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Abstract

Recent advances in technology indicate that autonomous vehicles and self-driving
cats in particular may become commonplace in the near future. This thesis con-
tributes to that scenario by studying the problem of depth perception based on se-
quences of camera images. We start by presenting a sensor fusion framework that
achieves state-of-the-art performance when completing depth from sparse LiDAR
measurements and a camera. Then, we study how the system performs under a
variety of modifications of the sparse input until we ultimately replace LiDAR mea-
surements with triangulations from a typical sparse visual odometry pipeline. We are
then able to achieve a small improvement over the single image baseline and chart
guidelines to assist in designing a system with even more substantial gains.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The human baseline

The human body is equipped with sensory organs that are similar to some common

robotic sensors: the eyes work in a similar manner to a stereo camera setup, the

vestibular system is not unlike an IMU and both machines and humans are able to

detect sounds waves [31]. Yet, even with the availability of radar, sonar, LiDAR and

other types of sensors, modern robotic solutions still fall short of human performance

when it comes to tasks like autonomous driving. Part of the gap can be attributed

to planning and decision making challenges, but perception is arguably the greatest

roadblock. This thesis aims at helping close the perception gap by studying how

temporal visual information, which is well studied in the context of classical computer

vision, can be integrated with recent advances in depth perception provided by neural

networks.

A popular approach in self-driving technologies involves using laser based sensors

to measure distances to the environment. These sensors provide accurate measure-

ments at thousands of points, but at significant costs, especially for the high resolution

variants ( see Table 1.1). However, they are not fundamentally necessary as humans

are able to drive without lasers or similar sensors.
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One of the mechanisms used by the human body to perceive depth information

is through its binocular vision, which can be comparably achieved by using multiple

cameras in a stereo setup. Another factor, prior knowledge about the environment, is

not as easily integrated, but plays an important role in estimating scales. For example,

a car is expected to measure a few meters in length, while buildings may assume

several meters in height with a somewhat constant expectation of a couple of meters

per level. Since that knowledge is intractably vast to be formulated analytically,

neural networks and other learning approaches are often used to try and incorporate

some prior information.

Although humans are remarkably capable in some tasks, one might wonder the

value in trying to replicate their capabilities with robotics system by limiting the

types of sensors used when the availability of other devices could allow for even

better performance. Indeed, additional sensors should be used whenever beneficial,

but humans represent a lower bound on the potential of a solution and indicate

room for improvement, even when adopting more complex approaches. Furthermore,

this baseline, however capable, is still identified as the critical reason for 94% of the

car crashes in the US 147], so any improvement provided by robotics systems would

translate into fewer accidents, not to mentions quality of life and economic benefits.

1.1.2 Towards tighter integration

From a conceptual standpoint, there is more information in a sequence of images

than a single image, so it's to be expected that using the former would yield better

results than using the latter. However, most research in depth estimation is focused

on single image analysis, which is valid on itself as a fundamental problem, but is ul-

timately limited. The works that do combine sequential images and depth estimation

often do so for the purpose of unsupervised training, to provide scale or initialization

to monocular odometry, rarely to enhance how distances are estimated.

Another popular source of depth information is stereo vision, which is a valuable

information in itself, but we argue that it's not a complete replacement to temporally

related image data. Besides increased hardware costs, the range of stereo is limited by

14



a fixed setup baseline distance, while landmark triangulation can work with a much

larger baselines as long as there is sufficient movement and successful tracking.

1.1.3 Affordability

Equipping a vehicle with LiDAR, however beneficial, can be very costly. Table 1.1

[59] compares different products offered by Velodyne, which are commonly used in

robotics experiments, including a dataset used in this work. New technologies and

savings by scale may reduce the actual costs in a production environment, but it's

likely that the traditional bulky and high-resolution rotating scanner will be replaced

by alternate solutions (e.g. solid state LiDAR ) that have reduced sensing capabilities

and thus the necessity of sensor fusion becomes even greater.

Table 1.1: Comparison of different LiDAR products offered by Velodyne.
Product Scanlines Power (W) Price ($)

HDL-64 64 60 75,000
HDL-32 32 12 30,000
VLP-16 16 8 8,000

1.2 Overview

Chapter 2 is dedicated to studying the problem of estimating depth from colored

images and in potential combination with other sensors such as LiDAR and stereo

cameras with the help of neural networks.

The third chapter presents aspects of visual odometry and robot localization.

The contents from the previous chapter is integrated in chapter 4, which aims at

using the neural network based depth completion in tandem with localization and

mapping.

Future directions and concluding remarks are introduced in chapter 5.
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Chapter 2

Neural networks for autonomy and

depth perception

2.1 Introduction

In this chapter we are going to discuss some of uses of neural networks for depth

perception in the context of autonomous vehicles. This problem fits into a larger

context of navigation as estimating distances is intimately linked to the processing of

mapping and localization, but it's also associated with other tasks such as semantic

labeling [28].

After providing a basic understanding of neural networks, we will explore related

articles in the literature and then present the base architecture used for other chapter

of this work. This neural network and related experiments were published in [32]

and part of those are reproduced in this thesis. The first set of results is related

to the network itself, which achieved state-of-the-art results on a depth completion

challenge, while other discussions involve ablation studies. Finally, we explore the

effects of having different distributions of sparse inputs: by reducing the number of

scanlines in the LiDAR sensor and by using random sampling, an analysis strongly

motivated by practical interests of self-driving cars.
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2.2 Background

2.2.1 Neural networks

The study of artificial neural networks dates back to 1943 [34] and since then

their popularity in academia has oscillated considerably. In 2012, the works of [24]

have attracted attention back to the field as they were able to surpass ever other

method in the ImageNet ILSRVC-2012 competition by a large margin using neural

networks. More precisely, they were able to reduce the top-5 error rate for an image

classification task from 26.2% to 15.3%. In the following years, a considerable amount

of research effort was dedicated to such techniques and currently neural networks

achieve impressive results in other domains such as natural language processing and

computer games [35].

For the purpose of this dissertation, we are going to focus on computer vision

applications and on modern considerations. An artificial neural network (sometimes

simply referred to as "neural network") is an arrangement of mathematical operations

centered on the notion of a "neuron", which is often a simple scalar function of a single

variable (f : R -+ R). Layers are a combination of a linear transformations to a multi-

dimensional signal followed by an element-wise application of the neuron nonlinearity.

