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Abstract

Various aspects of model and controller reduction are studied for members
of a certain class of linear multivariable systems. For this class of systems, it is
shown that balanced truncation is Hankel-norm optimal. A nmnber of properties
of the balanced approximants are derived, explicitly in terms of the original plant
poles. For example, the 17HI-norm of the error system is precisely the inverse of
the distance from the most dominant discarded pole to the origin. The results are
exploited to analyze the ability of a particular low-order 'Ho-controller, designed
for a reduced system, to control the original full-order system. When the plant
is not stable, -oo-balanced truncation may be used, for which there exists an a
priori small-gain type test for the ability of the low-order controller to stabilize
the full-order plant. It is shown that if any unstable poles are truncated, then the
small-gain condition is always violated. That is, '7-,o-balanced truncation would
never authorize the removal of an unstable plant pole.
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1 Introduction

A central problem in control systems design is to design a simple controller for a complex
plant. This is an important problem because controllers designed using model-based
optimization (such as Linear Quadratic Gaussian control, see e.g., [1], or too-control,
see e.g., [2]) typically produce controllers with the same number of state variables as
the plant model (which includes any frequency dependent weightings). This may be
impracticably large. Thus one often seeks a lower-order controller which does not give
up too much of the good properties that have presumably been designed into the full-
order controller.

As [3] has observed, the design of low-order controllers falls into two main cate-
gories: direct methods, where the structure of the controller is fixed a priori and the
controller parameters are optimized (see e.g, [4]), and indirect methods, where reduc-
tion is either done to the full-order plant before the controller is designed, or to the
full-order controller after it has been designed. In this paper our focus is on indirect
methods. Of particular interest to us are controller-reduction methods that provide
a priori guarantees of the performance of the low-order controller. That is, based on
tests on the data obtained from the full-order design only, one seeks to:

* Guarantee that the low-order controller stabilizes the full-order plant;

* Bound the subsequent degradation in closed-loop performance.

To date, there are few methods that provide these guarantees. Typically, one might
first approximate the plant (using for example, balanced truncation [5] or Hankel-norm
approximation [6]) and then design a controller based on the reduced-plant. Unfortu-
nately, unless the controller is specifically designed to take account of the reduction
error, a priori guarantees of closed-loop stability and performance are not available.
Also, if the plant has unstable poles neither balanced truncation nor Hankel-norm ap-
proximation can be readily applied.

The above difficulties can be avoided, however, in certain cases where the con-
troller design and controller reduction steps are compatible: as in, for example, the
HIoo-balanced truncation method of [7] and the balanced truncation of coprime factors
method of [8]. Both methods can deal with both stable or unstable plants because the
plant approximation amounts to balanced truncation of plant coprime factors. Both
methods have an /ooI-control law that takes account of coprime factor uncertainty.
Finally, both methods use a small-gain argument to derive sufficient and a priori con-
ditions to guarantee when the reduced-order controller actually stabilizes the full-order
plant. Simply put, the main principle of these two methods is that the controller is
robustly stable with respect to plant approximation.

A noteworthy feature of representing plant reduction as coprime factor uncertainty
is that approximation of the coprime factors may change the number of unstable poles
in the plant [9]. One of the themes of this paper is that (at least for the class of plants
we are considering and for 74o0 -balanced truncation) closed-loop stability guarantees
based on the small-gain theorem are lost if an unstable pole is removed in forming
the reduced-order plant. Consequently, approval is never given for the removal of an
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unstable pole. This is in line the generally-held belief that, if successful control is to
be done, the reduced-order plant should contain the 'bad' parts of the original system.

To convey our message with precision we focus on 2o,0 -balanced truncation for
a class of plants that have particularly explicit approximation properties, which are
introduced in Section 2. Basically, we study n-state minimal systems with a realization
(A, B, C) where A is real-symmetric and BBT = CTC' = In. The key parameters are
the eigenvalues 9, of A (i.e., the poles of the system C(sI - A)-'B), rather than the
Hankel singular values. This class of systems considered is, we believe, rich enough to
be give meaningful results, but is restricted enough for the analysis to be transparent
and explicit.

In Section 3, we consider the stable members of the class, and in Section 4 we
analyze k-state balanced truncations of these systems. Parts of these sections are taken
from [10], and are included for completeness. In this case, balanced approximation is
shown to be Hankel-norm optimal. That is, the Hankel-norm of the associated error
system equals the minimum possible over all stable approxiniants with no more than k
poles (which equals the (k + 1)-st Hankel singular value of the original system [6]). This
result, we believe, is of independent interest: although balanced truncation is based on
sound reasoning, in general balanced truncation is not otherwise known to be optimal
in any way. Furthermore, rather than the usual 'HIo-norm bound on the error system
(twice the sum of the of the discarded Hankel singular values [6, 11]), we derive an
exact expression for the 'Ho-norm of the error system, precisely -0`k. Other system
properties such as the Hankel singular values, the Hoo-norm, and the X2 -norm, are also
derived in terms of the 9i only. Thus we have a class of systems for which open-loop
balanced truncation performs extremely well; a short numerical example is given to to
illustrate this.

In Section 5 we turn our attention to not necessarily stable members of the class.
Then Hoo-balanced truncation [7] is analyzed as a way of approximating these plants.
Controllers designed for such approximate plants are then tested for their ability to con-
trol the full-order plants, using a small-gain argument. Again, the analysis is especially
transparent because of the properties of the class of systems under consideration. One
of our main results shows that if an unstable pole is removed in creating a low-order
plant, then the small-gain sufficient condition that would guarantee that the associ-
ated controller stabilizes the full-order plant, is never satisfied. This warns us not to
remove unstable poles using 7-t,-balanced truncation. The key to proving this result
is to deduce a lower bound on the approximation error in the case that unstable poles
are removed: the lower bound implies violation of the small-gain sufficient condition.
A brief numerical example is given to illustrate this fact.
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2 The classes SP,m and SP,tbn;stable

Let CP,m denote the class of n-state, minimal, p by m systems with n states:

CP'm := {(A, B, C) E Rfnx n x Rnxm x Rpx n I (A, B, C) is minimal).

By the notation G = (A, B, C) we mean as usual the transfer function matrix G(s) =
C(sI-A)-1B, where s is the Laplace transform variable. The subclass of CnPm consisting
of asymptotically stable systems is denoted by C'P'm

Cn;sable := {(A, B, C)E CnP'm I Re(Ai{A}) < 0, for i = 1, . ,n}.
In this paper we consider the following subclass of CnPm,

SPm := {(A, B, C) E C' m I A = AT, BB = CTC = In},

and the corresponding subclass of Cn'mstable,
te := {(A, B, C) C Cnp'mtable A = A T , BBT = CTC = In}.

SnPsble n;stab

That is, systems in SnP,m (respectively pstble are systems from CPm (respectively
Cpstable) possessing a realization (A, B, C) such that A is real-symnletric and BBT =
C'C = In.

Standard properties of the rank of a matrix (see for example [12, p 13]) give that
rank(B) = rank(BB T ) < min{n,m}. Now BBT = I, implies rank(BBT ) = n so
n < min{n, m}. Hence BBT = In is possible only if n < m. Similarly CTC = I," only
if n < p. It follows that SnP,m is nonempty only if m > n and p > n which will be
assumed henceforth.

It should be noted that BBT = CTC = I implies that (A,B,C) is a minimal
realization. It is a straightforward exercise to demonstrate this fact (by applying the
well-known Popov-Belevitch-Ilautus eigenvalue tests, for example.)

AIn important consequence of having a symmetric A-matrix is the following standard
result (as in [12, Theorem 4.1.5], for example).

Lemma 2.1 (Spectral Theorem for Real-Symmetric Matrices)
The following are equivalent:

(i) A C RFlX, satisfies A = AT.

(ii) There exist real numbers 81 > ... > 8, and a matrix W E Rnxn such that

A = WEWT where WWT = In and O = diag(01,..., 8,).

When A is written as WOWT as above, we say this is a spectral decomposition
of A. It is easy to see that Oi is the ith eigenvalue of A, and the ith column of W
is the corresponding eigenvector. Since the 8i are the eigenvalues of A and (A, B, C)
is minimal it follows that the 8i are precisely the poles of C(sI - A)-B. It should
be noted that because W E RnXn and WWT = In we have that W - 1 = WT and
WTW = I,, facts which will often be used in the sequel.

If A E Rnxn and A = AT then we order the eigenvalues A 1{A} > .-. > A,{A}.
If f is any function mapping R --+ R then the definition of f may be extended to
real-symmetric matrices in the usual way. Specifically, define
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f(A) := Wdiag(f(B 1),..., f(,n))Tf T,

where A = WOWT is the spectral decomposition of A (so that Ai{A} = Oi). By
inspection the set of eigenvalues of f(A) is precisely the set of f(9i). However, the
ordering of the eigenvalues may or may not be preserved. That is, Oi > Oj may, or may
not, imply that f(9i) > f(9j). It will be useful in the sequel to identify some functions
f which do preserve the ordering of the eigenvalues.

Lemma 2.2 Let f : R --+ R be monotonically increasing on an interval I E R. Let
A E RnXn satisfy A = AT and have eigenvalues 01 Ž> * -- > 9,. Suppose further that
i E I for i = 1,... ,n. Then the eigenvalues of f(A) are precisely

Ai{f(A)} = f(9i), for i = 1,...,n.

