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Abstract

A composite is made up of constituent particles; the center of mass dynamics is that of a single particle, and the composite can
have many internal states and degrees of freedom. The notion of a quantum composite is foundational to atomic, molecular, nuclear
and particle physics; in our view it is also foundational to condensed matter nuclear science. It comes as a surprise that there
do not appear to be review papers that discuss quantum composites. Here we consider elementary particles models, which are
used to model composites; the most widely used example is that of the Dirac phenomenology for protons and neutrons. Quantum
composite models can be developed from many-particle models, in some cases simply by rewriting in terms of center of mass and
relative operators, and in other cases through a reduction or transformation. We have proposed models for anomalies in condensed
matter nuclear science which rely heavily on the notion of a relativistic quantum composite. In the nonrelativistic case there is a
clean separation of center of mass and internal degrees of freedom, so that any coupling between them must occur through external
field interactions. The relativistic composite has a sizeable coupling between the center of mass motion and internal degrees of
freedom, which we have proposed is responsible for the anomalies in condensed matter nuclear science. We have developed a new
model in which the center of mass dynamics is modeled as nonrelativistic, but the internal structure is kept relativistic; this kind of
model is much better adapted to problems in condensed matter nuclear science. Our approach has been strongly criticized, since in
a Poincaré invariant theory the center of mass motion separates from the internal degrees of freedom in free space. We are able to
rotate out the strongest part of this coupling in free space, consistent with Poincaré invariance. However, in the lattice the problem
is in general much more complicated, and more powerful tools are required to diagonalize this relativistic coupling. The spin-boson
type of models that we have considered previously for this are the simplest idealized models that can be diagonalized; they describe
rich dynamics not present in the free-space version of the problem.
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1. Introduction

Ever since the announcement by Fleischmann and Pons of the observation of excess heat in a heavy water electro-
chemical experiment involving the loading of deuterium into Pd [1,2], people working in the resulting field have been
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interested in understanding how such an effect might occur. The development of condensed matter physics and nu-
clear physics over the previous century led to basic theories for each discipline independently, and in neither case was
there any basis for understanding how nuclear energy might be released cleanly in an electrochemistry experiment.
Although it is possible for a condensed matter environment to provide additional screening between deuterons not
present in molecular D2, it is hard to see how other atoms on an atomic scale might lead to unexpected interactions
on a much smaller nuclear scale. And in nuclear physics there is simply no previous experimental observations that
suggest a large nuclear energy quantum might result in measurable thermal energy in the absence of commensurate
energetic nuclear radiation. The many subsequent experimental observations of anomalies has largely supported the
claims of Fleischmann and Pons, and in addition continues to contribute to a growing list of anomalies (low-level
nuclear emissions, elemental anomalies, collimated X-ray emission) suggesting that there is a major problem with our
understanding of how the world works. The response of mainstream science has not been interested, sympathetic, or
supportive of this line of inquiry; consequently the field has largely been decimated over the past quarter century.

In our view there are two basic theoretical issues to be faced in the development of a theory for the anomalies.
The first concerns what happens to the large nuclear quanta when energy is generated, such that no commensurate
energetic products are seen. If this large quantum can be down-converted, then this part of the theoretical problem
can be resolved. Theories that have been put forth for the most part over the years have not addressed this issue,
instead focusing on other parts of the problem. We have found a relatively simple mechanism implemented in a model
involving equivalent two-level systems, a highly excited oscillator, and loss, which appears to be capable of coherent
energy exchange under conditions of massive up-conversion and down-conversion [3,4]. However, for this mechanism
to work there needs to be a reasonably strong coupling between vibrations (or plasmons or magnons) and the internal
nuclear degrees of freedom, much stronger than conventional indirect electric and magnetic dipole interactions.

This brings us to the second of the basic theoretical issues to be faced, which involves whether there can be some
new mechanism that allows for a substantial interaction between the condensed matter system on the atomic and
macroscopic scales, and the internal nuclear system on the fermi scale. The strongest argument against such an effect
is the absence of such an interaction in the literature in either condensed matter physics, or nuclear physics; fields
which are considered at this point to be mature, and hence well-studied. The chances that such a substantial interaction
has gone unnoticed over the tens of thousands of studies in the literature is epsilonic.

Nevertheless, we have proposed that such an interaction not only exists, but is required in a relativistic model based
on a many-particle Dirac Hamiltonian [5]. It may be useful here to review the basic argument initially associated with
the proposal. In the nonrelativistic problem there is a clean separation between the center of mass and relative degrees
of freedom in free space, and the weak coupling that comes about in the presence of external fields is insufficient. In the
relativistic version of the problem when the many-particle Dirac model is written in terms of center of mass and relative
operators then there is an explicit coupling. The intuition at the time was that there are (relativistic) changes in the
nucleus itself associated with the motion, which can be described by a superposition of rest frame states; consequently,
one should expect there to be a coupling between the center of mass motion and the internal states required to modify
the nuclear states to be consistent with relativity.

If so, then this solves the problem. The interaction between the center of mass and internal degrees of freedom in
this relativistic interaction is much stronger than (conventional) electric or magnetic dipole coupling. Moreover, the
associated phonon exchange matrix element for a D2/4He transition based on this coupling is sufficiently large that it
is consistent with the experimentally observed rate of excess heat production in the Fleischmann-Pons experiment, in
a model where the down-conversion of the large quantum is not limiting the reaction rate.

This approach generally has received a large amount of criticism over the years. For example, it is generally not
accepted that a large quantum can be fractionated as the models predict. It has been argued that such a down-conversion
process must be of very high order so that the rate in perturbation theory is vanishingly small. Other arguments have
been made that the incoherent decay involves reaction products moving away near the speed of light, which must make
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the incoherent channels much faster than the proposed coherent ones.
The proposal for a strong relativistic coupling has been met with a particularly devastating criticism. In this case

the argument is that the proposed coupling itself doesn’t exist; since in a Poincaré invariant theory the center of mass
and relative degrees of freedom separate in the sense that the free space Hamiltonian can be written in the form

Ĥ =

√
(M̂c2)2 + c2|P̂|2, (1)

where P̂ is the center of mass momentum operator, and where M̂ is the mass operator that depends on internal degrees
of freedom. According to this line of thought, there is no anomalously strong coupling as proposed, and the resulting
theory is simply (and obviously) in error [6].

The original plan for the study reported in this work was to examine simple models for composites, and to make
the case for the relativistic model that we have been using; there was no plan initially to respond to this devastating
argument. In the process of documenting the work it seemed like a good idea to begin making a connection with the
relevant literature. A colleague had suggested that it would be helpful to note that finite basis models for composites
something like what we have proposed are used in the particle physics literature [6]. Since our models rely so heavily
on the notion of a quantum composite, we presumed that there would be standard reviews and references that we could
make use of. After some effort tracking down the relevant literature it became clear that the notion of a quantum
composite is foundational to atomic, molecular, nuclear and particle physics; however, there are no review papers and
no universally accepted standard references. This came as a surprise.

Consequently, it seemed to be useful to attempt to develop a systematic discussion of quantum composites. The
simplest models used for composites are elementary particle models, perhaps with modifications. The most widely
used model of this kind is the Dirac phenomenology for protons and neutrons. However, more complicated elementary
particle models are also used, and these are certainly related to the models we have been working with.

Composite models with realistic internal structure can be developed based on many-particle Hamiltonians. In
the simplest case this involves simply writing the model in terms of center of mass and relative operators; in more
complicated cases reductions or transformations are involved. In retrospect the development of a systematic review for
composites seems like an obvious thing to do; the resulting composite models discussed in what follows are in a sense
“simple,” even when they involve lots of terms.

There is a strong connection between the coupling terms we have used (for coupling between vibrations and internal
nuclear degrees of freedom), and the spin–orbit interaction; this motivated us to see whether others had noticed the
same coupling terms, and perhaps provide support for our approach. As it turns out quite a lot has been written about
the center of mass coupling terms, but these terms have been treated differently from other interactions in the literature.
Most of the papers which include a discussion of these terms are interested in the issue of Poincaré invariance, which
perhaps should have been expected. Consequently, our study was expanded to include this additional topic, and
associated arguments. It became clear that the coupling terms that we have focused on are present in the models as a
requirement of Poincaré invariance.

What we did not expect was to be able to address the above-mentioned devastating criticism. It is clear from
the literature that the coupling term we have been working with can be rotated out in free space, and we are able to
construct a rotation that does this for a reasonably general potential model. However, it is not clear at all that the
generalization of the rotation for nuclei in a condensed matter environment will always be helpful. Instead, the lattice
problem is much harder than the free space problem, and in general will need to be analyzed with more powerful tools.
The models that we have studied which show coherent energy exchange under conditions of massive up-conversion
and down-conversion are idealized and simplified versions of the more general analysis that is needed.

There are quite a few other kinds of models that have used for composite systems as well; including models based
on Majorana infinite component wave functions, on many-time formalisms, on a proper time formalism, and based
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on the Bethe-Salpeter equation. We have included a brief survey of some of these approaches. There are a very large
number of works which treat composites based on field theory; in order to keep this review within a manageable scope,
and also to try to make it more accessible to the diverse audience of our condensed matter nuclear science community,
we have included only a minimal set of comments concerning this large body of work.

We have found it useful to exploit the finite basis approximation for detailed calculations, so this approach is
described as well.

Several hundred papers have been cited in this review, which might seem to be excessive. However, as remarked
above quantum composite models are fundamental to many fields and consequently widely used, which means that a
large number of papers have been written which are relevant to the topics and issues discussed in this work. A more
complete review of quantum composites and associated issues could easily include between one and two thousand
references. In the course of writing things up, it seemed useful to cite a few of the most relevant papers, and more
in the case of issues that are potentially contentious. As a result, there is much more relevant literature than what is
included in the references; however, if a reader is interested in a particular topic it should be possible to track down
more papers with modern search tools on a particular topic given the references included.

2. Dirac’s Spin 1/2 Model and Electrons

Dirac’s equation [7] was developed initially for modeling relativistic electrons, and often appears as a standard topic in
textbooks. Our interest in it here is because it is widely used to model relativistic composites, specifically the proton
and neutron (to be discussed subsequently). Our purpose here is both to provide a brief introduction to the model, and
to examine some of the lowest-order relativistic effects.

2.1. Hamiltonian in free space

In free space we can write

Ĥ = βmc2 +α · cp̂, (2)

where β is a 4× 4 matrix, and α is a vector (α = îxαx + îyαy + îzαz) of 4× 4 matrices

β =

[
I 0
0 −I

]
=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ , αx =

[
0 σx
σx 0

]
=

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

αy =

[
0 σy
σy 0

]
=

⎡
⎢⎢⎣
0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎤
⎥⎥⎦ , αz =

[
0 σz
σz 0

]
=

⎡
⎢⎢⎣
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ . (3)

2.2. Relativistic energy and momentum relation

The time-independent Dirac equation in free space is

Eψ = βmc2ψ +α · cp̂ψ, (4)
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where the wave function ψ is a 4-component vector

ψ =

⎡
⎢⎢⎣
ψ1

ψ2

ψ3

ψ4

⎤
⎥⎥⎦ . (5)

We can square the energy on the left and square the Hamiltonian operator on the right to obtain

E2ψ =

[
(βmc2)2 + (βmc2)(α · cp̂) + (α · cp̂)(βmc2) + (α · cp̂)2

]
ψ. (6)

In free space the relativistic energy momentum relation of a free electron satisfies

E =
√
(mc2)2 + c2|p|2. (7)

For consistency we would like

β2 = I, αβ + βα = 0, (α · cp̂)2 = c2|p̂|2. (8)

Dirac arrived at the expressions given above as a solution for these consistency relations. In Dirac’s spin 1/2 model
these relations are satisfied algebraically (we will find this is not the case in other models to be discussed).

2.3. Minimal coupling

Dirac proposed that the electromagnetic field could be included through the replacement

pµ → pµ + eAµ = pµ − qAµ, (9)

which began to be referred to as minimal coupling in the 1960s. The charge q for an electron is negative with a value
of −e. We can rewrite this in connection with the energy and vector momentum operators as

Ê = i�
∂

∂t
→ Ê − qΦ = i�

∂

∂t
− qΦ,

p̂ = −i�∇ → p̂− qA = −i�∇− qA, (10)

where Φ is the scalar electric potential and A is the vector potential which in the Coulomb gauge satisfies

E = −∇Φ− ∂

∂t
A,

µ0H = ∇×A. (11)

The Dirac Hamiltonian including interactions with the electromagnetic field becomes

Ĥ = βmc2 +α · c(p̂− qA) + qΦ. (12)
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2.4. Positive and negative energy sectors

Next we consider the time-independent Dirac equation for a particle in a static electric and magnetic field

Eψ = βmc2ψ +α · c(p̂− qA)ψ + qΦψ. (13)

This eigenvalue equation describes two different energy channels that are coupled. This can be seen by expressing the
4-component wave function as

ψ =

[
u
v

]
=

⎡
⎢⎢⎣
u↑
u↓
v↑
v↓

⎤
⎥⎥⎦ , (14)

where u and v are 2-component spinors. Plugging into the Dirac equation leads to two coupled equations

Eu = mc2u+ σ · c(p̂− qA)v + qΦu,

Ev = −mc2v + σ · c(p̂− qA)u + qΦv. (15)

The first of these appears to describe a particle in states with positive energy mc2, the second describes a particle in
states with negative energy −mc2, with coupling between the two.

2.5. Pauli reduction and nonrelativistic limit

We are interested in examining some of the lowest-order relativistic corrections of the Dirac model for the electron to
the nonrelativistic limit. The spinor v associated with the negative energy sector can be written in terms of the spinor
u associated with the positive energy sector according to

v =
1

E +mc2 − V
σ · c(p̂− qA)u. (16)

We can use this to write a single more complicated equation for the positive energy channel alone as

Eu = mc2u+ [σ · c(p̂− qA)]
1

E +mc2 − qΦ
[σ · c(p̂− qA)]u + qΦu. (17)

If the potential is small compared to the mass energy we might expand the sandwiched term according to

1

E +mc2 − qΦ
→ 1

E +mc2
+

qΦ

(E +mc2)2
+ · · · (18)

If the energy eigenvalue is not very different from mc2 then we might approximate further

1

E +mc2 − qΦ
→ 1

2mc2
+

qΦ

4(mc2)2
+ · · · (19)

With this approximation the eigenvalue equation for the positive energy channel reduces to
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Eu = mc2u+ [σ · c(p̂− qA)]

[
1

2mc2
+

qΦ

4(mc2)2
+ · · ·

]
[σ · c(p̂− qA)]u+ qΦu. (20)

This can be simplified to

(E −mc2)u =

{
|p̂|2

2m
+

(
qΦ+

q2|Â|2

2m

)
− q

2m

(
p̂ ·A+A · p̂

)
− i

(p̂× qA+ qA× p̂) · σ
2m

}
u

+ [σ · c(p̂− qA)]

[
qΦ

4(mc2)2
+ · · ·

]
[σ · c(p̂− qA)]u. (21)

On the right hand side we recognize the nonrelativistic kinetic energy operator |p̂|2/2m as well as terms correspond-
ing to the electrostatic potential qΦ and ponderomotive potential q2|Â|2/2m. We see a term normally used for the
interaction with the transvere electromagnetic radiation field

Ĥint = − q

2m

(
p̂ ·A+A · p̂

)
. (22)

2.6. Magnetic dipole interaction

The next term accounts for the magnetic dipole interaction

−i (p̂× qA+ qA× p̂) · σ
2m

= − �q

2m
σ · ∇ ×A = −µ̂s ·B, (23)

where the magnetic dipole operator in Dirac’s model is

µ̂s =
�q

2m
σ =

q

m
ŝ = −

e

m
ŝ. (24)

Dirac’s model for the electron yields a magnetic dipole interaction which is very close to experiment; we can write

µ̂s = −gs
e

2m
ŝ, (25)

where from Dirac’s mode gs = 2 and from the NIST reference on fundamental constants

gs = 2.00231930436182. (26)

We regard the magnetic dipole interaction in this discussion as the lowest-order relativistic effect involving the vector
potential not included in Ĥint. If we are interested in how well a relativistic model describes a particle or composite,
the magnetic dipole interaction provides a good test.
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2.7. Spin–orbit interaction

The reduction of the terms in the second line of Eq. (21) produces a great many terms and corresponding effects; one
of them is the spin–orbit term in a central field potential

ĤSO =
q

2m2c2
1

r

dΦ
dr

L̂ · ŝ (27)

with q = −e. Our interest in this discussion is focused on this term as one of the lowest-order relativistic effects
involving the scalar potential.

3. Dirac Spin 1/2 Models for the Proton and Neutron

The proton and neutron are composite particles with spin 1/2; however, the Dirac equation is routinely used to model
them both. This seems useful to us for a variety of reasons: both composites are well studied; corrections to the Dirac
model are recognized; the structure of the nucleon as a composite has been studied.

3.1. Magnetic dipole interaction

Both the proton and neutron have magnetic moments that differ from the Dirac model. For the proton we can write

µ̂s =
gpe

2Mp
ŝ (28)

with the NIST listed value of gp = 5.585694702 (the Dirac model would predict a value of 2). For the neutron we
have

µ̂s =
gne

2Mn
ŝ (29)

with the NIST listed value of gn = −3.82608545 (the Dirac model would predict a value of 0).
The lowest-order relativistic effect involving the transverse electromagnetic field is the magnetic dipole interaction.

For both the proton and neutron the basic Dirac spin 1/2 model results in a magnetic dipole interaction which is not in
good agreement with experiment.

3.2. Pauli interaction Hamiltonian

Pauli proposed a covariant interaction that describes coupling between an anomalous magnetic moment and the radia-
tion field [8,9], which has been widely used subsequently in addition to minimal coupling to describe proton interac-
tions with photons [10–13]. The associated interaction Hamiltonian can be written as

ĤPauli =
(gp

2
− 1

) e�

2Mp

[
−(σ ·B) i(σ ·E)
−i(σ · E) (σ ·B)

]

= −
(gp

2
− 1

) e�

2Mp
β

(
σ ·B− iα · E

)
. (30)

In the nonrelativistic limit this model results in a magnetic dipole interaction that agrees with experiment, and a spin–
orbit coupling term with the proton magnetic moment
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ĤSO =
(gp − 1)e

2m2c2
1

r

dΦ
dr

L̂ · ŝ. (31)

The Lagrangian associated with the Pauli interaction appears in many papers [14,15].

3.3. Dirac–Pauli Hamiltonian for the proton

The resulting Dirac–Pauli Hamiltonian is

Ĥ = βMpc
2 +α · c(p̂− eA)−

(gp

2
− 1

) e�

2Mp
β

(
σ ·B− iα · E

)
. (32)

This model describes a spin 1/2 particle with an additional (anomalous) magnetic dipole moment, and coupling to
the electromagnetic field through minimal (Dirac) coupling and through the Pauli interaction. The anomalous spin in
this model is an added magnetic dipole unconnected with the relativistic kinetic energy part of the Hamiltonian, while
there is a magnetic dipole moment in addition present due to the spin 1/2 that is a consequence of the relativistic kinetic
energy part of the Hamiltonian.

Nonrelativistic Hamiltonians derived from the Dirac–Pauli Hamiltonian have been discussed in [16–18].

3.4. Proton Compton scattering below the pion threshold

The interaction of light with protons can be studied experimentally in scattering experiments with gamma rays. Elas-
tic scattering of gammas and protons occurs below the threshold for pion production (mπ±c2 = 139.57 MeV, and
mπ0c2 = 134.98 MeV), which is very closely related to elastic scattering between gammas and electrons below the
pair production threshold [19]. In this case it is possible to use standard diagrammatic methods to compute the scatter-
ing cross section, leading to results algebraically similar at low order to those obtained in electron Compton scattering.
Proton Compton scattering has been frequently reviewed [20–22].