Mathematically, given an input signal xi E R', a weight matrix Mi E RZxR and

bias vector b E Rjn defining a linear transformation, the output yi+i of the layer i is

given by

zi = Wii + bi (2.1)

yi = f(zi) (2.2)

where some common choices for f are the rectified linear unit (f(x) x if x > 0 and

f(x) = 0 otherwise, also known as ReLU), the sigmoid (f(x) = )

The weights and biases are often determined by stochastic gradient descent op-

timization (or variants such as ADAM [23]), or by evolutionary strategies [39][49],

although the latter is more common in reinforcement learning settings and when
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differentiability is an issue, while the former is predominant for supervised image

processing problems. For many tasks, the best performing networks require several

layers and a considerable amount of data, so the learning of weights is of central

importance. The ImageNet dataset, for example, a common source of data for image

classification, contains millions of high-resolution images [8] and some popular net-

work architectures have more than a hundred layers [18]. These extra considerations

motivate the use of the term "deep learning" and "deep neural networks".

In the most simple situation, the input xj+1 to the next layer is yi, but it's some-

times advantageous to combine other operations to compose this input. A very pop-

ular construct is the residual connection [18], originally given by replacing zi+2 with

zi+2 + X 2 when the dimensions are appropriate. Other works [19] suggest variations,

like settings Yi+2 as Yi+2 + Xi instead in order to preserve a path of identity mapping.

A proper understanding of when and why these techniques are helpful is still a topic

of active research, but common hypothesis suggests that these connections provide

better starting points and allow for easier conditions for learning as they provide

shortcuts for information and gradient information to flow.

Another important tool to facilitate learning is given by batch normalization [20],

which involves normalizing intermediary values along the network. During train-

ing, this is done by using batch statistics ( that is, mean and standard deviation

information along groups of training samples), while during evaluation fixed learned

parameters are used. This difference in behavior should be negligible when batch sizes

are large, but can be considerable otherwise. When only small batch sizes are possible

(which is the case of this work, considering the necessity for high image resolution),

one can try alternatives like instance normalization [52]. However, even though these

techniques became widely popular and demonstrated effectiveness under a variety of

situations, the reason for their success is still a topic of research [40].

For tasks related to image processing, the weights used in Equation 2.1 usually take

a special form given by spatial convolutions with small kernels, a strategy motivated

by the fact that in natural images information that is close in the spatial domain is

correlated. Mathematically, given a 3D tensor X with dimensions (h, w, c) and the
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4D convolution kernel K of dimensions (km, ky, c, d), the output Y of the convolution

is a 3D tensor given by (h, w, d)

Y(i, j, k) = E K(dx, dy, dc)X(i + dxsx, j + dysy, de, k) (2.3)
d,, dy, d,

where the values of X are usually extended beyond its original domain by means of

padding and some sort of spatial shifting is also applied, and sx and sy represent

strides. Quite often, the kernel is rectangular (kx = ky = ki) and of odd length, such

that the shifting operation becomes simplified to the center of k1. Other common

practices involves small kernel sizes (e.g. ki = 3) and a number of filters that is a

power of 2, both practices motivated by practical considerations.

A complementary operation is the deconvolution or more aptly named the trans-

posed convolution. A regular convolution will result in reductions of the spatial

dimensions when the strides are larger than unity, so the transposed convolution is

often used to expand and up-sample instead. This is achieved by expanding the

original data into a larger a matrix and filling intermediary and border values with

0. Note that with appropriate parameters and weights one can reproduce bilinear

up-sampling and that's a common initialization procedure. The interested reader is

referred to [10] for more details.

2.2.2 depth perception

Computing distances between objects is an important step for autonomous vehicles

or for other robotics applications as it can potentially be beneficial to localization,

collision avoidance, object detection and related tasks. Depth measurements fall into

such category as they capture the distance from a sensor to other objects.

Some sensors are able compute distances directly, but no solution is complete

enough to cover some common requirements. Structured light sensors require an

active energy source and have limited range; LiDAR sensor are bulky, expensive

and only produce sparse measurements; stereo vision requires disparity, is limited
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in range and is not very accurate. Consequently, it's common to fuse measurements

from different sensor modalities to complement their weaknesses. Besides these direct

measurements, one can also extract information indirectly from other devices, like

cameras.

The problem of inferring depth from a single camera image is know as depth

estimation. That's a challenging problem as it's ill-posed and in general a camera

image could have an arbitrary depth associated with it. However, in practice we are

mostly interested with the types of images one finds the real world and thus some sort

for regularity is assumed: for instance, we expect a cars to have dimensions close to a

few meters and assume certain specific shape. This allows the use of neural networks

or other techniques in order to attempt learning these regularities.

A similar problem is the so called depth completion, which is composed of inter-

polating depth measurements in a dense setting given sparse information. Sometimes

the task is complemented with camera images, which is a reasonable approach since

in practice many robotics system are already equipped with cameras.

Common choices for studying this problem include the NYU Depth dataset [46]

and the KITTI depth completion and depth prediction dataset [51]. The first one

is composed of indoors scenes with associated camera and structured light sensor

measurements, while the second one contains a multi-camera setup, a 64 scan line Li-

DAR and the ground truth is computed by fusing information at several timestamps.

Other options include the indoor 3D scene reconstructions provided by ScanNet [7]

or outdoors scenes available in the Make3D dataset [42].

2.3 Related work

Depth prediction, the problem of estimating depth from a single image, started

with works such as [41], that used handcrafted features and Markov Random Fields.

More recent works make use of deep learning techniques [11] and also explore unsu-

pervised learning in order to avoid costly dataset generation procedures [63]. .

Depth completion is a more generic denomination that usually involves completing
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missing entries in a depth map, but we are interested in the problem of recovering

depth in the presence of highly sparse samples and a camera image. Works like

[33], for example, apply neural networks to complete sparse depth measurements on

both on outdoor and indoor situations, while [] encodes images with wavelets and

contourlets in order to generate depth map reconstructions.

2.4 Proposed method

2.4.1 Architecture

We present a neural network architecture to tackle to problem of depth com-

pletion under two variants: using only a set of sparse depth measurements or also

using a color image. The proposed solution is a fully convolutional neural network

[30] illustrated in Figure 2-1, is inspired by [37] and is an evolution of [33]. It can

be decomposed into an encoder and a decoder part, where the first section of the

encoder merges different sensor modalities (when they are available). This fusion is

accomplished by an independent set of convolutions prior to a filter concatenation, an

approach that was adopted given that both inputs have widely different distribution.

Following that, a set of residual blocks is applied using the structure of a ResNet-

34 [18] with 64 filters in the first one, which allows the potential use of pretrained

parameters. Afterwards, a sequence of transposed convolutions is applied to recover

spatial resolution in conjunction with skip connections to allow for the flow of finer

details from earlier parts. Finally, the filters are collapsed into a single channel by

1 x 1 convolutions to generate predictions. During training, dropout can be applied

before that layer and during inference a post processing is applied to clamp distances

above a minimal threshold. Following standard practices, we use ReLU nonlinearities

and batch normalization.

