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Abstract

The Chemical Master Equation (CME) is commonly used to describe the stochastic be-

havior of biomolecular systems. However, in general, the CME's dimension is very large

or infinite, so analytical solutions may be difficult to achieve. To handle this problem, the

Finite State Projection (FSP) algorithm can be used. However, when multiple time scales

exist, which is common in biomolecular systems, the FSP algorithm also suffers from the

computational issue. To deal with this problem, we propose the Enhanced Finite State

Projection (EFSP) algorithm, which combines the original FSP algorithm and the model

reduction technique that we developed, to approximate an infinite dimensional CME with

a finite dimensional CME that contains the slow species only. We quantify the approxima-

tion error between the slow-species counts' marginal probability distribution of the original

CME and those of the approximated CME, and prove that this error becomes smaller as 3

(the EFSP error) or E (time-scale separation between the fast and slow species) decreases.

Unlike other time-scale separation methods, which rely on the fast-species counts' station-

ary conditional probability distributions, our model reduction technique relies on only the

first few conditional moments of the fast-species counts. This is possible because we apply

conditional moment closure to close the fast-species counts' dynamics, which provides a

significant computation advantage. The benefit of our algorithm is illustrated through a

nrntein binding reaction and a toggle switch.

Thesis Supervisor: Domitilla Del Vecchio

Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

To analyze the behavior of biomolecular systems, deterministic or stochastic methods can

be used [1]. At the single-cell level, the randomness of molecular events can have sub-

stantial repercussions on an emergent system's behavior. For example, fluctuations in gene

expression are critical to phenotypic diversity in clonal populations [2][3][4]. Determinis-

tic models fail to capture the inherent randomness of biomolecular systems, so stochastic

approaches are often needed. The Chemical Master Equation (CME) gives the temporal

description of the progression of a system's state probability distribution [5]. However,

when the number of molecular counts is large or unbounded, the dimension of the CME

is large or countably infinite. Therefore, analytical or computational solutions of the CME

are very difficult to obtain in general.

To obtain sample paths that result from the CME, the Stochastic Simulation Algorithm

(SSA) [6] is used. However, when the number of reactions increases or there is a large time-

scale separation among10 1ractis, tiUs aILgoi1th11 Uan becme cJpULtL1J11y expensi v,

resulting in long simulation time. To address the simulation time issue, Rao, Haseltine, and

Gomez [7][8] [9] ran the SSA algorithm only with the slow reactions. These approaches re-

quire an approximation of the fast-species counts as a function of the slow-species counts.

In particular, [7] approximated the stationary conditional probability distribution of the fast-

species counts as functions of the slow-species counts. Obtaining the stationary conditional

Prnhhiility distrihbtion nfthe f st-secis cnints, is eniiivalent to ohtiningi the fast-snecies

counts' stationary conditional moments of all different orders[10], and the number of con-
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ditional moments grow exponentially with the number of the fast-species counts. Instead of

using stationary conditional probability distribution, [9] used stationary distribution of the

first n conditional moments of the fast-species counts. In this process, a moment closure

technique was proposed to close the moments' dynamics. However, this moment closure

technique does not provide a quantifiable approximation error bound. [8] approximated

the dynamics of the fast-species counts through chemical Langevin equations, which are

inaccurate when molecule counts are low.

Another way to address the CME's computational issue is to use the Finite State Pro-

jection (FSP) algorithm developed by Munsky et al. [11]. When the number of molecular

counts is unbounded, the system's state space becomes an infinite set. The FSP algorithm

finds an upper bound to the molecular count of each species and truncates the system's

state space as a finite set, so that the truncated finite dimensional system's trajectories of

probabilities are as close as desired to those of the original infinite dimensional CME. In

several examples, the FSP algorithm outperformed SSA algorithms in terms of computa-

tional efficiency as well as accuracy [11]. However, when multiple time scales exist, the

FSP algorithm also confronts a computational issue. This is because the algorithm equally

treats the transition rates between states, even though they typically vary over several or-

ders of magnitude [12].

To handle this problem, Peles [12] combined the FSP algorithm and time-scale separa-

tion. In particular, Peles applied the FSP algorithm to the approximated CME that contains

the slow species only. To obtain the approximated CME with the slow species only, the au-

thor applied the time-scale separation technique developed by Khalil and Yin [13] [10], and

approximated the stationary conditional probability distribution of the fast-species counts

as functions of the slow-species counts as [7] did. However, the size of the vector of these

stationary distributions grows exponentially with the number of the fast-species counts.

In this paper, we propose the Enhanced Finite State Projection (EFSP) algorithm, which

combines the original FSP algorithm and the model reduction technique that we developed

[14] to approximate an infinite dimensional CME with a finite dimensional CME, which

contains the slow species only. Instead of considering the fast-species counts' stationary

conditional probability distributions, our model reduction technique considers the first few

10



conditional moments of the fast-species counts, which provides a significant computation

advantage. We assume that the number of fast-species counts is bounded, which is rea-

sonable in many biomolecular systems of practical interest [5], but allow an unbounded

number of slow-species counts.

For each iteration of the EFSP algorithm, we obtain the truncated state space of the

slow species, which is a finite set. Then, we write Ordinary Differential Equations (ODEs)

for both the marginal probability distribution of the slow-species counts, with the trun-

cated state space at that iteration, and for the first n conditional moments of the fast-species

counts. Here, n is an arbitrary (small) number, which gives a trade off between approxima-

tion accuracy and computational complexity. Next, we apply the conditional moment clo-

sure technique developed by Naghnaeian [15], time-scale separation and linear program to

approximate the fast-species counts' first n conditional moments as functions of the slow-

species counts. By substituting these functions in the ODEs that describe the marginal

probability distribution of the slow-species counts, we can obtain a low dimensional CME

with the slow species only. Therefore, for each iteration, unlike the original FSP algo-

rithm, which relies on the solution of the full CME, the EFSP algorithm only relies on the

solution of the approximated CME that contains the slow species only. This difference

improves computational efficiency of the EFSP algorithm. In addition, different from [12],

our method does not require the slow-species counts' stationary conditional probability

distribution, which provides a significant computation advantage. The overall procedure of

the EFSP algorithm is depicted in Fig. 1-1. We quantify the approximation error between

the slow-species counts' marginal probability distribution of the original CME and those

of the approximated CME. In particular, we can prove that this error becomes smaller as 3

(the EFSP error) or e (time-scale between the fast and slow species) decreases. We illus-

trate the application of this method to a protein binding reaction and a toggle switch.

This paper is organized as follows: in Section 2, we define mathematical notations

and derive the CME used throughout this paper. In Section 3, we derive ODEs for the

slow-species counts' marginal probability distribution and for the fast-species counts' first

n conditional moments based on the CME. From Section 4 to 6, we introduce a model

reduction technique. In particular, in Section 4, we apply the robust conditional moment

11



closure technique to close the dynamics of the fast-species counts. In Section 5, we apply

time-scale separation and approximate the first n conditional moments of the fast-species

counts as functions of the slow-species counts, and obtain an approximate CME with the

slow species only. In Section 6, we derive the approximation error between the original

CME and the approximated CME. In Section 7, we first introduce the FSP algorithm in

general. Then we propose the EFSP algorithm. In Section 8, we illustrate the implementa-

tion of our method through two examples, a protein binding reaction and a toggle switch.

Original CWE(.3

Proposition 3.0.1

P(X, t): Slow-specles coun&s marginal
probability distribution (3.5) Proposition 3.0.2

Find 4, by using
the EFSP algorithm

P(X, t): Marginal Y, (x, t): Fast-speces counts'

probability distribution (3.9) first n conditional moments (3.8)
Conditional

moment closure

P(X, ~ E se) 4.)$(x, t): Closed dynamics(4)

Theorem 6.2.2 ar Theorem 6.1.1

P(X, t) E(5.2) lmded Y.(x): Approxdmated as fufncton~s
of the slow-species counts (5. 1)

Linear program

P( V. (x): Proper probabilit
(X It) (5.5 distribution (5.4) 7 _

Figure 1-1: Schematic diagram illustrating overall procedure of the EFSP algorithm.
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Chapter 2

Preliminaries

In this section, we define notations that are used throughout this paper. Z>o and R>o are

the sets of nonnegative integers and real numbers, respectively. For any positive integer

n, Z" (R" %) implies the set of n-dimensional vectors with each entry in Z>o (R;>O).