Moreover,

Ai{f(A)} > Aj{f(A)} if Oi > Oj.

That is, the function f preserves the ordering of eigenvalues.

Proof By assumption 01 > ... > O, where all i. E I. The assumption of monotonicity
of f on I implies that f(01) > ... > f(On). But these are exactly the eigenvalues of
f(A) in the same decreasing order as the eigenvalues of A. oE

In the sequel the next lemma will be used a number of times to confirm that the
ordering of eigenvalues has not been disrupted.

Lemma 2.3 The following functions f: R -* R are monotonically increasing and
positive on the indicated intervals I G R:

(i) f(9) = 82 on I = (O, oo).

(ii) f(9) = -(ac) - 1 on I = (-oo,O) for a > 0.

(iii) f(8) = p-28 + /3-22:' +:P2 on I = (-oo, oo) for /3 > 0.

(iv) f(9) = -- (2 -_-2:/- 0 on I = (-oo, -i] for > 0.

Consequently, if the definitions of the above functions are extended to cover real-
symmetric matrices, then f(A) preserves the ordering of the eigenvalues of any real-
symmetric matrix A whose eigenvalues lie in the appropriate interval I.

Proof Verification that the above functions are indeed monotonically increasing and
positive on the stated intervals is a straightforward exercise and is therefore omitted.
Given monotonicity, apply Lemma 2.2 to complete the proof. Cl
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3 Properties of systems in SPb7n

Systems in .fstable have a number of properties that permit explicit analysis. To begin
with, the controllability and observability Gramians may be calculated explicitly.

Proposition 3.1 Let (A, B, C) E SP'mable, then

(i) The controllability Granmian of (A, B, C) is P =-(2A)

(ii) The observability Gramian of (A, B, C) is Q =-(2A)-1

Proof The Lyapunov equations for P and Q are, respectively,

0 = PAT + AP + BBT and = QA+ ATQ + CTC.

Since (A, B, C) e S;.stable these become the same equation

O=PA+AP+I and O=QA+AQ+I.

Since A is asymptotically stable and (A, B, C) is minimal, there exists a unique solution
for P that is positive definite [6, Theorem 3.3] and a unique solution for Q that is
positive definite. Since P and Q solve the same equation, we have that Q = P.

Now introduce a spectral decomposition A = WOWT and substitute into the P
equation:

o = PWOWT + WOWTP + I.

Multiply on the left by the (nonsingular) matrix WT, on the right by W, and use the
fact that WWT = I to give

0 = (WTPW) ) + 0(WTPW) + I.

Trying WTPW = diag(pl,... ,p,) gives the n independent equations

O = 2pi;i + 1, fori= 1, ... , n.

Noting that Oi < 0 because (A,B,C) E Stable we have immediately that Pi =

-(20i) - l > O0. Hence WTPW = diag(-(290)-',...,-(20,)-1), which gives the unique
solution

P = W(WTPW)WT = Wdiag(-(208)-',..., _(20,)-1)WT = -(1/2)WO-WT.

But A -̀  = WO-1WVT. 

Next, a definition, as in Section 2 of [6].

Definition 3.2 (Hankel singular values) Let G = (A, B, C) E CPm have controlla-
bility Gramian P and observability Gramian Q. Then the Hankel singular values of G
are defined by

ri := Al"/2{QP}, fori= 1,...,n.
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As is well-known, the Hankel singular values form a set of input-output invariants
of the system G. That is, they are unaffected by changes of the coordinate basis of the
state-space of G. Calculation of the Hankel singular values of a system in SPmtb is a
simple matter.

Corollary 3.3 Let G G SPstable have poles 81 > ·.> n,. Then the Hankel singular
values oi of G are

i = -(20i)-', for i = 1,...,n.

Proof From the definition of ai and Proposition 3.1, for G = (A, B, C) E S'P,,tao

Al /2pQ} Al/ 2 {p2}

= A{P}= Ai{-(2A)- 1} = -(28) -1 .

In the above, we used Lemma 2.3(ii). 0

There are a number of norms of a system G of interest in control theory. We are
particularly interested in the 7ho-norm, the - 2 -norm and the Hankel-norm, which are
defined as follows,

{{G{ilo = sup o-{G(jw)},

IG1h2 = (= J trace([G(jw)G(iw)Idw )
IiGIIH = 0a.

In the above, the notation ai{G(jw)} stands for the ith singular value of G(jw), which
should not be confused with ai, the ith Hankel singular value of G. The singular values
of G(jw) are defined by

ai{G(jw)} := Al 2 {G*(jw)G(jw)}, for i 1,...,n.

As elsewhere in this paper the eigenvalues Ai{M} of an m by m Hermitian matrix
M are ordered A 1 {M} . > > Am{M}. Before evaluating IJGioo we need to know
ai{G(jw)}.

Lemma 3.4 Let G E Snp"able have poles 81 > > O,n. Then the non-zero singular
values of G are

(i{G(jw)} = , for i = 1,...,n.

Proof Let (A, B, C) be a realization of G and let A = WOWT be a spectral decom-
position of A. By exploiting the facts that WTW = WWT = I, BBT = CTC = I,

8



and that for non-zero eigenvalues Ai{MN} = Ai{NM} where M and N are any matri-
ces for which MN and NM exist and are square, we obtain the following sequence of
equalities:

ao{G(jw)} = Ai{G*(jw)G(jw)}

Ai(BT(-jwI - AT)-CTC(jwI - A)-'B}

= ,{BT(-jwI- A)-'(jwl - A)-'B}

= A{(-jcoI- A)-l(jwl - A)- 1 BBT}
= Ai{(-jwI - A)-'(jwI- A) - ' }

= Ai{(W(-jwI - O)WT)-1 (W(jwI - O)WT) - I}

- Ai{W(jwI - O)-lWTW(_-j I- O)-l WT}

,xi{(2i + W2) - 1}

= (W + o )-',

where the last line follows because ) = diag(01,...,0,,) with 0 > 01 > ... > 0,. O

Now we are able to give explicit expressions for various norms of G E S' ;table, purely
in terms the system poles Oi.

Proposition 3.5 Let G table have poles > -- Then

(i) IGIlo =--0-

(ii) IIG112 = - E"= 1(20i)-1 .

(iii) IIGIIH =-(201) -
=

Proof Part (i) Using Lemma 3.4 and the definition of IIGIk,, we obtain

lGlloo1 sup oi{G(jw)} = sup(#2 + w2) - 1/2: -0 - 1

as claimed.

Part (ii) It is well-known that IIGI12 = trace[PCT C] where P is the controllability
Gramian of G = (A, B, C). Using Proposition 3.1(i) and CTC = I, one obtains

n

llGl12 = trace[-(2A) - '] = - (20i)-
i=l

Part (iii) Immediate from the definition of Hankel-norm and Corollary 3.3. O

Remark 3.6 It is known that in general 1GIlIoo > I[GIIH. (This follows from e.g., [6,
Lemma 6.2].) For systems in SP'";,stable we have the stronger statement that

IlGIoo = 211II11H if G E sn;stable

This is obvious on comparing Proposition 3.5(i) and (iii). Also
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[IGI[I = E i =: [IGIIN if G C S-P,;able,
i=l

where IIGIIN is the nuclear norm of G. This is immediate on substituting for the Hankel
singular values from Corollary 3.3 into Proposition 3.5(ii).

Remark 3.7 Note that the 17/o-norm and Hankel-norm of a system G E SP,table de-
pend only on 81, the most dominant pole (i.e., the pole which is furthest to the right
in the complex plane).
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4 Balanced truncation of systems in Stable

4.1 Balanced realization of systems in SP'a;le

A realization (A, B, C) e CPStable is said to be balanced [5] if its controllability Gramian
and observability Gramnian are equal to the diagonal matrix of Hankel singular values
E := diag(rl,..., ,ro). There always exists a nonsingular balancing state-transformation
T E Rnxn that takes a given minimal realization (A, B, C) onto a balanced realization
(A,B,C) = (T-1AT,T-'B,CT). For systems in Sptae a balanced realization and
the associated balancing state-transformation have a particularly explicit form.

Proposition 4.1 Let (A, B, C) E S,Psable and let A = WOWT be a spectral decompo-
sition of A. Then:

(i) A balancing transformation for (A, B, C) is W.

(ii) A balanced realization of (A, B, C) is (0, WTB, C W).

(iii) The balanced Gramian of (E, WTB, CW) is = -(20) - 1.