The described architecture is slightly modified when only the sparse depth is

available: the operations exclusive to the camera input are removed and the number

of filters of the other branch are adjusted accordingly. We also reduce the number of
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Figure 2-1: Our deep regression network for depth completion, with both sparse depth
and RGB as input. Skip connections are denoted by dashed lines and circles represent
concatenation of channels.

channels by a half, as explored in the ablation study in subsection 2.5.2.

2.4.2 training strategy

We train the network in a supervised fashion using the L2 loss over all points for

which there is a ground truth. In other words, the it's defined by considering all valid

points of the image together as opposed to an alternative based on the average of the

error per a single image. Explicitly ,let B be B = 1, 2, .. ., b with b the batch size and

I = Ii, I2 ,,' the set of valid points for each image, we have the used L2 loss as

Lints - 1 S (jred - true'2 (2.4)
ZkEB kEB iIk

while another reasonable alternative would be

2~ng =B kE 1JkJ z~g (yiPred -yr)
2(2.5)

kEB iE~k

The difference is subtle, but noticeable in terms of performance. Conceptually, one

could argue that each labeled point holds the same amount of information regardless

of the amount of valid sample in their respective image.

We briefly mention that he proposed solution is also effective in the absence of

ground truth by using self-supervision, as is explored in [32]. Namely, the photometric

loss between a pair of adjacent images projected into the same frame can be used as a

training signal and, if available, LiDAR measurements also provide additional helpful

information if one takes it as a ground truth (despite being sparser and potentially
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incorrect at some points due to reflection and other sensor issues). Additionally,

smoothness losses can also be considered.

2.5 Experiments

We evaluate the proposed method mainly on the KITTI dataset, which has an

associated depth completion challenge that allows for a rigorous comparison between

different methods. An illustration of input, ground truth and predictions is given in

Figure 2-2. There are 85897 images from 138 sequences in the training set, 6852 from

13 sequences in the validation (but we use a provided selection of 1000 images from

that set) and another 1000 test images whose associated ground truth is not publicly

available, but who can be evaluated in an external server a limited number of times.

In consequence, for additional experiments we freeze hyperparameters and use the

validation set as reference.

(a) raw LiDAR scans

(c) semi-dense annotation (d) dense prediction

(e) dense prediction (as point cloud)

Figure 2-2: Illustration of the developed deep regressional network for depth comple-

tion.
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The method was also evaluated on the NYU dataset [46] for completeness and

was shown to also perform adequately, as presented inAppendix A. This is done to

assess the generality of the method as we argue that the KITTI dataset is a superior

choice, at least for the interest of this work. Firstly, the labeling procedure of the

outdoor dataset involves outlier rejection and sensor fusion, while the indoor one uses

raw measurements. Secondly, there is no consistent test procedure to allow for a

rigorous comparison between different methods, as authors use different resolutions,

number of points and the stochastic nature of random sampling causes inputs to be

different. Finally, the maximum range of 5m for the Kinect sensor is not respected

as measurements exceeding 9.5m are used, while a rigorous analysis of the error

suggests it grows quadratically and recommends the use of 3m as a maximum range

for mapping applications [22].

Training is performed in a DGX-1 with a batch size of 8 and using the ADAM

optimizer [23] for 20 epochs, a process that takes less than a day. The learning rate

starts at le- 5 and is decayed by a factor of 10 every 5 epochs. Random horizontal

flipping is used and in the presence of camera images a small color jitter is added.

Additionally, the topmost regions are cropped out (since they practically do not

contains points with know or valid depths) to reach the final resolution of 1216 x 352,

which is the same as the one used for the validation and test sets.

2.5.1 Depth completion challenge

The results of the proposed method with and without the help of a color image (re-

spectively indicated as d and RGBd) are displayed in Table 2.1 (at time of first related

publication) and in Table 2.2 (most recent results). Further illustration is provided in

Appendix A. At the time of submission and for more than 6 months afterwards, our

neural network achieved the top result in the ranking, including unpublished results,

thus reaching state-of-the-art and demonstrating its effectiveness.

As evaluation metric the root mean square error (RMSE) is used as ranking metric

for the competition and is also our main criteria for comparison. In this case, the

error is taken per image and not considering the whole set of points, unlike the L 2
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Table 2.1: Comparison against state-of-the-art algorithms on the test set at time of

first publication.
Method Input RMSE [mm] MAE [mm] iRMSE [1/km] iMAE [1/km]

NadarayaW [51] d 1852.60 416.77 6.34 1.84
SparseConvs [51] d 1601.33 481.27 4.94 1.78

ADNN [6] d 1325.37 439.48 59.39 3.19
IP-Basic [25] d 1288.46 302.60 3.78 1.29

NConv-CNN [13] d 1268.22 360.28 4.67 1.52
NN+CNN2 [51] d 1208.87 317.76 12.80 1.43

Ours-d d 954.36 288.64 3.21 1.35
SGDU [44] RGBd 2312.57 605.47 7.38 2.05
Ours-RGBd RGBd 814.73 249.95 2.80 1.21

Table 2.2: Updated comparison against state-of-the-art algorithms on the test set.
Method li Input FRMSE [mm] MAE [mm] I iRMSE [1/km] iMAE [1/km]

Spade-sD [21] d 1035.29 248.32 2.60 0.98
Ours-d d 954.36 288.64 3.21 1.35

Morph-Net [9] RGBd 1045.45 310.49 3.84 1.57
Spade-RGBsD [21] RGBd 917.64 234.81 2.17 0.95

NConv-CNN-L1 [12] RGBd 859.22 207.77 2.52 0.92
NConv-CNN-L2 [12] RGBd 829.98 233.26 2.60 1.03

Ours-RGBd RGBd 814.73 249.95 2.8 1.21

loss used in training, as is discussed in subsection 2.4.2. Other metrics, however,

are also insightful as they prioritize different aspects of the problem and ultimately

there is no clear choice for the best one. For instance, errors such as the inverse root

mean square error (iRMSE) prioritizes nearby points, which may be more relevant

due to their proximity, but one could also argue that distant points are more useful

for planning and that other approaches (such as stereo and radio) are already effective

at close range. To deal with these issues, 12] suggests a different parametrization of

depth coined proximity, which is given by

a
p=d+ a

(2.6)

where a is a some normalization factor (e.g. the average) for the depth d, thus

retaining characteristics of both regular depth and inverse depth, though there is no

systematic study of the consequence of using such approach.
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2.5.2 Ablation study

To better understand the importance of the proposed components and associated

design flexibility, we perform an ablation study by comparing the network perfor-

mance under different modifications around the proposed baseline, as displayed in

Table 2.3. Note that one must take into account the stochastic nature of any such

experiment and the computational limitations that hinder additional statistical anal-

yses.

Table 2.3: Ablation study
indicate the same value as

of the network architecture for depth input. Empty cells
the first row of each section.

