
MIT Open Access Articles

Certifying a file system using crash hoare logic

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chajed, Tej et al. "Certifying a file system using crash hoare logic: correctness in the
presence of crashes." Communications of the ACM 60, 4 (April 2017): 75-84 © 2017 The Authors

As Published: http://dx.doi.org/10.1145/3051092

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/122622

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/122622
http://creativecommons.org/licenses/by-nc-sa/4.0/

Certifying a file system using Crash Hoare Logic:
Correctness in the presence of crashes

Haogang Chen, Daniel Ziegler, Tej Chajed,
Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

ABSTRACT
FSCQ is the first file system with a machine-checkable proof that
its implementation meets a specification, even in the presence of
fail-stop crashes. FSCQ provably avoids bugs that have plagued pre-
vious file systems, such as performing disk writes without sufficient
barriers or forgetting to zero out directory blocks. If a crash happens
at an inopportune time, these bugs can lead to data loss. FSCQ’s
theorems prove that, under any sequence of crashes followed by
reboots, FSCQ will recover its state correctly without losing data.

To state FSCQ’s theorems, this paper introduces the Crash Hoare
logic (CHL), which extends traditional Hoare logic with a crash
condition, a recovery procedure, and logical address spaces for
specifying disk states at different abstraction levels. CHL also
reduces the proof effort for developers through proof automation.
Using CHL, we developed, specified, and proved the correctness of
the FSCQ file system. Although FSCQ’s design is relatively simple,
experiments with FSCQ as a user-level file system show that it is
sufficient to run Unix applications with usable performance. FSCQ’s
specifications and proofs required significantly more work than the
implementation, but the work was manageable even for a small team
of a few researchers.

1. INTRODUCTION
This paper describes Crash Hoare logic (CHL), which allows

developers to write specifications for crash-safe storage systems and
also prove them correct. “Correct” means that, if a computer crashes
due to a power failure or other fail-stop fault and subsequently
reboots, the storage system will recover to a state consistent with
its specification (e.g., POSIX [17]). For example, after recovery,
either all disk writes from a file-system call will be on disk, or none
will be. Using CHL we write a simple specification for a subset
of POSIX and build the FSCQ certified file system, which comes
with a machine-checkable proof that its implementation matches the
specification.

Proving the correctness of a file system implementation is im-
portant, because existing file systems have a long history of bugs
both in normal operation and in handling crashes [24]. Reasoning
about crashes is especially challenging because it is difficult for the

∗The original version of this paper is entitled “Using Crash Hoare
Logic for Certifying the FSCQ File System” and was published in
the Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP ’15) [3].
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2016 ACM 0001-0782/08/0X00 ...$5.00.

file-system developer to consider all possible points where a crash
could occur, both while a file-system call is running and during the
execution of recovery code. Often, a system may work correctly in
many cases, but if a crash happens at a particular point between two
specific disk writes, then a problem arises [29, 39].

Most approaches to building crash-safe file systems fall roughly
into three categories (see the SOSP paper [3] for a more in-depth
discussion of related work): testing, program analysis, and model
checking. Although they are effective at finding bugs in practice,
none of them can guarantee the absence of crash-safety bugs in
actual implementations. This paper focuses precisely on this issue:
helping developers build file systems with machine-checkable proofs
that they correctly recover from crashes at any point.

Researchers have used theorem provers for certifying real-world
systems such as compilers [23], small kernels [22], kernel exten-
sions [35], and simple remote servers [15]. Some certification
projects [1, 10, 11, 18, 28, 32] have even targeted file systems, as
we do, but in each case either the file system was not complete,
executable, and ready to run on a real operating system; or its proof
did not consider crashes. Reasoning about crash-free executions
typically involves considering the states before and after some oper-
ation. Reasoning about crashes is more complicated because crashes
can expose intermediate states of an operation.

Building an infrastructure for reasoning about file-system crashes
poses several challenges. Foremost among those challenges is the
need for a specification framework that allows the file-system devel-
oper to formalize the system behavior under crashes. Second, it is
important that the specification framework allows for proofs to be
automated, so that one can make changes to a specification and its
implementation without having to redo all of the proofs manually.
Third, the specification framework must be able to capture impor-
tant performance optimizations, such as asynchronous disk writes,
so that the implementation of a file system has acceptable perfor-
mance. Finally, the specification framework must allow modular
development: developers should be able to specify and verify each
component in isolation and then compose verified components. For
instance, once a logging layer has been implemented, file-system
developers should be able to prove end-to-end crash safety in the
inode layer simply by relying on the fact that logging ensures atom-
icity; they should not need to consider every possible crash point in
the inode code.

Crash Hoare logic (CHL) addresses these challenges by allowing
programmers to specify what invariants hold in case of crashes and
by incorporating the notion of a recovery procedure that runs after a
crash. CHL supports the construction of modular systems through a
notion of logical address spaces. CHL also allows for a high degree
of proof automation. Using CHL we specified and proved correct

mv a b

Crash Hoare logic (CHL)

Crash model
Proof automation

. . .

FSCQ

Definition rename := ...
Theorem rename_ok: spec.
Proof.
 . . .
Qed.

Coq proof checker

OK?

Coq extraction

Haskell FUSE driver
and libraries

Haskell code for FSCQ

Haskell compiler

FSCQ's FUSE file server

Linux kernel

rename()
FUSE
upcall

Disk reads,
writes, and syncs

Disk

Figure 1: Overview of FSCQ’s implementation. Rectangu-
lar boxes denote source code; rounded boxes denote processes.
Shaded boxes denote source code written by hand. The dashed
line denotes the Haskell compiler producing an executable bi-
nary for FSCQ’s FUSE file server.

the FSCQ file system, which includes a simple write-ahead log and
which uses asynchronous disk writes.

The next section of this article gives an overview of our system ar-
chitecture, including implementation and proof. Then we introduce
CHL, our approach to verifying storage programs that may crash.
Afterward, we discuss our prototype file-system implementation
FSCQ that we verified with CHL, and we evaluate it in terms of
performance, correctness, and other desirable qualities.

2. SYSTEM OVERVIEW
We have implemented the CHL specification framework with

the widely used Coq proof assistant [8], which provides a sin-
gle programming language for both proof and implementation.
The source code is available at https://github.com/mit-pdos/
fscq-impl. Figure 1 shows the components involved in the im-
plementation. CHL is a small specification language embedded
in Coq that allows a file-system developer to write specifications
that include crash conditions and recovery procedures, and to prove
that implementations meet these specifications. We have stated the
semantics of CHL and proven it sound in Coq.