Given a nonnegative integer w and an n-dimensional vector Z = [ziZ2,... ,Zn ]T, we define

'I (Z) to be the vector made up of entries of the form zikiz 22 . . .Zk, where ki E Z>o, for

i = 1, 2, ... ,n, and ' 1 ki = w. For instance, when Z = [zl, Z2, z3, z4],

TP1 (Z) = [z], z2, z3, z41 T ,
(2.1)

P2 (Z) = [z1 2 , zIz2,ZIZ3,zIz4,Z2 2 z2z3,Z2Z4,Z3 2 z3z4,z4 21 T .

The l and 1i norms of a vector Z = [zi ,Z2,... ,zn]T are defined as flZII. = maxilzil and

ZK =En I Izi 1 , respectively. For the l. norm, we eliminate the subscript oo and simply

note J[ZJ| . We call a vector P (E R a probability vector when |IPl 1 = 1. The l. induced

norm of matrix M is defined as

JM1 = maxi En. mijj.

The iI to l. induced norm of matrix M is defined as IM = maxijI . We define

M[M]i as the ith row of M = [mij] E R"inxn which implies that

V[M]i= Mil Mi2 ... min],

fori=1,2,...,IM.
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Now, we consider a biomolecular system with r species, Si,... ,Sr, and K reactions of

the form:

Pk1S1 +...+PkrSr - qkISI +...+qkrSr, k =) .,...,K,

where qkl - Pkl is the change in the number of molecules of S, by the k/h reaction and dk

stands for the k/h reaction rate constant. Let si, for i = 1,2,..., r, be the molecular count

for each species as a discrete random variable and let s = [Si, S2, ... , Sr]T be the state of the

system. Then, for any s c Zr>, the Chemical Master Equation (CME) takes the form

dp(s( t) K

9t = [kP(s t) + ak(s - Yk)P(S -Yk, t)] (2.2)
k=l

where yk is a stoichiometry vector and ak(s) is a propensity function. When we let Pk =

PkI, . .. , Pkr]T and qk = [qki, . .. , qkr]T , fork = 1, 2, ... , K, then yk = qk - pk. ak(s) is propor-

tional to dk and ak (s)dt is the probability that the kth reaction takes place in an infinitesimal

time step dt [16] [17] .

Let n, be the state space of all species, which implies s G t s. Since s is a subset of

a countable set Zr%, it is also countable. Let {si} {si, s2,...} be an enumeration of ,

and define S = [SI, S2, ... ]T. Then according to Munsky [11], when we let

P(S,t) = [P(s1,),P(s 2 , t),. .]T,

which is the probability density state vector at time t, (2.2) can be written as a single linear

expression:
dP(S, t) = MP(S, t), given P(S, to), (2.3)
dt-

where,

- Ek= Iak(Sj) if i=j,

Mij ak(Sj) ifsJ=si-Yk,

0 Otherwise.

In this work, we consider biomolecilr systems in which the chemica1 reactions take

place on two time-scales. Let Ks be the number of slow reactions and Kf be the number

14



of fast reactions where Ks +Kf = K. We are using a small positive parameter E(< 1),

which quantifies a time-scale separation between the slow and fast reactions. Then, we

can separate propensity functions as slow reactions' propensity functions ak(s), for k =

1,2,... ,K, and fast reactions' propensity functions ak(s), for k = Ks + 1,Ks +2,...,Ks +

Kf = K. Based on the slow and fast reactions, we can define the slow and fast species as

follow. Upon firing the fast reactions, slow species counts never change. On the other hand,

for each fast species, there exists at least one fast reaction that changes the fast-species

counts. According to Jayanthi and Contou [18] [19], there exists a proper linear coordinate

transformation that identifies the slow and fast species in the system. Let X1 ,...,X be the

slow species and YI,..., Yg be the fast species, where l+ q = r. Let xi, for i= 1, 2,...,, yj,

for j= 1,2,... q, be the molecular count for each slow and fast species, respectively. Let

x = [xI,x2, . .. ,x1 ]T and y = [Y1,Y2, -.. ,yq]T be the state of the system for each slow and fast

species, respectively. Then s E Z' can be represented as s = (x, y), where x E Z>0 stands

for the slow-species counts and y E Zq stands for the fast-species counts. In addition,

for k = 1,2,... ,K, propensity function ak(s) can be written as ak(x,y). Now we make the

following assumptions:

Assumption 2.0.1. There exist nonnegative integers y/ot such that

yj < y' t, for j= 1,2,..., q.

Assumption 2.0.2. All of the propensity functions are polynomial in s [16]. In addition,

the order of each polynomial is less than or equal to 2.

1Assu111L1J11 2.V. 1 requ11Ls LIal LIeILIULJ la3L numLAber U. iLs is UbU11Ued, l-i reas-

able in many biomolecular systems of practical interest. For example, in gene regulatory

network models, the fast species are usually complexes formed by transcription factors with

DNA, which are in finite amount [5]. Gillespie derived that propensity functions are poly-

nomial under suitable conditions such as well-mixedness [16]. Assumption 2.0.2 states that

the order of each polynomial for the propensity function is at most two because reactions

are either uni-molecular or bi-molecular. This is a standard assumption considering that n-

molecular reactions (n > 2) have low probability compared to a sequence of bi-molecular

15



reactions [5]. In addition, propensity functions can be written as follows [14] [15]:

ak(x,y) = bk(X) +ck(X)TIP(y)+dk'P2(y), fork= 1,2,...,Ks,

1
ak(x,Y) -(bk(x)+ck(X)'1(y) +dkP2(y)), (2.4)

for k = Ks +1,2,...,K,

where IP1(y) and 'F2(y) are defined in (2.1). bk(x) is a polynomial in x with order less

than or equal to 2. Ck(X) is a matrix with appropriate dimensions, and each component of

Ck(x) is a polynomial in x with order less than or equal to 1. dk is a constant matrix with

appropriate dimension. The propensity functions of the slow reactions are an order of e of

the propensity functions of the fast reactions.

We let 9i, and n2 , be the state space of the slow species and the fast species, respec-

tively. Since each slow-species counts is unbounded, = Z10. On the other hand, because

of Assumption 2.0.1, K, c Z and it is a finite set. Then x and y will be vectors of random

variables taking values in the sets 92., and y, respectively. Then, , = n., x n, which is

a subset of Zr;,. n, is a countable set because it is a finite set, and 92 is also a countable

set because it is a finite product of countable sets. Let {xi} and {yj} be an enumeration of

K2 and K2y, respectively.

Then for any x E K2x and y E ny, we can rewrite the CME as

d Ks

dt P(x, y, t) [-ak(x, y)P(x, Y, )
k=1

+ak(x -yX,k,y -yY,k)P(X -Yx,k,y -- Yyk,t)] (2.5)

K

+ [ [-ak(x,y)P(x,y,t) -hak(X,y- y,k)P(x,Y- yk,t)],

where, for k = , 2,. .. K, ak(x, y) are propensity functions for the slow and fast reactions

defined in (2.4), and Yx,k and Yy,k are corresponding stoichiometry vectors, for the slow

species and the fast species, respectively [9]. For the fast reactions (k Ks + 1, ... ,K), Yx,k

is 0, because the slow-species counts are not changed by the fast reactions.
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Chapter 3

Basic setup

In this section, we define ODEs for the slow-spcies counts' marginal probability distribu-

tion, P(x,t), and for the fast-species counts' first n conditional moments, Yn(x,t), based

on (2.5). To proceed, we define P(y, tx) as the conditional probability distribution of the

fast-species counts given the slow-species counts. Then, these two distributions, P(x,t)

and P(y. tIx). jointly specify the full distribution P(s, t) = P(x, y, t) via

P (x, y, t) = P (x, t) P(y, t Ix),

by Bayes' theorem. Then we define

p(x, t) = E[Tw(Y)lx]= [ (y)P(y,tJx),
y7n (3.1)

yn (X, t) = [P1 (X, t)T, P2(X, t)T, .... , pn (x,t)T]T,

for any x E 92, w E Z>0, 1 < n y In1, where pw(x,t) and Yn(x, t) denote the fast-species

counts' wth and first n conditional moments, respectively. For w = 1,2, ... , n, let fw be a

matrix whose multiplication with Y, (x, t) isolates y, (x, t), i.e.,

Pw (X, t) = fw Yn (X, t).- (3.2)

Now we can derive ODEs from (2.5) fnr the slow-species counts' marginal probability

distribution, P(x, t), as in (3.3):

17



Proposition 3.0.1. For the CME in (2.5) with Assumptions 2.0.1 and 2.0.2, given x C 92,

d Ks
P(x,t) = [ [-E[ak(x,y)Ix]P(x,t)

dk E =1

+ E[ak (x -- y7,,y)Ix - Y,,k]P(X - 7,k, t)].