Proof If T is an arbitrary nonsingular state-transformation, then we know that
(A,B,C) - (T-'AT,T-'B,CT). Furthermore, by substituting this into the Lya-
punov equations for the Gramians P and Q it can be shown that P - T-1PT-T
and Q -+ TTQT. If now we set T = W, and recall that W - 1 = WT, we have that
A WTAW = WTWOWTW = 0, B 4 WTB, C H CW, and P WTPW,
Q F WTQW. But using Proposition 3.1 to write P = -(2A) - l = -(1/2)WO-EW T it
follows that

P ~÷ WTPW = -WT(2A)-W = -(20)-1 = E,

where the equality follows on recalling Corollary 3.3. Proposition 3.1 also states that
Q = P so also Q - WTQW = WTPW = E. Hence (0, WTB, CW) is a balanced
realization of (A, B, C) with balanced Gramian E, and W is the appropriate balancing
state-transformation. C1

4.2 Review of balanced truncation of systems in CPmab
'n;stable

Before we study balanced truncation of systems in SP",abl,, for comparison and reference
we summarize the key properties of balanced truncation of systems in CPt"able

Definition 4.2 (Balanced truncation [5]) Let G E Cp;stable be minimal with Hankel
singular values al > . > c. Let (A, B, C) be a balanced realization of G with balanced
Gramian E = diag(ol,..., an). Let k < n and partition the balanced Gramian as

=: [1 0 1]
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where E1 := diag(o-l,..., ok) and 2 := diag(crk+l,..., o). Partition the balanced
realization conformally:

A= All A 12 ] B 1 and C= [ C 1 ]

Then the major balanced subsystem

IBY(G, k) := (All, B1 C)1)

is said to be a k-state balanced truncation of G. We also define

IBr'(G, n - k) := (A 2 2 B2, 2)

which is the corresponding (n - k)-state minor balanced subsystem.

The balanced subsystems inherit certain properties from the full-order system, as
the next proposition states.

Proposition 4.3 ([13]) Let G E Cnpstoabie be minimal with Hankel singular values al >
Ž'" > oak > ok+l > -- > cn,. Then:

(i) IBM(G,k) is asymptotically stable and minimal, and has Hankel singular values
O1, . . . , 'k.

(ii) IB''(G, n- k) is asymptotically stable and minimal, and has Hankel singular values

O'k+l · -· oan.

Remark 4.4 In general the poles of the reduced model are not a subset of the poles
of the full model; whilst A,, is a submatrix of A it is not true in general that the
eigenvalues of All are a subset of the eigenvalues of A. Also, in general the minor
balanced subsystem IB'E'(G, n - k) is not equal to the error system G - IB'Tr(G, k), as
is easily seen by comparing their realizations.

An important property of the balanced truncation method is the existence of a
bound for the Xto-nornn and Hankel-norm of the error system G - IBW(G, k).

Proposition 4.5 ([6, Theorem 9.6]) Let G E CPtable be minimal with Hankel sin-
gular values a1 >. > 0 k > k1 > ... > + > > . Then:

(i) JIG - IBrT(G, k)1oo < 2 =k+l oi.

(ii) IIG - Imr(c, k)11H < 2 :i=k+1 ,i-

(Repeated Hankel singular values need to be included in the above summations only
once, on their first occurrence.)
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4.3 Balanced truncation of systems in SPmable

As we will now see, balanced truncation of systems in SPm able has some attractive
properties. In particular, exact expressions for various norms of the error system will
be derived, rather than error bounds. Firstly we write realizations for the major and
minor balanced subsystems of G E S bl and show that they are in ;stable

Snpti-;stable respectively.

Proposition 4.6 Let G = (A,B,C) C SPbl have poles 81 Ž - > Ok > "k+l >
·* > 0,. Let A = WOWT be a spectral decomposition of A and partition

0 02

where 01 := diag(81,..., k) and 02 = diag(0k+l,... ,n). Partition W conformally as
W = [Wl W 2] (i.e., W1 is the first k columns of W). Then:

(a) For the major balanced subsystem IB'I3(G, k):

(i) IBr(G, k) = (0, WTB, CW1 ).

(ii) IB 'M(G, k) SC'k;table

(iii) (0)1, W 1TB, CW1 ) is a balanced realization, and has balanced Gramian E1 =
-(2)1 )- 1.

(b) For the minor balanced subsystem IBrI'(G,n - k):

(i) MIB'(G,n - k) = (02, WTB, CW 2 ).

(ii) IB'I'(G,n. - k) E SP';s

(iii) (02, W2TB, CWY2) is a balanced realization, and has balanced Gramian E2 =
-(202) - 1.

Proof By Proposition 4.1 we know that (0, WTB, CW) is a balanced realization of
G = (A, B, C) C S',table. From Definition 4.2 and the definition of W1 it is obvious that
IBTI(G, k) = (01, WTB, CW1). Now 01 = OT < 0 because 01 is a diagonal matrix of
strictly negative numbers. The fact that WTW = I, and the definition W = [W1 W 2]
gives that WTWl = Ik, W2TW 2 = In-k and W1TW 2 = 0. So (WTB)(WTB)T = Ik since
BBT = I,, and similarly (CW1)T(CW1 ) = Ik. Hence IBXT(G, k) E Sk;table' Applying
Proposition 4.1 to this system shows that the realization (01, WTB, CW1 ) is in fact
balanced with balanced Gramian El = -(201) - 1. This proves part (a). The proof of
part (b) is analogous. E

Remark 4.7 Observe that 01 is the A-matrix of the balanced realization of the re-
duced system IB¶r(G, k) given in Proposition 4.6. It is immediate that the poles of the
reduced system IB'I(G, k) are 01,..., Ok, precisely the k most dominant poles of the
full system. This should be compared to the general case mentioned in Remark 4.4.
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In general the error system G -IB13(G, k) and the minor balanced subsystem
IBY'(G,n - k) are different, as pointed out in Remark 4.4. However, an important
property of balanced truncation in Snstable is that these systems are always the same.

Proposition 4.8 Let G E Stable have poles - -- Then:

G- IB](G, k) = IBr'(G, n - k).

Proof As usual write G = (A,B,C) where A has a spectral decomposition A =
WOWT. Using Propositions 4.1 and 4.6, a realization for G - IB¶(G, k) is

' 01 0 0 - W0TB -
G- IBr(G,k)= o 2 0o , W2TB CW, CW2 CW2 ]

0 0 ( - WT B

01 0 W0 WTB -
02 ]20 WTB ]40 CW2 CW1 )

0 0 691 0

after applying a state transformation of

Ik 0 o
O In-_k 0 .

- Ik 0 Ik

Removing the uncontrollable and unobservable states, which are all asymptotically
stable, leaves

G - IB(G, ,k) = (0 2 , WTB, CW2 ) = IB'(G,n - k)

where the last equality is from Proposition 4.6b(ii). O

It is now possible to find the singular values of the balanced approximant, and of
the resulting error system.

Corollary 4.9 Let G C ,;stable have poles 1 > - > > - Then:

(i) The non-zero singular values of IBl(G, k) are, for i = 1,..., k,

o{IBrJF(G,k)(jw)} = oi{G(jw)} = (0i + w2) - 1/2.

(ii) The non-zero singular values of IBr'(G, n - k) are, for i = 1,... ,n - k,

ai(IBRr'(G, n- k)(jw)} = -ok+i{G(jw)} = (k+ i + w2 )- 1 / 2.

(iii) The non-zero singular values of G - MB(G, k) are, for i = 1,... , n - k,

o,{G(jw) - IBM (G, k)(jw)} = ok+i{G(jiw)} = (k, + w)/.

Proof Immediate from Lemma 3.4 applied to Proposition 4.6, and then to Proposi-
tion 4.8. °
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Remark 4.10 The above corollary relates the frequency domain properties of the bal-
anced approximants to those of the full-order system, when the full-order system is in

;tabl,. The k-state balanced approximant IBI(G, k) has k non-zero singular values
that exactly match the k largest singular values of the full-order system at all frequen-
cies. The associated error system G - IBT(G, k) has (n - k) non-zero singular values
that exactly match the (n - k) smallest singular values of the full-order system at all
frequencies. This tells us, precisely, the effect in the frequency domain of using balanced
truncation to approximate a system in S.stable,

We can now write an explicit expression for the -norm,-norm, 7i2-norm and Hankel-
norm of the error system in terms of the poles of the original system only.

Proposition 4.11 Let G e Ss;tabi have poles k > k+1 > ... > On. Then:

(i) IIG - IBI3(G, k)llo = -(0k+1)-1.

(ii) JIG - IBMr(G, k)11~ = -11_2k+(28i) -

(iii) IG - rIBY(G, k)IIH =-(20k+1)-1

Proof From Proposition 4.8 we have G - IBI(G,k) = 3IBT'(G,n - k). Applying
Proposition 4.6 we know that IB'i(G,n - k) = (0 2, WTB, CW 2 ) and that this is in
SP'Mk;table Now apply Proposition 3.5 to IB'F'(G, n - k) to obtain the results. El

The above result may be rephrased in terms of the Hankel singular values by substi-
tution from Corollary 3.3. As with Proposition 4.11 the corollary is important because
it gives an exact expression for various norms of the error system, not just an upper
bound.

Corollary 4.12 Let G E t;stable have Hankel singular values al Ž *-- Ž ok > ak+l >

... > aO. Then:

(i) IIG - IBIr(G, k)llj = 2rk+l.

(ii) lIG - IBrr(G, k) 112 = ik+l i. -

(iii) JIG - IBlr(G, k)IIH = Ok+l-

Remark 4.13 The exact value of the -,,o-norm and Hankel-norm of the error system
G - IBI'(G, k) given in Corollary 4.12 should be compared to the usual 'twice the sum
of the tail' error bounds given in Proposition 4.5. For the 1to-norm, the error bound
of Proposition 4.5(i) exceeds the exact value of Corollary 4.12(i) by an amount

,j. (2 ?=-k+l ri) - 2ak+l = 2 Ei=k+2 ri if n- k > 2,
* t ~~0 ~if n-k = 1.

