))'

1152 [../]

1153 [./ nflux_IC]

1154 type = FunctionIC

1155 variable = nflux

1156 function = 'if(x<4.59, cos ((3.14/(2*2.3))*x -(3.14/2))*1E17 , 0.0)'

1157 [../]

1158 [./ temp_IC]

1159 type = FunctionIC

1160 variable = temp

1161 function = 'if(x <4.587 ,565+(25* sin(x*3.14159/4.587))+34*(x/4.587) ,if(x >22.798&x←˒

<28.493 ,(599 -34*((x -22.8) /(28.492 - 22.8))),if(x >28.492 ,(599 -34*((28.492 -22.8)←˒

/(28.492 - 22.8))) ,565+(25* sin (4.587*3.14159/4.587))+34*(4.587/4.587))))'

1162 [../]

1163 [./ cool_velocity_IC]

1164 type = FunctionIC

1165 variable = cool_velocity

1166 function = 'if(x<0.854 , 7.93, if(x<3.416 , 5.06, if(x<4.27, 5.32, if(x<8.137 , 4., if(←˒

x<14.932 , 15.98, if(x<22.797 , 5.5, if(x<28.493 , 5.25, if(x<35.767 , 5.12, if(x←˒

<43.178 , 12.4, if(x<64.355 , 15.73, 5.5))))))))))'

1167 [../]

1168 [./ base_fe_IC]

1169 type = FunctionIC

1170 variable = base_fe

1171 function = 'if(x<4.587 , 0.00205 , if(x >22.798&x<28.493 , 0.10, 0.709))'

1172 [../]

1173 [./ base_ni_IC]

162

1174 type = FunctionIC

1175 variable = base_ni

1176 function = 'if(x<4.587 , 0.0, if(x >22.798&x<28.493 , 0.729, 0.10))'

1177 [../]

1178 [./ base_cr_IC]

1179 type = FunctionIC

1180 variable = base_cr

1181 function = 'if(x<4.587 , 0.001, if(x >22.798&x<28.493 , 0.17, 0.19))'

1182 [../]

1183 [./ base_zr_IC]

1184 type = FunctionIC

1185 variable = base_zr

1186 function = 'if(x<4.587 , 0.99685 , 0)'

1187 [../]

1188 [./ base_co_IC]

1189 type = FunctionIC

1190 variable = base_co

1191 function = 'if(x<4.587 , 0.0001 , if(x >22.798&x<28.493 , 0.001 , 0.001))'

1192 [../]

1193 [./ cg_rate_const_ni_IC]

1194 type = FunctionIC

1195 variable = cg_rate_const_ni

1196 function = 'if(x<4.587 , 0.0, if(x >22.798&x<28.493 , 1.0, 0.2))'

1197 [../]

1198 [./ d0_ni_IC]

1199 type = FunctionIC

1200 variable = d0_ni

1201 function = 'if(x<4.587 ,1E-10,if(x >22.798&x <28.493 ,1.51e-4 ,6.1e-3))'

1202 [../]

1203 [./ e0_ni_IC]

1204 type = FunctionIC

1205 variable = e0_ni

1206 function = 'if(x<4.587 ,1e-10,if(x >22.798&x <28.493 ,2.01 ,1.695))'

1207 [../]

1208 [./ cg_rate_const_co_IC]

1209 type = FunctionIC

1210 variable = cg_rate_const_co

1211 function = 'if(x<4.587 , 1e-6, if(x >22.798&x <28.493 ,1.16 ,1.16))'

1212 [../]

1213 [./ d0_co_IC]

1214 type = FunctionIC

1215 variable = d0_co

1216 function = 'if(x<4.587 ,1E-10,if(x >22.798&x <28.493 ,1.51e-4 ,6.1e-3))'

163

1217 [../]

1218 [./ e0_co_IC]

1219 type = FunctionIC

1220 variable = e0_co

1221 function = 'if(x<4.587 ,1e-10,if(x >22.798&x <28.493 ,2.01 ,1.695))'

1222 [../]

1223 []

1224

1225 ###############################

1226 ####### POSTPROCESSORS ########

1227 ###############################

1228 [Postprocessors]

1229 [./ accumulated_activ]

1230 type = ElementIntegralVariablePostprocessor

1231 variable = activity_oxide

1232 execute_on = 'timestep_end '

1233 [../]

1234 [./ avg_thickness]

1235 type = ElementIntegralVariablePostprocessor

1236 variable = aux_thick

1237 execute_on = 'initial timestep_begin '

1238 [../]

1239 [./ dh_pp]

1240 type = ElementIntegralVariablePostprocessor

1241 variable = hydr_diameter

1242 execute_on = 'timestep_begin '

1243 [../]

1244

1245 [./ pp_wetted_area_tot]

1246 type = ElementIntegralVariablePostprocessor

1247 variable = wet_area

1248 execute_on = 'initial timestep_begin '

