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Abstract

As the popularity of online retail expands, world-class electronic commerce (e-commerce)
businesses are increasingly adopting collaborative robotics and Internet of Things (IoT)
technologies to enhance fulfillment efficiency and operational advantage. E-commerce giants
like Alibaba and Amazon are known to have smart warehouses staffed by both machines and
human operators.

The robotics systems specialize in transporting and maneuvering heavy shelves of goods to and
from operators. Operators are left to higher-level cognitive tasks needed to process goods such as
identification and complex manipulation of individual objects.

Achieving high system throughput in these systems require harmonized interaction between
humans and machines. The robotics systems must minimize time that operators are waiting for
new work (idle time) and operators need to minimize time processing items (takt time). Over
time, these systems will naturally generate extensive amounts of data. Our research provides
insights into both using this data to design a machine-learning (ML) model of takt time, as well
as exploring methods of interpreting insights from such a model.

We start by presenting our iterative approach to developing a ML model that predicts the average
takt of a group of operators at hourly intervals. Our final XGBoost model reached an out-of-
sample performance of 4.01% mean absolute percent error (MAPE) using over 250,000 hours of
historic data across multiple warehouses around the world.

Our research will share methods to cross-examine and interpret the relationships learned by the
model for business value. This can allow organizations to effectively quantify system trade-offs
as well as identify root-causes of takt performance deviations. Finally, we will discuss the
implications of our empirical findings.

Thesis Advisor: Randall Davis, Thesis Supervisor
Title: Professor of Electrical Engineering and Computer Science

Thesis Advisor: Yanchong Zheng
Title: Associate Professor of Operation Management, MIT Sloan School of Management
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1 Introduction

1.1 Background

Retail e-commerce has seen explosive growth in the last few years. In 2017, retail e-commerce

sales worldwide amounted to 2.3 trillion US dollars (24% year-over-year growth). Looking

ahead, e-retail revenues are projected to grow at an average yearly rate of 20% and reach 4.88

trillion US dollars in 2021 [1].

As the industry has grown, so too will consumer expectations. Customers increasingly seek

innovations that make their shopping experience more convenient, cost-effective, and fast. In

response to this, e-commerce companies have come under increasing strain to maintain low costs

and short times of delivery.

1.2 Early Industry History (1994 - 2012)

The history of e-commerce is closely tied to the history of the internet. Following soon after the

public introduction of the internet in 1991, people around the world began to adopt online

shopping.

Amazon.com (or Amazon) was one of the first e-commerce sites in the US to start selling

products online. Founded in 1994 by Jeff Bezos, Amazon started as an online retailer of books

and grew quickly. By 1997, Amazon had reached 1 million customer accounts and expanded

their offerings to products including music, video, consumer electronics, video games, software,

home improvement items, and much more [2].

At that time, two major strategic moves emerged. One is that Amazon began holding inventory

in privately owned warehouses which allowed for more strict quality and cost control. Second,

Amazon further expanded product offerings by other 3 rd party sellers onto the Amazon platform.

Other websites were able to offer merchandise for sale and Amazon.com would fill the order and

receive a commission.
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Other entrances into the e-commerce industry were not so fortunate. In 1996, Webvan was

founded as an e-commerce company promising delivery of groceries within 30 minutes of

ordering by leveraging state-of-the-art order fulfillment centers advanced automation. Unlike

Amazon, Webvan's focus was on chasing the razor-thin grocery, drugstore, and prepared meals

market first, which was estimated to be worth $650 billion in 1998 [3]. Webvan was focused on

building critical mass, order frequency, and economies of scale by leveraging automation.

Figure P: A look into Webvan's carousel automation technology

Investors at that time were flocking to fund Webvan. By 1999, Webvan received around $400

million in four rounds of venture capital financing, the most for an Internet company in 1999.

Unfortunately, by 2001, the company had filed for bankruptcy. The internet was still in its

infancy and Webvan had grossly overestimated market adoption. On top of that, Webvan's claim

of massive cost savings by leveraging their carousel automation solution was unfounded in

practice (see Figure 1) [4]. It turned out that many fresh and frozen goods, as well as heavy and

fast-moving items, were not compatible with the automated technology available at that time.

On the other hand, Amazon survived the turn of the century and continued its mission to become

the "Earth's most customer-centric company" by continually expanding greater product

selection, faster delivery and lower prices. By 2006, Amazon launched Fulfillment by Amazon,
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which gave small businesses and 3 rd party sellers the ability to use Amazon's own order

fulfillment and customer service infrastructure.

Up until this point, however, Amazon relied largely on labor-intensive material handling at their

fulfillment centers.

Figure 2: Amazon fulfillment center in the British Midlands in 2013

Operations were mainly comprised of human workers wandering these massive warehouses (see

Figure 2), manually storing incoming products, pulling orders down from shelves, or packing

them up for shipment [5].
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1.3 Later Industry History (2012 - Now)

In 2012, Amazon acquired Kiva Systems, a robotics company that pioneered automated

inventory fulfillment robotics. By 2014, Amazon begins integrating Kiva robots into their

fulfillment centers [6]. Instead of humans walking around a vast warehouse, the robotics system

will bring large containers of inventory to the humans.

This human-machine system frees humans from labor-intensive duties. Humans operators are left

to focus on more cognitive-intensive tasks such as item identification, complex manipulation,

and dealing with unstructured problems.

1.3.1 Modern Order Fulfillment

Today, Amazon has a network of fulfillment centers (see Figure 3) placed strategically across the

world [7]. This allows them to service different regions where their customers make purchases

online. We refer to these centers as "operational sites" for the remainder of our discussion.

Figure 3: Aerial view ofAmazon fulfillment center

Each of these operational sites may contain multiple floors of robotics systems. An example of a

robotics floor is shown in Figure 4 [8]. Each robotics floor contains the robots that move shelves

of inventory. Humans are forbidden to enter into the field during normal operations.
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Figure 4: Inside glimpse into a single robotics floor in New Jersey

Operator stations are scattered along the outer perimeter of the robotics floor. These are the

stations where the robots will eventually drop off a shelf of inventory for a human to process.

Figure 5: A typical operator station with key elements outlined
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Figure 6: A closer view of an operator reaching for a target item in the target bin

The operator station acts as the human-machine interface (HMI) between the operator and the

robotics system. Here are elements of an operator station key to our discussion (see Figure 5) [9].

" Operator - A warehouse associate tasked with processing inventory to-and-from shelves

brought to them by the robotics system.

" Stations - Scattered in fixed locations along the outer perimeter of the robotics floor,

stations are where the robots drop off shelves. Each active station is staffed with an

operator.

" Shelves - The robotics system moves shelves across the floor to the operators. Each shelf

has four faces. Each face contains an assortment of individual bins laid out in a grid-like

manner. Once a shelf has safely arrived to the station, operator visits the shelf once to

pull an item or item(s). Afterwards, the robotics system will take the shelf away and

move a new shelf into position.

" Bins - Bins contain a mix of inventory. Inventory is removed manually by operators by

simply reaching into the bin and pulling the item out as shown in Figure 6 [10].

" Totes - The containers where items are placed after being pulled from the shelves. As the

Tote gets more items after multiple shelf visits, the user interface will notify the operator

when each Tote is considered complete. When a Tote is complete, the operator is

instructed to push the Tote forward where it will be moved to downstream processes. The

operator then puts a new empty Tote to replace the prior Tote.

* Target item(s) - Item(s) that the operator must find from each visit to a new shelf. The

user interface will then instruct which tote the target item(s) should be placed in.

16



" Target Bin - The bin containing the Target item(s).

" Target Tote - The Tote assigned for the Target item(s) to be placed in.

* Position of Tote - There are multiple fixed locations where the Totes are positioned. We

define them as Position 1, 2, 3, 4, 5, and 6, where Position 1 is closest to the Shelf face.

In general, the more Tote positions that are actively used, the more orders can be

processed concurrently.

The human-machine operations relevant to our project is shown in Figure 7 from the perspective

of the operator.

OPERATOR TAKT

Identify TIMEit fs) Pull item(s)Sitem(s)

Wait for
new work Process

from item(s)
machine

Read
OPERATOR IDLE Instructions

for Next
TIME Item

Figure 7: Process cycle of interest in our project from the operator perspective

The operator gets information from the system about the next target items that need to be

processed. Then the operator waits as the robotics system brings the next shelf of inventory.