(3.3)

The proof of Proposition 3.0.1 is in the Appendix. By using (2.4), we can further

express the conditional expectation of propensity function ak(x, y) as

E[ak(x, y)x] = ak(x, y)P(y, tx)
(3.4)

= bk (X) + Ck (X) Al (X, t) + dkA2 (X, t),i

for given x and 1 <k < K. When we let X = [xix 2,. .. ,]T, according to Munsky [11],

the slow-species counts' marginal probability distribution in (3.3) can be written as a single

linear expression:

d
P(X, t) = A (Y 2 (x, t))P(X, t), given P(X, to),

dt

where,

P(X, t) = [P(xi, t), P(x2, ), . . ., P(xi, t) ... ]T

is the slow-species counts' marginal probability distribution vector at time t and

if i= j,

if x xi -yx,k, k <K,

Otherwise.

We can also derive ODEs from (2.5) for the fast-species counts' first n conditional mo-

ments, Yn(x, t), as in (3.8):

Proposition 3.0.2. For the CME in (2.5) with Assumptions 2.0.1 and 2.0.2, for x E K2X and

18

we have

(3.5)

(3.6)

(3.7)

-E&t E[ak(xj, y)lxj]

Aij = E[ak (xj, y)lxj)

0



1 < n < | 1, we have

d
E Yn(x, t) =C(x)Yn(x,t)+c(x)+c2pn+1(x,t)+EG(t). (3.8)

dt

The proof of Proposition 3.0.2 is in the Appendix. For given x C n, and 1 < n < y ,
let Etrue be

P(X,t) = [A(Y2 (x, t))]P(X, t),

Et rue : E T~,t)=CxY (X, t) + C1 (X) (3.9)

+C2n+(x, t) + EG(t).

When n = gy I, Etrue is closed, because pn+1 (x, t) can be represented as an affine function

of Yn(x,t) [9]. However, in general, when 1 < n < I n1, the dynamics of the fast-species

counts' conditional moments are not closed, because Pn+1 (x, t) is not a function of Yn(x,t)

anymore. To solve this problem, we apply a robust conditional moment closure method

to approximate pn+1 (x, t) as a function of Y,(x, t) to close the dynamics. The next section

proposes the robust moment closure technique developed by Naghnaeian [15], and it can

be applied to the conditional moments.
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Chapter 4

Robust Conditional Moment Closure

The Robust Moment Closure (RMC) was originally developed by Naghnaeian [15] for

the moments dynamics. Here we modify it so to make it applicable to the dynamics of

the conditional moments. For any x E 92, we define the fast-species counts' conditional

probability distribution as

PY1x(x,t) = [P(y1,t1x),...,P(yj,t!x,.,~ l n,JIx)lT

Then for each yn+1(x, t) and Y, (x, t), there exists unique H, and V, that satisfy

An+ I(X, 0) = HnPy ix (X, t), Yn (X, t) = VnPy Ix (X, 0)

For example, when q = 1,

Hn = [0 In+1 2n+1 ... (lyl)n+' , (4.1)

0 1 2 ...

0 12 22 2
Vn =(4.2)

0 I" 2n ...

Our objective is to approximate Pn+ 1 (x, t) as a function of Yn (x, t), so that (3.9) becomes

closed, denoted as
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where 0 (.) can be a nonlinear function. Since the conditional probability distribution,

Pyix(x,t), is not known, 0(.) should be chosen such that the worst-case error between

y+(x, t) and 0 (Yn (x, t)) is minimized. Therefore, the following min-max problem:

inf sup IIpn+I(x, t) - 0(Y (x, t)), (4.3)
0Prix (x't)6 P

should be solved. Naghnaeian [15] proved that without a priori information on the condi-

tional probability distribution, Pylx(x,t), a solution for (4.3) is obtained when O(Yn(x, t))

is an affine function of Y,(x, t), which can be written as

0 (Yn(x, t)) = KYn (x, t) +Ko.

In addition, we can obtain K and Ko by solving the linear program

min y
K0,K (44)

s.t. - [Hn - (KVn+ KO1 )] < 7 1 T

for i = 1, 2,..., p, where p is the number of rows in Hn. Let the linear program in (4.4)'s

object value be pn. When n is fixed, p, is a constant. Then

11n+1 (x, t) - 0(Yn(x, t))11 = JHnPyix (xt) - (KVnPylx (x, t) + Ko)JJ,

which is the approximation error between yn+1 (x,t) and 0 (Y,(x, t)), is bounded by Pn for

any Pylx(x, t). On the right-hand side of Etrue, we substitute KYn(x, t) + Ko for pyn+ I(x,t),

and obtain

d j5P(X,t) = [A(Pf (x,t))]P(X,t) =A(t))(X, t)

Eclosed : E _ t' (X, t) = C (X) P" (X, t) + C I (X) (4.5)

+ c2 (KV(x,t) + Ko) + EG(t).

Let us define fi(x, t) = f, k,(x, t).

Remark 4.0.1. According to Lemma 10.3.1, if C(x) + c2 K is a stable matrix, that is, all

of its eigenvalues have negative real part, the approximation error between pyw(x, t) and

i4(xt-) is bounded. Even though the stability ofC(x) c2 K is not guaranteed in general

via (4.4), we prove that this matrix is indeed stable in our examples. To ensure the stability
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by construction, we can augment (4.4) with a linear matrix inequality and conduct an

iterative algorithm. This procedure is in the Appendix. Here we assume that C(x) + c2 K is

a stable matrix.
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Chapter 5

Time-Scale Separation

We can check that (4.5) is written in standard singular perturbation form [13]. Let P2(x)

be the solution of

C(x)Y (x) + cI(x) + c 2 (KY2 (x) + Ko) = 0, (5.1)

which can be obtained by letting E = 0 in (4.5). Since C(x) + c2 K is a stable matrix,

]P,(x, t) converges exponentially fast to Yf(x)[13]. By replacing -Pf(x, t) with P2 (x) on the

right-hand side of (4.5), we can obtain

reduced :{ P(X,t) [A(f (x))]P(X,t) =AP(Xt). (5.2)

reduced is composed of the slow species only, because we approximate the conditional

moments of the fast-species counts, Pf (x, t), as functions of the slow-species counts, P2 (x).

reduced is a positive system if and only if A is a Metzler matrix [20]. However, this is not

guaranteed in general. Because of (3.4) and (3.7), any off-diagonal element of A has the

form

bk(X) +Ck(X) (X) +d A (x), (5.3)

x) For w =1, 2. Therefore, is a Metzler matrix if and only if (5.3)

is non-negative for all x E x. For given x c 9. and k = 1,2,..., K, we define a linear
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program

min 11hi (x) - p?(x) 1 + h2(x) - A(x) 1
h 1 (x),h2 (X) (5.4)
s.t. bk(x)+ ck(x)hl (x) + dkh2(x) > 0.

Let the optimal solution to (5.4) be h1 (x) = A, (x) and h2 (x) = A 2 (x) and the object value

be A'. By replacing i4(x) and f (x) with ftl(x) and A2(x) in Ereduced, we obtain

Efina d : (X, t) = [A( (?(x))] ^(X, t) =A P(X, t), (5.5)

where Y2(x) [ [1(x)T, 92(x)TIT. In (5.5), Efinal is a positive system because A is a Met-

zler matrix, which is guaranteed by (5.4). Furthermore, A is a stable matrix and both

1(x) - Af(x) 11and 12(X) - f4(x) 1 are bounded by Ax.