1249 [../]

1250 [./ pp_wa_avg]

1251 type = ElementAverageValue

1252 variable = wet_area

1253 execute_on = 'initial timestep_begin '

1254 [../]

1255 [./ pp_volume_tot]

1256 type = ElementIntegralVariablePostprocessor

1257 variable = my_volume

1258 execute_on = 'initial timestep_begin '

1259 [../]

164

1260 [./ dummy_pp]

1261 type = ScalarVariable

1262 variable = dummy_scalar

1263 [../]

1264 [./ avg_ox_conc]

1265 type = ElementAverageValue

1266 variable = total_oxide_conc

1267 [../]

1268 [./ pp_wtpercent_elemavg_ni]

1269 type = ElementIntegralVariablePostprocessor

1270 variable = base_ni

1271 execute_on = 'initial timestep_begin '

1272 [../]

1273 [./ pp_diffusivity_elemavg_ni]

1274 type = ElementIntegralVariablePostprocessor

1275 variable = base_ni_diffusivity

1276 execute_on = 'initial timestep_begin '

1277 [../]

1278 [./ pp_total_dissol_rate_ni]

1279 type = ElementIntegralVariablePostprocessor

1280 variable = total_dissol_rate_ni

1281 execute_on = 'initial timestep_begin '

1282 [../]

1283 [./ pp_total_precip_rate_ni]

1284 type = ElementIntegralVariablePostprocessor

1285 variable = total_precip_rate_ni

1286 execute_on = 'initial timestep_begin '

1287 [../]

1288 [./ ncapture_ni58_pp]

1289 type = ElementIntegralVariablePostprocessor

1290 variable = ncapture_ni58

1291 execute_on = 'initial timestep_begin '

1292 [../]

1293 [./ diffusivity_Ni2p_pp]

1294 type = ElementIntegralVariablePostprocessor

1295 variable = diffusivity_Ni2p

1296 execute_on = 'initial timestep_begin '

1297 [../]

1298 [./ sherwood_Ni2p_pp]

1299 type = ElementIntegralVariablePostprocessor

1300 variable = sherwood_Ni2p

1301 execute_on = 'initial timestep_begin '

1302 [../]

165

1303 [./ surfconc_Ni2p_NiO_pp]

1304 type = ElementAverageValue

1305 variable = surfconc_Ni2p_NiO

1306 [../]

1307 [./ pp_releaserate_Ni2p_NiO]

1308 type = ElementIntegralVariablePostprocessor

1309 variable = releaserate_Ni2p_NiO

1310 execute_on = 'initial timestep_begin '

1311 [../]

1312 [./ pp_preciprate_Ni2p_NiO]

1313 type = ElementIntegralVariablePostprocessor

1314 variable = preciprate_Ni2p_NiO

1315 execute_on = 'initial timestep_begin '

1316 [../]

1317 [./ pp_dissolrate_Ni2p_NiO]

1318 type = ElementIntegralVariablePostprocessor

1319 variable = dissolrate_Ni2p_NiO

1320 execute_on = 'initial timestep_begin '

1321 [../]

1322 [./ surfconc_Ni2p_NiO_total_pp]

1323 type = ElementIntegralVariablePostprocessor

1324 variable = surfconc_Ni2p_NiO

1325 execute_on = 'initial timestep_begin '

1326 [../]

1327 [./ pp_wtpercent_elemavg_co]

1328 type = ElementIntegralVariablePostprocessor

1329 variable = base_co

1330 execute_on = 'initial timestep_begin '

1331 [../]

1332 [./ pp_diffusivity_elemavg_co]

1333 type = ElementIntegralVariablePostprocessor

1334 variable = base_co_diffusivity

1335 execute_on = 'initial timestep_begin '

1336 [../]

1337 [./ pp_total_dissol_rate_co]

1338 type = ElementIntegralVariablePostprocessor

1339 variable = total_dissol_rate_co

1340 execute_on = 'initial timestep_begin '

1341 [../]

1342 [./ pp_total_precip_rate_co]

1343 type = ElementIntegralVariablePostprocessor

1344 variable = total_precip_rate_co

1345 execute_on = 'initial timestep_begin '

166

1346 [../]

1347 [./ ncapture_co58_pp]

1348 type = ElementIntegralVariablePostprocessor

1349 variable = ncapture_co58

1350 execute_on = 'initial timestep_begin '

1351 [../]

1352 [./ ncapture_co59_pp]

1353 type = ElementIntegralVariablePostprocessor

1354 variable = ncapture_co59

1355 execute_on = 'initial timestep_begin '

1356 [../]

1357 [./ diffusivity_Co2p_pp]

1358 type = ElementIntegralVariablePostprocessor

1359 variable = diffusivity_Co2p

1360 execute_on = 'initial timestep_begin '