After the new shelf arrives, the operator then identifies the target bin on the shelf. The target

items are pulled out, processed, and placed into a tote. Afterwards, the robotics system will take

the shelf away and move a new shelf into position. This process then repeats. We refer to this

cycle as the process cycle.

We denote the portion of the process cycle where the operator is active as human takt time or

takt time (see Figure 7). We denote the remaining time, where the operator is waiting for the

robotics system to replenish new work, as idle time (see Figure 7).
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This robotics system enhances overall system performance by isolating the tasks done by

machines and humans in a manner that leverages their respective strengths. For example,

machines bear the brunt of the physical labor by lifting and moving shelves of inventory across

multiple miles daily [11]. On the other hand, the operators are left with higher-level object

recognition and manipulation tasks.
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2 Project Overview

2.1 Problem Statement

Achieving high system throughput in these systems require harmonized interaction between

humans and machines. The robotics systems must minimize time that operators are waiting for

new work (idle time) and operators need to minimize time spent processing items (human takt

time or takt time).

One metric of this human-machine interface (HMI) performance is units processed per hour

(UPH), which is a measurement of the average number of items one operator processes in an

hour as shown in Equation 1.

Total Units Processed
UPH = (1)

Total Hours Worked

Diving deeper, we can breakdown the UPH metric into three multiplicative components: items

per process cycle (IpC), operator takt time, and operator utilization as shown in Equation 2.

Items per Cycle units

UPH = - 3600 seconds (cycld %operator utilization (2)
hour hour Operator Takt (seconds

\ cyclej

A process cycle (or cycle) is comprised of idle time (operator is waiting for a new shelf) and

operator takt (operator is actively processing a shelf). Operator utilization is the percentage of the

process cycle where the operator is actively processing a shelf. It is defined in Equation 3.

Operator Takt
%operator tizt =Operator Takt + Idle Time (3)

Items per process cycle (IpC) is the average number of items that an operator handles during a

single process cycle. IpC is equal to or greater than 1 because an operator can handle I or more
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items per cycle. In our system, the only time an operator is instructed to pull more than 1 item in

a process cycle is when the items being pulled together are identical.

Operator takt, as outlined in Figure 7, is measured in seconds per cycle and defined as the time

during the cycle where the operator is actively handling items.

The value resulting from dividing IpC by operator takt measures the average number of units per

second processed per operator when work is available. Multiplying this by the operator

utilization gives the overall number of units per second per operator, which can then be

converted into UPH.

Looking at this relationship, we can see that there are three ways to increase UPH. Namely, they

can increase IpC, decrease operator takt time, or increase operator utilization.

This mathematical formulation shows that improving UPH requires both machines and human to

improve together. However, modeling both sides of this problem poses different challenges.

Machines can be consistently manufactured and programmed, allowing for straightforward

simulation and modeling. Humans are quite the opposite. Unlike machines, humans have much

more variability due to factors such as different prior experience, learning curves, physiology,

and other hard to quantify factors. To address this challenge, our research focuses only on

modeling operator takt time.

2.2 Goals

In this thesis, we outline an approach to designing and applying a machine-learning (ML) model

of operator takt time in industry. We will present three areas of contribution in support of this

goal. First, we will discuss an iterative approach to building a ML model of takt. The ML model

attempts to model how various factors influence the average takt of a group of operators working

at the same robotics floor. Our machine learning approach uses over 250,000 hours of historic

data from different operational sites across North America. The final ML model achieves an out-

of-sample performance of 4.01% mean absolute percent error (MAPE), compared to the MAPE
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of 9.21% when using a simple sample mean as the prediction, and the out-of-sample coefficient

of correlation R value is 88.25%. Second, we will propose different methods to interrogate and

interpret the relationships learned by the model. Lastly, we will share insights generated from

these methods.

3 Literature Review

Several papers have discussed classification and regression approaches to modeling HMI

metrics. Here, we present a few most relevant to our project.

Nicholas Paperno, et al. (2016) published a study to model a user's performance on completing

specific tasks when operating an assistive robotic manipulator [12]. Leveraging prior research

done on the identification of ten potential human factors, they build a model using data

measuring dexterity (gross and fine), spatial abilities (orientation and visualization), visual acuity

in each eye, visual perception, depth perception, reaction time, and working memory. They

collect this data on 89 individuals who had to complete controlled tests of these human factors

and then subsequently completed several tasks using a robotic manipulator designed to simulate

find-and-fetch/pick-and- place tasks. They found that speed of information processing, spatial

ability, dexterity, and working memory were all significant predictors of task performance. They

used both linear and polynomial models with out-of-sample performance of 7.3% root mean

percent error when predicting time per task. For number of moves per minute, they use a

polynomial model which showed a 9.1% error.

Iwase and Murata (2001) published a new model extending Fitts's model by predicting

movement time as a function of an index of difficulty (ID) of a three-dimensional pointing task

[13]. Input to the model were target size, target distance, and approach direction to the target.

Pointing time and coordinate of pointer finger were measured. It was shown that the trajectory

length and mean velocity were greatly affected by the approach direction. Using this data, they

defined the ID as a deterministic logarithmic function of those inputs and achieved an R2 of

0.698.
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Perez-D'Arpino and Shah (2015) published a data-driven approach that synthesizes anticipatory

knowledge of both human motions and subsequent action steps in order to predict the intended

target of a human performing a reaching motion when working with a collaborative robot agent

[14]. They produce a library of motions from empirical human demonstrations, based on a

statistical representation of the degrees of freedom of the human arm, using time series analysis,

wherein each time step is encoded as a multivariate Gaussian distribution. They achieve 70% or

higher correct classification on average for the first third of the trajectory (< 500msec). This

model can then be used as an anticipatory signal for the robot agent to adjust its next action to

avoid conflict between human and robot motions.

The majority of these related academic publications were done in controlled environments, using

data captured on wearable sensors, video cameras, and 3D motion cameras. Unfortunately, this

type of data is unlikely to be available at a significant scale in industry and the cost for adoption

may be hard to justify. Instead, this project focuses on building an HMI predictive model focused

on a widely adopted HMI system that naturally generates extensive amounts of data.
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3 Desired Model Qualities

How practitioners approach the model building process depends on the model's intended use-

case.

At one end of the spectrum, a practitioner might only be concerned about the model accuracy.

For example, the problem of predicting next week's weather. Because humans cannot materially

affect near-term weather, a satisfactory model is one that provides the highest accuracy,

regardless of the model's complexity or interpretability. On the other end of the spectrum,

practitioners also want to intervene to change the predicted outcome.

In our project, we designed our model to be practical for humans to glean actionable insights

around drivers of operator takt, not solely to produce the most accurate operator takt model

possible. Thus, the four desirable qualities that the model should strive towards are highlighted in

Table 1.

Desired Quality Details

Accuracy (output) The model should achieve sufficient out-of-sample accuracy.

Human The model should use a set of features (inputs) that humans can

Interpretability comfortably interpret. Models with numerous and convoluted features

(inputs) can become difficult for human interpretation.

The model should use a set of features that are mutually-in dependent.

(indpen e Models with highly correlated inputs make isolating the individual

contributions to the prediction difficult.

The model should use a set of features that have a logical and causal

link to operator takt. The underlying model structures learned through

Direct Causality to ML algorithms may not always reflect the exact physical mechanisms or

Takt (inputs) causal relationships linking the observed outcomes to the features. Thus,

we must leverage domain-knowledge in selecting only features that

have a logical and causal link to operator takt.

Table 1. The four desirable qualities of the model.
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4 Model Development

4.1 Iterative Design Philosophy

Developing the right ML model given limited time constraints is inherently risky. In practice,

there is often a gap between people who implement ML and people who have domain expertise.

Also, model development might be hindered by the organization's level of data maturity such as

availability of historic data and ability to collect new data. Lastly and most importantly, the

experimental nature of ML almost always means that the first trained model rarely is the best

solution, requiring multiple iterations before a sufficient solution is discovered.

Within the time-constraints of the project, we mitigate these risks by allocating sufficient time

for several iterations of the iterative design process as shown in Figure 8.