The results indicate that a considerable margin for architecture modifications that

would still allow for reasonable performance. Most notably, the reduction in the num-

ber of filters by a half (which nominally reduces computational requirements by four

times) does not drastically affect prediction quality, a result that motivates simpli-

fications for other experiments in this dissertation. Other remarkable observations
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fusion ResNet with reduced pre- N2 down- drput rmse
split depth skip filters trained pairs sample deay I[mm]

decay

None - L2  34 Yes 2x (F1=32) No 5 No No 991.35
L, i1170.58

18 1003.78
No 1060.64

Ix (F =64) 992.663
1x (F1=64) Yes 1058.218
4x (F1 =16) 1015.204

4 996.024
3 1005.935

Yes 1045.062
Yes 1002.431

Gray 16/48 L 2  34 Yes Ix (F1 =64) No 5 No Yes 856.754
RGB 859.528

32/32 868.969
18 875.477

No 1070.789
8/24 2x (F1=32) 887.472

4 857.154
3 857.448

Yes 859.528



include the superiority of the L2 loss over the L1 one (unlike some previous findings

[33]), the ineffectiveness of dropout and weight decay and robustness to the reduction

of encoder-decoder pairs. Assigning more filters to the image branch is conjectured to

be beneficial because features from natural images are harder to process and under-

stand in comparison to LiDAR to measurements, which directly represent the desired

quantity.

2.5.3 Sparse input distribution

Although the baseline LiDAR sensor data provided in the KITTI dataset contains

64 lines, such a setup might not be desirable in terms of hardware cost, so it becomes

attractive to explore how the sensor fusion is affected by the number of laser measure-

ments of the sensor, which is correlated to its price. We then process the raw sensor

data in order to identify said scanlines (they are not differentiated beforehand) and

discard some of them in order to emulate the output of lower resolution sensors, even

exploring configurations not commonly used, such as a single line scanner. Addition-

ally, we also downsample depth measurements by uniformly randomly sampling them

for comparison purposes.

The scanline identification was done based on computed angles of the points with

respect to the horizontal plane and their assumed sequential nature in the raw data

due to the device's operating principle. We note that the x and y coordinates in

the projected camera image are not convenient features to identify each line as these

values are also dependent on the measured depth and other factors, so grouping

becomes harder, and that this approach is simpler than separating the scanlines from

the depth images for similar reasons. These issues are illustrated in Figure A-1, where

several artifacts appear on what should ideally be a set of horizontal lines. Finally,

the selection of which lines are to be used aimed at retaining symmetry around the

middle one .

In sequence, movement compensation is added and the measurements are pro-

jected into camera frame. The resulting reference images match the original ones

from the KITTI depth dataset ( whose generating code is not publicly available) with
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the exception of a few occasional points off by a pixel and consequently we take the

original coordinates and depth if they are close (i.e. at most a pixel off in x or y)

to the generated reference image in order to get the final downsampled depth image.

An illustration of the final result is given in Figure 2-3. Note that for the dataset

the line sampling is expected to contain more points since the topmost regions of the

image often contain fewer samples due to the geometry of the scenes, so the center

and bottom lines contain more points than the average of roughly 300 points.

Figure 2-3: Illustration of the two types of downsampled sparse depth image

The network is trained for downsampling factors of 2, 4, 8, 16, 32 and 64 (down

to a single scanline) and the results are displayed in logarithm scale in Figure 2-4.

The superiority of uniformly random sampling is evident, despite that fact that it
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contains slightly fewer points, which suggests that ensuring a well distributed center

might be more beneficial than simply adding more samples, an act that is shown to

have diminishing returns given the apparent linearity of the four plots in the graph (

thus indicating a monomial trend). This trend is slightly off for for the full resolutions

case in comparison with scanline downsampling, a result that we attribute to the fact

that the hyperparameter optimization was performed for the former case and due to

potentially discarding additional points when downsampling. The benefit of a camera

is also clear, most specially as the density of the sparse samples is reduced and also

considering their relative low prices in comparison to LiDAR systems.
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3000
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5U)O

1 2 4 8 16 32 64
(1/64x) (1/32x) (1/16x) (1/8x) (1/4x) (1/2x) (full)

Number of Scan Lines
(or corresponding fraction of measurements selected uniformly randomly)

Figure 2-4: Prediction error against number of input sparse depth samples for both
types of distributions (uniform random sampling and LiDAR scan lines selection) and
both with and without camera images
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Chapter 3

Visual Inertial Odometry

Considerations

3.1 Introduction

In this chapter we are going to discuss some of the most common methods for

visual inertial odometry (VIO) and simultaneous localization and mapping (SLAM)

before they can be integrated with depth estimation approaches. The goal is not

to provide a comprehensive overview of the topic, but to outline aspects that are of

interest for the rest of this thesis and introduce aspects of the solution used.

3.2 Background

3.2.1 Problem formulation

One of the most fundamental tasks for a robotic system is to estimate its internal

states based on sensor information. This is often done while also generating a map

of the environment, even when that is not explicitly necessary, as sensor readings

commonly depend on both. The extent upon which the map is used (by, for instance,

performing loop closure and ensuring global consistency) sets apart VIO and SLAM,

but this difference is of little importance to this dissertation, so we drop the distinction
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between the two. A more comprehensive analysis of SLAM algorithms is given by [31,

which incidentally argues that visual-inertial navigation can be seen as a "reduced"

SLAM and is also the main reference for this chapter.

Mathematically, let Xk and Zk be the systems states and the measurements, re-

spectively, at time k, which also determine the sets X and Z. The goal of SLAM

in a maximum a posteriori formulation is to find estimates of the states X =x by

finding the most likely states given the measurements, which translates to

X = argmaxx P(XIZ) =argmaxx P(ZIX)P(X) (3.1)

where P(X) encodes prior knowledge about X and P(ZIX) encodes the probability of

the measurements over the states, which assume a noisy observation function given

by zk = hk(X) + ek, for some random noise ek and observation model hk. Under

appropriate conditions, the problem turns into a nonlinear least square minimization

of the form

X = argminx Z pk(hk(X) - zk)2 (3.2)
k

where Pk is a cost function that depends on noise assumptions (e.g. under gaussian

noise it becomes a quadratic norm whose weight depends on the inverse of the noise

covariance matrix). Solutions are often found with the use of successive linearization

procedure such as Levenberg-Marquardt or Gauss-Newton.

It is convenient to reformulate the problem in a graphical model known as factor

graph [29], which allows for a generic and easy to visualize formulation. It also

facilitates the use of message passing algorithms such as the sum-product algorithm

in order to infer marginal distributions or other quantities of interest.