We implemented and certified FSCQ using CHL. That is, we
wrote specifications for a subset of the POSIX system calls using
CHL, implemented those calls inside of Coq, and proved that the
implementation of each call meets its specification. We devoted
substantial effort to building reusable proof automation for CHL.
However, writing specifications and proofs still took a significant
amount of time, compared to the time spent writing the implementa-
tion.

As a standard of completeness for FSCQ, we aimed for the same
features as the xv6 file system [9], a teaching operating system

that implements the Unix v6 file system with write-ahead logging.
FSCQ supports fewer features than today’s Unix file systems; for
example, it lacks support for multiprocessors and deferred durability
(i.e., fsync). However, it provides the core POSIX file-system
calls, including support for large files using indirect blocks, nested
directories, and rename.

Using Coq’s extraction feature, we do automatic translation of
the Coq code for FSCQ into a Haskell program. We run this gener-
ated implementation combined with a small (uncertified) Haskell
driver as a FUSE [12] user-level file server. This implementation
strategy allows us to run unmodified Unix applications but pulls in
Haskell, our Haskell driver, and the Haskell FUSE library as trusted
components.

3. CRASH HOARE LOGIC
Our goal is to allow developers to certify the correctness of a

storage system formally—that is, to prove that it functions correctly
during normal operation and that it recovers properly from any pos-
sible crashes. As mentioned in the abstract, a file system might
forget to zero out the contents of newly allocated directory or in-
direct blocks, leading to corruption during normal operation, or it
might perform disk writes without sufficient barriers, leading to disk
contents that might be unrecoverable. Prior work has shown that
even mature file systems in the Linux kernel have such bugs during
normal operation [24] and in crash recovery [38].

To prove that an implementation meets its specification, we must
have a way for the developer to declare which behaviors are permis-
sible under crashes. To do so, we extend Hoare logic [16], where
specifications are of the form {P} procedure {Q}. Here, procedure
could be a sequence of disk operations (e.g., read and write), in-
terspersed with computation, that manipulates the persistent state
on disk, like the implementation of the rename system call or a
lower-level operation like allocating a disk block. P corresponds
to the precondition that should hold before procedure is run, and
Q is the postcondition. To prove that a specification is correct, we
must prove that procedure establishes Q, assuming P holds before
invoking procedure. In our rename system call example, P might
require that the file system be represented by some tree t, and Q
might promise that the resulting file system is represented by a
modified tree t′ reflecting the rename operation.

Hoare logic is insufficient to reason about crashes, because a
crash may cause procedure to stop at any point in its execution and
may leave the disk in a state where Q does not hold (e.g., in the
rename example, the new file name has been created already, but
the old file name has not yet been removed). Furthermore, if the
computer reboots, it often runs a recovery procedure (such as fsck)
before resuming normal operation. Hoare logic does not provide a
notion that at any point during procedure’s execution, a recovery
procedure may run. The rest of this section describes how CHL
extends Hoare logic to handle crashes.

Traditional Hoare logic distinguishes between partial correctness,
where we prove that terminating programs give correct answers,
and total correctness, where we also prove termination. We use
Coq’s built-in termination checker to guarantee that our system
calls always finish, when no crashes occur. However, we model
cases where a program still runs forever, because it keeps crashing
and then crashing again during recovery, ad infinitum. For that
reason, our specifications can be interpreted as total correctness for
crash-free executions and partial correctness for crashing executions,
which makes sense, since the underlying hardware platform refuses
to give the programmer a way to guarantee normal termination in
the presence of crashes.

https://github.com/mit-pdos/fscq-impl
https://github.com/mit-pdos/fscq-impl

3.1 Example
Many file-system operations must update two or more disk blocks

atomically. For example, when creating a file, the file system must
both mark an inode as allocated as well as update the directory in
which the file is created (to record the file name with the allocated
inode number). To ensure correct behavior under crashes, a common
approach is to use a write-ahead log. Logging guarantees that, if
a file-system operation crashed while applying its changes to the
disk, then after a crash, a recovery procedure can finish the job by
applying the log contents. Write-ahead logging makes it possible to
avoid the undesirable intermediate state where the inode is allocated
but not recorded in the directory, effectively losing an inode. Many
file systems, including widely used ones like Linux’s ext4 [34],
employ logging exactly for this reason.

def atomic_two_write(a1, v1, a2, v2):
log_begin()
log_write(a1, v1)
log_write(a2, v2)
log_commit()

Figure 2: Pseudocode of atomic_two_write

The simple procedure shown in Figure 2 captures the essence of
file-system calls that must update two or more blocks. The procedure
performs two disk writes using a write-ahead log, which supplies
the log_begin, log_commit, and log_write APIs. The procedure
log_write appends a block’s content to an in-memory log, instead
of updating the disk block in place. The procedure log_commit
writes the log to disk, writes a commit record, and then copies the
block contents from the log to the blocks’ locations on disk. If this
procedure crashes and the system reboots, the recovery procedure
runs. The recovery procedure looks for the commit record. If there
is a commit record, it completes the operation by copying the block
contents from the log into the proper locations and then cleans the
log. If there is no commit record, then the recovery procedure just
cleans the log.

If there is a crash during recovery, then after reboot the recovery
procedure runs again. In principle, this may happen several times.
If the recovery finishes, however, then either both blocks have been
updated or neither has. Thus, in the atomic_two_write procedure
from Figure 2, the write-ahead log guarantees that either both writes
happen or neither does, no matter when and how many crashes
happen.

CHL makes it possible to write specifications for procedures such
as atomic_two_write and the write-ahead logging system, as we
will explain in the rest of the section.

3.2 Crash conditions
CHL needs a way for developers to write down predicates about

disk states, such as a description of the possible intermediate states
where a crash could occur. To do this, CHL extends Hoare logic
with crash conditions, similar in spirit to prior work on fail-stop
processors [33, §3] and fault conditions from concurrent work [28],
but formalized precisely to allow for executable implementations
and machine-checked proofs.

For modularity, CHL should allow reasoning about just one part
of the disk, rather than having to specify the contents of the entire
disk at all times. For example, we want to specify what happens
with the two blocks that atomic_two_write updates and not have
to say anything about the rest of the disk. To do this, CHL employs
separation logic [30], which is a way of combining predicates on
disjoint parts of a store (in our case, the disk). The basic predicate
in separation logic is a points-to relation, written as a 7→ v, which

means that address a has value v. Given two predicates x and y,
separation logic allows CHL to produce a combined predicate x ⋆ y.
The ⋆ operator means that the disk can be split into two disjoint
parts, where one satisfies the x predicate, and the other satisfies y.