Remark 5.0.1. When n = |nv|, both pn and A are 0.

Proof p, is 0 because pn+1 (x, t) can be represented as an affine function of Y (x, t). A= 0

is proved by Gomez [9]. D

Now the approximation errors for both the fast-species counts' conditional moments

and the slow-species counts' marginal probability distribution should be quantified.
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Chapter 6

Error Quantification

6.1 Conditional Moments of the Fast-Species Counts

Here, we first consider the fast-species counts' conditional moments. The following theo-

rem derives the approximation error between the fast-species counts' conditional moments

Of Etrue, iw(x, t). and those offina , , (x).

Theorem 6.1.1. Given tf > to > 0 and x E 92, the approximation error between gw(x,t)

and Aw (x) satisfies

supgrt |M~x t)--Awx)|< AX, +PA + O(E),

for w = 1, 2, where,

Aw, = f'f fw exp{(C(x) + c 2 K)(tj - r)} dr "I|c2

Furthermore, there exist AE > 0 and e* > 0 such that supt | [totf] W(x,t) - Aw (x) I Ae +

O(E) for all x, E E (0, E*) and w = 1 or 2.

The proof of Theorem 6.1.1 is presented in the Appendix together with several lemmas

that are used in the proof. We provide an outline of the proof here. First, we derive the ap-

proximation error between the fast-species counts' conditional moments of Etrue and those

of Eciosed. Then we derive the error between the fast-species counts' conditional moments

of Ecdosed and those of Ereduced. The approximation error between the fast-species counts'
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conditional moments of Ereduced and those of Efinal is derived by (5.4), which is P2. By

combining these three results, using triangular inequality, we can obtain the approximation

error between the fast-species counts' conditional moments of Etrue, Mw(x, t), and those of

Efinal, AW(x).

6.2 Marginal Probability Distribution of the Slow-Species

Counts

Next, we quantify the approximation error of the slow-species counts' marginal probability

distribution by using Theorem 6.1.1. In Efinal, we construct a positive system by making A

Metzler and stable matrix. Now, let us regard Efinal as our nominal system and (3.5) as the

perturbed system. Then we can express the perturbed system as follows:

- -P(X, t) = ( + A(t))P(X, t), (6.1)
dt

where

A 1(t) = [A (Y 2 (x, t))] -A.

By using Theorem 6.1.1, we can prove that li - 1. norm of A 1(t) is bounded.

Lemma 6.2.1. There is a constant k1 such that

1A1 (t)_111  < k 1AE + O(E),

where AE is defined in Theorem 6.1.1.

The proof of Lemma 6.2.1 is in the Appendix. Now we can qunatify the approximation

between the slow-species counts' marginal probability distribution of Etrue, P(X,t), and

those Of Efinal, P(X, t), as follows:

TIheorem 6.2.2. Given t > to > 0, the approximation error between P(X,t)andP(Xt)

satisfies
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supt C[totf IP(Xt)- P(X,t)

<' jjexp{A}(t -,u)jdrAe +O(E).

The proof of Theorem 6.2.2 is in the Appendix.

Corollary 6.2.3. As e -+ 0, the right-hand side of the inequality in Theorem 6.2.2 goes to

kAO, where

k = ki f t f Iexp{A(tf - 'r)} dr, AO =limE-oAE = (Ao+ X), and

Ax, =limso AXE =f llfweXp(C(x)+C2K)t} dtpnlIC21-

The proof of Corollary 6.2.3 is in the Appendix.

Remark 6.2.4. When n = I 1, the right-hand side of the inequality in Theorem 6.2.2 goes

to O(E). This is because when n =- QG,, both p, and A go to 0 by Remark 5.0.1, so AE

goes to 0.

Remark 6.2.4 shows that when n = 1 )j, the only error that remains will be due to

time-scale separation. In addition, as E 0, 11P(X, t) - P(X, t) goes to 0. Now we should

find Ix, by using the EFSP algorithm, which is illustrated in Section 7.2, to approximate

infinite dimensional CME as a finite dimensional CME, that contains the slow species only

and sufficiently close to the original CME.
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Chapter 7

The FSP and the EFSP algorithms

In this section, we first illustrate the FSP algorithm developed by Munsky[1 1] in general,

for (2.2) and (2.3). Then we propose the EFSP algorithm which can be applied to (5.5),

where two time-scale exists.

7.1 The FSP algorithm in general

Consider (2.3), which has the infinite state space Q, = {s i I S, s3 , .. .}. Let I {i, i2,- . . , i"}

denote a finite ordered index set. Then, for given I, we can define a truncated finite state

space, 921, as follows:

=-{si si 2 ,...Si , S }.

For any matrix A and given ordered index set I, let A, denote the principal submatrix of

A, in which both rows and columns have been chosen and ordered according to I. For

1 2 3 4

5 6 7 8 = 7

example, when A = , I ={2, 3}, then A 1 = . In addition, for9 10 11 12 10 11

13 14 15 16
any vector X, X is the vector of those elements ofX indexed by I For example, when

X = [0.3, 0.7, 0.1, 1 . 1]T, I = {3,2}, then XI = [0. 1, 0. 7 ]T. Based on (2.3), and a given finite
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ordered index set I, we define P'(S, t) as solutions of

d P(S, t) = M PI(S, t),IP(S, to) = P (S, to), (7.1)
dt

where P'(S, t) is the approximated finite dimensional probability distribution. The FSP

algorithm provides a systematic method to find a finite ordered index set I, so that the

approximated probability distribution, PI(S, t) in (7.1), is sufficiently close to the original

infinite-dimensional probability distribution, P(S, t). In particular, the solution of (7.1) for

t G [to, tfI is

P'(S, t) = exp(Mt)P(S, to).

According to [11], for any pair of index sets, I, C I2,

[exp(M2)jI1 > exp(Mi) > 0. (7.2)

Since the probability density vector P(S, t) is always non-negative, (7.2) guarantees that

[exp (MI2tf)]I, P" (S, to) > exp (MI, tj) Ph (S, to). (7.3)

This result assures that when we gradually expand ordered index set Ij (as I, C 12 ... C

I .. .), the approximation monotonically improves.

In addition, for given 3 > 0, tf > 0 and I, if

IIexp (Mrtf) PI(S, to) = 1T[exp (Mtf)PI(S, to)] 1 - , (7.4)

then

exp(Mitf)P(S, to) < P(S, tf) < exp{(M)tf}P'(S, to) +31 (7.5)

is guaranteed [ 11]. (7.4) and (7.5) imply that the approximate solution, P1 (S, t)= exp (MItf)P'(S, to)

never exceeds the actual solution, PI(S,tf), and P(S,tf) - PI (S,t) < 3, when (7.4) is

nthfied.

We can depict the underlying idea of the FSP algorithm, by representing all possible
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states as nodes on an infinite r-dimensional integer lattice, where r is the number of species

in the biomolecular system and each node corresponds to distinct state, si. Fig. 7-1 (Top)

shows a lattice for r = 2. Here, we project this infinite lattice onto the finite subset enclosed

by the gray square, that corresponds to an index set I. This projected state space is shown

in Fig. 7-1 (Bottom), where I represents the truncated state space, and I' represents the

complement of I, where I' is aggregated to a single point. (7.1) illustrates the truncated

CME with the index set 1. (7.1) reflects transitions between states within I as well as

reactions that starts from I and end in I'. However, the equation ignores reactions that begin

in I' and end in I or I'. (7.3) shows that as the index set I increases, more trajectories are

maintained and the probability of remaining in I increases. (7.5) shows that the probability

that the original infinite dimensional system is currently in I must be larger than or equal

to the probability that the system has stayed in I for all times, t G [to, tf].

Now we can apply the FSP algorithm to (2.3) to find a finite ordered index set I that

truncates the original infinite state space to a finite state space such that the error

I P, (S t ) - P (S t ) < 8

* The Finite State Projection Algorithm

Step 0.

Choose the final time of interest, tf.

Specify the acceptable error, 3 > 0.

Choose an initial finite set of states, I for the FSP.

Initialize a counter, j = 0.

Step 1.