In early proton Compton experiments that explored the dependence of the cross section on the scattering angle,
minor deviations were found relative to predictions based on Dirac (minimal coupling) and Pauli photon interactions
[23]; these were attributed to the polarizability of the proton. It is possible to extract accurate estimates for the
polarizability of the proton from experiment [24–27], which can be compared to theoretical models [28–30] and
nucleon models [31–33].

At higher energy an additional correction to the Dirac and Pauli interactions needs to be included to take into
account the fact that the proton is not a point particle. This is done through the introduction of form factors [34,35].

The situation becomes more complicated above the pion threshold, where additional physics is required to model
pion production. At even higher energies excitation of the proton to internal excited states is possible, which compli-
cates things further.

The good agreement between the Dirac spin 1/2 model (with relatively minor corrections) for the proton in con-
nection with proton Compton scattering below the pion threshold provides confidence in the model.

3.5. Dirac–Pauli equation for the neutron

The Dirac equation is widely used to model neutrons as well. Since the neutron has no net electric charge, there is no
Dirac minimal coupling present. Since the neutron has an anomalous magnetic moment, it would be appropriate to
include the Pauli interaction. The resulting Dirac equation is [36–38]
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Ĥ = α · cp̂+ βMnc
2 −

(gn

2

) e�

2Mn
β

(
σ ·B− iα · E

)
. (33)

Li et al. [15] have discussed a neutron Dirac equation that models an electric dipole moment; however, experiments so
far have not detected one [39,40].

3.6. Dirac phenomenology for nuclear models

A major application of Dirac spin 1/2 models for neutrons and protons is for the computation of nuclear structure and
reaction processes [41–44]. These models have proven to be very successful when combined with modern nucleon–
nucleon interaction models [45].

4. Higher Spin Models

In this section we are interested in relativistic models for elementary particles with a spin greater than 1/2, and the ap-
plication of these models to composite systems (higher spin baryons). There is a very substantial associated literature,
most of which is not well known outside of particle physics. Our purpose here is not to provide a systematic review;
instead we would like to focus on a small number of basic issues appropriate to an introduction for the nonspecialist,
and discuss briefly the application to composite systems. We will focus mostly on the spin 3/2 case since this is more
interesting, and there are more papers; but we will point out some applications of a spin 1 model.

4.1. Spin 3/2 model of Dirac

Dirac was one of the first to consider the development of wave equations for higher spin systems [46]. He argued that
such equations could be constructed from wave equations much like the spin 1/2 case, but with more indices. In the
spin 3/2 case the resulting wave equation is written in a form probably not appropriate for the discussion; however,
with some work we can write it in the much less elegant form

i�
∂

∂t

⎡
⎢⎢⎢⎢⎣
Aβ̇

1λ

Aβ̇
2λ

B1̇β̇
λ

B2̇β̇
λ

⎤
⎥⎥⎥⎥⎦ = mc2

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣
Aβ̇

1λ

Aβ̇
2λ

B1̇β̇
λ

B2̇β̇
λ

⎤
⎥⎥⎥⎥⎦+ c

⎡
⎢⎢⎣

p̂z p̂x + ip̂y 0 0
p̂x − ip̂y −p̂z 0 0

0 0 −p̂z −(p̂x + ip̂y)
0 0 −(p̂x − ip̂y) p̂z

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣
Aβ̇

1λ

Aβ̇
2λ

B1̇β̇
λ

B2̇β̇
λ

⎤
⎥⎥⎥⎥⎦ . (34)

The appearance of dotted indices is important to the notation used by Dirac, which helps to keep track of which indices
are raised in the different components. The indices β̇ and λ each go between 1 and 2, so this wave equation is for a
16-component system. The eigenvalues for the associated Hamiltonian are

E = ±
√
(2mc2)2 + c2|p̂|2. (35)

Dirac argued that by imposing a symmetry condition on the components such that Aβ̇
12 = Aβ̇

21 and B1̇2̇
λ = B2̇1̇

λ , it was
possible to obtain a 12-component wave equation for a spin 3/2 system.

Dirac proposed to make use of minimal coupling to include interactions with the radiation field.
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4.2. Dirac–Fierz–Pauli spin 3/2 model in free space

This was pursued by Fierz and Pauli [47], who considered both spin 3/2 and spin 2 wave equations. In the spin 3/2
case the free-space Hamiltonian was written in a compact notation that we have avoided, which with some effort we
can rewrite in the form

Ĥ = mc2β +α · cp̂ (36)

with the following definitions for the 12× 12 α and β matrices

β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 2 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 2 −1 0
0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0
0 −1 2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 2 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, αx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0 0 0 0 0 0
−1 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

αy = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0 0 0 0 0 0
1 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, αz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 2 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 −2 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 −2 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 2 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

in connection with a wave function of the form
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ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1̇11
a2̇11
a1̇12
a2̇12
a1̇22
a2̇22
b1̇1̇1
b1̇1̇2
b1̇2̇1
b1̇2̇2
b2̇2̇1
b2̇2̇2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where the aα̇ργ and bρ̇γ̇β components correspond to the definitions of Fierz and Pauli. The Dirac–Fierz–Pauli spin 3/2
model is not written out in this form explicitly in the literature, in part because this form is not useful for understanding
the important properties of the model; however, it is useful in the context of our discussion since we can see what
the model looks like; and because it provides and example of a many-component Dirac equation that is of a form
somewhat similar to what we will encounter much later in this paper when we discuss the finite basis approximation
for more complicated composites.

The eigenvalues of this Hamiltonian are

E = ±
√
(mc2)2 + c2|p|2,±

√
(2mc2)2 + c2|p|2. (39)

There are eight eigenvalues with mass ±m and four with mass ±2m. The set of eight are connected with a spin 3/2
particle, and the other set of four describe a spin 1/2 particle; to describe a spin 3/2 particle with mass m the part
of the solution that is for the mass 2m spin 1/2 particle must be eliminated. This is accomplished through compact
constraints (which eliminate antisymmetric solutions) that Fierz and Pauli found; which we can rewrite in the form

i�
∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1̇11
a2̇11
a1̇12
a2̇12
a1̇22
a2̇22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −c

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0

−(px − ipy) pz pz px + ipy 0 0
0 0 −(px − ipy) pz pz px + ipy
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1̇11
a2̇11
a1̇12
a2̇12
a1̇22
a2̇22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (40)

i�
∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
0 0 0 1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1̇1̇1
b1̇1̇2
b1̇2̇1
b1̇2̇2
b2̇2̇1
b2̇2̇2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −c

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
−(px − ipy) pz pz px + ipy 0 0

0 0 0 0 0 0
0 0 −(px − ipy) pz pz px + ipy
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1̇1̇1
b1̇1̇2
b1̇2̇1
b1̇2̇2
b2̇2̇1
b2̇2̇2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (41)

A further discussion of this model can be found in [48].
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4.3. Coupling with the electromagnetic field

Dirac proposed that minimal coupling could be used to describe interactions with the electromagnetic field [46]. This
implies a higher-spin Hamiltonian of the form

Ĥ = mc2β +α · c(p̂− qA) + qΦ. (42)

Pauli and Fierz showed that adding minimal coupling in this way led to an inconsistency. The resolution of this involved
adding additional fields (two simple spinor fields cα and dβ̇) to develop a Lagrangian, from which wave equations and
constraints could be developed; both without an electromagnetic field present (in which case the additional fields
are constrained to vanish), and also with an electromagnetic field present (where they do not). In this case minimal
coupling with the electromagnetic field requires additional degrees of freedom to be added to the wave equation for
the model to be consistent.

4.4. Rarita–Schwinger spin 3/2 model in free space

Rarita and Schwinger developed a Lagrangian for a spin 3/2 elementary particle [49], from which follows the wave
equation

i�
∂

∂t
Ψµ = βmc2Ψµ +α · cp̂Ψµ, (43)

where Ψµ is a 4-vector made up of spinors, so that there are 16 complex elements (the µ index refers to the 4-vector
construction, and the spinor index is suppressed). The β and α matrices in this equation operate on the (suppressed)
spinor indices, so that this equation implies four sets of 4× 4 matrix equations, or 16 equations in all.

We can think of this as a direct product of a spin 1/2 spinor and a vector with spin 0 and spin 1, which we would
expect to lead to spin 1/2 and spin 3/2 components; we might write for the rest frame [50]

1

2
⊗ (0 + 1) =

1

2
+

1

2
+

3

2
. (44)

The Rarita–Schwinger wave function has 16 elements (and hence 16 degrees of freedom in this context); only eight
degrees of freedom are required for the spin 3/2 part of Ψµ, and consequently eight constraints are needed to eliminate
the two spin 1/2 degrees of freedom. These constraints follow from their Lagrangian, and are usually written compactly
as [51]

γµΨµ = 0, (45)

∂µΨµ = 0. (46)

4.5. Free-space Hamiltonian with eight degrees of freedom

A free-space Hamiltonian for an 8-component wavefunction specific to the spin 3/2 degrees of freedom (associated
with the Rarita–Schwinger model, and also the Dirac–Pauli–Fierz model) was constructed by Moldauer and Case [52];
this Hamiltonian is nonlinear in the momentum. It can be written as
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Ĥ = mc2
[
I 0
0 −I

]⎛⎜⎝1 +
1

2

|p̂|2 − (Σ3/2 · p̂)2
4

9
|p̂|2 + (mc)2

⎞
⎟⎠+

[
0 Σ3/2 · cp̂

Σ3/2 · cp̂ 0

]⎛⎜⎝1 +
|p̂|2 − (Σ3/2 · p̂)2
4

9
|p̂|2 + (mc)2

⎞
⎟⎠ (47)

with

(Σ3/2)x =

⎡
⎢⎢⎢⎢⎣

0 1√
3

0 0
1√
3

0 2
3 0

0 2
3 0 1√

3

0 0 1√
3

0

⎤
⎥⎥⎥⎥⎦
, (Σ3/2)y = i

⎡
⎢⎢⎢⎢⎣

0 − 1√
3

0 0
1√
3

0 − 2
3 0

0 2
3 0 − 1√

3

0 0 1√
3

0

⎤
⎥⎥⎥⎥⎦
, (Σ3/2)z =

⎡
⎢⎢⎣

1 0 0 0

0 1
3 0 0

0 0 − 1
3 0

0 0 0 −1

⎤
⎥⎥⎦ , (48)

where the Σ3/2 matrices here are recognized as spin 3/2 generalizations of the σ matrices. The eigenvalues are

E = ±
√
(mc2)2 + c2|p|2. (49)

We can see from this an interesting feature of the Rarita–Schwinger model. When all 16 degrees of freedom
are included the associated Hamiltonian is linear in the momentum; however, the implementation of constraints that
remove the spin 1/2 degrees of freedom lead to a more complicated model for the degrees of freedom that remain.

4.6. Minimal coupling

Minimal coupling is often used in connection with the Rarita–Schwinger model, which is implemented using a higher-
spin wave equation of the form

i�
∂

∂t
Ψµ = βmc2Ψµ +α · c(p̂− qA)Ψµ + qΦΨµ. (50)

The nonrelativistic limit of the model is discussed by Moldauer and Case, and also in [53]; the Foldy–Wouthuysen
transformation is considered in [54].

Massive higher-spin models in general seem to suffer from all kinds of maladies. Johnson and Sudarshan showed
that an inconsistency in the commutation relations appeared when higher spin models are quantized [55]. Velo and
Zwanziger showed that wave propagation faster than the speed of light occurs for the coupled electromagnetic and
Rarita–Schwinger system [56]. There are issues with causality associated with the constraints [57]. Further discussion
of these issues can be found in [58–62]. There has been much interest in the possibility of developing an acceptable
field theory for spin 3/2 models that continues up to the present day [63–66]. In a recent paper by Adler [67] it
is suggested that a suitable field theory for the massless case can be constructed, and that mass can be brought in
afterward through a Higgs coupling.

4.7. Higher spin models used for modeling composites

Our interest in these models in this section is motivated by their application to physical composite systems. For
example, the Rarita–Schwinger model has been used early on for excited states of the nucleon [68–70], for the ∆(1232)
and other baryon resonances [71–73]. Elementary spin 1 models have been used for modeling the deuteron as a
composite in collisions with heavier nuclei [74–76].
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5. Bargmann–Wigner Models and Applications

Following the introduction of the quark model in 1964 [77] there was great interest in developing simple models for
mesons and baryons based on collinear propagating quarks. These early models were based a the Bargmann–Wigner
construction, which was developed to describe elementary particles with higher spin. Consistent with the discussion
in Section 4, this provides us with examples of models for composite systems based on wave equations for elementary
particles.

5.1. Simple product wave function model

Since our discussion here is introductory, the place to start may be with a simple product approximation (which is
very much not what Bargmann and Wigner started with). Consider the construction of a simple product wave function
written as

Ψµ1,...,µN (r1, t1, . . . , rN , tN ) = ψµ1(r1, t1) · · ·ψµN (rN , tN ), (51)

where each single particle wave function satisfies

i�
∂

∂t
ψ(r, t) = βmc2ψ(r, t) +α · cp̂ψ(r, t). (52)

The subscripts µj are spinor subscripts associated with particle j, with associated space-time coordinates rj , tj . It
would follow that the product wave function satisfies a set of wave equations of the form

[
i�

∂

∂t1
− βmc2 −α · cp̂1

]
µ1,ν1

Ψν1,··· ,µN (r1, t1, . . . , rN , tN) = 0,

...

[
i�

∂

∂tN
− βmc2 −α · cp̂N

]
µN ,νN

Ψµ1,··· ,νN (r1, t1, . . . , rN , tN ) = 0. (53)

We might think of this as a Dirac equation for each particle individually, with all of the other particle wave functions
simply multiplying the one acted upon by the Dirac operator.

5.2. Bargmann–Wigner model

If we start with the simple model above, and then require that spatial coordinates of all of the particles are the same

r1 → r · · · rN → r (54)

and similarly for the time coordinates

t1 → t · · · tN → t, (55)
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we would end up with a model that describes noninteracting particles that travel together. The wave function in this
case would satisfy a set of wave equations of the form

[
i�
∂

∂t
− βmc2 −α · · · cp̂

]
µ1,ν1

Ψν1,...,µN (r, t) = 0,

...[
i�
∂

∂t
− βmc2 −α · cp̂

]
µN ,νN

Ψµ1,...,νN (r, t) = 0. (56)

This provides a nonrigorous argument for the Bargmann–Wigner model.
It is possible to add additional structure to the model. For example, if the particles are identical then we would

adopt initially an anti-symmetric wave function

Ψµ1,...,µN (r1, t1, . . . , rN , tN ) = A
{
ψµ1(r1, t1) · · ·ψµN (rN , tN )

}
(57)

Doing so leads to a Bargmann–Wigner wave function that is antisymmetric in the spinor indices

Ψ...,µr,...,µs,...(r, t) = −Ψ...,µs,...,µr,...(r, t). (58)

We might also be interested in a superposition of product wave functions in order to describe some group of interest;
doing so leads to an imposition of the same group structure in the Bargmann–Wigner wave function.

5.3. Application to SU(6)

Perhaps the most important application of the Bargmann–Wigner model was in connection with QCD when first
developed. Bargmann–Wigner wave functions adapted to SU(6) were proposed to for simple models describing mesons
and baryons as collinear noninteracting quarks [79–81] following the development of the quark model. These were
used with success to describe interactions between baryons and mesons [82]

5.4. Bargmann–Wigner Hamiltonian

Because of the need for a covariant description in particle physics generally, one does not often encounter a Hamilto-
nian for the Bargmann–Wigner model. Nevertheless, the associated arguments are straightforward, and it is of interest
in this discussion to pursue the issue. We might consider a wave function made up of a product of single particle wave
functions in a Hamiltonian type of model according to

Ψµ1,...,µN (r1, . . . , rN , t) = ψµ1(r1, t) · · ·ψµN (rN , t), (59)

where the single particle wave functions satisfy

i�
∂

∂t
ψ(r, t) = βmc2ψ(r, t) +α · cp̂ψ(r, t). (60)
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Associated with the many-particle product wave function above is a separable free space Hamiltonian of the form

Ĥ = β1mc
2 +α1 · cp̂1 + · · ·+ βNmc

2 +αN · cp̂N . (61)

We can define the total momentum

P̂ = p̂1 + · · ·+ p̂N (62)

and relative momenta defined according to

π̂1 = p̂1 −
P̂

N
· · · π̂N = p̂N − P̂

N
. (63)

Although we have defined N relative momenta here, there are only N − 1 independent operators since

π̂1 + · · ·+ π̂N = 0. (64)

The free space Hamiltonian above can then be written as

Ĥ = (β1 + · · ·+ βN )mc2 +
1

N
(α1 + · · ·+αN) · cP̂+α1 · cπ̂1 + · · ·+αN · cπ̂N . (65)

Now if we presume collinear propagation, such that the relative momenta can be neglected

π̂j → 0, (66)

we end up with

Ĥ = (β1 + · · ·+ βN )mc2 +
1

N
(α1 + · · ·+αN ) · cP̂. (67)

This we recognize as a Hamiltonian for the Bargmann–Wigner model. This kind of Hamiltonian has been used in
recent years for the high-spin Dirac oscillator [83] and applications [84,85]. The eigenvalues of this Hamiltonian are

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(Mc2)2 + c2|P|2,

N − 2

N

√
(Mc2)2 + c2|P|2,

...

−
√
(Mc2)2 + c2|P|2.

(68)

This is understood simply as a consequence of each constituent particle having the possibility of being in the positive
energy sector or negative energy sector.
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5.5. Square of the Hamiltonian

We recall that the square of the spin 1/2 Dirac Hamiltonian satisfies

(
βmc2 +α · cp̂

)2
= (mc2)2 + c2|p̂|2 (69)

as an algebraic identity. We are interested in whether the many-particle Hamiltonian above satisfies a similar relation.
We might write the associated Hamiltonian in the form

Ĥ = Mc2 + a · cP̂ (70)

with

Mc2 = (β1 + · · ·+ βN )mc2, (71)

a · cP̂ =
1

N
(α1 + · · ·+αN ) · cP̂. (72)

The square of the Hamiltonian is

Ĥ = (Mc2)2 + (Mc2)(a · cP̂) + (a · cP̂)(Mc2) + (a · cP̂)2. (73)

It can be verified that

Ma+ aM �= 0 (74)

and

(a · cP̂)2 �= c2|P̂|2. (75)

This is in contrast to what we had proposed previously [5]. Instead, the eigenfunctions ΨP of the Hamiltonian with
momentum P satisfy

(
Ma+ aM

)
ΨP = 0. (76)

(a · cP̂)2ΨP = c2|P̂|2ΨP. (77)
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5.6. A 20-component free space model for nucleons

The proton and neutron are made up of three quarks, so the models outline above could be relevant in the case of
N = 3, where the free space wave function would have 43 = 64 components. However, it is possible to isolate the
part of the symmetric group that is relevant, which leads to a 20-component wave function. We consider first the basic
symmetric group construction for an anti-symmetric three-particle state with spatial (R), flavor (F), spin (S) and color
(C) degrees of freedom; the antisymmetric wavefunction can be written in terms of Yamanouchi symbols as [86,87]

[3 2 1]RFSC = [1 1 1]R[1 1 1]FS[3 2 1]C. (78)

We would expect the lowest energy spatial wavefunction of a three quark system to be fully symmetric ( [1 1 1]R );
and the nucleon as a three-quark system is modeled as a color singlet [88] ( [3 2 1]C). Consequently the flavor and
spin function must be fully symmetric ([1 1 1]FS). Since there are no strange quarks involved, we are able to use a
construction of the flavor part of the problem in SU(2). This can be expanded out as

[1 1 1]FS =
1√
2
([1 2 1]F[1 2 1]S + [2 1 1]F[2 1 1]S), (79)

which is consistent with [89]. Note that it would be possible mathematically to form [1 1 1]FS according to

[1 1 1]FS = [1 1 1]F[1 1 1]S (80)

but this in inconsistent with protons and neutrons as the associated spin would be 3/2 (neutron and proton spins are
1/2), and would lead to flavor quartet states (neutrons and protons are flavor doublets). In the end we can write

[3 2 1]RFSC = [1 1 1]R

(
[1 2 1]F[1 2 1]S + [2 1 1]F[2 1 1]S√

2

)
[3 2 1]C. (81)

We can identify two spins for a single Dirac free particle wave function, as well as positive and negative energy
components. The spin degree of freedom is described by SU(2). However, in what follows we are going to be
interested in the positive and negative energy degrees of freedom as well, which can also be modeled using SU(2). The
generalization of the construction above to include the different energy sectors is straightforward; we may write

[3 2 1]RFSTC = [1 1 1]R

(
[1 2 1]F[1 2 1]ST + [2 1 1]F[2 1 1]ST√

2

)
[3 2 1]C, (82)

where T refers to positive or negative energy sector.
Although this construction looks to be a completely straightforward generalization of the basic symmetric group

construction above, there are some issues which are worth thinking about. At issue is what happens when the center
of mass moves, or is accelerated. There can be no change in the color or flavor from a boost, so we expect the
corresponding parts of the wavefunction to remain invariant. Less obvious is what happens to the spatial part of the
wavefunction. After some thought, we recognize that in the simple model under construction there is no modification
of the relative part of the problem when the center of mass moves since the free space Hamiltonian is totally symmetric
([1 1 1]). Hence if the relative spatial wavefunction is initially in a fully symmetric state, it remains in a fully symmetric
states in the different energy sectors in this model.