To reason about the behavior of a procedure in the presence
of crashes, CHL allows a developer to capture both the state at
the end of the procedure’s crash-free execution and the interme-
diate states during the procedure’s execution in which a crash
could occur. For example, Figure 3 shows the CHL specification
for FSCQ’s disk_write. (In our implementation of CHL, these
specifications are written in Coq code; we show here an easier-
to-read version.) We will describe the precise notation shortly,
but for now, note that the specification has four parts: the proce-
dure about which we are reasoning, disk_write(a, v); the pre-
condition, disk: a 7→ ⟨v0, vs⟩ ⋆ other_blocks; the postcondition
if there are no crashes, disk: a 7→ ⟨v, [v0]⊕ vs⟩ ⋆ other_blocks;
and the crash condition, disk: a 7→ ⟨v0, vs⟩ ⋆ other_blocks ∨ a 7→
⟨v, [v0]⊕ vs⟩ ⋆ other_blocks. Moreover, note that the crash con-
dition specifies that disk_write could crash in two possible states
(either before making the write or after). In all three logical condi-
tions, other_blocks stands for the arbitrary contents of all other disk
blocks beside a, which should be preserved by this operation, even
in case of a crash.

SPEC disk_write(a, v)
PRE disk: a 7→ ⟨v0, vs⟩ ⋆ other_blocks
POST disk: a 7→ ⟨v, [v0]⊕ vs⟩ ⋆ other_blocks
CRASH disk: a 7→ ⟨v0, vs⟩ ⋆ other_blocks ∨

a 7→ ⟨v, [v0]⊕ vs⟩) ⋆ other_blocks

Figure 3: Specification for disk_write

The specification in Figure 3 captures asynchronous writes. To
do so, CHL models the disk as a (partial) function from a block
number to a tuple, ⟨v,vs⟩, consisting of the last-written value v and a
set of previous values vs, any of which could appear on disk after a
crash. Block numbers greater than the size of the disk do not map to
anything. Reading from a block returns the last-written value, since
even if there are previous values that might appear after a crash, in
the absence of a crash a read should return the last write. Writing
to a block makes the new value the last-written value and adds the
old last-written value to the set of previous values. Reading or
writing a block number that does not exist causes the system to “fail”
(as opposed to finishing or crashing). Finally, CHL’s disk model
supports a sync operation, which forces the disk to flush pending
writes to persistent storage, modeled in the postcondition for sync
by discarding all previous values.

Returning to Figure 3, the disk_write specification asserts through
the precondition that the address being written, a, must be valid (i.e.,
within the disk’s size), by stating that address a points to some
value ⟨v0, vs⟩ on disk. The specification’s postcondition asserts that
the block being modified will contain the new value ⟨v, [v0]⊕ vs⟩;
that is, the new last-written value is v, and v0 is added to the
set of previous values. The specification also asserts through the
crash condition that disk_write could crash in a state that satisfies
a 7→ ⟨v0, vs⟩ ⋆ other_blocks ∨ a 7→ ⟨v, [v0]⊕ vs⟩ ⋆ other_blocks,
i.e., either the write did not happen (a still has ⟨v0, vs⟩), or it did (a
has ⟨v, [v0]⊕ vs⟩). Finally, the specification asserts that the rest of
the disk is unaffected: if other disk blocks satisfied some predicate
other_blocks before disk_write, they will still satisfy the same
predicate afterwards.

One subtlety of CHL’s crash conditions is that they describe the
state of the disk just before the crash occurs, rather than just after.

Right after a crash, CHL’s disk model specifies that each block
nondeterministically chooses one value from the set of possible
values before the crash. For instance, the first line of Figure 3’s
crash condition says that the disk still “contains” all previous writes,
represented by ⟨v0,vs⟩, rather than a specific value that persisted
across the crash, chosen out of [v0]⊕vs. This choice of representing
the state before the crash rather than after the crash allows the crash
condition to be similar to the pre- and postconditions. For example,
in Figure 3, the state of other sectors just before a crash matches the
other_blocks predicate, as in the pre- and postconditions. However,
describing the state after the crash would require a more complex
predicate (e.g., if other_blocks contains unsynced disk writes, the
state after the crash must choose one of the possible values). Making
crash conditions similar to pre- and postconditions is good for proof
automation.

The specification of disk_write captures two important behav-
iors of real disks—that the disk controller can defer flushing pend-
ing writes to persistent storage and can reorder them—in order to
achieve good performance. CHL could model a simpler synchronous
disk by specifying that a points to a single value (instead of a set of
values) and changing the crash condition to say that either a points
to the new value (a 7→ v) or a points to the old value (a 7→ v0). This
change would simplify proofs, but this model of a disk would be
accurate only if the disk were running in synchronous mode with no
write buffering, which achieves lower performance.

The disk_write specification states that blocks are written atom-
ically; that is, after a crash, a block must contain either the last-
written value or one of the previous values, and partial block writes
are not allowed. This is a common assumption made by file systems,
as long as each block is exactly one sector, and we believe it matches
the behavior of many disks in practice (modern disks often have
4 KB sectors). Using CHL, we could capture the notion of partial
sector writes by specifying a more complicated crash condition, but
the specification shown here matches the common assumption. We
leave to future work the question of how to build a certified file
system without that assumption.

Much like other Hoare-logic-based approaches, CHL requires
developers to write a complete specification for every procedure, in-
cluding internal ones (e.g., allocating an object from a free bitmap).
This requires stating precise preconditions and postconditions. In
CHL, developers must also write a crash condition for every proce-
dure. In practice, we have found that the crash conditions are often
simpler to state than the pre- and postconditions. For example, in
FSCQ, most crash conditions in layers above the log simply state
that there is an active (uncommitted) transaction; only the top-level
system-call code begins and commits transactions.

3.3 Logical address spaces
The above example illustrates how CHL can specify predicates

about disk contents, but file systems often need to express simi-
lar predicates at other levels of abstraction as well. Consider the
Unix pwrite system call. Its specification should be similar to
disk_write, except that it should describe offsets and values within
the file’s contents, rather than block numbers and block values on
disk. Expressing this specification directly in terms of disk contents
is tedious. For example, describing pwrite might require saying
that we allocated a new block from the bitmap allocator, grew the
inode, perhaps allocated an indirect block, and modified some disk
block that happens to correspond to the correct offset within the
file. Writing such complex specifications is also error-prone, which
can result in significant wasted effort in trying to prove an incorrect
spec.

To capture such high-level abstractions in a concise manner, we

observe that many of these abstractions deal with logical address
spaces. For example, the disk is an address space from disk-block
numbers to disk-block contents; the inode layer is an address space
from inode numbers to inode structures; each file is a logical address
space from offsets to data within that file; and a directory is a logical
address space from file names to inode numbers. Building on this
observation, CHL generalizes the separation logic for reasoning
about the disk to similarly reason about higher-level address spaces
like files, directories, or the logical disk contents in a logging system.