Compute frj 1 TpIj(S, tf) = I exp (MI t)PI(S, to).

Step 2.

if FJ .> I - 8: 1= 1I, Stop.

P'(S, tj) approximates P (S, tq) within error 3.

Else: Go to Step 3.

Step 3.

Add more states to Ii and obtain Ij+1.
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Increment j as j + 1 and return to Step 1.

In Step 0, Io can be determined based on the initial probability distribution P(S, to). In

Step 3 of the FSP algorithm, a method to expand Ij to Ij+1 is not explicitly stated. There

may be many methods to expand the state space, and Munsky [11] illustrates one way to

perform the expansion, called N-step reachability. Let I be the initial state and define Ij

inductively. Let Ij+i contain all states in Ij combined with all states which can be reached

from Ij in 1 reaction. Then, IJ denotes the set of all states which can be reached from the

initial state in j or fewer reactions. This is how the algorithm expands the state space in

Step 3. Munsky showed that for sufficiently large j, Fjj = I Texp(MIjtt)Pj(S, to) > 1 -6

is satisfied [I I]. In addition, for I that we find in the FSP algorithm, we have that

IIP (S, t) - PI(S, t) <; 

for t E [to, tfI is guaranteed.

However, when multiple time scales exist, the FSP algorithm suffers from computa-

tional issues for two reasons. First, when the algorithm expands Ij in Step 3, it equally

treats the transition rates between states, even though transitions by the fast reactions are

much more probable than transitions by the slow reactions. Second, to compute Fjj in Step

ii -m - : DI;( t VV . N b1
1, the algorithm has to solve the iuii CAMIE at i =t, OaULdIF ' , t), whic1 contains

both slow and fast species. To handle these problems, we propose the EFSP algorithm,

when two time-scale exists. In Step 3 of the EFSP algorithm, we aggregate the fast species

and apply the N-step reachability to the slow species, by using the fact that transitions by

the fast reactions are much more probable than transitions by the slow reactions. In Step 1

of the EFSP algorithm, we use the model reduction technique to approximate the original

ME with o7 whics h lw cies only, And sn1v th- nnproximated CME

at t =tf.
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7.2 The EFSP algorithm where two time-scale exists

Let Ix = {ii, i2 ,. - ., i } denote a finite ordered index set for the slow species. Then for the

given Ix, we can define a truncated finite state space of the slow species, Qx, as follows:

nIX = xii, Ixi2, ... ) Ximnl

Based on (5.5), and a given finite ordered index set I,, we define P x(X, t) as solutions of

d
(x(XI t) = A,Px (X t), (Xto) = P1,(Xto)

dt

where PIx(X, t) is the approximated finite dimensional marginal probability distribution of

the slow-speices counts. In (5.5), P(X, t) is an infinite dimensional vector, because K2, the

state space of the slow species is infinite. Therefore, we apply the EFSP algorithm to (5.5)

to find a finite ordered index set Ix that truncates the infinite state space of the slow species

to a finite state space and approximate 1(X, t) as 1Ix (X, t) with error 3.

* The Enhanced Finite State Projection Algorithm

Step 0.

Choose the final time of interest, tf.

Specify the acceptable error, 3 > 0.

Choose an initial finite set of states, Ix,O for the FSP.

Initialize a counter, i = 0.

Step 1.

Compute ; =Xtf) = A x,)Vi)LJXibLx ( )

Step 2.

If F1 . > I - 3: IX = IXi, Stop.

Pjx (X, tf) approximates PI (X, tf) within error 3.

Else: Go to Step 3.

Step 3.

Add more elements to I- and obtain 1-,.

Increment i as i + 1 and return to Step 1.
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In Step 3 of the EFSP algorithm, a method to expand I,,i to Ixi+1 is not explicitly

stated. Fig. 7-2 shows a two-dimensional integer lattice when only one species for both

slow (XI) and fast species (Y 1 ) exist. Based on the fact that moving horizontally (by the

fast reactions) is much more probable than moving vertically (by the slow reactions), we

aggregate all state, that have the same slow-species counts, as a single state, and apply the

N-step reachability procedure to the slow species only. It solves the first computational

issue of the original FSP algorithm.

P3
x (X, tf) in Step I of the EFSP algorithm is defined in (7.6). Unlike the original FSP

algorithm, which has to calculate original CME that contains both fast and slow species,

our algorithm relies on the approximated CME, (7.6), that contains the slow species only. It

solves the second computational issue of the original FSP algorithm. To obtain PJxd (X, tf)

at i~' iteration, we have to approximate Y,(x, t) as ^ (x) for all x E r9Q. However, f^(x) for

x E n is already calculated at (i - 1)th iteration, so we additionally need to calculate

Y, (x) only for xE i \ Qn I

For convenience, let Ix be {ii .. , i,, }, which is the ordered index set for the slow species

obtained from the EFSP algorithm. Then,

IIP^,(Xltf) - ^ (X~tA1 | < 8

is satisfied, because we choose Ix that satisfies 1 , ;> I - 3 in Step 2. Furthermore, we can

claim that

SP <(X, t) - PI3 (X, t) , (7.7)

for t E [to, tf], because we expand our Ix,i by using N-step reachability procedure and it

guarantees the time extension [11] [12]. Now we can claim the following:

Theorem 7.2.1. Given tj > to > 0, the approximation error between Pi, (X, t) and j3x (X, t)

satisfies

skpft extP (Xtf- ) - x I (X , )I
t. ki epZ(tf - r) |drAE + 0(E) +.
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In addition, as e -> 0, the right-hand side of the above inequality goes to kAo + 3, where

kAO is defined in Corollary 6.2.3.

The proof of Theorem 7.2.1 is in the Appendix. Theorem 7.2.1 shows that we ap-

proximated original infinite dimensional CME, P(X, t), with an m-dimensional CME that

contains the slow species only, PI, (X, t), with the quantifiable error bound. This error be-

comes smaller as 3 or e decreases. To show the utility of our algorithm, we consider two

examples.
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Figure 7-1: Schematic for the FSP algorithm. (Top) Schematic of integer lattice that repre-

sents all possible infinitely many states when r = 2. (Bottom) A finite truncated state space

by a projection of the original infinite state space.
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* Initial State

Reachable in
one reaction

2 Reachable in
two reaction

Reachable in
N reaction

0

A

0
0
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1A
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Molecular count of the fast species Y1

Figure 7-2: Schematic of N-step reachability when two time-scale exists. Here, we visual-
ize a two dimensional lattice, when one slow species (Xi) and one fast species (Y 1) exist.

Based on the fact that moving horizontally is much more probable then moving vertically,
we aggregate the fast species and apply the N-step reachability to the slow species.
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Chapter 8

Examples

In this section, we consider a protein binding reaction and a toggle switch to show the

utility of our method.

8.1 Protein Binding Reaction

In this subsection, we consider a protein binding reaction, shown in Fig. 8-1, where two

transcriptional components are interconnected [5][21]. Based on the fact that this network

Upstream Downstream
A transcriptional component X transcriptional component
O . ................................... ..... . 0 ...................................................

C

B R

Figure 8-1: The upstream transcriptional component takes protein A as the input and pro-
duces protein X as the output. The downstream transcriptional component takes protein X
as the input, and X binds with promoter R and produces complex C as the output.

is time-scale separable, the network is analyzed by singular perturbation methods in deter-

ministic models [22]. In Fig. 8-1, the upstream transcriptional component is an input/output

system that takes protein A as the input and produces protein X as the output. The down-

stream transcriptional component takes protein X as the input, and X binds with promoter

R and produces complex C as the output. In the upstream transcriptional component, we
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let k be the production rate of X and let b be the decay rate of X, including both dilution

and degradation. In the downstream transcriptional component, we let a and d be the asso-

ciation and dissociation rate constants of protein X to promoter R. Then we can write the

chemical reactions as follows [5]:

k a
0 X, X + R C. (8.1)

b d

In (8.1), there exists a constant Rt that satisfies Rt = R + C, because the total concentration

of the promoter is conserved. We know that aRt, d > b, k, because the protein and the

promoter's binding and unbinding reactions are much faster than the protein's decay and
k

production reactions. Therefore, we can divide reactions in two groups: 0 9 X are two
b

slow reactions and X + R C are two fast reactions. When we define X, = X + C, we can
d

find out that X1 is a slow species and C is a fast species which is bounded by Rt, because

count of X, is never changed and count of C is changed by the fast reactions. When we

define e=, which satisfies 0 < E< 1 and let k = b, aRt s  [xi, c]T, we can derive

the following propensity functions and corresponding stoichiometries for both fast and slow

reactions as

al (xi, c) = b, y1  [+1,0]T, a2 (x1 , c) = b(xi - c), 72 [-1, 0],

a3 (XI, C) = b (x - c)(Rt - c), 73 = [0,+1]',

t4(x, c)=FA,4 0 -1]T,

where, V is the volume.

