SPATIAL PERCEPTION AND MOVEMENT PLANNING IN THE
POSTERIOR PARIETAL CORTEX

by

PIETRO MAZZONI
B.S., Physics, University of California, San Diego (1988)

Submitted to the Department of Brain and Cognitive Sciences in Partial
Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1994

© 1994 Massachusetts Institute of Technology
All Rights Reserved

Signature of Author

Department of Brain and Cognitive Sciences
January 31st, 1994

Certified by ____

~

Richard A. Andersen
Professor of Brain and Cognitive Sciences
Thesis Supervisor

Accepted by N

Emilio Bizzi
Eugene McDermott Professor in the Brain and
Cognitive Sciences and Human Behavior

MASSACHUSETTS INSTI-Ute Head, Department of Brain and Cognitive Sciences

FEB 15 1994

Lionanics 1

ARCHIVES



SPATIAL PERCEPTION AND MOVEMENT PLANNING IN THE
POSTERIOR PARIETAL CORTEX

by
PIETRO MAZZONI

Submitted to the Department of Brain and Cognitive Sciences on
January 31st, 1994, in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy in Neuroscience

ABSTRACT

In this dissertation I describe a series of studies designed to
elucidate the role of the posterior parietal cortex (PPC) of the primate
brain in spatial perception and movement planning. In these studies
my collaborators and I examined these processes in the context of
sensorimotor integration, that is, the formulation of movement plans
based on specific sensory cues. We chose saccadic eye movements as
our model sensorimotor behavior. Saccades are high-speed eye
movements that redirect the line of sight from one point of interest in
the visual field to another. We used theoretical approaches involving
neural network models and experimental techniques consisting of
recording the activity of single neurons in the brains of awake
behaving monkeys.

Sensorimotor behaviors such as saccadic eye movements require a
set of transformations of the incoming signals. One such computation
is the transformation of the coordinate frame in which the location of a
sensory stimulus is encoded. I first review a series of neural network
models that were developed in our laboratory to model how such
transformations might be carried out in the PPC (Chapter 2). These
models showed that a set of neurons with the properties observed in
the PPC can support a distributed code of a stimuius’ spatial location
in a new coordinate frame, different from the reference frame of the
incoming signal. I then relate a study addressing the plausibility of
these neural networks as models of a biological structure such as the
PPC (Chapter 3). This study showed that more biologically plausible
versions of the original neural network can still implement coordinate
transformations in the manner suggested by the properties of PPC



neurons, thus strengthening the validity of this modelling approach in
the study of PPC function.

Another transformation required for spatial behavior is the
encoding of spatial cues obtained though different sensory modalities
into a single spatial signal. I first review the role of various nervous
system structures in encoding the locations of sound sources (Chapter
4). Next I describe experiments showing that the lateral intraparietal
area (area LIP) of the PPC contains neurons encoding the locations of
auditory as well as visual stimuli. The responses to auditory stimuli
are modulatcd by eye position in a manner that allows area LIP to
encode the locations of auditory and visual signals in a common
reference frame (Chapter 6).

The third issue I address is the formation of a motor plan. In one
set of experiments we asked whether area LIP is solely concerned with
sensory stimuli or whether it expresses any aspect of the movement
being planned (Chapter 7). We show that most neurons in this area
unambiguously encode the next planned saccade, establishing a direct
role of this area in movement planning. This result predicted that if a
monkey changed his saccade plan, the activity of its area LIP neurons
should reflect such a change of plan even when the monkey makes no
movement. When we tested this prediction experimentally we found
that the motor planning activity of most LIP neurons can be turned on
and off as the animal changes its movement plan, establishing that
this activity reflects the monkey’s covert intention even in the absence
of behavior (Chapter 8).

Finally, I show that temporary inactivation of the PPC produces
marked reversible deficits in a monkey’s ability to make saccades to
the remembered locations of visual stimuli, while producing only small
deficits in saccades performed under direct visual guidance (Chapter
9). These results suggest an essential role of the PPC in the
programming of saccades that are more difficult or that require
additional processing compared to ordinary visual saccades.
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Chapter 1 Introduction

Humans and many other animals most commonly shift their gaze
by making saccadic eye movements. Saccades are high-speed
movements that redirect the line of sight from one point of interest in
the visual field to another. In order to shift our gaze we must first
perceive a location in the visual field, formulate a motor plan, and
execute a saccade towards the selected location. Saccades thus require
sensorimotor integration, that is, the integration of sensory signals
encoding spatial locations and the formulation of movement plans
based on these signals.

The posterior parietal lobe of the primate brain has long been
considered important for sensorimotor behaviors such as saccades.
Specific areas within the posterior parietal cortex (PPC) appear to
compute sensorimotor transformations for the purpose of programming
the direction of gaze. In this thesis I describe several approaches we
used in our laboratory to understand the role of the PPC in the
production of saccadic eye movements. I report the results of
theoretical and experimental studies addressing the relationship
between neural activity in the PPC and some of the transformations of
neural signals required to perceive the location of a sensory stimulus
and to direct gaze towards it.

One class of operations inherent to any sensorimotor behavior are
coordinate transformations. The coordinates of a neural signal can in
general refer to any of a number of features encoded by that signal. If
a signal encodes a spatial location, then its coordinates are defined by
the reference frame relative to which the location is defined. Because
the sensory organs of many animals can move relative to other parts of
the animal’s body, spatial neural signals can be encoded in a variety of
coordinate frames. In the primate spatial information obtained via the
visual sense, for example, is originally encoded in a reference frame
based on the eyes, whereas the physical cues that inform the nervous

system of the location of a sound are anchored to a head-centered
reference frame. These two reference frames are distinct because the
eyes can rotate relative to the head. In order to combine visual and
auditory spatial information, therefore, the primate’s nervous system
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Chapter 1 Introduction

must transform these spatial signals from one coordinate frame to
another. If a visual and auditory stimulus such as a hissing snake, for
example, appears in front of primate and the primate wants to look at
it (before running away), the visual and auditory spatial information
must be combined in order to program the correct saccade.

Sensorimotor behaviors such as saccades require other operations
besides the transformation of coordinates. One of these is the
transformation of sensory signals into motor commands. These
presumably involve a number of steps, including but not limited to the
transformation of the signals’ spatial coordinates. These processes can
be complex and loosely defined, and can include the perception of a
sensory stimulus’ various features, the allocation of attention,
interactions of the stimulus’ perception with stored memories, and so
on, right up to the formation of a set of motor commands that will
produce the behavior elicited by the stimulus’ presence. Among the
processes one that seems—at least intuitively—required for the
generation of a motor command based on a sensory signal is motor
intention. This process is the expression of a plan to execute a
particular movement that precedes the actual command that produces
the movement. Every deliberate movement—as opposed to a
“reflexive” or “automatic” one—is by definition preceded by the
intention to make that movement. One might expect such an intention
to be expressed as neural activity somewhere in the brain in relation to
at least certain classes of movements.

Neurological and physiological evidence has for long made the PPC
of the primate brain a candidate area for participating in the classes of
transformations I have described—the transformations of spatial
coordinates and the linking of sensory and motor signals. The
underlying theme of this thesis is an analysis of whether and how the
activity of PPC neurons can subserve these transformations. An
overview of how these topics are covered in the thesis’ chapters follows.

13



Chapter 1 Introduction

SECTIONS I-1I

The first two sections (Chapters 2-6) are devoted to the issue of
coordinate transformations in the PPC.

I first review a neural network modelling approach that has been
used to study how coordinate transformations can be achieved by the
PPC (Chapter 2). These models show that visual information and eye
position signals interact in at least two areas of the PPC to preduce a
head-centered code of a stimulus’ location distributed over a neuronal
population.

A problem with the original neural networks used to model PPC
function was their plausibility as models of brain function. These
models were traired to compute coordinate ¢ransformations using a
learning algerithm (backpropagation) considered implausible as a
mechanism for biological learning. In Chapter 3 I relate a theoretical
study in which we addressed the issue of the biological plausibility of
neural networks as models of brain function. We shov: that another
class of neural network models can learn the same coordinate
transformation task and develop the same distributed head-centered
code as observed in the PPC and in the other model networks.

Next I address the issue of localization of sound sources.
Sensorimotor integration involves not only the transformation of the
spatial coordinates of individual visual stimuli. The cues to a spatial
location in the environment can take many forms and enter the
nervous systems through the visual, auditory, and somatic sensory
modalities. We thus asked whether the PPC can process spatial cues
presented through the auditory system.

Chapter 4 provides a background of lesion studies that have
identified various brain structures as necessary for various aspects of
auditory localization. In Chapter 5 I describe responses of neurons in
the lateral intraparietal area (area LIP, a subdivision of the PPC) to
auditory stimuli. These responses are spatially tuned, and many of the
neurons exhibiting them also have spatially tuned visual responses.
Area LIP may thus encode the locations of auditory as well as visual
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Chapter 1 Introduction

stimuli. This result begs the question of the coordinate systems in
which the auditory signals are encoded and how these coordinates
relate to those of the visual signals. Initial results of ongoing
experiments examining these questions are reported in Chapter 6.

SECTION III

This section (Chapters 7-9) is deveted to the distinction between
signals related to sensory stimuli and those related to motor
preparation, and to the functional role of PPC activity in saccade
generation.

Chapters 7 and 8 examine whether area LIP of the PPC contains
signals related to the motor preparation of saccades. We show that the
activity of most LIP neurons reflects the intention to execute the next
planned saccade. The PPC thus not only transforms the spatial
coordinates of sensory stimuli, but also processes signals expressing
the preparation of movement.

Finally, in Chapter 9 we ask whether the activity of PPC neurons
is necessary for any particular aspects of saccade programming.
Temporary inactivation of a portion of the PPC produced changes in
saccade metrics that were particularly pronounced for saccades to the
locations of remembered visual targets. These results are consistent
with the signals encoded by PPC neurons that I described in other
chapters, «nd suggest that the PPC is necessary for the correct
programming of more complex types of gaze shifts than those under
direct visual guidance.

15
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Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

SUMMARY

In this chapter we review the use of a group of neural network
models as tools for studying the function of a cerebral cortical area.
The basic model is a feedforward multilayer network that learns to
transform the coordinates of a visual stimulus from a retinocentric to a
craniocentric reference frame using the backpropagation learning
algorithm. The similarity of certain features acquired by the model’s
components with the response properties of neurons in the posterior
parietal cortex made the model a candidate for studying the cortical
area’s processing in an artificial system. An extension of the model to
one that transformed retinal coordinates into body-centered ones
predicted response properties that were later confirmed by
neurophysiological experiments. Simulation of electrical stimulation of
the model predicted a pattern of effects similar to the one later
obtained by stimulation of a specific region of the parietal cortex. More
importantly, a study of the response properties of the model’s units
provided a simple explanciion of how areas in the posterior parietal
cortex might compute coordinate transformations. This analysis also
suggested why certain manipulations such as stimulation should
produce the effects observed. The same algorithm for coordinate
transformation was also obtained in an analogous network trained
with a learning rule biologically more plausible than backpropagation.
These results suggest that neural network modeling is a useful adjunct
to the neurophysiological and psychophysical techniques we are using
to study the function of the posterior parietal cortex.

18



Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

I. INTRODUCTION!

Two issues of active debate in systems neuroscience are what
coordinate frames the nervous system uses to represent spatial
information related to sensation and movement, and how it transforms
spatial information among different coerdinate frames. The nervous
system of primates (and indeed of animals across the phyla) must
represent spatial information in a variety of coordinates frames. This
requirement is imposed at least by the fact that sensory organs and
various body parts under motor control can move relative to one
another. Successful spatially-oriented behavior demonstrates that the
nervous system can transform signals among various coordinate
frames. For example, when a person drinks coffee while reading the
newspaper (Fig. 1a), she can reach for the coffee cup either by first
shifting her gaze from the paper to look directly at the cup and then
reaching for it (Fig. 1b), or—if the article is particularly absorbing—
reach for the coffee cup without lifting her eye off the page (FFig. 1c). In
the first case the gaze shift places the image of the cup directly on the
fovea (labelled x in Fig. 1b), wile in the second case the cup’s image
falls on a different spot (labelled y in Fig. 1c) on the retina. The brain
can program the correct reaching movement in either case, suggesting
that sensory signals encoding the location of the cup on the retina are
transformed into a reference frame appropriate for programming the
reaching movement.

Much evidence suggests that a portion of the posterior parietal
cortex (PPC) of the primate brain participates in the transformations of
neural signals from sensory to motor coordinates. Specific areas within
the PPC appear to compute such transformations for the purpose of
programming the direction of gaze. We review here a set of neural
network models developed in our laboratory to study how some of these
coordinate transformations might be achieved in the PPC.

1. The material in this chapter has appeared in published form (Mazzoni and
Andersen 1993; in press).
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Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

One of many uses of neural networks has been as models of
neuronal ensembles that might give us some insight into the
processing that neurons perform as a group. The approach in such
studies, as in most modeling studies, is to construct a model that
captures the features of a complex system that we believe are relevant
to a particular function. One can then analyze, manipulate and modify
the model with the hope of (1) gaining a further understanding of the
system, (2) evaluating the role of various features in the system’s
function, (3) perhaps predicting other important features that could be
observed experimentally, and (4) predicting the system’s response to
various perturbations. The network model that does incorporate some
function or important feature of the neural system can then become a
tool for expressing in explicit form various hypotheses and mechanisms
related to the neural system.

The group of neural network models reviewed in this chapter have
played the role just described in the study of the posterior parietal
cortex (PPC) of the primate brain. The basic model is a feedforward
multilayer network that learns to transform the coordinates of a visual
stimulus from a reference frame anchored to the retina (retinocentric)
to one centered on the head (craniocentric) {Zipser and Andersen,
1988). The network learns to vectorially add the stimulus’ position on
the retina to the position of the eye in the orbit. We will describe this
model and its initial contribution to our understanding of the response
properties of parietal neurons. We will then review the predictions
produced by modifications and perturbations of the model, as well as
the results obtained by similar manipulations and perturbations of the
experimental system. The neural network model has so far helped not
only to predict the system’s behavicr in various circumstances, but also
to understand how its observed properties can subserve the
computational functions attributed to this area of the brain.

20



Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

II. NEURONAL PROPERTIES AND PRESUMED FUNCTION OF THE
PRIMATE’S POSTERIOR PARIETAL CORTEX

The PPC is thought to play an important role in the integration of
sensory perception and motor behavior. Lesions of this area cause
impairments of spatial abilities (reviewed in Andersen, 1987) and its
neurons are specifically active during sensory stimulation and
particular motor acts (reviewed in Andersen, 1987; Andersen and
Gnadt, 1989). One requirement of sensorimotor integration is the
transformation of spatial locations across coordinate frames. In order
to reach for an object, for example, the location of its image on the
retina must be transformed into the coordinate frame in which hand
movement commands are generated (e.g. trunk-centered, shoulder-
centered, etc.). These transformations are important for accurate
spatial behavior because our sensory and motor organs can move
relative to each other. Although cur eye movements continually shift
the image of the visual field on the retina we can still perceive a stable
environment and make appropriate movements within it.

Early studies of the monkey’s PPC (Fig. 2) revealed a group of
neurons that responded to visual stimuli in an eye-position-dependent
manner (reviewed in Andersen, 1987). The portions of the visual field
in which luminous stimuli elicited responses, i.e. their receptive fields,
corresponded to particular retinal locations. As the trained monkey
rotated its eye to different gaze directions the receptive fields
maintained their shape and retinal location, but the neurons’
responses were modulated by eye position. Such eye-position-
modulated receptive fields were referred to as “spatial gain fields,”
because eye position acted as a gain of the visual response (Fig. 3). A
striking feature of these gain fields was that for a majority of the
neurons the modulation was planar, i.e. proportional to the horizontal
and/or vertical component of eye position, or had a planar component
(Fig. 3c). The gain fields set PPC neurons apart from those of more
peripheral visual areas, which encode strictly the retinal location of
visual stimuli. However, PPC neurons do not code spatial locations
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Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

unambiguously at a single cell level; rather, the code for a stimulus’
spatial location is distributed across the population response. If
individual neurons were actually invariant for locations in head-
centered coordinates, for example, then their receptive fields should
remain fixed to some location relative to the head, i.e. their responses
should be independent of eye movements. Instead, the individual
neurons’ firing rate is an ambiguous signal for stimulus location,
because a change in activity can be due to a movement of the stimulus
as well as caused by an eye movement. Another special feature of
these neurons is that their receptive fields are extremely large,
covering as much as half the visual field. Such a large response area
makes it difficult for the individual neuron to code stimulus location
precisely.

IIi. THE ZIPSER-ANDERSEN MODEL

The properties of PPC neurons suggested that individual neurons
were unlikely to subserve the spatial integration functions attributed
to this cortical region. Being sensitive to both retinal location and eye
position these neurons remained candidates for playing a role in
computing spatial relationships, but a spatial code could only be
cbtained from the pooled activity of a group of these neurons. Zipser
and Andersen developed a neural network to study how an ensembie of
neuron-like model units might solve the coordinate transformation
problem (Zipser and Andersen, 1988). The aim was to examine the
properties of individual units that were trained to solve the problem as
a group. If the brain was indeed encoding spatial locations in the
distributed pattern of activity of many parietal neurons, then some
features of the brain’s algorithm might emerge in the model network
too.

The Zipser-Andersen model (Fig. 4) was a three-layer feedforward
network of units with sigmoid input-output functions. In the input
layer a group of units encoded the retinal location of a punctate visual
stimulus and another group encoded eye position. Retinal location was
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Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

encoded topographically, each unit having a two-dimensional receptive
field of Gaussian profile centered at a given point in the receptive field.
Eye position was encoded linearly in the activity of units in the second
group, using a different slope and intercept for each unit. These inputs
were modelled according to input signals actually available to neurons
in the PPC. Units in the hidden layer received signals from all the
input units and projected to all output units. The output layer was
intended to code for the head-centered location of the visual stimulus.
The task was thus to perform the vector addition of two positions, the
stimulus’ retinal position and the eye position, to obtain the stimulus’
location in a craniocentric reference frame. The output layer was
trained to express head-centered locations in one of two formats: a
receptive-field based one like the retinal input (topographic format) or
a linear-function one like eye position input (monotonic format). The
network was trained to compute the coordinate transformation from a
set of examples using backpropagation. After the network learned the
task, its hidden units were found to respond to visual stimuli and to
eye position very much like PPC neurons. Specifically, they had
retinotopic visual receptive fields whose activity profiles were
modulated by eye position, i.e. they had spatial gain fields, and these
gain fields were largely planar (Fig. 5). The receptive fields were also
very large and smooth with one or a few eccentric peaks, and thus
looked remarkably like those of PPC neurons (Fig. 6).

The results of this simulation addressed several issues related to
PPC function. First, it was shown that a layered network can learn to
transform retinocentric coordinates into craniocentric ones using the
input signals available to the PPC (whether the training signal
required by backpropagation is available to the PPC is unknown, but
see the discussion of the reinforcement-based model below). This
result is consistent with the adaptability of spatial behavior (e.g., when
the visual input is distorted by prisms) that persists throughout life.
In fact, such adaptation is easily elicited precisely by training subjects
with examples, as in the change in amplitude of eye movements that is
obtained when stimuli presented through distorting prisms. Second,
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Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

the representation of the spatial signals that emerged at the hidden
units’ level as a results of learning to solve this problem is very similar
to the representation of the same signals in PPC neurons. These
neurons can thus play a similar role in the organism, i.e. build up an
intermediate representation between input and output stages that is
part of the coordinate transformation computation. The network
demonstrated explicitly that units with PPC neurons’ properties
contain, as a group, a distributed representation of space that is
sufficient for accurate localization. Such a distributed representation
obviates the need for a topographic representation of head-centered
space. The version of the model trained with the monotonic output
format demonstrated that the distributed spatial representation of the
hidden layer can appropriately drive a non-topographic code directly.
This output layer could represent a set of motoneurons driving the eye
muscles to orient the eye toward the desired spatial location. The
adequacy of the hidden layer’s representation to feed directly into a
peripheral output could explain why such a topographic map of head-
centered or body-centered visual space is generally not found in the
cerebral cortex. Finally, the fact that training a neural network to
perform coordinate transformations produced a hidden layer with
properties like those of PPC neurons suggested that the network and
the brain may employ a common strategy in solving the problem.

IV. AN EXTENSION OF THE MODEL: TRANSFORMING RETINAL
LOCATIONS INTO BODY-CENTERED COORDINATES

Having the problem’s solution programmed in a network model
made it possible to further investigate what algorithms the PPC may
indeed be using through analysis and manipulations of the model. An
immediate question was how locations could be coded in other
coordinate frames. The transformation from retinal to head-centered
coordinates has a natural application in the programming of eye
movements, the eyes having to move to particular positions relative to
the head (though the actual coordinate frame in which eye movements
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Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

are programmed is still a matter of debate). There is in fact a
subdivision of the PPC, the lateral intraparietal area (area LIP), that is
directly connected to eye movement centers and that contains neurons
active during the preparation of saccadic eye movements (Lynch et al.,
1985; Andersen et al., 1990a, 1992; Blatt et al., 1990). These neurons
have planar gain fields that allow them to encode, as a population, the
head-centered location of a saccade target. Large gaze shifts, however,
are achieved by coupled movements of the eyes and head; in this case
the target’s position must be calculated in body-centered coordinates.
Evidence from lesion studies suggests that the PPC is necessary for the
proper execution of not only eye movements but other forms of spatial
behavior as well. Could the Zipser-Andersen network be modified to
compute body-centered coordinates, and if so, what predictions would it
make about the PPC?

Goodman and Andersen (1990) added a group of units encoding
head position to the input layer of the Zipser-Andersen network and
trained this new network to produce body-centered locations at the
output layer. The new units encoded head position using linear
functions of the orientation of the head along various axes, roughly
simulating the signals that neck muscles’ proprioceptors might
produce. The network was otherwise equivalent to the original one. It
learned to compute the correct body-centered location given retinal,
eye, and head position inputs. The hidden units were found to be
sensitive to all three input types. They had retinotopic receptive fields
modulated by both eye and head position, each in a planar fashion. In
other words, they developed planar “gaze fields,” that is, linear
modulation of visual responses along a particular direction of gaze,
which is the sum of eye and head positions. Moreover, the “eye” gain
field of a given hidden unit was always aligned (with the same
direction and slope) with the same unit’s “head” gain field. This was a
natural solution for the network given the constraints of its
architecture (the eye and head position inputs produced signals in very
similar formats) and of the problem (eye and head position are indeed
coupled for a given spatial position). The result suggested, however,
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that if the PPC subserves coordinate transformations beyond the head-
centered reference frame and does so with an algorithm analogous to
the neural network’s strategy, then it should contain units with gaze
fields similar to those of the network just described. Such units have
recently been identified in the PPC (Brotchie et al., 1991). Brotchie
and Andersen trained monkeys to look in various directions by moving
their eyes alone or by moving both their eyes and their head. A
population of PPC neurons had visual responses modulated
equivalently by eye or head position. These gaze fields were largely
planar and the direction of eye and head position modulation was the
same. This population was distinct from another group of PPC
neurons whose visual responses were modulated by eye position alone.

The locations of visual stimuli are thus presumably encoded in
body-centered coordinates by the group of neurons with gaze fields and
in head-centered coordinates by the neurons sensitive with only eye
position gain fields. Other neurons may exist in the PPC with other
types of gain fields which may encode, for exampie, a stimulus’ location
in a reference frame appropriate for planning a reaching movement to
that stimulus. Distinct neuronal populations in the PPC may thus
encode the location of a sensory stimulus in various coordinate frames,
allowing the animal to program a whole repertoire of movements
relative to that stimulus.

V. HOW THE NEURAL NETWORK TRANSFORMS COORDINATES

The addition of a head position input is only one example of the
many manipulations that are possible once a neural network embodies
a candidate of a biological solution to a problem. Various
manipulations of this type led Goodman and Andersen (1990) to a
simple explanation of how the network performs coordinate
transformations. Over the course of learning each hidden unit
develops a “preferred direction,” that is, a direction in its input space
along which to maximally modulate its activity. By maximal
modulation we mean that an input vector parallel to the preferred
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direction produces the unit’s largest activation and a vector in the
opposite direction produces the smallest activation (or largest
inhibition from the resting activity level). This behavior is typical of
hidden units in feedforward networks trained with examples. The
activation of a typical hidden unit (linear, logistic, etc.) is a monc..nic
function of the cosine of the angle between its weight vector and the
current input vector. The preferred direction is the direction of the
unit’s weight vector.

The units of the Zipser-Andersen network, receiving both retinal
and eye position inputs, align their sensitivity in retinal space and in
eye position space, and develop an eye position response field that
approximates a plane oriented along what becomes the unit’s preferred
direction (we will call this direction a, for the i” hidden unit in the
network). A hidden unit effectively collapses the multidimensional
signal of the retinal and eye position units into two two-dimensional
vectors, one for retinal and one for eye position (r and e, respectively).
The goal is to add these two vectors to obtain the head-centered
position vector, h, where

r+e=h

A hidden unit’s activation is proportional to the dot product of its input
vectors and its preferred direction:

Each hidden unit thus extracts the components of the retinal and eye
position vectors along its preferred direction and adds them. Because
these vectors’ components are added at the hidden unit’s input, the
output of each hidden unit effectively consists of the component of the
head-centered vector along the unit’s preferred direction. Formally,
because

r.a"+e'ai =h.a‘-

then
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o;=h-a,

The preferred directions of the hidden units span the two-dimensionai
input space so that the retinal and eye position vectors are decomposed
without losing information. These components are combined again at
the output layer to give the head-centered vector that is the sum of the
retinal and eye position vectors. A single hidden unit’s operation can
thus be described as a sum of dot products, and is an elegant way of
adding two vectors that are encoded in the activity of many input
units.

Understanding the algorithm discovered by the network model in
these terms gives us a clearer view of how the brain might be solving
the same problem. In this regard it is also useful to consider
alternative solutions not employed by the network. One solution that
the network does not choose is a “look-up table” hidden layer. In such
a solution each hidden unit would link one or a small group of input
vector pairs witn their correct outputs in a dedicated (i.e. non-
distributed) faskion. The network learns instead to perform the
abstract computation of vector addition, as evidenced by its correct
performance on novel pairs of retinal and position inputs. As the
number of hidden units in the network is increased, a look-up table
solution does indeed emerge. This observation suggests that a
constraint on computational efficiency may be at work in the biological
system’s choice of solution.

The network also avoids solutions of the “shifter circuit” type
(Anderson and Van Essen, 1987), whereby a group of hidden units
might set up retinal receptive fields that are gated at the output layer
by the signals of another group of hidden units concerned with eye
position alone. The eye position signals in the shifter circuit serve to
align the receptive fields of the visual input units with the those of the
appropriate output units. Such a strategy solves the coordinate
transformation problem just as well as a distributed intermediate
representation, but the Zipser-Andersen network produces the latter.
In fact, it seems a very common result that networks trained to
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minimize an error signal at the output layer develop distributed
representations in their hidden units. The fact that the PPC also
encodes head-centered coordinates in a distributed fashion suggests
that the brain arrives at this solution due to constraints analogous to
those imposed on the model network, e.g. training with an error signal
a group of neuronu that are initially highly interconnected. Moreover,
had the network used a shifter circuit solution, we would have
predicted a different result when the head-position input was added:
we would have expected the emergence of a separate cluster of head-
position units, and not the distributed coding of head signals over all
the hidden units. The gaze fields of the hidden units in the head-
position network are thus not a chance prediction of the model, but
something to be expected from the way a trained layered neural
network computes coordinate transformations. The observation of
neurons with gaze fields in the PPC then supports the hypothesis that
the neural network model embodies some of the important features of
the nervous system’s solution to the same problem.