Consequently, the only thing that happens is that there is a coupling between the spin degrees of freedom, and the
positive and negative energy state degree of freedom.
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The relevant Hamiltonian for the three noninteracting quarks of the model is

Ĥ =

(
β1 + β2 + β3

)
mc2 +

(
α1 +α2 +α3

3

)
· cP̂. (83)

We would like to construct a reduced Hamiltonian appropriate for the mixed symmetry basis states of the quark system.
This construction can be written symbolically as

〈[3 2 1]RFSTC|Ĥ |[3 2 1]RFSTC〉 =〈[1 1 1]R|[1 1 1]R〉〈[3 2 1]C|[3 2 1]C〉{
1

2
〈[1 2 1]F|[1 2 1]F〉〈[1 2 1]ST|Ĥ |[1 2 1]ST〉

+
1

2
〈[2 1 1]F|[2 1 1]F〉〈[2 1 1]ST|Ĥ |[2 1 1]ST〉

}

=
1

2
〈[1 2 1]ST|Ĥ |[1 2 1]ST〉+

1

2
〈[2 1 1]ST|Ĥ |[2 1 1]ST〉, (84)

where R in this refers to the relative spatial degrees of freedom. Ultimately the appropriate Hamiltonian is one that
averages over the two mixed symmetry basis states. This suggests that we can write the nucleon Hamiltonian in this
free-space collinear quark model as

Ĥnuc =|[3 2 1]C〉|[1 2 1]F〉Ĥ[1 2 1]〈[1 2 1]F|〈[3 2 1]C|
+ |[3 2 1]C〉|[2 1 1]F〉Ĥ[2 1 1]〈[2 1 1]F|〈[3 2 1]C|, (85)

where the subscript for the Hamiltonian here refers the the symmetric group for flavor. The [1 2 1] part of the Hamil-
tonian can be written

Ĥ[1 2 1] = Mc2 + a · cP, (86)

where M and a are 20 × 20 matrices, which are given explicitly in Appendix A. The matrices are different for the
[2 1 1] case (since the basis states are different); however, we have found that it is possible to arrange for the basis
states to be ordered so as to lead to identical matrices.

5.7. Issues with minimal coupling

We might think to apply minimal coupling directly with our Bargmann–Wigner model. For example, if we begin with

Ĥ = Mc2 + a · cP̂,

then including the electromagnetic field would lead to

Ĥ → Mc2 + a · c[P̂−QA(R)] +QΦ(R), (87)

where Q is the total charge
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Q = q1 + · · ·+ qN . (88)

This is in essence the argument discussed briefly in [90]. However, there are issues associated with this.
Suppose that the charges of the constituent particles differ, as is the case for quarks in nucleons, and is also the

case for a Dirac model for protons and neutrons in nuclei. Minimal coupling leads to a Hamiltonian of the form

Ĥ = β1mc
2 +α1 · c[p̂1 − q1A(r1)] + · · ·+ βNmc

2 +αN · c[p̂N − qNA(rN )] +
∑
j

qjΦ(rj). (89)

The Bargmann–Wigner type of Hamiltonian that results is

Ĥ = (β1 + · · ·+ βN )mc2 +
1

N
(α1 + · · ·+αN ) · cP̂+ (q1α1 + · · ·+ qNαN ) · cA(R) +QΦ(R). (90)

In matrix form we can write

Ĥ = Mc2 + a · cP̂−QaQ · cA(R) +QΦ(R) (91)

with

aQ =
q1α1 + · · ·+ qNαN

Q
. (92)

If the charges are all the same, then aQ = a; otherwise aQ �= a and minimal coupling is inconsistent. This was noted
in [5].

A possible resolution to these issues is to write the model instead as
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Ĥ =(β1 + · · ·+ βN )mc2 +
1

N
(α1 + · · ·+αN ) · c[P̂−QA(R)] +QΦ(R)

−
[(
q1 −

Q

N

)
α1 + · · ·+

(
qN − Q

N

)
αN

]
· cA(R), (93)

where the terms on the first line can be associated with center of mass dynamics, and where terms on the second line
involve internal transitions. In matrix form this is

Ĥ = Mc2 + a · c[P̂−QA(R)] +QΦ(R)− (aQ − a) · cQA(R). (94)

These issues are perhaps more important in the case that include a realistic internal structure.
Different issues with minimal coupling for the Bargmann–Wigner model have been discussed in the literature

[91,92].

6. Models for Nonrelativistic Composites

The nonrelativistic composite model is straightforward, both conceptually as well as mathematically. A big issue is
the clean separation between center of mass and relative mass degrees of freedom, and there is no coupling between
the total momentum and internal degrees of freedom except through external field interactions.

6.1. Equal mass model

One of the simplest models of this kind relevant to us is an equal mass Hamiltonian, which we focus on in the rest of
the paper. Consider a Hamiltonian of the form

Ĥ =
∑
j

|p̂j |2

2m
−

∑
j

qj
2m

[
A(rj) · p̂j + p̂j ·A(rj)

]
+

∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj), (95)

where for simplicity we have not included the ponderomotive potential. The two-particle potential terms V̂jk are
intended to include both the strong force and Coulomb/electromagnetic coupling. Some years ago people worked with
empirical nuclear potentials optimized against scattering data and few nucleon bound state properties [93–100]. More
recently people have moved to nucleon interaction models derived from an effective chiral field theory [45,101–103].
We note that in these models there occur interactions between three or more nucleons which are used in calculations;
in what follows the interaction will be written as a two-particle potential (in an effort to simplify the equations that
result) with the understanding that the same arguments apply to the higher-order terms as well.

6.2. Relative and center of mass separation

We introduce relative and center of mass coordinates according to

R =
1

N

∑
j

rj , P̂ =
∑
j

p̂j , (96)
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ξj = rj −R, π̂j = p̂j −
P̂

N
, (97)

where N is the total number of particles. With these definitions we have the relations

∑
j

ξj = 0,
∑
j

π̂j = 0. (98)

We can make use of these to separate the Hamiltonian according to

Ĥ = Ĥξ + ĤR + Ĥint, (99)

where Ĥξ is the Hamiltonian for the relative system

Ĥξ =
∑
j

|π̂j |2

2m
+

∑
j<k

V̂jk(ξj − ξk). (100)

The Hamiltonian for the center of mass system ĤR is

ĤR =
|P̂|2

2M
, (101)

where M is the total mass

M = Nm (102)

and the interaction with the external longitudinal and transverse fields are described by the Hamiltonian Ĥint

Ĥint =
∑
j

qj
2m

[
A(ξj +R) ·

P̂

N
+

P̂

N
·A(ξj +R)

]

+
∑
j

qj
2m

[
A(ξj +R) · π̂j + π̂j ·A(ξj +R)

]
+

∑
j

qjΦ(ξj +R). (103)

In the Coulomb gauge ∇ ·A = 0 (hence p̂j ·A(rj) = 0), so that in this special case we could write

Ĥint =
∑
j

qj
m
A(ξj +R) ·

(
P̂

N
+ π̂j

)
+

∑
j

qjΦ(ξj +R). (104)
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6.3. Interaction with the external scalar potential

We might assume that the potential is slowly varying in the vicinity of the center of mass, and use a Taylor series
approximation

Φ(rj) = Φ(ξj +R) = Φ(R) + ξj · (∇Φ)R + · · · (105)

This allows us to write

∑
j

qjΦ(ξj +R) =
∑
j

qj

[
Φ(R) + ξj · (∇Φ)R + · · ·

]

= QΦ(R) +
∑
j

qjξj · (∇Φ) + · · ·

= QΦ(R)− d · EL(R) + · · · , (106)

where Q is the total charge
∑

j qj , and where d is the (relative) dipole operator

d =
∑
j

qjξj . (107)

The longitudinal electric field is related to the potential through

EL = −∇Φ. (108)

Here and in what follows, the field variables without an explicit associated position are presumed to be evaluated at
the composite center of mass

EL(R) → EL, Φ(R) → Φ. (109)

The scalar potential interacts with the composite as a whole through the potential at the center of mass position;
there is a dipole interaction which mediates transitions between the basis states of the relative problem due to coupling
with the longitudinal electric field; and the · · · indicates quadrupole and higher-order multipole longitudinal field
interactions.

6.4. Interaction with the external vector potential

A similar approach can be used in connection with the vector potential. We can use a Taylor series expansion and write

A(rj) = A(ξj +R) = A(R) + [(ξj · ∇)A] + · · · (110)
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To make progress we write

−
∑
j

qj
2m

[
A(rj) · p̂j + p̂j ·A(rj)

]
=− Q

2M

[
A · P̂+ P̂ ·A

]
−

⎡
⎣∑

j

(
qj −

Q

N

)
π̂j

m

⎤
⎦ ·A

−
∑
j

qj
2m

[(ξj · ∇)A] · P̂
N

− P̂

N
·
∑
j

qj
2m

[(ξj · ∇)A]

−
∑
j

qj
2m

[(ξj · ∇)A] · π̂j −
∑
j

qj
2m

π̂j · [(ξj · ∇)A] + · · · (111)

The first term on the right hand side describes the interaction of the composite as a whole with the vector potential, and
the second term gives rise to dipole transitions coupling to the transverse electric field. The terms in the next two lines
give rise to magnetic dipole interactions and second-order interactions with the transverse electric field; in the case of
center of mass coupling (second line) and relative coupling (third line).

The magnetic dipole interaction is normally isolated making use of a specific vector potential for a uniform mag-
netic field, such as [104]

A(r) =
1

2
B(r)× r. (112)

However, we would prefer a more general treatment if possible. We know that (ξ · ∇)A generates terms connected
with the magnetic dipole interaction, as well as others. It is possible to isolate the magnetic interactions by using

(ξ · ∇)A = −1

2
ξ ×B+

1

2

[
(ξ · ∇)A+∇(ξ ·A)

]
, (113)

where it ends up that the first term can be associated with the magnetic interactions. If we make use of this we obtain

−
∑
j

qj
2m

[
A(rj) · p̂j + p̂j ·A(rj)

]
=− Q

2M

(
A · P̂+ P̂ ·A

)
−

⎡
⎣∑

j

(
qj −

Q

N

)
π̂j

m

⎤
⎦ ·A

− 1

2

⎛
⎝∑

j

qjξj

⎞
⎠× P̂

M
·B−

⎛
⎝∑

j

qj
2m

ξj × π̂j

⎞
⎠ ·B+ · · · (114)

The third term on the right hand side is the contribution of the relative angular momentum to the magnetic dipole
interaction, followed by the contribution to the magnetic dipole interaction due to center of mass motion.
We can rewrite this more simply as

− q

2m

∑
j

[
A(rj) · p̂j + p̂j ·A(rj)

]
=− Q

2M

(
A · P̂+ P̂ ·A

)
− ĵ ·A− µ̂l ·B

−
1

2
d×

P̂

M
·B+ · · · , (115)
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where we recall that d is the relative dipole operator
∑

j qjξj , and where

ĵ =
∑
j

(
qj −

Q

N

)
π̂j

m
(116)

is the relative current operator, and

µ̂l =
∑
j

qj
2m

ξj × π̂j (117)

is the relative angular momentum contribution to the magnetic dipole moment.

6.5. Resulting Hamiltonian for a nonrelativistic composite

We can assemble the results above and write

Ĥ =
|P̂|2

2M
+QΦ− Q

2M

(
A · P̂+ P̂ ·A

)

+
∑
j

|π̂j |2

2m
+

∑
j<k

V̂jk(|ξj − ξk|)

− d · EL − ĵ ·A− µ̂l ·B− 1

2
d× P̂

M
·B+ · · · (118)

In the first line we have terms describing the composite as a particle interaction with external fields; in the second
line we see the terms that describe the internal structure of the composite in terms of relative degrees of freedom.
Terms that appear on the third line describes coupling between the internal degrees of freedom and the longitudinal
and transverse electric fields separately, and with the magnetic field. In the last line is a term that accounts for the
center of mass contribution to the magnetic dipole interaction, which couples the center of mass with internal degrees
of freedom in a magnetic field.

7. Composite Model from a Many-particle Dirac Formalism

In this section we extend the development of a model for a composite particle to the many-particle Dirac formalism.
This approach has the disadvantage that it is not covariant, so that the resulting relativistic composite model will not
be covariant. On the other hand, we are able to carry out a construction systematically with this model, which is less
straightforward with a covariant formalism. We note that in spite of its shortcomings, the Dirac formalism is widely
used for atomic, molecular and nuclear physics.

7.1. Relativistic equal mass model

We consider a model based on the many-particle Dirac Hamiltonian

Ĥ =
∑
j

βjmc
2 +

∑
j

αj · c[p̂j − qjA(rj)] +
∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj). (119)
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This kind of model has been of interest since the earliest efforts to develop a relativistic description of quantum systems
with two or more particles [105–110]. Keep in mind that in this kind of model there is the possibility of both positive
energy and negative energy solutions, so that bound states dissolve into the associated continuum (Brown–Ravenhall
disease); in models derived from field theory, this issue is resolved through the appearance of projection operators
[111–116]. In the majority of the subsequent literature the projection operators are not written out explicitly; in what
follows we will also suppress the projection operators.

We are interested here in composite models for nuclei based on a Dirac phenomenology for nucleons. Con-
sequently, it would be reasonable to use equal masses for the nucleons, and the interaction potential V̂jk includes
contributions from both the strong force and electromagnetic interactions.

7.2. Relative and center of mass variables

Relative and center of mass variables are defined once again according to

R =
1

N

∑
j

rj , P̂ =
∑
j

p̂j ,

ξj = rj −R, π̂j = p̂j −
P̂

N
.

The Hamiltonian written in terms of these variables is

Ĥ =
1

N
αj · c[P̂−QA(R)] +

∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk)

+
∑
j

qjΦ(R+ ξj)−
∑
j

αj · c
[
qjA(R + ξj)−

Q

N
A(R)

]
. (120)

If we use Taylor series expansions of the potentials around the center of mass position, we can write for the relativistic
composite a model of the form

Ĥ =
∑
j

βjmc
2 +

1

N

∑
j

αj · c(P̂−QA) +QΦ+
∑
j

αj · cπ̂j +
∑
j<k

V̂jk

+

⎛
⎝∑

j

qjξj

⎞
⎠ · ∇Φ−

∑
j

αj · c
(
qj −

Q

N

)
A−

∑
j

αj · cqj(ξj · ∇)A+ · · · (121)

In the first line we see a relativistic description of the composite interacting with external fields, and also a relativistic
description of the internal problem; however, both of these models share the same mass terms. In the second line we
see in the first term an electric dipole interaction with the longitudinal electric field; we see next the electric dipole
interaction with the transverse electric field; and higher-order interactions are included in the terms that follow.
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7.3. Rest frame model

The many-particle Dirac model above is widely used; however, from the discussion above it seems clear that for the
internal relative problem in the absence of external fields we should be interested in the relative Hamiltonian

Ĥ =
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk. (122)

This model is less widely used; however, there are papers where it has been considered. In the case of the two-body
problem (without external field coupling) this would be considered as a Kemmer–Fermi–Yang Hamiltonian [117,118].
This kind of model has been widely used over the years; in the case of equal mass models, to describe positronium
[119–121], the deuteron and two nucleon models [122–126], mesons [127–131]. Models of this kind with nonequal
masses have been used to describe the hydrogen atom [132–136]. Three-body problems Dirac models have been
studied in connection with quark models for baryons [125–141]. We draw attention to the Dirac phenomenology for
nuclear structure [41–44] where the rest frame is assumed, and in most cases the center of mass contributions are
removed approximately at the end of the calculation.

7.4. Dirac–Pauli models

In the event that our original model includes Pauli terms, we would start out with

Ĥ =
∑
j

βjmc
2 +

∑
j

αj · c[p̂j − qjA(rj)] +
∑
j<k

V̂jk +
∑
j

qjΦ(rj)

− e�

2m

∑
j

λjβj

(
Σj ·B(rj)− iαj · E(rj)

)
, (123)

where

λj =

⎧⎪⎪⎨
⎪⎪⎩
gp
2

− 1 protons

gn
2

neutrons

(124)

approximating the proton and neutron masses as being equal. We recall that

Σ =

[
0 σ
σ 0

]
.

The Pauli interaction includes an anomalous magnetic dipole interaction along with the corresponding correction to
the spin–orbit interaction.

Of interest here is the composite model that results; we may write
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Ĥ =
∑
j

βjmc
2 +

1

N

∑
j

αj · c(P̂−QA) +QΦ+
∑
j

αj · cπ̂j +
∑
j<k

V̂jk

− d ·EL − µ̂a ·B− ĵ ·A+ i
e�

2m

∑
j

λjβjαj ·E−
∑
j

αj · cqj(ξj · ∇)A+ · · · , (125)

where the relativistic relative current operator is

ĵ =
∑
j

(
qj −

Q

N

)
cαj (126)

and where the anomalous magnetic dipole moment operator is

µ̂a =
e�

2m

∑
j

λjβjΣj . (127)

8. Composite Model from Elimination of Negative Energy States

In this section we will consider low-order relativistic corrections based on the elimination of negative energy states (or
sometimes called Pauli reduction) from a Dirac model. We are interested in this approach since it is the simplest and
most direct approximation possible which results in a model that is close to being nonrelativistic. Such an approach
was used early on by Darwin [142], Breit [105], and Gaunt [143]; and it has been made use of many times subsequently
[106,107,109,122–124,144–156].

8.1. Elimination of negative energy states

To make progress, we begin with the eigenvalue equation for the many-particle eigenvalue equation

EΨ =

⎧⎨
⎩
∑
j

βjmc
2 +

∑
j

αj · c[p̂j − qjA(rj)] +
∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

⎫⎬
⎭Ψ. (128)

The relativistic wavefunction Ψ in this case has 4N components, which provides motivation for us to consider a
nonrelativistic approximation with fewer components.

The issue we face in this discussion is that there are different sectors in which both positive energy components
and negative energy components occur, and we need to keep track of them. The nonrelativistic sector is then the one
containing all positive energy components; the associated part of the wave function will be denoted by Ψ+···+, where
the + signs are associated with different positive energy pieces associated with the different particles.

We can use this kind of notation to write coupled eigenvalue equations of the form [157]
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EΨ+···+ =

⎡
⎣Nmc2 +∑

j<k

V̂jk +
∑
j

qjΦ

⎤
⎦Ψ+···+ + σ1 · c(p̂1 − q1A)Ψ−+···+

+ · · ·+ σN · c(p̂N − qNA)Ψ+···+−

EΨ−+···+ =

⎡
⎣(N − 2)mc2 +

∑
j<k

V̂jk +
∑
j

qjΦ

⎤
⎦Ψ−+···+ + σ1 · c(p̂1 − q1A)Ψ++···+

+ σ2 · c(p̂2 − q2A)Ψ−−+···+ + · · ·+ σN · c(p̂N − qNA)Ψ−···+−

... (129)

The mass energy decreases by 2mc2 with each increase in the number of −, since we lose one positive energy particle
and gain a negative energy one. Two-body versions of this approach are discussed in [122,158]. In this discussion the
interaction has been taken to be the same for positive energy and negative energy sectors; modifications in the case of
other potential models is straightforward.