The state space of the fast species is = {0, 1,2,..., Rt}, which is a finite set, and the

state space of the slow species is = {O, .,2..., ,} which is an infinite set. Based on the

above propensity functions and stoichiometries, for xj E x and c EE n, we can derive the
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CME as follows:

d
-P(xi,c,t)= -b(xi
dt

l b
- I b (x -c)(Rt

E 2VRt

-c)P(xi,c,t)

1
-c)P(xi,c,t ) - -bcP(x1,c,t )

- bP(x, c, t)+ b((xi + 1) - c)P(xi + 1, c, t) (8.2)

l b
+ - b (xl - (c - 1))(R, - (c - 1))P(xi, c - 1, t)

S2V Rt

+ -b(c+ 1)P(xi,c+ 1,t)+ bP(xi - 1, c,t).

We can check that (8.2) is in (2.5) form. By using (8.2), we can derive ODEs for the

slow-species counts' marginal probability distribution as follows:

d
-- P(xi,t) - -bxiP(xi,t)+b(xi +1)P(xi +l,t)
dt

-by, (x + 1,t)P(xi + 1,t)-+ by,1(x,t)P(xi,t) (8.3)

- bP(x1,t) + bP(x1 - 1,t).

We can check that (8.3) is in (3.3) form. Then, (8.3) can be written as a single linear

expression, as in (3.5) form, as follows:

d

dt

where P(XI, t) is an infinite dimensional vector, and

(8.4)

I-b(xi - pi(xjt)) -b

Aij b(xj - gj (xj, t))

b

0

if i j,

if i - j - 1,

if i =j+ 1,

Otherwise.

By using (8.2), we can also derive ODEs for the fast-species counts' first 2 conditional
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moments as follows:

d
E Y2(XI,t )=

-b b(x 1+Rt) b
2VRt 2VRt Y2 (XIt)

b+ b(2bxjRt-bxj-bR) - b-2bxi-2bRt x

-n 2VR, 2b+ 2VR -(8.5)
bx]

+ 2V + [ 3(x1, t) O(E)

= C(x1 )Y2 (xi, t) - c1(xi) + c29 3(x, t) + O(E),

which is in (3.8) form. By combining (8.4) and (8.5), we can obtain ODEs in Etrue form.

Here, 3 (x1 ,t) is not a function of Y2(xi,t). Therefore, to close the dynamics, we need to

approximate P3(xl, t) as an affine function of Y2(xi, t) as follows:

93(x1,t) ~ =(Y2(XI, )) = K322(x1,t) + K3IP1(x,t) + K30.

By solving the linear program in (4.4), we can obtain

K3 2 = 15, K 3 1 = -56, K30 = 30 and P2 = 30.

When we substitute 13(x1 , t) with 0(Y2(xi, t)) in (8.5), we can obtain ODEs in Yosed form.

To approximate Y2(x1j, t) as functions of the slow-species counts, we let e 0 in Eclosed,

and obtain

C(xi) I+ c1(xI) + c2(K3240(xI)
P2(X1) (8.6)

+K1 f (xi)+K3) = 0.

By solving (8.6), we can obtain ft?(xi) and A4(x1) as follows:

4(x)=K 210(xI)+K20, where

K20 -ax1Rt + 2aK30

2aRt + 2ax1 - 2aK32 - a + 2dV'

2ax1Rt -- aRt -axl +2aK 31 +dV (8.7)

2aRt + 2axI - 2aK32 - a+2dV

-l _ aK20 + axIRt
- aRt + ax, - aK2 1 + dV
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We can obtain the CME with the slow species only, by substituting A (x1, t) as Tft(xi) in

(8.4). Now we should apply the EFSP algorithm to the infinite dimensional approximated

CME that contains the slow-species only to find Ix.

When we let b = 0.4[min- 1], Rt = 10[molecules], V = 1 [pm3], to = 0[min], tf = 30[min],

X, (to) = 10[molecules], C(to) = 2[molecules] and the EFSP error 3 = 10-5, we can find

x1,max, the upperbound of XI as 16, by using the EFSP algorithm. This implies we succeed

to truncate 92x as jxQ = {0, 1,2,... ,x1,max}, which is a finite set. Furthermore, A0 in Theo-

rem 7.1 can be accomplished atxi =5 and i= 1, which means f7 "Idiexp{(C(xi)+ c 2K)t}|Idt

0.85. k, in Lemma 6.2 is 0.2, 11c211= 1 and Iexp{ (tf - )}11 =0.1*exp{-0.45(tf - T)}.

We can obtain the error bound for the marginal probability distribution of the slow species

in Theorem 7.1 based on these values.

Fig. 8-2(a) compares P(XI = 5) of Irue with e = 0.1,0.01,0.001 and those of Efial with

A.2roximated with Error Bound vs Original

0.2 - truncated, reduced, n=2
.,. -upper bound
LO0.15 -- lower bound

,. 15.. - original, E 0.1
X 0.1 - original, e 0.01

0.05 - - original, e 0.001

0 _7
a 5 10 1s 20 25 30

Time (min)

(a) Comparing P(XI = 5) of Etru, with e = 0.1,0.01,0.001
and those of Efinal with n = 2, with the error bound obtained

from Theorem 7.1.
Approximated with Error Bound vs Original

0.1016- -truncated, reduced, n=2
-upper bound

- 010 ...- lower bound
- -original, c 0.1
--- original, e 0.01

S0.---original, c 0.001
0-1

0.1

6.7 6.75 6.8 6.55 6.9

Time (min)

(b) Extended view of the above graph.

Figure 8-2: The slow-species counts' marginal probability distribution, P(X1 = 5). For this

simulation, E = 0.1, 0.01,0.001, n = 2, b = 0.4[min-'], V = 1[pIm3 ], R, = 10[molecules]

are used.
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n = 2 and the error bound obtained from Theorem 7.1. Fig. 8-2(b) is the extended view of

Fig. 8-2(a). The simulation result shows that P(Xi = 5) of Et,,ue with e = 0.001 is almost

the same as those of Efina, with n = 2 and the error bound obtained from Theorem 7.1.

Therefore, we can conclude that as E - 0, our approach gives a valid result.

8.2 Toggle Switch

In this subsection, we consider a toggle switch, shown in Fig. 8-3 [5] [23] [24]. Here we

consider reciprocal inhibition of two genes A and B, which has been implemented in vivo

by Gardner [25]. In Fig. 8-3, DNAA produces ProteinA with rate aA. ProteinA can bind

(unbind) with DNAB with rate k{ (kg) and protein-bound DNA stops DNAB to produce

ProteinB. ProteinA decays with rate dA. The topology is symmetric with A and B, so the

same reactions exist for B. Then we can write the chemical reactions for Fig. 8-3 as follows:

T DNAA + DNAA + ProteinA,

ODNAB a- DNAB + ProteinB,
dA

@ProteinA -- 0,

@ ProteinB 0,

@ ProteinA + DNAB -- DNABund

k+

ProteinB + DNAA , DNAbund
k-B

Reactions () and correspond to production of protein A and B, from unbound DNA,

respectively. Reactions @ and ( describe the decay nf prnteins Reacions @. and

depict binding and unbinding of protein and DNA. Bound DNA loses the ability to produce

protein. For convenience, we let aA = aB = a, dA = dB = d, k+ = k= k+, k = k- = k-.