The most important factor in determining the hidden layer
representation, as in any neural network, is the problem that the
network must solve. The Zipser-Andersen network must learn to
approximate a function, the vector addition of retinal and eye
positions. The network’s hidden layer representation, a distributed
code of the input vectors’ combined components, is one of the best
solutions to this problem that one can imagine for the given
architecture. It allows a few hidden units to encode a large number of
input-output pairs, and it naturally produces interpolation for novel
inputs. A look-up table solution would be more suitable for a
classification problem such as deciding, for example, whether a visual
stimulus can be reached with the left hand or with the right hand. The
“shifter-circuit” solution was designed to discount the eye position to
facilitate the analysis of the visual scene in the presence of eye
movements. Using eye position to actually compute head-centered
coordinates may be a different enough problem to make this solution
not ideal. One can suppose, therefore, that PPC neurons have a
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distributed representation of head-centered positions, manifested as a
set of eye position gain fields, because this is a good solution to the
coordinate transformation problem.

A notable feature of the distributed representation of the Zipser-
Andersen network is the absence of topography in the hidden layer.
Maintenance of topographic relationships across processing stages can
be an effective mechanism for processing spatial information. Several
models of saccade generation, for example, use representations with
well-defined spatial relationships in order to generate an appropriate
saccadic command to look at a sensory stimulus (e.g. Droulez and
Berthoz, 1991; Dominey and Arbib, 1992). In these models the saccade
vector is determined by which units are active within a given stage.
Units in the hidden layer of the Zipser-Andersen network, on the other
hand, are connected to every input and every output unit, and encode
the head-centered position vector without regard to any input or
output topography. The output vector is determined not by which
units are active but by the activity level of every unit in the hidden
layer.

It is not clear whether PPC areas are topographically organized.
The Zipser-Andersen model demonstrates that PPC neurons can
transmit to other cortical areas the head-centered position of a
stimulus, encoded in their collective firing rate, without any
topographic organization. Such organization, of course, may still be a
feature of PPC without playing a role in the coordinate transformation
computation. It may be a by-product, for example, of some
developmental mechanism that establishes the initial connections of
this region with other brain structures. In this regard an interesting
modification of the Zipser-Andersen model was described by Cho and
Reggia (1992). Their model was trained on the coordinate
transformation problem with a learning scheme that combined
backpropagation with competitive learning. The hidden layer acquired
known features of PPC neurons as well as a topographic arrangement
of craniocentric receptive fields. The topography was not necessary to
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solve the coordinate transformation problem but it did not interfere
with the solution either.

V1. PERTURBING THE MODEL: SIMULATING ELECTRICAL
MICROSTIMULATION

If theoretical analysis of the neural network’s behavior suggests
that this model captures some features of the brain’s algorithm for
coordinate transformations, then it may be instructive to introduce
perturbations to the model ard observe its behavior. We have
mentioned that one use of transforming retinal coordinates into head-
centered ones is to compute the orientation of the eyes required to
direct gaze to a peripheral visual target. One symptom of parietal lobe
lesions is indeed difficulty in orienting gaze, and the PPC is directly
connected with various centers controlling eye movements. Electrical
stimulation of a cortical area is one way to test its role in the
production of specific behavior. Simulating electrical stimulation in
the neural network made specific predictions concerning the metrics of
eye movements that would be obtained if the neural network’s output
encoded the programmed endpoint of an eye movement (Goodman and
Andersen, 1989). These predictions were borne out by a detailed
stimulation study in the monkey (Thier and Andersen, 1991).

The amplitude and direction of eye movements elicited from
stimulation of a nervous system structure with the eyes starting at
various orbital positions can elucidate how that structure represents
spatial locations. Obtaining eye movements with metrics independent
of the eye’s initial position (fixed-vector pattern) suggests a coordinate
frame centered on the eye, whereas amplitude and direction that vary
with initial eye position so that the eyes are always moved to a single
orbital position (convergent pattern) are consistent with a head-
centered reference frame. Goodman and Andersen (1989) simulated
the effect of electrical microstimulation by setting the output of a given
hidden unit in a trained network to its maximum possible value and
interpreting the new position encoded by the output layer as the
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endpoint of the eye movement presumed to result from the stimulation.
This process was repeated for many initial eye positions, each of which
was fed to the network’s input layer. What we know about the way the
hidden layer encodes spatial locations allows us to predict the pattern
of eye movements to be obtained from the network.

Because a hidden unit’s activity encodes the component of the head-
centered vector along the unit’s preferred direction, maximal activation
of that unit will shift the network’s output along the unit’s preferred
direction. This direction is encoded in the unit’s weights and so should
not be affected by the values of the inputs; i.e., the direction of the eye
movement will be independent of the starting eye position. The
movement’s amplitude, on the other hand, is proportional to the
change in the unit’s activation, which depends on how far from
saturation the hidden unit is before stimulation. This follows from the
units’ sigmoidal input-output function. A hidden unit in the Zipser-
Andersen network normally operates along the linear (center) portion
of the sigmoid—which results in the planar component of the unit’s
gain field. Stimulation, however, drives the unit’s output to its
maximum value. The change in the unit’s output therefore depends on
how far the initial activation level is from the unit’s maximum possible
activation. The initial activation level is determined by the unit’s
input, and thus by the initial eye position. At starting eye positions
whose vectors are orthogonal to the unit’s preferred direction, the
hidden unit will not be very active and maximal activation will produce
a large shift in its output, giving a large-amplitude eye movement. At
eye positions nearly parallel to the preferred direction the unit will be
already very active and further activation due to stimulation will give
only a small change in its output, and thus a small eye movement.
(Note that this aspect of the unit’s behavior is not inconsistent, as it
may seem at first, with the increase in a neuron’s responsiveness to
visual stimuli as the eye position moves in the direction of the neuron’s
gain field. This responsiveness cannot be compared with the
saturating effect of microstimulation because the background firing
rate also increases as the eye position changes.)
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The pattern of eye movements just described was indeed obtained
by stimulation of most hidden units in a trained network (Goodman
and Andersen, 1989). The eye movements had very similar directions
from all starting eye positions, but their amplitude decreased as the
eye position was shifted along one direction. The direction of this
amplitude decrease was very similar to the direction of the elicited eye
movement, indicating that the saccades were getting smaller as the eye
moved along the unit’s preferred direction, as predicted. Another
prediction made in this study was that stimulation of two sites in the
PPC should produce a much more convergent pattern of eye
movements than stimulation of either site alone. This pattern is what
we expect from the vector sum of the saccades elicited from each site.

In a detailed stimulation study of the PPC, Thier and Andersen
(1991) found a correspondence between the types of eye movement that
could be elicited and anatomical subdivisions of the PPC. Stimulation
of area LIP (the region that directly projects to eye movement centers
and that is active during the programming of saccadic eye movements)
elicited a pattern of saccadic eye movements like those obtained from
the neural network. The saccades evoked from various initial eye
positions were all in the same direction, but their amplitude decreased
as the starting eye position was moved in the direction of the elicited
eye movement.

Neurons in area LIP also have spatial gain fields (Andersen et al.,
1990b) and can thus compute head-centered locations to drive eye
movements much as the neural network does. This hypothesis is
supported by the pattern of eye movements obtained from
simultaneous stimulation of two separate sites: the saccades eveked
from various eye positions in this case converge toward a much more
circumscribed region than in the case of single-site stimulation (Thier
and Andersen, personal communication). The neural network model
thus correctly predicted the pattern of eye movements to be expected
from stimulation of a PPC region that had been independently
implicated in the control of eye movements. The stimulation studies
would have been performed in the monkey whether or not any neural
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network model had existed or had made any predictions, as this
technique has always been a classical neurophysiological tool for the
study of nervous system structures. The particular effect predicted by
double-site stimulation of the network at different starting eye
positions did, however, prompt the experimenters to perform in the
monkey this same experiment, which would not have been considered
necessurily interesting otherwise. Moreover, the network provided an
immediate and detailed explanation for why the eye movement pattern
obtained—which suggests neither a retinal nor a head-centered
representation—should indeed be expected from an area encoding
spatial locations using gain fields.

Encoding the head-centered location of a stimulus is not the only
way in which a saccade to that stimulus can be programmed. Another
commonly proposed scheme maps the sensory vector falling on the
retina (from the fovea to the stimulus’ image) directly into a motor
command encoding the required saccade vector, without ever
computing the head-centered location of the stimulus. This method
still requires some mechanism for keeping track of eye position, so that
an appropriate saccade can be made to targets that appeared before
one or more intervening eye movements. One such mechanism
updates the planned saccade vector base on the last eye movement
made. This method has been postulated as a cortical mechanism for
saccade planning (Goldberg et al., 1990) and has been used in saccade-
generation models (Dominey and Arbib, 1992; Droulez and Berthoz,
1991). In the models the future saccade vector is remapped based
either on the integrated eye velocity signal from the intervening
saccade (Droulez and Berthoz, 1991), or on a damped copy of the
intervening saccade’s eye position signal (Dominey and Arbib, 1992).
The Zipser-Andersen model does not address the issue of multiple
saccade plans. Extending the model to handle sequences of saccades,
however, would not require a remapping scheme that kept track of’
intervening saccades. All saccade targets would be directly encoded in
head-centered coordinates as they appear, and a saccade to each ccald
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be planned based only on the current eye position, independently of
past eye movements.

VII. BIOLOGICAL PLAUSIBILITY OF THE LEARNING ALGORITHM

The biological plausibility of the Zipser-Andersen model was an
issue of concern because backpropagation, the learning algorithm used
to train the model network, is an unlikely candidate as a biological
learning mechanism. It had been argued that the hidden units of
backpropagation networks acquire particular properties because this
algorithm computes solution that are optimal in the sense of
minimizing the output error (Zipser and Rumelhart, 1991. The hidden
layer representations thus should not depend on details of the learning
algorithm. Any algorithm that computes optimal solutions for an
architecture analogous to the one of the biological network should
produce hidden layer representations similar to the ones used by the
brain.

To address this issue directly Mazzoni et al. (1991) trained a neural
network to perform the retinal to head-centered coordinate
transformation using a reinforcement learning rule developed by Barto
and Jordan (the associative reward-penalty, or Ag.p, learning rule;
Barto and Jordan, 1987). This study is described extensively in the
next chapter. Briefly, the Ag. p algorithm adjusts the network’s
connections based on (1) a single error value computed from the
network’s overall performance, and (2) the local presynaptic and
postsynaptic activation for each connection. It combines, in other
words, a reinforcement signal with Hebbian updating of connection
strength, and is thus biologically more plausible than backpropagation.
The hidden units of this network developed gain fields and receptive
fields virtually identical to those of the backpropagation-trained
networks. The networks’ algorithm for computing coordinate
transformations, therefore, did not depend on the specific learning
mechanism used.
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The Apg.plearning rule, like backpropagation, implements a
gradient-descent procedure that leads to the optimal solution in terms
of minimizing the output error. The model of Mazzoni et al. thus
demonstrated that the principle underlying the learning procedure is a
more important determinant of the hidden layer representation than
the learning rule itself. The fact that this model learned to compute
coordinate transformations based on a simple reinforcement signal
supported the idea that PPC neurons can learn to compute coordinate
transformations from signals directly available to the nervous system.
More importantly, the reinforcement-based model showed the
coordinate-transformation algorithm obtained in the Zipser-Andersen
model is not a specific result of backpropagation learning. Thus the
use of backpropagation in the netwcerks we have described does not
invalidate our interpretation of these networks as models of PPC
function.

VIII. CONCLUSIONS

The network model of PPC developed by Zipser and Andersen has
proved a valuable tool in our study of this cortical area’s function. Like
every useful model it embodies a few known features of the system
being studied and it is helping us to understand why those features,
and others that emerge from the model, are important for the system’s
computations. The model has predicted a few experimental results and
has made it easy to put those results into an explicit theoretical
context. The general approach has consisted of a combination of a
novel modeling paradigm and a “reverse engineering” strategy of brain
function investigation. A fundamental tenet of neurophysiology is that
we can try to understand the functioning of the brain by observing the
responses of its components to various stimuli and under various
conditions. This method is a form of reverse engineering much like
studying how a typewriter works by watching its parts mcve when
someone presses the keys. The response properties of PPC neurons are
complicated enough that reverse engineering applied directly to the
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brain was not sufficient, and a model was thus devised. A neural
network was chosen as a model because it can program itself for an
optimal solution given a problem (coordirate transformation) and a set
of input and desired output signals (the signals that feed into the PPC
and accurate spatial behavior, respectively). Reverse engineering was
then applied to the trained neural network, with the advantage that
the researchers could perform the manipulations necessary to
understand the algorithm arrived at by the network. The properties
and behavior of the biological network could thus be explained within a
theoretical description of its processing function.

We believe the neural network has been a useful modeling
paradigm for studies of the PPC especially because these studies
addressed how neurons encode more than one parameter. Whereas
most neurophysiological investigations so far have focused on the effect
of varying one parameter at a time (a necessary first step for the study
of any complex system), studies of an area thought to compute spatial
relationships had to examine the interactions of several variables such
as retinal location, eye position, and head position. It is not surprising
then that the experimental duta was not easily summarized by an
intuitive scheme. The network rodel provided a framework for
developing an intuition about the distributed representation of several
variables. As more experiments address the encoding and interactions
of several parameters in the nervous system, we expect neural
networks to continue to fruitfully assist our investigations of nervous
system functions.
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FIGURE LEGENDS

Figure 1:

Example of a behavior that requires the transformation of spatial
sensory signals. A person reading a newspaper (a) can reach for a
coffee mug either by first looking at it (b) or without detaching gaze
from the page (c). In each instance the mug’s image falls on a different
location on the retina (at x in @ and at y in b), but the required
reaching movement is the same.

Figure 2:

a) Lateral view of the right hemisphere of a macaque monkey’s brain
(Macaca mulatta). Anterior is to the right. The intraparietal (IP) and
superior temporal (ST) sulci are labelled. The thick solid line marks
the approximate boundaries of the PPC. The shaded region is area 7a,
one of the visual areas of the PPC. Area LIP (not visible) is buried in
the intraparietal sulcus, adjacent to area 7a. b) Visual pathways from
the striate cortex (area V1) into the PPC (areas enclosed by dashed
rectangle) in the macaque monkey. These areas form the bulk of the
“where” pathway (i. e. the pathway that analyses spatial visual
information) of the primate visual system. (Adapted from Andersen,
1987)

Figure 3:

Measurement of a neuron’s gain field. @) A monkey trained to
maintain gaze on a fixation light spot sits in a dark room facing a
projection screen while the activity of single cortical neurons is
recorded. While the monkey maintains fixation a second light spot is
used as a probe to locate the region of the visual field where a light
stimulus elicits a response from a particular neuron (its receptive
fields, rf). b) The location, relative to the fixation point (and thus
relative to the fovea), giving the peak response is then stimulated
while the animal’s angle of gaze is varied by placing the fixation spot at

38



Chapter 2 Models of Gaze Coding In The Posterior Parietal Cortex

different locations. Here the neuron’s response to a stimulus presented
at a constant retinal location varies as the eye moves among nine
different fixation positions. Each histogram is a plot of the neuron’s
average firing rate vs. time, over the duration of stimulus presentation
(500 ms), plus a brief period before and after. The relative positions of
the histograms correspond to the nine different fixation positions
tested. These positions were spaced by 20 deg., with the center one
positioned straight ahead. ¢) Another way to represent the effect of
eye position on the neural response is to sum the total response to the
stimulus and represent it as the diameter of a filled circle. The circles,
like the firing rate histograms, are arranged according to the eye
position to which they correspond. (Adapted from Zipser and
Andersen, 1988)

Figure 4:

Structure of the Zipser-Andersen neural network. A) Network
architecture. The input layer (bottom) consists of 64 units encoding
retinal position topographically and 32 units encoding eye position via
linear functions. All input units have feedforward connections with all
the hidden units, which have logistic input-output functions. Each
hidden unit in turn projects to all output units. These are 32 logistic
units (in the monotonic format; the topographic output format is not
shown) that are trained to encode the vector sum of the retinal and eye
position locations encoded in the input layer. B) One-dimensional
section of the position-encoding function for a retinal input unit. Each
unit’s activity is a gaussian function of the retinal x and y coordinates
of the visual stimulus. The gaussian functions represent visual
receptive fields and are arranged in an 8x8 array. C) Linear position-
encoding function for an eye position input unit. Each unit’s function
has a different (pseudo-randomly chosen) slope and intercept.
D) Schematic of a logistic unit. It receives a set of inputs (the vector x)
which are multiplied by weight values (the unit’s weight vecter w) and
added together. The resulting value s (the dot product of x and w),
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together with a bias b, is passed through the sigmoid function
1/(1+exp(-s)) to yield the unit’s output y. E) Linear position-encoding
function for the output units. As for the eye position inputs, each unit
in the output layer has a position function with a different slope and
intercept.

Figure 5:

Gain fields of PPC neurons and hidden units in the Zipser-Andersen
neural network. The format is the same as in Fig. 3c. a) Total
response to a visual stimulus with the eye at each of nine position is
shown for four neurons in area 7a of the PPC. b) Activity of four hidden
units of a trained Zipser-Andersen network during the presentation of

a visual stimulus with the eye at each of nine eye position. (Adapted
from Zipser and Andersen, 1988)

Figure 6:

Visual receptive fields of PPC neurons and hidden units in the Zipser-
Andersen neural network. Each field shows the response to a visual
stimulus presented at several locations within a 40 deg. radius circle
around the fixation point. a) Receptive fields of five area 7a neurons.
These response surfaces were interpolated from 17 sampled points (see
Zipser and Andersen, 1988). b) Receptive fields of five hidden units of
a trained Zipser-Andersen network. These were sampled at 10 deg.
intervals within the 40 deg. radius circle. (Adapted from Zipser and
Andersen, 1988)
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Chapter 3 A more plausible learning network model of area 7a

SUMMARY

Area 7a of the posterior parietal cortex of the primate brain is
concerned with representing head-centered space by combining
information about the retinal location of a visual stimulus and the
position of the eyes in the orbits. An artificial neural network was
previously trained to perform this coordinate transformation task
using the backpropagation learning procedure, and units in its middle
layer (the hidden units) develoned properties very similar to those of
area 7a neurons presumed to code for spatial location (Andersen and
Zipser, 1988; Zipser and Andersen, 1988). We developed two neural
networks with architecture similar to Zipser and Andersen’s model and
trained them to perform the same task using a more biologically
plausible learning procedure than backpropagation. This procedure is
a modification of the Associative Reward-Penalty (A g.p) algorithm
(Barto and Anandan, 1985), which adjusts connection strengths using
a global reinforcement signal and local synaptic information. Cur
networks learn to perform the task successfully to any degree of
accuracy and almost as quickly as with backpropagation, and the
hidden units develop response properties very similar to those of area
7a neurons. In particular, the probability of firing of the hidden units
in our networks varies with eye position in a roughly planar fashion,
and their visual receptive fields are large and have complex surfaces.
The synaptic strengths computed by the Ag.p algorithm are equivalent
to and interchangeable with those computed by backpropagation. Our
networks also perform the correct transformation on pairs of eye and
retinal positions never encountered before. All of these findings are
unaffected by the interposition of an extra layer of units between the
hidden and output layers. These results show that the response
properties of the hidden units of a layered network trained to perform
coordinate transformations, and their similarity with those of area 7a
neurons, are not a specific result of backpropagation training. The fact
that they can be obtained by a more biologically plausible learning rule
corroborates the validity of this neural network’s computational
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algorithm as a plausible model of how area 7a may perform coordinate
transformations.
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INTRODUCTION!

An important element of information processing in the nervous
system appears to be the collective behavior of large ensembles of
neurons. The study of the emergent properties of these networks has
been an important motivation behind the development of artificial
neural network models whose architecture is inspired by the biological
wiring of nervous systerus, contairiing a large number of simple
computational units extensively connected to one another. It is the
hope of many neuroscientists that these models will elucidate, at least
at an abstract level, some of the basic principles involved in
information handling by the nervous system, and thus perhaps provide
a theoretical framework within which to formulate experimental
questions.

One of the best examples of this type of approach so far is a neural
network model of area 7a of the primate’s posterior parietal cortex
developed by Zipser and Andersen (1988; Andersen and Zipser, 1988).
From lesion and single-cell recording studies in primates it appears
that area 7a is concerned with the representation of spatial locations in
a head-centered reference frame (see Andersen, 1989, for a review).
This representation is distributed over a group of neurons which are
sensitive to both the position of the eyes in the orbits and the location
of visual stimuli on the retinas. Other neurons in area 7a respond to
either eye position or visual stimuli alone, and are presumed to provide
the inputs from which the visual/eye position neurons extract the
craniotopic representation. The latter neurons have very large
retinotopic visual receptive fields and their response to eye position
interacts nonlinearly with the visual signals. Although the majority of
area 7a neurons maintain the same retinotopic receptive fields for
different eye positions, the magnitude of the visual response varies
with angle of gaze. Holding the retinal location of a visual stimulus
constant and varying eye position (Fig. la), Andersen and his

1. The material in this chapter has appeared in published form (Mazzoni et al. 1989,
1991a, 1991b).
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colleagues found that these neurons’ overall firing rate (visual plus eye
position components) varied roughly linearly with changes in
horizontal and vertical eye position (Fig. 1b). The response profiles for
varying eye position were called “gain fields,” and a majority (78
percent) of area 7a cells had planar or largely planar gain fields (Fig.
1c; Andersen et al., 1985b; Andersen and Zipser, 1988; Zipser and
Andersen, 1988).

Zipser and Andersen (1988) designed a computer-simulated neural
network with an input layer, a layer of internal or hidden units, and an
output layer. The input layer consisted of two groups of units with
properties similar to those of area 7a neurons sensitive to either eye
position or visual stimulus alone. The output layer coded for head-
centered location in an abstract format independent of eye position,
and was used to generate error signals to train the network. The
network was trained to perform the coordinate transformation from
retinotopic to craniotopic reference frames using the backpropagation
procedure (Rumelhart et al.,, 1986a). The striking result of these
simulations was that in the process of learning the hidden units
developed response properties very similar to those of the area 7a
neurons that seem to encode spatial location—specifically, a roughly
planar modulation of visual response by eye position, and large
complex receptive fields. This result suggested that area 7a neurons,
as an ensemble, can in fact provide information for the abstract
representation of space, and that these neurons’ properties can be
generated by a supervised learning paradigm.

Backpropagation networks can learn to perform a computation
without explicit “knowledge,” using only error signals from the
environment as cues to improve its performance, in a paradigm
referred to as “supervised learning” (Hinton, 1987). This type of
training scheme has conferred upon neural networks a stronger
element of biological plausibility than many previous models of brain
function that relied on precompiled rules and symbol processing.
Moreover, although various supervised learning algorithms for one-
layer networks were described long before backpropagation (Minsky
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and Papert, 1969; Widrow and Hoff, 1960), the discovery of the
backpropagation algorithm (Werbos, 1974; Parker, 1985; Rumelhart
et al., 1986a), which can be applied to more powerful multilayer
networks composed of nonlinear units, is in large part responsible for
the recent increase in interest in neural network models. In spite of
the biological plausibility of supervised learning, however, the
implementation of backpropagation in the nervous system would
require mechanisms, such as the retrograde propagation of signals
along axons and through synapses and precise error signal that are
different for each neuron, which are not accepted as likely candidates
for learning processes in the brain. To this end, Zipser and Andersen
emphasized that it was the solution that was of interest in their model
and not the method by which this solution was learned. They
speculated that other, more biological learning procedures might
generate a solution to the coordinate transformation task similar to
that which resulted from backpropagation learning. It was therefore
important to ask how crucial is backpropagation for the development of
the hidden units’ properties in a model like Zipser and Andersen’s.

We addressed precisely this question in our study. We trained two
neural networks with architecture similar to the Zipser and Andersen
model using a supervised learning paradigm that is more plausible
from a biological perspective than backpropagation. The algorithm we
used, which is a variant of the Associative Reward-Penalty (Agr.p)
algorithm for supervised learning tasks introduced by Barto and
Jordan (1987), trains a neural network using a global reinforcement
signal broadcast to all the connections in the network. We found that
our networks can indeed be trained by these algorithms to perform the
coordinate transformation task, and that the hidden units acquire
response properties very similar to those of area 7a neurons, as in the
Zipser and Andersen model. A second layer of hidden units can be
interposed between the original hidden layer and the output layer
without affecting the properties developed by units in the first hidden
layer. Furthermore, all of our networks perform the correct
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transformation on pairs of eye and retinal position never encountered
before, that is, they generalize appropriately.

MATERIALS AND METHODS

We devised two types of networks which we trained to map visual
targets to head-centered coordinates, given any arbitrary pair of eye
and retinal positions. The basic architecture of these netwerks is
similar to that of Zipser and Andersen’s model.

Mixed Agr.p network

We call the first network the Mixed Ag.p network (Fig. 2a), because
its hidden and output layers are trained by different learning rules (see
Training, below). It is composed of three layers of computing units: an
input, a hidden, and an output layer. The network has a fully
connected feedforward architecture, meaning that every unit in each
layer sends a signal to every unit in the next layer through an
individual connection strength or weight (w), so that signals propagate
in one direction from the input towards the output layer. The input
layer consists of two groups of units (Fig. 2a, squares), one coding for
the retinal location of the visual stimulus, and the other for the
position of the eyes in the orbits. These units encode the external
input by transforming an angular position into a value between zero
and one, which is then sent to the hidden units. Retinotopic locations
are represented by 64 visual units arranged in an 8x8 array, each with
a gaussian receptive field (Fig. 2b) with peak at 10 degrees from its
neighbors’ and 1/e width of 15 degrees, producing a uniform
topographic representation of the retina. Eye position is coded by 4
sets of 8 units representing horizontal and vertical eye coordinates
with positive and negative slopes, for which activation is a linear
function of eye angle (Fig. 2c). These representation formats were
modeled according to characteristics of area 7a neurons established in
previous studies (Andersen and Zipser, 1988; Zipser and Andersen,
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1988; Andersen et al., 1985b), and are the same as those used in the
input layer of the Zipser and Andersen model.

The hidden layer (Fig. 2a, diamonds) is so described because it is
not “visible” (i.e., directly connected) to external agents acting at the
input or at the output. The type of computational unit making up this
layer is the binary stochastic element (Fig. 3a). This probabilistic
element performs a weighted sum (s ) of its inputs and passes it
through the logistic function! to obtain a value (p) between zero and
one. This value is then used as the probability of producing an output
equal to one. The output is zero with probability I-p. This type of
computing element is “neurally inspired”, in the sense that it
incorporates some well-established features of neurons. In such an
analogy the inputs correspond to synaptic inputs from other neurons,
the connection weights represent synaptic strengths (with inhibitory
synapses implemented as negative weights), and the weighted input
represents the intracellular potential. The probability of firing is
analogous to a neuron’s rate of action potential firing, and changes in
the total weighted input affect the unit’s probability of firing in a
manner similar to how changes in the intracellular potential affect a
neuron’s firing rate. This hidden layer differs from that of the Zipser
and Andersen network in that the units of the latter were
deterministic logistic elements (described below). The number of
hidden units in the Mixed Ag.p network, as well as in all the networks
described below, varied from two to eight.