3.2.2 Practical considerations

For the interest of robotics systems, it's common for SLAM problems to involve

locally connected and sparse factor graphs. Intuitively, a vehicle traveling through
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an environment will only detect a fraction of the available landmarks and in under

sufficiently small displacements a feature that is visualized at time t will also be

visible at nearby times, but not along the whole trajectory. This allows for improved

computational efficiency as fast and memory-efficient sparse solvers can be employed

and also facilities incremental solutions, both important considerations for online

operation.

Another practical aspect particularly important in visual systems is the potential

necessity to extract important feature or adopt other strategies for intractably large

or difficult to model measurements. Cameras can typically have hundreds of thou-

sands of pixels per frame and analytically relating these values to a compact state

representation may not be feasible. Although not impossible to do it [48], it's common

to instead use a small relevant subset of measurements by selecting corners, lines (

or other "features") or some other sampling strategy in order to facilitate associating

measurements to landmark locations and states. This part of the processes is called

the front-end, while the factor graph optimization is denominated the front-end.

There are many variations in front-end systems, but [14] classifies them according

to two properties: sparse versus dense and direct versus indirect. Direct approaches

work on the intensity values as opposed to using derived information such as feature

positions and their associated geometric errors. As such, they can potentially be

more precise by taking into account information from featureless regions, but they

are usually more brittle and sensitive to calibration. The other category, as the

name suggests, refers to the number of points used and consequently involve different

assumptions: dense method work with large connected regions and thus tend to favor

smoothness, while sparse method select a subset of points without the neighborhood

considerations. It's worth noting that a method can fall into any combination of

categories and can be an hybrid solution that involves, for example, both indirect

and direct approaches [15].
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3.3 Implementation and acknowledgment

The framework used on this thesis is an indirect sparse odometry solution based

on tracking "good features to track" points [45] across frames and optimizing them

in a small window using GTSAM . It was already used successfully in a real-time

embedded VIO setting [431 and was adapted to work on the used datasets and in the

absence of inertial measurements with major assistance from Varun Murali. We note

that the number of RANSAC iterations was set to a large value to compensate for

the loss of pose priors given by a gyroscope.
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Chapter 4

Fusing temporal information with

depth

This chapter is dedicated to the discussion of results pertaining the use of VIO

triangulations as a source of sparse depth measurements from temporal information

to allow for neural network assisted depth completion.

Some experiments will be performed as a comparative analysis with LiDAR points

by trying to isolate the characteristics that are most helpful in each sensor. Properties

such as scale, distribution and range will be taken into account and finally the method

will be applied with actual visual odometry data.

4.1 Related work

The problem of extracting useful information from a set of images is a central topic

in computer vision and appears on a variety of situations that can't be comprehensibly

analyzed in this thesis. Multi-view stereo, structure from motion and SLAM are all

problems that end up computing some notion of distance from an observer to the

environment, although not always as a central quantity of interest. Regardless, these

methods provide useful guidance as the computation of depth is related to other

quantities such as camera poses and optical flow.

Combining visual odometry and depth prediction is a recent endeavor in the aca-
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demic literature, although several works focus only on how depth prediction can

improve SLAM and not the opposite. The works of [60] attempt to improve existing

monocular direct sparse odometry approaches, which are sensitive to initialization

and (as any purely monocular VO) is ambiguous in scale. This is done by using a

neural network to generate virtual disparity maps and then utilizing them in a stereo

odometry pipeline. The resulting algorithm is then potentially able to provide a

learned scale and improved stability in comparison to the original DSO (direct sparse

odometry) formulation [14]. The authors of [50] also combine depth prediction and

monocular SLAM to achieve better 3D reconstruction and semantic labeling in indoor

scenes, which allows them to illustrate the stability of depth prediction under purely

rotational motion, a challenging situation for monocular odometry. Following a more

end-to-end approach, [61] replaces the conventional geometric odometry approaches

with a neural network for depth prediction, another for flow computation and another

to combine depth and optical flow to generate pose estimates and create dense 3d

maps, thus fusing the depth maps after they were predicted independently.

Perhaps one of the first works to successfully use information from more than a

single image as input to a neural network to compute depth is [53], where several

networks are used to computed depth and egomotion from a pair of images with an

intermediate computation of optical flow. These auxiliary values seem necessary to

integrate multi-view information as the trivial approach of concatenating images as

input to a neural networks was reported as ineffective by [63]. A similarly end-to-end

solution is presented in [62], that makes use of virtual keyframe generation and a

series of different networks to achieve both tracking and depth map generation. They

also combine images with a cost volume computed from several frames in an iterative

application of a refinement network. Cost volumes are also used with neural networks

and a geometric regularization scheme by [55] to combine multi-frame information into

depth maps.

Another study [4] tries to combine sparse depth measurements with camera in-

formation by using edge-preserving filters, thus avoiding the necessity of training a

neural network. Their analysis on KITTI is actually solely based on subsampling
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LiDAR depth maps either uniformly randmomly or selecting them based on feature

points ( and as such is more closely related to the problem of depth completion),

while temporal information is only used for data collected indoors by the authors

and for which groundtruth is available through a stereo setup, so direct comparison

is not straightforward. Nevertheless, from an algorithm standpoint, they also explore

the use of sparse VIO points to obtain dense depth, although their SLAM pipeline

already produces dense representations [27].

Long Short-Term Memory units are used by [56] as an alternative to handle tem-

poral data and achieve improved depth estimation and pose prediction in challenging

situations. These recurrent solutions are not as common when depth is of interest,

but recent works are exploring RNN for visual odometry [57]. Although these types

of networks are designed to work with temporal data, it's not clear whether recurrent

networks are superior to simple convolutional ones (at least in sequence modeling

tasks) [1], so further exploration is required.

An approach based on variational auto encoders is explored in [2], in which fea-

tures are extracted from an image and are fed into the decoder part of an auto

encoder, alongside a small encoding vector. The multi-view coupling is given by the

fact that the code is optimized by a costly structure from motion 'minimization frame-

work based on photometric and geometric minimization. One remarkable insight from

their work is that a small code size (they use a vector with 128 elements) is enough

to capture information to significantly improve the otherwise single image depth pre-

diction network, suggesting that not a lot of information needs to be transferred from

one frame to the other.

A different type of integration is given by [63] or [54], where the goal of odometry

is to provide correspondences between frames and thus allow unsupervised training

through the minimization of photometric or other type of losses. The inherent lack

of scale still needs to be compensated by other methods, potentially with additional

sensors. Although we focus on supervised training for this chapter, it's worth men-

tioning such results as they provide further motivation to integrate odometry and pose

estimation into depth estimation, even when there is no explicit need for localization.
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4.2 Attributes of triangulated points

In order to compare the sparse depth points computed by VIO with the ones mea-

sured from other sources (e.g. from a LiDAR sensor), it's important to characterize

in how they differ, so we can properly define relevant experiments.