Using Corollary 3.3 we can write this in terms of the discarded plant poles:

6 =- -i=k+2 9-1 if n - k> 2
t 0 if n-k= 1.
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This slackness is the error bounds may be large. For example, suppose we are given
ESptable 7with poles i = -i/10, i = 1,.. ,10. Consider a single-state balanced

approximation IBMr(G, 1). Using Proposition 4.11 the exact value of the 'O-nornm of
the error system is

IIG - IB'(G, 1)JIo = -201 = 5,

and the Hankel norm of the error system is

llG - IBr(G, 1)llH = -(202)-1 = 5/2.

But the usual bound of Proposition 4.5 gives the rather loose estimate

10 10

IG- IBiI(G, 1)1 •-- -E S:1t- 1 0i- 19.3,
i=2 i=2

for both too-norm and Hankel-norm.

Remark 4.14 The 7-'o-norm of the error system is precisely the inverse of the distance
from the most dominant discarded pole to the origin.

4.4 Relations to optimal Hankel-norm approximation
Given G E CfPsable, the k-state optimal Hankel norm approximation problem is to solve

arg inf {JG - |liH I & E Ck;able }.

In [6] it was shown that

ak+1 = inf{I'G - GIIH I C E Ck t abli}

Consequently, given G e CPable( any G that satisfies

-k+l = IIG- GII where G ( Ck;Fable, (1)

is a k-state optimal Hankel-norm approximation of G. In [6], state-space formulae were
derived for all optimal Hankel-norm approximations of G E CPfabge'

In general a k-state balanced truncation of G is not known to be an optimal Hankel-
norm approximation (nor indeed optimal in any sense). However, if G G Sn;table n a
k-state balanced truncation is in fact Hankel-norm optimal, as stated in the following
result.

Proposition 4.15 Let G Sn;table have poles 81 >'>Ok > 9 k+l >. n Then
the k-state balanced truncation IBY(G, k) of G is also a k-state optimal Hankel-norm
approximation of G.

Proof The assumption that Ok > 9k+l is, by Corollary 3.3, equivalent to crk > Ora+l.

Corollary 4.12 then gives
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IG- IB'Ir(G, k)IIH = ok+l.

k;C,m from Proposition 4.6 and that ,mtae Cktable
Recalling that IB'W(G, k) C8 k;stblble

we see that G := IB1T(G, k) satisfies (1). Hence IBT(G, k) is a k-state optimal Hankel-

norm approximation of G e Sn;stable'

Remark 4.16 In [6, Theorem 7.2] it is stated that a square k-state stable system G

is a k-state optimal Hankel-norm approximation of a square n-state stable system G

if and only if there exists an antistable system F(s) = D + C(sI - A)-1B such that

E(s) := G(s) - G(s) - F(s) satisfies EE* = ak+ I. (By antistable we mean that -A is

asymptotically stable). In our case G = IB]I(G, k) and in Appendix A.1 we show that

such an F indeed exists.

4.5 Numerical example of balanced truncation in SPtable

To illustrate the results of this section we briefly outline a simple numerical example.

Consider the system G = (A, B, C)E S4,stable where

l--6 1 -3 -3] l 0 0 0.7071 -0.7071

A 1 -8 -3 -3 0 0 0.7071 0.7071
A -3 -3 -11 1 0.7071 0.7071 0 0

-3 -3 1 -13 -0.7071 0.7071 0 0 l

and
0 0 0 1

C 0 0 1 0
_=0 1 0 0 '

1 0 0 0

The A-matrix has a spectral decomposition WOWT where

-1.8595 0 0 0
0 -8.0656 0 0

0= 0 0 -12.7356 0

0 0 0 -15.3393

and
-0.6783 0.6523 -0.1275 0.3133

-0.4883 -0.7439 -0.1958 0.4121
W= 0.4214 0.1210 -0.8404 0.3185

0.3520 0.0802 0.4890 0.7941

The poles of G are Oi, the diagonal elements of 0. A balanced realization is then

(A, B, C) where

A = WTAW= 0,
0.0491 0.5469 -0.8249 0.1343

T 0.0288 0.1423 -0.0648 -0.9873
WTB -0.9400 -0.2485 -0.2286 -0.0483 '

-0.3363 0.7867 0.5129 0.0699
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and

0.3520 0.0802 0.4890 0.7941 
C= cW= 0.4214 0.1210 -0.8404 0.3185

-0.4883 -0.7439 -0.1958 0.4121 
-0.6783 0.6523 -0.1275 0.3133

The balanced approximants and their properties can now be read off. For example, the
1-state, 2-state and 3-state balanced approximants will have errors

IhG - IBm(G, 1)ll1 = -(0 2)- 1 = 0.1240,

IG - IBr(G, 2)llh0 = -(83) -1 = 0.0785,
llG- IB(G, 3)11l = -(64) - ' = 0.0652.

For IBY'f(G, 3), the (only non-zero) singular value of the associated error system is

ol({G(jw)- IBYI(G,3)(jw)} = o4 {G(jo)}
1 1

2 + 2 /2 35.3 + w 2

Similarly for the 1-state and 2-state balanced approximants. These frequency responses
of the three balanced approximants and that of the original system are plotted in
Figure 1. It is clear in the figure that the k-th order balanced approximation has
exactly k non-zero singular values, which are the same as the first k singular values of
the full-order system.
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Figure 1: Singular values of the full-order system and its balanced approximants
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5 H7-4-balanced truncation of systems in Snpm

Suppose G is a (high-order) plant, and G, is a (low-order) plant approximation. Sup-
pose a controller Kr is designed for Gr. A central concern is what happens when K,
is used to control G rather than Gr. If G E SCt'table then Gr can be obtained by bal-
anced truncation, where some precise statements can be made. Of particular help is
the existence of an explicit expression for the 7,oo-norm of the error system (as given in
Proposition 4.11). When G C SP,rm but is not asymptotically stable, it is appropriate
to consider using .oo-balanced truncation [7] to reduce the plant. Firstly a definition
is given of the particular control problem of interest.

5.1 The Normalized 70, Controller

We focus on a particular '?o control problem studied in [7, 14]. Here we give a brief
description, and refer the reader to [7, 14] for full details. Let G = (A, B, C) be a given
n-state minimal system. Define the closed-loop system of interest to be

(GK) := [ kSG SGK ] where S := (I - GK)-1.

Given y > 0 let -(G, y) be the following set of '7o controllers:

(G,3y) := {K K stabilizes G and II7(G,K)IIoo < r}.

The smallest y such that E(G, y) is nonempty is 7y, the optimal Hoo-norm. The next
lemma tells us when 7 > 7o and may be obtained by applying the results of [2] to the
problem in hand.

Lemma 5.1 Let G = (A,B, C) E Cp,,n. Then y > o, if and only ifE(G, 7) is nonempty

if and only if the following three conditions all hold:

(i) There exists XOO = XT > 0 satisfying the 7oo Control Algebraic Riccati Equation

o = XooA + ATXOO - (1 - 7-2),ooBBTYoo + CTC (HCARE)

such that A - (1 -- y-2)BBToo is asymptotically stable.

(ii) There exists Yo = YT > 0 satisfying the ,oo Filter Algebraic Riccati Equation

o = Y AT + AY - (1- - 2 )YoCTCYo + BBT (HFARE)

such that A - (1- 7-2)YoCTC is asymptotically stable.

(iii) With Xoo as in (i) and Yo, as in (ii) we have A{XYoo1-'o} < 72.

Note that from [15, Lemma 3.4.1] there exists at most one Xoo satisfying the HCARE
such that A - (1- -2 )BBTXoo is asymptotically stable. This is called the stabilizing

solution. Similarly for Yoo and the HFARE.
In the sequel we will often be concerned with plants G having at least one unstable

pole. For these systems yo, cannot be smaller than unity as the next lemma shows.
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Lemma 5.2 If G c CP,"' but G X Cp';stable then 70 > 1.

Proof Corollary 5.5 of [7] states that -y < 1 if and only if G is asymptotically stable
and has Hankel-nornl strictly less than unity. If G CE nC' but G ,' Ctabl, then G
possesses at least one unstable pole so is not asymptotically stable. Hence -7 > 1 for
such systems. ]

Now assume -y > 7y. For every KIt E(G,y) we can then define the entropy of the
associated closed-loop H := 7-(G, K) by

I(IIH,y) :=0 / i In I det(I - y-2H*(jw)H(jw))ldw-
27rJ-oo

For a, comprehensive discussion of entropy within the context of HOO-control, see [14].
Here it suffices to mention that the entropy may be thought of as a nominal performance
measure akin to the usual Linear Quadratic Gaussian cost, which makes sense in an
7-oo-control setting. The control problem we are concerned with in this section can now
be stated.

Definition 5.3 (Normalized 7Hoo Controller) Let G be a given n-state minimal
system, and let y > y,. Then the Normalized NXo Controller for G is defined by

IK,(G) := arginhf{I(7((G, K),-y) I K C E(G,y)}.