The hidden units project in turn to the output layer, which encodes
the craniotopic location that is the vector sum of the positions encoded
by the retinal and eye position inputs. The units in the output layer
(Fig. 2a, circles) are deterministic logistic elements (Fig. 3b). Like the
binary stochastic units, they too perforra a weighted sum of their
inputs and pass it through the logistic function. In the deterministic

1. The logistic function, which is a type of "squashing" function, has a sigmoidal
shape and maps real-valued inputs into the interval 0 to 1, according to: f{s)=1/(1
+ exp(-s) ). In our networks s is the sum of the unit's inputs weighted by the
corresponding connection strength, plus a bias.
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logistic element, however, this value between zero and one is the unit’s
output itself. The output, therefore, is continuous and precisely
predictable from the input. In the analogy with the neuron, this
continuous output would correspond to the firing rate. The outputs of
the output units encode head-centered location in one of two possible
formats: a “monotonic” representation analogous to the eye peosition
input, containing any number of units from 2 to 32 (“output 1”, Fig.
2a), and a “gaussian” representation similar to that of the retinal
input, with a number of units ranging from 4 to 64 (“output 2”, Fig.2a).
In the monotonic representation the activity of the output units
increases for more peripneral locations of visual target with respect to
the head, regardless of eye position. The gaussian format units fire for
visual stimuli appearing within limited receptive fields in head-
centered coordinates. We used either representation interchangeably,
as this did not seem to affect our results. A physiological correlate of
the monotonic representation could be a motor signal to the extrinsic
eye muscles (Zipser and Andersen, 1988; Goodman and Andersen,
1989), while the gaussian format would be more like a receptive field
for a mental representation of craniotopic space. These output
representations are similar to those of the Zipser and Andersen model.

All-Ap.p network

The second type of network we studied is the All Ag.p network (Fig.
4a), so called because all of its connections are adjusted by the Ag.p
algorithm (see Training, below). This network’s input and hidden
layers are identical to those of the Mixed Ag.p network. The output
layer, however, is composed of binary stochastic units like the hidden
layer. It too encodes craniotopic location in one of two alternative
formats. Due to the binary nature of the output units, we devised
output formats for the All Ap_p network such that the collective activity
of the output units codes for discrete adjacent regions of space, instead
of continuously varying spatial locations. In the “binary-monotonic”
format, 4 triplets of units divide craniotopic space into 16 regions by
giving an output of one if the x (or y) head-centered coordinate is
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greater (or less) than -40, 0, or +40 degrees (Fig. 4b). This format is
analogous to vhe monotonic format of the Mixed Ag.p network. The
binary counterpart of the continuous gaussian output is the “binary-
gaussian” formet, in which 4 units have overlapping receptive fields
centered at (160, £60) degrees, such that each unit’s output is one if the
spatial position is within 100 degrees of its center (Fig. 4c). This
format divides craniotopic space into 13 regions by virtue of the overlap
of the output units’ receptive fields. The number of units in both types
of binary output format may be increased to improve the output’s
spatial resolution. We did not examine the parameter of number of
output units systematically, as it did not produce significantly different
network behaviors.

Other networks

In addition to the two three-layer networks just described, we
studied the behavior of two similar four-layer ne tworks. These consist
of a Mixed Ap.p network and an All Ag.p network, each with an extra
layer of hidden units between the first layer of hidden units and the
output layer. This extra layer, like the original hidden layer, is also
composed of binary stochastic units. We did this to see whether the
response properties developed by the units in the hidden layer of the
three-layer networks depended on a direct connection with the output
layer.

For comparison purposes, we also set up a backpropagation network
identical to the Mixed Ag.p network described in Fig. 2a, except in its
hidden units, which are deterministic logistic elements and not binary
stochastic elements.

Training

We trained our networks to perform the coordinate transformation
task in a supervised learning paradigm. In supervised learning, the
network starts out with all connections and biases set at zero, or at
some set of small random values if the training algorithm cannot break
the initial symmetry (the Ap.p algorithm we used can handle both
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cases). An input pattern is presented to the network’s input layer,
which propagates a signal to the following layers (Fig. 5, solid arrows).
The output layer thus produces a “guessed” output based on the initial
set of connections. This output is compared to the correct output
pattern for that particular input, and an error is computed and fed
back to the network (Fig. 5, dashed arrows). The values of all the
network’s weights and biases are then adjusted by a learning rule so
that at the next presentation of the same pattern the error is, at least
on the average, smaller than before. This procedure is repeated until
the error is reduced to a value below a desired level.

For our task the input pattern is a signal for the retinal location of
a visual stimulus paired with one for the current eye position. The
desired output pattern is one that codes for a head-centered location
that is the vector sum of the retinal and eye positions. The error signal
is computed externally to the network. To draw an analogy with how
an animal may learn the coordinate transformation task, the input
pattern would correspond to a visual stimulus seen with the eyes at a
known angle of gaze (sensed by proprioceptive or corollary discharge
pathways). The animal may then make a movement toward the
stimulus, and any metric of performance, such as visually detected
inaccuracies, could be used to generate an error signal.

The network is trained by being repeatedly presented with a finite
number of patterns forming a chosen training set, the connection
weights being adjusted after each pattern presentation. We used two
types of pattern sets to train the networks. One is a set of random
pairs of retinal locations and eye positions so that the desired output
associated with each input is an arbitrary location in head-centered
space. In the analogy with the learning animal, learning with this set
would correspond to looking at various stimuli in the visual field at
various angles of gaze. The other type of training set consists of input
patterns for which the eye position is chosen randomly, while the
retinal location is computed so that the vector sum of the two inputs is
one of a few chosen craniotopic locations. The resulting training set
contains a few fixed spatial locations, each represented by a large
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number (at least ten) of retinal and eye positions that add vectorially to
it. Ior an animal, this type of training corresponds to looking at an
object fixed in space with the eyes in various orbital orientations. This
training set was used to see how well the network generalized to new
locations in space once it had been trained on a few fixed ones.

We devised two variants of the supervised learning procedure for
Ap.pnetworks of Barto and Jordan (1987) to adjust the weights of our
networks. The essence of this algorithm is the Agr.plearning rule.
Every binary stochastic element in a given network receives a scalar
payoff (or reinforcement) signal, r , whose value, in the supervised
learning paradigm, depends on how close the current output is to the
desired output. Specifically, r assumes a value between zero and one,
with zero indicating maximum error in the output (i.e., every unit that
should be firing is not, and vice versa), and one corresponding to
optimal performance (no error in the computed head-centered
position). The weights of the input connections on each binary
stochastic element are then adjusted in such a way as to maximize the
value of this payoff. Using the notation of Figure 3a, where x;
represents the output of the ith unit in the network, p; its probability
of firing, and w;j the connection weight for its input from the AP unit,

the equation for updating the weights on a binary stochastic unit is

Awij = prixi-pi)xj + Ap(1-r)(1-xi-pi)x; 1)

where Aw;; denotes the change in the value of the connection strength
wij after each pattern presentation, and p is a constant parameter
representing the learning rate. As shown in Figure 3a, each unit also
has a constant input, or bias (b;). The value of this bias is also
adjusted by the rule in Eq. 1, setting xj = 1. Typical values for the
parameters in this equation were 0.3 for p and 0.01 for A. We will
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describe this equation in more detail in the Discussion. The value of r
is computed, externally to the network, as

r=1-¢ (2)

where € is a measure of the current error at the output layer. In our
model, € is computed as the nt? root of the absolute value of the output
units’ error averaged over the number of output units:

K 1
1 * n

where %k indexes the K output units in the network, x; is the desired
output of the k" unit in the output layer, x; is its actual output, and n
is a constant. Values for n ranged from 2 to 6. This expression for € is
different from the one used by Barto and Jordan (1987) , who
computed ¢ as the sum of the squares of the output units’ errors. Both
expressions give a quantity nonlinearly related to the absolute value of
the output units’ errors, but our expression is more sensitive to small
errors (a given unit’s absolute error, x; -x;,is always less than or equal
to one). Barto and Jordan referred to their learning algorithm as the
“S-model Ag p rule”, borrowing terminology from learning automata
theory. In order to distinguish our modification of this rule from the
original one we refer to our training algorithm as the S-model Ag.p
rule.

We used the S’-model Ag.p rule to adjust the weights of all the
binary stochastic units in our networks. This includes all the weights
in the All Ap.pnetworks, and the weights between the input and
hidden layers of the Mixed Ag.p network. The output units of the
Mixed Agr.p network, being deterministic units with continuous output,
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were trained by the delta rule for output units (Rumelhart et al.,
1986a). This rule adjusts the weights of each output unit according to

Aw;; = a[(x,’:-xk) f(sk)] Xj (4)

where k indicates the kt* output unit, ais a scalar learning rate, f is
the derivative of the logistic function with respect to the unit’s net
input sg, and x;j is the output of one of the hidden units “presynaptic” to
it. Typical values for & were between 0.5 and 2.5. This learning rule
also is the basis for the backpropagation algorithm, and is used in
identical form to train the output units of backpropagation networks.

RESULTS

Learning

All the networks described above learned to perform the coordinate
transformatien task to any desired accuracy. Figure 6 shows the
general behavior during training of the two Ar_p networks studied and
compares them to that of a backpropagation network, with identical
architecture, learning from the same training set. We plot here the
absolute value of the output units’ error, averaged over the number of
output units and the number of patterns in the training set, versus the
number of presentations of the complete training set. The Agrp
networks produce learning curves with much more jitter than the
curve for backpropagation training, due to the stochastic nature of
their hidden units and to the type of error signal used in Ag.p training
(see Discussion). All three networks, however, produ.e curves with
similar envelopes, and the times required for convergence are
comparable. For the backpropagation network, which has a continuous
output, the error decreases monotonically (Fig. 6a), while for the All
Ap._p network, which has a binary output, the error follows a noisy path
down to zero and spends increasingly more time there, flickering
occasionally to the value of the output’s smallest resolvable angle (Fig.
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6c). The error for the Mixed Ag.p network is also noisy, because this
network’s hidden units are stochastic. It assumes, however, a
continuous range of values (Fig. 6b), because the output units are
logistic elements. Similar training curves were obtained for both
monotonic and gaussian formats. Neither algorithm had serious
problems with local minima (i.e., getting stuck at suboptimal
solutions).1

Response properties

We studied the response properties developed by the hidden units
during training in the same manner as Zipser and Andersen did for
their model, except we plot the units’ probability of firing (which is a
continuous variable) instead of its instantaneous output (which is
binary). The probability of firing can be thought of as equivalent to the
firing rate, and thus equivalent to the continuous output in the Zipser
and Andersen model. In other words, over a number of repeated
presentations of a given input pattern, the frequency with which a
binary unit’s output is one encodes a continuous value, which can be
conceived as a firing rate.

An interesting feature of area 7a neurons is that the visual and the
eye position contributions to their overall response interact
nonlinearly. For a constant retinal stimulus position, the total
response is not composed of a constant visual response to which an
independently varying amount of activity is added as the eye position
changes. As Figure 7a and the work of Andersen and Zipser (1988;
Zipser and Andersen, 1988) show, the visual and eye position
components can vary simultaneously, in either the same or opposite
directions, or to different degrees with eye position (see Andersen and
Zipser, 1988, for a more detailed analysis of area 7a gain fields). When

1. The frequency of local minima was around 5% for back-propagation, and
approximately 1% for the Ap.p algorithm, in approximately 200 different
simulations. One reason for the rather high frequency of local minima for
backpropagation is likely the small number of hidden units in the network. The Ar.p
networks was less affected by this parameter, mainly because the unit's output noise
improved the network's chances of escaping local minima.
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examined after training, the hidden units of both types of Ag.p
networks displayed gain fields similar to those of area 7a neurons (Fig.
7b-c), as well as the same type of variety. The overall response of the
hidden units, moreover (thin circles in Fig. 7), was always roughly
planar along vertical and horizontal eye positions. This result was
found in 78 percent of spatially tuned area 7a neurons (Andersen and
Zipser, 1988). When a second hidden layer of binary stochastic units
was been added to either the Mixed Agr. p or All Ag.pnetwork, both
networks learned to perform the task, and the units in the first hidden

layer still developed planar gain fiel2: simailar to those of area 7a (Fig.
7d, only All Agp.p shown).

It is worth noting that when studied in more detail, that is, when
sampled over a larger range of eye positions, the gain fields produced
by Agr.p (as well as backpropagation) training are not exactly planar,
but roughly sigmoidal along one direction of eye position (Fig. 8). In
other words, the overall responses are approximately planar within a
range of eye positions, and are flat outside this range. It turns out that
this range is determined by the most eccentric eye positions on which
the network was trained. The unit whose gain field is shown in Figure
8, for example, was part of a network trained with eye positions
between -40 and 40 degrees (horizontally as well as vertically), and it
developed a gain field approximately planar over this range along the x
direction (there were other units in the network with similar gain
fields oriented along the y direction). This result shows that the
hidden units learn to interpolate for eye positions between those in the
training set, but they do not learn to extrapolate to eye positions
outside this range. We believe that this is a direct consequence of
using a sigmoidal probability function (or input-output function in the
case of the deterministic logistic element) for the hidden units. The
gain fields of area 7a neurons may also flatten outside a certain range
of eye positions, producing a sigmoidal shape like that in Figure 8. At
present, the recording data available is too noisy, and perhaps too
limited in range of eye positions, to distinguish between a simple plane
and a sigmoid for the gain fields.
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There was also a qualitative similarity between the visual receptive
fields developed by the network’s hidden units and those of area 7a
neurons, as shown in Figure 9. The most striking feature of these
neurons’ receptive fields is their size, which extends to diameters of 80
degrees (Fig. 9a). This feature is reproduced by our model networks
(IMg. 9b-c). Another feature is the complexity of these receptive fields’
surfaces, characterized by one or more smooth peaks of various
eccentricities, which sets area 7a neurons apart from those of many
other visual areas. The networks’ hidden units also display a similar
complexity in their receptive fields, although such a comparison can be
qualitative at best. As was the case for the gain fields, the addition of
an extra hidden layer did not significantly affect the types of receptive
fields developed by units in the first hidden layer (Fig. 9d, only All Ag.p
shown).

The response properties of the Ag.p networks’ hidden units are not
only similar to those of area 7a neurons, but also to those of hidden
units of networks trained by backpropagation to compute coordinate
transformations. These response properties were described by Zipser
and Andersen (1988; Andersen and Zipser, 1988). We were able to
reproduce them also in a backpropagation network with the same
number of units and the same training set as the Agp.p networks (Fig.
10). This similarity suggests that the S’-model Ag.p rule and
backpropagation compute similar solutions (i.e., sets of network
connection strengths) to the coordinate transformation problem.

Comparison of solutions

The solutions found by S’-model Apg.p training and by
backpropagation are not just similar in the qualitative sense depicted
in Figures 7, 9 and 10. In fact, for a given training set, we found that
the set of weights trained by the Ag.p algorithm may be transferred to
a backpropagation network (with continucus output hidden units)
without any appreciable reduction in the accuracy of the network’s
response to that training pattern, and vice versa (Fig. 11). This is true
for both versions of our networks (Mixed and All Ag.p) and for
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networks with one and two hidden layers, as long as the output format
is the same for the Apg.pand backpropagation networks being
compared. The individual values of the weights are not the same after
training by the three different procedures, but the overall structure of
these weights is such that the two algorithms’ solutions to the
coordinate transformation problem are functionally equivalent for the
various network structures.

Generalization

A property that is often exhibited by artificial neural networks
trained by examples is the ability to generalize from those examples,
that is, to produce the correct output when presented with input
patterns that were not in the training set. This property is of great
theoretical and practical importance, as it demonstrates that the model
network has not merely learned to associate patterns in the training
set with their correct outputs on an individual basis, but has learned to
perform the transformation implied in the training examples. In our
task, this mapping is the addition of two position vectors.

We tested two extensively trained networks for two types of
generalization abilities. One is the ability to perform the correct vector
addition of new, random input patterns that code for the same output
locations as the training set. As shown in Figure 12 (left), all three
networks performed this task extremely well. The other generalization
task required the trained networks to give the correct output for input
patterns coding for new output locations (Fig. 12, right ), which is a
more difficult task. Although all networks produced some error, this
was still considerably less than for the untrained nets, indicating that
the networks generalized to a considerable extent.

DISCUSSION

Choice of the learning algorithm

The choice of the algorithm used to update the network’s connection
strengths was the central issue of our study. There exist a number of
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procedures to change the weights of a network in order to maximize
some measure of performance in a supervised learning paradigm (for
review, see Anderson and Rosenfeld, 1988; Barto, 1985; Hinton, 1987;
Lippmann, 1987; McClelland and Rumelhart, 1988). An important
class of such learning algorithms consists of those that maximize the
performance measure by following its gradient (i.e. the direction of its
maximum increase) with respect to the weights and adjusting them
accordingly, arriving at the set of weights that produces the optimal
output for every pattern in the training set. Backpropagation is an
important and powerful algorithm belonging to this class. It has been
used to train networks to perform such disparate tasks as pronouncing
written English text (Sejnowski and Rosenberg, 1986), to detecting
explosives in passengers’ luggage at airports (Shea, 1989). It is also
the training procedure used by Zipser and Andersen to teach their
network to perform the coordinate transformation task (Zipser and
Andersen, 1988). Powerful as it is, however, backpropagation suffers
the problem mentioned above of not being easily implementable in
biological neuronal hardware. Central to the backpropagation
algorithm are: 1) the feedback of detailed error signals that are specific
for each output unit; ii) the retrograde propagation of these signals
from the output units back to the hidden and input units; and, iii) the
adjustment of synaptic strengths using global network information,
that is, information about the activities and errors of units removed
from the synapse whose strength is adjusted. These requirements
represent major hurdles to envisioning backpropagation as a plausible
model of learning in biological neural networks even to only a rough
approximation, a concern that has been expressed by some of the
discoverers of this algorithm (Rumelhart et al., 1986b). Possible
solutions to this problem have been proposed, which require, for
example, specialized connections carrying the error signals for each
unit in the network (Hecht-Nielsen, 1989), or symmetrical feedback
pathways with connection strengths identical to those in the forward
network (Parker, 1985; Zipser and Rumelhart, 1990). Besides being
rather unconvincing from a biological perspective, however, these
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complicated mechanisms detract quite a bit from the simplicity of
structure and process that makes parallel neural networks so
appealing as models of nervous system function.

We chose the Ag.plearning algorithm because it uses the same
abstract principles involved in supervised learning as backpropagation,
but with specific processes that are more plausible for implementation
in neurobiological hardware. In particular, in the Ap.p algorithm: 1)
the feedback signal is a single scalar value computed from the output
units’ average error; ii) this signal is the same for all units in the
network, and as such it does not require backwards propagation along
network connections; and iii), synaptic strength is adjusted using the
payoff signal and information abeut the activity of the presynaptic and
postsynaptic unit only. We will return to these three features shortly.

How the network learns

The abstract principle used by backpropagation is gradient
descent—the minimization of an error measure by following the
negative of its gradient with respect to the weights. A priori there are
no conceptual or experimental obstacles to envisioning the brain using
this principle too, given a plausible performance measure. The S’-
model Ag p algorithm, as implemented in both of our network classes,
also makes use of this general principle. While the backpropagation
algorithm, however, computes the exact value of the error’s gradient
for a given input pattern, the S’-model Agr.p rule computes only an
estimate of that gradient (Barto and Jordan, 1987; Williams, 1986,
1987). Units trained by the Ag.prule do not have the detailed
information about the error vector and the state of other units which is
necessary to compute the exact gradient and which backpropagation
units obtain through non-bioclogical pathways. Due to the random
noise in their output, however, Ap.p units can “jitter” their activity
during learning so as to get an estimate of how the noise in activity
affects the payoff they receive, which in turn allows them to estimate
the direction in weight space along which to change their weights in
order to increase reinforcement.
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While this method allows Apg.p-trained units to properly adjust
their weights using only locally available information, it is more
random in its search for a solution than backpropagation. These
differences are obvious in the learning curves of Figure 6.
Backpropagation’s precise computation of the performance gradient
tells the algorithm the exact manner in which te change the weights so
that the error is monotonically decreased, resulting in the smooth
curve of Figure 6a. As this curve shows, the error falls quickly to a
value below the resolution of the gaussian units in the retinal input (10
degrees), and then continues to decrease much more slowly as the
output is refined to match the training signal. The curves for Agp
learning (Fig. 6b-c) follow an envelope very similar to the
backpropagation curve, but they are much noisier. The noise is due to
the randomness of the Ag.p units’ output. In order to learn, the Agr.p
element adjusts its weights so that its net input drives its probability
of firing towards one of the flat regions of the sigmoid function, thus
effectively decreasing the randomness of its output. The decrease of
the Ag.p units’ jitter as learning proceeds is reflected in decreasing
noise on the learning curves.

Biological plausibility of the Ar.p algorithm

As we mentioned above, one crucial requirement for our choice of a
learning algorithm was a greater plausibility of biological
implementation than the backpropagation algorithm. We must point
out at the outset, however, that Ag.p networks were not designed as
literal models of biological neural nets (Barto, 1985, 1989). Because of
the poor knowledge we have of the precise mechanisms of information
processing used by nervous systems, the most useful connection
between artificial and biological neural networks is presently limited to
the description of abstract processes in simplified models and the
investigation of the possibility of implementation in the biological
hardware. In other words, the Ag.p element was not designed by
collectin/ scattered known facts of neurobiology and molding them into
a computationally interesting unit capable of supervised learning, but
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rather as a simple, “neurally inspired” element with a few theoretically
motivated features that give it interesting learning abilities. We will
discuss biological plausibility, therefore, in its literal sense of
suggesting that the abstract computing processes performed by the
Ap.p unit during learning are more in keeping with possible neural
mechanisms proposed and partly demonstrated by experimental
neuroscientists than the mechanisms used by backpropagation
networks.

The first and most salient element of Ar.p models which aligns
them with many neurobiological and psychological models of learning
is the scalar payoff signal, r. This has the attractive features of being
computed from an average value of the error of the output units, and of
being transmitted as a single value to all the Ag.p -trained units in the
network equally. This error could also be detected, for example, as a
function of the angular difference between an object in space and the
end position of a reaching arm movement or a saccade toward that
object. After successful training, this difference would be nil and
reinforcement would be maximal. The reinforcement signal could thus
be computed by a part of the nervous system that monitored the
animal’s behavior with very little information about the activity of area
7a neurons. The fact that a single value is valid for All Ag.p units
implies that only one connection is necessary from the reinforcement
computing region to area 7a. In the backpropagation algorithm, on the
other hand, the output units’ errors must be kept as separate
components as they are fed back to the network to adjust individual
weights.

A single scalar value is easier to transmit to a group of neurons
than an error signal with specific multiple components. Evidence that
the nervous system may use such signals already exists. For example,
the nucleus basalis sends a widespread system of cholinergic
connections to several cortical areas, and the signals involved appear
to be related to behavioral choices and reward (Richardson et al.,
1988). The payoff signal required by our model, of course, would not
have to be distributed on such a wide scale. The signal could carry
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information about a specific motor task, for example, the accuracy of a
saccade to a target, and thus be used only by one or a few ensembles of
neurons in area 7a. Because a single signal, however, would be valid
for an entire group of neurons, there would be no need to propagate it
through special pathways to specific units in the network of interest.
This feature of the Apg.palgorithm is more attractive than
backpropagation’s requirement for the retrograde propagation of error
signals along specific pathways.

Besides not having to carry specific information to train individual
neurons, the payoff signal used in our networks has the advantage that
it can be independent of any coordinate system. In backpropagation,
the “teacher” signal must code for the correct head-centered location as
a vector in a craniotopic reference frame. The Ag.p algorithm, on the
other hand, computes its feedback signal from the average of the
output error’s absolute value (Eqs. 2-3), which is a single number that
can be derived from the comparison of retinotopic as well as craniotopic
positions.

Another “biological” feature of learning by Agr.p units is the use of
information that is locally available to the element itself at its
individuval synapses, in a fashion reminiscent of Hebbian learning. The
weight-adjusting equation for the it® Ag p unit (Eq. 1) consists of the
sum of two terms, each assigning the “reward” part and the “penalty”
components, respectively, of the learning rule. These terms consist of
three components:

i) the payoff signal, r (and the corresponding penalty
value, 1-r);

ii) information regarding the current state of the unit
(xi-pi);

iii) the output of the presynaptic element, x;j, directly
available at the synapse that the ji% unit makes onto
the it® unit.
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We have already discussed (i). In (ii), x; is the unit’s output (zero or
one), and p; is the probability that the unit’s output will be one given
the current net input, which depends on the unit’s weights. As
mentioned above, this probability could also be interpreted as the rate
at which the unit will fire given the present input. These two values,
as well as x; (iii), are effectively available at the connection: between the
input unit and the given hidden unit. The Ag.p rule therefore embodies
one of the most important elements of Hebbian learning (Hebb, 1949),
that is, the proportionality of a change in synaptic strength to both
presynaptic and postsynaptic signals. Hebbian learning remains one of
the most attractive mechanisms for synapse modification, both on
theoretical (Linsker, 1989) and experimental grounds (Ito, 1984; Kelso
et al., 1986; Sejnowski et al., 1989; Stanton and Sejnowski, 1989;
Brown et al., 1990). This is in contrast to backpropagation, in which
changes in strength at one connection require information about the
activities and error signals at all the connections in every layer above
that connection (Rumelhart et al., 1986a).

The Mixed Ap.p network, as we have mentioned, uses the Ag.p rule
only to train its hidden units. Its output units are trained by the delta
rule (Eq. 4). Although this is the same rule as is used for the output
units in backpropagation training, this does not pose as many cbstacles
to biological implementation as the full backpropagation algorithm
does. As shown in Figure 5a, the only extra information required by
the delta rule, as compared to the Ag.p rule, is an error vector from the
external evaluator. This is needed to form an individual error signal
for each output unit, whose weights are then adjusted by error
correction. There is no requirement, however, for backpropagaticn of
error or activity signals across synapses. In fact, the delta rule also
has a Hebbian form at the output layer, again in the sense that all the
information required to aJjust a connection’s strength is available at
the synapse. In Eq. 4 two terms are multiplied, the first of which (in
square brackets) contains “postsynaptic” information, while the other
is the activity of the “presynaptic” unit.
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The last feature that adds some biological flavor to the Ag.p unit is
the probabilistic nature of its output. The unpredictability of the exact
firing rate produced by a neuron for any given presentation of a certain
input has long been recognized as a feature of nerve cells (see, for
example, Vogels, Spileers and Orban, 1989; Tolhurst, 1989; Tolhurst
et al., 1983). In fact, this stochastic aspect of activity is one of the
reasons neurophysiologists usually present data as summed
histograms of several trials (Sejnowski, 1981). This is a feature that is
not included in the deterministic units of backpropagation networks.
The binary stochastic element’s output is not simply noisy. It has a
variance that is an increasing function of the mean probability of
firing. The variability of spike trains recorded from cortical neurons
also exhibits this statistical property (Vogels et al., 1989).

Many discussions of this aspect of neural activity have emphasized
the difficulties it creates, such as the requirement it may impose on
certain types of sensory information to be distributed over populations
of neurons (Tolhurst, 1989). In our model, however, the intrinsic
variability of the Ap.p units’ responses to input signals is essential for
the learning process. It allows the network to jitter its weights around
the current set of values, thus sustaining the search for a better
solution. The noise provides the algorithm with the means of obtaining
information about local variations in reinforcement. By making
successive incremental adjustments to the weights, the algorithm
converts these local variations into an estimated gradient of the
reinforcement signal. In this manner the noise compensates, in a
sense, for the scarcity of information contained in the scalar payoff
signal. The stochastic aspects of the model, therefore, are not mere
demonstrations of robustness to noise. The Ag.p rule demonstrates,
rather, how a computational unit’s output variance can be used to
achieve learning in a network that receives less than optimal feedback
information.
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Simulation results

The basic results of this study corroborate the validity, from a
physiological perspective, of parallel networks with distributed
representations as models of area 7a. We have shown that the Ag.p
algorithm can train a neural network to perform the same coordinate
transformation task as that performed by Zipser and Andersen’s
model. We also found that the solution discovered by this algorithm is
equivalent to that found by backpropagation. As was established in
Zipser and Andersen’s analysis (Zipser and Andersen, 1988), this
solutions give hidden unit response properties (planar gain fields and
large visual receptive fields) very similar to those of area 7a neurons
presumed to code for spatial location. These response properties,
therefore, are not a specific result of the backpropagation training
procedure. The set of connections strengths computed by the Agr.p
algori:hm, moreover, is not a unique cne imposed by the network’s
architecture. Other solutions, not involving planar gain fields or large
receptive fields, can be constructed which would work for the training
sets we used. It is striking, then, that Agr.p and backpropagation
produce this particular algorithm for computing cocordinate
transformations, and not any other.