" scale

Due to the inherent scale ambiguity of purely visual odometric methods, their

associated sparse depth measurements are only correct up to a constant factor.

In general this deficiency is not present in other sensors and can be circumvented

in practice by the addition of inertial sensors or of a stereo setup. Nevertheless,

some datasets do not have such information available and so we also explore

whether unscaled sparse points can provide useful information. Note that that's

not an error or uncertainty, but an inherent characteristic of the sensor.

" spatial distribution

Triangulated points usually come from locations with features, especially for

indirect methods, and thus its spatial distribution is largely dependent on the

environment. LiDAR sensors have a more characteristic distribution of points

based on separate scan-lines.

" quantity

The number of sparse depth measurements clearly affects the difficulty of the

problem. The previous chapter already analyzed the effects of reducing the num-

ber of LiDAR scan-lines, as denser sensors can be drastically more expensive,

but have diminishing returns. Indirect visual tracking methods are more lim-

ited in the sense that they rely on existence of salient features on view and can

usually only triangulate a few hundred of those. Direct methods are potentially

advantageous since they may track more points and can work on feature-less

regions, but contains other drawbacks, such as requiring additional calibration

and lacking the same robustness [14].
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* consistency

A metric that is related to quantity, consistency measures the deviations in the

number of measurements with relation to a nominal value. This is specially

relevant when using odometric measurements as the number of tracked points

depends heavily on the environment and tends to drop between each keyframe

(when new features are added, depending on the method).

" observability

In order to properly triangulate a landmark, it needs to be visible for several

frames and ( due to how SLAM algorithms are usually designed) also needs

to be static. These limitations can be relevant in some applications as moving

objects may require more precise estimation (e.g. another car in a driving a

scenario). Other observability considerations also apply to different sensors as

for example certain absorptive or transparent surfaces prevent laser correct laser

or sonar measurements.

" range:

Both maximal and minimal range define the envelope for which a sensor mea-

surement is valid. In general, for VIO it's typical to triangulate points that

are close since they have more disparity and including far away points requires

introducing long term dependencies, which turns the triangulate more compu-

tationally demanding, besides requiring to track the same feature for longer.

4.3 Proposed approach

In order to combine both depth completion and visual odometry, we use the neural

network developed in chapter 2 in combination with an indirect visual odometry

pipeline chapter 3. The triangulated positions of landmarks are transformed into a

sparse depth map and used as inputs to the neural network, which then combines

that information with camera images.
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The used neural network is based on the one presented section 2.4, which achieved

state-of-art results on the KITTI depth completion challenge, and was slightly mod-

ified to reduce computational requirements given that the ablation studies indicate

that such modifications are expected to have minimal effect. Namely, the number of

filters was reduced by a half.

For the purpose of isolating the effects of different attributes of the sparse mea-

surements, we also perform different experiments where the sparse measurements are

instead taken from another source, such as a real or simulated LiDAR or where some

transformation is applied to these points, such as normalizing them with the intent

of removing their scale.

4.4 Experiments

4.4.1 Datasets

We use both KITTI [17] and Synthia [38] datasets to evaluate the proposed meth-

ods. The first one is a real dataset widely used in the contexts of odometry, depth

completion and depth estimation, although rarely combining more than one modality.

The second is a synthetic dataset that allows the circumvention of several issues of

the former. Namely, its ground truth is completely dense and is not biased towards

the values that can be computed sensor post-processing technique proposed by the

dataset authors. To have a similar comparison, we limit the maximum and minimum

depth in the synthetic dataset to 2m and 90m respectively based on data from the

real one.

With respect to the KITTI dataset, we use two different splits and ground truths.

The older split was proposed in [11] and is often referred to as the Eigen split in

reference to its author, while the newer one comes from [51] and is most commonly

associated with depth completion and depth prediction challenges. We will refer to

former as the "old" split and the latter as the "new" one, a complication that is

necessary since the older split is more commonly used, but the other one contains
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more data and has a denser and more precise ground truth, since it was generated by

combining information from several sensors at different times.

4.4.2 Lack of scale and normalization

On a purely monocular visual odometry problem, the choice of scale is inherent

ambiguous, which in practical terms indicate that that any triangulation in such

settings (when it's not an outlier or other erroneous results) will only be correct up

to a constant multiplicative factor. That is, if the triangulated depths in frame j are

di D,, then the correct values di are such that di = Ai for some unknown VQ.

Depending on the choice of normalization, it's possible to have A= A as a constant

for a givens sequence.

To the best of the author's knowledge, the problem of integrating this scaleless

information into a neural network for depth completion has not been addressed in

the literature. To explore this question, we suggest different normalization schemes

and compare them with correctly-scaled data. They all follow a simple structure

~ d - M(D)
di = (4.1)

where M(D) and N(D) are respectively a mean and a norm dependent on the nor-

malization scheme. We note that this is only applied sparsely to the points with

known depth, so it's similar to instance norm [52], except that it's sparse and differ-

ent strategies are used. Additionally, no batch or instance norm is applied after the

first convolution, since the data is already normalized. The results are in Table 4.1.

We note that this problem is mostly present due to the lack of inertial information

in commonly used datasets and that such inexpensive device would greatly simplify

the problem both with the recovery of scale and as a source of initialization for the

pose optimization.

There is a slight decrease in performance for all schemes in comparison to using

the correct scale. These results indicate that even when scale is unknown it's still

possible to take advantage of the available information to improve depth perception.
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Figure 4-1: Illustration on Synthia dataset.
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Table 4.1: Comparison of different sparse normalizations schemes.
Strategy RMSE [mm] M(D) N(D)

none ( true) 887 -
med 1071 0 median(D)
nrm 1025 mean(D) std(D-mean(D))
max 937 0 max(D)

It's also worth mentioning that the distribution of sparse points in this case ( coming

from a LiDAR sensor ) is relatively uniform and consistent and as such it's possible

that network is in practice learning to undo the normalization given some typical

expected values. For instance, in the case of the "max" normalization, if most frames

contain at least a single point with depth close to the maximum range dmax, mul-

tiplying that normalized measurements di by dmax would approximately recover the

true scale. However, the existence of outliers and a less uniform distribution may hin-

der such approaches for different sources of information. Consequently, we attempt

to use both the "nrm" and the "max" normalization. We also report that results

failed to generalize correctly when a naive batch normalization was applied, which

is to be expected since in the used encoding the null value indicates invalid depth

measurements and not the actual value of zero.

4.4.3 Range

One important question when it comes to characterizing the difference between

LiDAR measurements and triangulated points is their typical range. Depth can only

be perceived if there is enough baseline motion to cause disparity, so although it's pos-

sible to triangulate faraway points given enough movement, this is will only happen

if tracking is performed correctly along several frames and even so it may compli-

cated the underlying optimization problem by adding long-range dependencies be-

tween frames. A distinction between close and far points is made in [36], where it's

argued that the former are more beneficial to translation and scale information, while

the latter contribute mostly to orientation estimation.