%TI'
Acquire/Use
Domain Knowledge Iterative

Process

Analyze Results

(2
Access Data
Sources

Data Processing and
ML Dev

Figure 8: Iterative Design Approach

During early cycles of development, we focus on iterating as cheaply and quickly as possible.

For example, we started the project by brainstorming a comprehensive list of features believed to

be associated with Takt. Then, we worked to collect, preprocess, train, and analyze only a small

subset of those features with sufficient number of observations that can be easily saved and

processed by a single local machine.
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After each iteration, we quickly learn more about where to further invest efforts. For example,

we may expand the number of features, duration of historic observations, or types of ML

algorithms explored.

In the later stage of model iteration, we move to cloud-based computing to scale model

development with more historic observations across multiple facilities in different geographical

locations. Data is aggregated and pre-processed using Hive on Spark running on Amazon Web

Services (AWS). Apache Spark is an open-source distributed general-purpose cluster-computing

framework, which enables data aggregation and computation on vast dataset.

The four parts of the cycle will be discussed in detail in the following sections. The main idea is

that we keep iterating until the model sufficiently satisfies the four desirable qualities outlined

earlier.

4.2 Domain Knowledge

Acquiring and leveraging domain knowledge is one of the most valuable activities when building

and applying ML models. As a practitioner learns more about the domain, they will develop

better intuitions around feature exploration, selection, and preprocessing. Considering that

feature causality is an important quality in our application, domain knowledge is also a critical

feedback mechanism when analyzing model performance.

The sources of domain knowledge that we pursued are subject matter experts, user observation,

and firsthand experience. In the following sections, we will cover each method and briefly

discuss their tradeoffs.

4.2.1 Subject Matter Experts

The Subject Matter Experts (SMEs) we interacted with can be divided into two groups. The first

group were the engineers who design, maintain, and trouble-shoot the HMI system.
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The advantage was that they typically have insights into the technical design of the system with

years of experience debugging common issues from multiple operational site. The disadvantage

was that they may have less visibility into how operators use the system day-to-day.

The second group was people who manage operations on site. The advantage was that these

people have years of hands-on experience with floor-level workers. They also were largely in

charge of designing the incentive structure and work schedule for the operators. The

disadvantage was that they may have less technical understanding of the robotics system.

4.2.2 Naturalistic User Observation in the Wild

Our host company regularly sends teams to visit operational sites to better understand and

improve the processes. We also took this opportunity to passively observed users "in the wild".

This approach largely comprised of us standing a comfortable distance away from the operators

as they used the HMI system. As we observed, we recorded qualitative observations as we see

fit.

The benefit to naturalistic user observation was that it can be more cost effective than controlled

experimentation or user interviews. Considering also that users may not always effectively

verbalize their perceptions or experiences, user observation provided actual user behavior.

On the other hand, naturalistic observation was less structured, more qualitative, and time

consuming. Observations gathered may be hard to reproduce, not fully representative of the user

population, or influenced by the observer's biases.

4.2.3 Firsthand experience

Lastly, we immersed ourselves in the operator's environment by spending time to operate the

HMI system firsthand. While this is the least scalable approach, firsthand experience can be a

fast way to build domain intuition and tacit knowledge.
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4.3 Data Sources

The type of data we explored in the model building process can largely be categorized into shelf,

station, and human related data.

Figure 9: Categorizing Data Sources into Shelf Human, and Station

4.3.1 Shelf Data

Each process cycle presents a new shelf face that has distinctive qualities. This category of data

tries to encompass the variations in shelf, bin, and item characteristics. We hypothesize that these

characteristics led to different cognitive and physical load onto operators, subsequently affecting

takt time.

Bin'D

Figure 10: Shelf with example Bin A and its corresponding definitions of width, depth, and
elevation. Also shows an example larger Bin B on a different shelfface for contrast.
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Data chosen are presented in the following table:

Data Type Reasoning(s)

Physical Dimensions of Size of bin may affect the difficulty in isolating and removing items. For

Target Bin such as width example, operators may take longer to find where a smaller target bin

and depth (such as Bin A in Figure 10) is located on a shelf face compared to a larger

(see Figure 10) target bin (such as Bin B in Figure 10) [15].

Target Bin Elevation Height of bin may affect the difficulty in reaching items. For example, a
from Ground target bin at the highest shelf level could be hard to reach.
(see Figure 10)

Size of items may affect the difficulty in isolating and removing items.

For example, a large sized item may take more effort to manipulate than
Size of Items

that of a smaller sized item. On the other hand, large size items are more

quickly identified.

The clutter of the bins may affect the difficulty in isolating and removing

Fullness of Shelves items. For example, it may take longer to retrieve an item from a highly

cluttered bin.

Number of Items The more items that an operator is expected to retrieve per process cycle,

Processed per Cycle the longer the takt time is.

Operators find the physical item, but the item is not recognized by

Items Unverifiable computer system. Encountering these unverifiable items can lead to lost

time in item handling.

Operators find the physical item, but the item is damaged. Encountering
Items Damaged damaged items can lead to lost time in item handling.

Operators cannot find the intended physical item. Encountering missing
Items Missing items can cause user confusion.
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Revisits

Operators might encounter the same shelf or shelf face multiple times

during a short period of time. This might lead to short-term familiarity that

affects takt.

Table 2: Shelf data used with explanation

4.3.2 Station Data

The station designs and the utilization of totes can vary. This category accounts for the variations

in station characteristics and dynamics.

Data Type Reasoning(s)

There are multiple types of stations.

Type of Station
Each type of stations may be more ergonomic or automated than others.

Operators have to traverse different distances per process cycle depending

on the active number of totes.
Positions of Totes

Usage of the totes furthest away from the shelf leads to a longer distance

that an operator must cover.

Operators are instructed to place items in specific totes. At some point,

totes will be considered completed and the system will instruct the operator

Items in Complete Tote to move the completed tote downstream.

A tote's level of clutter may affect the speed of which an operator can

properly place a new item into that same tote.

Table 3: Station data used with explanation

4.3.3 Human Data

The final category is data around the operators. This category accounts for the variations in

experience and work schedules.
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Data Type Reasoning(s)

Hour of Day,

Day of the Week, There may be cyclical patterns in human performance.

Day of the Month

Number of Operators People's performance may be affected by size of group.

We use the time series to extract information such as historic performance,
Individual Takt Time

Series and duration of rest. For example, a group of operators with lower duration

of rest may negatively impact takt.

There may be cyclical patterns in human performance relative to the type
Day vs Night Shift

of shift.

Each operation sites may be operated by different people with different

Operation Site Name styles. The ability to tag historic data to their respective location of origin

helps account for this variation.

Table 4: Human data used with explanation

4.4 Data Pre-processing and Feature Engineering

Supervised ML algorithms require using a feature dataset in a standardized and consistent tabular

format (see Figure 11). Every row (observation) of the feature dataset must be associated with a

corresponding outcome and shares the same number and set of features (columns).

Observatic
(row)

Feature (column)

0.3617 0.9443102T76 0.1582436146

n

0.37219761K8
0.678362729

0.096880734
0.217331822
0.180694

0.6064864
0.1646M966

0.3618667321
0.9312461 5

0.046749199
0.6170610760
0.7489461367

0.5046867
0.167937463

0.616241473

0.826012606
0.0133461796

0.312227363
0.90257134M2
021S924961

0.1333679164

outcome

1

0

1

0
00

Figure 11: Example offeature dataset amenable to ML
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Our sources of raw data mentioned earlier occur with different frequencies. For example, an

operations site may experience thousands of items processed in an hour. In that same hour, the

type of stations staffed may remain unchanged. In order to build a feature dataset that is

amenable to ML, we convert the raw data into hourly features of a group of operators working at

each robotics floor.

The goal is to pose the ML problem as follows: given the characteristics of a group of operators

at a robotics floor in the last hour, estimate in retrospect what the average takt of the group of

operators in that same last hour (see Figure 12).

dr Takt Model Average Takt

Given bady.characteristics (inputs) of a The ML Algorithm takes the input.. and retroactively estimates what
group of human operators. Average Takt was in that hour

Figure 12: Overview ofproblem posed for M L

We chose to model takt at the hourly level for the following reasons:

- The model performance at hourly level demonstrated promising accuracy.

- An hourly model enables flexibility because the output can be directly aggregated to produce

shift, day, week, or month level outputs.

The feature set will look like the diagram of Figure 13.