In a more detailed analysis of the model we have shown that a
second layer of hidden units can be added to the network without

~changing the response properties of the first hidden layer, and that the

model networks are indeed capable of generalizing their coordinate
transformation abilities to new input patterns. Both these results
strengthen the physiological significance of this model architecture.
The former implies that relay elements—an important and ubiquitous
feature of brain architecture—are not an obstacle to learning, and
allow similar solutions to develop. The latter establishes the important
point that these model networks are indeed learning to perform the
coordinate transformation task. They do not merely act as content-
addressable memories—associating each input pattern in the training
set with its correct output individually— but rather they are capable of
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abstracting from the training examples the transformation common to
them, in this case vector addition, and applying it successfully to new
pairs of retinal and eye positions. This property has been observed
before in parallel networks with very few hidden units in the hidden
layer compared to the input layer (Cottrell et al., 1987).

The number of training iterations required for convergence by Ag.p
and backpropagation were comparable for networks and training sets
of the size we used. We have not examined in our study the issue of
how the Ag.p algorithm behaves for networks with considerably larger
numbers of hidden units and training locations. From previous
experience with this learning rule (Barto and Jordan, 1987), learning
should be significantly slower for such networks. It may be possible,
however, to make the algorithm more resistant to scale changes, for
example, by using a topographically more specific reinforcement signal.
Our use of a single scalar feedback signal could thus be viewed as a
worst-case scenario that does not exclude more specialized signals
which may be used by biological systems.

Future directions

It would be desirable to modify the Ag_p algorithm so that it could
train networks with continuous-output hidden units. Actually, any
algorithm capable of performing gradient descent using a scalar
reinforcement signal would be acceptable. Gradient-descent
algorithms that use scalar payoff signals are currently being developed
(e.g. Gullapalli, 1988), and it would be a natural continuation of this
work to try to apply them to networks modeling area 7a. The major
hurdles in these algorithms involve the theoretical details of
simultaneously updating the mean and variance of multi-parametric
distributions required by continuous stochastic units. The present
form of these algorithms is similar to that of the Ag.p procedure for
binary units. It is conceivable that the extension of the concepts of
supervised Ag.plearning to networks with continuous output units will
be a natural refinement which should not drastically change the types
of solutions obtained.
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Conclusions

We have shown that: i) the Ag.p algorithm can train neural
networks to compute coordinate transformations; ii) the convergence
times for small networks are comparable to those obtained by
backpropagation training; iii) in the process of learning this
computation, the hidden units develop gain fields and receptive fields

qualitatively similar to those of area 7a neurons; iv) the solutions are
equivalent to those computed by backpropagation; and, v) these
networks generalize appropriately. We have also pointed out a number
of features of the A g.p algorithm that bring it closer than
backpropagation to what is known about biological learning. We must
emphasize again, however, that the focus of our interest at this point is
not in how literally Apg.pnetworks reproduce individual
neurophysiological processes. It is rather the fact that these
algorithms form a family of training procedures that yield similar
functional representations when applied to a class of parallel
distributed networks, and that they can do so using mechanisms not
excluded, and perhaps suggested, by neurophysiological evidence.

These results represent a step toward establishing the physiological
validity of the architecture and general learning principles of the
model of area 7a introduced by Zipser and Andersen. They show that
physiological properties can arise from a more plausible learning
algorithm than backpropagation, thus suggesting that the detailed
processes by which neuronal ensembles learn may play caly a
secondary role in their ultimate collective behavior. Abstract
optimization principles, such as gradient descent, may instead be more
important determinants of neuronal learning strategies, and it would
be worthwhile to pursue such hypotheses with further theoretical and
experimental studies.
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FIGURE LEGENDS

Figure 1:

a) Experimental method of measuring spatial gain fields of area 7a
neurons. These experiments were carried out several years before our
modelling project (Andersen, Essick and Siegel, 1985, 1987). The
monkey faces a projection screen in total darkness, and is trained to
fixate on a point, f, #t one of nine symmetrically placed locations on a
projection screen «with his head fixed. The stimulus, s, is always
presented at the same retinal location, at the peak of the retinal
receptive field, rf. The stimulus consists of 1- or 6-degree diameter
bright spots flashed for 500 milliseconds. &) Peri-stimulus time
histograms of neuronal activity recorded from a particular area 7a
neuron, arranged in the same relative positions as the corresponding
fixation spots. The arrows indicate the time of visual stimulus onset.
The characteristics of the response to the visual stimulus at the
various angles of gaze constitutes the neuron’s eye position gain field.
(a and b adapted from Andersen, Essick and Siegel, 1985). ¢) Graphic
representation of the gain field in (b), introduced by Zipser and
Andersen (1988). The diameter of the thin outer circle is proportional
to the total response evoked by the stimulus. The annulus’ diameter
represents the contribution to the total response due to eye position
alone, and is measured as the background activity recorded 500 ms
before the stimulus onset. The dark inner circle represents the visual
contribution to the response, and its diameter is computed by
subtracting the background activity from the total response. This
representation shows that this neuron’s gain field is roughly planar in
a direction up and to the left.

Figure 2:

a) Structure of the Mixed Ag.p network. The network is composed of
three layers of computing units: input units (encoding retinal location
of stimulus and eye position), hidden units, and output units (encoding
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head-centered location of visual stimulus). Retinal position of the
visual stimulus is encoded topographically by an 8 x 8 array of input
units, each with a gaussian receptive field (described in (b) ). The
remaining 32 input units code for eye position in a linear fashion (see
(c)), with 2 groups of 8 units encoding horizontal gaze angle (with
positive and negative slopes), and 2 groups of 8 units for vertical angle.
Units in the output layer code for head-centered coordinates in a
monotonic format (output 1) similar to the eye position input, or in a
gaussian format (output 2) similar to the retinal input. The hidden
units are binary stochastic elements, while the output units are
deterministic logistic elements (see Fig. 3). b) Angle-coding function of
the retinal input units. Each unit’s activity level is a gaussian function
of the retinotopic x and y coordinates of the visual stimulus, with 1/e
width of 15 degrees, and spaced 10 degrees apart from that of its
neighboring units. ¢) Angle-coding function for the eye position units.
Each unit codes for the x or y eye position linearly. The sicres and
intercepts for each unit were assigned randomly within ranges
observed for area 7a neurons.

Figure 3:

a) Binary stochastic element. This neurally-inspired computing
element performs a weighted sum of its synaptic inputs (xg through
Xn; ) by multiplying each input by a synaptic weight (w;p through w;,, ),
which can be positive or negative, and adding these products. This
sum (s; ) is then used to compute a value (p; ) between zero and one
from the logistic function (1/(1 + exp (-s; ))). The element then
produces an output of 1 with probability p;, and an output of zero with
probability I-p;. We used this element in the hidden layers of all our
networks, as well as in the output layer of the All Ag.p network. b)
Deterministic logistic element. This unit computes a weighted sum of
its input in the same manner as the binary stochastic element. This
sum is also passed through the logistic function, but the resulting
value (x; ) is the unit’s output itself. The unit therefore produces a
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continuous output between zero and one which is determined exactly
by the weighted sum of its inputs. This is the element that was used in
the hidden and output layers of the Zipser and Andersen model. We
used it only in the output layer of the Mixed Ar.p network.

Figure 4:

a) Structure of the All Ag p network. The input and hidden layers are
the same as for the Mixed Ag.p network (Fig. 2). The output layer is
composed of binary stochastic units (Fig. 3a). These code for locations
in craniotopic space by dividing the latter into discrete regions
according to one of two formats (output 1 and outpuit 2) described in (b)
and (¢). b) Binary-monotonic format for the All Ag.p network. Each
unit transforms an cuiput value between zero and one into and angle
via a step function. An output of zero corresponds to all angles less
(positive step) or greater (negative step) than a given “cut-off” angle,
and an output of one codes for all angles greater or less, respectively,
than the cut-off angle. We use step here to indicate the direction along
which the step function changes from zero to one. Typically there are
four sets of three units each, for horizontal and vertical coding with
positive and negative step. Within each set, the cut-off angles for the
three units are at -40, 0 and 40 degrees. Only the functions for one
positive-step triplet of units are plotted. ¢) Binary-gaussian format.
Four units divide craniotopic space into 13 regions using overlapping
circular binary receptive fields. Each unit outputs a 1 for a position
within a 100-degree radius circle centered at one of the four positions
(60, i60)'degrees.

Figure 5:

a) Learning scheme for the Mixed Ag.p network. Training proceeds in
two phases that are repeated sequentially. First, a pair of retinal and
eye positions is presented at the input layer. The signal propagates
forward (solid arrows) to the network’s upper layers along connections
strengths that initially have random or zero values. The network’s
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output is evaluated by some external agent, and two types of signals
are fed back to the network (dashed arrows). One is a vector error
signal that consists of the differences between the actual and desired
outputs for the output units, and is sent to the output units. The other
is a scalar payoff signal (r ) between zero and one that is sent to the
hidden units. In the second phase the connection weights are adjusted
using the error and payoff signals. The output units adjust their
weights according to the delta rule, while the hidden units adjust them
by the S-model Ag plearning rule. The backpropagation network used
for reference was trained by the standard backpropagation algorithm
described by Rumelhart et al. (1986a). b) Learning scheme for the All
Ap.pnetwork. This is identical to Mixed Agr.plearning described in (a),
except that the scalar payoff signal r is broadcast to all the units in the
hidden and output layers, and all the weights are adjusted by the S’-
model Ar_prule. The network therefore employs only the scalar payoff
signal for feedback information on its performance, and no error vector
is required.

Figure 6:

Learning curves for the various networks studied. The error plotted is
the absolute value of the difference between the network’s expected
and actual output, averaged over the units in the output layer and over
the patterns in the training set. This average error corresponds
approximately to the radial distance between the craniotopic location
encoded by the output layer and the correct one (given by the sum of
the retinal and eye position vectors). The dashed line is a scaling
reference, 10 degrees corresponding roughly to the resolution of the
visual input. A three-layer network architecture with 3 hidden units
was used in a-c. The training set consisted of 12 random inputs coding
for 4 spatial locations. A two-unit monotonic output format was used,
which provided for easy conversion of the error values from unit
activation levels to angular coordinates of craniotopic space. The
training set was chosen small for better visualization of network
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behavior. The error for the binary output units of the All Ag.p network
was converted to degrees using the same linear activation function as
for the other two networks. a) Backpropagation training. b) Mixed
Ap.ptraining. ¢) All Agp training.

Figure 7:

Eye position gain fields for area 7a neurons and for the model
networks’ hidden units. Gain fields for four different neurons (a ) or
hidden units (b-d ) are shown in each case. The nine circles in each box
are a set of responses sampled at nine different eye position, with the
stimulus’ retinal location held constant. As described in Figure 1, the
thin outer circles represent the total activity (normalized), the dark
inner circles are proportional to the visual stimulus’ contribution to the
total response, and the white annuli are the background activity due to
eye position. By “activity” we mean frequency of firing for area 7a
neurons, and probability of firing for the networks’ hidden units. The
spacing between eye positions is twenty degrees for area 7a neurons.
It is twenty degrees for all the networks’ hidden units, except for the
two gain fields in the bottom left of (¢c) and (d), for which the spacing is
forty degrees. a) Area 7a neurons. b) Mixed Ag.pnetwork. c¢) All
Ap.pnetwork. d) All Ar.pnetwork with two layers of hidden units.

Figure 8:

Probability of firing (total response alone) of a hidden unit from a
Mixed Ag.p network, sampled over a continuous range of eye positions.
The gain field is planar over a wide range of eye positions. Note the
slight saturation effects (flattening) at the edges of the eye position
field.

Figure 9:

Visual receptive fields of area 7a neurons and of networks’ hidden
units. As in Figure 7, the variables sampled are firing rate for area 7a
neurons (a ) and probability of firing for the hidden units (b-d ). a)
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Area 7a neurons’ receptive fields. Each was sampled at seventeen
points in a forty-degree-radius circle, and a smooth surface was
obtained by gaussian interpolation (adapted from Zipser and Andersen,
1988). b) Mixed Ap.p network. c¢) All Ag.p network. d) All App
network with two layers of hidden units.

Figure 10:

Response properties of hidden units ir a backpropagation-trained
network. Shown are representative gain fields (@) and the receptive
fields (b) recorded from the hidden units of a backpropagation after it
was trained to perform the coordinate transformation. Note the
similarity between these response properties and those of the hidden
units of Ag.p-trained networks (Figs. 7 and 9). Two of the receptive
fields in (b) (top right and middle one on the left) are adapted from
Zipser and Andersen (1988).

Figure 11:

Error values (as defined for Fig. 6) produced by various networks when
trained sets of connection strengths were swapped among them. Three
networks (backpropagation, Mixed Ar-p and All Ar-p) were first
trained to a given accuracy. The trained weights were then exchanged
among the different networks, and the error upon presentation of the
training set was recorded. The value of ten degrees is again used as a
reference (see Fig. 3). The average error for all untrained .:etworks
was around 60 degrees. The error values do not show a significant
change when backpropagation training is replaced by Mixed or All Ar-p
training, and vice versa, showing that the solutions found by the
different algorithms are functionally equivalent. BP =
backpropagation. a) Backpropagation trained weights tested on
backpropagation network. b) Mixed Ag.p trained weights tested on
backpropagation network. c¢) Mixed Ap.; trained weights tested on
Mixed Ag.p network. d) Backpropagation trained weights tested on
Mixed Ag.p network. e) Backpropagation trained weights tested on
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backpropagation network (binary output format of All Ap p network
used in the training set). f) All Agp.ptrained weights tested on
backpropagation network. g) All Ag.ptrained weights tested on All
Ap.pnetwork. h) Backpropagation trained weights tested on All Ap.p
network.

Figure 12:

Generalization properties. Three-layer networks were trained by the
three different algorithms on a set of forty random input pairs. The
nets were then tested on a new pattern set, and the average absolute
error (as defined for Fig. 6) was recorded (solid bars ). The error for
this testing set was also recorded for the untrained networks for
reference (hatched bars ). In the test for the recognition of the training
output locations (left), the testing set consisted of forty new random
inputs that coded for the same four spatial locations as in the training
set. This tested whether the nets had really learned to add the eye
position and retinal location vectors to obtain the resulting craniotopic
location, and not just formed an associative memory storage of the
training set. In the test for generalization to new locations (right), the
testing set consisted of random inputs that coded for 40 new random
head-centered locations. This tested for the networks’ ability to
generalize the vector addition operation to new targets. Note that the
error bars labelled Mixed Ag.p were obtained (for the second task only)
by transferring a set of Mixed Ag.p trained weights on a deterministic
network and testing for generalization using this network. The reason
for doing this was that the Mixed Ag.p network cannot perform the
second generalization task because there are too few hidden units to
produce new locations in the continuous output format. The All Agr.p
network does not have this problem because the binary output format
codes for regions of space and not for unique locations. BP =
backpropagation.
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Chapter 4 Lesion studies of sound localization

SUMMARY

Whereas maps of the visual world are numerous in the primate and
the feline visual systems, there are few well-established topographic
representations of auditory space. Auditory spatial maps are also
generally coarser than those of the visual field, and thus are less
obvious candidates for subserving sound localization than their visual
counterparts are for the localization of visual stimuli. Studies of the
effects of lesions of various parts of the nervous system have thus
played a particularly important role in attempting to identify
structures that represent auditory space. This chapter is a review of
selected studies of the effects of cerebral lesions on sound localization
abilities in humans, cats, and monkeys. It will provide a background
for our studies—described in following chapters-—of the representation
of sound location in an area of the monkey’s posterior parietal cortex.
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I. INTRODUCTION

An important function of the nervous system of vertebrates is to
localize the sources of sensory information in extrapersonal space. The
visual sense is organized in such a manner that the point of origin of a
stimulus is encoded at the very initial stages of processing, by virtue of
the focusing function of the lens and of the topographic arrangement of
the detectors. As pointed out by Lord Rayleigh (1876), the physical
properties of auditory stimuli—specifically, the much greater
wavelength of sound waves as compared to light waves—make an
analogous arrangement impractical for the auditory system. The
ability to iocalize auditory stimuli, however, may be behaviorally as
crucial as visual localization. For example, animals with frontal vision
must rely on their hearing to detect the approach of a predator in the
entire posterior half of their extrapersonal space. As it turns out, most
vertebrates are indeed very good at detecting the spatial origin of
sound sources, and they do this by comparing subtle differences in
intensity, arrival time, and phase, as well as the spectral composition,
of the acoustic signals at the two ears (for reviews, see Blauert, 1983;
Yost and Gourevitch, 1987; Syka and Masterton, 1987).

The auditory system of vertebrates is organized so as to allow
complex transformations and comparisons of signals from both ears
that begin at the very periphery. In fact, binaural information
undergoes such extensive processing in subcortical auditory structures
that it is not possible to postulate a role of the auditory cortex in
auditory localization simply from the arrangement of its inputs.
Numerous studies have attempted to elucidate this role using
anatomical, behavioral and physiological approaches. I intend to
review the neuropsychological portion of this investigative effort. I will
describe those studies that have attempted to infer, from lesions in
humans and animals, the role of the cerebral hemispheres in general,
and of the auditory and association cortex in particular, in auditory
localization. In my discussion of the neurological literature I will first
focus on earlier efforts to ascribe auditory localization functions to a
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specific hemisphere or lobe. Next I will describe cortical ablation
experiments in animals that have improved the precision of the
functional localization suggested by the early human studies. I will
then return to human studies and describe more recent attempts te
examine the relationship between these functions and the perceptual
representation of spatial relaticnships.

Three other disciplines that have contributed in an integral manner
to our understanding of auditory localization mechanisms are
psychophysics, neurophysiology and neuroanatomy. I will not review
the results of these studies in detail. I will summarize some of them
where appropriate and refer the reader to recent review articles where
most of the relevant references can be found.

II. EARLY HUMAN STUDIES: IS THE CEREBRUM NECESSARY FOR
SOUND LOCALIZATION?

The study of man’ ability to localize sound sources began, unlike
many areas of scientific research, under the auspices of a sound
physical theory. Given that humans have two ears, it was reasoned at
least by the 1800’s that a comparison of certain parameters of the
sounds arriving at each ear could reveal the direction of that sound’s
source. The parameters put forth were intensity, phase and arrival
time. Lord Rayleigh (1876, 1907) formalized these idezs into a “duplex
theory” of auditory localization, which predicted that due to the size of
our heads and the velocity of sound in air we might lacalize high-
frequency sounds by comparing interaural intensity differences and
low-frequency sounds by comparing interaural time differences (phase
and arrival times). This elegant theory stimulated a series of
psychophysical experiments (summarized in Sanchez-Longo et al.,
1957) which eventually proved it correct as far as behavioral
parameters were concerned (Middlebrooks and Green, 1991, for a
recent review of human’s ability to localize sound). The same theory
has also been guiding much of the later neurophysiological research,
which in the last two decades has shown that the peripheral and
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central auditory pathways do indeed encode the parameters predicted
by the theory (see Brugge and Reale, 1985, for a review).

The theoretical background also begged neurologists the question
that set the main direction of human studies for the first half of our
century: do the cerebral hemispheres play an important role in
auditory localization? The fact that certain specific nontrivial
transformations need to be performed on the input parameters to
compute sound direction suggests that a higher center such as the
cortex might be involved. On the other hand, the accurate comparison
of parameters with very small differences (e.g., time delays of 0.5 ms),
might require the computation to be performed across as few synapses
as possible, and thus peripherally.

Unfortunately, the studies that addressed this question in the,
1950’s and, 1960’s gave mixed results. Walsh (1957) found that 21
patients with various unilateral and bilateral hemispheric lesicns had
no trouble indicating the apparent direction (left vs. right) of time-
delayed clicks presented via headphones. He did find that some
patients had impaired ability to localize stimuli separated vertically
but no problem in the horizontal discrimination (via headphones).
Very few studies of patient populations have since looked, however, at
vertical localization capacities. Two problems with this study, pointed
out by Shankweiler (1961), were the absence of a control group and the
use of a rather long interaural time delay (2.5 ms) for the headphone
stimuli, which may have made the task too easy.

Around the same time Sanchez-Longo and his associates introduced
a clinical test for sound localization which could easily be implemented
in any hospital (Sanchez-Longo et al., 1957; Sanchez-Longoe and
Forster, 1958). Blindfolded subjects held their heads fixed on a chin
rest and pointed to whichever of 13 speakers, arranged radially 15
degrees apart, happened to sound. When compared to a group of
normal subjects, 50 patients with focal unilateral cerebral lesions had
impaired auditory localization. Most impairments were in the auditory
hemifield contralateral to the lesion. Moreover, patients with temporal
lesions were most frequently impaired (19/21), although
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temporoparietal and frontotemporoparietal lesions also produced
impairments (2/3 and 7/7 patients, respectively). The authors
concluded that an intact temporal lobe is needed for the localization of
sound sources in the contralateral hemispace, and that their test was
specific for temporal lobe lesions.

Shankweiler (1961) tried to reproduce Sanchez-Longo’s group’s
results in more controlled conditions and with more patients. He also
tested his patients on an auditory discrimination task where they had
to point halfway between the perceived directions of two sequentially
activated speakers. This test (which required a verbal response) was
meant to reveal those patients that might have failed the previous test
simply because they had trouble pointing to the sounds. His results
were surprising, however. None of the 78 patients showed decreased
performance on the localization test, while they were significantly
impaired in the discrimination test. Shankweiler deduced that human
subjects with unilateral cerebral lesions are not impaired in free-field
(i.e., not via headphones) auditory localization.

Several years later the neurologists Klingon and Bontecou took a
somewhat drastic approach and applied a very simple bedside test for
auditory localization to a series of patients (Klingon and Bontecou,
1964, 1966). The test required the patient to reach with eyes closed to
the physician’s hand while he rubbed his fingers at some location near
the patient. A group of normal subjects and two groups of patients
(112 with subtentorial lesions and 42 with supratentorial disease) were
tested. The test turned out to be surprisingly sensitive. Auditory
localization impairment was found in 33/42 patients with
supratentorial lesions, and in neither of the other two groups. Twenty-
nine patients in the impaired group had focal unilateral lesions, and
their impairment was always contralateral to the lesion.
Mislocalization was also more common with right-sided damage,
although no comment was made by the authors on this (Bisiach et al,,
1984). Kiingon and Bontecou thus confirmed Sanchez-Longo’s finding
that the cerebral hemisphere is necessary for accurate sound
localization, and that each hemisphere is responsible for sounds in the
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contralateral hemispace. Because mislocalizations were not associated
with lesions in any one particular area, however, they rejected the idea
that the temporal lobe plays any special role in mislocalization
syndromes.

Klingon and Bontecou also rejected Walsh’s report that horizontal
auditory localization remains intact after cortical lesions, on the
argument that auditory lateralization, i.e. distinguishing a left from
right sound, is a different task from localization In the latter task the
subject must associate a spatial position with the auditory stimulus,
and it is this function, they argue, that requires an intact hemisphere,
Lateralization can be performed as an exclusion task (i.e., it’s enough
for a patient to distinguish when a sound is in a field where he/she
cannot localize it from a sound that’s in the intact hemispace), and
thus is likely not as sensitive a test of auditory localization
impairments as free-field stimuli are. The same argument has been
offered by Jenkins and Merzenich (1984) to explain previous
discrepancies in results obtained from humans as well as animals. In
fact, Walsh did obtain impairments in vertical localization, which was
tested via a free-field stimulus. Sanchez-Longo, who did find
impairments, was using a localization test. On the other hand, so was
Shankweiler, and he did not obtain mislocalizations.

Another puzzle comes from two case reports by Jerger et al. (1969,
1971). They studied the effects of bilateral temporal lobe damage on
two patients who had had 2 successive strokes, one in each
hemisphere. Besides experiencing a transient deafness, both patients
lost the ability to recognize words or sentences (“word deafness”).
While one also iost the ability to localize sound sources, however, the
other patient had no trouble localizing free-field stimuli. The authors
speculated that an “interaural imbalance in the relation between
loudness and signal duration” was responsible for the deficit in the
first case. Although this was an interesting idea, to my knowledge it
has not been supported by experimental evidence since.

A much more recent study performed by Efron et al. (1983) not only
supports a role of the temporal lobe in contralateral auditory
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localization, but also suggests a hemispheric division of roles at a more
general processing level. These researchers studied the “cocktail
party” effect in patients that had undergone unilateral temporal
lobectomy. The effect refers to the ability to identify and localize an
individual sound among many (and thus be able to choose the most
interesting conversation to eavesdrop at a cocktail party). Patients
that had undergone temporal lobectomy had tc identify, in the first
task, all 5 of 5 sounds presented simultaneously and taken from a set
of common environrental sounds. The sounds were presented through
headphones, and some had intensity differences that allowed subjects
to lateralize them. All patients had more difficulty identifying sounds
lateralized to the contralateral ear than to the ipsilateral ear. In the
second task, the subjects were instructed to search for a specific sound
in a set of 5 and to report from which side it was perceived. Again,
patients made more errors when the chosen sound was presented
contralaterally to the lobectomized hemisphere. These results confirm
the temporal lobe’s importance in the spatial analysis of the

this function may required to perform other types of auditory analysis
such as identification. The patients did not show any significant
hemispheric asymmetry when the sound where presented monaurally,
and hence devoid of spatial characteristics. When a hemisphere was
presented with binaural inputs, however, a localization deficit was
accompanied by an identification deficit. It was as if any spatial
feature of the sound, if present, had to be processed before
identification was allowed to proceed; any deficit in localization then
seemed to produce poorer identification.

Overall, then, it seems established that an intact contralateral
hemisphere is needed for normal auditory localization in each auditory
hemifield. The studies I described did not conclusively establish
whether the temporal lobe really plays a special role in this function.
There remain inconsistencies which hopefully will be resolved by using
more refined imaging techniques and more uniform testing procedures.
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III. CORTICAL ABLATICON STUDIES IN ANIMALS

The earliest studies of the effects of cortical lesions on auditory
localization were described by Neff and co-workers (195¢:), who found
that cats with bilateral auditory cortex lesions had great difficulty
walking to the source of a sound on a left vs. right choice. In
subsequent years, several studies established the effects of bilateral
and unilateral cortical lesions on the sound-localizing ability of various
species (reviewed in Heffner and Heffner, 1990). Briefly, primates and
carnivores are significantly affected by such lesions, while rodents
show only minor deficits. In the former two groups, several studies
have addressed the nature of the deficits in some detail.

Unilateral lesions

The auditory pathways, unlike the visual system, combine the
signals from the two peripheral organs (the cochleae) very early on.
Although two parallel pathways starting in each ear follow separate
courses all the way to the primary auditory cortex (area Al, in the
ectosylvian region of the temporal lobe), there are cross-over
connections at several levels in between (see the references cited in
Brugge and Reale, 1985, for the original descriptions of the pathways
leading up to the auditory cortex). In order to study the contribution of
these way-stations to sound localization abilities, Jenkins and
Masterton (1982) performed unilateral disruption of inner ear
structures, superior olivary complex, lateral lemniscus, inferior
colliculus, medial geniculate and auditory cortex of cats. They then
tested animals with each lesion on a localization task in which the cat
had to walk to the speaker that had emitted a click while the cat was
looking straight ahead. There were seven speakers places 30 deg.
apart. Lesions below or at the level of the superior olive resulted in
bilateral or ipsilateral deficits in sound localization, while all lesions
above this level produced deficits only in the sound field contralateral
to the lesion. After undergoing ablation of the left auditory cortex, cats
performed at chance level for some of the speakers on the right side.
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This study thus established that in spite of the non-topographic
organization of low-level auditory inputs, these inputs are transformed
into aural hemifield representations at the superior olive, and remain
segregated—at least in a functional sense—as they ascend to the
cortex. The early auditory structures therefore achieve, presumably by
analysis of binaural interact.ons, a topographical segregation of
auditory space analogous to the one performed by the optic chiasm for
visual inputs. Moreover, the auditory cortex in each hemisphere is
necessary for auditory spatial discriminations in the contralateral
sound field.