SPEC atomic_two_write(a1, v1, a2, v2)
PRE disk: log_rep(NoTxn, start_state)

start_state: a1 7→ vx ⋆ a2 7→ vy ⋆ others
POST disk: log_rep(NoTxn, new_state)

new_state: a1 7→ v1 ⋆ a2 7→ v2 ⋆ others
CRASH disk: log_intact(start_state, new_state)

Figure 4: Specification for atomic_two_write

As an example of address spaces, consider the specification of
atomic_two_write, shown in Figure 4. Rather than describe how
atomic_two_write modifies the on-disk data structures, the speci-
fication introduces new address spaces, start_state and new_state,
which correspond to the contents of the logical disk provided by
the logging system. Logical address spaces allow the developer of
the logging system to state a clean specification, which provides
the abstraction of a simple, synchronous disk to higher layers in the
file system. Developers of higher layers can then largely ignore the
details of the underlying asynchronous disk.

Specifically, in the precondition, a1 7→ vx applies to the address
space representing the starting contents of the logical disk, and
in the postcondition, a1 7→ v1 applies to the new contents of the
logical disk. Like the physical disk, these address spaces are partial
functions from addresses to values (in this case, mapping 64-bit
block numbers to 4 KB block values). Unlike the physical disk, the
logical disk address space provided by the logging system associates
a single value with each block, rather than a set of values, because the
transaction system exports a sound synchronous interface, proven
correct on top of the asynchronous interface below. Note how we
use a variable others to stand for untouched disk addresses in the
logical disk, just as we did for the physical disk in Figure 3.

Crucial to such a specification are explicit connections between
address spaces. In Figure 4, we use a predicate log_rep, whose
definition we elide here, but which captures how to map a higher-
level state into a set of permissible lower-level states. For this
example of a logging layer, the predicate maps a “virtual” disk
into a “physical” disk that includes a log. Such predicates may
take additional arguments, as with the NoTxn argument that we
use here to indicate that the logging layer is in a quiescent state,
between transactions. This technique for connecting logical layers
generalizes to stacks of several layers, as naturally appear in a file
system.

The crash condition of atomic_two_write, from Figure 4, de-
scribes all of the states in which atomic_two_write could crash
using log_intact(d1, d2), which stands for all possible log_rep
states that recover to transaction states d1 or d2. Using log_intact
allows us to capture all possible crash states concisely, including
states that can appear deep inside any procedure that atomic_two_write
might call (e.g., crashes inside log_commit).

3.4 Recovery execution semantics
Crash conditions and address spaces allow us to specify the pos-

sible states in which the computer might crash in the middle of a

procedure’s execution. We also need a way to reason about recovery,
including crashes during recovery.

For example, we want to argue that a transaction provides all-
or-nothing atomicity: if atomic_two_write crashes prior to in-
voking log_commit, none of the calls to log_write will be ap-
plied; after log_commit returns, all of them will be applied; and
if atomic_two_write crashes during log_commit, either all or none
of them will take effect. To achieve this property, the transaction
system must run log_recover after every crash to roll forward any
committed transaction, including after crashes during log_recover
itself.

The specification of the log_recover procedure is shown in Fig-
ure 5. It says that, starting from any state matching log_intact(last_state, committed_state),
log_recover will either roll back the transaction to last_state or
will roll forward a committed transaction to committed_state. Fur-
thermore, the fact that log_recover’s crash condition implies the
precondition indicates that log_recover is idempotent, meaning
that it can be safely restarted after a crash to achieve the same post-
condition. (Strictly speaking, this sense of idempotence differs from
the mathematical notion, but follows conventions established in
early work on fault-tolerant storage systems [14].)

SPEC log_recover()
PRE disk: log_intact(last_state, committed_state)
POST disk: log_rep(NoTxn, last_state) ∨

log_rep(NoTxn, committed_state)
CRASH disk: log_intact(last_state, committed_state)

Figure 5: Specification of log_recover

To formalize the requirement that log_recover must run after a
crash, CHL provides a recovery execution semantics. The recovery
semantics talks about two procedures executing (a normal procedure
and a recovery procedure) and producing either a failure, a com-
pleted state (after finishing the normal procedure), or a recovered
state (after finishing the recovery procedure). This regime models
the notion that the normal procedure tries to execute and reach a
completed state, but if the system crashes, it starts running the re-
covery procedure (perhaps multiple times if there are crashes during
recovery), which produces a recovered state.

SPEC atomic_two_write(a1, v1, a2, v2)≫ log_recover()
PRE disk: log_rep(NoTxn, start_state)

start_state: a1 7→ vx ⋆ a2 7→ vy ⋆ others
POST disk: log_rep(NoTxn, new_state) ∨

(ret = recovered ∧ log_rep(NoTxn, start_state))
new_state: a1 7→ v1 ⋆ a2 7→ v2 ⋆ others

Figure 6: Specification for atomic_two_write with recovery.
The ≫ operator indicates the combination of a regular proce-
dure and a recovery procedure.

Figure 6 shows how to extend the atomic_two_write specifi-
cation to include recovery execution using the ≫ notation. The
postcondition indicates that, if atomic_two_write finishes without
crashing, both blocks were updated, and if one or more crashes
occurred, with log_recover running after each crash, either both
blocks were updated or neither was. The special ret variable indi-
cates whether the system reached a completed or a recovered state
and in this case enables callers of atomic_two_write to conclude
that, if atomic_two_write completed without crashes, it updated
both blocks (i.e., updating none of the blocks is allowed only if the
system crashed and recovered).

Note that distinguishing the completed and recovered states al-
lows the specification to state stronger properties for completion
than recovery. Also note that the recovery-execution version of
atomic_two_write does not have a crash condition: if the computer
crashes, it will run log_recover again, and the specification de-
scribes what happens when the computer eventually stops crashing
and log_recover can run to completion.

In this example, the recovery procedure is just log_recover, but
the recovery procedure of a system built on top of the transaction
system may be composed of several recovery procedures. For exam-
ple, recovery in a file system consists of first reading the superblock
from disk to locate the log and then running log_recover.

3.5 Proving
In order to prove the correctness of a procedure, CHL follows

the standard Hoare-logic approach of decomposing the procedure
into smaller units (e.g., control-flow constructs or lower-level func-
tions with already-proven specifications) and chaining their pre-
and postconditions according to the procedure’s control flow. Fig-
ure 7 shows an example of this for a simple procedure; much of
this chaining is automated in CHL. The crash condition for a pro-
cedure is the disjunction (i.e., “or”) of the crash conditions of all
components of that procedure, as illustrated by the red arrows in the
figure. Finally, proving the correctness of a procedure together with
its recovery function requires proving that the procedure’s crash
condition implies the recovery precondition, and that recovery itself
is idempotent.