If the problem is not overly relativistic then the channels with two or more negative energy components should
have sufficiently small occupation that we might neglect them. We can develop an approximate solution for channels
with a single negative energy sector according to

[
E − (N − 2)mc2 +

∑
j<k

V̂jk +
∑
j

qjΦ

]
Ψ−+···+ → σ1 · c(p̂1 − q1A)Ψ++···+ (130)

with similar expressions for other channels. Substituting back leads to

EΨ+···+ ≈

⎡
⎣Nmc2 +∑

j<k

V̂jk +
∑
j

qjΦ

⎤
⎦Ψ+···+

+ σ1 · c(p̂1 − q1A)

[
E − (N − 2)mc2 +

∑
j<k

V̂jk +
∑
j

qjΦ

]−1

σ1 · c(p̂1 − q1A)Ψ++···+

...

+ σN · c(p̂N − qNA)

[
E − (N − 2)mc2 +

∑
j<k

V̂jk +
∑
j

qjΦ

]−1

σN · c(p̂N − qNA)Ψ++···+

(131)

If we take E − (N − 2)mc2 to be 2mc2, then the approximate nonrelativistic Hamiltonian is
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Ĥ =Mc2 +
∑
j

(
σj · [p̂j − qjA(rj)]

)2

2m
+

∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

− 1

(2mc2)2

∑
l

σl · [p̂l − qlA(rl)]

⎛
⎝∑

j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

⎞
⎠σl · [p̂l − qlA(rl)] + · · · (132)

In the first line we see terms similar to those encountered in the last section where we discussed the nonrelativistic
composite, and in what follows we will see that the spin contribution to the magnetic dipole interaction is now included.
Spin–orbit and other relativistic corrections result from the new terms in the second line.

8.2. Keeping the Hermitian part

If we work with this model as is we encounter terms which are nonHermitian [159,160]; this is one of the reasons
that this general approach is not more widely used. This problem is discussed at some length in [149]. People tend to
prefer the Foldy–Wouthuysen transformation [160] instead since this issue does not arise; the F–W transformation has
other advantages that will be evident later on.

If we follow the arguments of [149] we arrive at a Hamiltonian of the form

Ĥ → Mc2 +
∑
j

(
σj · [p̂j − qjA(rj)]

)2

2m
+

∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

− 1

8m3c2

⎛
⎝∑

j

∣∣∣∣σj · [p̂j − qjA(rj)]

∣∣∣∣
2
⎞
⎠

(∑
k

∣∣∣∣σk · [p̂k − qkA(rk]

∣∣∣∣
2
)

− 1

8m2c2

∑
l

∣∣∣∣σl · [p̂l − qlA(rl)]

∣∣∣∣
2
⎛
⎝∑

j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

⎞
⎠

+
1

4m2c2

∑
l

σl · [p̂l − qlA(rl)]

⎛
⎝∑

j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

⎞
⎠σl · [p̂l − qlA(rl)]

− 1

8m2c2

∑
l

⎛
⎝∑

j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

⎞
⎠∣∣∣∣σl · [p̂l − qlA(rl)]

∣∣∣∣
2

. (133)

In this model we have a nonrelativistic composite model augmented with low-order relativistic corrections; however,
we have some work to do to reduce it in what follows to a more standard form.

8.3. Spin magnetic dipole interaction

We can make use of the identity
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(σ · a)(σ · a) = a · b+ iσ · a× b (134)

to expand

∑
j

(
σj · [p̂j − qjA(rj)]

)2

2m
=

∑
j

∣∣∣∣p̂j − qjA(rj)

∣∣∣∣
2

2m
− i

∑
j

qj

(
σj · p̂j ×A(rj) + σj ·A(rj)× p̂j

)

=
∑
j

∣∣∣∣p̂j − qjA(rj)

∣∣∣∣
2

2m
− µs ·B(rj), (135)

where

µs =
∑
j

�qj
2m

σj . (136)

8.4. Terms involving the external electrostatic potential

We can collect together higher-order terms involving the electrostatic potential Φ and write

− 1

8m2c2

∑
l

∣∣∣∣σl · [p̂l − qlA(rl)]

∣∣∣∣
2
⎛
⎝∑

j

qjΦ(rj)

⎞
⎠

+
1

4m2c2

∑
l

σl · [p̂l − qlA(rl)]

⎛
⎝∑

j

qjΦ(rj)

⎞
⎠σl · [p̂l − qlA(rl)]

− 1

8m2c2

∑
l

⎛
⎝∑

j

qjΦ(rj)

⎞
⎠∣∣∣∣σl · [p̂l − qlA(rl)]

∣∣∣∣
2

= − 1

8m2c2

∑
l

∑
j

[
σl · [p̂l − qlA(rl)],

[
σl · [p̂l − qlA(rl)], qjΦ(rj)

]]

= −i
�

8m2c2

∑
j

qj

[
σj · [p̂j − qlA(rj)],σj · EL(rj)

]

= − �
2

8m2c2

∑
j

qj∇j ·EL(rj)

+
�

8m2c2

∑
j

qjσj ·
(
[p̂j − qjA(rj)]×EL(rj)−EL(rj)× [p̂j − qjA(rj)]

)
. (137)

We can express this in terms of center of mass and relative variables according to
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−i �

8m2c2

∑
j

qj

[
σj · [p̂j − qjA(rj)],σj ·EL(rj)

]

=− i
�

8Mmc2

∑
j

qj

[
σj · [P̂−QA(R)],σj · [EL(R) + (ξj · ∇)E+ · · · ]

]

− i
�

8m2c2

∑
j

qj

[
σj ·

(
π̂j − qjA(R + ξj) +

Q

N
A(R)

)
,σj · [EL(R) + (ξj · ∇)E+ · · · ]

]

=− �
2Q

8Mmc2
∇ · EL +

�

8Mmc2

∑
j

qjσj ·
(
(P̂−QA)×EL −EL × (P̂−QA)

)

+
�

8m2c2

∑
j

qjσj ·
[(

π̂j − qjA(R+ ξj) +
Q

N
A

)
EL(R)−EL(R)×

(
π̂j − qjA(R + ξj) +

Q

N
A

)]

+ · · · (138)

8.5. Terms involving the particle–particle interaction

Higher-order terms involving the interaction can be collected to give

− 1

8m2c2

∑
l

∣∣∣∣σl · [p̂l − qlA(rl)]

∣∣∣∣
2
⎛
⎝∑

j<k

V̂jk(rj − rk)

⎞
⎠

+
1

4m2c2

∑
l

σl · [p̂l − qlA(rl)]

⎛
⎝∑

j<k

V̂jk(rj − rk)

⎞
⎠σl · [p̂l − qlA(rl)]

− 1

8m2c2

∑
l

⎛
⎝∑

j<k

V̂jk(rj − rk)

⎞
⎠∣∣∣∣σl · [p̂l − qlA(rl)]

∣∣∣∣
2

=− 1

8m2c2

∑
j<k

∑
l=j,k

[
σl · [p̂l − qlA(rl)],

[
σl · [p̂l − qlA(rl)], V̂jk(rj − rk)

]]
. (139)

Since the particle-particle interaction contains spin matrices, in general we cannot carry the development much further.
If we express this in terms of center of mass and relative coordinates, we can write
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− 1

8m2c2

∑
j<k

∑
l=j,k

[
σl · [p̂l − qlA(rl)],

[
σl · [p̂l − qlA(rl)], V̂jk(rj − rk)

]]

=− 1

8M2c2

∑
j<k

∑
l=j,k

[
σl · [P̂−QA(R)],

[
σl · [P̂−QA(R)], V̂jk(ξj − ξk)

]]

− 1

8Mmc2

∑
j<k

∑
l=j,k

[
σl · [P̂−QA(R)],

[
σl ·

(
π̂l − qlA(R+ ξl) +

Q

N
A(R)

)
, V̂jk(ξj − ξk)

]]

− 1

8Mmc2

∑
j<k

∑
l=j,k

[
σl ·

(
π̂l − qlA(R+ ξl) +

Q

N
A(R)

)
,

[
σl · [P̂−QA(R)], V̂jk(ξj − ξk)

]]

− 1

8m2c2

∑
j<k

∑
l=j,k

[
σl ·

(
π̂l − qlA(R+ ξl) +

Q

N
A(R)

)
,

[
σl ·

(
π̂l − qlA(R+ ξl) +

Q

N
A(R)

)
,

V̂jk(ξj − ξk)

]]
. (140)

We see a much larger set of terms present in this case.
Included in this expression are nuclear spin–orbit terms

− 1

8m2c2

∑
j<k

∑
l=j,k

[
σl · π̂l,

[
σl · π̂l, V̂jk(ξj − ξk)

]]
, (141)

which have long been of interest in the literature [144,145,147,151–154,161,162].
Also present are terms that involve interactions between the relative degrees of freedom and the transverse electro-

magnetic field

− 1

8m2c2

∑
l

∑
j<k

[
σlπ̂l,

[
σl ·

(
−qlA(R+ ξl) +

Q

N
A(R)

)
, V̂jk(ξj − ξk)

]]

− 1

8m2c2

∑
l

∑
j<k

[
σl ·

(
−qlA(R+ ξl) +

Q

N
A(R)

)
,

[
σl · π̂l, V̂jk(ξj − ξk)

]]
. (142)

These terms can contribute a correction to the magnetic moment, and is included in the analysis of Margenau [163] and
subsequent authors [163–165]; and also in other analyses [10,122,158,166]. We note that exchange currents have been
of interest in the literature since the observation of Siegert [167] that there should be expected additional contributions
from charged meson currents. Contributions from exchange currents are beyond what is included in this formalism
(see [168]).

8.6. Terms linear in P̂ with no external fields

We draw attention to terms that include the total momentum and internal nuclear transitions, the lowest order of which
are
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− 1

8Mmc2

∑
l

∑
j<k

[
σl · P̂,

[
σl · π̂l, V̂jk

]]
− 1

8Mmc2

∑
l

∑
j<k

[
σl · π̂l,

[
σl · P̂, V̂jk

]]
. (143)

Terms of these kinds are discussed infrequently in the literature; however, a few early (and important) discussions can
be found [108,161]. We will follow up on the issues in these works later on. Consequently, the majority of works
involving Pauli reduction are carried out in the rest frame, and the Foldy–Wouthuysen transformation is much more
widely used.

Our attention has been drawn to terms of this sort recently in connection with the development for a theory for
anomalies in condensed matter nuclear science [90]. The issue in this case is that it is in general problematic to
develop a sizeable coupling with the internal nuclear degrees of freedom through conventional dipole interactions
with external electric and magnetic fields. These terms however provide for a very strong coupling between lattice
vibrations, which in a condensed matter setting are represented in the momentum P̂, and internal nuclear states. For
this reason this kind of interaction naturally drew our attention. Issues associated with this kind of coupling have
ultimately provided motivation for this work.

An effort was made to evaluate numerically coupling matrix elements due to this kind of interaction [90]. Unfor-
tunately these calculations were carried out without taking into account the issues discussed in [149], and may need to
be corrected.

We will return to this kind of coupling and the associated physical significance later on in this work when we
consider Poincaré invariance.

8.7. Model for a composite

We can assemble the above results and write for a Hamiltonian for a nonrelativistic composite with relativistic correc-
tions in the form

Ĥ =Mc2 +
∑
j

∣∣∣∣p̂j − qjA(rj)

∣∣∣∣
2

2m
+

∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)

−
∑
j

�qj
2m

σj ·B(rj)−
�
2

8m2c2

∑
j

qj∇j · EL(rj)

+
�

8m2c2

∑
j

qjσj ·
(
[p̂j − qjA(rj)]×EL(rj)−EL(rj)× [p̂j − qjA(rj)]

)

−
1

8m2c2

∑
l

∑
j<k

[
σl · [p̂l − qlA(rl)],

[
σl · [p̂l − qlA(rl)], V̂jk(rj − rk)

]]
. (144)

We see the nonrelativistic composite model along with low-order relativistic corrections, all in reasonably standard
form.

A feature of this model is that it contains a coupling between the center of mass momentum P̂ and internal degrees
of freedom of interest to us on the same footing as the nuclear spin–orbit coupling, and other interactions that are
known in the literature. Also, this interaction was derived relatively simply, involving little effort in the elimination of
the negative energy sectors.
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A disadvantage of the model is that the longitudinal electric field appears in the model differently than the transverse
electric field, which should not be the case since we started from a gauge independent model. Although it is possible
to remedy this problem within the context of the approach used in this section, it will be more convenient to move on
to models based on the Foldy–Wouthuysen transformation where this problem is resolved.

In terms of center of mass and relative variables we can write

Ĥ =Mc2 +
|P̂−QA|2

2M
+QΦ

+
∑
j

∣∣∣∣π̂j − qjA(R + ξj)−
Q

N
A(R)

∣∣∣∣
2

2m
+

∑
j<k

V̂jk − d · EL − µs ·B

− �
2Q

8Mmc2
∇ · EL +

�

8Mmc2

∑
j

qjσj ·
(
(P̂−QA)×EL −EL × (P̂−QA)

)

+
�

8m2c2

∑
j

qjσj ·
[(

π̂j − qlA(R + ξj) +
Q

N
A(R)

)
×EL −EL ×

(
π̂j − qlA(R+ ξj) +

Q

N
A(R)

)]

− 1

8m2c2

∑
l

∑
j<k

[
σl ·

(
π̂l − qlA(R + ξl) +

Q

N
A(R)

)
,

[
σl ·

(
π̂l − qlA(R + ξl) +

Q

N
A(R)

)
, V̂jk

]]

− 1

8Mmc2

∑
l

∑
j<k

[
σl · (P̂−QA),

[
σl ·

(
π̂l − qlA(R+ ξl) +

Q

N
A(R)

)
, V̂jk

]]

− 1

8Mmc2

∑
l

∑
j<k

[
σl ·

(
π̂l − qlA(R+ ξl) +

Q

N
A(R)

)
,

[
σl · (P̂−QA), V̂jk

]]

− 1

8M2c2

∑
l

∑
j<k

[
σl · (P̂−QA),

[
σl · (P̂−QA), V̂jk

]]

+ · · · (145)

Corrected Pauli reduction in this case has led to a reasonably complete model for a nonrelativistic composite with
low-order relativistic corrections pretty much in standard form. The issue noted in connection with a lack of gauge
invariance due to the presence of the longitudinal field will be corrected when we work with the Foldy–Wouthuysen
transformation; however, the correction simply involves the replacement

EL → E (146)

9. Model based on the Foldy–Wouthuysen Transform

We were interested in the method of elimination of negative energy states due to its simplicity; however, a major
disadvantage is that it can produce nonHermitian terms. This motivates us to consider composite models based on the
Foldy–Wouthuysen transformation [160] in this section, and also a closely related transform in the following section.
This rotation has been very widely used for atomic problems [175–180], as well as for nuclear models [123,150,181–
188].
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9.1. Foldy–Wouthuysen transform

As with all unitary transformations, the basic idea is to work with a rotated wave function written as

Ψ′ = eiŜΨ. (147)

Assuming that Ŝ is time-dependent, then the system can be modeled with the transformed Hamiltonian

Ĥ ′ = eiŜ
[
Ĥ − i�

∂

∂t

]
e−iŜ . (148)

Foldy and Wouthuysen used this approach to develop transformations that allow for a nonrelativistic approximation in
the case of a single particle [160,189,190]. In the case of a Dirac particle in an external field, the Dirac Hamiltonian is

Ĥ = α · c(p̂− qA) + βmc2 + qΦ. (149)

After three successive transforms the lowest-order terms in the transformed (4× 4 matrix) Hamiltonian is

Ĥ ′ → β

(
mc2 +

|p̂− qA|2

2m
− |p̂− qA|4

8m3c2

)
+ qΦ− �q

2m
βΣ ·B

+
�q

8m2c2

[
Σ · (p̂− qA)×E−Σ · E× (p̂− qA)

]
− q�2

8m2c2
∇ · E, (150)

where

Σ =

[
σ 0
0 σ

]
. (151)

9.2. Many-particle model

There is a long tradition of making use of the Foldy–Wouthuysen transformation on many-particle models. F-W trans-
formations for two interacting Dirac particles have been considered in [176,191–196]; for the many-particle case see
[116,177,184,197–199]. Transformations for Hamiltonians that include Pauli interactions for the anomalous magnetic
moment have been discussed in [200–204].

We begin with a many-particle model written as

Ĥ =
∑
j

βjmc
2 +

∑
j

αj · c[p̂j − qjA(rj)] +
∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj).

Foldy–Wouthuysen transformations on each of the particles individually reduce all terms except for the interaction
terms. We can write
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Ĥ ′ → mc2
∑
j

βj +
∑
j

∣∣∣∣p̂j − qjA(rj)

∣∣∣∣
2

2m
βj + eiŜ

∑
j<k

V̂jk(rj − rk)e
−iŜ +

∑
j

qjΦ(rj)

−
∑
j

�qj
2m

βjΣj ·B(rj) +
∑
j

�qj
8m2c2

[
Σj · [p̂j − qA(rj)]×E(rj)−Σj · E(rj)× [p̂j − qjA(rj)]

]

−
∑
j

qj�
2

8m2c2
∇ ·E(rj). (152)

Since the composite may be in motion, it is best to work in a Foldy–Wouthuysen representation rather than with
a nonrelativistic approximation here since additional issues arise in the extraction of the nonrelativistic limit [200].
The Foldy–Wouthuysen transformation of the Breit interaction has been discussed in [116,176,191–196]. A Foldy–
Wouthuysen transformation was considered in the case of the Bonn nuclear potential [99] by Amore et al. [208].

9.3. Lowest-order contributions to the transformed potential

We can expand the transformed potential according to

eiŜ

⎛
⎝∑

j<k

V̂jk(rj − rk)

⎞
⎠ e−iŜ = V̂jk(rj − rk) + i

[
Ŝ, V̂jk(rj − rk)

]
− 1

2

[
Ŝ,

[
Ŝ, V̂jk(rj − rk)

]]
+ · · · (153)

An expression for the lowest-order correction to the potential can be derived based on

Ŝ = −i 1

2mc

∑
j

βjαj · [p̂j − qjA(rj)]. (154)

We can use this to write

eiŜ

⎛
⎝∑

j<k

V̂jk(rj − rk)

⎞
⎠ e−iŜ →

∑
j<k

V̂jk(rj − rk)

+
1

2mc

∑
k<l

∑
j=k,l

[
βjαj · [p̂j − qjA(rj)], V̂kl(rk − rl)

]
. (155)

The transformed Hamiltonian can be approximated by
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Ĥ ′ → mc2
∑
j

βj +
∑
j

|p̂j − qjA(rj)|2

2m
βj +

∑
j<k

V̂jk(rj − rk) +
∑
j

qjΦ(rj)−
∑
j

�qj
2m

βjΣj ·B(rj)

+
∑
j

�qj
8m2c2

Σj ·
(
[p̂j − qA(rj)]×E(rj)− E(rj)× [p̂j − qjA(rj)]

)
−

∑
j

qj�
2

8m2c2
∇ · E(rj)

+
1

2mc

∑
k<l

∑
j=k,l

[
βjαj · [p̂j − qjA(rj)], V̂kl(rk − rl)

]
. (156)

This model might be viewed as more or less a nonrelativistic composite model (but for a 4N -component wave function
in the F-W representation) with relativistic corrections. As such it is closely related to the composite model developed
in the previous section, with the gauge invariance problem now fixed.

9.4. Model in terms of relative and center of mass operators

As before, we can make us of relative and center of mass variables defined according to

R =
1

N

∑
j

rj , P̂ =
∑
j

p̂j ,

ξj = rj −R, π̂j = p̂j −
P̂

N
.