This experiment revealed an interesting aspect of the strategy of
cortical-lesioned cats: their performance was worst at a particular
point within the contralateral hemifield (at 60 deg. in the example
shown by the authors). Such a curve may suggest the presence of a
“sigoma,” or auditory silent spot, analogous to a visual scotoma.
Analysis of the cats’ behavior, however, showed that this peculiar
performance reflected the animal’s strategy to systematically respond
to the same sequence of speakers in the impaired hemifield, as this
maximized reward in the absence of spatial information. It was
important to investigate this issue as the authors did, because
obtaining a sigoma from a restricted lesion would strongly argue for
the presence of a topographic representation of auditory space.

Jenkins and Masterton also tested their lesioned cats on a simpler,
left-right speaker discrimination task, and found no impairment. This
result was explained by examining the cats’ learning curves in this
task and noting that they were simply learning a new strategy (to
respond to the contralateral speaker whenever the sound was hard to
localize) that did not depend on an ability to localize sounds in the
contralateral hemifield. As the authors pointed out, this observation is
likely to explain the negative results of previous studies of unilateral
lesions, which used left-right speaker discrimination as a measure of
auditory localization ability.
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Bilateral lesions

Bilateral ablations of auditory cortex preduce disruptions in the
ability to localize sounds that are more dramatic than those obtained
with the unilateral lesions just described. The deficits are permanent
and extend to the entire auditory space (e.g., Heffner, 1978; Heffner
and Masterton, 1975). Sound-localization mechanisms, on the other
hand, seem well-developed within subcortical auditory structures as
well. Indeed, cats with auditory cortex lesions can still make reflexive,
orienting head movements toward an unexpected sound (e.g., Beitel
and Kaas, 1971), and decorticate opossums can indicate the direction of
a sound with a non-spatial response (Ravizza and Masterton, 1972).
The question then arises as to what is the basis of the cortical deficit.
This issue was recently investigated by Heffn>r and Heffner (1990).
They produced bilateral ablations of superior temporal gyri (including
all auditory fields) in Japanese macaques (Macaca fuscata), and then
studied their learning and performance on four versions of a sound
localization task. One experimental variable was whether two
loudspeakers were located across the animal’s midline or within a
hemifield of head-centered space. The other variable was the type of
response which the animal had to make to indicate which speaker had
just emitted a short noise. In the two-choice test, the required
response was a spatial one (to walk to the correct speaker); in the
“conditioned-avoidance” test, the response was a non-spatial one (to
stop drinking if the left speaker had sounded, and to continue drinking
otherwise). The moakeys could not discriminate sound locations
within a hemifield either in the two-choice task or in the conditioned-
avoidance task. In the midline stimulus condition, the animals were
much slower than controls in learning to walk to the left or right
speaker, and had decreased acuity in the conditioned-avoidance task
for these stimuli.

The interpretation given to these results is that deficits in sound-
lecalization abilities produced by auditory cortical lesions derive from
both sensory and perceptual deficits. The total inability to
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discriminate sound locus within a hemifield and the reduced acuity in
left-right discriminations indicate a sensory deficit: the only physical
difference between the sounds (their spatial separation) is not detected
as well or at all. The difficulty that lesioned monkeys have in learning
to approach the scurce of a sound, as opposed to just indicating its
position with a non-spatial response, may indicate an additional
perceptual deficit. The sensory system must be detecting the two
sound sources as being different, because the monkey can indeed
indicate whether the left one sounded by interrupting his drinking. An
inability to associate the difference between the stimuli with a
difference in spatial locations would explain the difficulty in walking to
the appropriate speaker. Such a perceptual deficit might indicate a
specific function of the auditory cortex in the processing of stimulus
locations: to integrate sensory localization information into some
perceptual map of auditory space, or to organize sensory inputs into a
format that would allow higher cortical centers to perform the
perceptual integration. This integration would presumably not be
needed to detect the differences between the stimuli and express this
detection in a non-spatial response. Such an interpretation is
consistent with the previous findings in other species mentioned above,
and replaces the auditory-motor hypothesis of Ravizza and Masterton
(1972) (who postulated a general deficit of motor responses to auditory
stimuli), which would not explain some of the findings just described.

Partial lesions

Given that the auditory cortex is necessary for contralateral sound
localization, how is auditory space represented in this region?
Recording studies aimed at elucidating the functional architecture of
auditory cortex have failed to uncover a topographic organization like
that of the primary visual cortex. The primary auditory cortex (A1) of
the cat is divided into rostrocaudally oriented strips of cells with
similar responses to binaural stimulation (binaural interaction bands),
and dorsoventral/mediolateral isofrequency bands (see Brugge and
Reale, 1985, for a review). Early studies had demonstrated neurons
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that responded preferentially to sounds presented in limited regions of
the sound field (e.g., Evans, 1968), and it was suggested (Imig and
Adrian, 1977) that neural sensitivity to spatial location might be
organized along the isofrequency bands. A study by Middlebrooks and
Pettigrew (1981) examined this possibility by systematically recording
along the mediolateral axis of A1l while varying the location of free-
field pure-tone stimuli. About half the neurons found in this study
were selective for sound location and responded to tones anywhere in
the contralateral field (hemifield units) or along the axis of the
contralateral pinna (axial units). These two classes of neurons were
segregated from each other and separated by neurons insensitive to
sound location (omnidirectional units). Although a possible
organizational scheme of location sensitivity in A1 was found, it was
not a topographic one, and it left open the question of how a population
of Al neurons might encode sound location in a continuous fashion.

In a more recent study Rajan et al. (1990) examined the
isofrequency bands of cat Al in analogous manner, and came up with a
more refined classification of azimuth-sensitive neurons. These are
indeed clustered according to the region of auditory space to which
they are sensitive, and their organization is consistent with a model of
a modular arrangement that allows the localization of sounds of a
particular frequency by groups of cells within an isofrequency band.

A set of elegant lesion experiments provides further support for
such a model of Al organization Jenkins and Merzenich, 1984). The
question asked was, can individual ‘requency band strips in A1l localize
sounds of that particular frequency throughout the contralateral
auditory space? First, small lesions limited to a restricted band of
frequency in A1 were made. These produced a profound localization
deficit for contralaterally presented tones of the corresponding
frequency, while localization of all other frequencies remained intact.
Then the complementary lesion was made in another cat, i.e., all Al
was destroyed except for a narrow band of frequency. This cat lost the
ability to localize contralateral sounds of all frequencies except those in
the spared band. This study thus confirmed that Al in each
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hemisphere contributes to only contralateral sound field
representation, that it is necessary for normal binaural sound-
localization behavior, and established that sound-location
representation is indeed organized by frequency channel.

IV. BEYOND THE AUDITORY CORTEX: SPATIAL REPRESENTATIONS

The evidence from human and animal lesions reviewed so far
implicates the auditory cortex in spatial processing of the contralateral
hemifield in the auditory domain. How does this auditory information
contribute to our perception of external space and to our interaction
with the external world? Research on this topic in the various
disciplines has been on a variety of schedules.

Psychophysical studies of the interactions among various sensory
modalities date back to the early part of this century. There is a vast
literature on the myriad combinations of effects that different senses
can exert on one another with regards to spatial, temporal and
response aspects of sensation. The review by Welch and Warren (1986)
is an excellent introduction to this literature. A great deal of evidence
underscores a strong interaction between auditory and visual spatial
representations. Work by Platt and Warren (1972) and by Lackner
(1973), for example, has shown that visual input can affect the absolute
calibration of spatial auditory maps, while Knudsen (1985) has shown
in the owl that the influence of vision is actually necessary for the
proper development of auditory maps. The question remains open, of
course, as to whether these two maps coexist separately or combine
into one supramodal spatial representation (see, for example, Auerbach
and Sperling, 1974).

Physiological studies of central neural proccsses underlying these
issues are still in their infancy, relatively speaking. Jay and Sparks
(1984) have demonstrated a gating of auditory receptive fields which
aligns these fields with visual maps in the primate superior colliculus.
Very few studies, however, have yet looked at the interactions of
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sensory maps in more central neural structures such as the association
cortices.

Lesion studies got an earlier start on this issue. It seems that
around, 1970 neuropsychological research in auditory localization took
a turn towards more sophisticated aspects of this function. In
particular, several studies have addressed the topic of perceptual
representation of auditory space, and iis interaction with spatial maps
arising from other sensory modalities.

Extinction and neglect

An early report of a “higher-order” auditory spatial dysfunction was
a paper by Bender and Diamond (1965), who reported auditory
extinction in “more than 25 patients with hemispatial disorientation.”
Unfortunately their report was very sketchy, and very little
information was given regarding the types of patients examined and
the tests employed. These authors were also the first to describe
“alloacusis” (Diamond and Bender, 1965), a displacement of the
acoustic image across the midline, in patients with auditory neglect.
In other words, a neglect syndrome was described for the auditory
modality, which differs from visual neglect in that the stimuli on the
side contralateral to the lesion do not go unperceived, but rather are
perceived across the midline on the ipsilateral side.

Auditory extinction was further investigated by Sparks et al.
(1970). Right-handed patients with right or left hemisphere damage
were presented simultaneous stimuli in the two ears. Right brain
damaged (RBD) patients only failed to report stimuli presented to the
contralateral ear, while left brain damaged (LBD) patients were
divided into a group (18/26) that failed to report contralateral stimuli
and a smaller group (7/26) that showed extinction for stimuli presented
in the ipsilateral ear. A model was thus proposed, according to which
not, only does each hemisphere monitor inputs from the contralateral
hemifield, but a third pathway connects the left ear with the left
hemisphere via the right hemisphere and anterior commissure.
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Extinction has been considered an interesting phenomenon mainly
because of its association with parietal lobe syndromes involving
neglect. This association may not be a true one, however, according to
a study by De Renzi et al. (1984) They addressed the issue of whether
an attentional deficit or simply a sensory one underlies extinction.
They tested 2 groups of patients (RBD and LBD) for auditory
extinction, visual extinction, and visual neglect. If extinction were
really a sign of an attentional Jisorder, then the prediction was that it
should be supramodal (i.e. visual and auditory extinction should
usually coexist); it should be observed in every instance of neglect, and
it should show an asymmetry (occur more frequently with right
hemisphere damage), as neglect does. None of these features was
observed. Auditory extinction was frequently seen independently of
visual extinction, and vice versa. No right-left asymmetry was
observed. The presence of auditory extinction was indeed found to
correlate positively with the presence of visual neglect, but the
correlation was not perfect. On the basis of these results, De Renzi et
al suggested a sensory deficit as the underlying nature of extinction,
and warned against using extinction as a reliabie sign of attentional
impairments.

While auditory extinction may be a sign of a sensory deficit,
auditory neglect is likely to be very closely related to attentional
processes and/or distorted spatial representations. Why then not look
at the posterior parietal cortex, which is known to be involved in the
analogous processes for vision? Two studies by Heilman and his
associates (Heilman et al., 1971, 1972) address this issue. In the first
study the caudal part of the inferior parietal lobule was ablated in 4
rhesus monkeys. The lesion produced auditory as well as visual and
somesthetic neglect syndromes, from which all monkeys recovered
within a month. These monkeys showed alloacusis, i.e. they turned to
the ipsilateral side when a sound was made on the contralateral side.
In the second study 17 patients with auditory neglect were identified
by examination. Of 10 of these who had a brain scan, 9 had lesions
around the right inferior parietal lobule (1 had a frontal lobe lesion).
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They also had other manifestations of neglect (visual, tactile and
autonomic). These results directly implicated the IPL in the processing
of auditory stimuli (either by spatial analysis or auditory attention);
alternatively, they argue for a supramodal attentional and/or
representational system subserved by the parietal cortex.

Attention and spatial distortions

The syndrome of contralateral visual neglect associated with
posterior parietal cortex damage has been interpreted as part of an
impairment of the internal representation of egocentric space (Bisiach
et al., 1981). One might then ask how auditory neglect fits in such a
scheme. In other words, is auditory spatial perception integrated into
a supramodal representation which might subserve mechanisms such
as attention, orienting, and navigation? The evidence from cortical
lesions so far is mixed.

A study by Altman et al. (1979) first demonstrated a connection
between attention disorders and spatial misrepresentations in the
auditory domain. By testing auditory localization in depressed
patients undergoing electroconvulsive therapy they were able to study
the effects of temporary hemispheric inactivation. They studied 96
patients immediately after shocks we applied to one or the other
hemisphere. In lateralization tests, where one of two experimenters,
each on one side of the bed, addressed the patient, they found that 20
percent of the subjects turned their gaze toward the experimenter on
the same side that had been shocked no matter who had spoken. This
deficit was similar to the alloacusis phenomenon described by Bender
and Diamond, and lasted 1-2 min. It was observed only with
inactivation of the right hemisphere. The patients were also tested on
lateralization of fused acoustic images (FI) produced by presenting
click trains with relative time delays via headphones. While left
hemisphere inactivation produced no effect on lateralization, right
hemisphere shock caused a shift to the right of the perceived location of
all stimuli, including those in the ipsilesional hemifield. For example,
stimuli that were normally perceived at -80, -70 and -45 degrees (the
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minus sign indicating the left hemifield), were reported by one patient
at about -60, -40, -15 and degrees, respectively; stimuli at 0, +45, 70
and +80 deg. were compressed into the right hemifield, at +55, +72,
+75 and +85 deg. Similar results were obtained with moving FI's
(produced by continuously varying the relative delay between left and
right click trains during the presentation). Patients before shock and
after left hemisphere shock perceived the sound as moving from left to

midline, midline to left, midline to right, and right to midline. Patients
after right hemisphere shock, on the other hand, perceived the proper
direction of motion, but with the left endpoint right-shifted to about -60
deg. and the midline point shifted to about +40 deg. Right hemisphere
inactivation thus seemed to produce a distortion of perceived auditory
space such that the entire space was compressed toward the lesioned
side. This distortion was topographic, as it preserved the neighboring
relationships of stimuli, and generated a region (from about -60 to -90
deg.) towards which responses were not made. Strictly speaking this
deficit is not a neglect syndrome, because stimuli elicit responses from
all positions in the field. Because these responses are shifted to the
right, however, there is a region which is ignored in the motor or
response domain.

The results of Altman et al. are partly supported by a study by
Bisiach et al. (1984). They studied lateralization of pure tones in a
population of 106 patients who had focal brain damage in the anterior/
posterior right/left hemisphere. A systematic directional error (SDI) to
the right was found in the right posterior group. This error varied
from O deg. (at the +90 and -90 deg. stimulus positions) up to +70 deg.,
and was obtained in both contralateral and ipsilateral hemifields. The
errors were larger for right posterior patients that also exhibited visual
neglect, although this trend did not reach significance. Based on CT
scans, all lesions in these patients clustered around the inferior
parietal lobule.

Like Altman et al.’s results, Bisiach’s group’s study demonstrated a
rightward compression of perceived auditory space in patients with
right hemisphere damage. This distortion again extended well into the
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ipsilesional hemifield. Unlike the previous study, however, the left
endpoint of auditory space was not shifted (errors decreased smoothly
to 0 towards the left and right endpoints), se that the angular range
into which responses were made did not change.

The two studies just discussed both tested lateralization via
headphone stimuli. A study by Ruff et al. (1981) addressed the
localization of free-field acoustic stimuli. As in Bisiach’s study, it was
the right posterior damage group that made significantly larger errors
in pointing to one of nine hidden speakers. Errors in one hemifield
were not significantly different from those in the ipsilateral one, in
agreement with the other two studies. Pinek et al. (1989) also
examined parietal patients ability to localize free-field sounds. Their
subjects had to point to the speaker that emitted a noise or a verbal
stimulus. Results were mixed, as only one of three right parietal
patients patient showed a significant right-shift in both hemifields
(curiously, verbal stimuli were more shifted than noises). The two
other patients showed ccnsistent shifts only in the contralateral
hemifield. A surprising result of this study was that three patients
with left posterior damage found it practically impossible to localize
the stimuli, pointing in almost every possible direction with extremely
high error rates. It is not clear why these patients performed so badly
in both hemifields. The finding is so much outside the patterns of the
previous literature that a more detailed investigation with a larger
sample of patients will be needed to make some sense of it.

The free-field set-up allowed Ruff to address another interesting
question, that of the distinction between personal and extra-personal
space. It is possible that personal space (i.e. approximately that
within arms’ reach) may be represented separately from the rest of the
perceptual world, and thus that deficits in the two representations may
exist independently of each other. Ruff et al. tested for this by
requiring their subjects to point to the halfway between two sound
stimuli previously presented in succession. It was argued that this
“auditory bisection” task requires the proper representation of spatial
locations relative to each other, without reference to the body. A deficit
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was indeed found in this function in the right posterior damage group.
The errors on this task correlated very well with those on the simple
localization task, however, which suggests that if separate
representations do exist, they are co-localized in the right posterior
hemisphere.

It is natural at this point to attempt a comparison with visual
perception and the effects of brain damage on spatial perception in this
modality. These have been reviewed extensively (see, for example,
Andersen, 1987; De Renzi, 1982; Hyvirinen, 1982; Critchley, 1953).
Two patient studies that have specifically looked at spatial
representations after parietal damage support the view that there is a
general distortion (in the form of an ipsilesional shift) encompassing
both hemifields (Ratcliff and Davies-Jones, 1972, and Corin and
Bender, 1972, both cited in Bisiach et al., 1984). Most reports of visual
disorientation and neglect syndromes, however, describe only
contralateral deficits, and the involvement of an attentional process
has been clearly established (e.g., Posner, 1984). The question of the
relative contributions of spatial vs. attentional deficits in parietal lobe
visual syndromes remains open. It is just the issue of the interaction
of attentional processes and spatial representations, however, that has
repeatedly raised the question mentioned at the beginning of this
section, namely concerning the existence of modality-independent
neural representations of external space.

It has been argued that an attentional system, in order to be
useful as such and efficiently allocate sensory resources, requires
“supramodal,” that is, modality-independent, sensory
representations. These representations would allow spatial attention,
for example, to modulate perceptual  processes according to a
single spatial map integrated across visual, auditory and
somatosensory inputs. The systematic and bilateral distortion of
perceptual auditory space revealed by the studies described above
(Altman et al., 1979; Bisiach et al., 1984; Ruff et al., 1981), and of
visuospatial perception (cited in Bisiach et al., 1984), together with the
hemispheric asymmetry of these deficits, would seem to suggest a
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shared mechanism of spatial representation on which the visual and
auditory systems converge, which is distorted by right hemisphere
damage. This hypothesis would predict visual and auditory spatial
deficits to co-occur with high correlation after posterior hemispheric
damage. The degree of this correlation is not known, but appears to be
low. It has been traditionally considered low for two reasons: gross
auditory localization deficits were not observed in patients with
obvious visuospatial deficits, and visual neglect is often observed
without visual neglect (see the study described above by De Renzi et
al., 1984). Auditory localization studies such as the ones described
above, however, have pointed out that deficits of this function tend in
general not to be as apparent as visuospatial ones, and can be missed
by simple right/left discrimination tasks.

A study that addressed the relationship between sensory modality
and attention was recently performed by Farah et al. (1989). Eight
right parietal patients were tested with a variant of Posner’s spatial
cuing task in which a visual or auditory cue appeared in the correct or
incorrect location of an immediately following visual target. Posner’s
(1984) basic finding had been that parietal patients take longer to
move their gaze to a contralateral visual target after an invalid visual
cue (i.e., a cue the had appeared on the right). This result had led
Posner to characterize the attentional deficit that follows parietal
damage as a difficulty in disengaging attention from the ipsilesional
visual field. Farah et al. found that the same result generalizes to
auditory cues: her subjects showed an increased reaction time to left
visual stimuli presented after an invalid visual or auditory cue. The
authors interpreted this result to imply that the parietal lobe’s
attentional mechanism does indeed operate on a supramodal
representation of space.

Farah’s result is a substantial piece of evidence in favor of
modality-independent attentional mechanisms. Its implications for the
modality of spatial representations are more debatable. The spatial
element in the stimulus she used consisted of a right vs. left
discriminations, and, as was pointed out for auditory studies, such
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discriminations may require very little use of spatial sensory maps.
What is needed next is a systematic study mapping of perceived
stimulus locations (like Bisiach et al.’s) for both vision and audition in
large population of patients with focal hemispheric lesions.

V. CONCLUSION

I chose to review lesion studies of auditory localization because they
seem to have provided, so far, the most direct analysis of the possible
roles of cortical structures in auditory localization. Recording studies
are yielding a wealth of information about the mechanisms underlying
these possible roles, and psychophysical experiments continue to refine
our understanding of the physical and perceptual parameters that are
relevant for these processes. Lesions, however, allow us to directly
examine the functional significance of individual structures for specific
abilities. Animal studies have shown that the auditory cortex is a
necessary structure for spatial discrimination in the contralateral
sound field, and that its functional organization matches that
suggested by recording studies. Studies of brain-damaged patients
have offered insights into the role of auditory space perception in more
abstract perceptual and cognitive processes. Lesions of the posterior
parietal cortex do not present a consistent picture, but suggest that
auditory space representations may be maintained separate from
visual ones at several levels among cortical areas, which may reflect as
yet uncovered specialized processing of the auditory world.
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SUMMARY

The lateral intraparietal area (area LIP) of the macaque’s posterior
parietal cortex (PPC) lies in the dorsal stream of extrastriate visual
areas. It receives extensive visual inputs and sends outputs to several
eye movement centers. It contains neurons with visual and saccade-
related responses suggesting a role of area LIP in programming
saccadic eye movements to visual targets. Because primates can also
orient to non-visual stimuli, we asked whether LIP neurons process
stimuli of other modalities besides the visual one by comparing their
activity in auditory and visual saccade tasks.

We recorded the activity of single neurons of Macaca mulatta
monkeys while they performed memory saccades to acoustic and visual
targets. We analyzed the activity during stimulus presentation
(stimulus period, S) and during the delay (memory period, M) between
stimulus presentation and the saccade to its remembered location.

Among 80 area LIP neurons tested we found 44 that had S period
and/or M period responses following presentation of the auditory
stimulus. Most of these responses were selective for the left or right
stimulus location (spatially tuned) (27 of 29 S responses; 25 of 29 M
responses).

The majority of neurons with responses in the auditory memory
saccade task also responded in the visual version of the task. 89%
(24/27) were clearly bimodal in the S period and 88% (23/26) were
bimodal in the M period.

Almost all the neurons with spatially tuned auditory responses that
were bimodal were also spatially tuned in their visual responses (20/22
for S responses; 18/19 for M responses). The spatial tuning was
usually the same for the two modalities: in 85% (17/20) of the tested
neurons for the S responses, and in 83% (15/18) for the M responses.

Area LIP contains a population of neurons that respond to both visual
and auditory stimuli. This result is consistent with our finding that
the memory activity of most LIP cells encodes the next planned
saccade (Bracewell et al., 1991; Mazzoni et al., 1992; see Chapters 7
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and 8). If cells are coding planned movements, they should be active
independently of the sensory modality of the target for the movement,
as was the case for most of the neurons described in the present study.
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INTRODUCTION

The posterior parietal lobe of the primate brain contains cortical
regions that are specialized for localizing visual stimuli (see Andersen,
1989 for review). Lesions of this brain region in humans and monkeys
produce a range of deficits in the perception of a visual stimulus’
location as well as in the programming of orienting and reaching
movements toward the stimulus (Balint, 1909; Brain, 1941, Critchley,
1953; De Renzi, 1982; Holmes, 1918; Lynch, 1980, 1989, 1992). For
example, one symptom of a bilateral posterior parietal lesion is
difficulty in voluntarily shifting gaze from one visual stimulus to
another (Balint, 1909).

The response properties of posterior parietal neurons suggest that
their activity may be the neural substrate for a variety of sensorimotor
integration abilities. Recording experiments have recently pointed to
an area within the PPC (area LIP) that may play a special role in
programming orienting movements to sensory stimuli. Area LIP was
identified as an extrastriate visual area in the occipito-parietal cortical
visual pathway, i.e. in the dorsal stream of cortical areas that process
mainly the spatial aspects of the visual scene (reviewed in Mishkin et
al.,, 1983). It receives extensive inputs from several visual areas in the
occipital, temporal and parietal lobes, and projects to higher-order
visual areas in the parietal lobe, to association and premotor cortical
areas in the frontal lobe, and to the intermediate and deep layers of the
superior colliculus (Lynch et al., 1985; Andersen et al., 1990a, 1992;
Blatt et al., 1990). Anatomically this area is a link between the eaily
stages of cortical visual processing and premotor, motor, and cognitive
centers.

The response properties of LIP neurons also suggest a role in
visuomotor processing. When a monkey is trained to memorize the
location of a visual stimulus and to look at that remembered location
after a delay (memory saccade), LIP neurons modulate their activity
selectively for particular stimulus locations and eye movement
directions (Gnadt et al., 1988; Andersen et al., 1990b, 1992; Blatt et al.,
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1990; Barash et al., 1991a, b). Various proportions of the population of
LIP neurons respond during the appearance of the visual stimulus
(stimulus period), during the saccade toward that stimulus’ location
(movement period), and during the delay between stimulus appearance
and saccade (memory period). These responses are spatially tuned,
that is, the neurons have visual, memory and motor fields, and the
three types of fields generally overlap for a given neuron. Gnadt et al.
(1988) and Barash et al. (1991a) hypothesized that these response
properties reflect the processing of a sensory stimulus for the
programming of a motor plan to orient to that stimulus.

The activity of LIP neurons has so far been recorded in tasks that
use visual stimuli as cues to spatial locations. Primates can, however,
localize stimuli of at least two other modalities (auditory and
somatosensory). We asked therefore whether area LIP is involved in
localizing nonvisual stimuli. We recorded the activity of LIP single
neurons in monkeys trained to perform memory saccades to auditory
targets as well as to visual targets. We found a population of neurons
that have spatially tuned activity in the auditory memory saccade task.
Most of these neurons responded similarly during the auditory and
visual versions of the task.

METHODS

Animals, surgery and animal care

Two adult male Macaca mulatta monkeys were used in this study.
Through a surgical procedure a metal head-post was mounted in dental
acrylic on the monkey’s skull and a scleral search coil was implanted in
one eye (Judge et al., 1980; Robinson, 1963). The monkeys were
trained via operant-reinforcement techniques in several saccade tasks
including the ones used for this study. In a second surgical procedure
a recording chamber was mounted over the posterior parietal cortex
(Brodmann’s areas 5 and 7). Several months later a second chamber
was mounted over the posterior parietal cortex of the other
hemisphere. All surgical procedure were carried out under general
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anesthesia (10 mg/kg intramuscular ketamine followed by 10 mg/kg
intravenous pentobarbital sodium (Nembutal) using aseptic
techniques. After each procedure the monkeys received analgesics and
systemic antibiotics and rested for a week.

During the training and recording periods the monkeys were
deprived of water in their home cages and received apple juice or water
as reward for correct task execution, supplemented by additional water
at the end of each session to reach the required daily ration. Each
monkey had at least two days of rest per week with unrestricted water
access. The monkeys received routine veterinarian care. Their well-
being was observed in accordance with National Institutes of Health
guidelines.