4. PROTOTYPE IMPLEMENTATION
The implementation follows the organization shown in Figure 1

in §1. FSCQ and CHL are implemented using Coq, which provides
a single programming language for implementations, specifications,
and proofs. Figure 8 breaks down the source code of FSCQ and CHL.
Because Coq provides a single language, proofs are interleaved with
source code and are difficult to separate. The development effort
took several researchers about a year and a half; most of it was spent
on proofs and specifications. Checking the proofs takes 11 hours on
an Intel i7-3667U 2.00 GHz CPU with 8 GB DRAM. The proofs are
complete; we used Coq’s Print Assumptions command to verify
that FSCQ did not introduce any unproven axioms or assumptions.

CHL. CHL is implemented as a domain-specific language in-
side of Coq, much like a macro language (or, in the more technical
language of proof assistants, we use a shallow embedding). We
specified the semantics of this language and proved that it is sound.
For example, we proved the standard Hoare-logic specifications
for the for and if combinators. We also proved the specifica-
tions of disk_read, disk_write (whose spec is in Figure 3 in §3),
and disk_sync manually, starting from CHL’s execution and crash
model. Much of the automation (e.g., the chaining of pre- and
postconditions) is implemented using Ltac, Coq’s domain-specific
language for proof search.

FSCQ. We implemented FSCQ also inside of Coq, writing
the specifications using CHL. We proved that the implementation
obeys the specifications, starting from the basic operations in CHL.
FSCQ’s write-ahead log simplified specification and implementation
tremendously, because much of the detailed reasoning about crashes
is localized in the write-ahead log.

FSCQ file server. We produced running code by using Coq’s
extraction mechanism to generate equivalent Haskell code from
our Coq implementation. We wrote a driver program in Haskell
(400 lines of code) along with an efficient Haskell reimplementation
of fixed-size words and disk-block operations (350 more lines of

log_recover

PRE

POST

RECOVER

if bnum >= NDIRECT:
 indirect = log_read(inode.blocks[NDIRECT])
 return indirect[bnum - NDIRECT]
else:
 return inode.blocks[bnum]

if

log_read

return

return

Figure 7: Example control flow of a CHL procedure that looks up the address of a block in an inode, with support for indirect blocks.
(The actual code in FSCQ checks for some additional error cases.) Gray boxes represent the specifications of procedures. The dark
red box represents the recovery procedure. Green and pink boxes represent preconditions and crash conditions, respectively. Blue
boxes represent postconditions. Dashed arrows represent logical implication.

Component Lines of code

Fixed-width words 2,709
CHL infrastructure 5,895
Proof automation 2,304
On-disk data structures 7,571
Buffer cache 662
Write-ahead logging 3,191
Bitmap allocator 441
Inodes and files 3,317
Directories 4,451
FSCQ’s top-level API 1,198

Total 31,739

Figure 8: Combined lines of code and proof for FSCQ compo-
nents

Haskell). The extracted code, together with this driver and word
library, allows us to efficiently execute our certified implementation.

To allow applications to use FSCQ, we exported FSCQ as a
FUSE file system, using the Haskell FUSE bindings [2] in our
Haskell FSCQ driver. We mount this FUSE FSCQ file system
on Linux, allowing Linux applications to use FSCQ without any
modifications. Compiling the Coq and Haskell code to produce the
FUSE executable, without checking proofs, takes a little under two
minutes.

Limitations. Although extraction to Haskell simplifies the pro-
cess of generating executable code from our Coq implementation, it
adds the Haskell compiler and runtime into FSCQ’s trusted comput-
ing base. In other words, a bug in the Haskell compiler or runtime
could subvert any of the guarantees that we prove about FSCQ.
We believe this is a reasonable trade-off, since our goal is to cer-
tify higher-level properties of the file system, and other projects
have shown that it is possible to extend certification all the way to
assembly [6, 15, 22].

Another limitation of the FSCQ prototype lies in dealing with
in-memory state in Coq, which is a functional language. CHL’s
execution model provides a mutable disk but gives no primitives for
accessing mutable memory. Our approach is to pass an in-memory
state variable explicitly through all FSCQ functions. That variable
contains the current buffer-cache state (a map from address to cached
block value), as well as the current transaction state, if present (an
in-memory log of blocks written in the current transaction). In the
future, we want to support multiprocessors where several threads
share a mutable buffer cache, and we will address this limitation.

A limitation of FSCQ’s write-ahead log is that it does not guar-
antee how much log space is available to commit a transaction; if
a transaction performs too many writes, log_commit can return an
error. Some file systems deal with this by reasoning about how many
writes each transaction can generate and ensuring that the log has
sufficient space before starting a transaction. We have not done this
in FSCQ yet, although it should be possible to expose the number
of available log entries in the log’s representation invariant. Instead,
we allow log_commit to return an error, in which case the entire
transaction (e.g., system call) aborts and returns an error.

5. EVALUATION
To evaluate FSCQ, this section answers several questions:

• Is FSCQ complete enough for realistic applications, and can
it achieve reasonable performance? (§5.1)

• What kinds of bugs do FSCQ’s theorems preclude? (§5.2)

• Does FSCQ recover from crashes? (§5.3)

• How difficult is it to build and evolve the code and proofs for
FSCQ? (§5.4)

5.1 Application performance
FSCQ is complete enough that we can use FSCQ for software

development, running a mail server, etc. For example, we have used
FSCQ with the GNU coreutils (ls, grep, etc.), editors (vim and
emacs), software development tools (git, gcc, make, and so on), and
running a qmail-like mail server. Applications that, for instance, use
extended attributes or create very large files do not work on FSCQ,
but there is no fundamental reason why they could not be made to
work.

Experimental setup. We used a set of applications representing
typical software development: cloning a Git repository, compiling
the sources of the xv6 file system and the LFS benchmark [31] using
make, running the LFS benchmark, and deleting all of the files to
clean up at the end. We also run mailbench, a qmail-like mail server
from the sv6 operating system [7]. This models a real mail server,
where using FSCQ would ensure email is not lost even in case of
crashes.

We compare FSCQ’s performance to two other file systems: the
Linux ext4 file system and the file system from the xv6 operating
system (chosen because its design is similar to FSCQ’s). We mod-
ified xv6 to use asynchronous disk writes and ported the xv6 file

 0

 5

 10

 15

 20

 25

git clone make xv6 make lfs largefile smallfile cleanup mailbench

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s) fscq
xv6
ext4-fuse
ext4
ext4-journal-async
ext4-ordered
ext4-async

Figure 9: Running time for each phase of the application benchmark suite, and for delivering 200 messages with mailbench

system to FUSE so that we can run it in the same way as FSCQ. Fi-
nally, to evaluate the overhead of FUSE, we also run the experiments
on top of ext4 mounted via FUSE.