31



01-01-2018, 12am

01-01-2018, lam

mth row

Feature 1 Feature 2 ... Feature n+1 Avg Takt

(XmO) (XmI) (Xm.,n) (Y)

Xo,o Xo,i ... Xo,n Yo

XI,o X1,1 ... XI,n YI

Xm,o XmI ... Xm,n Ym

Figure 13: Design of Final Feature Set

Each row of the feature set is associated with a timestamp indicating the hour block of operation.

The features of the row are generated using data available in the past relative to the

corresponding timestamp. In terms of time window size used, the features can be categorized by

last hour and beyond last hour. In the following sections, we will explain how the features are

created.

4.4.1 Continuous and Discrete Data Features (last hour)

The majority of the data are comprised of continuous and discrete values aggregated in the last

hour. We convert each hourly set of data into hourly features by simply taking the average for

easy interpretability. For example, in any given hour, we may observe multiple discrete bin

depths values encountered by a group of operators. We then take the average of all the bin depths

values as a feature called "Average Bin Depth".

4.4.2 Nominal Data Features (last hour)

Nominal data is a subset of categorical data where values are represented in discrete labels that

have no quantitative value. For example, in any given hour, we may observe a group of operators

assigned to either the Day Shift or Night Shift.

The first method is to convert the set of nominal data into a normalized frequency distribution

across all possible unique values. For example, each individual operator in a given hour are

either part of the day shift or night shift. Because shifts can overlap, a group of operators in a

given hour can be a mix of both day and night shift operators. Thus, we can convert a set of shift
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values into two features called "Percentage from Day Shift" and "Percentage from Night Shift"

every hour.

The second method is one hot encoding, which is primarily used to identify which Operational

Site a row of data came from. One hot encoding involves converting a single nominal data type

into multiple binary variable for each possible value of that nominal data type. For example,

suppose we have data from Operational Sites X, Y, and Z. We can then create three binary

features called "IsX", "Is_Y", and "IsZ". If a row of data is from Operational Site X, then the

corresponding feature of "Is_X", "IsY", and "IsZ" would be 1, 0, and 0 respectively.

4.4.3 Ordinal Data Features (last hour)

Ordinal data is a subset of categorical data where values are represented in discrete labels and

order matters. For example, in any given hour, we may observe a set of Tote Position values

where items were ultimately placed after each process cycle. For reference, Tote Positions can

take labels of 1, 2, 3, 4, 5, or 6, where the larger the value the further the operator must traverse

to move the items. We convert each hourly set of Tote Positions data into integers and create

hourly features by simply taking the average.

4.4.4 Time Series Data Features (beyond last hour)

We also created features based on operator work patterns beyond just the last hour. For each

hour and robotics floor, we have information regarding which individual operators were present.

Each operator has their own individual recent history of takt, which we defined as work pattern.

As shown in Figure 14, historic work pattern is a time series signal showing how each individual

operator performed across a historic window of time. For each operator, we extract metrics from

their unique historic work pattern.
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Takt

Current Hour ++ Breaks between Working Sessions

+ Duration into Current Working Session

+ Working Session

I Hour

Window of Time

Figure 14: Example time series of an operator's work pattern during some snapshot in time

From each operator's historic work pattern, the following metrics are extracted:

* Working session: the consecutive hours where an operator is actively working prior to the

current hour of interest. This is determined by measuring where individual hourly takt is

non-zero.

" Breaks between working sessions: the consecutive hours where an operator is actively not

working prior to the current hour of interest.

" Current working session: the most recent working session.

Thus, for each operator, we can then derive measurements such as typical breaks between

working sessions, duration into current working session, total hours worked over the last week,

and mean historic takt.

All these values per individual are then averaged to get hourly features per group.

4.4.5 Feature Cleaning

After creating the initial feature set, we clean the data through the following steps:

1. We remove hours of data with low number of man-hours logged and exceedingly large

average takt. We do so by removing rows with man-hours logged in the lower 5t

percentile of man-hours, and rows with average takt above 3x the population average takt
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mean. The purpose is to avoid exposing our ML algorithms to hours of data with non-

standard operations.

2. We impute missing values of a feature using the median value of that feature from the

same robotics floor.

4.4.6 Feature Scaling

Lastly, features are normalized prior to algorithm training and testing. We do this by measuring

the sample mean and sample standard deviation of just the training data set. Then we

subsequently subtract the sample mean and divide by the sample standard deviation for both the

training and test set. This scaling process allows the feature set to be compatible with more

machine learning algorithms that assume standard normally distributed data.

4.5 Model Tuning and Evaluation

4.5.1 Extreme Gradient Boosting (XGBoost) Algorithm

We trained the ML regression model using gradient tree boosting with XGBoost. XGBoost is an

open-source implementation of gradient boosting which originated from research by Chen and

Guestrin, designed to be highly efficient, flexible and portable [16].

-.

Features
(fO, f,..., fn)

Ensemble of Decision Trees-> "leaf" predictions

Single Prediction
(i.e. &w)

Figure 15: High-level diagram ofDecision Tree Ensemble Regression Model
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At a high level, tree boosting is an ensemble learning method where hundreds or thousands of

weak decision trees are built in parallel using the training data (see Figure 15).

For each decision tree, a different subset of features is used to determine how to traverse down

the tree structure. A 'leaf' value is reached at the end of each tree, which is the predicted value.

While each individual tree prediction is generally inaccurate, the combination of their outputs

tends to produce much more accurate predictions.

The "gradient boosting" aspect refers to the framework by which these ensemble of decision

trees are built during the training process. At a conceptual level, gradient boosting involves

building trees in stages, whereby each new stage of decision trees built addresses the prediction

weaknesses of the previous stages. Fortunately, XGBoost's underlying algorithm is made

available through open-source libraries.

4.5.2 Hyperparameters

Hyperparameters are a pre-determined set of ML algorithm parameters whose values are used to

control the learning process. The set of values depend on the type of ML algorithm.

The following list outlines the main hyperparameters we tuned on XGBoost.

1. Learning Rate (from 0 to 1): Step size shrinkage value that effectively controls the level

of boosting or learning. At each boosting step, the feature weights can be attenuated by

the Learning Rate value.

a. The lower the learning rate the more conservative the boosting process is.

2. Max Tree Depth (positive integer): Maximum depth of any tree built.

a. The higher the value, the more complex the underlying tree structures, potentially

leading to overfitting or diminishing returns.

3. N Estimators (positive integer): Maximum number of trees built.

a. The higher the value, the more complex the underlying tree structures, potentially

leading to overfitting or diminishing returns.
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4. Subsample (between 0 and 1): Ratio of training data actually used for training for each

tree.

a. A value of 0.5 means that XGBoost will randomly sample 50% of the training

data prior to growing each tree. This added randomness helps combat overfitting.

5. Column Sample by Tree (between 0 and 1): Ratio of columns (features) actually used for

training for each tree.

a. A value of 0.5 means that XGBoost randomly uses only 50% of the features in the

training data prior to growing each tree. This added randomness helps to avoid

overfitting.

4.5.3 Cross- Validation

We quantify performance using the holdout and K-fold cross-validation. Both techniques involve

splitting the feature set into a training set and test set. The training set is use for training

algorithm. The test set is used to evaluate the out-of-sample performance of the trained algorithm

on unseen data. In this manner, we can better avoid the algorithm simply "memorizing" the data

(a condition known as overfitting).

We use the holdout method for quantifying finalized model performance. In this process, a fixed

portion of the whole data set is randomly selected for training and testing. We experiment with

different proportions and our final model uses 66% of the data for training and the remaining

33% for testing. In addition, we also experiment with how the out-of-sample performance

changes for different ratios of data allocated for training versus testing.

We use 3-fold cross validation for model hyper-parameter tuning. In this process, the data set is

divided into 3 randomized subsets and the holdout method is performed 3 times. For each

holdout, one subset is designated as the test set, and the remaining subsets are for training. More

details of the hyper-parameter tuning process will be detailed later.

Our primary metrics of performance is Mean Absolute Percent Error (MAPE).
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4.5.4 Algorithm Tuning

The optimal set of hyperparameters is determined empirically by sweeping through different

combinations and seeing which results in the best performance.