Experimental set-up and behavioral tasks

The monkeys learned to perform several tasks involving saccades
for the purposes of several studies. The ones used in this study are the
auditory memory saccade task and the visual memory saccade task.
The monkey sat in a completely dark room facing a large featureless
tangent screen placed 57 cm away. Small light spots (~0.5 deg.
diameter, ~45 cd/m2) could be back-projected onto the screen from two
projectors through galvanometer-controlled mirrors. A trial started
when a spot was turned on directly in front of the monkey and the
monkey started fixating on it. After 750 ms a stimulus was then
presented for 750 ms to the left or to the right of the fixation spot at an
eccentricity of 8 degrees. The monkey had to continue looking at the
fixation spot for another 1250 ms after stimulus offset. At this point
the fixation spot was extinguished and the monkey had to make a
saccade, in the dark, to the remembered location where the stimulus
had appeared. In the auditory memory saccade task the stimulus was
a 20-20,000 Hz white-noise burst (70-80 dB sound pressure level) from
one of two speakers, each located in front of the tangent screen and 10
deg. to the right or to the left of the fixation point. In the visual
memory saccade task the stimulus was a second light spot that
appeared 8 deg. to the left or to the right of the fixation point. We
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pseudorandomly interleaved left/right and auditory/visual stimulus
presentatiens. A laboratory computer (DEC PDP 11/73) presented the
stimuli and monitored the monkey’s behavior.

Data collection and anatysis

We recorded eye position with the scleral search coil method (Judge et
al., 1980; Robinson, 1963), sampling at 500 Hz. We recorded the
extracellular potential of single cortical neurons with glass-coated Pt-Ir
microelectrodes (Wolshbart et al., 1960) mounted on a Chubbuck
microdrive. The laboratory computer stored the eye position samples
and the time of occurrence of action potentials for off-line analysis.

We analyzed quantitatively neural activity during three periods of
the task defined as follows: the background (B) period was the 450 ms
before stimulus appearance while the monkey fixated straight ahead;
the stimulus (S) period was from 100 ms after stimulus onset until
stimulus offset; the memory period (M) was from 100 ms after stimulus
offset until the fixation point’s offset. If a cell’s response clearly started
well within one of these periods we redefined the period so that it
consisted mostly of the cell’s response time. For each cell we computed
a background firing rate Bg equal to the average firing rate in the
background periods preceding left/right auditory/visual stimuli. We
defined a response as a significant change in the average firing rate
during the S or M periods relative to Bg (two-tailed t test, alpha level
0.05). If a cell had a response in the S or M periods, we considered the
response spatially tuned if the response followed only right or left
stimulus presentation, or if the response in a left trial was significantly
different from the response in a right triai. For cells with clear S-
period responses we estimated the response latency from plots of the
firing rate histogram made with 20 ms bins.

Histology

The neurons described in this study were isolated in area LIP of the
right hemispheres of two monkeys. After several months of recording
the monkeys were killed and the neurons’ locations were reconstructed
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based on each penetrations’ chamber coordinates and depth relative to
various landmarks. These landmarks consisted of several DC
electrolytic lesions made in the last few weeks before sacrifice,
fluorescent dye injections, and guide wires inserted in the brain before
sectioning it (for details see Barash et al., 1991a).

RESULTS

Database

We recorded the activity of 80 neurons in area LIP of two
hemispheres of two monkeys while they performed the auditory and
visual memory saccade tasks. Among these neurons we found 44 that
had significant responses in the stimulus and/or memory periods of the
auditory memory saccade task. These form the database of our study.

Stimulus-period responses

We found auditory S responses in 66% (29/44) of the neurons in our
database. Fig. 1la shows such a response to sound from the right
speaker. The response is absent when the sound comes from the left
speaker (Fig. 1b), i.e. the response is spatially tuned. The auditory S
responses were spatially tuned in 93% (27/29) of these cells.

Most of the cells with auditory S responses that were tested on the
visual task also responded to the visual stimulus (89%, 24/27; Fig. 1c).
In some cells the visual response was larger while in others the
auditory response was larger. The onset and time course of the visual
and auditory S responses was very similar in some ¢:lls and rather
different in others (see Latencies below). The visual S respcnses were
spatially tuned in 88% of these cells (21/24; Fig. 1c vs. Fig. 1d), and the
spatial preference for the visual and auditory stimulus was most
frequently the same (85%, 17/20 cells).

The cells without significant visual S responses were not purely
auditory: they did have small responses to the visual stimulus that did
not reach significance. These responses had the same spatial
preference as the auditory ones.
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Memory-period respcnses

We found auditory M responses in 66% (29/44) of the neurons in our
database. Figs. 1a and 2a show M activity after presentation of the
sound from the right speaker while the monkey plans a rightward
saccade. This activity is absent between the left sound presentation
and a leftward saccade (Figs. 1b, 2b). The auditory M responses were
spatially tuned in 86% (25/29) of the cells.

Most of the cells with auditory M respenses that were tested on the
visual task also had visual M activity (88%, 23/26; Fig. 2c). As with the
S responses, some cells had more M activity in the visual task while
others had more M activity in the auditory task. The time course of the
M activity in the auditory and visual tasks was very similar in some
cells and rather different in others. In almost all cells, however, the
activity increased monotonically (or decreased if inhibitor,) and
remained steady until the fixation point was extinguished. The visual
M responses were spatially tuned in 91% of these cells (21/23; Fig. 2c
vs. Fig. 2d), and the spatial preference for the visual and auditory
stimulus was usually the same (83%, 15/18 cells).

Of the cells without significant visual M responses, two had some
visual M activity that did not reach significance, while one had no
visual M activity.

Coincidence of auditory S and M responses

Of the 44 cells with auditory S and/or M responses, 41% (18/44) had
both S and M, 32% (14/44) had only S, and 27% (12/44) had only M.
Compared with the analegous proportions for visual responses
reported by Barash et al. (1991a), we found more cells with only M
responses (13% in their study) and fewer cells with both S and M
responses (58% in their study).

Fig. 3 summarizes the distributions within our database of the
responses properties described so far.
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Latencies of the S responses

For a set of neurons with clear S responses we measured the
latency of S response onset relative to stimulus onset. Latencies of
auditory S responses ranged from 30 to 250 ms with a median value of
155 ms (Fig. 4a), wuile visual S response latencies ranged from 60 ms
to 210 ms with a median value of 125 ms (Fig. 4b). The auditory and
visual latencies are thus rather similar across the neuronzl population.
These values are also similar to the latencies of visual S responses of
LIP neurons reported by Barash et al. (1991a).

We also compared auditory and visual latencies within individual
cells that had clear S responses to both auditory and visual stimuli.
There was no systematic pattern in the differences of latencies, some
cells having earlier auditory responses and other cells having earlier
visual responses (Fig. 4¢). The distribution ranged from -90 to, 190 ms
with median 0 ms. An important note of caution when comparing the
auditory and visual S response latencies is that we did not attempt to
match the perceptual saliency of the sound and light stimuli (see the
Discussion).

Saccade-related activity

The majority of LIP neurons we isolated had responses related to
the saccade, as was observed by Barash et al. (1991a). Fig. 5 shows an
example of this activity. Of the neurons with tuned auditory and
visual memory responses 73% (11/15) were active during the saccade,
the activity always beginning before the saccade. The saccade-related
responses were largely similar for the auditory and visual saccades.
Moreover, when a neuron had saccade-related responses, these were
present in both the visual and auditory memory saccade tasks.

Other response properties

The neurons in this study had excitatory as well as inhibitory
responses in the auditory and visual S and M periods. About two
thirds of the responses of all types were excitatory (18/28 auditory S,
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19/25 visual S, 20/26 auditory M, and 18/28 visual M), and the
remainder were inhibitory.

Among the neurons with spatially tuned responses, both
contralateral and ipsilateral preferences were represented, but
contralateral preferences were more common. Of the excitatory
responses, about two thirds of the S period responses were
contralateral (12/18 auditory S, 12/19 visua! S), while just over half of
the M responses were contralateral (11/20 auditory M, 10/18 visual M).
We report the proportions for excitatory responses for comparison with
the percentages reported by Barash et al. (1991b). These are slightly
larger for the S responses (71% in their study) and larger for the M
responses (69% in their study). The proportions of contralateral and
ipsilateral preferences changed only slightly when we included the
inhibitory responses.

DISCUSSION

Our main findings are that, (i) a population of LIP neurons respond
during the stimulus and memory periods of memory saccades to
acoustic targets; (ii) most of these neurons respond similarly in the
visual memory saccade task; and (iii) the responses of most neurons
are spatially tuned, with matching spatial tuning for the auditory and
visual modalities.

Stimulus-period responses

The S responses are very likely sensory responses to a sound in the
neurons’ auditory receptive fields. We believe so because they usually
start within 200 ms of sound onset, they often have a sharp onset when
aligned with sound onset and, in cells without memory activity, they
wane before or soon after stimulus offset. They are also almost always
accompanied by S responses to visual stimuli. The latter persist in
tasks that require no behavior except fixation (Andersen et al., 1985b,
1987; Mountcastle et al., 1975; Robinson et al., 1981), and have thus
been considered sensory responses.
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These sensory responses could be auditory responses, i.e. arise
specifically from the presence of an acoustic stimulus, or supramodal
responses, reflecting the presence of a sensory stimulus independently
of its modality. The fact that most cells respond to visual as well as
auditory stimuli argues for the latter interpretation. Nonetheless we
consider the auditory and visual S responses distinct, mainly because
they have different time courses in most neurons and thus are likely to
arise from separate input channels.

It is important in this regard to note that we did not attempt to
equalize the perceptual saliency of the auditory and visual stimuli in
our experiment. A difference in saliency could produce responses with
different time courses or response magnitudes. In particular, the
latency of responses to visual stimuli of retinal, LGN and area V1
neurons depends on the stimulus’ brightness. Because we never
changed the intensity of our speakers’ sound or the brightness of our
visual stimuli, however, we would expect a difference in stimulus
saliency to produce a constant difference in the time course of the
response—e.g., all responses to sounds to have longer latencies than
the responses to lights. Instead we found some cells with shorter
auditory latencies and other cells with shorter visual latencies.

A difference in the time course of auditory and visual responses
could also be due to a difference in the process of spatial localization of
auditory and visual stimuli. Thus the auditory S responses might
build up more slowly than the visual ones simply because it takes
longer for the monkey to localize an acoustic stimulus. If this were the
case, however, we would again predict a relatively constant difference
between the time courses of S responses to sounds and lights across all
cells. We instead observed some cells with brisker responses to sounds
and other cells with earlier and sharper responses to lights. These
cells thus have distinct responsiveness to auditory and visual stimuli.

A more remote possibility is that LIP neurons are purely visual and
that their S responses to acoustic stimuli reflect not the auditory
stimulus but a visual image of its location. The monkey could in
principle localize the speaker’s location by imagining its location in a
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mental visual map, and cells with visual sensitivity could become
active as if a visual stimulus had appeared. This would be a very
interesting result because it would support certain hypothesized
mechanisms of mental imagery (Kosslyn, 1988) and because no one has
yet reported activity of single visual neurons during mental imagery.
Without further evidence addressing this hypothesis directly, however,
we prefer the simpler interpretation that the S responses we observed
are elicited by the physical stimulus present (the sound) and not by a
visual image of it; that is, we consider them auditory responses.

The fact that the neurons we studied have distinct auditory and
visual responsiveness does not mean that their purpose is to maintain
separate auditory and visual codes. The different time course of
responses in each modality indicates distinct sources. Other neurons
reading these responses, however, may discard differences in their
time course and use only the average firing rate of a population of LIP
neurons as information. The neurons with auditory and visual S
responses may thus integrate auditory and visual information into a
code that effectively supramodal and indicates the presence or absence
of a localized stimulus. This code could be used, for example, to
generate the M-period activity which would in turn be used to program
a saccade to the stimulus, as described below.

We have referred to the auditory responses we observed as spatially
tuned because they were different for sounds coming from speakers at
different locations. An alternative interpretation might be that the
neurons are tuned for sound frequency rather than sound location, and
that the difference in responses reflects difference in the frequency
spectra of the sounds produced by the two speakers. Frequency tuning
would not be too surprising given that the majority of neurons with
auditory responses in the central nervous system do depend on
stimulus frequency. We cannot exclude this possibility but we consider
it unlikely. The noise bursts which we used as auditory stimuli
contained a very wide spectrum of frequencies, so that each frequency
constituted only a small component of the power spectrum. If a neuron
were responding to a particular frequency band, the difference in
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intensity at this band between the two speakers would thus also be
rather small and unlikely to elicit differences in responses as large as
the ones we observed. In fact, the noise produced by the two speakers
did not sound obviously different. We could not discriminate between
the two speakers based on their sound quality while sitting in the
darkened set-up. Moreover, the speaker preference for almost all the
bimodal neurons matched their visual receptive field. This result
would be quite a coincidence if the speaker preference were due to
frequency tuning. We consider it more likely that these neurons’
speaker preference reflects tuning for sound source location. A similar
argument can be made to exclude intensity tuning as the source of
speaker preference.

In summary we interpret the S responses as auditory and visual
sensory responses that encode the location of auditory and visual
stimuli.

Memory-period responses

A group of cells in our study had significant activity during the M
period of the auditory and visual versions of the memory saccade task.
We refer to these as auditory and visual memory responses,
respectively, because in spite of often being very similar they can still
be distinguished within each cell by their time course. As for the S
responses, we maintain this distinction to indicate that the two
activities likely arise from distinct input processes. Also as discussed
with regard to the S responses, this still does not exclude that the
auditory and visual M responses may play the same role for the two
modalities by transmitting the same information (e.g. their average
firing rate alone) about the visual and auditory stimuli.

The M period activity could a priori reflect a number of processes.
During the delay the monkey must maintain fixation, remember the
stimulus’ location, shift his attention to that Jocation, and plan a
saccade of the appropriate size and direction. The memory activity
cannot reflect the maintenance of fixation because it is in general
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different while the monkey, always fixating straight ahead, remembers
and plans saccades to stimuli at different locations.

The hypothesis that the memory activity reflects a shift of visual
attention is an interesting one because shifts of attention can indeed
modulate the visual responses of PPC neurons (Bushnell et al., 1981)
and because attentional deficits are a prominent symptom of parietal
lobe damage. The syndrome of unilateral neglect, of which the
inability to shift attention while fixating is at least one component
(Posner et al., 1984), can include inattention or decreased attention to
auditory stimuli in humans (Heilman and Valenstein, 1972) and
monkeys (Heilman et al., 1971; De Renzi et al., 1984). It is unlikely,
however, that the memory activity we observed reflects an attentional
shift. We have shown in a separate study that LIP neurons’ memory
activity does not appear if an attended location, cued by a visual
stimulus, is not the target of the next saccade (Bracewell et al., 1991;
Mazzoni et al., 1992).

The remaining two hypotheses cannot be distinguished by the
results of this study. The memory activity could reflect the monkey’s
memory of where the stimulus appeared, or it could reflect the plan for
the next saccade to be made. In the first instance our results would
show that the neurons store bimodal memory traces, or an abstract
supramodal memory of a spatial location. If the activity reflects the
next saccade’s plan, on the other hand, then our findings support the
ability of these neurons to generate saccade programs irrespective of
stimulus modality. In a separate study in which monkeys made two
consecutive memory saccades to locations defined by visual targets
(Bracewell et al.,, 1991; Mazzoni et al. 92) we have shown that a
component of area LIP memory activity reflects the next planned
saccade. We thus favor the hypothesis that the auditory and visual
memory activity we observed in this study reflects the covert process of
programming a saccade to a particular location, regardless of how that
location is specified.
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Saccade-related responses

A detailed analysis of the saccade-related activity of the neurons in
our database was beyond the scope of this study. One relevant result
is that many neurons had saccade-related activity, making it likely
that we were recording from the same population of neurons as those
described in other studies of area LIP (Barash et al., 1991a, b; Thier et
al,, 1991). Barash et al. (1991a) suggested that LIP neurons with tonic
memory activity and pre-saccadic activity may be involved in the
planning of saccades. We found that most neurons with spatially
tuned auditory and visual memory activity also had pre-saccadic
responses in both the auditory and the visual tasks, lending support to
a saccade-planning role for these neurons.

Anatomical considerations

The connections of PPC with auditory areas have not been studied
in detail. There are connections from area 22/area TA (areas AA1-3 of
Pandya and Yeterian, 1985)—the auditory association cortex—to area
7 (both the surface and the inferior bank of the intraparietal sulcus;
Divac et al., 1977). Area Tpt (the temporoparietal junction) receives
connections from parakoniocortex (paAlt) (Pandya and Sanides, 1973),
considered to be part of the auditory association cortex (Pandya and
Yeterian, 1985), and projects on to area 7 (Pandya and Kuypers, 1969).
Leinonen et al. recorded in this area auditory responses that seemed
selective for sound source location. There are also connections from the
superior temporal polysensory area of Bruce et al. (1981) to area 7a
(Andersen et al., 1990a) and LIP (Baizer et al., 1991). Baylis et al.
(1987) have reported many auditory responses in single units in the
dorsal superior temporal sulcus (areas T'S and TAa). Since the various
subdivisions of the PPC are densely interconnected (Pandya and
Seltzer, 1982; Andersen et al., 1990a) it seems reasonable to assume
that auditory information can gain access to the whole PPC, but
indirectly.
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Functional role of area LIP

Auditory responses have been described before in the PPC. In early
studies Hyvérinen et al. and Mountcastle et al. (1975) tested several
PPC neurons with a few auditory stimuli, such as the jingling of keys
and hand-clapping, and reported no responses. The neurons tested
may have been outside area LIP, which had not yet been identified as a
separate area. Various other authors reported auditory responses in
portions of PPC (Koch and Fuster, 1989, Sakata et al., 1973; Seal et al.,
1983). Interestingly, these authors only found responses to auditory
stimuli when they were cues for movement. We cannot know whether
the same is true for the responses we recorded in LIP because in the
task we used the stimulus was always a cue for movement.

Previous recording and lesion studies of area LIP have focussed on
its role in visually guided tasks. Goldberg et al. (1977, 1990, 1992;
Duhamel et al., 1992a) have interpreted the activity of LIP neurons as
important for visual sensory and attentional processing. Gnadt et al.
(1988) and Barash et al. (1991a, b) systematically studied the
responses of LIP neurons in monkeys performing visual memory
saccades. The responses they observed led them to hypothesize a role
for area LIP in sensorimotor integration to guide eye movements. In
such a scheme the stimulus-related responses would encode a stimulus’
location. The sensory activity would give rise, within the same cells
and/or in other cells, to memory activity that would encode the metrics
of the upcoming saccade. Saccade centers downstream of LIP could use
this signal to generate the appropriate saccade.

Our findings establish that area LIP is not only concerned with
processing visual stizauli. We believe we recorded from the same
population of neurons as Barash et al. (1991a, b) because we observed
response properties in the visual memory saccade task largely similar
to the ones they reported (specifically, latencies of the S responses, co-
occurrence of S and M responses, proportions of excitatory and
inhibitory responses and of contralateral and ipsilateral spatial
preferences). Thus area LIP contains a population of neurons that
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responds to stimuli of at least two modalities. These results extend the
possible roles of area LIP in the processing of sensory stimuli. Rather
than being restricted to processing retinal events, LIP neurons appear
to integrate sensory cues of multiple modalities to encode the spatial
location of a relevant stimulus. This integration is consistent with the
sensorimotor processing necessary to program orienting movements,
regardless of the medality calling for such movements.

134



Chapter 5 - Spatially tuned auditory responses in area LIP

FIGURE LEGENDS

Figure 1:

Activity of a neuron with auditory and visual S-period responses in the
auditory and visaual memory saccade tasks. In each of the four panels
time is plotted on the abscissa. The rows of ticks indicate the
occurrences of spikes, one row per trial. Below these is a histogram
indicating the average firing rate across different trials. The two
traces below the histogram represent the horizontal (En) and vertical
(Evy) components of eye position. The spike rasters, histogram and eye
position traces for each trial are horizontally aligned on stimulus onset.
The double arrows above panel A indicate the stimulus (S) and
memory (M) periods of the memory saccade task. The thick horizontal
lines below each panel indicate the presentations of the stimuli: FP =
fixation point; Sound R = right speaker; Sound L = left speaker; Light
R = light spot on the right; Light L = light spot presented on the left.
A. Auditory memory saccade to the right. B. Auditory memory
saccade to the left. C. Visual memory saccade to the right. D. Visual
memory saccade to the left. Scales are 100 ms/hor. div., 10
(impulses/sec)/vert. div. (firing rate) and 15 deg./vert. div. (eye
position).

Figure 2:

Activity of a neuron with auditory and visual S-period and M-period
responses. All panels and their labels are as in Fig. 1. A. Auditory
memory saccade to the right. B. Auditory memory saccade to the left.

C. Visual memory saccade to the right. D. Visual memory saccade to
the left.

Figure 3:

Proportions of the cells with auditory S- or M-period responses that are
in various categories of response types. Each bar shows the number of
cells in a response category as a percentage of the cells in our database.
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The dark bars indicate major response categories, while the light bars
indicate subcategories of the dark bars just above them (the total
number of cells in a group of subcategories is the same as the number
* of cells in the category marked by the dark bar just above them).

Figure 4:

Latencies of onset of S-period responses of neurons with clear S
responses. A. Latencies of auditory S responses. B. Latencies of
visual S responses. C. Differences between auditory and visual
latencies (auditory - visual) for cells with both auditory and visual
clear S resvonses.

Figure 5:

Activity of a neuron with directionally tuned saccade-related activity
during (A) a memory saccade cued by the left speaker, and (B) a
memory saccade cued by a light on the left. The spike rasters, firing
rate histogram and eye position are plotted as in Fig. 1, except that all
events are horizontally aligned on the beginning of the saccade. Scales
are as in Fig. 1.
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Looking ahead:
In what coordinates are
sound locations encoded in

area LIP?
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Chapter 6 Coordinates of auditory signals in area LIP

SUMMARY

We saw in the previous chapter that LIP neurons respond as the
monkey prepares saccades to acoustically cued locations. Primates
localize auditory stimuli using cues, such as interaural intensity
differences and interaural phase differences, that are anchored to a
coordinate frame centered on the head. The auditory system of many
vertebrates contains several representations of auditory space in head-
centered coordinates. The fact that area LIP neurons have spatially
tuned auditory responses raises the question of what coordinate frame
is used by these neurons to encode the location of a sound source. If
this area integrates spatial cues from various sensory modalities, then
it must transform the visual and auditory cues into a common
reference frame. This reference frame might be centered on the head,
which would require no transformation of the auditory signals. It
might be anchored to the eye, requiring a transformation of the
auditory signals into oculomotor coordinates. Finally, the common
reference frame might be an intermediate one between purely
craniocentric and purely oculocentric.

We report in this chapter the initial results of experiments
addressing this question. Our approach is to record the activity of LIP
neurons while a monkey makes memory saccades to acoustic targets
starting from various initial eye positions. Changing the initial eye
position should have no effect on the neurons’ responses if these are
encoded in head-centered coordinates, while it should alter the
responses if these are in eye-centered coordinates. We have found that
the auditory responses of some LIP neurons are indeed affected by eye
position. These effects are varied but suggest that auditory and visual
spatial maps can be brought into register in area LIP.
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INTRODUCTION

We have shewn in the previous chapter that the lateral
intraparietal area (area LIP) of the posterior parietal cortex (PPC)
contains neurons that respond to auditory stimuli. These neurons
are—at least coarsely—sensitive to the lecation of a sound source that
is the target of an upcoming saccade. This spatial sensitivity may
imply that these neurons encode the location of acoustic stimuli or the
metrics of the saccade necessary to direct gaze at a sound source (see
also Chapters 7 and 8). Both possibilities raise the issue of the
coordinate frame in which these spatial responses are encoded.

The auditory system of primates extracts the location of a sound
source by comparing differences in intensity and arrival time of
sounds reaching the two ears (Rayleigh 1876; Blauert, 1983; Yost and
Gourevitch, 1987; Syka and Masterton, 1987). These physical cues,
being obtained via the ears, are anchored to a reference frame attached
to the head. The simplest possibility is thus that the auditory signals
of area LIP area encoded in a head-centered reference frame. It is also
possible that these signals are transformed to a different coordinate
frame. A transformation might be expected for the same reasons that
visual signals may be expected to undergo coordinate transformations:
because the head can move relative to the rest of the body, the location
of a sound source may need to be transformed to another coordinate
frame in order to program appropriate orienting or reaching
movements toward the sound source (see also Chapter 2). The PPC is
a priori a candidate structure for such transformations to occur for
reasons analogous to why it was a candidate structure for the
transformation of visual stimuli before recording studies addressing
this question (Andersen and Mountcastle, 1983; Andersen et al. 1985b,
1987, 1990b; Barash et al., 1991a, b) were undertaken: lesions of the
PPC have been observed to impair the ability to localize and orient to
auditory stimuli in humans and monkeys (Heilman et al., 1970, 1971;
Heilman and Valenstein, 1972; see also Chapter 4), though not as
frequently or clearly as for the visual modality.
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There is a more compelling reason for asking in what coordinate
frame are auditory responses encoded in area LIP. As we saw in
Chapter 5 most LIP neurons with auditory responses also have visual
response. Of these bimodal neurons, moreover, most of the ones that
are spatially tuned have matching spatial sensitivities (at least to the
extent of left vs. right preferences), suggesting that they encode spatial
locations and/or metrics of the planned saccade independently of
stimulus modality. The coordinate frame in which these responses are
encoded would thus be a feature essential to their role as a spatial
signal. We would expect the coordinate frame of the visual and
auditory responses of an individual neuron to be in register if these
responses are to signal a unique spatial location. Otherwise as the
eyes moved in the orbits a mismatch would arise between the neural
representation of the location of a seen visual stimulus and the location
from which the same stimulus emitted sounds. Therefore if the
auditory and visual spatial representations established by LIP neurons
were found not to be in register, one would have to suspect either a
functional role of these neurons other than spatial coding, or the
existence of other neural signals that could disambiguate area LIP’s
auditory spatial code from its visual one.

The question of spatial coordinates of auditory signals and their
relation to those of visual signals has been explored before-—for reasons
similar to the ones outlined above—in the superior colliculus (SC) of
the monkey (Jay and Sparks, 1984, 1987a, b). Neurons in the deep
layers of this structure respond to various cues to the location of a
saccade target and encode various parameter of the metrics of saccades
(for a review see Sparks, 1989; but see also the recent results of
Stanford et al., 1994). Many deep SC neurons can be activated by
visual, auditory, or somatosensory stimuli. These neurons encode the
vector of the saccade necessary to foveate the stimulus independently
of the stimulus’ modality. Jay and Sparks (1984, 1987a, b) thus
examined whether the auditory and visual responses of multimodal
neurons in the monkey’s SC were in spatial register. They did so by
recording neural responses to a sound stimulus as the eye’s direction of
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fixation was varied. The auditory responses of most neurons was
affected by the initial eye position. These responses were thus not in
head-centered coordinates. This interaction, moreover, was such as to
shift the neuron’s auditory receptive field (RF) toward an eye-centered
topography. The auditory RF’s of most neurons, as recorded from
different initial fixation positions, aligned to one another much more
closely when plotted against oculomotor error (corresponding to the
vector of the saccade required to foveate the stimulus from the given
fixation position) than when plotted against the stimulus’ position in
head-centered space.