To make a meaningful comparison, we run the file systems in
synchronous mode; i.e., every system call commits to disk before
returning. (Disk writes within a system call can be asynchronous,
as long as they are synced at the end.) For FSCQ and xv6, this is
the standard mode of operation. For ext4, we use the data=journal
and sync options. Although this is not the default mode of opera-
tion for ext4, the focus of this evaluation is on whether FSCQ can
achieve good performance for its design, not whether its simple
design can match that of a sophisticated file system like ext4. To
give a sense of how much performance can be obtained through
further optimizations or spec changes, we measure ext4 in three
additional configurations: the journal_async_commit mode, which
uses checksums to commit in one disk sync instead of two (“ext4-
journal-async” in our experiments); the data=ordered mode, which
is incompatible with journal_async_commit (“ext4-ordered”); and
the default data=ordered and async mode, which does not sync to
disk on every system call (“ext4-async”).

We ran all of these experiments on a quad-core Intel i7-3667U
2.00 GHz CPU with 8 GB DRAM running Linux 3.19. The file sys-
tem was stored on a separate partition on an Intel SSDSCMMW180A3L
flash SSD. Running the experiments on an SSD ensures that poten-
tial file-system CPU bottlenecks are not masked by a slow rotational
disk. We compiled FSCQ’s Haskell code using GHC 7.10.2.

Results. The results of running our experiments are shown in
Figure 9. The first conclusion is that FSCQ’s performance is close
to that of the xv6 file system. The small gap between FSCQ and xv6
is due to the fact that FSCQ’s Haskell implementation uses about
4× more CPU time than xv6’s. This can be reduced by generating C
or assembly code instead of Haskell. Second, FUSE imposes little
overhead, judging by the difference between ext4 and ext4-fuse.
Third, both FSCQ and xv6 lag behind ext4. This is due to the fact
that our benchmarks are bottlenecked by syncs to the SSD, and that
ext4 has a more efficient logging design that defers applying the log
contents until the log fills up, instead of at each commit. As a result,
ext4 can commit a transaction with two disk syncs, compared to four
disk syncs for FSCQ and xv6. For example, mailbench requires 10
transactions per message, and the SSD can perform a sync in about
2.8 msec. This matches the observed performance of ext4 (64 msec
per message) and xv6 and FSCQ (103 and 118 msec per message
respectively).

Finally, there is room for even further optimizations: ext4’s
journal_async_commit commits with one disk sync instead of two,

achieving almost twice the throughput in some cases; data=ordered
avoids writing file data twice, achieving almost twice the through-
put in other cases; and asynchronous mode achieves much higher
throughput by avoiding disk syncs altogether (at the cost of not
persisting data right away).

5.2 Bug discussion
To understand whether FSCQ eliminates real problems that arise

in current file systems, we consider broad categories of bugs that
have been found in real-world file systems [24, 38] and discuss
whether FSCQ’s theorems eliminate similar bugs:

1. Violating file or directory invariants, such as all link counts
adding up [36] or the absence of directory cycles [26].

2. Improper handling of unexpected corner cases, such as run-
ning out of blocks during rename [13].

3. Mistakes in logging and recovery logic, such as not issuing
disk writes and syncs in the right order [20].

4. Misusing the logging API, such as freeing an indirect block
and clearing the pointer to it in different transactions [19].

5. Low-level programming errors, such as integer overflows [21]
or double frees [4].

6. Resource allocation bugs, such as losing disk blocks [37] or
returning ENOSPC when there is available space [27].

7. Returning incorrect error codes [5].

8. Bugs due to concurrent execution of system calls, such as
races between two threads allocating blocks [25].

Some categories of bugs (#1–5) are eliminated by FSCQ’s theo-
rems and proofs. For example, FSCQ’s representation invariant for
the entire file system enforces a tree shape for it, and the specifica-
tion guarantees that it will remain a tree (without cycles) after every
system call.

With regards to resource allocation (#6), FSCQ guarantees re-
sources are never lost, but our prototype’s specification does not
require that the system be out of resources in order to return an
out-of-resource error. Strengthening the specification (and proving
it) would eliminate this class of bugs.

Incorrect error codes (#7) can be a problem for our FSCQ pro-
totype in cases where we did not specify what exact code (e.g.,
EINVAL or ENOTDIR) should be returned. Extending the specification

to include specific error codes could avoid these bugs, at the cost of
more complex specifications and proofs. On the other hand, FSCQ
can never have a bug where an operation fails without an error code
being returned.

Multi-processor bugs (#8) are out of scope for our FSCQ proto-
type, because it does not support multi-threading.

5.3 Crash recovery
We proved that FSCQ implements its specification, but in prin-

ciple it is possible that the specification is incomplete or that our
unproven code (e.g., the FUSE driver) has bugs. To do an end-to-end
check, we ran two experiments. First, we ran fsstress from the
Linux Test Project, which issues random file-system operations; this
did not uncover any problems. Second, we experimentally induced
crashes and verified that each resulting disk image after recovery is
consistent.

In particular, we created an empty file system using mkfs, mounted
it using FSCQ’s FUSE interface, and then ran a workload on the
file system. The workload creates two files, writes data to the files,
creates a directory and a subdirectory under it, moves a file into
each directory, moves the subdirectory to the root directory, appends
more data to one of the files, and then deletes the other file. During
the workload, we recorded all disk writes and syncs. After the work-
load completed, we unmounted the file system and constructed all
possible crash states. We did this by taking a prefix of the writes up
to some sync, combined with every possible subset of writes from
that sync to the next sync. For the workload described above, this
produced 320 distinct crash states.

For each crash state, we remounted the file system (which runs
the recovery procedure) and then ran a script to examine the state
of the file system, looking at directory structure, file contents, and
the number of free blocks and inodes. For the above workload, this
generates just 10 distinct logical states (i.e., distinct outputs from
the examination script). Based on a manual inspection of each of
these states, we conclude that all of them are consistent with what
a POSIX application should expect. This suggests that FSCQ’s
specifications, as well as the unverified components, are likely to be
correct.

5.4 Development effort
The final question is, how much effort is involved in developing

FSCQ? One metric is the size of the FSCQ code base, reported in
Figure 8; FSCQ consists of about 30,000 lines of code. In compar-
ison, the xv6 file system is about 3,000 lines of C code, so FSCQ
is about 10× larger, but this includes a significant amount of CHL
infrastructure, including libraries and proof machinery, which is not
FSCQ-specific.

A more interesting question is how much effort is required to mod-
ify FSCQ, after an initial version has been developed and certified.
Does adding a new feature to FSCQ require reproving everything,
or is the work commensurate with the scale of the modifications
required to support the new feature? To answer this question, the
rest of this section presents several case studies, where we had to
add a significant feature to FSCQ after the initial design was already
complete.