First, we discretize a limited range of values for each hyperparameter, resulting in a discrete

subspace of all possible hyperparameters called a hyperparameter grid. Hyperparameter grids

with higher dimensions may increase the chance of discovering a better set of hyperparameters

than those of lower dimensions. However, hyperparameter grids with more dimensions also

require more computational resources due to a larger space of values that must be explored.

Early in the project, we opted for wider ranges in values with larger step-sizes in hopes of

locating a combination near a locally optimal solution. Later in the project, we opted for more

focused ranges in values with smaller step-sizes. See Table 5 for the final hyperparameter grid

used.

Hyperparameter Name Range Step-size Total Steps

Learning Rate 10-2 to 10-018 10 evenly spaced on a log 10

(0.01 to 0.158) scale from -2 to -0.8

Max Tree Depth 3 to 8 1 5

N Estimators 700 to 1200 100 5

Subsample 0.8 to 0.96 0.025 7

Column Sample by Tree 0.6 to 1 0.05 8

Table 5: Hyperparameter Grid used for XGBoost tuning with 14000 possible combinations.

Lastly, we search the hyperparameter space using Randomized Grid Search (RGS). Instead of

executing an exhaustive search, RGS samples only a fixed number of combinations (without

replacement). Each sample is put through the 3-fold cross-validation process. RGS will return

the combination that yields the best observed average MAPE.
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While, RGS may yield solutions that are less optimal and consistent than those of exhaustive grid

search, RGS had the advantage of returning near optimal solutions at a faction of the time. In

fact, research by Bergstra et al. claims that random search is more efficient [17].

After arriving at a solution, with finalized hyperparameters and feature set, that sufficiently

satisfies the four desirable qualities outlined, we move on to exploring techniques to apply the

model.
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4.5.5 Baseline for Comparison

In order to understand whether a certain MAPE resulting from an ML algorithm is respectable,

we also determine a baseline MAPE value. We define the baseline MAPE as the MAPE achieved

when, instead of exposing training data to a ML algorithm, we simply calculate the average takt

value from the training data and use that as a constant prediction.

We also measure the performance using K-Nearest Neighbors algorithm (KNN), a simple, non-

parametric, and lazy ML approach. It is non-parametric because KNN makes no assumptions of

the underlying distribution of the data. It is lazy because it does not use the training data points to

do any generalization. Instead when given new observations for a regression, KNN simply just

returns a prediction based on averaging the observed values associated with the K nearest

training samples, as measured by a distance function in the feature space, to the new

observations. We set K to be 5 and use Euclidean distance function.

4.6 Feature Selection Methodology

During this iterative process, we use domain expertise and descriptive metrics to decide which

features to add, modify, or remove. The two main descriptive metrics are correlation heatmap

and feature importance of the trained ML model.

4.6.1 Pairwise Correlation

Building a heatmap can be an effective and simple visualization tool to discover and quantify the

degree to which variables in the feature set are dependent upon each other. For every

combination of two features, we calculate Pearson's R value as well as R-squared.

When we see R or R-squared significantly deviate from 0, we can hone in on the corresponding

pair of features and use domain expertise and human judgement to decide on whether to modify

the feature set.
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4.6.2 Feature Importance

The structure of the trained ML model can also give insight into selecting features. For gradient

tree boosting models like XGBoost, we mainly referred to feature importance scoring using the

normalized weight metric.

The weight metric is calculated as follows. For every decision tree in the ensemble, we count

how many times a particular feature is used for splitting. We then repeat this for every feature so

that each one has their own corresponding weight value. Finally, we get the normalized weight

metric by dividing each weight by the sum of all weights.

The advantage of the normalized weight metric is that it gives insight into which features seem to

be important. The higher the weight, the more that the feature is embedded in the structures of

the decision trees and used in the prediction generation process. This can be a helpful tool in

conjunction with domain expertise in the feature selection process.

5 Model Insights

The business viability of implementing ML solutions ultimately relies on the insights derived

from the model. Treating the ML model as a black-box, we propose the following two

approaches to leveraging the model. Both have their own pros and cons, and targeted towards

different use-cases.

5.1 Empirical Trade-off Analysis

Our goal in this approach is to quantify global trends in how different features affect the overall

takt. We focus primarily on analyzing a stratified subset of the model's features which can be

practically adjusted in the physical world either from system design or operational manner.
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Figure 16: A/B testing approach to quantify takt impact due to feature X

We can then pose many questions to the model and quantify how different features of interest

contribute to takt by running many controlled A/B tests as shown on Figure 16. In the first step

of each A/B test, a targeted subset of historic features is sampled and fed through the ML model,

resulting in a set of takt estimations (which we refer to as the "Control Results").

Then, with the same original input subset, the values of a single feature (column) is randomly

increased or decreased to create a slightly modified, synthetic input feature set. This synthetic

input feature set is then fed through the same ML model to generate a set of takt estimations

(which we refer to as the "Test Results").

Finally, we compare the Control Results and the Test Results. To quantify how takt is affected,

we use a unitless measure called Elasticity, a concept inspired from the field of economics.

ATakt

Elasticity of Feature X on Takt = EX - Takt

X

% Change in Takt

% Change in Feature X

The benefit of this approach is that the ML model becomes a one-stop shop for providing

analysis that can control for many factors at once and simulate takt outcomes under any set of

starting assumptions. The macro-level trends discovered can be used to analyze system-level

trade-offs in operations or design of the robotics system.
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The limitation of this approach is that, from a diagnostic perspective, there is no direct way to

isolate the exact contribution of each feature with any given prediction. Our next approach aims

to address this issue.

5.2 Shapley Additive Explanation (SHAP) Values

Another method of model interpretation is by calculating SHAP (SHapley Additive exPlanation)

values, which allows for interpretation of the factors at the level of individual observations. The

SHAP values technique was proposed by Scott M. Lundberg and Dr. Su-In Lee [18].

SHAP values were inspired by Shapley values from game theory. Developed by Lloyd Shapley

in 1953, the Shapley value is a solution to divide the rewards amongst each player in a

collaborative game in a manner that fairly reflects each individual's contribution [19]. Similarly,

SHAP value measures how much each feature in our ML models additively contributes to the

overall predicted value.

Simply put, the SHAP algorithm, for any single observation (single row of features), calculates

the contribution (SHAP value) of each feature by comparing what the ML model predicts with

and without it. In the process of traversing the ensemble of decisions trees, any node reached that

splits using a feature being actively withheld will simply return the average of all leaf values

downstream of those nodes. Since the order in which an ensemble of decision trees withholds

features can affect the overall prediction, the SHAP algorithm explores every possible order and

returns the average contributions.

SHAP values have the following properties.

1. Efficiency: The sum of each feature's SHAP value and base value should equal the ML

model's predicted value. The base value is a model's output if no features are used

(essentially just the mean sample takt time).

2. Symmetry: Features that contribute the same value to the overall prediction should have

the same SHAP value.
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3. Null player: If a feature had no effect on the predicted value, the corresponding SHAP

value should be 0.

4. Linearity: The contribution of any two features should equal the sum of each individual's

SHAP value.

SHAP values with XGBoost have the following advantages.

* Unlike traditional feature which give feature importance metrics across the whole sample

population, SHAP values offer sample-by-sample feature impact.

* SHAP values are consistent and interpretable.

" Due to the hierarchical nature of decision trees, the open-source SHAP library has

optimizations that allow for SHAP values to be practically calculated without actually

empirically executing every possible feature combination.

SHAP values with XGBoost have the following disadvantages.

* As with traditional feature importance metrics, SHAP values are sensitive to high

correlations between features. Fortunately, this issue is accounted for in our project (see 3

Desired Model Qualities).

* SHAP values represent an additive approximation of the ML model at a specific sample.

The SHAP values alone cannot estimate the impact of any intervention done on the

system.

Thus, we leveraged SHAP values in our research in diagnostic use-cases. Namely, we want to

prototype a diagnostic tool using SHAP values to help operations quickly identify potential root-

causes of takt performance deviations.
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6 Results and Discussion

6.1 Model Performance

6.1.1 Feature Set

We were provided with industry data that represents typical material handling metrics found

within warehousing. The data was sanitized to eliminate any proprietary information and shared

for educational purposes only. As an overview, the dataset is comprised of historic data from 81

different robotics floors across 18 operation sites around the globe. Our final feature set

comprises of over 250,000 rows (hours) and 43 features. See Table 6 for details.