In light of these considerations, we performed experiments on the KITTI dataset
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using two different proposed splits and constraining the sparse inputs (but not the

ground truth) to contain either only close points (d < 20) or far points (d > 20). The

sparse points were uniformly randomly sampled from the LiDAR input in order to

obtain a 64 times downsampling factor or 300 points on average. The results are in

Table 4.2

Table 4.2: Analysis of the effect of maximum and minimum range.
Split Distance RMSE MAE [iRMSE iMAE silog

New Close 2975 1188 7.174 3.94 9.3
New Far 2411 1195 11.78 6.83 11.1
Old Close 2070 991 10.26 5.22 8.8
Old Far 2116 1126 13.71 7.39 11.01
Old All 1976 926 10.77 5.34 8.5

The values indicate that for the specific network evaluated the relative importance

of close or faraway points is not entirely conclusive as each one split indicate larger

error for close points, while the other indicates the opposite ( in terms of RMSE).

Additionally, as would be expected metrics that prioritize closer points are improved

when close sparse measurements are provided.

4.4.4 Depth at feature points

In order to gauge the effects of having samples in a distribution similar to a typical

VO pipeline, we perform comparison experiments using depth points sampled from

feature points, most specifically using the Good Features To Track (GFTT) approach

145]. For the Synthia dataset, these features are extracted from the colored image and

the depth values are taken from the groundtruth, while for the KITTI dataset both

the features and depth are extracted from the groundtuth, since it's sparse and some

regions do not have any truth values nearby (so we refer to it in quote symbols). For

the purpose of experiments, the features have a minimum distance of 10 pixels and a

quality factor of le -- 3, which effectively causes the total number of detected features

to not be exactly the number of requested ones.

The results from Table 4.3 point to the fact that if the number of features used
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Table 4.3: Comparison of different sparse measurement distributions
Dataset Images Features Norm. [RMSE [min

Synthia RGB - - 4179
Synthia Gray - - 4283
Synthia Gray 200 GFTT - 3815
Synthia Gray 200 GFTT max 4144
Synthia Gray 2000 GFTT - 3000
KITTI Gray 200 "GFTT" - 1536
KITTI Gray 300 random LiDAR max 2116

is small enough, then using normalized features achieves similar performance to not

using any feature at all. Naturally, the proposed method relies on distributing how

many filter come from the convolution that acts on the sparse depth image and how

many come from the color image, so if the information of one of the sources is poor,

the overall performance can be reduced ( this experiment is performed in the next

subsection). However, a more noticeable improvement is verified when the scale is

correct and when there are more points available. Another interesting result is the

verified superiority of using color image as input as opposed to its gray version for the

Synthia dataset, a trend that is opposite to what was verified in KITTI ( at least for

for LiDAR depth completion) and may be associated with the simplicity of simulated

environment in comparison to the real world.

4.4.5 Integrating with visual odometry

In this subsection we present results of experiments involving the proposed depth

completion framework with normalized sparse depth measurements computed by us-

ing actual visual odometry solutions (see chapter 2 for a more detailed description).

For the Synthia dataset, we use the dawn, summer, spring and fall sequences and for

the KITTI dataset we remove sequences for which there is almost no movement and

the first frame of each sequence (since they have no associated triangulation ).

A summary of experiments on the KITTI dataset is displayed in Table 4.4 con-

sidering both common utilized splits and the two sources of ground truth (see sub-

section 4.4.1), where "g" indicates using a gray image and "g+d" refers to using both
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Table 4.4: Comparison of the combined system under dataset variations
Split GT Input RMSE [i]

New New g 3815
New New g+d ( null) 4590
New New g+d (max norm) 3793
New New g+d (nrm norm) 3865
Old New g 2423
Old New g+d ( null) 2566
Old New g+d (max norm) 2426
Old New g+d (nrm norm) 2434

Old Old g 3115
Old Old g+d (max norm) 3156
Old Old g+d (nrm norm) 3148

gray image and VO triangulations with some normalization ("max" or "nrm"). The

"null" mark indicates that the sparse measurements were set to 0, but the architecture

remained the same, a procedure that was done in order to identify the consequences

of removing filters from the branch that takes the intensity image as input. The

results indicate that indeed the sparse measurements help the architecture that was

modified to accommodate them, but overall shows similar performance to using the

one specialized to using images only. This is in accordance with subsection 4.4.4,

which indicated more substantial improvements when using the true scale or more

sparse points.

To the best of the author's knowledge, there isn't a competition like the KITTI

depth completion or depth estimation challenges [51] applied to temporal data in

driving situations. As such, for the sake of comparison we use the old split provided

by Eigen [11] and LiDAR information as true depth values. We also use the "nrm"

normalization for the multi image procedure, as is displayed in Table 4.5. We note

that [56] claims an improvement to 2538 RMSE error when evaluating on a randomly

selected set of continuous sequences taken from the same ones as the test set, but

a fair comparison is impossible without using the same set of images. For similar

reasons the second part of the table indicate results for the test set when removing

the sequences for which there is little movement ( effectively reducing the number of
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samples from 652 to 577).

Table 4.5: Comparison with other methods
Method Abs rel Sq rel RMSE RMSE-log

DenseSLAMNet [56] 0.129 0.704 4743 0.199
Eigen et al. [11] 0.190 1.515 7156 0.270
Liu et al. [28] 0.217 1.841 6986 0.289

DORN (ResNet) [16] 0.072 0.307 2727 0.120
Kuznietsov et al. [26] 0.113 0.741 4621 0.189

Ours (single) 0.163 1.008 4761 0.228
Ours (multi) 0.167 1.036 4753 0.229
Ours (single) 0.157 0.958 4691 0.221
Ours (multi) 0.157 0.952 4666 0.221

The comparison indicates that there is a small improvement in some metrics when

using the sparse points, most noticeably when the stationary points are removed ( and

for which null sparse measurements were given). The overall performance is in line

with recent state-of-the-art methods, with the exception of DORN, which achieves

significant improvements over all other approaches.

4.4.6 Oversampling at stationary poses

In an attempt to reduce the potential bias created by static situations and the

multiple similar images they generate, we proposed and tested a weighting scheme that

aimed at prioritizing points that were far from each other and therefore expected to be

different. This was done by using the groundtruth trajectory (when no groundtruth is

available, one could potentially use the estimated trajectory instead) for each sequence

in the Synthia dataset as measuring the similarity of two images is not trivial, so the

camera poses served as a surrogate metric for dissimilarity. Mathematically, for the

N training images in a frame we compute the distance matrix Mij of all the 3D

positions and compute the number pi of poses that are closer than a threshold d.