Asynchronous disk writes. We initially developed FSCQ to
operate with synchronous disk writes. Implementing asynchronous
disk writes required changing about 1,000 lines of code in the CHL
infrastructure and changing over half of the implementations and
proofs for the write-ahead log. However, layers above the log did not
require any changes, since the log provided the same synchronous
disk abstraction in both cases.

Buffer cache. We added a buffer cache to FSCQ after we had al-

ready built the write-ahead log and several layers above it. Since Coq
is a pure functional language, keeping buffer-cache state required
passing the current buffer-cache object to and from all functions.
Incorporating the buffer cache required changing about 300 lines
of code and proof in the log, to pass around the buffer-cache state,
to access disk via the buffer cache and to reason about disk state
in terms of buffer-cache invariants. We also had to make similar
straightforward changes to about 600 lines of code and proof for
components above the log.

Optimizing log layout. The initial design of FSCQ’s write-ahead
log used one disk block to store the length of the on-disk log and
another block to store a commit bit, indicating whether log recovery
should replay the log contents after a crash. Once we introduced
asynchronous writes, storing these fields separately necessitated an
additional disk sync between writing the length field and writing the
commit bit. To avoid this sync, we modified the logging protocol
slightly: the length field was now also the commit bit, and the log
is applied on recovery iff the length is nonzero. Implementing this
change required modifying about 50 lines of code and about 100
lines of proof.

5.5 Evaluation summary
Although FSCQ is not as complete and high-performance as

today’s high-end file systems, our results demonstrate that this is
largely due to FSCQ’s simple design. Furthermore, the case studies
in §5.4 indicate that one can improve FSCQ incrementally. In future
work we hope to improve FSCQ’s logging to batch transactions and
to log only metadata; we expect this will bring FSCQ’s performance
closer to that of ext4’s logging. The one exception to incremental
improvement is multiprocessor support, which may require global
changes and is an interesting direction for future research.

6. CONCLUSION
This paper’s contributions are CHL and a case study of applying

CHL to build FSCQ, the first certified crash-safe file system. CHL
allowed us to concisely and precisely specify the expected behavior
of FSCQ. Via this verification approach, we arrive at a machine-
checked proof that FSCQ avoids bugs that have a long history of
causing data loss in previous file systems. For this kind of critical
infrastructure, the cost of proving seems a reasonable price to pay.
We hope that others will find CHL useful for constructing crash-safe
storage systems.

Acknowledgments
Thanks to Nathan Beckmann, Butler Lampson, Robert Morris, and
the IronClad team for insightful discussions and feedback. Thanks
also to the anonymous reviewers for their comments, and to our
SOSP shepherd Herbert Bos and CACM Research Highlights editor
Martín Abadi. This research was supported in part by NSF awards
CNS-1053143 and CCF-1253229, by Google, and by CyberSecu-
rity@CSAIL.

7. REFERENCES
[1] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb,

L. O’Connor, J. Beeren, Y. Nagashima, J. Lim, T. Sewell,
J. Tuong, G. Keller, T. Murray, G. Klein, and G. Heiser.
Cogent: Verifying high-assurance file system
implementations. In Proceedings of the 21th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 175–188,
Atlanta, GA, Apr. 2016.

[2] J. Bobbio et al. Haskell bindings for the FUSE library, 2014.
https://github.com/m15k/hfuse.

[3] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,
and N. Zeldovich. Using Crash Hoare Logic for certifying the
FSCQ file system. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP),
Monterey, CA, Oct. 2015.

[4] D. Chinner. xfs: fix double free in
xlog_recover_commit_trans, Sept. 2014.
http://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
88b863db97a18a04c90ebd57d84e1b7863114dcb.

[5] D. Chinner. xfs: xfs_dir_fsync() returns positive errno, May
2014. https://git.kernel.org/cgit/linux/kernel/
git/stable/linux-stable.git/commit/?id=
43ec1460a2189fbee87980dd3d3e64cba2f11e1f.

[6] A. Chlipala. Mostly-automated verification of low-level
programs in computational separation logic. In Proceedings of
the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
234–245, San Jose, CA, June 2011.

[7] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler. The scalable commutativity rule: Designing
scalable software for multicore processors. In Proceedings of
the 24th ACM Symposium on Operating Systems
Principles (SOSP), pages 1–17, Farmington, PA, Nov. 2013.

[8] Coq development team. The Coq Proof Assistant Reference
Manual, Version 8.5pl1. INRIA, Apr. 2016.
http://coq.inria.fr/distrib/current/refman/.

[9] R. Cox, M. F. Kaashoek, and R. T. Morris. Xv6, a simple
Unix-like teaching operating system, 2014.
http://pdos.csail.mit.edu/6.828/2014/xv6.html.

[10] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a
verified flash file system: Transactions & garbage collection.
In Proceedings of the 7th Working Conference on Verified
Software: Theories, Tools and Experiments, San Francisco,
CA, July 2015.

[11] L. Freitas, J. Woodcock, and A. Butterfield. POSIX and the
verification grand challenge: A roadmap. In Proceedings of
13th IEEE International Conference on Engineering of
Complex Computer Systems, pages 153–162, Mar.–Apr. 2008.

[12] FUSE: Filesystem in userspace, 2013.
http://fuse.sourceforge.net/.

[13] A. Goldstein. ext4: handle errors in ext4_rename, Mar. 2011.
https://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
ef6078930263bfcdcfe4dddb2cd85254b4cf4f5c.

[14] J. Gray. Notes on data base operating systems. In R. Bayer,
R. M. Graham, and G. Seegmüller, editors, Operating
Systems: An Advanced Course, pages 393–481.
Springer-Verlag, London, UK, 1978.

[15] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad Apps: End-to-end security via
automated full-system verification. In Proceedings of the 11th
Symposium on Operating Systems Design and
Implementation (OSDI), pages 165–181, Broomfield, CO, Oct.
2014.

[16] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576–580,
Oct. 1969.

[17] IEEE (The Institute of Electrical and Electronics Engineers)

and The Open Group. The Open Group base specifications
issue 7, 2013 edition (POSIX.1-2008/Cor 1-2013), Apr. 2013.

[18] R. Joshi and G. J. Holzmann. A mini challenge: Build a
verifiable filesystem. Formal Aspects of Computing,
19(2):269–272, June 2007.

[19] J. Kara. ext3: Avoid filesystem corruption after a crash under
heavy delete load, July 2010.
https://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
f25f624263445785b94f39739a6339ba9ed3275d.

[20] J. Kara. jbd2: issue cache flush after checkpointing even with
internal journal, Mar. 2012.
http://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
79feb521a44705262d15cc819a4117a447b11ea7.