Data

Source Feature/Input Name Details

Bin Depth Average Depth of bins that operators processed.

Bin Elevation Average height level of bins that operators

processed.

Inventory Item Size Average size of items in inventory of the whole

floor.

Average percentage of available storage volume

occupied by inventory of the whole floor. Equal to

Fullness of Shelves total inventory volume divided by the total

available storage volume of all the shelves
Shelf

combined.

Items Damaged per Cycle Average # of items encountered that were damaged

per cycle.

Items per Cycle Average # of items processed per cycle.

Items Missing per Cycle Average # of items encountered that were missing

per cycle.

Items Unverifiable per Average # of items encountered that were

Cycle unverifiable per cycle.

Revisits Average number of revisits per shelf.
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Hour of the Day Hour of the day in 24-hour format

Day of the Week Integer value mapping to a day of the week

Day of the Month Day of the month

Number of Operators Total number of operators working

Individually calculate the median takt of last 2

months per person in the group, then create a single

Historic Performance group average. We believe that the median takt

across the last two months was an effective proxy

to quantify operator skill level.

Individually calculate the average hours of break

Breaks Between Sessions between sessions per person in the group over the

last week, then create a single group average.

Total Weekly Worked Individually calculate the total hours spent in shift

Hours per person over last 7 days in the group, then create

a single group average.

Duration into Current Individually calculate the total hours spent in

Session current shift per person in the group, then create a

single group average.

Operational Site Name

% People from Day Shift

18 one-hot encode features, one for

operational sites studied.

each of the 18

Percentage breakdown of operators assigned to

night versus day shift. Max value of 100%

% Station of Type X Multiple features representing percentage

breakdown of supported station types. All sum to
(covers 5 types)10%

100%.

Positions of Totes Average position of totes where items were placed.

Items in Complete Tote Average number of items in completed tote.

Table 6: Detailed table of the 43 features used in ML Model
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In support of our desirable model qualities, the final feature set also demonstrates low correlation

amongst each other. R-squared, which is equal to the square of the correlation coefficient, is the

metric we use for evaluating feature pair-wise association. R-squared is a unit-less metric that

generally spans between 0 to 1 and represents the ratio of the variance explained, by a simple

linear regression, to the total variance. The higher the pair-wise R-squared value, the higher two

variables are linked. From Figure 17, we can see that the majority of features have R-squared

equal to or less than 10%.
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Figure 17: Pairwise R2 Heatmap of Features
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The two minor exceptions are 30% for "Inventory Item Size" with "Bin Elevation" and 40% for

"Breaks Between Session" and "Weekly Hours Worked". Because Pod Faces often have the

largest bins at low elevations, it is not surprising that Inventory Item Size shows some correlation

with Bin Elevation. Similarly, there are a multitude of fixed work schedules which may account

for why Breaks Between Session and Weekly Hours Worked are slightly correlated. That being

said, we determined that these two exceptions still exhibited low enough correlation to be

included.

The single big exception is 90% for "% Station Type 1" and "% Station Type 2". Because the

majority of stations are either of Type 1 or Type 2, the sum of "% Station Type 1" and "%

Station Type 2" will typically come close to 100%, leading to a high correlation. We decided to

leave them within the model because we were not planning to isolate individual contributions at

the station level.

6.1.2 Baseline Performance for Reference

To put into context whether the MAPE performance resulting from our ML algorithm is

adequate, we first calculated summary statistics of the baseline MAPE value. As a reminder, we

define the baseline MAPE as the MAPE achieved when, instead of exposing training data to a

ML algorithm, we simply calculate the average takt value from the training data and use that as a

constant prediction. In other words, the baseline MAPE is the performance of a very simple

algorithm.

48



Histogram of Baseline 14APEs from 100 Random Trials
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Figure 18: Histogram of Baseline MAPE after 100 trials

We ran 100 trials using the random holdout cross-validation method, with 66% of the set

randomly chosen for getting the sample takt average and the remaining 33% for test. We can see

from Figure 18 that the baseline performance is around 9.21 % MAPE.

We also tried using a k-nearest neighbors algorithm approach, again with 66% of the data for

training and the remaining 33% for testing. Setting k to 5 nearest neighbors, we observed

performance of 5.84% MAPE.

6.1.3 Hyperparameters Chosen

The final hyperparameter values for XGBoost were determined using RGS of 5000 combinations

(out of the possible 14000). The resulting hyperparameters are shown in Table 7.

Hyperparameter Name Value

Learning Rate 0.034

Max Tree Depth 7

N Estimators 1100

Subsample 0.85

Column Sample by Tree 0.9

Table 7: Final hyperparameters used by XGBoost Model
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6.1.4 Model Out-of-Sample Performance

We use the holdout cross-validation method for quantifying finalized model performance, with

66% of the data set randomly chosen for training and the remaining 33% for test. The final

model's out-of-sample performance is shown in Figure 19, with axis labels removed for

confidentiality.

Mean Abs Percent Error = 4.01%

R = 0.884

Predicted Takt (secs)

Figure 19: Out-of-sample Predicted Takt against Actual Takt.

Our final model achieves around 4.01% MAPE. For comparison, the baseline MAPE is

determined to be 9.2% and our KNN approach achieved 5.84% MAPE. When we use a

scatterplot of predicted versus actual takt, we calculated a correlation coefficient and R-squared

of 88.4% and 78.14% respectively.

In Figure 20, Figure 21, and Figure 22, we show how the final model's estimated takt compare to

those of the actual takt from a time series perspective across different robotics floors. To create

these plots, we isolate all the data from a specific robotics floor as the test data set, and the

remaining data as the training data. We re-train a new model using the training data and then we

evaluate the model using the testing data set to see how well the model performs on a previously

unseen robotics floor. This process is repeated for each different robotics floor of interest.
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These plots give a different perspective of the model's accuracy as well as the variable nature of

operator takt across time per robotics floor. Both the predicted and actual takt go through a 24-

hour rolling mean to smooth the time series for easier viewing. For confidentiality reasons, we

only present takt normalized by the total sample average takt.

Prediction versus Actual Daily Takt of Robotics Floor A
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F7igure 20: Final model predicted vs actual takt after 24-hour rolling mean

Prediction versus Actual Daily Takt of Robotics Floor B
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Figure 21: Final model predicted vs actual takt after 24-hour rolling mean
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Prediction versus Actual Daily Takt of Robotics Floor C
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Figure 22: Final model predicted vs actual takt after 24-hour rolling mean

From a qualitative perspective, we can see from Figure 20, Figure 21, and Figure 22 that our

model shows a credible ability to model previously unseen robotics floors.

In Figure 20, notice how the model's predictions are able to reflect the same large daily

fluctuations from approximately Hour 0 to Hour 1000 on robotics floor A. In Figure 21, notice

how the model's predictions are able to reflect the same downward trend of takt from

approximately Hour 1000 to Hour 3500 on robotics floor B.
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6.1.5 Feature Importance from Model

With the trained model, we also calculated the feature importance scoring using the normalized

weight metric, shown in Figure 23.

XGBoost Feature Important using Normalized Weight Metric

Hour of Day

Duration into Current Session

Historic Performance

Inventory Item Size
Fullness of Shelf

Bin Depth

Items in Complete Tote
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Bin Elevation
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Day of Month
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Figure 23: Feature Importance from XGBoost in Descending Order
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Feature importance helps give insight into which features are used the most within the XGBoost

tree structure.

The feature ranked with the highest importance by a noticeable margin is "Hour of the Day" with

10.72%, implying that the decision trees often rely upon the local hour of the day in making its

prediction. We suspect that human performance in this cognitively intensive HMI task may

exhibit regular and predictable changes across each day. This aligns with studies on circadian

rhythms in cognitive performance. For example, research done by Centre for Chronobiology in

Psychiatric University Clinics in Switzerland have shown predicable diurnal variations in highly

directed tasks such as the speed of dealing cards, sorting cards, mirror drawing, multiplication,

and code transcription [20].

Instead of addressing the importance of the other features one-by-one, we can also view the

feature importance by grouping them by category (see Figure 24). For reference, we categorize

the types of features used as shelf, station, or human related data.