We can use these to write the transformed model as
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Ĥ ′ → mc2
∑
j

βj +
|P̂−QA|2

2M

1
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∑
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βj +QΦ
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Q

N
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∣∣∣∣
2

2m
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∑
j<k

V̂jk − d ·EL − µ̂s ·B

+
1

2mc

∑
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∑
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N
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)
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(
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Q

N
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+
∑
j
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(
π̂j − qjA(R+ ξj)−

Q

N
A(R)

)
2M

βj

+
∑
j

(
π̂j − qjA(R+ ξj)−

Q

N
A(R)

)
· (P̂−QA)

2M
βj

+
1

2Mc

∑
k<l

∑
j=k,l

[
βjαj · (P̂−QA), V̂kl

]
+ · · · (157)

This composite model is more or less in a standard form, and we see the center of mass and relative Hamiltonians,
couplings with external fields, electrostatic and nuclear spin–orbit terms, as well as terms that couple the center of
mass to the internal degrees of freedom.

9.5. Center of mass coupling with internal degrees of freedom

One of the issues in which we are interested in particular concerns the coupling between the center of mass degrees of
freedom and the internal degrees of freedom, so we are motivated to examine the associated terms further.

Since

∑
j

π̂j = 0, (158)

we can write

∑
j

P̂ · π̂j

M
βj =

∑
j

P̂ · π̂j

M
(βj − Ij), (159)
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where

Ij =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
j

. (160)

This suggests that the coupling associated with this kinetic energy term between the center of mass momentum and
the internal relative momenta is of higher order in the inverse mass under conditions where the composite momentum
is small.

In the absence of external fields there is a coupling between the center of mass momentum and the particle–particle
potential

1

2Mc

∑
j<k

[
(βjαj + βkαk) · P̂, V̂jk

]
. (161)

This term is closely related to the nonrelativistic version of the interaction we found when eliminating the contribution
of the negative energy sectors above. We will consider this term further later on in this paper.

9.6. Modification in the case of Dirac–Pauli interaction

We noted above that protons and neutrons have anomalous magnetic moments, so that an additional Pauli interaction
is sometimes used. In this case we would begin with

Ĥ =
∑
j

[
βjmc

2 +αj · c[p̂j − qjA(rj)]

]
+

∑
j<k

V̂jk +
∑
j

qjΦ(rj)

−
∑
j

λj
e�

2m
βj

[
σj ·B(rj)− iαj · E(rj)

]
.

The nonrelativistic limit of this kind of model has been discussed numerous times in the literature [37,169–174].
If the lowest-order contributions to the magnetic dipole interaction are summed and combined with the anomalous

magnetic dipole contribution, then at lowest order we can write

−
∑
j

qjξk × π̂j

2m
·B(R)−

∑
j

�qj
2m

σj ·B(rj)−
∑
j

λj
e�

2m
σj ·B(rj)

= −
∑
j

qjξk × π̂j

2m
·B(R)−

∑
j

gj
e�

4m
σj ·B(rj)

→ − (µ̂l + µs + µa) ·B(R) = −
∑
j

( qj
2m

lj +
e

2m
gjsj

)
·B = −µ ·B. (162)

The magnetic dipole moment in this model is made up of a nonrelativistic contribution due to the internal (relative)
angular momentum µl, a relativistic contribution due to the nucleon spin µs, and an extra component included through
the Pauli interaction to account for the anomalous magnetic moment µa.
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A correction also occurs for the spin–orbit terms involving the electrostatic interaction [203,204]

∑
j

�qj
8m2c2

Σj ·
(
[p̂j − qA(rj)]×E(rj)−E(rj)× [p̂j − qjA(rj)]

)
−

∑
j

qj�
2

8m2c2
∇ · E(rj)

→
∑
j

�(qj + 2eλj)

8m2c2
Σj ·

(
[p̂j − qA(rj)]×E(rj)−E(rj)× [p̂j − qjA(rj)]

)

−
∑
j

�
2(qj + 2eλj)

8m2c2
∇ · E(rj). (163)

10. A Partial Foldy–Wouthuysen Transformation

The motion of the nuclei in the lattice is very much nonrelativistic; however, it may be that the interior nuclear
structure problem may be relativistic. It would be good to have a formulation in which the relative problem is treated
relativistically, while at the same time treating the center of mass problem nonrelativistically. In this section we make
use of a partial Foldy–Wouthuysen transformation to develop such a formulation.

10.1. Isolation of a center of mass Hamiltonian

We begin with the relativistic model expressed in terms of center of mass and relative variables

Ĥ =
∑
j

βjmc
2 +

∑
j

αj · c

[
P̂

N
+ π̂j − qjA(R + ξj)

]
+

∑
j<k

V̂jk(ξj − ξk) +
∑
j

qjΦ(R+ ξj) (164)

and rewrite it according to

Ĥ = ĤR + Ĥξ + Ĥint (165)

with

ĤR =
∑
j

βjmc
2 +

1

N

∑
j

αj · c(P̂−QA) +QΦ, (166)

Ĥξ =
∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk), (167)

Ĥint =
∑
j

[
qjΦ(R+ ξj)−

Q

N
Φ(R)

]
−

∑
j

αj · c
[
qjA(R + ξj)−

Q

N
A(R)

]
. (168)

We identify ĤR as a center of mass Hamiltonian, which will be the focus of our partial Foldy–Wouthuysen transform.
The remaining terms in the Hamiltonian include Ĥξ which here is an incomplete version of the relative Hamiltonian,

and Ĥint which includes the residual interaction with the external electromagnetic field.
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10.2. Rotation of the center of mass Hamiltonian

It is possible to carry out a Foldy–Wouthuysen transformation on the center of mass Hamiltonian which leads to a
model that will be of interest for us. The transformed center of mass Hamiltonian is

Ĥ ′
R = eiŜ

(
ĤR − i�

∂

∂t

)
e−iŜ .

We work with a transformation based on

Ŝ = −i 1

2Mc2

∑
j

βjαj · c(P̂−QA). (169)

The implementation of this rotation is nontrivial, and details are provided in Appendix B. The result can be written as

Ĥ ′
R →

∑
j

βjmc
2 +

|P̂−QA|2

2M

1

N

∑
j

βj +QΦ− �Q

2M

1

N

∑
j

βjΣj ·B

− �
2Q

8M2c2

∑
j

∇ · E+
�Q

8M2c2

∑
j

Σj ·
[
(P̂−QA)×E−E× (P̂−QA)

]
. (170)

10.3. Transformed Hamiltonian

We can apply the same rotation to the full Hamiltonian according to

Ĥ ′ = Ĥ ′
R + eiŜĤξe−iŜ + eiŜĤinte−iŜ . (171)

In the event that the external fields are relatively weak then we should be able to work with

Ĥ ′ → Ĥ ′
R + Ĥξ + Ĥint + i[Ŝ, Ĥξ]. (172)

We can evaluate

i[Ŝ, Ĥξ] =
1

M

∑
j

βj(P̂−QA) · π̂j +
1

2Mc

∑
k<l

∑
j=k,l

[
βjαj · (P̂−QA), V̂kl

]
. (173)

We can collect terms and write
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Ĥ ′ → |P̂−QA|2

2M

1

N

∑
j

βj +QΦ− �Q

2M

1

N

∑
j

βjΣj ·B− �
2Q

8M2c2
∇ ·E

+
�Q

8M2c2

∑
j

Σj ·
[
(P̂−QA)×E−E× (P̂−QA)

]

+
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk

+
∑
j

[
qjΦ(R + ξj)−

Q

N
Φ(R)

]
−

∑
j

αj · c
[
qjA(R+ ξj)−

Q

N
A(R)

]

+
1

M

∑
j

βj(P̂−QA) · π̂j +
1

2Mc

∑
j<k

[
(βjαj + βkαk) · (P̂−QA), V̂jk

]
. (174)

The terms in the first two lines of this rotated Hamiltonian models the center of mass degrees of freedom in a nonrela-
tivistic model interacting with the radiation field; terms in the third line models the field-free relative nuclear problem
in the rest frame; terms in the fourth line account for the interaction of the internal degrees of freedom with the external
electromagnetic field; and terms in the last line model the interaction of the canonical momentum of the center of mass
with the internal degrees of freedom.

11. The Poincaré Group and Composite Models

In our discussions above we have considered models for composites derived from the nonrelativistic many-particle
Schrödinger equation and the many-particle Dirac equation. However, the interacting many-particle Dirac model is in
general not covariant, and this motivates us to consider the issue of invariance. The basic idea is that if we have a model
for a composite at rest, then our model should be invariant if we translate the composite in free space, or if we rotate
it, or if it moves with constant velocity [210]. Wigner considered invariance in connection with relativistic quantum
mechanics in an early often-cited paper [211], and in some subsequent publications [78,212,213]. These ideas have
had a fundamental impact on relativistic quantum mechanics and field theory; our interest in this section is focused
only on a number of specific issues that follow from these general considerations which are of interest to us and which
have been discussed in the literature.

11.1. Lie algebra of the Lorentz group

Wigner was interested in representations of what he termed the inhomogeneous Lorentz group [211], which appears in
more recent literature as the Poincaré group. We are interested in the Lie algebra of the Poincaré group in connection
with the discussion to follow. However, it seems worthwhile to begin with the generators and Lie algebra of the Lorentz
group first.

Consider generators for infinitesimal rotations and boosts Ĵ and K̂, which can be used to implement a rotation
according to

Ψ′ = exp

(
− iθn̂ · Ĵ

)
Ψ, (175)
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where n̂ is the axis of rotation and θ is the rotation angle; the infinitesimal boost operator can be used to implement a
finite boost according to

Ψ′ = exp

(
i
v

c
· K̂

)
Ψ, (176)

where u is the increase in velocity resulting from the boost. These are the infinitesimal operators of the Lorentz group,
which satisfy the Lie algebra

[Ĵi, Ĵj ] = i�εijkĴk,

[Ĵi, K̂j] = i�εijkK̂k,

[K̂i, K̂j] = −i�εijk
1

c2
Ĵk, (177)

where εijk is the Levi-Civita symbol

εjkl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1 if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2),

−1 if (i, j, k) = (3, 2, 1), (2, 1, 3), (1, 3, 2),

0, otherwise.

(178)

This Lie algebra is consistent with Ref. [214].

11.2. Lie algebra of the Poincaré group

Wigner understood that infinitesimal generators for translations in spacetime should be considered as well, which takes
us from the Lorentz group to the inhomogeneous Lorentz group, or Poincaré group.

The momentum operator P̂ can be used as an infinitesimal generator of displacements in space according to

Ψ′ = exp

(
− i

R0 · P̂
�

)
Ψ, (179)

where R0 is the displacement in position. The Hamiltonian operator is an infinitesimal generator of displacements in
time according to

Ψ′ = exp

(
it0Ĥ

)
Ψ, (180)

where t0 is the displacement in time. The Lie algebra that results is the Lie algebra of the inhomogeneous Lorentz
group or Poincaré group [78,215], which we can write as [216–221]

[P̂i, P̂j ] = 0, [P̂i, Ĥ ] = 0, [Ĵi, Ĥ] = 0,
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[Ĵi, Ĵj ] = i�εijkĴk, [Ĵi, P̂j ] = i�εijkP̂k, [Ĵi, K̂j ] = i�εijkK̂k,

[K̂i, P̂j ] = i�δij
1

c2
Ĥ, [K̂i, K̂j ] = −i�εijk

1

c2
Ĵk, [K̂i, Ĥ ] = i�P̂i. (181)

If one has constructed a relativistic quantum model, one make use of this algebra to verify that it is an acceptable
relativistic theory (that it is a representation of the Poincaré group) [78]. Alternatively, this algebra can be used to
construct a relativistic model given a rest frame Hamiltonian [222].

11.3. Infinitesimal generators with no interaction

The many-particle Dirac Hamiltonian in the absence of an interaction, and without external fields

Ĥ =
∑
j

αj · cp̂j + βjmc
2 (182)

is a representation of a Hamiltonian generator of the Poincaré Lie algebra. In this case we can write for the other
infinitesimal generators

P̂ =
∑
j

p̂j , (183)

Ĵ =
∑
j

rj × p̂j +
�

2
Σj , (184)

K̂ =
1

2c2

∑
j

[
rj(αj · cp̂j + βjmc

2) + (αj · cp̂j + βjmc
2)rj

]
. (185)

If a particle-particle interaction is present, then in general the resulting model will not be invariant. An exception
occurs when the interaction potential is proporional to a δ-function [223]

11.4. Casimir invariant

A Casimir invariant X̂ is an operator which commutes with the 10 Poincaré infinitesimal generators

[
X̂, Ĥ

]
= 0,

[
X̂, P̂i

]
= 0,

[
X̂, Ĵi

]
= 0,

[
X̂, K̂i

]
= 0. (186)

With a few lines of commutator algebra it can be demonstrated that

M̂2c4 = Ĥ2 − c2|P̂|2 (187)

is a Casimir invariant, where M̂ is a mass operator. This means that the energy momentum dispersion relation in a
consistent relativistic model for a positive eigenvalue of a composite with no external fields must be

E =
√
(Mc2)2 + c2|P|2 (188)

simply as a consequence of Poincaré invariance.
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11.5. Separability

Poincaré invariance has numerous consequences, one of which is the separability of center of mass and relative de-
grees of freedom in free space. If the mass operator is a Casimir invariant, then it cannot depend on the momentum.
Consequently, it should be possible to write the Hamiltonian for a Poincaré invariant model in the form [219,224]

Ĥ =

√
(M̂c2)2 + c2|P̂|2, (189)

where M̂ is a mass operator that depends only on relative degrees of freedom.
In the case of a two-particle Dirac model with a Breit interaction, it is possible to construct unitary transforms

which separate the center of mass and relative mass terms up to O(1/c2) [209,224]. Separability in the case of more
general potentials was discussed in Refs. [222,225,226]. Studies that focus on the impact on nuclear interaction models
have appeared in [227–230].

11.6. Many-particle Dirac model with interaction

Our attention now turns to the issue of separability in the many-particle Dirac model when particle-particle interactions
are present. We consider a model for a composite in the absence of external fields described by

Ĥ =
1

N

∑
j

αj · cP̂+
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk). (190)

We make use of the partial Foldy–Wouthuysen transformation of the last section to write a rotated Hamiltonian when
no external fields are present

Ĥ ′ → |P̂|2

2M

1

N

∑
j

βj +
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk

+
1

M

∑
j

βjP̂ · π̂j +
1

2Mc

∑
j<k

[
(βjαj + βkαk) · P̂, V̂jk

]
. (191)

The result of the unitary transformation is a Hamiltonian which contains separated center of mass and relative terms
in the first line, and relatively small terms in the second line that provide a coupling between the center of mass and
relative degrees of freedom. The coupling in the last term is consistent with the nonrelativistic reduction of a boosted
composite Hamiltonian given in [231].

11.7. Interpretation for terms linear in P̂

To understand the significance of the new term we examine an example discussed some time ago in [209] which
focused on the special case of the Coulomb plus Breit interaction. If we first consider the rest frame where

P̂ → 0 (192)

then the many-particle Dirac Hamiltonian with no external field can be written as
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Ĥ =
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

qjqk
4πε0

{
1

rjk
− 1

2

[
αj ·αk

rjk
+

(αj · rjk)(αk · rjk)
r3jk

]}
. (193)

We consider how this Hamiltonian should be modified if boosted so that the composite has a center of mass momentum
P̂. For this argument we identify the α matrices as equivalent normalized velocity operators (as a consequence of

Ehrenfest’s Theorem applied to the Dirac equation, where
d
dt
〈r〉 = c〈α〉)

α ∼ v̂

c
. (194)

If so, then from a naive perspective boosting the system should result in

v̂ → v̂ +
P̂

M
. (195)

Based on these simple considerations the boosted Hamiltonian should look something like

Ĥ → |P̂|2

2M
+

∑
j

βjmc
2 +

∑
j

(
αj +

P̂

Mc

)
· cπ̂j

+
∑
j<k

qjqk
4πε0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

rjk
− 1

2

⎡
⎢⎢⎢⎢⎣

(
αj +

P̂

Mc

)
·

(
αk +

P̂

Mc

)

rjk
+

(
αj +

P̂

Mc

)
· rjk

(
αk +

P̂

Mc

)
· rjk

r3jk

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(196)

We can rewrite this as

Ĥ → |P̂|2

2M
+

∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

qjqk
4πε0

{
1

rjk
− 1

2

[
αj · αk

rjk
+

(αj · rjk)(αk · rjk)
r3jk

]}

+
∑
j

P̂ · π̂j

M
− 1

2Mc

qjqk
4πε0

[
P̂ · αk

rjk
+

αj · P̂
rjk

+
(P̂ · rjk)(αk · rjk)

r3jk
+

(αj · rjk)(P̂ · rjk)
r3jk

]

+ · · · (197)

For the Coulomb plus Breit interaction the commutator that we found is evaluated to yield

− 1

4Mc

qjqk
4πε0

∑
j<k

[
(βjαj + βkαk) · P̂,

αj · αk

rjk
+

(αj · rjk)(αk · rjk)
r3jk

]

= − 1

2Mc

qjqk
4πε0

∑
j<k

[
βj

P̂ ·αk

rjk
+ βk

αj · P̂
rjk

+ βj
(P̂ · rjk)(αk · rjk)

r3jk
+ βk

(αj · rjk)(P̂ · rjk)
r3jk

]
. (198)
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In this case the partial Foldy–Wouthuysen transformation gives us

Ĥ ′ =
|P̂|2

2M

1

N

∑
j

βj +
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

qjqk
4πε0

{
1

rjk
− 1

2

[
αj · αk

rjk
+

(αj · rjk)(αk · rjk)
r3jk

]}

+
∑
j

βj
P̂ · π̂j

M
− 1

2Mc

qjqk
4πε0

∑
j<k

[
βj

P̂ ·αk

rjk
+ βk

αj · P̂
rjk

+ βj
(P̂ · rjk)(αk · rjk)

r3jk
+ βk

(αj · rjk)(P̂ · rjk)
r3jk

]

+ · · ·

(199)

Consequently, we understand the Hamiltonian that results from the partial Foldy–Wouthuysen transformation as gen-
erating a correction that accounts for how the interaction changes in a moving frame to first order. We see that β
matrices are present in the expression that results from the evaluation of the commutator, and not present in our simple
argument above; this of course complicates things, but the basic argument of [209] (and equivalent arguments given
earlier by [108,161]) gives us an intuitive way to understand what the partial Foldy–Wouthuysen transformatation in
this relativistic case is doing.

11.8. Terms up to second order

The nucleon-nucleon interaction models available in the literature are specified in the rest frame. We have seen that the
magnetic interaction is modified in a moving composite, so we expect that parts of the nuclear interaction that are akin
to the magnetic interaction will also be modified. In some nuclear physics calculations the empirical nuclear potential
is corrected to account for this. For example, in [232–235] one finds

V̂jk(r) → V̂jk(r) + δV̂jk(r) (200)

with

δV̂jk(rjk) =
1

8m2c2

[
(σj − σk)× P̂ · p̂jk, V̂jk(rjk)

]
− |P̂|2

8m2c2
V̂jk(rjk)

+ i
1

8m2c2

[
(P̂ · rjk)(P̂ · p̂jk), V̂jk(rjk)

]
. (201)

The term linear in P̂ is consistent with the first-order term from the partial Foldy–Wouthuysen transformation. The
terms quadratic in P̂ are similar to second-order terms associated with

Ĥ ′ = Ĥ + i[Ŝ, Ĥ ]− 1

2
[Ŝ, [Ŝ, Ĥ ]] + · · · (202)

In this case the transformed Hamiltonian in free space is



188 P.L. Hagelstein / Journal of Condensed Matter Nuclear Science 20 (2016) 139–225

Ĥ ′ → |P̂|2

2M

1

N

∑
j

βj +
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk

+
1

M

∑
j

βjP̂ · π̂j +
1

2Mc

∑
j<k

[
(βjαj + βkαk) · P̂, V̂jk

]

+
1

8(Mc)2

∑
j<k

[
(αj +αk) · P̂,

[
(βjαj + βkαk) · P̂, V̂jk

]]
. (203)

Much effort has gone into the development of chiral effective field theory [101] for the development of accu-
rate nucleon–nucleon potential models [45]. A reduction of the potential based on a relativistic formalism has been
considered [236–240], with a modification of the potential due to motion discussed in [241,242].