We have begun a series of experiments to examine the coordinate
frames of auditory responses in area LIP and their relationship to the
coordinates of visual responses. The first step in these experiments is
to establish whether auditory responses are in the same coordinate
frame as the physical cues to sound location—i.e. a head-centered
frame—or are at all transformed. Any effect of varying the eyes’
fixation position on the responses would imply a transformation away
from a head-centered code. We are using methods similar to those of
Jay and Sparks (1987a) to answer this question for LIP neurons. We
have trained a monkey to make memory saccades to auditory stimuli
(described in Chapter 5) from different initial fixation positions. We
have found neurons with auditory responses that are affected by the
initial angle of gaze as well as neurons that are not affected. The
neurons with an effect of eye position appear to transform the
coordinates of the auditory stimulus into a variety of frames. At this
point the small number of neurons does not permit us to draw any
general conclusion regarding a single or general transformation of
auditory signals occurring in area LIP. Some of the cells we have
recorded so far suggest interesting processes that the auditory signals
seem to undergo in this area. We will describe examples of what types
of effect we have observed so far and discuss the types of
transformations that may underlie these effects.
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METHODS

The methods of this study are the same as those described in
Chapter 5 except as noted below. Briefly, we trained a rhesus monkey
(Macaca mulatta) to make memory saccades to auditory and visual
stimuli in total darkness. We then prepared the monkey for chronic
recording of single unit activity and recorded the activity of neurons in
area LIP of the PPC while the monkey made memory saccades to
auditory stimuli from various fixation positions. For details see
Chapter 5.

The difference between the experimental paradigm of this stady
and the one in Chapter 5 lies in the arrangement of stimuli guiding the
animal’s behavior. As shown schematically in Fig. 1a, the fixation spot
could appear at one of three locations (marked in Fig. 1 by a cross)
separated horizontally by 12 deg. of visual field angle. The center spot
was positioned straight ahead at approximately 10 deg. above eye
level. Five speakers were arranged below the three possible fixation
spot locations, approximately at the monkey’s eye level. These were
spaced horizontally at 12 deg. intervals, the center speaker being in
the monkey’s median plane.

The timing of the memory saccade task is shown in Fig. 1b. At the
beginning of a trial the fixation spot was turned on directly at one of its
three possible locations (left, center, and right), and the monkey
started fixating on it. After 750 ms of fixation one of the speakers
emitted a noise burst for 500 ms. The monkey had to continue fixating
for another 500 ms after stimulus offset (memory period, M). At this
point the fixation spot was extinguished and the monkey had to make
a saccade, in the dark, to the remembered location where the stimulus
had appeared.

Trials starting from any of the three fixation positions and using
any of the five speakers were pseudorandomly interleaved—that is, the
fixation position-speaker combination was chosen randomly among all
possible ones for a given trial, but each combination that was
perforined successfully was removed from the choice of possible
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combinations until all combinations were exhausted. This method
ensured the sampling of an equal number of trials for each fixation
point-speaker combination.

The monkey did not perform memory saccades with a horizontal
component larger than 24 deg. reliably enough to allow consistent data
collection in an interleaved-trial paradigm. Therefore we collected
data for saccades to: all speakers from the central fixation point; all
but the rightmost speaker from the left fixation point; and all but the
leftmost speaker from the right fixation point. The monkey’s
performance varied from day to day but was above 75% correct on
average.

We computed the average firing rate during all but the first 100 ms
of the M period. The first 100 ms were excluded to avoid possible
contamination by the tail end of responses related te the stimulus.

No histology has yet been performed on the monkey used in this
experiment. Assignation of recorded neurons to area LIP thus remains
tentative and is based on site and depth of electrode penetration and
the presence of clear directionally tuned saccade-related activity.

RESULTS

Predictions

We examined the effect of initial eye position on the M-period
activity of the auditory memory saccade task by plotting this activity
against two variables. In each plot grouping the responses according to
the initial fixation position. One variable is the target’s position, that
is, the horizontal position of the speaker on the screen. Because the
monkey’s head was fixed, the target’s position corresponded to the
speaker’s head-centered coordinates. If a neuron has auditory
responses encoded in head-centered coordinates, then a plot its activity
vs. target position should consist of three overlapping curves. Each
curve describes the neuron’s response to sounds coming from different
directions (the neuron’s auditory RF). Changing the eye position
should not affect head-centered coordinates, so the three curves
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representing the neuron’s RF recorded at different eye positions should
be identical. If there is any effect of eye position, on the other hand,
then the three curves would look different. Any deviation of the three
curves from one another would imply an effect of eye position on the
auditory responses, and thus a deviation of the neuron’s spatial
responses from purely head-centered coordinates.

The other variable against which we plotted the responses is motor
error. This is the vector of the saccade required to foveate the
speaker’s location from the given initial eye position. These
coordinates are the speaker’s eye-centered coordinates, corresponding
to the retinal position, relative to the fovea, of the speaker. In the case
that the coordinates of auditory responses are transformed, one can
ask whether they are transformed to an eye-centered reference frame.
This is the reference frame in which responses to visual stimuli are
encoded in many areas of the brain. Plotting the auditory responses of
LIP neurons against oculomotor error thus allows us to compare the
coding of these responses to previously established coding of visual
responses in this and other brain structures.

Effect of eye position on auditory responses

Some of the neurons we found encoded speaker locations in head-
centered coordinates. Fig. 2 shows the response patterns observed for
one such neuron. This cell has spatially tuned auditory M responses,
which area strongest for sounds from the center speaker (at 0 deg. in
Fig. 2a). As the eye position is varied (solid vs. dashed vs. dotted
curves in Fig. 2a) the neuron’s response to each speaker does not vary
significantly. In this plot the responses for two or three eye positions
are plotted at each target position. These roughly overlap at each
point, the peak being always at the 0 deg. speaker location. The
neuron thus has a RF in purely head-centered coordinates. The
auditory signal has not undergone any spatial transformation.

In Fig. 2b the same three response curves are plotted as in Fig. 2a,
but this time versus oculomotor error. The same RF functions as in
Fig. 2b appear shifted horizontally by 12 deg. relative to one another.
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This is exactly what we expect given that the curves are aligned in the
target position plot. The lack of alignment means that the RF’s are
definitely not in eye-centered coordinates.

Other neurons showed a systematic effect of eye position. The
neuron whose responses are plotted in Fig. 3 has an auditory RF with a
single peak, just as the neuron in Fig. 2 did. When recorded with the
eye starting from the central fixation point this RF showed a peak at
the 12 deg. speaker location (Fig. 3a, solid line). When eye position
was varied, however, the neuron’s gave different responses to the same
set of speakers (Fig. 3a, dashed and dotted lines). It appears from Fig.
3a that the neuron’s RF maintains the same shape but is shifted
mostly horizontally. In particular, the RF seems to shift by about 12
deg. to the left when the eye is moved 12 deg. to the left, and it shifts
by about 12 deg. to the right when the eye moves by 12 deg. in the
same direction. Such shifts suggest a reference frame attached to the
eye, which is confirmed by the plot of activity vs. motor error (Fig. 3b).
In this plot the three curves show very strong alignment, with similar
responses from any eye position for a given saccade amplitude and a
peak for 12 deg. rightward saccades. The coordinates of this neuron’s
auditory signals are systematically affected by eye position in such a
way as to produce eye-centered coding of the speaker’s location.

Another interesting type of interaction of eye position and auditory
responses is shown in Fig. 4. Like the neurons described above, this
neuron has a spatially graded auditory RF with a single peak (Fig. 4a,
solid line). As for the neuron of Fig. 3, the peak of this neuron’s RF,
when plotted in head-centered coordinates, shifts as the eye position
changes (Fig. 4a). The shift is of the same direction and magnitude as
the eye position shift, which suggests that the RF is in eye-centered
coordinates. The horizontal shift of the RF peak, however, is not the
only change occurring as the eyes move. The overall response level
also changes, increasing as the fixation point moves to the right. The
plot of activity vs. motor error (Fig. 4b) thus reveals an eye-centered
RF with a peak at 12 deg. rightward saccades that is modulated in
amplitude by changes in eye position.
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We also found other types of interaction between auditory responses
and eye position (not shown). Notable among these were head-
centered RF’s modulated in amplitude by eye position, and RF’s that
shifted with the eye when the eye moved into one hemifield but not the
other.

DISCUSSION

The initial results of this study have revealed a clear effect of eye
position on the M-period responses of some LIP neurons during the
auditory memory saccade task. In some neurons the interaction is
systematic and effects a transformation of the auditory responses into
oculomotor coordinates. In other neurons eye position modulates the
responses’ amplitudes, while either leaving the RF in head-centered
coordinates or also shifting it to eye-centered coordinates. In yet other
neurons the interaction of eye position and auditory responses does not
produce a code that can be easily summarized or interpreted.

Retinal vs. oculomotor coordinates

In the previous chapter we have shown that many area LIP
neurons show spatially tuned stimulus-period and memory-period
responses during an auditory memory saccade task. Responses in the
same task periods of visually cued memory saccades have been
extensively studied (Gnadt et al., 1988; Andersen et al., 1990b; Barash
et al., 1991a, b). The stimulus period responses in the visual version of
the task contain information regarding the location of the visual
stimulus and can thus be described as sensory responses. Previous
studies (Gnadt et al., 1988; Barash et al., 19914a, b) and those described
in Chapters 7 and 8, on the other hand, have established that the M-
period respenses of most LIP neurons encode the vector of the next
planned saccade, while those of a small proportion of neurons encode a
memory trace of the stimulus’ location. We report in Chapter 7,
moreover, that even the stimulus-period responses of some LIP
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Chapter 6 Coordinates of auditory signals in area LIP

neurons contain information related to the planned saccade, and thus
cannot be considered solely sensory responses.

Such distinctions between the sensory and motor planning roles of
the auditory stimulus- and memory-period responses have not been
studied. In the study of Chapter 5 the sensory and motor components
of a memory saccade were separated temporally but not spatially. The
vector of the stimulus’ location relative to the fovea (retinal
coordinates) always matched the vector of the saccade required to
foveate the stimulus (oculomotor coordinates). Until these issues are
addressed experimentally we must keep this ambiguity in mind as we
speculate on the possible roles of the eye position effects we have
observed in this study.

For the same reasons we refer to RF’s that align on the motor error
plot as “eye-centered.” They could specifically be in retinal or
oculomotor coordinates, but we cannot distinguish between these
possibilities in the paradigm we have used.

Transformation of the coordinates of visual stimuli in area LIP

A previous study established that the responses of most LIP
neurons elicited in the visual memoery saccade task are affected by eye
position (Andersen et al., 1990b). For most of these neurons the
response fields remained aligned in an eye-centered reference frame.
The modulation by eye position mostly affected the amplitude of the
response, producing response gain fields that made the encoding of
stimulus location (or saccade vector) ambiguous in the activity of single
neurons. Modelling studies had shown, however, that the gain field
code could underlie a representation of a stimulus’ head-centered
coordinates distributed over the activity of a population of neurons (see
Chapter 2 for a review). Area LIP can thus transform the coordinates
of a visual stimulus from a retinal (eye-centered) reference frame to a
head-centered one. More recent studies have shown that this
transformation does not stop at the head-centered representation. The
activity of a group of LIP neurons is also modulated by head position in
a gain field fashion, producing a distributed representation of stimuli
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in a trunk-centered reference frame (Brotchie and Andersen, 1991),
while some LIP neurons appear to encode stimulus locations in
external (v-orld-centered) coordinates (Snyder et al., 1993).

All this evidence implies an important role of area LIP in the
transformation of the coordinates of visual stimuli. What is clear is
that there is not a unique final reference frame into which all LIP
neurons transform stimulus coordinates. The response patterns
observed using visual stimuli can subserve multiple representations of
locations in various coordinate frames. These representation may then
be used separately or in concert for the purpose of programming
various types orienting movements—such as saccades, head and eye
gaze shifts, and trunk rotations—, allocating spatial attention,
reaching, etc. It is in light of these multiple possible functions of area
LIP that we would like to briefly speculate on the possible roles of the
response patterns we observed in this study.

Possible roles of the observed transformatiorns

The auditory M responses of neurons unaffected by eye position
(such as in Fig. 2) may serve to simply encode the locations of auditory
stimuli in a head-centered reference frame, without any
transformation from their original encoding. This signal is analogous
to the purely retinotopic code of visual stimulus location observed in a
minority of LIP neurons (Andersen et al., 1990b), in the sense that it is
in the same reference frame as the physical cues reaching the sensory

organ. This signal could be matched to the distributed code of the
head-centered location of visual stimuli—for exaraple, in order to
correctly localize a sound and an image from the same source. It could
alternatively serve as an input signal to a network of neurons
combining this signal with eye position information in order to
transform it into eye-centered coordinates (to produce the encoding
shown in Figs. 8 and 4). Finally, the head-centered signal could serve
as input to a network of neurons that combined it with head position
signals to produce a representation in body-centered coordinates.
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Chapter 6 Coordinates of auditory signals in area LIP

The neurons with M responses in purely eye-centered coordinates
(such as in Fig. 3) carry an auditory signal completely transformed into
an unambiguous code of locations relative to the eye. No analogous
transformation (in the reverse direction) of visual signals—that is, a
single-neuron code of visual stimuli in head-centered coordinates—has
been observed in area LIP. This signal may work in conjunction with
the purely eye-centered code of visual stimuli of a minority of LIP
neurons, possibly to encode the next planned saccade in oculomotor
coordinates instead of head-centered ones. Indeed, such auditory and
visual signals may coexist in single neurons—such as the ones
described in Chapter 5—and wculd encode saccade vectors
unambiguously at the single-neuron level.

The neurons with M responses modulated in amplitude by eye
position (such as in Fig. 4) seem to have gain fields analogous to those
of the majority of LIP neurons tested in visual memory saccades
(Andersen et al., 1990b). The ones that also have receptive fields in
eye-centered coordinates (such as in Fig. 4) encode the location of an
auditory stimulus (or the goal of the next planned saccade) in a
manner that may be indistinguishable from—or at least equivalent
to—the representation of visual stimuli observed for the majority of
LIP neurons (Andersen et al., 1990b). As described above, this code
consists of eye-centered RF’s modulated in amplitude by eye position,
and produces a distributed code of head-centered location. Such
transformations of visual and auditory cues would allow individual
neurons to encode locations independently of stimulus modality. It
may be the way most of area LIP solve the problem posed by the
mismatch between the original coordinate frames of visual and
auditory stimuli: neither by completely transforming the eye-centered
coordinates of images into head-centered ones, nor by completely
transforming the head-centered coordinates of sounds into eye-
centered ones; but by introducing an eye position signal that produces
a partial transformation for each modality. The location code in such a
representation becomes ambiguous at the single-cell level but is
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resolved into a head-centered representation at the neuronal
population level.

An obvious next step in these experiments is to record the eye
position effects on both the visual and the auditory responses of LIP
neurons in order compare the transformations to which visual and
auditory stimuli are subjected in the same neurons. Such studies
would elucidate whether any of the schemes hypothesized above is
actually implemented in area LIP, as well as clarify how some of the
problems posed by the integration of two different sensory modalities
may be solved in this part of the brain.
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FIGURE LEGENDS

Figure 1:

Experimental paradigm. a) Spatial layout of the stimuli. The crosses
indicate the three positions where the fixation light spot could appear.
Their horizontal spacing is 12 deg. Below the fixation points is a row of
five speakers, also separated horizontally by 12 deg. b) Outline of the
events of a memory saccade. First the fixation point (FP) appears and
the monkey starts to maintain gaze on it, as shown in the idealized eye
position trace (eye pos.). After 750 ms the stimulus (in this experiment
one of the speakers) is turned on for 500 ms (sensory period). The FP
remains on for another 500 ms, after which it is turned off and the
monkey makes a saccade, in darkness, to the remembered location of
the stimulus.

Figure 2:

Tuning curves of an LIP neuron encoding sound location in head-
centered coordinates. The plots show the M-period activity (mean +
s.e.m.) for auditory memory saccades to each speaker from each of the
three fixation points. Each line connects the set of responses obtained
while the monkey maintained gaze on one fixation position. Solid line:
central fixation; dashed line: left fixation; dotted line: right fixation. a)
The responses are plotted against the position of the speaker on the
screen (head-centered coordinates). b) The responses are plotted
against horizontal motor error, that is, the horizontal component of the
saccade vector required to look at the speaker from the given fixation
point.

Figure 3:
Tuning curves of an LIP neuron encoding sound location in eye-

centered coordinates without amplitude modulation. Plot conventions
are the same as in Fig. 2.
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Figure 4:

Tuning curves of an LIP neuron encoding sound location in eye-
centered coordinates with modulation of response amplitude by eye
position. Plot conventions are the same as in Fig. 2.
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Chapter 7 Area LIP activity encoding the niext intended saccade

SUMMARY

The lateral intraparietal area (area LIP) of the monkey’s posterior
parietal cortex (PPC) contains neurons that are active during saccadic
eye movements. The activity of these neurons includes a component
related to the visual stimulus and one related to the saccade
(Mountcastle et al., 1975; Andersen et al., 1987). The visual and
saccade responses are spatially tuned and the location of a neuron’s
visual receptive field (RF) relative to the fovea generally overlaps its
preferred saccade amplitude and direction (PD) (Barash et al., 1991a).
When a delay is imposed between the presentation of a visual stimulus
and a saccade made to its location (memory saccade task), many LIP
neurons maintain elevated activity during the delay (memory activity,
M) (Gnadt and Andersen, 1988; Andersen et al., 1990; Barash et al.,
1991a; reviewed in Andersen et al., 1992). Previous studies suggest
that the M activity codes the metrics of the next intended saccadic eye
movement; that is, the activity is a memory trace of what the animal
intends to do (Gnadt and Andersen, 1988; Barash et al., 1991b).
Recent studies have alternatively suggested that LIP neurons encode
the locations of visual stimuli (Goldberg et al., 1990; Duhamel et al.,
1992) regardless of where the animal intends to look. In this study we
examine whether the memory activity of LIP neurons specifically
encodes movement intention (motor plan hypothesis), or whether it
also encodes the locations of recent visual stimuli (sensory memory
hypothesis). In the companion study (described in the next paper,
Bracewell et al., 1994) we examine whether the intended-movement
activity reflects changes in motor plan; that is, when the animal selects
a different target for a movement, whether the movement vector
encoded in area LIP shifts to reflect this change in plan.

We trained monkeys (Macaca mulatta) to memorize the locations of
two visual stimuli and plan a sequence of two saccades, one to each
remembered target, as we recorded the activity of single LIP neurons.
Two targets were flashed briefly while the monkey maintained
fixation; after a delay the fixation point was extinguished and the
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monkey made two saccades in sequence to each target’s remembered
location, in the order in which the targets were presented. This
“delayed double saccade” (DDS) paradigm allowed us to dissociate the
location of visual stimulation from the direction of the planned saccade
and thus distinguish neuronal activity related to the target’s location
from activity related to the saccade plan. By imposing a delay we
eliminated the confounding effect of any phasic responses coincident
with the appearance of the stimulus and with the saccade.

We arranged the two visual stimuli so that in one set of conditions
at least the first one was in the neuron’s visual receptive field (RF),
and thus the first saccade was in the neuron’s preferred direction (PD).
M activity should be high in these conditions according to both the
sensory memory and motor plan hypotheses. In another set of
conditions the second stimulus appeared in the RF but the first one
was presented outside the RF, instructing the monkey to plan the first
saccade away from the neuron’s PD. If the M activity encodes the
motor plan it should be low in these conditions, reflecting the plan for
the first saccade (away from the PD). If it is a sensory trace of the
stimulus’ location it should be high, reflecting stimulation of the RF by
the second target.

We tested 54 LIP neurons (in 3 hemispheres of two monkeys) with
M activity on the DDS task. Of these, 44 (81%) had M activity that
specifically encoded the next intended saccade. Thev were active in the
delay period, as expected, if the first saccade was in their preferred
direction. They were less active or silent if the next saccade was not in
their preferred direction, even when the second stimulus appeared in
their RF.

The M activity of 8 (15%) of the remaining neurons was consistent
with the sensory memory hypothesis. Their firing rate during the
delay reflected stimulation of the RF independently of the saccade
being planned. All but two of these cells did not show any activity
between the first and second saccade when the second saccade was
towards their RF. Most of the cells with sensory memory activity thus
encode the location of the second stimulus but do not remap the
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location of a sensory stimulus after an eye movement. The remaining
two neurons had M activity that was not consistent with either
hypothesis.

We also recorded tiie activity of a subset of neurons (n=42) in a
condition in which no stimulus appeared in a neuron’s RF but the
second saccade was in the neuron’s PD. In this case the majority of
neuvrons tested (25/42, 60%) became active in the period between the
first and second saccade, even if neither stimulus had appeared in
their RF. Moreover, this activity appeared only after the first saccade
had started in all but one of these neurons. The neurons’ response
fields thus were not predictively remapped in advance of saccades.

The majority of LIP neurons encode the next intended saccade.
Their activity is not solely determined by visual stimulation. It does
not reflect attention to a spatial location, either, because it was
reduced or absent when a location required attention but not a saccade
to it. Area LIP appears to be the first station along the occipito-
parietal cortical visual pathway to express the intention to execute a
movement.
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INTRODUCTION

The posterior parietal lobe of the primate brain has been implicated
in a variety of functions subserving sensorimotor integration. Certain
regions of the posterior parietal cortex (PPC) seem especially
important for the production of saccadic eye movements. Lesions of
these regions in humans and monkeys impair the perception of spatial
relationships in the visual field and the ability to make voluntary
saccades (e.g., Balint, 1909; Hécaen and De Ajuriaguerra, 1954;
Holmes, 1918; Lynch, 1980; Lynch and McLaren, 19§9).
Neurophysiological studies in awake behaving monkeys have revealed
single unit activity in the PPC related to saccadic eye movements
(Hyvérinen and Poranen, 1974; Mountcastle et al., 1975; Lynch et al.,
1977).

Initially there was a controversy as to whether the activity
occurring around the time of a saccade was a motor command
(Mountcastle et al., 1975) or rather an artifact of sensory stimulation
(Robinson et al., 1978). Later studies (Andersen et al., 1987) addressed
this issue by recording the activity of posterior parietal neurons in a
“delayed” or “memory” saccade task (introduced by Hikosaka and
Wurtz, 1983, in studies of the basal ganglia). In this task a peripheral
visual stimulus appears briefly while a monkey maintains fixation on a
light spot; after a delay the monkey the fixation spot is turned off,
which instructs the monkey to make a saccade, in the dark, to the
location where the stimulus appeared. The memory saccade paradigm
separates temporally the sensory and motor components of the saccade
task. The initial studies showed that PPC neurons often carry both
visual and saccade-related signals (Andersen et al., 1987). The exact
role these signals played in the production of saccades, however,
remained unclear.

The visual and saccade-related signals are especially prominent in
the lateral intraparietal area (area LIP), a subdivision of the PPC
characterized by strong projections to eye movement centers (especially
the frontal eye fields, FEF, and the superior colliculus, SC) as well as
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multiple inputs from other extrastriate visual areas (Lynch et al.,
1985; Andersen et al., 1990a; Blatt et al., 1990). The responses of
neurons in this area have been characterized using the memory
saccade task (Andersen et al., 1990b; Barash et al., 1991a, b). These
signals are spatially tuned. Visual responses vary across the visual
field, being strongest for stimuli in a circumscribed sensory response
field (receptive field, RF). Saccade-related responses are broadly tuned
for amplitude and vary with saccade direction, reaching a maximum
for saccades in the neuron’s preferred direction (PD). The spatial
tuning of the visual and saccade-related responses in LIP generally
coincide, that is, the RF is in the same direction, relative to the fovea,
as a saccade in the neuron’s PD.

Besides responding during the visual stimulus’ presentation and
during the saccade, many LIP neurons maintain sustained activity
during the delay period of a memory saccade (Gnadt et al., 1988;
Andersen et al., 1990b; Barash et al., 1991a). This “memory” (M)
activity has similar spatial tuning to the visual and oculomotor
responses (Barash et al., 1991b). It could reflect a memory of the
stimulus’ location, a covert shift of attention within the visual field, or
the intention to execute the upcoming saccade.

The studies by Gnadt and Andersen (1988) and Barash et al.
(1991b) showed that the responses of LIP neurons are coded in
oculomotor coordinates. Using a double saccade paradigm these
experiments showed that LIP activity appears before a saccade made
in the neuron’s preferred direction even without RF stimulation.
These authors thus proposed that the M activity is a memory trace of
what the animal intends to do.

Other studies of area LIP have offered another interpretation of the
role of this area in sensorimotor integration (Goldberg et al., 1990;
Duhamel et al., 1992a). According to these studies the major role of
area LIP is to construct a perceptual map of visual space by encoding
the locations of visual stimuli and maintaining this representation
anchored to a retinally based reference frame across eye movements
(Goldberg et al., 1990; Duhamel et al., 1992a). Neural activity in this
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area would thus indicate that a stimulus is or has been at a particular
location in the visual field, independently of whether the animal wants
to look at that location.

In this study we examined whether LIP neurons specifically encode
movement intention (motor plan hypothesis), or whether their memory
activity also encodes the locations of visual stimuli (sensory memory
hypothesis). To answer this question we extended the double saccade
task used by Gnadt and Andersen (1988) and Barash et al. (1991a, b).
In a double saccade task (first described by Hallett and Lightstone,
1976, and applied to experiments in monkeys by Mays and Sparks,
1980) two peripheral targets are presented in very fast sequence while
the monkey fixates. The monkey must then make a sequence of two
saccades to the locations of the two targets. By choosing appropriate
locations of the targets relative to a neuron’s RF one can tease apart
the relationships of the neural activity to the locations of sensory
stimuli and to saccade metrics.

Because in a simple double saccade task the monkey makes the eye
movements as soon as possible, the visual and saccade-related
responses cannot be separated (the reaction time before the first
saccade being on the order of 150 ms). We thus added a delay
requirement to this task. In the “delayed double saccade” (DDS) task,
two visual stirnuli appeared in sequence at different locations while the
monkey maintained fixation, and were followed by a delay (Fig. 1).
After the delay the fixation point was extinguished and the monkey
had to make two saccades, in darkness, to the remembered location of
each stimulus. During the delay period the monkey had to remember
the locations of two visual stimuli and plan a saccade to the location of
the first stimulus and then to that of the second one. Because in the
delay period he was maintaining fixation, we could observe neural
activity underlying sensorimotor integration uncontaminated by
sensory or motor events.

By varying the locations of the stimuli relative to a neuron’s RF the
location of sensory stimulation can be dissociated from the metrics of
the saccade being planned. Gnadt and Andersen (1988) and Barash et
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al. (1991b) arranged the two stimuli so that they both fell outside the
neuron’s RF, but so that the second saccade was in the neuron’s PD.
Most LIP neurons became active between the first and second saccade,
showing that sensory stimulation is not required to elicit LIP
responses and that these responses predict the upcoming saccade
vector.

In order for LIP activity to specifically encode the plan for the next
saccade (as in the motor plan hypothesis), it should 1) appear every
time the monkey prepares to make a saccade in the neuron’s PD,
whether the stimuli were inside or outside the RF (as Gnadt and
Andersen, 1988 and Barash et al., 1991b showed); and 2) be reduced or
absent when the next saccade is away from the PD, even if the RF is
stimulated. Alternatively LIP responses could encode the presence of a
stimulus or the allocation of attention to a salient location in the visual
field (sensory memory hypothesis), as Goldberg et al. (1990) and
Duhamel et al. (1992a) have suggested. In this case, these responses
should appear every time a salient target (such as a saccade target)
appears in the neuron’s RF, regardless of whether the monkey plans
the next saccade to that location or not.

We employed five different arrangements of stimulus locations
(shown in Fig. 2, which will be described in more detail below). In two
of these arrangements (classes 1 and 3) the first visual target fell in
the RF and the first saccade was in the PD. These stimulus classes
established a neuron’s M response when the saccade planned was
towards the neuron’s RF (congruent conditions).