We point out that k+, k- > a, d[23]. Then we can divide reactions in two groups: reactions

) to S are four slow reactions and @ to @ are four fast reactions. In addition, there exists

a positive constant Dt that satisfies DNAA + DNAbound = DNAB + DNAbound - D_, due to

mass conservation of DNA. When we define U = Protein)A - DNAB, C = ProteinB - DNA'A,

Z = DNAA, W = DNAB, we can find out that U and C are slow species, and Z and W are
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( dB dAl

k+B kA +A
k-B

aA a.

_ _ roeXQ XoteinA

DNAA #. _ _ _ _ _ DNAB

Figure 8-3: Design of a toggle switch. Solid-line species are related to gene A; dashed-

line species are related to gene B. ProteinA is produced by DNAA with rate aA. It decays

with rate dA and can bind (unbind) DNAB with rate k+ (kj). Protein-bound DNA stops the

protein production. The same reactions exist for B.

fast species that are bounded by Dr. In addition , when we define e = k, which satisfies

O < e«< 1 and let k- = k+, a s= [u,c,z,w] T , x= [u,c]T, y= [z,w]T, we can derive

the following propensity functions and corresponding stoichiometries for both fast and slow

reactions as

ai(u,c,z,w) = , = [+1,0,0,0]T,

a2(u,c,Z,w) = w,y2 = [0,+l,,0T,

a3(u,c,z,w) =d(u+w),y3 = [-4 ,,OO]T,

a4 (u,c,z,w) =d(c+z),y4 = [0,-1,0,0]T,

a5 (u, c, z, w) = A (u+ w)w,Y5 = [00,0, -1i]T,

a6(u, c,z, w) = -d(Dt - w),76 = [0, 0,,+liT,

a7 (u, c, z,w) = _(c+z)zy7 = [0,0, - 1,0]T,

a8(u,c,Z,w) = ld(Dt -z),y = [0,0,+1,0]T,

where, V is the volume. The state space of the fast species is

9y = {[0;0], [0; 1],..., [0;Dt], . . , [Dt; 0], [Dt; 1], ... [Dt;Dt]}, which is a finite set, and the

state space of the slow species a, is an infinite set, because species counts of proteins are

not bounded. Based on the above propensity functions and stoichiometries, for (u, c) E 2jx
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and (z, w) E EY, we can derive the CME as follows:

d z 2
-P(uc,z,w,t) -d(A + A+(u+w)+(c+z)
dt 2 2

I (uA-w)w 1 1 (c-Iz)z 1
+I( +A V +(Dt - w) +I( + z+ I(Dt - z))

P(u, c, z, w, t) + 0.5dzP(u - 1, c, z, w) + 0.5dwP(u, c - 1, z, w)

+ d(u + 1 + w)P(u + 1, c, z, w) + d(c + 1 + z)P(u, c + 1, z, w)
l d (8.8)

+ -- (u+ w + 1)(w+ 1)P(u, c, z, w + 1)
E V
1

+ -d(Dt - w + 1)P(u, c, z,w- 1)

i d
+ I d (c + z + 1) (z + 1)P(u, c, z + 1, w)

1
+ -d(Dt - z+ 1)P(u,c, z - 1, w).

We can check that (8.8) is in (2.5) form. By using (8.8), we can derive ODEs for the

slow-species counts' marginal probability distribution as follows:

d 3
-P(u, c, t) = dE(Z+Wju,c)P(u,c,t) - d(u+c)P(u,c,t)
dt '' 2

d d
+ -E(Zlu - 1,c)P(u- l,c,t) + -E(WIu,c- l)P(u,c- 1)

2 2 (8.9)

A-d(u+ 1)P(u+1, c,t) +d(c+ )P(u, c+ 1,t)

A-dE(W u+ 1, c)P(u + 1, c,t) +dE(ZIu, c+ 1)P(u, c+1, t).

We can check that (8.9) is in (3.3) form. Then, (8.9) can be written as a single linear

expression, as in (3.5) form, as follows:

d P(X,t) = A(Y 2(x, t))P(X,t). (8.10)

By using (8.8), we can also derive ODEs for the fast-species counts' first I conditional
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moments as follows:

d dc-d 0 dD1
E--Y(u,c,t)= V Y(u,c,t)+

dt 0 -du-d dDt

d E (Z2 Iu, c) (8.11)

V E(W2u,c)

= C(u, c)Y 1 (u, c, t)+ Ic1 (u, c) + c2 p2 (u, C, t) + 0(E).

By combining (8.10) and (8.11), we can obtain equations in Etrue form. In Etrue,

/ 2(u,c,t) is not a function of Yj(u,c,t). Therefore, to close the dynamics, we need to

approximate P 2(u, c, t) as an affine function of Yi (u, c, t) as follows:

A2 (U, C, t) ~ 0(Y (U, C, 0)) = K I (u, c, t) + KO.

By solving the linear program in Eq. (19), we can obtain

0.75 0 0

K = 0.5 0.5 ,Ko = -0.25 and pi = 0.25.

0 0.75 0

When we substitute p2(u, c, t) with p(Y 1(u, c, t)) in (8.11), we can obtain our dynamics

in Eclosed form. To approximate Y (u, c, t) as functions of the slow-species counts, we let

E = 0 in Eclosed and obtain

C(u, c)f (u, c)+ cI(u, c) + c2P(1(u, c)) = 0. (8.12)

When we solve (8.12), we can obtain jft(u, c) as follows:

DtV

A (u, c) c+0.75+V
DtV

u+0.75+V _

We can obtain the CME with the slow species only, by substituting ff (u, c, t) as f4(u, c) in

(8.10). Now we should apply the EFSP algorithm to the infinite dimensional approximated

CME that contains the slow-species only to find IX.

When we let d = 0.1[min-'], Dr = 1[molecules], V = 1[pm3 ], tj = 15[min], X(0) =
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Y(0) = 8[molecules] and the FSP approximation error 6 = 10-6, we can find Umax and

cmax, the upperbound of U and C as 10 for both of them. This implies that we succeed to

truncate 92, to

glx' = {[-Dt; -Dt], [-Dt; -Dt + I],., [-Dt; -Dt + cmax],

... , [-D +umax; -Dt], [-Dt +umax; -Dt + 1],

...,I [ -Dt + Umax; -Dt + Cmax],1

which is a finite set. Fig. 8-4(a) compares P(U = 7, C = 7) Of Etrue with = 0.1,0.01,0.001

Approximated with Error Bound vs Original
0.15- - truncated, reduced, n=1

-- upper bound
0.1 / \--lower bound

-original, e = 0.1
0.05 -- oginal, c = 0.01

- -- original, e = 0.001
0'V
0 5 10 15

Time (min)

(a) Comparing P(U = 7, C = 7) of Etrue with E =
0.1,0.01,0.001 and those of Efina1 with n = 1, with the error
bound obtained from Theorem 7.2.1.

Approximated with Error Bound vs Original

0.09698 - - truncated, reduced, n=1
upper bound

0.09697 - lower bound

009696 - -original, c = 0.1
- original, E = 0.01

0.09695 - original, e = 0.001

2.4225 2.423 2.4235 2.424 2.4245 2.425 24255 2.426 2.4265

Time (min)

(b) Extended view of the above graph.

Figure 8-4: The marginal probability distribution of the slow-species counts, P(U =7, C =
7). For this simulation, E = 0.1, 0.01,0.001, n = 1, d = 0.1[min- 1 ], V = 1 [Am 3 ] are used.

and those of Efinal with n = 1 and the error bound obtained from Theorem 7.2.1. Fig. 8-4(b)

is the extended view of Fig. 8-4(a). The simulation result shows that P(U = 7, C = 7) of

Etrue with E = 0.001 is almost the same as those of Efinal, with n = 1 and the error bound

obtained from Theorem 7.2.1. Therefore, we can conclude that as E -+ 0, our approach

gives a valid result.
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Chapter 9

conclusion

In this paper, we propose the EFSP algorithm by combining the FSP algorithm and the

model reduction technique that we developed. By using the EFSP algorithm, we approx-

imated the infinite dimensional CME as a finite dimensional CME that describes the dy-

namics of the slow species only. In addition, we quantified the approximation error bound.