11.9. Elimination of the larger coupling term

Based on the discussion above a Poincaré invariant model (in free space with no external fields) is separable in the
sense of a Hamiltonian with a square root as in Eq. (189); and separable as a conventional Hamiltonian at low order
when the square root is linearized. The many-particle Dirac model with interactions is consistent with a separable
low-order Hamiltonian in the second sense to O(1/c2) [224,225].

This suggests that we should be able to rotate out the terms linear in P̂ in Ĥ ′; of specific interest here is the
elimination of the larger coupling term involving the commutator with the potential. We have found that it is possible
to eliminate it using

Ŝ′ = −i 1

8Mmc3

∑
j<k

[
βj + βk,

[
(βjαj + βkαk) · P̂, V̂jk

]]
(204)

in the event that

βjβkV̂jk = V̂jkβjβk (205)

since (as can be shown with substantial algebra that)

i

⎡
⎣Ŝ′,

∑
j

βjmc
2

⎤
⎦ = − 1

2Mc

∑
j<k

[
(βjαj + βkαk) · P̂, V̂jk

]
. (206)

The success of this rotation supports the suspicion that the many-particle Dirac model with interaction but no external
fields in free space approximately separates at low order.

11.10. Impact of separability on external fields

If external fields are present, this rotation will result in terms where the external fields couple to internal states of
the composite based on complicated interactions involving the particle-particle interaction. This can be illustrated by
considering the lowest order terms generated with the rotation above when an electrostatic potential is present. In this
case we can write
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i
[
Ŝ′, QΦ

]
= i

⎡
⎣−i 1

8Mmc3

∑
j<k

[
βj + βk,

[
(βjαj + βkαk) · P̂, V̂jk

]]
, QΦ

⎤
⎦

=− i
�Q

8Mmc3

∑
j<k

(βj + βk)(βjαj + βkαk) ·ELV̂jk − (βj + βk)V̂jk(βjαj + βkαk) · EL

− (βjαj + βkαk) · ELV̂jk(βj + βk) + V̂jk(βjαj + βkαk) · EL(βj + βk). (207)

The coupling that we have rotated out now shows up reduced in magnitude in other parts of the model.

12. Many Nuclei in a Lattice

We are interested in composite models in connection with the development of a theory for anomalies in condensed
matter nuclear science, where we consider the situation where many identical nuclei interact with a common highly
excited vibrational model. The basis for models that we have studied has consisted of treating the nuclei as composites
each with coupling terms linear in P̂, making use of a finite basis approximation, and then diagonalizing the problem
that results.

If one were to naively adopt the point of view that the center of mass degrees of freedom separate from the internal
degrees of freedom, then the basic program under consideration for this kind of model would be called into question.
Since we are able to carry out the rotations that implement the separation, it seems useful to think about these kinds
of models in terms of the rotations. Based on the discussion above, it may be best to make use of the partial Foldy–
Wouthuysen transformation above in order to work with a nonrelativistic description for the center of mass degrees of
freedom. Then we can consider a second rotation to implement low-order separability.

12.1. Many nuclei interacting with a common vibrational mode

Suppose that we consider a simple version of the model in which the nuclei in the lattice interact through screened
Coulomb and exchange forces. In this case we could start out with an idealized Hamiltonian of the form

Ĥ =
∑
a

⎧⎨
⎩ 1

Na

∑
ja

αja · cP̂a +
∑
ja

βjamc
2 +

∑
ja

αja · cπ̂ja +
∑

ja<ka

V̂jaka(ξja − ξka
)

⎫⎬
⎭

+
∑
a<b

∑
ja,kb

qjaqkb
Uab(rja − rkb

), (208)

where Uab(rja − rkb
) models the screened Coulomb interaction between nucleons in different nuclei in a Born-

Oppenheimer picture. The summation over a indicates summing over the different nuclei; and the index ja indicates
a specific nucleon within nucleus a. For this model we have eliminated other external field interactions in order to
simplify the notation.

12.2. First transformation

We consider now a big partial Foldy–Wouthuysen transformation which eliminates the αja · cP̂a coupling terms.
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Ĥ ′ = eiŜ
[
Ĥ − i�

∂

∂t

]
e−iŜ (209)

with

Ŝ = −i 1

2mc2

∑
a

1

Na

∑
ja

βjaαja · cP̂a. (210)

This leads to a transformed Hamiltonian of the form

Ĥ ′ →
∑
a

⎧⎨
⎩ |P̂a|2

2Ma

1

Na

∑
ja

βja +
∑
ja

βjamc
2 +

∑
ja

αja · cπ̂ja +
∑

ja<ka

V̂jaka

+
1

Ma

∑
ja

βjaP̂a · π̂ja +
1

2Mac

∑
ja<ka

[
(βjaαja + βkaαka) · P̂a, V̂jaka

]⎫⎬
⎭

+
∑
a<b

QaQbUab(Ra −Rb) +
∑
a<b

∑
ja,kb

(
qjaqkb

Uab(rja − rkb
)− Qa

Na

Qb

Nb
Uab(Ra + ξja −Rb − ξjb)

)

+
∑
b�=a

�
2QaQb

8M2
ac

2
∇2Uab(Ra −Rb)−

∑
a �=b

�QaQb

8M2
ac

2

∑
ja

Σja ·
[
P̂a × (∇Uab)− (∇Uab)× P̂a

]
+ · · · ,(211)

where Ma = Nam is the mass of nucleons in nucleus a. Although this rotated Hamiltonian is more complicated that
the single composite equivalent that we encountered previously, we can see familiar terms; including dipole coupling
terms to internal states; spin–orbit terms associated with the screened Coulomb and exchange interactions; and other
coupling terms. Our inclination at this point is to neglect all minor terms not involved with the effects of immediate
interest for the anomalies, and approximate the rotated Hamiltonian as

Ĥ ′ ≈
∑
a

|P̂a|2

2Ma
+

∑
a<b

QaQbUab(Ra −Rb) +
∑
a

⎧⎨
⎩
∑
ja

βjamc
2 +

∑
ja

αja · cπ̂ja +
∑

ja<ka

V̂jaka

⎫⎬
⎭

+
∑
a

1

2Mac

∑
ja<ka

[
(βjaαja + βkaαka) · P̂a, V̂jaka

]
. (212)

What remains are center of mass kinetic and potential energy terms for the different nuclei, relative Hamiltonians for
the internal nuclear states, and coupling terms which arise due to the modification of the nuclear forces when the nuclei
are in motion.

12.3. Second transformation

If the nuclei were not interacting in free space, we would expect to be able to rotate out the coupling terms linear in
P̂a. For nuclei in the lattice the situation is not so clear since the nuclei interact with one another. Nevertheless, we
can attempt a second Foldy–Wouthuysen transformation based on
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Ŝ′ = −i
∑
a

1

8Mamc3

∑
ja<ka

[
βja + βka ,

[
(βjaαja + βkaαka) · P̂a, V̂jaka

]]
(213)

assuming that

βjβkV̂jk = V̂jkβjβk. (214)

We can write for the doubly rotated Hamiltonian

Ĥ ′′ →
∑
a

|P̂a|2

2Ma
+

∑
a<b

QaQbUab(Ra −Rb) +
∑
a

⎧⎨
⎩
∑
ja

βjamc
2 +

∑
ja

αja · cπ̂ja +
∑

ja<ka

V̂jaka

⎫⎬
⎭

+ i

[
Ŝ′,

∑
a<b

QaQbUab(Ra −Rb)

]
− 1

2

[
Ŝ′,

[
Ŝ′,

∑
a<b

QaQbUab(Ra −Rb)

]]
+ · · · (215)

To lowest order the coupling term is eliminated, and all that remains is the rotation of the screened Coulomb interaction.
In the first line are the lowest-order terms of the separated lattice and nuclear Hamiltonian; in the second line are some
of the residual terms that remain.

The apparent simplicity of this doubly rotated Hamiltonian is probably deceptive. Operators that mediate internal
transitions of one nucleus get imprinted on the screened Coulomb and exchange interaction of neighboring nuclei at
lowest order. At next order these operators propagate to even more nuclei, and there appear many new terms with with
products of operators involving internal transitions at different sites. If all of the nuclei are initially in the ground state,
and if the lattice is unexcited or thermal then we would not expect any significant consequences associated with the
neglect of this exponential explosion of coupling terms. However, this would not be expected to be true in general.

Consider the case of an excitation transfer effect mediated by phonon exchange in a lattice, where second-order
coupling terms results in the excitation at one site to be coupled to identical nuclei at a great many other sites. In this
case a description of the problem without the additional rotation seems most straightforward. Working with a rotated
version of the problem to model excitation transfer is of course possible (since a rotation implements a basis change
but otherwise does not change the model), but in this case the unrotated version of the problem would be preferred.

12.4. Connection with spin-boson type models

From these arguments we see that the separability of the free space problem with no interaction between composites
does not immediately translate into a guaranteed separability when nuclei are in a lattice. The simple rotation that
works cleanly for the free space problem now generates and explosion of terms in the lattice version of the problem.
While there are cases where the resulting separated model will be a good approximation for the physical system, there
is no reason to believe that this is true universally.

The lattice problem with nuclei interacting through effective forces is much more complicated, and the only way
to develop reliable predictions is to work with models for the coupled lattice nucleus problem. In the highly idealized
case where the nuclear system is abstracted by equivalent two-level systems, and the multi-mode lattice vibrations are
replaced by a single oscillator, then what remains is a spin–boson model [243]. And it is well known that a variety
of dynamical effects involving many two-level systems occur in the spin-boson model. We have argued that when the
lossy spin-boson model is augmented with loss that efficient coherent energy exchange is possible in the multi-phonon
regime [243–248].
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13. Relativistic Models for Composites

In the past few sections we have covered some of the more important models and issues that relate to the use of
composites for condensed matter nuclear science. What remains are topics which might help to complete our review
of models for composites, and which may point to future directions for composite model development for applications.

For example, it would be nice to have a simple few-level Poincaré invariant model that we might adapt for us in the
context of a lattice model. In this case we might be able to address concerns about how the coupling with vibrational
degrees of freedom work, starting from models easier to understand. Alternatively, it would be nice to have a covariant
version of the many-particle Dirac model with interactions, since there might be concerns about the coupling provided
by the noncovariant many-particle Dirac model used in the sections above.

These and other issues provide motivation for us to consider other composite models which have been discussed
in the literature which might provide a different starting place for constructing new models in the future. For example,
there are models which can be viewed as essentially covariant N -level systems; there are a variety of covariant or
Poincaré invariant models for composites, as well as other models that are approximately Poincaré invariant. In this
section our goal is to provide a survey of some of the alternate approaches.

13.1. Elementary particle models with different spin states

In Section 4 we discussed the Rarita–Schwinger model [49] for a spin 3/2 particle; as was discussed this model
includes constraints which eliminate two spin 1/2 states with the same mass. If these constraints were not imposed,
then we would be left with the underlying relativistically invariant model which describes a particle with three different
available sets of states, all with the same mass. One could imagine making use of this model as a kind of Poincaré
invariant equivalentN -level model to in which transitions and relativistically invariant kinematics could be studied.

The Rarita–Schwinger model is not unique in this regard. There are several relativistic wave equations in the
literature that include two or more spin configurations, as discussed in [249,250].

13.2. Elementary particle models with different mass states

We also considered in Section 4 the Dirac–Fierz–Pauli model [46,47] for a spin 3/2 particle, which once again involves
constraints in order to remove a spin 1/2 state with a different mass. Were we to discard the constraint, the resulting
elementary particle model could describe a composite with a spin 1/2 and spin 3/2 states of different masses. This is
interesting, as it potentially provides us with a relatively simple Poincaré invariant model with nondegenerate states;
however, we would prefer a to work with a model in which we could arbitrarily specify the state energies. Other
models with two states are discussed in [251–256].

13.3. Infinite-component wave equations

In an early paper on relativistic wave equations, Majorana proposed possible generalizations of the Dirac equation
based on wave functions with an infinite number of components [257] (see also [258,259]). In this study α and β
matrices were constructed using relatively simple raising and lowering operators, which allowed for both the con-
struction, and also for the determination of the mass spectrum and associated spins. While the goal was to develop a
wave equation without negative energy states applicable to elementary particles with arbitrary spin, this construction
pointed the way to a new class of relativistic models for composites in which the internal degrees of freedom are
treated algebraically. There have been many studies of this approach, and proposals for specific (solvable) Majorana
wave equation constructions [260–270].
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Perhaps the most important application of these models is for the construction of infinite component wave equations
for baryons; the resulting mass spectrum could be fitted to the observed bayron masses, which allows for the estimation
of form factors, magnetic moments, and other observables [271–281].

This approach was also used to construct relativistic equations for the hydrogen atom as a composite, where
the center of mass motion is relativistic (and has the correct relativistic dispersion relation), and where the internal
dynamics are approximately that of the nonrelativistic hydrogen atom [263,282–292]. In the construction of [288] and
subsequent papers, the energy is given by

En(P) =
√
(Mnc2)2 + c2|P|2 (216)

for the positive energy solutions, where the mass spectrum in general is

M2
n = m2

p +m2
e ± 2mpme

√
1− α2

n2
(217)

and the positive energy mass solutions approximately match those of the nonrelativistic hydrogen atom in the sense

Mn → mp +me −
µα2

2n2
+ · · · (218)

Infinite component wave equations have been constructed for rotators [293,294] as well as for other systems
[295,296].

13.4. Poincaré invariant and approximately invariant approaches

We recall the discussion given in [224] in which a two-body Hamiltonian of the form

Ĥ =

√
(M̂c2)2 + c2|P̂|2 (219)

was considered in connection with Poincaré invariance, with the mass operator M̂ a function of internal degrees of
freedom. One can imagine a many-particle generalization of this with

M̂c2 = Nmc2 +
∑
j

|π̂j |2

2m
+

∑
j<k

V̂jk (220)

with spin-dependent (and also isospin-dependent) potentials in connection with a many-particle wave function built up
from two-component single particle wave functions. There seem only to be a few papers that make use of this approach
[297,298].

One can find models that are approximately Poincaré invariant based on Hamiltonians of the form [194,232,299–
301]

Ĥ =
∑
j

√
(mc2)2 + c2|p̂|2 +

∑
j<k

V̂jk. (221)
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13.5. Covariant many-time models

A many-time covariant generalization of the many-particle Dirac equation was proposed by Barut in [302]. A simpli-
fied version of the covariant two-body equation can be written in the form

(
i�

∂

∂t1
−α1 · cp̂1 − β1mc

2 + i�
∂

∂t2
−α2 · cp̂2 − β2mc

2

)
Ψ(r1, t1, r2, t2)

= V̂

(√
|r2 − r1|2 + c2(t2 − t1)2

)
Ψ(r1, t1, r2, t2). (222)

In the two-body case there is a simplification in connection with the different times, which allows for the construction
of solutions; good results are obtained [304–306].

Much earlier a qualitatively different approach was proposed by Tomonaga [307]. A simplified version of this
approach for the two-body problem can be written as

(
i�

∂

∂t1
−α1 · cp̂1 − β1mc

2

)
Ψ(r1, t1, r2, t2) = V̂

(√
|r2 − r1|2 + c2(t2 − t1)2

)
Ψ(r1, t1, r2, t2)(

i�
∂

∂t2
−α2 · cp̂2 − β2mc

2

)
Ψ(r1, t1, r2, t2) = V̂

(√
|r2 − r1|2 + c2(t2 − t1)2

)
Ψ(r1, t1, r2, t2). (223)

Some of the technical issues associated with this approach were discussed in subsequent papers [308–310]. The use
of a many times approach was discussed by Dirac in (1932) [311]. See [312] for a retrospective of these ideas in
connection with the development of quantum electrodynamics.

13.6. Bethe–Salpeter approach

An important covariant two-body model was proposed by Bethe and Salpeter in connection with the development of
field theory and quantum electrodynamics [313]. Although not usually written in this way, for the purposes of the
discussion in this section we could write a many-time version of it in the form

(
i�

∂

∂t1
−α1 · cp̂1 − β1mc

2

)(
i�

∂

∂t2
−α2 · cp̂2 − β2mc

2

)
Ψ(r1, t1, r2, t2)

= V̂

(√
|r2 − r1|2 + c2(t2 − t1)2

)
Ψ(r1, t1, r2, t2). (224)

Most people work instead with a single-time version. This model has been widely used for two-body bound state
problems; for the hydrogen atom [314–317]; for the deuteron [318–322]; for the two-quark system [323–326]; and
for the three-quark system [327–329]. There has appeared some discussion of generalN -body Bethe–Salpeter models
[330,331].

13.7. Proper time models

An alternate approach to the problem was proposed by Stueckelberg [332,333], who proposed making use of a proper
time to develop a new kind of relativistic quantum mechanics. Interest in this approach in recent times has been
stimulated by Horwitz and Piron [335]; in the following years there has accumulated a substantial body of work on
this kind of model [336–345]. A review appears in [343].
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A covariant two-body model based on an internal nonrelativistic potential problem can be written in the form

i�
∂

∂τ
Ψ(r1, t1, r2, t2, τ) =

⎡
⎣ |p̂1|2 + �

2

c2
∂2

∂t21

2M
+

|p̂2|2 + �
2

c2
∂2

∂t22

2M
+ V̂

(√
|r2 − r1|2 + c2(t2 − t1)2

)⎤⎦
×Ψ(r1, t1, r2, t2, τ). (225)

One can see that the spacetime position and time variables are treated on the same footing naturally in this kind of
model. This approach has been used for detailed calculations for two-body problems with a radial potential with good
results [341,344–347]. The general approach is readily adapted to internal relativistic models.

It has been proposed by Davidson that variable rest mass effects in this kind of approach might account for anoma-
lies in condensed matter nuclear science [348,349].

13.8. Approximate separation in the many-particle Dirac model

We have considered yet another approach which involves approximate separation in the many-particle Dirac model
[350]. We begin by writing the model in terms of center of mass and relative coordinates according to

Ĥ =
1

N

∑
j

αj · cP̂+
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk). (226)

As we have remarked above, the center of mass and relative mass parts of the model share the same mass operators.
We can rewrite this model as

Ĥ =
1

N

∑
j

αj · cP̂+
∑
j

βjm
∗c2

+
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk)−
∑
j

βjm
∗c2, (227)

where in the first line we have what amounts to a Bargmann–Wigner type of model for noninteracting spin 1/2 particles
with a modified mass; in the second line we see a version of the relative Hamiltonian with a counter term.

We consider now the time-independent Schrödinger equation

EΨ = ĤΨ. (228)

An approximate product solution for the time-independent Schrödinger equation is proposed according to

Ψ = X({ξ})Y (R), (229)

where Ψ is a 4N component wave function, where X is a 4N component rest frame wave function, and where Y is a
4N × 4N matrix. The Schrödinger equation for the product is
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EXY =

⎡
⎣ 1

N

∑
j

αj · cP̂+
∑
j

βjm
∗c2

⎤
⎦XY

+

⎡
⎣∑

j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk)−
∑
j

βjm
∗c2

⎤
⎦XY. (230)

We can arrange for approximate separability by requiringX to satisfy a (nonstandard) eigenvalue equation of the form

m∗c2
∑
j

βjX({ξ}) =

⎡
⎣∑

j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk)

⎤
⎦X({ξ}). (231)

We normally work with rest frame eigenfunctions that satisfy

Eψ({ξ}) =

⎡
⎣∑

j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk)

⎤
⎦ψ({ξ}), (232)

hence the presence of a mass operator in connection with the eigenvalue makes the eigenvalue equation above in this
case be nonstandard. However, within this approximation we achieve a measure of separation, and the resulting center
of mass equation is

EXY =

⎡
⎣ 1

N

∑
j

αj · cP̂+
∑
j

βjm
∗c2

⎤
⎦XY. (233)

In essence the center of mass problem is modeled using a Bargmann–Wigner Hamiltonian based on the mass eigen-
value. We would expect the energy eigenvalue for the rest frame problem to give a better approximation to the mass
energy than the mass eigenvalue, so it would of course be possible as an additional approximation to choose m∗ to be
consistent with the rest frame energy eigenvalue. Solving for the large matrix Y is not so easy in this case; however,
the bigger issue here is the connection between the realistic many-particle Dirac model for the relative problem and
the covariant Bargmann–Wigner model for the center of mass dynamics. We are not aware of literature on this kind of
approximation outside of the proposal of [350].