In other words, IK,(G) is the stabilizing controller for G which minimizes the entropy
of -I(G, K) subject to the i 0oo-norm bound y. An n-state realization of this controller
is given next, as stated in [7, Theorem 4.8].

Proposition 5.4 Let G = (A, B, C) c CP," and let 7 > 70. Then the Normalized Too
Controller exists, is unique, and has a realization (A, B, C) where

A = A- (1- -2)YOCTC - BBT rX (I -y-2 Xo)-

B = YCT

C' = -BTXOO(I_ y-2y X )-1

where Xoo and Yo are as defined in Lemma 5.1.

Next, a definition taken from [7].

Definition 5.5 (tOO-characteristic values) Let G E (A, B, C) C Cp,m and let 7 >
70. Then the 'Hoo-characteristic values of G are defined by

v.:= At/ 2 {XY}, for i = 1, ... ,n,

and satisfy vi < y, where XY, and YOO are as defined in Lemma 5.1.

Like the Hankel singular values, the 0IO-characteristic values are a set of input-
output invariants for G. As we will soon see, in the (closed-loop) design of reduced-
order controllers, the -/0 0-characteristic values play an analogous role to that played by
the IIankel singular values in the (open-loop) design of reduced-order plants. That is,
if a vi (respectively, oi) is small enough, the associated state may be truncated without
excessive closed-loop (respectively, open-loop) error.
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5.2 7]i/-balanced realization of systems in SP,m

A realization (A, B, C) C CP'm is said to be 4,O -balanced [7] if XSY and Y,, are equal
to the diagonal matrix of X7,O-characteristic values N := diag(vl,..., v,). (Here, as
elsewhere in this section, XY, and YO are as defined in Lemma 5.1.) Such a realization
exists whenever y > -y,, in which case there always exists a nonsingular 7'Ho-balancing
state-transformation T E RWnXn that takes a given realization (A, B, C) E CP m onto an
7oo,-balanced realization (A, B, C) = (T-'AT, T-1B, CT). Typically, both the 7'H,-
balanced realization and the 7Hoo-balancing transformation are functions of Y. For
systems in St,m they are independent of -. Moreover, an ,OO-balanced realization and
the associated K7/I-balancing state-transformation may be written explicitly. Before
doing this it is necessary to derive expressions for XOO, YOO and vi.

Proposition 5.6 Let G = (A, B, C) E SnPm have poles 81 > ... > 0,.

(i) If G C SPtable then there exists a unique positive definite stabilizing solution XO
to the HCARE (respectively, IY to the HFARE) if and only if > (1 ±I+ 2)- 1/2,

in which case that solution is

= Y f #- 2 A + /- 2 (/ 2I + A)'/2 ifY a 1
° -(2A)-1 if 1

where 2 := 1 - -2

(ii) If G ~ SP'stable then there ezists a unique positive definite stabilizing solution XOo
to the HCARE (respectively, YOO to the HFARE) if and only if y > 1, in which
case that solution is

Xoo = y,, = - 2 A + -2(32I + A)1/2.

Proof See Appendix A.2. [

Having established conditions on -y for suitable XO and Y,, to exist, it remains to
check if A,1{XoYo') < y2. If so, then Lemma 5.1 says that 7 > %y. A closed-form
expression for -y, is easily obtained.

Proposition 5.7 Let G = (A, B, C) E Snp,m have poles 81 > ... *> 0,.

(i) If G E SPstable then

z0- = max{08+ ± 2 + (1 + 02)-1/2}.

(ii) If G ¢ SP,'stable then

ro = 81 + V2 +2.

Proof See Appendix A.3. [

Now we can write closed-form expressions for the 7,oo-characteristic values.
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Corollary 5.8 Let G E Sp,m have poles 01 > ... > 9n, and let y > 'y7.

(i) If G ( SPablem then for i = 1,...,

/= 3-28i +/3 - 2 /32+ if 
-(29-)-1 if =1

where /32 = 1 - -2

(ii) If G _ S.Pmtabe then for i 1, ... , n,

:~/329±/32 + +2Vi = P-20i + 0 - i2 t

Proof Straightforward from the definition of the vi, Proposition 5.6 and Lemma 2.3(iii)
and (iv). O

If the plant is not asymptotically stable, then this has consequences for 'y7 and the
vi which will be important later on. The key point is that a priori lower bounds on 70
and vi become evident.

Proposition 5.9 Let G E SP,,m but G f Smstable have poles 01 > > 0, . Then:

(i) 7Y > X/2.

(ii) If y > 70 then Ok > 0 if and only if vk > 3-1.

Proof Obvious on examination of Corollary 5.8 and Proposition 5.7 when 01 > 0. O

Now we can write down an 7, 0-balanced realization and the corresponding solutions
to the HCARE and HFARE.

Proposition 5.10 Let (A, B, C) G SP',m and let A = WOWT be a spectral decomposi-
tion of A. Then for all -y > y,,

(i) An 7to-balancing transformation for (A, B, C) is W.

(ii) An 'Hoo-balanced realization of (A, B, C) is (0, WTB, CW).

(iii) If ay 1 then the HCARE and HFARE for (0, WTB, CW) have a unique positive
definite stabilizing solution

X = y 20 + /3-2(32I + 02)1/2

(iv) If y = 1 then the HCARE and HFARE for (0, WTB, CW) have a unique positive
definite stabilizing solution

Xeo = YoO = -(20) - 1 .
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(v) If also G c SPtm bl, then (O, WTB, CW) is a balanced realization with balanced
Gramian = -(20) - 1 .

Proof Under a state-transformation of W we know that A H-4 WTAW = 0,
B - WTB, C CW, XOO - WTXoW and Yt% WTYOW. If o 1 then
Proposition 5.6(b) gives that

xYo WTXooW = WT(3-2A + d-2wVT( 21I + A 2 )1/2 )W

= f-20 + p-2(/p2 + 02)1/2

The same expression is obtained for - WTYOoW. If 7 = 1 then Proposition 5.6(c)
gives

IYo - WTxYooW = -WT(2A)-IIV = -(20)- 1 ,

and the same same expression is obtained for YO, i- WTYOoW. In both of the above cas-
es, (0, WTB, CW) has Xoo and Yoo equal to the diagonal matrix of 'H,-characteristic
values, and therefore (0, WTB, CW) is an X7-/-balanced realization. This proves (i)-
(iv). Now if G G SP',"ble Proposition 4.1 immediately shows that (0, WTB, CW) is
balanced in the ordinary sense, with balanced Gramian E = -(20)- 1. 

Remark 5.11 In general, for systems in CP,m the 7 -4o-balanced realization of a system
and the '7-H-balancing transformation are functions of y. Proposition 5.10 shows that,
for systems in SP,'", the 'Ho-balanced realization and 7oto-balancing transformation are
independent of 7. Moreover, for systems in SPstable, the 'Hoo-balanced realization is a
balanced realization in the ordinary sense. Again, this is not true in general.

5.3 Review of 7-t,-balanced truncation of systems in Cp m

Before we study H/oo-balanced truncation of systems in S.Pable, for comparison and
reference we summarize the key properties of 7too-balanced truncation of systems in
cp,m

tn;stable '

Definition 5.12 (7too-Balanced truncation of plant [7]) Let G G Cppstable be min-
imal with 'H7-characteristic values v1 Ž ... _ vk > vk+ l > ... _> ,, for a giv-
en 'y > y,. Let (A,B,C) be an I'Foo- balanced realization of G with Xoo = Yo =
diag(vx,...,v,n)=:N. Partition N as

N= [ N N2

where N, := diag(vl,..., vki) and N 2 := diag(vk+,... , v,). Partition the 4loo-balanced
realization of G conformally:

A. A [ All 2 B=[ B12 ] and =[ C1 C2 ]

Then the major 71-,-balanced subsystem
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M. .(G, nI.-- , X (All).Ulj, _,1

is said to be a k-state HOo-balanced truncation of the plant G. We also define

Brl(G,n - k):= (A 2 2, B2, 02)

which is the corresponding (n - k)-state minor 7t, -balanced subsystem.

An analogous definition may be given for a reduced-order controller by too-balanced
truncation. This is irrelevant for our purposes, since it was shown in [7] that controller
so obtained is precisely the Normalized /,o Controller for IBMr1(G, k); in the sequel we
analyze the latter.

The following is the key result for OHo-balanced truncation, and gives an a pri-
ori sufficient condition that can guarantee closed-loop properties of the reduced-order
controller with the full-order plant.

Proposition 5.13 ([7]) Let G E SP,m have 7-,o-characteristic values v, Ž ... > vk >

vk+l >Ž ... > v,. Let y > max{1,y)}, let /2 := - 7 - 2 , and define G, := IBrT(G, k),

with corresponding Normalized '7-l Controller K. := IK(G,). Define the truncation
error

n t i

i=k+l O1 + . 2,2

Then:

(i) KI stabilizes G if e < (/3 + y)-1.