Our method can be useful for the analysis and design of biomolecular systems. Here are

some limitations of our work. First, the conditional moment closure technique does not

guarantee C(x) + c2 K as a stable matrix. Second, we should assume that the number of

fast-species counts is bounded. For the future work, we will develop a moment closure

technique which can handle these two limitations.
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Chapter 10

APPENDIX

10.1 Proof of Proposition 3.0.1 and 3.0.2

ODEs of the slow-species counts' marginal probability distribution can be derived as

P(x, t) = k= Iy P(x,y,t) = E i .y , [-ak(X, y)P(X, y)

+ak(x - x,k,Y - y,k)P(X - )x,k,Y -- Yyki)

= YK, [-E[ak(x, y)|x]P(x,t)

+E[ak(x - x,k, Y)lxi - yx,k]P(x -Yx,k, t)],

which is the same as Proposition 3.0.1.

ODEs of the fast-species counts' conditional probability distribution are derived by

Gomez[9] as

E dP(Y, t x) (-eak(x, y)P(y, tlx)
(10.1)

+ eak(X,Y - Yy,k)P(Y -Yy,k Ix) + E 1 (t)

where G1 (t) is bounded. Therefore, from (10.1), we can derive

[(Tw(y+7yk)-Tw(Y))
yEZ'"k=,Ks+]

Eak(x,y)P(y,tjx)] +EG 2 (t) -
L E

y EZrn k=K,+l

(10.2)
[(vv(y + Yy,k)

- Tw(y))(bk(x) + Ck(X)P1 (y) + dkq2(y))] + eG2 (t)

53

E dW(x, t)

K

I:
k=K,+l



for 1 < w < n. Order of "P w (Y + Yv,k) - Tw(Y) is w - 1, so order of the right-hand side of

(10.2) returns at most (w + 1)th conditional moments. When we consider w from I to n,

we can obtain ODEs of the conditional moments of the fast-species counts in Proposition

3.0.2, where C(x), c, (x) and c2 are implicitly defined.

10.2 Iterative algorithm in Remark 4.0.1

First we solve (4.4) and let K = K* be its optimal solution. Then, we will find K(i) such

that it is close to K* but also makes C(x) + c2 K(l) stable. To do this, we will find matrices

Z and P(i) such that K(i) = ZP' where Z and P(i) can be obtained by solving
(1)

minz,p(,), a(l) fZ - K*P() 11

s.t. C(x)P(1) + c2Z + (C(x)P(I) + c2 Z)A a() I,

P(l) -- 0, 06(1) > 0.

Then, at each iteration, given P(j) and a(, we first find K(j+ 1) by solving

minKOK(j 
1)7,y

s.t. -y71T < 'q[Htj - (K(j+ 1) Vn+KO1T)], < YlT,

[C(x) + C2K(j+])]P(j) +]DP j[C(x) + C2K(j+ 1)]T J1~$

for i= 1, 2, . m. Then, given K(j+1), we find P(j+1) and a(j+ 1) by solving

minpg+, -a(j+,) s.t.

[C(x)+ c 2 K(j+l)]P(j)+P ()[C(x)+ c 2 K(+ -)] a(-i+ )I,

P(j+1) >-0, a(j+1) > 0.

We continue until IK(j+1) - K(j) converges.
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10.3 Proof of Theorem 6.1.1

Here, we present the proof of Theorem 6.1.1. We first derive a set of intermediate results,

given in Lemma 10.3.1 and 10.3.2, that will be used in the proof.

Lemma 10.3.1. Given t > to > 0 and x E n,, the approximation error between yw(x,t)

and f'(x, t) satisfies

supt E[to~tf lw (X, t) - f (X, t)1< ft Ilw eXpf (C(X) + C2K)(tf -'r)}I jdtig|lC211 = AEx

Proof To quantify the errors, we first define

e I (x) t) = Y" (X, 0) - (X, t).

Using (3.9) and (4.5), we can derive

d
e -e1 (x,t) = (C(x) + c 2 K)ej (x,t)

dt (10.3)

+ C2(Pn+1 (x,t) - (KYn(x, t) + Ko)), el (x, to) =0.

By solving (10.3),

el(x,t) = exp (C(x)+c 2K)(t - T)
to (10.4)

1
[-C2(yn+1 (x, r) - (KYn(x, r) + Ko))ldr.

Because of Eq (10.4), we can obtain

sup pjyw(x,t)-4'(x,t)jj = sup |Ifwei(xt)l
t E [toT] tc [to, T]

< sup J",I fw exp -(C(x) + C2K) (t - T)

-C2 (Pn+ I(X, T) - (KYn (x, r) + Ko))] I dr1t

< sup [Ifwexp{!(C(x)+c2K)(t--r) }1 (10.5)
t G[to, T to

1
-C2(Pn+1(x, r) - (KYn(x, ') +Ko)) ]dr

< TA fw exp (C(X) + c2 K)(T - r) dr lIc 2 11
LI E. I

-. 11.
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Lemma 10.3.2. Given tf > to > 0 and x E , the approximation error between ft (x, t)

and ft 0(x) satisfies

suptE[tltf] I(x,t) - (x) JI fwexp (C(X) + C2K)(tf - r)} G(r) dr = 0(E).

Proof Next we define

e2U(x, t) = (.)a (x, t) - dr iX

Using (4.5) and (5. 1), we can derive

d
dt

By solving (10.6), we can derive

2 , = x (C(x)+c2K)(t e2 (X,t) =i expe

Because of (10.7), we can obtain

sup I If(x, t) -A4(x) =
tE [to,T]

sup
tE[to,T]

< sup
tE[to,T|

=O(E).

t

to

fwexp{

f exp

sup |Ifwe2 (X,t)l
tE [to,T

(C(X) + C2K)(t

(C(x) + c2 K) (t

- T) } G(r)dr

I G(r) dr

The first inequality of Theorem 6.1.1 can be directly obtained by combining Lemmas

10.3.1 and 10.3.2, result of (5.4) and triangular inequality. For the second inequality, A-

can be obtained by

AE = supwE{1,2},xEJ EwA + Ix.

This completes the proof of Theorem 6.1.1.
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(10.8)
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10.4 Proof of Lemma 6.2.1

Since AI(t) = [A(Y 2 (x,t))] -A, (I, J) component of AI(t) can be written as [Ai(t)]uf =

Ck(XiI)(/1(XiJ, t) - P1 (xi7)) +dk (g2(xi , t) - 9 2 (xi7)), which

dkfl)AE + O(E). Therefore, ki can be obtained as

ki = sUpkJ( Ck(xij) + IldkI D).

10.5 Proof of Theorem 6.2.2

We define

using (5.5) and (6.1). By solving (10.9), we obtain

e3(t) = exp{A(t - r)}w(r)dr.

Here, the norm of w(t) is bounded by

|w(t)|1 = IIA1 (t)P(X, t) 1 < A1 (t) 1 - k 1AE + O(E)

By combining (10.10) and (10.11), we can derive

is bounded by (

Then, we can derive

sup Hje3(t) = sup
t e[totf] t E [to,t|

K sup J exp{A(t -
tE[totf] to

f sup exp{Z(t -
t C [to,tf] to

t exp{A(t -

,r)}w(r) Idz

<ki sup exp{Z(t -r)}jjdTAE+O(E).
t E [totf ] to
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Ck(xit) +

de (t) = Ae 3 (t) + A, (t)P(X, t) =Ae3 + w(t), e3 (to) = 0, (10.9)

(10.10)

(10.11)

,r)}w(r)dr

(10.12)

e3 (t) = P (X, t) - P X, t).

,r)}III w (r) IId T



This completes the proof of Theorem 6.2.2.

10.6 Proof of Corollary 6.2.3

We can obtain

limE-o Ax f(7 WeXpf (C(x) + C 2K)t} IdtpI Jc2 1.

by substituting T for t in Lemma 9.1. This completes the proof of Corollary 6.4

10.7 Proof of Theorem 7.2.1

To prove Theorem 7.2.1, we can combine Theorem 6.2.2, (7.7) and triangular inequality as

follows:

P ,(X,t) -PIx(X,t) < PI, (X,t) - -,(X,t) + $P,(X,t) - 3Ix(X,t) <

P(X,t) - P(X,t) + < ki ft exp{A}(tf - r) drAe +0(E) + 3.

This completes the proof of Theorem 7.2.1.
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