14. Finite basis Approximation

The last issue that we have to consider is the finite basis approximation. In a realistic composite model for a multi-
nucleon nucleus there are an infinite number of internal states, which is inconvenient for use in a lattice model that
involves many nuclei. In this case it is convenient to make use of a finite basis approximation. Such models have been
discussed previously for this application [157].
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14.1. Matrix elements for a multi-particle Dirac model

In the case of a multi-particle Dirac model we start with a Hamiltonian of the form

Ĥ =
1

N

∑
j

αj · c(P̂−QA) +
∑
j

βjmc
2 +

∑
j

αj · c
[
π̂j − qjA(R+ ξj) +

Q

N
A(R)

]

+
∑
j<k

V̂jk(ξj − ξk) +QΦ+
∑
j

[
qjΦ(R+ ξj)−

Q

N
Φ(R)

]
. (234)

It is convenient to work with basis states defined in terms of rest frame states that satisfy

Enφn =Mnc
2φn =

⎡
⎣∑

j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk(ξj − ξk)

⎤
⎦φn. (235)

Matrix elements of the Hamiltonian in this basis can be written as

〈φn|Ĥ |φn′〉 =Mnc
2δn,n′ +

〈
φn

∣∣∣∣∣∣
1

N

∑
j

αj

∣∣∣∣∣∣φn′

〉
· c(P̂−QA) +QΦδn,n′

+

〈
φn

∣∣∣∣∣∣
∑
j

[
qjΦ(R+ ξj)−

Q

N
Φ(R)

]∣∣∣∣∣∣φm
〉

−

〈
φn

∣∣∣∣∣∣
∑
j

αj · c
[
qjA(R − ξj) +

Q

N
A(R)

]∣∣∣∣∣∣φn′

〉
. (236)

14.2. Finite basis model

Approximate solutions to the time-dependent problem can be constructed keeping only a finite number of basis states;
we can write

Ψ({ξ},R, t) =
∑
n

Ψn(R, t)φn({ξ}). (237)

We can use this to construct an approximate solution to the time-dependent Schrödinger equation

i�
∂

∂t
Ψ({ξ},R, t) = ĤΨ({ξ},R, t). (238)

Within the finite basis approximation individual channel wave functions satisfy

i�
∂

∂t
Ψn(R, t) =

∑
n′

〈φn|Ĥ |φn′〉Ψn′(R, t). (239)
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This we can expand out in the form

i�
∂

∂t
Ψn(R, t) =Mnc

2Ψn(R, t) +
∑
n′

〈
φm

∣∣∣∣∣∣
1

N

∑
j

αj

∣∣∣∣∣∣φn
〉

· c(P̂−QA)Ψn′(R, t) +QΦΨn(R, t)

+
∑
n′

〈
φn

∣∣∣∣∣∣
∑
j

[
qjΦ(R+ ξj)−

Q

N
Φ(R)

]∣∣∣∣∣∣φn′

〉
Ψn′(R, t)

−
∑
n′

〈
φn

∣∣∣∣∣∣
∑
j

αj · c
[
qjA(R− ξj) +

Q

N
A(R)

]∣∣∣∣∣∣φn′

〉
Ψn′(R, t). (240)

In terms of vectors and matrices this can be recast as

i�
∂

∂t
Ψ(R, t) =

[
Mc2 + a · c(P̂−QA) + qΦ

]
Ψ(R, t)

− d ·ELΨ(R, t)− j ·AΨ(R, t) + · · · (241)

The vector wave functionΨ(R, t) here contains the channel wave functionsΨn(R, t), and the matrices are constructed
from the different parts of the Hamiltonian matrix elements; for example

ann′ =

〈
φm

∣∣∣∣∣∣
1

N

∑
j

αj

∣∣∣∣∣∣φn
〉
. (242)

Only the lowest-order dipole interactions between the external field and the internal states have been kept explicitly in
the matrix and vector version of the Schrödinger equation.

We have made use of this approach in earlier work on anomalies in condensed matter nuclear science [157].

14.3. Partial Foldy–Wouthuysen transformed model

In the future, we will likely make use of a finite basis approximation in connection with the partial Foldy–Wouthuysen
transformation. We were able to make use of a partial F–W transformation in Section 10 to develop a model in which
the center of mass degrees of freedom are described in a nonrelativistic type of approximation, and the internal states
are treated relativistically. We can write the transformed Hamiltonian as
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Ĥ ′ =
|P̂−QA|2

2M
+QΦ− �Q

2M

1

N

∑
j

Σj ·B− �
2Q

8M2c2
∇ · E

+
�Q

8M2c2

∑
j

Σj ·
[
(P̂−QA)×E−E× (P̂−QA)

]

+
∑
j

βjmc
2 +

∑
j

αj · cπ̂j +
∑
j<k

V̂jk

+
∑
j

[
qjΦ(R+ ξj)−

Q

N
Φ(R)

]
−

∑
j

αj · c
[
qjA(R+ ξj)−

Q

N
A(R)

]

+
1

M

∑
j

βjπ̂j · (P̂−QA) +
1

2Mc

∑
j<k

[
(βjαj + βkαk), V̂kl

]
· (P̂−QA)

|P̂−QA|2

2M

⎛
⎝ 1

N

∑
j

(βj − Ij)

⎞
⎠− �Q

2M

1

N

∑
j

(βj − Ij)Σj ·B+ · · · (243)

We can make use of a similar finite basis approximation to write

i�
∂

∂t
Ψ(R, t) =Mc2Ψ(R, t) +

(
|P̂−QA|2

2M
+QΦ− Q

NM
S ·B− �

2Q

8M2c2
∇ · E

)
Ψ(R, t)

+
Q

4M2c2
S ·

[
(P̂−QA)×E−E× (P̂−QA)

]
Ψ(R, t)− d ·EΨ(R, t)− j ·AΨ(R, t)

+ a · c(P̂−QA)Ψ(R, t) + · · · (244)

Only a subset of the terms appearing in the rotated Hamiltonian appear explicitly in this matrix and vector version of
the finite basis approximation. In this case elements of the a matrix are

an,n′ =

〈
φn

∣∣∣∣∣∣
1

Mc

∑
j

βjπ̂j +
1

2Mc

∑
j<k

[
βjαj + βkαk, V̂jk

]∣∣∣∣∣∣φn′

〉
. (245)

15. Composites in Field Theory

A reviewer has argued that the most reliable physical models available at this time are field theories (see [351,352]),
such as quantum electrodynamics and quantum chromodynamics, and that our discussion should be extended to include
some discussion of composites in field theory. The standard model includes QED, QCD and more; it provides the
most accurate and comprehensive theory for particles and interactions through the strong, electromagnetic and weak
interactions. A field theory to describe gravitational interactions runs into technical difficulties associated with mass
two gravitons, for which there is no consistent renormalization scheme. There are many efforts ongoing at present to
develop new models based on a generalization of field theory (which models particles as points) to string theory (in
which particles are modeled as strings) and M-theory (in which particles are modeled as higher-dimensional objects).
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By construction the field theories within the standard model are Poincaré invariant, and are physically and math-
ematically acceptable relativistic models. The models have been applied to describe composite particles, with great
success. A systematic review of models for composites in field theory by itself would be book length; consequently
here we will be satisfied with only the briefest outline of some of the issues and problems that have been studied.

15.1. Field theory and many-particle Dirac models

The many-particle Dirac model for electrons is widely used, but is not a correct relativistic theory; while QED is
a correct relativistic theory which is less widely used for applications, in part because it is more complicated. It is
possible to begin with QED and to derive a many-particle Dirac model, which in a sense references a relativistic
quantum mechanical model to its equivalent in field theory. This notion underlies the early studies of Brown and
Ravenhall [111] and of Salpeter [353] (see also [176,354]). Subsequently more systematic efforts were made to
provide a foundation for many-particle Dirac models in [112–114].

15.2. Field theory and relativistic corrections

Wide use is made of nonrelativistic quantum mechanical models that contain relativistic corrections. Early on correc-
tions were developed from the many-particle Dirac model; however, it has been recognized that a better starting place
is from field theory. One widely cited paper where this is done is Douglas and Kroll [355]; see [356] for a discussion
of an application of the approach in quantum chemistry.

Earlier in this paper we have made use of the Foldy–Wouthuysen transformation of many-particle Dirac models to
obtain nonrelativistic models with relativistic corrections. However, there is no reason that the transformation cannot
be applied in the case of QED; this was pursued in [357]. In [358] QED and the standard model is considered in the
Foldy–Wouthuysen representation; and in [359] a nonrelativistic version of QED is discussed.

15.3. QED corrections in atomic systems

It is possible to develop good estimates for wave functions and energies based on quantum mechanical models for
atomic systems; however, these models do not include a wide variety of higher-order corrections that are present
in field theoretical models based on QED. In this case it is possible to isolate corrections that are due to QED and
analyze them in detail. These include self-energy corrections, two-photon exchange corrections, and a wide variety of
other higher-order effects. Atomic systems are composites in the sense under discussion in this paper, and the QED
corrections are small compared to the binding energies since electromagnetic interactions are relatively weak.

The literature on QED corrections is vast. For one-electron systems reviews have been given in [360–364]; and in
the case of few-electron systems calculations have been discussed and reviewed in [365–372]. In recent years QED
corrections are being calculated systematically for multi-electron atoms and ions [373–375].

In general the agreement between theory and experiment is good. The high accuracy of QED as a physical theory
is evident in the determination of the electron anomalous magnetic moment, where the agreement between theory and
experiment is impressive (for example, differences appear in the 10th digit in [376]).

However, in recent years the Lamb shift of muonic hydrogen was measured, and found to be in disagreement
with theory [377],[378]. This has resulted in consternation, and a revisiting of theoretical models to see whether an
understanding of the effect might be found (see e.g. [379]). This discrepancy currently remains unexplained [380].

15.4. Effective field theory for nuclei

The strong force coupling between nucleons in nuclei is very much stronger than the electromagnetic interaction
in atoms, so that field theoretical corrections are much more important. For example, the inclusion of two-photon
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exchange in atomic hydrogen gives only a minor correction, while the inclusion of two-boson exchange effects is
needed to have a reasonably accurate nucleon–nucleon potential for structure or scattering calculations. There are
many papers in which three-boson exchange effects are included; and even higher-order models have been considered
[45].

Consequently, field theory is much more important in nuclear physics. We have previous commented on Bethe–
Salpeter treatments for the deuteron [318–322]; the approach has also been used for the three-nucleon problem
[381,382]. In the case of nuclear physics an effective field theory (quantum hadrodynamics) is used, one which relies
on nucleons and boson exchange; effective Lagrangians are found in [383–385]. Many-nucleon nuclei as composite
particles in some cases are treated analogously to atomic systems, based on self-consistent field calculations but with
interactions between nucleons based on the exchange of more than one boson [386,387], and self-energy and other
corrections modeled [388,389].

15.5. Quantum field theory for quarks and gluons

In the 1960s there emerged a quantum field theory (quantum chromodynamics) for quarks and gluons, which make
up mesons and nucleons as well as a host of other particles. The initial applications of the model were to high-energy
scattering problems, where calculations could be done with modest effort and be compared with experiment. The
application of QCD to bound state problems came later due to technical difficulties in the calculations. For example,
quarks are tightly bound in nucleons, but the interaction due to single gluon exchange is modest in comparison. The
headache comes about when quarks become somewhat separated; in this case the fields associated with the color
charge are very strong and polarize the vacuum, the more so the larger the separation. Vacuum polarization produces
additional quarks and gluons, leading to a much more complicated physical system than occurs for electrons in atoms,
or for nucleons in nuclei. A quark and anti-quark pair has zero net color charge, and so can be bound as a meson.
Three quarks of the three different colors (red, green, blue) can combine to make a color singlet, which has no net
color charge, and so can be bound as a baryon.

Given this situation, quantum mechanical models have been studied (with some success) in which empirical po-
tentials are used to model single gluon exchange and confinement [390,391]. However, it would be much better if
one could work with QCD directly in order to model few-quark composites. In recent years a large amount of effort
has gone into lattice QCD calculations, in which very time consuming Monte Carlo calculations are done on a set
of discrete points, from which masses, expectation values, and hadron properties can be determined. The results for
masses are perhaps most easily understood here; by now there have been lattice QCD calculations of hadron masses
[392–394] with increasingly good agreement between values extrapolated from the calculations and experimental val-
ues. For example, a calculated value of the nucleon mass of 929 MeV is reported in [394] which compares well with
the average of the proton and neutron mass which is 938.9 MeV. The mass difference between the neutron and proton
is calculated in [395] to be 1.51 MeV, which is comparable to the experimental value 1.293 MeV.

16. Summary and Conclusions

Even though the notion of a quantum composite is in a sense foundational to atomic, molecular, nuclear and particle
physics, there has not to our knowledge appeared previously a review.

Elementary particle models are widely used to model composite particles; most notably in the case of protons
and neutrons, where the Dirac phenomenology is widely used. For spin 3/2 composite particles the Rarita–Schwinger
model is also widely used; and Bargmann–Wigner models have been applied successfully to describe mesons and
baryons.

Our interest in this concerns the use of composite models for nuclei in the lattice in connection with modeling
anomalies in condensed matter nuclear science. In this case the clean separation between the center of mass and
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relative degrees of freedom that occurs in the nonrelativistic problem leads to very weak coupling, probably too weak
to lead to the kinds of anomalies (excess heat, low-level nuclear radiation, elemental anomalies, collimated X-ray
emission) that have been reported. This motivated us to seek a much stronger coupling in the relativistic version of the
problem.

We found some years ago that a much stronger coupling appears in the many-particle Dirac model based on a
Pauli reduction involving the elimination of the negative energy sectors, and we subsequently have based our modeling
on this interaction. Estimates for the rate of excess heat production in the Fleischmann–Pons experiment based on
this interaction appears to be consistent with experiment, under conditions where the weak coupling of the D2/4He
transitions limit the reaction rate. Attempts to connect theory with experiment without this much stronger coupling
seems hopeless based on models that we have worked with so far.

However, this approach generally has been very strongly criticized in recent years, for a variety of reasons. One
criticism is that due to Poincaré invariance, the center of mass and relative problems separate, so that there is no
coupling between the center of mass and internal degrees of freedom. Another criticism is a more generic one that
argues for the impossibility of any exchange between phonons, which are delocalized, and internal nuclear degrees
of freedom, which are highly localized. Yet other criticisms have been put forth concerning the impossibility of
coherent energy exchange with massive up-conversion and down-conversion. It has even been suggested that the up-
conversion of many vibrational quanta is impossible because the system entropy is decreased. The local consensus
among colleagues at MIT seems to be that since it is impossible for there to be any anomalies in the first place, all
experimental reports of anomalies are simply wrong; and consequently any models that suggest they might have been
possible should not have been considered in the first place.

Given the quantity and intensity of the criticism, there is no possibility of any response that would be considered to
be satisfactory; hence there is little motivation to try. There are nonetheless a number of specific issues that have been
to us of intrinsic interest and that have been clarified to some degree in the discussion above.

One of the most significant results from our perspective come in the form of the composite models that have
been developed systematically in Sections 6-10. The nonrelativistic composite is simplest, and from our perspective
important; but it does not appear much in the literature. The relativistic composite based on the many-particle Dirac
model is also relatively simple, and also fundamental; however, the literature does not contain much discussion of it
either. Composites resulting from the Foldy–Wouthuysen approximation appear to have been most widely considered,
and a major motivation for this appears to have come from issues associated with the Gerasimov–Drell–Hearn sum
rule [396,397].

The partial Foldy–Wouthuysen transformation described in Section 10 is new, and results in composite models
where the center of mass is nonrelativistic and the internal degrees of freedom are relativistic; which from our per-
spective is very interesting. In the future we will focus on this kind of model for the basis of our models for anomalies
in condensed matter nuclear science; since it is much easier to include in a model with lattice vibrations; since the
coupling of the center of mass to internal degrees of freedom is simpler; and since we are able to rotate out terms
involving the commutator with the potential for reasonably general potential models in free space.

Criticisms of our model which pertain to Poincaré invariance have in our view been the most serious to date, since
if there is no sizeable interaction between the center of mass motion and the internal degrees of freedom, then it will be
nearly impossible to develop a model that can connect with experiment along the lines we have pursued. The absence
of such a coupling in free space as a result of Poincaré invariance is a very strong argument, and has been the source of
much concern. The arguments resolving this issue are probably more subtle than one would wish, and rely on the fact
that the many-particle Dirac model is approximately Poincaré invariant. Because of this, it is possible to construct a
rotation that eliminates the strongest part of the interaction between the center of mass and relative degrees of freedom
in free space. However, there is no guarantee that the generalization of this same rotation always works in the lattice
case to produce the clean free space separation. In our work this was recognized long ago, and we have relied instead
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on the diagonalization of the many-nucleus problem when they are interacting (and participating in the vibrations of a
highly excited phonon mode). These arguments appear in Sections 11 and 12.

In essence, the free space problem differs from the condensed matter problem since this rotation that eliminates
the coupling between center of mass and internal degrees of freedom always works in free space, but conditions can
be found for the lattice case where it gives rise to unexpected new effects.

There are other approaches to modeling composites discussed in Section 13, some of which involve models that are
covariant or Poincaré invariant, and for which there is the potential of using to model nuclei as composites in a lattice
in the future. Relativistic composite models are also interesting intrinsically and have applications in other fields. A
brief discussion of more sophisticated composite models in field theory is given in Section 15.

We have relied heavily on the finite basis approximation in connection with models for composites in our models
(this does not appear to have been pursued much in other areas). In Section 14 we outline the approach, one which
we have made use of previously in the case of the many-particle Dirac model. However, it seems clear that finite basis
models based on the transformed Hamiltonian from the partial Foldy–Wouthuysen transformation provide a much
better starting place for this kind of modeling, and in the future we expect to make use of this approach.