(ii) If E < (3 + y)-' then

IIH(G, Ir.)ll0 < - + 61

where

e( +- )(1 + ± y)

1 - e(/ + 7)

It is worth explaining how Proposition 5.13 was derived. Firstly a normalized co-
prime factorization of 3G is performed using Y]. That is, write G = f;-1]V where N
and All are stable and left-coprime and /32NN* + MM* = I. Now balance and truncate
(in the ordinary way) the system [/3iN MJ] to obtain a k-state approximation [13N,r MRJ].
Let An := N - iV, and AM := I- ll,. Then Proposition 4.5(i) gives the a priori

bound

f[lANV AaM] iko2 1 (2)
i=k+l
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where &i is the ith Hankel singular value of [/3N AI]. It turns out that each &i may
be written in terms of vi and -y, namely 2 = f22 v2(1 + f 2V,2) - l. Furthermore, it can
be shown that Gr ':= /l- Nr is precisely IB',(G, k). So to analyze IKy(IB'Il,(G, k))
connected to G we equivalently analyze lKy(Gr) connected to Cr with the (stable)
perturbation [AN AM ] . An application of the small gain theorem and exploitation
of (2) leads to the a priori sufficient condition for closed-loop stability given in Propo-
sition 5.13.

The above result may be applied equally to stable or unstable plants, because the
coprime factors are always stable. (For further discussion and a numerical example
see [7].) A particular feature of using coprime factorization in the above way is that
the number of unstable poles of the reduced-order model may differ from that of the
full-order model (see, for example [9]). In the sequel we analyze this issue. We will
see that (at least if G E SP,m) the small-gain condition in Proposition 5.13(i) is never
satisfied if an unstable pole is removed. So although the method could be used to
remove unstable poles, it is never approved.

5.4 7t-,-balanced truncation for unstable plants in S"' mt

Our primary result, now given, shows the implication of using 'H,,-balanced truncation
to remove one or more unstable poles from the full-order plant.

Proposition 5.14 Let G C S,Pm have poles 81 > ... > Ok > 9 k+l > ... > 0,, where

81 > 0. Other definitions as in Proposition 5.13. Then

Ok+l > O e > (X 3 +, )-1

In other words, suppose that in using Io,,-balanced truncation to form Gr from G E
Sp,m, an unstable pole of G is removed. Then the sufficient condition of Proposi-
tion 5.13(i) is not satisfied, so we cannot guarantee that Kr, the Normalized I4oo-
Controller for Gr, will stabilize G.

Proof Using y > vi > / - 1 from Definition 5.5 and Propositions 5.8,

n Vi

i=k+l 1 ±/3%'2

2vk+l

-41+ ;~ I22

2/-1
/1 +±32-y2

= 2(3y)-1

Therefore

2 ( 3 + -y) -/ 3 -y y(2 - ) + 2/3

,3-Y( + -Y) 0-(O + Y)
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That this is non-negative follows by inspection because 0 < / < 1 and 7y > 0. O

Since e < (13 + )- 1 is a sufficient but not necessary condition for If, to stabilize G,
knowing that e > (/3 + y)- 1 means that Kr may, or may not, stabilize G. In fact, the
following result shows that K, does not stabilize G when an unstable pole is removed.

Proposition 5.15 Let G E St'm have poles 81 > ... > Ok > Ok+1 >_ '" > On, where
O1 > 0. Other definitions as in Proposition 5.13. Then

09k+l > 0 > KI does not stabilize G.

In other uords, suppose that in using 1-t,-balanced truncation to form Gr from G E
SP,Pm, an unstable pole of G is removed. Then IK,, the Normalized 7-10-Controller for
G,, does not stabilize G.

Proof See Appendix A.4. a

5.5 Low-order control of balanced truncations in SPabeL'n;stable

If G E SP;table then 7H-t-balanced truncation is precisely balanced truncation, a result
not true in general.

Lemma 5.16 Let G C St,'t.able have poles 81 > ... > Ok > Ok+l > ... > > on Then for
all y > 7o

IBII',(G, k) = IB(G, k).

In, other words, 7Hoo-balanced truncation gives the same k-state system as balanced trun-
cation.

Proof From Proposition 5.10(v) that (0, WTB, CW) is both 7-oo-balanced and bal-
anced in the usual sense when G E S:'shable Now Corollary 3.3 gives oj = -(20i)-1
and Corollary 5.8 gives vi = 3-29i + /-2(32 + 92)1/2 (if a $ 1) and vi = -(20i)-1 (if
-y = 1). In either case, Sk > ak+l if and only if vk > vk+l if and only if Ok > Ok+l1
So the same reduced-order system (01, WWTB, CW1 ) is obtained from both balanced
truncation (Definition 4.2) and -,,O-balanced truncation (Definition 5.12). L[

The above result means that we can use the explicit results we derived earlier for
balanced truncation to analyze Hto-balanced truncation. We will derive a sufficient
condition for when the Normalized 1oo Controller for the reduced-order plant can be
guaranteed to stabilize the full-order plant. Further, a bound on the degradation of the
resulting Xoo-norm of the closed-loop is given. We believe these results are interesting
and insightful because they can be put in terms of Ok+1 and y, which are a priori data.

Proposition 5.17 Let G E SPble have poles 81 ... > Ok > Ok+l > *-- > On-
Define G, := IBmt (G,k), let y > y,, and let If, := IW(G,) be the Normalized ',oo
Controller for G,. Define '/ := IIlI(G,, Kr)IIoo. Then:

(i) Kr stabilizes G if y <- -k+1.
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(ii) If / < -- k+l then

I1I(G, Kr,)Ioo < 'b + 6

where

.= (1 + )2

-ak+l -

Note that the above result requires knowledge of the a posteriori quantity a =

[11-(Gr,,Ki)lloo. Recall, however, that by construction a < -y. Thus y < -- k+l if
7 < -0k+l. We therefore immediately have the following corollary, which is in terms
of a priori quantities only. Because the result is based on knowledge of the exact value
of IIG - G,.lI = -k+l1, it is inherently less conservative than would be obtained by
applying the same analysis using the usual error bound JG - GIIoo < 2 +i O.

Corollary 5.18 Let G E b have poles k > + Define
Gr := IB3'T1(G, k), let y > y, and let K, := KI((G,) be the Normalized 'Ho Controller
for Gr. Then:

(i) Kr stabilizes G if y < -0k+1.

(ii) If 7 < -Ok+l then

IIVH(G, KIr)1oo < + 62

where

62 = (+)2

-0k+l - Y

The following lemma will be needed in the proof of Proposition 5.17. Proof of the
lemma is relegated to Appendix A.5.

Lemma 5.19 Definitions as in Proposition 5.17. Let Sr := (I - GrIr)- ' and let
G'r := G- G,. Assume y < -Ok+l. Then (I - G'rKS,,)-l exists and

7I(G, K,) = tH(G,, K,) + [ s,. S (I- GK,.S,,.)-'G' [ KSr,.G + I KI,.S,. ]

Proof of Proposition 5.17 Part (i) Write G = G, + (G - G,). Note carefully
that, since G E SP'bm and G- = IB(G,k), we have that G - G, (G,- k)

from Proposition 4.8. Hence JIG - G,Ioo = -- k+l from Proposition 4.11. Viewing
G - G, as an additive perturbation to a nominal system Gr connected to its controller
K,, we may apply the small gain theorem to deduce that Kr stabilizes G if 11(G -
G,)KrSrlloo < 1 where S,r := (I - GrKr)- 1. Since KS,, is a sub-block of 'H(G., K,),
and 117I(G, Kr)11o = 1 y by definition, we have 11K,rS,II,o < -. But then
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--(G )KrSrrlloo < ~IG - -lloo-|i0rSrr | -Bk+17.TuII(G - Gr)KrS 7S,,I . 0 < J IG - G 0II.JKS-- .^ 00
Thus I(G - Gr)K.rSrr o < 1 if -tk+,j < 1 or equivalently if ' < - 9 k+l (since
tk+l < 0), in which case AK stabilizes G.

Part (ii) Since ' < -/k+l we know that IIG'K7,S,,7 1oo < 1 from the proof of
Proposition 5.17(i). Now take the 'HO,-norm of 7-(G, K,) and substitute for 'H(G, K,)
from Lemma 5.19. Apply the triangle a.nd sub-multiplicative properties of the 'H-o-
norm, and use the fact [12, p3011 that I1(I - M)-lloo _< (1 - IIMIIo) - ' if IIMIKoo < 1
(here M is G'KrS,,). Also use that J' = IIA(G,, K )1Ioo by definition. One obtains

?ti(GK . )110 •< 5 + ||r[ L j S|

x(1-IlG iK. l) [ KSrrGr + I KrSrr I . (3)

Now recall that

'H(G,. ,K . ) [ Sr. ,.G . Sr. Gr.Kr.
Kr Srr Gr Srj

Taking the 7Hoo-norm of this, and using the fact that the 'HO-norm of a sub-block of a
matrix cannot exceed the 7Hoo-norm of the whole matrix, we have

I1[ KSrrG, KrSrr ] 5< and IIK.KrSrr.l . •< i.

We may also write

H(Gr,a~) [ ]+ [ 0 I

from which we deduce

Srr [ Gr I] < II'(Gr,,Kr)llo+1 = + 1.

Consequently,

[Lhr ] g00 5'+1.