Then, the score of a frame is set as wi = -, which is then normalized to get the

weight 1714 = Wiri used to adjust the cost of all samples from frame Z. Note that

when points are sufficiently spaced we have wi = 1 as pii = 0 < d and this modification

has no effect.
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There was no noticeable improvement in results for the specific situations tested,

but it's possible that this approach or similar considerations may turn out to be

beneficial in other situations. Regardless, this a potential source of bias that should

be addressed in the literature.
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Chapter 5

Conclusions and future work

We conclude this work by summarizing results and related insights. We also

comment on directions that may prove advantageous to other studies and to the

advancement of the field.

5.1 Summary

In this work we proposed a depth completion architecture that achieved state-of-

the-art results in a driving situation with sparse LiDAR measurements and camera

images. This solution was then applied to a similar problem, where the sparse mea-

surements actually come from a visual odometry pipeline. The proposed approach

was studied under different situations in order to determine the main contributors to

performance and evaluated in a common test benchmark, where a small improvement

was verified. These analyses allows us to conclude that even greater benefits would

be observed in the presence of inertial sensors or denser SLAM pipelines.

5.1.1 Dataset considerations

For this work, the KITTI dataset was used mainly due to its use in the literature,

while Synthia had the advantage of containing dense labels. However, for the problem

of fusing visual odometry and depth perception they both fall short in some aspects
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which will be addressed in this section in order to guide the generation of other

datasets.

As both datasets represent or try to recreate driving situations, it's expected that

vehicle will be stationary for several frames. In the perspective of of single view

applications, this is not a significant issue, but for some odometry solutions that

perform optimization over a sliding window additional care must be taken in order

keep information from the past. Moving objects can similarly become a more relevant

issue for temporal data. It could be argued that this a natural challenge for any SLAM

solution, but when the main interest resides in combining information it's practical

to isolate and decouple different aspects of the problem. Beyond these issues, these

repeated frames might create biases for very specific situations by oversampling very

similar data.

Another practical consideration is the fact that having several small sequences (as

happens in the KITTI dataset) make the problem harder for odometric approaches

as there is not enough baseline in the first frames to triangulate far points and it be-

comes harder to verify adequate performance on all sequences. The KITTI odometry

challenge, for example, uses around 10 sequences for training and 10 for test, while for

this work roughly 70 were used. The Synthia dataset does not have this problem as

it's comprised of 6 long sequences, but each weather variation contains approximately

the same trajectory, so it's not as diverse.

It must also be noted that the initial ablation study and development of the neural

network was given for a situation that is considerably different then the one it was

ultimately used one: points distribution, range, scale, sparsity and consistency were

all properties that changes from the initial development to the final application.

Finally, the lack of inertial sensors makes the problem more challenging without

any practical advantage as inertial measurement units are substantially cheaper than

the other sensors used. The scale problem is addressed in subsection 5.1.2, but for

common SLAM pipelines inertial data provides useful priors for camera poses and

greatly simplifies the optimization procedure.
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5.1.2 The lack of scale problem

We proposed simple sparse data normalization scheme and demonstrated that

useful information can be extracted from scale-less sparse depth measurements. This

problem is not addressed in the literature and can be practically circumvented with

cheap sensors, however other approaches could still be explored. For instance, the

correct scale could be determined in an online fashion given a temporally consistent

normalization and single frame depth estimation initializations could be provided to

the odometry pipeline at the cost of a tighter coupling between systems and poten-

tial necessity to recompute the triangulations. This would complicate training as in

general gradient descent is more efficient when samples are not correlated.

As potential approaches, one could also, for example, explore iterative solutions

in order to refine the scale estimate to a stable value before proceeding to the next

frames. This could be done with a separate branch that utilizes a common encoder

part to output a single scalar and a potential loss based on how sensitive the output

given the initial guess. Additionally, if the correct scale is known or can be estimated,

one can sample slightly incorrect scales as input instead of having to recompute them.

5.2 Future directions

5.2.1 Multi-problem solution

Some recent works indicate that combining optical flow, semantic segmentation,

depth estimation and related tasks together might produce better results than each

problem individually [62][21]. This might also reduce dataset generation efforts as,

for example, classifying objects may assist in identifying if they are moving or not.

Additionally, a dense semantic label can be done by human annotators, but the same

cannot be done with depth measurements.
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5.2.2 Beyond the traditional convolution

Even though several tasks related to depth were improved with the introduction

of neural networks, some results indicate that working with three-dimensional data

requires a slightly different approach. This is made explicit by [161 and [58], two

works that point out the importance of discontinuity in depth images and how the

traditional spatial convolution may be limited as can commonly act as a smoother.

They both achieve substantial improvement over other methods by, among other

things, searching for a more adequate representation.
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Appendix A

Supplementary information

A.1 Error Metrics

Given the n predicted values and labels y, some of the error metrics used in this

work and in the literature are mathematically defined below

Root Mean Square Error (RMSE) =

RMSE the log (RMSE-log)

Mean Average Error

Absolute Relative Error

Squared Relative Error

(yi - p)2
72Ln

(log(yi) - Iog(y ))

n

(MAE) =
n

(Abs Rel) = 7
=1 YS R2

(Sq Rel)n
i=1 IV I

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

RMSE of the inverse (iRMSE) =
n

M 1
Mean Average Error of the inverse iMAE E j
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Scale Invariant Logarithmic error (SILog) = 1 E d 1 (z
2

di) (A.8)

with di = log(yj) - log( j). Note that some texts define the Squared relative error

differently:

Alternate Squared Relative Error =

A.2 KITTI dataset visualiztion

Yi ) n
(A.9)

We present additional information to chapter 2. Namely, visualization of the

scanline distribution is given in Figure A-1 and additional comparisons for the KITTI

depth completion challenge is given in Figure A-2
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Figure A-1: Visualization the scanline distribution
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(a) RGB (b) NConv-CNN [13] (c) NN+CNN2 [51] (d) Ours-d

Figure A-2: Comparision against other methods (best viewed in color).

A.3 NYU dataset

In order to illustrate the flexibility of the depth completion method, we present

some visualizations on the NYU-Depth-v2 dataset[46] in Figure A-3 and comparison

in Table A.1. This set of indoor environments display larger camera rotations and

different depth ground truth ( from an RGBD camera). Following the official data

split the sparse measurements are generated by uniformly sampling 500 points from

the true values. In comparison with other methods, the approach achieves similar

state-of-the-art performance.

Table A.1: Comparison against state-of-the-art algorithms on the NYU dataset.
Method RMSE REL

Ma et al. [33]. 0.230 0.044
Cheng et al. [5] 0.117 0.016

Ours (supervised ) 0.133 0.027
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Figure A-3: Illustration of the results in the NYU Depth dataset.
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