Appendix A. 20-component Free Space Model for Nucleons

The relevant Hamiltonian for the three noninteracting quarks of the model is

Ĥ =

(
β1 + β2 + β3

)
mc2 +

(
α1 +α2 +α3

3

)
· cP̂. (A.1)

We would like to construct a reduced Hamiltonian appropriate for the mixed symmetry basis states of the quark system.
As discussed in Section 5 this can be written symbolically as

Ĥnuc =|[3 2 1]C〉|[1 2 1]F 〉Ĥ[1 2 1]〈[1 2 1]F |〈[3 2 1]C |

+ |[3 2 1]C〉|[2 1 1]F 〉Ĥ[2 1 1]〈[2 1 1]F |〈[3 2 1]C |. (A.2)

The [1 2 1] part of the Hamiltonian can be written

Ĥ[1 2 1] = Mc2 + a · cP, (A.3)

where M and a are 20× 20 matrices. We can write for Mc2
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Mc2 = mc2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.4)

Written in this form, we see three sets of [1 2 1] states isolated in blocks. For the ax matrix we may write

ax =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −α 0 0 0 0 1 0 −α 0 0 0 0 0 0 −β 0 0
0 0 −α 0 0 0 0 0 0 −α 0 1 0 0 0 0 −β 0 0 0
0 −α 0 0 0 −δ 0 0 0 0 0 0 −α 0 γ 0 0 0 0 δ
−α 0 0 0 −δ 0 0 0 0 0 0 0 0 γ 0 −α 0 0 δ 0
0 0 0 −δ 0 0 0 −α −α 0 γ 0 0 0 0 0 0 δ 0 0
0 0 −δ 0 0 0 −α 0 0 γ 0 −α 0 0 0 0 δ 0 0 0
0 0 0 0 0 −α 0 0 0 0 0 0 1 0 −α 0 0 0 0 −β
0 0 0 0 −α 0 0 0 0 0 0 0 0 −α 0 1 0 0 −β 0

1 0 0 0 −α 0 0 0 0 0 0 0 0 −α 0 0 0 0 −β 0
0 −α 0 0 0 γ 0 0 0 0 0 0 −α 0 −δ 0 0 0 0 δ
−α 0 0 0 γ 0 0 0 0 0 0 0 0 −δ 0 −α 0 0 δ 0
0 1 0 0 0 −α 0 0 0 0 0 0 0 0 −α 0 0 0 0 −β
0 0 −α 0 0 0 1 0 0 −α 0 0 0 0 0 0 −β 0 0 0
0 0 0 γ 0 0 0 −α −α 0 −δ 0 0 0 0 0 0 δ 0 0
0 0 γ 0 0 0 −α 0 0 −δ 0 −α 0 0 0 0 δ 0 0 0
0 0 0 −α 0 0 0 1 0 0 −α 0 0 0 0 0 0 −β 0 0

0 −β 0 0 0 δ 0 0 0 0 0 0 −β 0 δ 0 0 0 0 γ
−β 0 0 0 δ 0 0 0 0 0 0 0 0 δ 0 −β 0 0 γ 0
0 0 0 δ 0 0 0 −β −β 0 δ 0 0 0 0 0 0 γ 0 0
0 0 δ 0 0 0 −β 0 0 δ 0 −β 0 0 0 0 γ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.5)

For the ay matrix we may write
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ay = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 α 0 0 0 0 1 0 α 0 0 0 0 0 0 β 0 0
0 0 −α 0 0 0 0 0 0 −α 0 −1 0 0 0 0 −β 0 0 0
0 α 0 0 0 δ 0 0 0 0 0 0 −α 0 −γ 0 0 0 0 −δ
−α 0 0 0 −δ 0 0 0 0 0 0 0 0 γ 0 α 0 0 δ 0
0 0 0 δ 0 0 0 α −α 0 −γ 0 0 0 0 0 0 −δ 0 0
0 0 −δ 0 0 0 −α 0 0 γ 0 α 0 0 0 0 δ 0 0 0
0 0 0 0 0 α 0 0 0 0 0 0 1 0 α 0 0 0 0 β
0 0 0 0 −α 0 0 0 0 0 0 0 0 −α 0 −1 0 0 −β 0

−1 0 0 0 α 0 0 0 0 0 0 0 0 α 0 0 0 0 β 0
0 α 0 0 0 −γ 0 0 0 0 0 0 −α 0 δ 0 0 0 0 −δ
−α 0 0 0 γ 0 0 0 0 0 0 0 0 −δ 0 α 0 0 δ 0
0 1 0 0 0 −α 0 0 0 0 0 0 0 0 −α 0 0 0 0 −β
0 0 α 0 0 0 −1 0 0 α 0 0 0 0 0 0 β 0 0 0
0 0 0 −γ 0 0 0 α −α 0 δ 0 0 0 0 0 0 −δ 0 0
0 0 γ 0 0 0 −α 0 0 −δ 0 α 0 0 0 0 δ 0 0 0
0 0 0 −α 0 0 0 1 0 0 −α 0 0 0 0 0 0 −β 0 0

0 β 0 0 0 −δ 0 0 0 0 0 0 −β 0 −δ 0 0 0 0 −γ
−β 0 0 0 δ 0 0 0 0 0 0 0 0 δ 0 β 0 0 γ 0
0 0 0 −δ 0 0 0 β −β 0 −δ 0 0 0 0 0 0 −γ 0 0
0 0 δ 0 0 0 −β 0 0 δ 0 β 0 0 0 0 γ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.6)

Finally, for the az matrix we may write

az =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 α 0 0 0 0 0 0 −β 0 0 0 0 0 0 β 0 0 0
0 0 0 −α 0 0 0 0 0 0 β 0 0 0 0 0 0 −β 0 0
α 0 0 0 δ 0 0 0 0 0 0 0 0 δ 0 0 0 0 −δ 0
0 −α 0 0 0 −δ 0 0 0 0 0 0 0 0 −δ 0 0 0 0 δ
0 0 δ 0 0 0 α 0 0 δ 0 0 0 0 0 0 −δ 0 0 0
0 0 0 −δ 0 0 0 −α 0 0 −δ 0 0 0 0 0 0 δ 0 0
0 0 0 0 α 0 0 0 0 0 0 0 0 −β 0 0 0 0 β 0
0 0 0 0 0 −α 0 0 0 0 0 0 0 0 β 0 0 0 0 −β

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
−β 0 0 0 δ 0 0 0 0 0 0 0 0 −γ 0 0 0 0 ε 0
0 β 0 0 0 −δ 0 0 0 0 0 0 0 0 γ 0 0 0 0 −ε
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 δ 0 0 0 −β 0 0 −γ 0 0 0 0 0 0 ε 0 0 0
0 0 0 −δ 0 0 0 β 0 0 γ 0 0 0 0 0 0 −ε 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

β 0 0 0 −δ 0 0 0 0 0 0 0 0 ε 0 0 0 0 −γ 0
0 −β 0 0 0 δ 0 0 0 0 0 0 0 0 −ε 0 0 0 0 γ
0 0 −δ 0 0 0 β 0 0 ε 0 0 0 0 0 0 −γ 0 0 0
0 0 0 δ 0 0 0 −β 0 0 −ε 0 0 0 0 0 0 γ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.7)

For these matrices we have used

α =
1√
3
, β =

2√
3
, γ =

1

3
, δ =

2

3
, ε =

4

3
. (A.8)
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We have also constructed the [2 1 1] Hamiltonian, which in our construction is identical in form, but involves [2 1 1]
basis states instead of [1 2 1] basis states. Strictly speaking this indicates that the Hamiltonian actually involves 40×40
matrices; however, since the form of the constituent 20 × 20 matrices are the same it should be possible to make do
with a reduced 20× 20 model.

Appendix B. Implementation of the Partial F–W Transformation

Due to the relative simplicity of the single-particle Dirac equation with external field coupling it is possible to eliminate
odd operators in the Hamiltonian to high order [160,190,398,399]. For the partial Foldy–Wouthuysen transformation
of the center of mass part of the many-particle Dirac Hamiltonian in Section 10, the operators involved are much more
complicated. Because of this our focus in this case needs to be on the development of low-order terms, of which there
are many.

B.1. Even and odd operators of the F–W transformation

We are interested in evaluating to low-order the rotation of the center of mass Hamiltonian

Ĥ ′
R = eiŜ

(
ĤR − i�

∂

∂t

)
e−iŜ

and then subsequently rotate the other parts of the overall Hamiltonian The center of mass Hamiltonian can be written
in terms of even and odd operators according to

ĤR =
∑
j

βjmc
2 + E +

∑
j

Oj , (B.1)

which generalizes the Foldy–Wouthuysen approach a bit (reminiscent of [197]), where the even and odd operators
satisfy

βjE = Eβj , (B.2)

βjOj = −Ojβj ,

βjOk = Okβj (j �= k). (B.3)

B.2. Calculation of low-order contributions to the transformation

In general we can carry out the F–W transformation using

Ĥ ′
R =ĤR + i[Ŝ, ĤR]− 1

2
[Ŝ, [Ŝ, ĤR]]− i

6
[Ŝ, [Ŝ, [Ŝ, ĤR]]] +

1

24
[Ŝ, [Ŝ, [Ŝ, [Ŝ, ĤR]]]] + · · ·

− �
∂Ŝ

∂t
− i

2

[
Ŝ, �

∂Ŝ

∂t

]
+

1

6

[
Ŝ,

[
Ŝ, �

∂Ŝ

∂t

]]
+ · · · (B.4)
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with

Ŝ = −i 1

2mc2

∑
j

βjOj . (B.5)

By direct calculation we obtain

i[Ŝ, ĤR] = −
∑
j

Oj +
1

2mc2

∑
j

βj

[
Oj , E

]
+

1

mc2

∑
j

βjO2
j , (B.6)

−
1

2

[
Ŝ,

[
Ŝ, ĤR

]]
=−

1

2mc2

∑
j

βjO2
j −

1

8m2c4

∑
j

[
Oj ,

[
Oj , E

]]

+
1

8m2c4

∑
j

∑
k �=j

βjβk

[
Oj ,

[
Ok, E

]]
− 1

2m2c4

∑
j

O3
j , (B.7)

− i

6
[Ŝ, [Ŝ, [Ŝ, ĤR]]] =

1

6m2c4

∑
j

O3
j +

1

48m3c6

∑
j

∑
k

∑
l

[
βjOj ,

[
βkOk, βl

[
Ol, E

]]]

− 1

6m3c6

∑
j

βjO4
j , (B.8)

1

24
[Ŝ, [Ŝ, [Ŝ, [Ŝ, ĤR]]]] =

1

24m3c6

∑
j

βjO4
j

+
1

384m3c6

∑
j

∑
k

∑
l

∑
m

[
βjOj ,

[
βkOk,

[
βlOl, βm

[
Om,

+
1

24m3c6

∑
j

O5
j , (B.9)

−�
∂Ŝ

∂t
= i

�

2mc2

∑
j

βj
∂Oj

∂t
, (B.10)

−
i

2

[
Ŝ, �

∂Ŝ

∂t

]
= −i

�

8m2c4

∑
j

[
Oj ,

∂Oj

∂t

]
+ i

�

8m2c4

∑
j

∑
k �=j

βjβk

[
Oj ,

∂Ok

∂t

]
, (B.11)

1

6

[
Ŝ,

[
Ŝ, �

∂Ŝ

∂t

]]
= i

�

48m3c6

∑
j

∑
k

∑
l

[
βjOj ,

[
βkOk, βl

∂Ol

∂t

]]
. (B.12)

We can collect the results above and write
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Ĥ ′
R =

∑
j

βjmc
2 + E +

1

2mc2

∑
j

βj

[
Oj , E

]
+

1

2mc2

∑
j

βjO2
j −

1

8m2c4

∑
j

[
Oj ,

[
Oj , E

]]

+
1

8m2c4

∑
j

∑
k �=j

βjβk

[
Oj ,

[
Ok, E

]]
− 1

3m2c4

∑
j

O3
j

+
1

48m3c6

∑
j

∑
k

∑
l

[
βjOj ,

[
βkOk, βl

[
Ol, E

]]]
− 1

8m3c6

∑
j
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If we retain terms only up to O(1/m2) this reduces to
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B.3. Evaluation of the F-W transformation

We can write for the even and odd operators

E = QΦ, (B.15)

Oj =
1

N
αj · c(P̂−QA). (B.16)

We can evaluate

O2
j =

c2

N2
|P̂−QA|2 − �c2Q

N2
Σj ·B, (B.17)
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[
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[
Oj ,

[
Ok, E

]]
j �=k

= −�
2c2Q

N2

(
(αj · ∇)(αk · ∇)Φ

)
j �=k

, (B.20)

[
Oj ,

∂Oj

∂t

]
= i

�c2Q

N2
∇ ·

∂A

∂t
− i

c2Q

N2

(
Σj · (P̂−QA)×

∂A

∂t
−Σj ·

∂A

∂t
× (P̂−QA)

)
, (B.21)

[
Oj ,

∂Ok

∂t

]
j �=k

= i
�c2Q

N2

[
(αj · ∇)

(
αk ·

∂A

∂t

)]
j �=k

. (B.22)

We can make use of these results to write
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The terms on the last three lines all have odd pieces, so they are smaller and can be removed with further F–W rotations
(the discussion in [197] is relevant here). The terms that survive to O(1/m2) are
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This provides the generalization of the Foldy–Wouthuysen single particle result to the center of mass degrees of
freedom of the composite.
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Appendix C. Reviewer Comments

The reviewer has raised a number of issues, most of which were addressed in a significant revision of the paper.
However, it seems worth while to consider the remaining issues in this Appendix. One issue has to do with the focus
of the paper and conclusions; another issue has to do with other approaches to the problem of anomalies in condensed
matter nuclear science.

C.1. Coupling and projection operators

The reviewer wrote:

It is argued that the many particle Foldy–Wouthuysen theory, projected onto positive energy solutions, might
allow some sort of coupling between the center of mass momentum of a composite, and the internal degrees of
freedom that might facilitate coupling between nuclear events and phonons or plasmons in a solid, or at least
that is how I read it. But the projections onto the positive energy space of Foldy–Wouthuysen transformations
are complicated, and a specific reason why they might lead to the coupling that is desired linking internal
nuclear degrees of freedom to extended quasi-particles like phonons or plasmons in a solid was not given.
Obviously this is an open topic for future work. The hope seems to be that a process of elimination might
yield the desired result. Since just about every other source for coupling between the nuclear degrees of
freedom and the solid are ruled out, only the complexity of the positive energy projection in the Foldy–
Wouthuysen transformation leaves it alone as a possibility. It might be so, but explicit evidence to that effect
was not given in this paper, as far as I could tell.

In response, we note that there are a number of different issues raised in this comment, which are probably worth
sorting out. One issue has to do with the projection operators, which are required in a relativistic theory in order
to cure Brown–Ravenhall disease (coupling to negative energy states) that occurs in the many-particle Dirac model.
The majority of relativistic Dirac Hartree–Fock atomic physics calculations that have been done over the years make
use of Coulomb plus Breit interactions without explicit projection operators. In this case projection is generally
implemented instead through the inclusion of positive energy basis states (in a Furry picture sense), such as in a
multi-state eigenvalue calculation, transition calculation or scattering calculation. In a self-consistent calculation the
selection of positive energy eigenvalues for individual orbitals ends up restricting the calculation to the positive energy
sector. An alternate approach is to make use of some of the “no-pair” formulations that are available, and which are
used for relativistic quantum chemistry calculations; negative energy contributions, again in the Furry picture sense,
are eliminated by the formalism.

Projection operators occur in the formal development of the nucleon-nucleon interaction (see e.g. [401,400]). In
previous years the majority of nuclear calculations were done with nonrelativistic models so that there was no issue. In
relativistic models there is a potential issue; however, it is easy to deal with as in the atomic case through a restriction
of the basis states used (to positive energy states), or through the selection of positive energy orbitals in a Dirac-Fock
type of calculation. In the literature there is no indication that headaches arise when the center of mass coupling is
implemented [232–235].

Perhaps a good way to think about the appearance of the projection operators in a many-particle Dirac model is
that they are present in order to prevent coupling to (single particle) negative energy states; but otherwise contribute
relatively minor corrections (which would be important in a high precision calculation [176]).

A second issue concerns the coupling between lattice degrees of freedom and the internal degrees of freedom
in a nucleus. There is no difficulty in finding external field interactions that will provide a weak coupling between
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vibrations and internal nuclear transitions; one can see such terms in the composite models described above. The
headache is that these terms are weak. The center of mass interaction terms that we have emphasized in this work can
mediate a coupling between vibrations and internal nuclear transitions, even though we have found no papers (outside
of our own) which consider this possibility. In essence, this coupling is present in many-particle Dirac models, and
in Poincaré invariant models more generally, and it can produce an interaction between lattice vibrations and nuclear
transitions which has not been previously considered. In coherent models that we have investigated this coupling is
sufficiently large to account for D2/4He transitions occurring at a rate consistent with experiment, as long as the large
nuclear quantum can be down-shifted efficiently. Based on the present work we now have much greater confidence
that this interaction must be present in a Poincaré invariant model, and is not a mistake or an artifact.

Finally, it is definitely the case that in our research we tried every other coupling we could think of, and the process
of elimination succeeded in eliminating all interactions that we were aware of as being candidates to implement the
effects we were interested in. It was not the purpose of this work to argue for, or to attempt to prove, that this
interaction is responsible for the anomalies in condensed matter nuclear science. It is true as the reviewer has indicated
that external field interactions are sufficiently weak such that we would not expect them to provide much coupling
between the lattice and internal nuclear states; hence we would not expect them to be very important in connection
with the anomalies under consideration. However, we have already spent some years working with this center of mass
interaction in connection with excess heat, and in connection with collimated X-ray emission; and in both cases the
center of mass interaction looks very promising (and there seem to be no alternatives). The purpose of this paper in
connection with this point is to understand the center of mass interaction in the context of quantum composite models,
to understand what relevant literature is available that discusses the interaction, and also to gain some understanding
as to what the interaction is. In other works we have considered applications, and in future papers we will revisit
calculations of the coupling matrix element as well as applications to conventional physical systems as well as to
anomalies in condensed matter nuclear science.

C.2. Nonperturbative effects

The reviewer wrote:

The author may want to look at and discuss another feature of the standard model and QED, which is the
infrared divergence phenomena which was first described by the Bloch–Nordsieck model. This is a non-
perturbative feature of QED. It leads to modifications to the particle propagators which have been termed
infraparticles (see https://en.wikipedia.org/wiki/Infraparticle). This infra-red phenomenon could lead to the
type of nonlocal features the author is looking for in interactions between the nucleus and the solid. It would
be nice to add them to the discussion in this paper. These “dressed” particles of QED are not fully understood,
especially not in a nonequilibrium condensed matter setting, but they involve infinite numbers of photons in-
teracting with a charged particle, and due to the infrared divergence, they lead to a blurring of the mass of
the charged particle. The propagators for the charged particle ends up no longer being a simple pole in the
4-momentum squared. This is hard to interpret in conventional quantum field theory, and so I would say this is
an unresolved issue in QED. The behavior of these dressed QED particles in nonequilibrium condensed mat-
ter settings are largely unknown. Because they involve an infinite number of photons, and are consequently
nonperturbative effects, they might provide the kind of nonlocal coupling between a charged particle and the
extended solid that is required in LENR and that the author is seeking. Moreover, as they do not have a fixed
mass, they might also provide a basis for off-mass-shell behavior as in Fock–Stueckelberg theory.
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Our hope back in 1989 was to find some straightforward bit of physics which would account for the anomalies
in a way that could be easily understood. For example, it was clear that we would expect a weak coupling between
vibrations and internal nuclear transitions mediated by electric and magnetic fields. Since there was little question as to
how lattice vibrations work, or how transitions between nuclear states work, the only issue left seemed to concern what
happens when the vibrations are coupled to the transitions. It was clear early on that we might have Dicke enhancement
factors showing up, which could serve to amplify the small interaction. However, the big issue then as now was whether
it was possible to down-convert a large quantum into lots of small quanta, or vice versa with up-conversion. Over the
years we managed to develop models which described the kind of up-conversion and down-conversion required, and
we have been successful in quantifying these models under ideal conditions.

Looking back, there have been two “new” components to the models under investigation; one is the new up-
conversion mechanism; and the other has been the center of mass coupling. In this study the issue of the coupling
has in our view been clarified. We have solid derivations, clean formulas for the interaction, a connection with the
literature, and a simple understanding of what the interaction is. What remains is to carry out calculations of the
coupling matrix elements for specific transitions of interest. What we need to do is to go back to the up-conversion
and down-conversion mechanism, and to see whether we might push them further theoretically, and also see whether
we might connect with experiment in an unambiguous way. At present we are attempting to develop some simple
experiments that would test these ideas.

I will be the first to agree with the reviewer that there are some subtle effects that emerge in quantum field theory
models; that there are unresolved issues in QED; and that there are issues with “dressed” particles in QED and in
condensed matter physics which can be very nonintuitive. A measure of my interest level might be the large number of
books and papers collected and in many cases read. An unfortunately reality of our field has been, and continues to be,
a relative lack of resources. I can see a potential solution to the puzzle (which are the anomalies) in the approach and
in the models I have pursued; and if I can find a way to continue working on the approach I might just be able to clarify
whether it is a solution, or whether it is yet another dead end. And if it is to be the dead end, then the suggestions of
the reviewer are approaches that might be considered next.
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