Sum of Feature Importances by Category

100%

75%

Normalized 50% 50% 38%
Importance %

25% 12%

0%
Human Shelf Station

Figure 24: Normalized Feature Importance by Category

We can see that Human related factors leads with around 50% aggregate importance. This is a

strong signal that factors such as time of the day, design of the work schedule, and skill

development play important roles in takt outcomes. For example, we see that "Duration into

Current Session", "Historic Performance" alone account for 7.36% and 7.28% respectively.

Similar to Hour of the Day, Duration into Current Session also hints that human performance

exhibit regular and predictable changes at the session level as well. The importance of Historic
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Performance shows that past performance of operators is a strong indicator for future

performance.

In second place are the shelf related factors, which account for a total of 38% of importance. The

shelf category covers features related to physical characteristics of the bins and items that were

presented to the operators. For example, we see that "Inventory Item Size" and "Fullness of

Shelves" alone account for 6.85% and 6.54% respectively. Inventory Item Size and Fullness of

Shelves have long been suspected by SMEs to directly impact process difficulty. The fact that

they both have high feature importance confirms their significance in impacting takt.

Last are station related factors, which account for a total of 12% of importance. The biggest

contributors in this category are "Items in Complete Tote" and "Position of Tote" which account

for 4.65% and 4.53% respectively.

6.1.6 Size of Training Data and Model Performance

Holding the final hyperparameters constant, we experimented with how varying amounts of

training data impacts the out-of-sample performance (see Figure 25 and Figure 26).

MAPE versus % of Data Used for Training

10.0% Baseline MAPE
9.0% -- ~ ~-~~~~~~-~- 

--~-~-~

8.0%

7.0%
MAPE 6.0% 6.07%

5.0% 4.35% 4.09% 4.00%
4.0%

3.0%
0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0%

% of Data used for Training

Figure 25: MAPE versus size of training data
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(MAPE - Final MAPE) versus % of Data Used for Training
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Figure 26: MAPE relative to final MAPE versus size of training Data

From Figure 25, we see that the model demonstrates diminishing returns in MAPE with

increasing percentage of data used for training. From Figure 26, we can confirm that MAPE

improves roughly at a logarithmic rate with % of data used. For example, we observed that

MAPE reaches less than 0.5% MAPE away from our final MAPE with around 10% of the total

dataset used for training. Increasing the training data 4-fold from around 10% to 40% only

improved MAPE from 0.4% to 0.1% away from our final MAPE.

The characterization of this trade-off is useful when considering cost of implementation.

Processing and storing larger amounts of historic data required for model training can result in

higher data infrastructure costs. For example, popular cloud service providers such as Amazon

Web Services, Microsoft Azure, and Google Cloud all charge customers monthly fees that are

proportional to the size of data being transferred, stored, and processed [21]. If the target

application of the model required only 5% MAPE (as opposed to the topline performance of 4%

MAPE), the required amount of training data required would be around 1.7% as opposed to 70%,

which is over 40 times less.
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6.1.7 Desired Model Qualities Discussion

Prior to model development, we outlined four desired model qualities. In Table 8, we revisit each

quality and argue why we believe our model sufficiently addresses it.

Desired Quality Reasoning

Our final model achieves 4.01% MAPE, compared to the baseline
Accuracy (output)

MAPE of 9.2% and KNN's MAPE of 5.84%.

Human
Our model uses 43 features. Excluding the 18 binary features, the

inprta y remaining 26 features are common operations metrics.
(inputs)

Independence From a possible range of 0% to 100%, the vast majority of features used

(inputs) showed pairwise R-squared values from 0 to 10%.

Direct Causality to Each feature used were reviewed with subject matter experts,

Takt (inputs) naturalistic user observations, and firsthand experience.

Table 8: Outline of our progress in meeting the four desired qualities of the model.
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6.2 Results of Empirical Trade-off Analysis

In the following figures, we present a select few trends observed by using the Elasticity values

extracted from the Empirical Trade-off approach of model interrogation. These trends were

chosen because they exhibited higher Elasticity values. For confidentiality reasons, we only

present takt normalized by the total sample average takt.

6.2.1 Fullness of Shelves (FoS)

Simulated Fullness of Shelves Impact on Takt

1.15

45% 50% 55%

Fullness of Shelves (%)

Figure 27: Fullness of Shelves Impact on Takt
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&-Ops Site 17

--- Avg (18 FCs)
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Average

The impact of Fullness of Shelves (FoS) on takt is shown in Figure 27. The analysis validates our

intuition about FoS relationship, namely that an increase in FoS leads to an increase in takt. Also,

trend is slightly convex with takt increasing at an increasing manner at higher FoS values. We

can also investigate the model only at specific operational sites (see Site 17 and Site 5 in Figure

27).

This analysis could provide valuable insight for operations when setting optimal inventory

levels. For example, businesses during peak times of the year may be tempted to drastically

increase inventory levels in order to support wide product mixes and avoid stock-outs. This

increase in inventory across a fixed number of shelves will lead to an increase in FoS. However,

as shown in Figure 27, we see that higher FoS is associated with higher takt times, limiting the
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business's ability to quickly fulfill orders. This analysis is another tool by which management

can better quantify this trade-off and make more informed decisions on inventory.

6.2.2 Weekly Worked Hours (WWH)

Simulated Weekly Worked Hours Impact on Takt

1.80

1.60
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Takt 1.20 -+-Ops Site 1
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0.60 ------ Feature

10 20 30 40 50 60 Average
Hours Worked (Over Last Week)

Figure 28: Weekly Worked Hours Impact on Takt

The impact of Weekly Worked Hours (WWH) on takt is shown on Figure 28. The model shows

that the WWH starts to negatively impact takt when WWH goes below around 30 hours. We see

this same effect when diving deeper into each individual operational site. For example, both Site

17 and Site 1 incur heavy takt increases if the operators have WWH below 30 hours.

One hypothesis is that the associated negative effect on productivity with less WWH is due to

less opportunity for skill development or less worker motivation from underemployment.

In general, humans experience a learning curve where the more a person performs a specific

task, the more proficient they become at it. There may be a learning curve effect for this specific

task at the weekly level where operators working over 30 hours per week accumulate enough

experience to reach optimal performance. Also, there may be a psychological aspect as well.

Previous studies have shown that underemployed individuals do not work as hard because they

find their jobs demotivating, causing performance to suffer [22].
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If proven true, this analysis can be useful when business design their workforce. For example,

businesses might be tempted to increase the number of part-time workers for reduced cost of

labor or flexibility in scheduling. However, a higher composition of part-time workers may lead

to reduced WWH, which is associated with a negative impact on takt. We also recognize that

there may be other confounding factors, and believe that future investigation into WWH is

needed.

6.2.3 Items per Cycle (IpC)

Simulated Items per Cycle Impact on Takt

1.08

1.06
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Figure 29: Items per Cycle Impact on Takt

The impact of Items per Cycle (IpC) on takt is shown on Figure 29. We see that IpC values

between around 1.07 to 1.15 shows little change in takt. Once IpC exceeds 1.15, we see that

higher IpC eventually has a negative impact on takt. This makes sense because in general the

more items that an operator is expected to find at a time, the longer it takes to process. This is

particularly relevant because of IpC's role in UPH (see Equation 4).

UPH = 3600 x x %operator utilization (4)
Takt

UPH is a function of both IpC in the numerator and denominator. When IpC increases, Takt will

also increase, slightly hampering the overall impact on UPH. Our results show that increasing

IpC still has a net positive impact on overall UPH across the observed range of IpC in our data.

60



This analysis could provide valuable insight for future design changes of this HMI system. For

example, engineers may be able to alter the system in a manner that increases IpC in hopes of a

proportional increase in UPH. Using Figure 29, they can then better estimate overall UPH

improvement by accounting for the corresponding increase in takt.

6.2.4 Duration into Current (DCS)

Simulated Duration into Current Session Impact on Takt
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Figure 30: Duration into Current Session Impact on Takt

The impact of Duration into Current Session (DCS) on takt is shown in Figure 30. Between

hours 1 and 4, we see that on average there is a slight hump in the 2 nd hour. We currently do not

have a good understanding why this occurs in some operational sites (see Ops Site 3) and not in

others (see Ops Site 16). Perhaps there are slight adjustments or learnings that operators

experience during the early, first few hours of every new session.

After the 4 hour, the model shows a clear and consistent trend where higher DCS of the

operators negatively impact takt. We hypothesize that this effect is a result of workers getting

tired and failing to maintain the same level of focus.