Substituting the above bounds into (3) gives

II(G, 7c,)110 < ' + (1 +± )2 (-0+1 )(1 +9k+ 1 ),

and the claim follows. o]
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5.6 Numerical example of 7Ht-balanced truncation in Sp',

Firstly consider applying '1,o-balanced truncation to the plant used in Section 4.5. The
poles are

1 = -1.8595, 02 =-8.0656, 03 = -12.735, and 04 =-15.3393,

so from Proposition 5.7 the optimal 'H.o-norin is

= 81+ v2 + = 0.4767.

Now consider some representative values of y > max{1, o}, so we can use both Propo-
sition 5.13 and Corollary 5.18 to predict closed-loop properties of reduced-order con-
trollers, and compare the results. We will consider y = 1.1, 1.5, 2, 10, and 100. From
Lemma 5.16 we know B'I,(G, k) = IB'II(G, k) and for simplicity we will focus on k = 2.
Then from Section 4.5 we have IB'1(G, 2) =: (A,, B,, C,) where

A, [-1.8595 0 
r0 -8.0656 |

B, [0.0491 0.5469 -0.8249 0.1343 1
B 0.0288 0.1423 -0.0648 -0.9873 J

and

0.3520 0.0802
0.4214 0.1210

Cr - -0.4883 -0.7439
-0.6783 0.6523

and we consider two-state controllers I 1:,(IB3I(G,2)). The results are summarized
in Table 1. Column (a) checks the condition of Corollary 5.18(i) and predicts
,(G, IK,(G, 2)) is stable for y = 1.1, 1.5, 2.0 and 10.0 but says nothing for y = 100.0;
Column (b) checks the condition of Proposition 5.13(i) and predicts 7H(G, IK,(G, 2)) is
stable for y = 1.1, 1.5 and 2.0 but says nothing for y = 10.0 and 100.0. (The closed-loop
'H(G, IK,(G, 2)) turned out to be stable for all the values of -. )

In Table 2 we give the predictions and actual value of 11-H(G, IK,(G, 2))11,. Column
(c) gives the bound of Proposition 5.13(ii); Column (d) gives the bound of Corol-
lary 5.18(ii). For comparison, Column (e) gives the actual Hoo-norm of the closed-loop
of reduced-order plant with full-order controller, and Column (f) gives the actual 7-o,
norm of the closed-loop of full-order plant with full-order controller.

Now consider a plant G obtained by negating ( in the balanced realization given in
Section 4.5. That is, consider G = (-0, B, C). This system is in S4'4 and all four of its
poles are unstable. Thus even a three-state 740,-balanced truncation involves removing
an unstable pole. For this system

4o = 01 + V2+ 91= 30.7437,
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with an obvious notation. We will consider -y = 33, 40, 50, and 100. The appropri-
ate results are shown in Table 3 which considers two-state reduced-order controllers.
Column (g) shows that, as predicted in Proposition 5.14, the sufficient condition of
Proposition 5.13 not satisfied because at least one unstable pole is removed. Finally,
Column (h) shows that the actual closed-loop system of reduced-order controller and
full-order plant is indeed unstable, as Proposition 5.15 dictates.
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(a) (b)

Xy Is Y < -03 ? VI 2 V3 E (p + -Y)- Is e < (3 + y)-l?

1.1 Yes 0.2656 0.0620 0.0392 0.0326 0.1436 0.6594 Yes

1.5 Yes 0.2589 0.0619 0.0392 0.0326 0.1435 0.4454 Yes

2.0 Yes 0.2557 0.0618 0.0392 0.0326 0.1435 0.3489 Yes

10.0 Yes 0.2520 0.0618 0.0392 0.0326 0.1435 0.0910 No

100.0 No 0.2518 0.0618 0.0392 0.0326 0.1435 0.0099 No

Table 1: A priori numerical results for lICl(IB' (G, 2))

(c) (d) (e) (f)

- Y + 6 'Y + 62 II'H(G, IK,(IB1r,(G, 2)))11o II7i(G, I IK(G))Ilo

1.1 1.4790 1.3784 0.5287 0.5287

1.5 2.0563 1.9754 0.5303 0.5295

2.0 2.8383 2.6986 0.5305 0.5300

10.0 54.2316 - 0.5305 0.5305

100.0 I 0.5305 0.5305

Table 2: Predicted and actual values of [II7(G, IK(IB'lr(G,2))1,o

(g) (h)

XY V 2 V3 v 4 ( + y)-' Is e < (p + )- s ? Is 'H(, IK, (IBJlr(, 2))) stable?

33.0 30.739 25.533 16.208 3.9744 3.9548 0.0294 No No

40.0 30.730 25.526 16.203 3.9733 3.9472 0.0244 No No

50.0 30.723 25.521 16.199 3.9724 3.9433 0.0196 No No

100.0 30.714 25.513 16.195 3.9713 3.9315 0.0099 No No

Table 3: A priori numerical results for IM(IBF,(G, 2))
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6 Conclusion

By restricting our attention to a certain class of systems we have been able to derive
some quantitative features of controller and model reduction techniques based on bal-
ancing techniques. In particular, for the class of systems we studied in this paper, the
following points became evident:

* Balanced truncation is Hankel-norm optimal. Moreover, the Htoo-norm of the
error system is the inverse of the distance from the most dominant discarded pole
to the origin.

* The ith Ilankel singular value of a stable plant is associated with the ith most
dominant pole. Hence it turns out that the poles of the k-state plant obtained
by balanced truncation are the k most dominant poles of the original system.

* Whether or not the plant is stable, the ith 17/I-characteristic value is associated
with the ith most dominant pole. Hence it turns out that the poles of k-state
plant obtained by 7-, 0 -balanced truncation are the k most dominant poles of the
original system.

* When the plant is stable, 7,oo-balanced truncation gives a reduced-order plant
which is identical to that obtained by balanced truncation.

* If a pole of the original plant is unstable, then there exists an a priori lower bound
on the associated 1Hoo-characteristic value.

* If an unstable pole is removed in forming the reduced-order plant, then the ap-
propriate small gain test does not guarantee that the controller designed for this
reduced-order plant will stabilize the original plant.

* If an unstable pole is removed in forming the reduced-order plant, then in fact the
the controller designed for this reduced-order plant will not stabilize the original
plant.

The above conclusions are true for the class of systems studied in the present paper with
controller reduction by 7to,-balanced truncation. It is stressed that these conclusions
are not necessarily true in general. However, we believe the qualitative insights obtained
from this investigation are of value in more general situations. Making the claim of
the previous sentence precise is a topic for further research, as is the general subject of
controller reduction for unstable systems.
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A Appendix

A.1 All-pass dilation of G - IBT(G, k)

Here we follow up on Remark 4.16 and demonstrate that given G = (A, B, C) E S,,;table
with poles 0l > "' > k > 0k+l > '.. > 9n there exists an antistable system F(s) =
D + C(sI - A)-'B such that E := G -IB'(G,k) - F satisfies EE* = 7G+JI. By [6,
Theorem 7.2] this is a necessary and sufficient condition for IBY(G, k) to be a k-state
optimal Hankel-norm approximation of G.

Without loss of generality we assume m = p. If m $ p then B and C may be
augmented with, respectively, columns and rows of zeros without affecting BBT =
CTC = I or the Hankel singular values.

Proposition 4.8 gives that G - IBT(G,k) = IBII'(G,n - k), so E = IBY'(G,n -
k)- F. Proposition 4.6 gives that a balanced realization for IBY'(G, n - k) is
(0 2 , W 2TB, CW2) with balanced Gramian ]2. Starting with this system we can directly
apply [6, Theorem 6.3] to construct F = D + C'(sI - A)-'B such that EE* = ork+I.
All that remains to be shown is that the A so formed is antistable. It is convenient to
define

O := diag(Ok+r+l, I * n),

:= diag(Ok+r+l *... n)
p 2 _C 21)'02 _ 2

:= -2 -CTk+1I = diag((okr+,+1 - k+l) ,(, - k+ ))

where r is the multiplicity of 0k+l. Since O < 0, part 3(b) of [6, Theorem 6.3] applies,
and says that A has the same inertia as -rP. But r < 0 and 2 > 0 and both are
diagonal matrices, so -fr > 0. Hence all the eigenvalues of A are in the open right-
half plane. That is, A is antistable as claimed. This completes the construction of an
antistable F such that EE* = ok+ I. By [6, Theorem 7.2] this verifies that IBI?(G, k)
is indeed a k-state optimal Hankel-norml approximation of G E Sstabl'

A.2 Proof of Proposition 5.6

The HCARE is

O = ATXo + YA - (1-_y- 2)XYBBTXoo + CTC.

Introducing the spectral decomposition A = WOWT and BBT = CTC = I gives

O = WOWTIYX + X WOWT - (1- _ -2)X2 + I.