In two other classes (classes 4 and 5) the first target was outside
the RF and the second one was inside the RF. The first saccade was
thus away from the PD in spite of stimulation of the RF (incongruent
conditions). The motor plan hypothesis predicts that M activity should
be absent or reduced in the incongruent condition relative to the
congruent condition. The sensory memory hypothesis, on the other
hand, predicts that M activity should be similar in both conditions.

Finally, in one class both stimuli were presented outside the RF but
were aligned so that the second saccade was in the neuron’s PD. The
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motor plan hypothesis predicts that the neuron will become active in
the period between the first and second saccade, reflecting the plan for
the next saccade in its PD, while the memory hypothesis predicts that
the neuron will remain silent throughout the trial.

In the experiments described in this chapter the M activity of most
LIP neurons reflected the next planned saccade and not the location of
the sensory stimulus. In the next chapter we show that this activity
appears when the monkey plans to make a saccade in a certain
direction independently of whether the saccade is actually made. Area
LIP activity therefore reflects a monkey’s intention to make a specific
saccade. These results suggest that the parietal lobe plays a role not
only in the analysis of the sensory world but also in the preparation for
movement.

METHODS

Animals, surgery, and animal care

We used two adult male rhesus monkeys (Macaca mulatta) in this
study. We prepared each monkey for chronic recording of eye position
and cortical neural activity through three surgical procedures. These
were conducted with the monkey under general anesthesia (10 mg/kg
intramuscular ketamine followed by 10 mg/kg intravenous
pentobarbital sodium (Nembutal) using aseptic techniques. In the first
procedure we implanted a scleral search coil in one eye (Judge et al.,
1980; Robinson, 1963) and mounted a metal head post in dental acrylic
on the skull. In two separate procedures we implanted a recording
chamber on each hemisphere over the posterior parietal cortex
(Brodmann’s areas 5 and 7). After each procedure the monkeys
received analgesics and systemic antibiotics and rested for a week.

We trained the monkeys via operant-reinforcement techniques in
several saccade tasks including the ones used in this study. During
the training and recording periods the monkeys were deprived of water
in their home cages and received apple juice or water as reward for
correct task execution, supplemented by additional water at the end of
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each session to reach the required daily ration. They had at least two
days of rest per week with unrestricted access to water. The monkeys
received routine veterinarian care, and their well-being was observed
in accordance with National Institutes of Health guidelines.

Experimental set-up and data collection

The monkey sat in a completely dark room facing a large
featureless tangent screen placed 57 cm away. Small light spots (c. 0.5
deg. diameter. c. 45 cd/m2) were back-projected onto the screen from
two projectors through galvanometer-controlled mirrors. A laboratory
computer (Digital Equipment Corp. PDP 11/73) presented the stimuli
and monitored the monkey’s behavior. We sampled eye position at 500
Hz using the scleral search coil method (Judge et al., 1980; Robinson,
1963) and we recorded extracellularly the action potentials of single
cortical neurons with glass-coated Pt-Ir microelectrodes (Wolshbart et
al., 1960) mounted on a Chubbuck microdrive. The computer stored
the eye position samples and the time of occurrence of action potentials
for off-line analysis.

Behavioral tasks

Each monkey learned to perform several tasks involving saccades
for the purposes of several studies. The ones used in this study are the
memory saccade task and the delayed double saccade task.

A memory saccade (MS) trial started when a spot was turned on
directly in front of the monkey, at eye level, and the monkey started
fixating on it. After 800 ms of fixation a peripheral stimulus was
presented for 300 ms. The monkey had to continue fixating for another
400 ms after stimulus offset (M period). At this point the fixation spot
was extinguished and the monkey had to make a saccade, in the dark,
to the remembered location where the stimulus had appeared. The
stimulus was placed at an eccentricity of 5-25 degrees along one of 8
directions (the 4 cardinal and the 4 diagonal directions).

The responses of most LIP neurons during a MS trial consist of at
least one of three components. These are a sensory response (LS,
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appearing during light stimulus presentation), a saccade-related
response (SR, coincident with saccade execution), and sustained
activity during the delay between stimulus presentation and fixation
spot. offset (memory activity, M) (Gnadt et al., 1988; Barash et al.,
1991a, b). These signals are spatially tuned. LS responses vary across
the visual field, being strongest for stimuli in a circumscribed sensory
response field (receptive field, RF). SR responses vary with saccade
direction (and to some extent with amplitude), reaching a maximum
for saccades in the neuron’s preferred direction (PD). The spatial
tuning of the visual and saccade-related responses in LIP generally
coincide, that is, the RF is in the same direction, relative to the fovea,
as a saccade in the neuron’s PD. The spatial tuning of the M activity
generally matches that of the LS and SR responses (Barash et al.,
1991b). LIP neurons thus have up to three spatially tuned response
fields (sensory, memory, and motor), which are generally aligned. We
used MS trials to locate each neuron’s visual RF and saccadic PD.

If a neuron had sustained M activity in MS trials with targets at 10
or 20 deg. eccentricity we then tested it in the delayed double saccade
(DDS) paradigm. The DDS task consisted of up to 5 classes of trials,
all involving a fixation point placed directly in front of the monkey at
eye level and two perioheral stimuli at different locations. The timing
of the stimuli was the same in all classes (Fig. 1a). A trial started
when the monkey began fixating on the FP straight ahead. After a
period of simple fixation (400 or 500 ms) the first visual stimulus
(target 1, T1) appeared and was followed, after a brief interstimulus
interval, by the second stimulus (T2). T2 was followed by a delay (the
M1 period) during which the animal continued to maintain fixation. At
the end of this delay the FP was extinguished and the monkey had to
make two saccades (S1 and S2) in darkness, first to the remembered
location of T1 and then to the remembered location of T2. For most
cells the targets were presented after 500 ms of fixation, for 50 ms
each, separated by 50 ms, and followed by an M1 period of 500 ms. For
a few cclls the targets appeared after 400 ms of fixation, for 200 ms
each, separated by 200 ms, and followed by an M1 period of 400 ms.
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The monkeys also made pauses of variable lengths between the first
and second saccade. We refer to the period between the two saccades
as M2.

We used five classes of DDS stimuli, each having a particular
arrangement of the saccade targets relative to the neuron’s RF (Fig. 2).
In class 1 both targets (T'1, T2) fall in the neuron’s RF and the first
saccade (S1) is in the neuron’s PD. In class 2 neither target falls in the
RF and the second saccade (S2) is in the PD. In class 3 only the first
target falls in the RF and the first saccade is in the PD. In class 4 only
the second target stimulates the RF and the second saccade is in the
PD. Note that in classes 3 and 4 the visual stimuli are at the same
locations but are shown in opposite sequence. In class 5 the second
target is in the RF but neither saccade is in the PD. The possible
patterns of neuronal activity for each of these classes will be described
below.

We tested neurons in class 5 only if their M-response tuning curve
(as estimated from M saccade trials) was narrow enough so that the
first stimulus of DDS class 5 was truly outside the neuron’s M response
field.

Data analysis

We focused our analysis on neural activity during the delay periods
of each task. For each neuron we computed the average firing ratc
during the delay period (except for the first 100 ms) and subtracted
from it the average background firing rate (computed from 300 to 800
ms from the start of each trial for cells tested with an 800 ms fixation
period, and from 100 to 400 ms for cells tested with a 400 ms fixation
period). We defined the resulting net firing rate as a neuron’s M
response for each behavioral class and used two-tailed t tests to
determine whether it was positive (excitatory), negative (inhibitory), or
absent in each class. We also used t tests to compare the M responses
of classes 1 and 5, and of classes 3 and 4 (see Results). For certain trial
classes of several neurons we manually adjusted the boundaries of the
M1 and background periods in order to better represent the neurons’
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responses. If a cell’s response clearly started well within one of these
periods we redefined the period so that it consisted mostly of the cell’s
response time.

We also computed the net response of most neurons in the
intersaccadic (M2) period of classes 2 and 4. We did this by aligning
each trial on the beginning of the first saccade and then manually
choosing a time segment that did not overlap with any part of the first
or second saccade in any trial within that class. We took the difference
between the average firing rate in this segment and the background
firing rate as the M2 response. For several neurons the time between
the two saccades was too short to compute an M2 response.

In order to describe the overall activity patterns of population of
neurons in the various trial classes we computed for each neuron an
activity index, Ia, based on its M1 response. This index was introduced

by Barash et al. (1991a) and is defined as I3 = (average M1 firing rate -
average background firing rate) / (average background firing rate)l/2,
For inhibitory cells we computed the absolute value of this index so
that we could display index values of excitatory and inhibitory cells in
the same plot. This index estimates the signal-to-noise ratio of a
neuron’s response. This index produces a measure of a neuron’s
response that is much less biased by its background firing rate than
the difference in average firing rates alone, thus allowing comparison
of responses across neurons. The M1 response is divided by the square
root of the background firing rate, rather than by the background
firing rate itself, to avoid assigning disproportionately small responses
to neurons with inherently high background activity (see Barash et al.,
1991a).

The responses and index values of a neuron in certain DDS classes
were excluded from the analysis according to the following criteria.
Because classes 1 and 2 tested the pattern of memory-period responses
for stimuli located at 20 deg. eccentricity, these classes were excluded
from the analysis for neurons that showed no M responses for stimuli
at 20 deg. eccentricity (that is, no response in classes 1 or 2). Classes 3
and 4, on the other hand, tested the pattern of memory-period
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responses for stimuli located at 10 deg. eccentricity. They were thus
excluded from the analysis for neurons that had no M responses for
stimuli at 10 deg. eccentricity (that is, no response in classes 3 or 4).

The latency of onset of the M2 response in class 2 was obtained by
first computing the time histogram of a neuron’s class 2 activity using
20 ms bins, aligning each trial with the beginning of the first saccade
(defined as the time when the eye’s tangential velocity became higher
than 50 deg./s for at least 25 ms; see Barash et al., 1991a). We then
compared via a ¢ test the average firing rate in each 20 ms bin to the
average firing rate during a baseline period within the delay period.
This was from 300 to 0 ms before the saccade for most neurons, but
was adjusted manually for a few neurons to include only a period
during which the neuron was completely silent. The latency was
defined as the lower bound of the first of two bins in which the activity
was significantly different (p<0.05) from the activity in the baseline
period. In order to avoid overestimating the latency of a few neurons
whose M2 response developed gradually, we set the latency of these
neurons at the first bin that was different from background at a p
value <0.1, as long as this bin was followed by two bins that were
significantly different at p<0.05.

Histology

The neurons described in this study were isolated in area LIP of the
right and left hemispheres of two monkeys. After several months of
recording the monkeys were euthanized and the neurons’ locations
were reconstructed based on each penetrations’ chamber coordinates
and depth relative to various landmarks. These landmarks consisted
of several DC electrolytic lesions (made in the last few weeks before the
monkey was euthanized), fluorescent dye injections, and guide wires
inserted in the brain before sectioning it. The procedures we followed
were the same as described in Barash et al. (1991a).
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RESULTS

Database

Our database consists of 54 neurons isolated in area LIP in 3
hemispheres of two monkeys while the animals were performing the
DDS task. These neurons are a subset of a large number of PPC
neurons which we isolated for this experiment and for others that we
performed in parallel (Barash et al., 1991a, b; Bracewell et al., 1991,
1994; Mazzoni et al., 1993). The neurons were selected according to
the following criteria: first, assignation to area LIP (as described in
the Methods section); second, presence of clear, spatially tuned M
period activity (significant in class 1 of the DDS task, t test, p<0.05).

We have previously reported (Gnadt et al., 1988; Andersen et al.,
1990b; Barash et al., 1991a, b) that the delayed saccade task allows us
to distinguish three basic phases of activity in LIP cells: visual, delay
period, and saccade-related. Fig. 3a illustrates the activity of a typical
LIP cell while the monkey makes a memory saccade. There is a visual
response (LS) that begins after the onset of the stimulus in the
receptive field, then prolonged, sustained activity (M) during the delay
period (during which there is no stimulus in the receptive field, and the
monkey is not making any eye movements), and finally a second peak
of activity (SR) occurring at the time of the saccade. Since the saccade
is made is darkness to the remembered location of the target, the
saccade-related response cannot be an artifact of visual stimulation.
These findings have been described in detail by Barash et al. (1991a,
b). Not all LIP neurons show all three phases of activity. In this study
we further investigated the responses of units that exhibited clear M
activity.

Fig. 3 illustrates another key aspect of LIP neurons’ responses:
they are spatially tuned. In Fig. 3a, target A is presented, 15 deg.
above the fixation spot, and the neuron clearly shows LS, M and SR
activity. However, when target B is presented, 15 deg. below the
fixation spot, the cell has negligible activity in all phases of the trial
(Fig. 3b). The LS, M and SR fields of any given neuron are typically
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broad (c. 90 deg. width at half-maximal activity) but aligned with one
another (Barash et al., 1991b). To be selected for further study in the
present experiments, units had to show spatially selective M responses
(the vast majority of LIP neurons were sufficiently narrowly tuned to
meet this criterion).

All 54 neurons had spatially selective M activity (38 excitatory and
16 inhibitory) and were tested in DDS classes 1-4. To test a neuron in
class 5 we further required that its M field be narrow enough so that
the first saccade would clearly be outside its RF. Our sample for this
class consists of 14 neurons.

Predictions

We designed the DDS task to distinguish between two hypotheses.
During the first memory period (M1) the monkey must remember and
attend to the locations of two sensory stimuli. Some amount of
attention is presumably assigned to these locations as they are goals of
future saccades. By attention we mean an enhanced allocation of
perceptual resources to a selected locus in the visual field. Neural
activity during the delay could reflect such processing of the locations
cued by the stimuli (sensory memory /attention hypothesis). The
monkey, on the other hand, is also planning the next saccade during
this period. Neural activity could reflect some aspect of the
formulation of this motor plan (motor plan hypothesis).

Because in the DDS task the metrics of sensory stimulation and
planned saccade do not always coincide, we expect different response
patterns based on whether or not the neural activity reflects motor
planning processes. The response patterns predicted for the 5§ DDS
classes by each hypothesis are summarized in Fig. 2. If a neuron’s M
activity reflects a memory of the stimulus’ location or a shift of
attention to that location, then this activity should appear every time a
saccade target appears in the neuron’s RF, regardless of whether the
monkey plans the next saccade to that location. In every trial the
monkey must attend to and memorize the location of the second
stimulus as well as the first one’s. Therefore we should see activity in
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the delay period (M1) of classes 1, 3, 4, and 5. If the M activity
encodes, on the other hand, planning for the upcoming saccade, it
should appear whenever the monkey prepares to make a saccade in the
neuron’s PD, whether the stimulus was inside or outside the RF. Thus
we should observe activity during the M1 period of classes 1 and 3, and
between the first and second saccades (period M2) in classes 2 and 4.
M1 activity should not appear in classes 4 or 5, where the RF is
stimulated but the first saccade (class 4) or both saccades (class 5) are
not in the neuron’s PD.

Activity in classes 1-4

The response pattern of an area LIP neuron in the first four classes
of the DDS task is shown in Fig. 4. In class 1 both targets are in the
neuron’s RF and the first saccade is in its PD. The neuron responds to
T1 with a high-frequency burst of spikes and then maintains sustained
M activity until the first saccade is made (Fig. 4a). This activity is
predicted by both the sensory memory and motor plan hypotheses (Fig.
2), and simply confirms the neuron’s preference for stimuli in and
saccades towards the lower left quadrant.

In class 2 neither stimulus falis in the RF. We see no activity in the
M1 period, as predicted by both hypotheses. The neuron does become
active, however, in the period between S1 and S2 (period M2; Fig. 4b).
At this time the monkey has completed the first saccade and is
preparing to make the second one. Activity in this period thus
supports the motor plan hypothesis: the neuron becomes active before
a saccade in its PD even in the absence of RF stimulation.

Classes 3 and 4 have identical spatial arrangements of stimuli.
Because these appear in opposite order in the two classes, however, the
saccade plans are different. In class 3 T1 is in the RF and S1 is in the
PD. We see activity in M1 and not in M2, as predicted by both
hypotheses (Fig. 4c¢). In class 4 T2 is in the RF and S2 is in the PD.
Activity is absent in M1 but prominent in M2 (Fig. 4d). This response
pattern supports the motor plan hypothesis because during M1 the
planned saccade is opposite the PD, while S2 is in the PD. According
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to the memory hypothesis the activity should have started in M1,
immediately after stimulation of the RF by T2, and be maintained
throughout M2, as the monkey had to remember the location of T2
throughout both M periods.

The M activity of the neuron of Fig. 4, when present, is of different
magnitude in the various DDS classes. This can be explained by the
fact that there are two sizes of retinal stimulation vectors and saccade
vectors, one of 10 deg. and one of 20 deg. LIP neurons are often tuned
for the amplitude, as well as the direction, of the stimulation and
saccade vectors (Barash et al., 1991b). When we tested this neuron on
trials of single memory saccades of different sizes, it produced higher
M activity in the 20 deg. memory saccades than in the 10 deg. memory
saccades (not shown). This tuning is reflected in the different
amplitudes of responses in the DDS (rials (Fig. 4). High M activity
always precedes 20 deg. amplitude saccades (M1 in class 1, M2 in class
4), while lower (but still significant) M activity precedes 10 deg.
saccades (M1 in class 2, M2 in class 3).

Activity in class 5

In class 5, as in class 3, the second target was in a neuron’s RF. In
contrast to class 3, however, T1 was positioned so that neither saccade
would be in the PD. Class 5 thus complemented class 2 in contrasting
the memory and plan hypotheses. In class 2 the RF was never
stimulated but a saccade in the PD (S2) was planned. In class 5,
conversely, the RF was stimulated but neither saccade was in the
neuron’s PD.

Fig. 5 shows the activity of an LIP neuron in this class. In trials of
single memory saccades directed into the lower left quadrant the
neurons showed clear M activity (Fig. 5a). In DDS class 5 trials (Fig.
5b) T2 elicits a response during its appearance. This response is
suppressed, however, near the beginning of the delay period and
remains suppressed throughout the execution of both saccades. There
is no significant M activity during the memory period of class 5 (Fig.
5b), while it is clearly present in the memory period of the single
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memory saccade (Fig. 5a). Thus as the monkey formulates his plan,
during the delay period of class 5, to make the first saccade, the
neuron’s activity expresses this plan and not the recent sensory
stimulation.

Quantitative analysis

Most of the LIP neurons we studied showed the response pattern
illustrated in Figs. 5 and 6. We compared the activity in the M1 period
within the pairs of classes 1-5 and 3-4. Within each class pair the RF
stimulus appeared at identical eccentricities (20 deg. in classes 1 and 5;
10 deg. in classes 3 and 4; see Fig. 2), but the first saccade was in the
PD in only one class in each pair (classes 1 and 3). The motor plan
hypothesis predicts that responses in class 4 should be absent or
smaller than in class 3, and that responses in class 5 should be smaller
than in class 1 (by response we mean a significant change in activity
relative to the background firing rate). The memory/attention
hypothesis, on the other hand, predicts no difference in M1 response
between classes 3 and 4 and between classes 1 and 5.

44 neurcons in our sample (31 excitatory, 13 ‘nhibitory) with
significant responses (p<0.05) in at least one of the congruent
conditions (classes 1 and 3) had no significant M1 responses (or
significantly smaller responses) in the corresponding incongruent
conditions (classes 5 and 4, respectively; p<0.05). The activity of these
neurons thus fits the quantitative predictions of the motor plan
hypothesis. For several cells we could compare only one pair of classes
(1 vs. 5 or 3 vs. 4) because we tested only a subset of cells (n=21) in
class 5, and because some cells did not respond significantly to stimuli
at 10 deg. eccentricities, used in classes 3 and 4 (making a comparison
between these classes inappropriate). The overall trend of these cells,
however, was that any M1 response was greater when the planned
saccade was in their PD than when it was in a different direction.

This trend is apparent in a plot of the average M1 activity index
values in the 5 DDS classes for these 44 neurons (Fig. 6). The activity
across this population is high in classes 1 and 3 and lower or absent in

181



Chapter 7 Area LIP activity encoding the next intended saccade

classes 4 and 5. Analysis of variance revealed a significant effect of
DDS class on the M1 index value (ANOVA with 4 d.f., F=13.59,
p<0.001). Post-hoc tests showed significantly smaller index values in
classes 2, 4, and 5 than in classes 1 and 3 (Tukey multiple comparison
tests, p<0.001). Moreover, there was no significant difference in the
population’s responses in classes 4 and 5 (in which the RF was
stimulated) from its response in class 2 (in which the RF was not
stimulated). These response patterns are the ones predicted by the
motor plan hypothesis. Thus, even though some neurons in this group
show significant differences in only one of the two pairs of classes
tested (class 1 vs. 5 and class 3 vs. 4), the neurons as a group carry a
signal that unequivocally encodes the next planned saccade.

The remaining 8 neurons (7 excitatory, 1 inhibitory) had activity
consistent with the memory/attention hypothesis. Their M1 responses
in classes 4 and 5 were not significantly lower than in classes 3 and 1,
respectively (p>0.05). The same pattern of responses is evident in the
plots of these neurons’ activity index values (Fig. 7). These neurons’
activity did not contain, therefore, any information specific to the
saccade plan.

This group of neurons did not encode the planned saccade at the
population level either. Analysis of variance revealed only a trend
toward a significant effect of DDS class on the M1 index value (d.f.=4,
F=1.993, p=0.139). This was due to a trend of class 2 index values
towards being lower than in all the other classes. When considered
individually, the population response in class 2 was significantly
smaller than the population responses in classes 1, 3, and 4 (t test,
p<0.05; class 5 could rot be compared because only 1 of these 8 neurons
was tested in this class). No significant differences were observed
among classes 1, 3, 4, and 5 (Tukey multiple comparison test, p<0.05).
Such a response pattern is predicted by the sensory memory
hypothesis.

182



Chapter 7 Area LIP activity encoding the next intended saccade

Responses occurring between the first and second saccades

The two hypotheses of our study also predict different response
patterns in the M2 period (between the first and second saccades; Fig.
1). Quantitative analysis of this activity cannot produce results as
specific as for the M1 activity because the intersaccadic intervals were
often short (160-200 ms) and of variable duration. Memory/planning
responses in this period could thus be contaminated by postsaccadic
activity following S1 and presaccadic activity preceding S2. In spite of
these caveats, most of the 44 neurons that fit the motor plan
hypothesis had M2 responses in classes 2 and 4, as predicted by the
same hypothesis. In class 2 these responses were present even though
no stimulus had ever appeared in the neuron’s RF. These responses
reached significance in class 2 for 25 of the 42 (60%) neurons with
motor planning activity that were tested in this class (p<0.05).

Of the 8 cells whose M activity reflected the stimulus’ locaticn, 6
were tasted in class 2. Of these, 3 had responses in the M2 period of
class 2 (p<0.05).

M2 activity could also be due to eye position signals. The activity of
many LIP neurons is modulated by eye position so that the background
firing rate increases monotonically as gaze shifts in one direction
(Andersen et al., 1990b). After the first saccade the eye is at a new
position, which might be reflected in a new firing rate level. In
general, however, the activity of a given neuron increases as gaze
moves in the direction, relative to the fovea, of the neuron’s RF
(Andersen et al., 1990b). We confirmed this finding for a few neurons
by recording their activity while the monkey maintained :.teady
fixation on one of 9 possible gaze position (chosen from a square array
with 20 degree spacing). M2 activity in classes 2 and 4 should
therefore be even lower than in M1 activity if it were due to such
modulation by eye position, whereas we usually observed higher
values.
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Receptive fields vs. tuning curves

The firing of LIP neurons for different stimulus locations and
saccade vectors is usually better described by broad tuning curves than
by sharply defined receptive fields (Barash et al., 1991b). These
neurons are thus not simply either fully active or completely silent:
their firing rate changes in a graded manner with changes in the
location of a visual stimulus and in the amplitude and direction of the
saccade required to foveate it. We would therefore expect that the
firing rate during the memory period of the DDS task would reflect the
direction and amplitude of the upcoming saccade according to a
neuron’s very broad tuning curve.

Neural activity in DDS class 5 confirmed this prediction for
different saccade directions. The M activity before S1 and between S1
and S2 in class 5 generally matched the activity observed in single
memory saccade trials for those directions. A clear example is offered
by a cell that was excited before saccades into one quadrant and
inhibited before saccades into the adjacent quadrant (Fig. 8). This cell
produced clear excitatory M activity for single memory saccades
directed up-left, up, and up-right (Fig. 8a-b), and clear inhibitory M
activity for down-left saccades (Fig. 8c). We tested this neuron in a
version of class 5 with T2 falling in its excitatory RF and S1 in its
inhibitory RF. The neuron showed inhibitory M1 activity (Fig. 8d),
again reflecting the planned saccade and not the recent sensory
stimulation. The motor planning activity of each LIP neuron thus
contributes to the next saccade plan in a graded manner over the
entire range (360 deg.) of possible directions.

Interaction of sensory response and motor plan

The neuron in Fig. 8 shows an interesting pattern of responses tc
sensory stimuli. A stimulus in the left upper quadrant, when
presented alone (Fig. 8a), elicits a strong response during the stimulus-
presentation period itself (LS response). When the same stimulus (T2,
Fig. 8d), however, appears following an inhibitory stimulus in the
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lower left quadrant, the excitatory response is absent. We observed
absent or attenuated LS responses, following a stimulus outside the
excitatory RF, in 10 neurons. It is as if a neuron decided, based on the
first stimulus, the direction of the saccade to be made, and from then
on maintained the appropriate firing rate for that saccade plan, thus
attenuating or abolishing any sensory responses to subsequent stimuli.
Some neurons thus appear to express the saccade plan quite early, and
to respond to sensory stimuli based on the context of the current
saccade plan.

Timing of onset of M2 responses

During the delay period of classes 2 and 4 the monkey is planning a
saccade away from a given neuron’s RF, but also knows that
immediately after the first saccade he will make the second one
towards its RF. The second motor plan is reflected in the M2 activity
of the neurons encoding the next saccade. We asked when this activity
started appearing relative to the first saccade. It has been reported
that the RF’s of some LIP neurons shift in advance of a saccade that
will bring a visual stimulus into their RF, a process that has been
termed “predictive remapping” of the RF (Duhamel et al., 1992a). We
wanted to know whether *he motor planning activity was remapped
predictively in the LIP neurons we studied. To this end we measured
the latency of onset of M2 responses relative to the beginning of the
first saccade in class 2. In this class no stimulus ever appears in a
neuron’s RF, allowing us to measure the motor planning component of
a neuron’s activity without the contamination of stimulus-related
activity.

Fig. 9 shows the latency of class 2 M2 responses for 23 neurons with
clear M2 responses. These responses started well after the beginning
of the saccade in most neurons (mean = 141 ms; s.e.m. = 17 ms). In
only two neurons did the activity begin before saccade onset, and in all
but 4 neurons the activity started later than 100 ms after saccade
onset. The response field of the motor planning activity of almost all
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LIP neurons in our sample thus did not remap in advance of the
saccade.

DISCUSSION

Motor intention

The most important finding of this study is that the activity of most
neurons in area LIP encodes the next planned saccade. It had already
been shown using a double saccade task that LIP neurons become
active before a saccade into their motor response field even in the
absence of sensory stimulation (Gnadt et al., 1988; Barash et al.,
1991b). In those experiments, however, the monkeys made the
saccades immediately after the stimuli had appeared. The components
of neural activity related to sensory memory and motor planning were
thus potrntially confounded with those related to sensory stimulation
and saccade execution. In the present study we imposed a delay
between presentation of the stimuli and saccade execution. During the
delay the monkeys had to hold in memory two locations and plan the
next saccade while maintaining fixation. The M activity we recorded
could thus only be related to covert processes such as sensory memory,
allocation of visual attention, a