This analysis could provide valuable insight for operations when designing shift and break

schedules. For example, businesses might be tempted to increase durations of work without a
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break to avoid fixed setup costs. However, the resulting higher DCS may lead to negative

impacts on takt deep into a shift.

6.2.5 Position of Tote (PoT)

Simulated Position of Totes Impact on Takt
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Figure 31: Position of Totes Impact on Takt

The impact of Position of Tote (PoT) on takt is shown on Figure 31. The model shows that the

higher PoT the higher the resulting takt becomes. We see this same effect when diving deeper

into each individual operational site. For example, both Site 15 and Site 3 incur takt costs as the

PoT increases. This trend confirms our intuition. Operators processing items with target tote

positions at a higher average number will have to transport items at further distances on average.

This analysis could provide valuable insight for operations when deciding station staffing. For

example, suppose that operations managers notice that both takt is relatively high. One option to

remedy this is to staff more unused stations and spread out the demand for totes across more

stations, reducing the overall average position of totes and takt times. The downside is that this

option also means higher labor costs. Managers can use this analysis to better weigh the benefits

of staffing more unused stations against the added increase in labor costs.
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6.3 Diagnostic Tool using SHAP Values

We also develop a proof-of-concept retrospective diagnostic tool using SHAP values. As a

reminder, SHAP values measure the contributions (relative to the base value) of each feature to

the takt prediction at the individual observations level. To see how this tool would be used,

consider Figure 32.

Actual vs Predicted Takt (rolling 7 days)
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Figure 32: (Top) Actual and predicted takt of a floor at Site 2. (Bottom) Corresponding SHAP

values of top contributing features
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Figure 32 shows a time series of takt (normalized to the base value for confidentiality and

smoothed using a 7-day averaging window for easier viewing) of a particular robotics floor at

Site 2 across around 3500 hours of data. As a reminder, the base value is the ML model's output

if no features are used (essentially sample mean of takt across all the whole data set). The top

plot of Figure 32 shows agreement between the model and actual takt. The bottom plot of Figure

32 shows the top contributing features based on their SHAP values (also smoothed using a 7-day

averaging window for easier viewing).

Visually in this example, we can see that the major contributor to fluctuation of takt is due to the

Historic Performance feature. This indicates that the fluctuations are largely driven by the

underlying aptitude of the operators staffed.

Other than the Historic Performance feature, we can see that the Fullness of Shelves plays a

secondary role as well. From hours around 0 to 1500 (period 1), Fullness of Shelves shows a

negative contribution, indicating that Fullness of Shelves assisted in reducing takt. Then from

hours around 1500 to 2500 (period 2), Fullness of Shelves shows a positive contribution,

indicating that Fullness of Shelves is exacerbating takt. Digging deeper into the data, we can

confirm that there was a change in inventory levels where Fullness of Shelves increased from

around 45% to 50% corresponding to the period 1 and period 2 respectively.
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Actual vs Predicted Takt (rolling 24 hours)
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Figure 33: Closer view of the region of interest

Diagnosing root-causes of takt performance deviations at any time is as simple as taking a cross-

section of the SHAP value waveforms. Suppose that a user is interested in understanding why

takt was so high during a sliver of time between hours of 1790 and 1820 (see "region of interest"

in Figure 33), which showed an average of +0.131 above the base value. We can zoom into the

corresponding SHAP values associated with that region of time, take the average SHAP values

by each feature, and generate a diagnostic waterfall plot as shown in Figure 34.
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Figure 34: Diagnostic Tool using SHAP values

Using the average SHAP values of features, the tool is able to highlight how different features

contributed to the overall +0.131 deviation away from the base value. For example, we can see

that the biggest contributor was the "Historic Performance" feature, which may hint that the

proficiency of the operators staffed during this period may need to be further investigated.

Similarly, we also see that the "Fullness of Shelves" feature also increased takt, which may lead

management to review current levels of inventory storage.
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7 Conclusion

As the research problem we analyzed is a sub-system within a much larger and more complex

fulfillment engine, any recommendations we provide may lead to a locally optimal solution. So

instead, we will emphasis the following in our concluding thoughts.

7.1 Bridging Domain and Technical Experts

We believe that the positive outcome of our research project was a result of pursuing a

collaborative and iterative approach to model development. Particularly for new entrants,

developing the right ML model given limited time is inherently risky.

From a skill set perspective, the ideal practitioner needs to have the right technical abilities and

domain expertise relevant to the specific problem at hand. This is often unrealistic, instead there

are typically gaps between people who implement ML and people who have domain expertise.

Businesses seeking to develop ML solutions should consider whether they have the right

organizational culture and structural mechanisms needed to foster cross-functional collaboration.

From a technical feasibility perspective, the experimental nature of ML almost always means

that the first iteration of the model rarely is the best solution. Depending on a business's stage of

data maturity, the availability of historic data and ability to collect new data may also become

barriers. Thus, we recommend that teams should anticipate and plan for several iterations within

the time constraints of their project. An effective way to mitigate risk is to focus on iterating as

cheaply and quickly as possible early into a project. After each iteration, the team will quickly

understand where to invest future efforts.

7.2 Determining Model Sufficiency

The collaborative nature of building ML solutions can also lead to large influxes of

recommendations and ideas. For example, stakeholders may constantly recommend new types of

data to explore or approaches to data processing. Practitioners might be tempted to pursue

multiple avenues and stretch the finite resources. Our recommendation is for practitioners to

define criteria of success for a model based on the intended business problem early on, which
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can then be referenced often when vetting new modelling approaches. People often get fixated

by model accuracy. However, depending on the application, model interpretability or complexity

may also be relevant.

7.3 Diminishing Returns of Data

Google's Research Director Peter Norvig once claimed that "We don't have better algorithms.

We just have more data" [23]. But as we have also seen through our project, having more data

does not necessary guarantee significant improvement in model performance. With using just

10% of the data for training, we are able to achieve an MAPE of 4.35%, which uses over 6 times

less training data than our topline performance of MAPE of 4.01%. We caution against the

notion that quantity of data alone is a magic bullet. Equally, if not more, important aspects

include data quality and feature selection.

7.4 Importance of Operator Training and Engagement

All evidence from our research seem to indicate that human factors such as historic performance,

work schedule, and time of the day play a significant role in the takt model. From our final

model's feature importance ranking, human related features accounted for around 50% of

importance. From our Empirical Trade-off Analysis approach, we see how Weekly Worked

Hours (WWH) and Duration into Current Session (DCS) are associated with negative impacts on

takt when operators are underemployed or work for too long without a break. From the example

Diagnostic Tool using SHAP Values, we observed how the major contribution to takt

performance deviation is simply due to the staffing of high or low historic performers (a

phenomenon we have anecdotally observed across other floors).

The strong benefits associated with investing into employee is not lost amongst leading e-

commerce organizations. Amazon has implemented programs such as "Career Choice" and

"Career Skills" which aim to motivate and retain employees [24]. Career Choice is available to

Amazon hourly associates who have been employed for one continuous year and pre-pays 95%

of tuition and fees for associates to earn certificates and associate degrees in high-demand
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occupations such as aircraft mechanics, computer-aided design, machine tool technologies,

medical laboratory science, dental hygiene, solar technician and nursing. Career choice is a free

development program available to all hourly Amazon employees beginning on day one. This

program offers classes on skills such as resume building, interviewing skills, effective speaking,

time management, Microsoft excel and more.

As organizations such as Amazon adopt new HMI technologies, we recommend that they invest

more into initiatives to improved employee retention, work schedule, and skill coaching.

7.5 Future Work

7.5.1 Experimental Validation in the Field

Another step to building confidence in the model is to run controlled testing in collaboration with

an operations site. In a series of pilot studies, we can run experiments where certain parameters

of operations are changed and the corresponding takt value measured. In parallel, we could run

the ML model to reveal what the algorithm believes the new takt value should be.

7.5.2 Diagnostic Tool User Interface Refinement

We had shown a proof-of-concept diagnostic tool using SHAP values. While this is a noteworthy

first step, we believe that further refinement is needed. Depending on the exact target user, we

may benefit from showing only a subset of metrics available. Each metric presented to the user

should be evaluated carefully. Ultimately, we want to present the right information so that target

users are empowered to make better decisions.
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