(An identical equation is obtained for the HFARE with YOO in place of XO,. Thus it
suffices to consider the HCARE only.) Multiply on the left by the nonsingular matrix
WT and on the right by W, and use the fact that WWT = WTW = I to get

0= E2~ + ±Oo - (1 - Y-2)2 +I,

where o := WTYoOW. Observe that XOO > 0 = X- , > 0 and that XYO is the
stabilizing solution of the HCARE if and only if O - (1 - - 2 )Xoo is asymptotically
stable. This latter fact follows from

35



A - (1 - -)BBTXo = A - (1 - 7-2)A, = W(O - (1 - 7-2)Yoo)WT

Trying X = diag(xl,... , x) gives the n independent equations

0 = 20ixi - (1 - y- 2 )x? + 1, (4)

for i = 1,..., n. Obviously, XY, is positive definite if and only if zi > 0 for all i, and
Xo is stabilizing if and only if each xi is the stabilizing solution of its equation (i.e.,
0, - (1 - - 2 )xi < 0). Once the positive stabilizing xz have been found, it is a simple
matter to evaluate Xo = Wdiag(xl,...,z,)W T. The following lemma summarizes the
relevant properties of equations like (4).

Lemma A.1 Given 0 E R and ay > 0, consider the quadratic equation

0 = 2;x- (1- y-2 )x 2 + 1. (5)

A real solution to (5) is stabilizing if and only if 8 - (1 - 7- 2 )x < 0.

(i) Suppose 8 < O. There exists a real positive stabilizing solution to (5) if and only if
7 > (1 + 02) - 1/2. In that case, the real positive stabilizing solution is unique and
is given by

( /3-20 + P-2 (0 2 + 32)1/2 if a $ 1

= -(20) - 1 if y 1

where 2 := 1 -- 2

(ii) Suppose 0 > 0. There exists a real positive stabilizing solution to (5) if and only if
-y > 1. In that case, the real positive stabilizing solution is unique and is given by

x = o-29 +,3 2(92 + ,2)1/2.

Proof Part (i) Consider first the case when y = 1. Then (5) becomes 0 = 20x + 1.
This has a unique real positive solution x = -(20)- 1, and this solution is obviously
stabilizing.

Now suppose -y = 1 so 1 - y-2 $ 0. Then (5) has real solutions if and only if
02 + 1 _ 7-2 > 0. This is true if and only if - 2 > (1 + 92)- 1 . In that case, the real
solutions are

= 1- -2 (6)

One of these solutions is stabilizing if and only if -y > (1 + 02)- 1/2. In that case the
stabilizing solution is

9 + 9/02 + 1 -7 - 2

2--2= 1-)2 *(7)
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We must now check when this x is positive. If y < 1 then 1 - y-2 < 0 and we define
¢ := (y-2 _ 1)1/2. It follows that x > 0 if and only if f(9) := -(-28 - C-2(82 _ ( 2)1 /2

satisfies f(8) > 0. From Lemma 2.3(iv), this is true if and only if 8 < -C, which is is
assured since by assumption y > (1 + 82)-1/2. So there exists a unique real positive
stabilizing solution for 1 > y > (1 + 82)-1/2, and this solution is given by (7).

Finally assume y > 1, so certainly a > (1 + 82)-
1/

2. Then 1 - - 2 > 0 and
Lemma 2.3(iii) says that x > 0 for any real 9. So there exists a unique real positive
stabilizing solution for all - > 1, and this solution is given by (7).

Part (ii) Consider first the case when -y = 1. Then (5) becomes 0 = 20x + 1. If 0 = 0
there is no solution. Otherwise, there is a unique real solution x = -(20)-1 , but this
solution is not positive.

Now suppose -y $ 1 so 1 - - 2
- 0. Then (5) has real solutions if and only if

82 + 1 - 7 - 2 > 0. This is true if and only if 7 2 > (1 + 82)- 1 . In that case, the real
solutions are as in (6). One of these solutions is stabilizing if and only if y > (1+82)-1/2.
In that case the stabilizing solution is given in (7). We must now check when this a: is
positive. If -y < 1 then 1 - -y 2 < 0 and as above we define ( := (y-2 - 1)1/2. It follows
that x > 0 if and only if f(9) > 0. This cannot happen because 9 > 0. So if 7 < 1
there does not exist a real positive stabilizing solution.

Finally assume a7 > 1, so certainly y > (1 + 82)-1/2. Then 1 _ - - 2 > 0 and
Lemma 2.3(iii) says that x > 0 for any real 8. Hence a real positive stabilizing solution
exists for all y > 1, and is unique and given by (7). Ol

Now let us return to the proof of Proposition 5.6.

Part (i) Assume G c SP,bstle, so that 0i < 0 for i = 1, ... ,n. Apply Lemma A.l(i)
to (4) for each i = 1,... ,n. It follows that there exists a positive definite stabilizing
solution to the HCARE if and only if a > maxi{(l + 0i) - /2} = (1 + el)

- 1/2. In that
case the claimed expression for Xo follows immediately on substituting for the zi given
by Lemma A.l(i) into XYo: = Wdiag(x l,...,xn)WT.

Part (ii) Assume G , S,~-;able so that there is some integer 1 < r < n such that
9 i > ... > O, > O. Apply Lemma A.l(ii) to (4) for i = 1,...,r. We find that there
exists a real positive stabilizing solution xi if and only if 7 > 1, in which case that xi is
given by x; = /3-20i +3 -2(02 + 032)1/2. If r = n then this establishes that there exists a
positive definite stabilizing solution XYo to the HCARE if and only if a > 1. Further,
that Xo is obviously as given in the claim. If r < n then apply Lemma A.l(i) to (4) for
i = r + 1,..., n. We find that there exists a real positive stabilizing solution xi if and
only if a > (1 + 9 .)-1/2, in which case that zi is given by xi = p-290 + /32(02 +3 2)1/2.

Then there exists a positive definite stabilizing solution XOO to the HCARE if and only
if > max{1,max +.... {(1 + 2)-1/2}} = 1, as claimed. Finally, this solution Xoo
clearly is as stated in the proposition. []

A.3 Proof of Proposition 5.7

Just apply Lemma 5.1 to Proposition 5.6. Let yxoo be the infimal y such that Lem-
ma 5.1(i) holds, and let 'yy. be the infimnal y such that Lemma 5.1(ii) holds. Then 70
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is the infimal oy that exceeds max{fyxo, yy } and is such that A1{X YoYo} < 72. From
Proposition 5.6 we immediately have -yx_ = oyy. Moreover, it follows that

(I + 282)-1/2 if 01 < 0xoo{ = 1 if 81 > 0.

Using Corollary 5.8, we can solve l{XooYI } = 7 2 for y:

, = P-21 + 0-2v/2 + 'e

,, 0 = ( - p-2802)2 _ 3-4(32 + e2)

x- - = 2 0 2-2y0 - 2

The positive solution to this equation is 1 := 0l + (2 + 08)1/2. Observe that 1 >

(1 + 90)-1/2 and if 01 > 0 then a _> v/. We conclude that

ax {max{ 1 + /2+ 0,(1 + 1)-1/2:} if 01 < 0
70 mx0 - =I max{f , el+ }:{

8Y-i7Y1 V == + 2+ if 81 > 0.

which completes the proof. o

A.4 Proof of Proposition 5.15

We know from Proposition (5.10) (0, WTB, CW) is an -,,O,-balanced realization of G.
Then Gr := IBT,(G,k) = (01, WTB, CW), and for this system the HCARE and
HFARE both have solution N1 = diag(v/l,... , v). The Normalized 't-, Controller for

this plant is obtained by applying Proposition 5.4 and is given by Kr = (A, Br, Cr)
where

A, = 01 - i 2 N1 - NI(I - 7-2NJ2) -
l

Br = N1 WT CT

Cr = -BTWNl(I- _ -2N2) - 1 .

A simple state-space calculation shows that the A-matrix of 7i(G, K,) is

A:=[ C VTB A,

°1 0 -N,(I - 7-2N2)-l

0 02 0

N 0o A,

where we have used the fact that WTW = [I 0]. Because A has a certain block
structure made up of matrices that are either diagonal or zero, it is ill fact now possible
to calculate the eigenvalues of A explicitly. One can then deduce necessary and sufficient
conditions for A to be asymptotically stable. However, this would take us too far afield,
and here it suffices to note that the set of eigenvalues of A is the union of the set of
eigenvalues of
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02 and 01 -
N1 A,

But the eigenvalues of 02 are precisely the discarded poles 0k+l,..., ,n. An immediate
consequence is that if any of these discarded poles are unstable, then so is A, and
therefore Kr does not stabilize G. O

A.5 Proof of Lemma 5.19

From the proof of Proposition 5.17(i) we know that the assumption -5 < -- k+l ensures
IIG'.KS,rrI, < 1. This guarantees the existence of (I - G'.KS,,) - . By definition

Sr- = - GKr = I - GKr - GKr = S-,l - GKr.

Hence

Sr = Srr(I - GrKr Srr)-

It follows that

Sr - Srr = Srr,(I- G'KrSrr)-lG rSrr.

It is convenient to write

(Grr) = Srr [ Gr I]+ 0O 

and similarly for 'H(G, Kr). Now we can simplify '7(G, Kr)- 'H(Gr, Kr) as follows:

(G, ,Kr) - H( Gr,Kr)

Kr [ Sr [G I ]- [ cSrr Gr I

Sr Gr + GI Srr [ GI °

K, if r
= [ K ( ](Sr- Srr)[ Gr I][ + Sr ' [ Gr °]

= [ K j Srr(I - GrKrSrr)-GrG [ KrSrrGr + I KrSrr ],

as claimed. []
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