[21] J. Kara. ext4: fix overflow when updating superblock backups
after resize, Oct. 2014.
http://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
9378c6768e4fca48971e7b6a9075bc006eda981d.

[22] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, M. Norrish,
R. Kolanski, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In Proceedings of the
22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 207–220, Big Sky, MT, Oct. 2009.

[23] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, July 2009.

[24] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
S. Lu. A study of Linux file system evolution. In Proceedings
of the 11th USENIX Conference on File and Storage
Technologies (FAST), pages 31–44, San Jose, CA, Feb. 2013.

[25] F. Manana. Btrfs: fix race between writing free space cache
and trimming, Dec. 2014.
http://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
55507ce3612365a5173dfb080a4baf45d1ef8cd1.

[26] C. Mason. Btrfs: prevent loops in the directory tree when
creating snapshots, Nov. 2008.
http://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
ea9e8b11bd1252dcbc23afefcf1a52ec6aa3c113.

[27] A. Morton. [PATCH] ext2/ext3 -ENOSPC bug, Mar. 2004.
https://git.kernel.org/cgit/linux/kernel/git/
tglx/history.git/commit/?id=
5e9087ad3928c9d80cc62b583c3034f864b6d315.

[28] G. Ntzik, P. da Rocha Pinto, and P. Gardner. Fault-tolerant
resource reasoning. In Proceedings of the 13th Asian
Symposium on Programming Languages and Systems
(APLAS), Pohang, South Korea, Nov.–Dec. 2015.

[29] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All file
systems are not created equal: On the complexity of crafting
crash-consistent applications. In Proceedings of the 11th
Symposium on Operating Systems Design and
Implementation (OSDI), pages 433–448, Broomfield, CO, Oct.
2014.

[30] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science, pages 55–74,
Copenhagen, Denmark, July 2002.

[31] M. Rosenblum and J. Ousterhout. The design and

https://github.com/m15k/hfuse
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=88b863db97a18a04c90ebd57d84e1b7863114dcb
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=88b863db97a18a04c90ebd57d84e1b7863114dcb
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=88b863db97a18a04c90ebd57d84e1b7863114dcb
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=43ec1460a2189fbee87980dd3d3e64cba2f11e1f
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=43ec1460a2189fbee87980dd3d3e64cba2f11e1f
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=43ec1460a2189fbee87980dd3d3e64cba2f11e1f
http://coq.inria.fr/distrib/current/refman/
http://pdos.csail.mit.edu/6.828/2014/xv6.html
http://fuse.sourceforge.net/
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=ef6078930263bfcdcfe4dddb2cd85254b4cf4f5c
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=ef6078930263bfcdcfe4dddb2cd85254b4cf4f5c
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=ef6078930263bfcdcfe4dddb2cd85254b4cf4f5c
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=f25f624263445785b94f39739a6339ba9ed3275d
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=f25f624263445785b94f39739a6339ba9ed3275d
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=f25f624263445785b94f39739a6339ba9ed3275d
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=79feb521a44705262d15cc819a4117a447b11ea7
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=79feb521a44705262d15cc819a4117a447b11ea7
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=79feb521a44705262d15cc819a4117a447b11ea7
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9378c6768e4fca48971e7b6a9075bc006eda981d
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9378c6768e4fca48971e7b6a9075bc006eda981d
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9378c6768e4fca48971e7b6a9075bc006eda981d
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=55507ce3612365a5173dfb080a4baf45d1ef8cd1
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=55507ce3612365a5173dfb080a4baf45d1ef8cd1
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=55507ce3612365a5173dfb080a4baf45d1ef8cd1
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=ea9e8b11bd1252dcbc23afefcf1a52ec6aa3c113
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=ea9e8b11bd1252dcbc23afefcf1a52ec6aa3c113
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=ea9e8b11bd1252dcbc23afefcf1a52ec6aa3c113
https://git.kernel.org/cgit/linux/kernel/git/tglx/history.git/commit/?id=5e9087ad3928c9d80cc62b583c3034f864b6d315
https://git.kernel.org/cgit/linux/kernel/git/tglx/history.git/commit/?id=5e9087ad3928c9d80cc62b583c3034f864b6d315
https://git.kernel.org/cgit/linux/kernel/git/tglx/history.git/commit/?id=5e9087ad3928c9d80cc62b583c3034f864b6d315

implementation of a log-structured file system. In Proceedings
of the 13th ACM Symposium on Operating Systems
Principles (SOSP), pages 1–15, Pacific Grove, CA, Oct. 1991.

[32] G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif.
Development of a verified flash file system. In Proceedings of
the ABZ Conference, June 2014.

[33] R. D. Schlichting and F. B. Schneider. Fail-stop processors:
An approach to designing fault-tolerant computing systems.
ACM Transactions on Computer Systems, 1(3):222–238, 1983.

[34] S. C. Tweedie. Journaling the Linux ext2fs filesystem. In
Proceedings of the 4th Annual LinuxExpo, Durham, NC, May
1998.

[35] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock.
Jitk: A trustworthy in-kernel interpreter infrastructure. In
Proceedings of the 11th Symposium on Operating Systems
Design and Implementation (OSDI), pages 33–47, Broomfield,
CO, Oct. 2014.

[36] D. J. Wong. ext4: fix same-dir rename when inline data
directory overflows, Aug. 2014.
https://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
d80d448c6c5bdd32605b78a60fe8081d82d4da0f.

[37] M. Xie. Btrfs: fix broken free space cache after the system
crashed, June 2014.
https://git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
e570fd27f2c5d7eac3876bccf99e9838d7f911a3.

[38] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. eXplode: A
lightweight, general system for finding serious storage system
errors. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), pages 131–146,
Seattle, WA, Nov. 2006.

[39] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S.
Yang, B. W. Zhao, and S. Singh. Torturing databases for fun
and profit. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI), pages
449–464, Broomfield, CO, Oct. 2014.

https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=d80d448c6c5bdd32605b78a60fe8081d82d4da0f
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=d80d448c6c5bdd32605b78a60fe8081d82d4da0f
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=d80d448c6c5bdd32605b78a60fe8081d82d4da0f
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=e570fd27f2c5d7eac3876bccf99e9838d7f911a3
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=e570fd27f2c5d7eac3876bccf99e9838d7f911a3
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=e570fd27f2c5d7eac3876bccf99e9838d7f911a3

	Introduction
	System overview
	Crash Hoare Logic
	Example
	Crash conditions
	Logical address spaces
	Recovery execution semantics
	Proving

	Prototype implementation
	Evaluation
	Application performance
	Bug discussion
	Crash recovery
	Development effort
	Evaluation summary

	Conclusion
	References