1361 [../]

1362 [./ sherwood_Co2p_pp]

1363 type = ElementIntegralVariablePostprocessor

1364 variable = sherwood_Co2p

1365 execute_on = 'initial timestep_begin '

1366 [../]

1367 [./ surfconc_Co2p_CoO_pp]

1368 type = ElementAverageValue

1369 variable = surfconc_Co2p_CoO

1370 [../]

1371 [./ pp_releaserate_Co2p_CoO]

1372 type = ElementIntegralVariablePostprocessor

1373 variable = releaserate_Co2p_CoO

1374 execute_on = 'initial timestep_begin '

1375 [../]

1376 [./ pp_preciprate_Co2p_CoO]

1377 type = ElementIntegralVariablePostprocessor

1378 variable = preciprate_Co2p_CoO

1379 execute_on = 'initial timestep_begin '

1380 [../]

1381 [./ pp_dissolrate_Co2p_CoO]

1382 type = ElementIntegralVariablePostprocessor

1383 variable = dissolrate_Co2p_CoO

1384 execute_on = 'initial timestep_begin '

1385 [../]

1386 [./ surfconc_Co2p_CoO_total_pp]

1387 type = ElementIntegralVariablePostprocessor

1388 variable = surfconc_Co2p_CoO

167

1389 execute_on = 'initial timestep_begin '

1390 [../]

1391 []

1392

1393 ###############################

1394 ########## SETTINGS ###########

1395 ###############################

1396 [Functions]

1397 [./ dts]

1398 type = PiecewiseConstant

1399 x = '0 500 1000 10000 50000 605000 2400000 9984000 100000000 '

1400 y = '0 10 100 500 1000 5000 10000 86400 604800 '

1401 direction = right

1402 [../]

1403 []

1404

1405 [Executioner]

1406 type = Transient

1407 [./ TimeIntegrator]

1408 type = ImplicitMidpoint

1409 [../]

1410 solve_type = PJFNK

1411 start_time = 0

1412 end_time = 31536000

1413 [./ TimeStepper]

1414 type = FunctionDT

1415 function = dts

1416 [../]

1417 l_tol = 1.0e-5

1418 l_max_its = 15

1419 nl_max_its = 10

1420 nl_rel_tol = 1.0e-4

1421 nl_abs_tol = 1.0e-6

1422 petsc_options_iname = '-pc_type -pc_hypre_type '

1423 petsc_options_value = 'hypre boomeramg '

1424 []

1425

1426 [Outputs]

1427 file_base = results/scripted_nico_17/pH_6.5_nico

1428 exodus = true

1429 print_perf_log = true

1430 csv = true

1431 []

168

1432

1433 [Debug]

1434 show_parser = true

1435 show_actions = true

1436 show_var_residual_norms = true

1437 []

Listing C.1: Ouroboros input file generated from script

169

	Introduction
	Motivation (The CRUD problem)
	Pressurized water reactors
	Crud and steam generator oxides in PWRs
	Modeling activity accumulation in primary loop oxides

	Thesis objectives

	Background
	Mechanisms for activity transport
	Previous models and codes
	Castelli model (corrosion source term)
	CPAIR-P
	ACE-II
	MIGA-RT
	PACTOLE
	Macdonald Model
	Comparison of previous models

	MOOSE Framework

	Chemistry/Physics of Model (Methods)
	Original Ouroboros code
	Modifications and additions to Ouroboros
	Corrosion growth source term
	Corrosion release source term
	Surface/saturated concentration
	Rate of dissolution/precipitation of soluble species

	Mass balance equation set
	Coolant mass balance (Global ODEs)
	Oxide mass balance (Nodal ODEs)
	Accumulated activity

	Comparison with previous models

	Computational Methods & Code Structure
	Coolant concentrations: ODE implementation
	Elemental coolant concentrations
	Isotopic coolant concentrations (nonactivated)
	Activated isotopic coolant concentrations
	Sample input block

	Oxide concentrations: nodal ODE implementation
	Nonactive oxides
	Activated oxides
	Sample input block

	Auxiliary calculations (AuxKernels)
	Input syntax and variable names
	Calculation of Gibbs energies
	Input file generation script
	ChemicalThermodynamics module

	Results
	Problem Setup
	Simulation parameters
	Chemistry
	Corrosion growth rates

	Validation and sensitivity studies
	Surface concentration trends
	Isotope concentrations in bulk coolant
	Spatial accumulated activity
	Temporal activity accumulation

	Sensitivity studies
	Activity accumulation pH sensitivity study
	Growth rate sensitivity study

	Conclusions and Future Work
	Implications of this work
	Limitations in scope
	Future Work
	Concluding thoughts

	Typical PWR Parameters
	Code snippets (Object classes)
	Ion class
	Oxide class
	Reaction class
	Isotope class
	Element class

	Sample input file

