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Abstract. Modifications of genes that encode proteins found exclusively in the tectorial membrane (TM) alter mechanical
properties and produce a wide range of hearing deficits. However, the changes in TM physical properties responsible for these
deficits remain unclear. In particular, the cochlear tuning of Tectb –/– mice is significantly sharper than that of TectaY1870C/+

mice, even though the stiffnesses of TectaY1870C/+ and Tectb –/– TMs are similarly reduced relative to wild-type TMs. Here we
show that differences in TM wave properties that are governed by shear viscosity account for these differences in tuning. The
shear viscosity of the TM results from the interaction of interstitial fluid with the porous structure of the TM’s macromolecular
matrix. In basal regions of the cochlea, nanoscale pores of TectaY1870C/+ TMs are significantly larger than those of Tectb –/–

TMs. The larger pores in TectaY1870C/+ TMs gives rise to lower shear viscosity (by ∼70%), which in turn, reduces wave
speed and increases wave decay constants relative to Tectb –/– TM wave properties. These results demonstrate the importance
of TM porosity in cochlear tuning and that TM porosity, not stiffness, underlies the striking differences in hearing between
TectaY1870C/+ and Tectb –/– mice.
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INTRODUCTION
The development of genetic models of hearing disorders has provided opportunities to study molecular mechanisms
underlying the remarkable frequency selectivity and sensitivity of mammalian hearing. Of the mutants with hearing
impairments developed to date a surprising number affect genes that target the tectorial membrane (TM). Although
TM mutants display an enormous range of hearing deficits, the physical mechanisms underlying those deficits remain
unclear.

For example, TectaY1870C/+ and Tectb –/– mutant mice exhibit distinctly different hearing phenotypes: Tectb –/– mice
have sharpened basilar membrane (BM) tuning by a factor of two to three at mid to high frequencies [14], while
TectaY1870C/+ mice have normal BM tuning and even broader neural tuning [9]. Although this difference in tuning is
fundamental to our understanding of the distinctive properties of mammalian hearing, the mechanism is not known.

Here we investigate a mechanism based on TM traveling waves [3, 4, 7, 8]. We show that the effect of loss in waves
is characteristically different from the effect of loss in conventional cochlear models. Furthermore, these studies show
that porosity plays a key role in determining loss, and thereby spread of excitation, in both normal and mutant TMs.
The TM wave measurements outlined here demonstrate that TM porosity, and not stiffness, underlies the striking
differences in TectaY1870C/+ and Tectb –/– hearing.

METHODS

Measuring TM wave properties
Isolated TM segments were suspended between vibrating and stationary supports in a wave chamber and stimulated

as previously described [3, 4]. TM shear viscosity was altered by adding PEG (Sigma-Aldrich) to artificial endolymph
(AE) surrounding the TM in the wave chamber. To ensure adequate equilibration of PEG, the bath (5 mL) was
exchanged 4 times over a time course of approximately 5 minutes. This process was repeated for PEGs with a variety
of molecular weights, and with concentrations chosen so that the viscosity of the bath was the same for each molecular
weight: i) 4 µM, 900 kDa; ii) 12 µM, 600 kDa; iii) 35 µM, 400 kDa; iv) 70 µM, 300 kDa; v) 158 µM, 200kDa; vi)
630 µM, 100 kDa; vii) 15 mM, 8 kDa. Viscosity was also altered by adding 9-11 kDa dextran (Sigma-Aldrich) to the



AE bath with a concentration (24 mM) chosen so that the viscosity matched that of PEG solutions. To capture motions
at high frequencies, a stroboscopically pulsed light emitting diode was synchronized to the audio frequency stimuli.
To reconstruct wave motions, the TM was illuminated and images were captured at 8 evenly spaced stimulus phases
over several stimulus cycles. The collected images were then analyzed to determine the magnitude and phase of TM
displacement at multiple regions along the TM’s surface between the supports.

RESULTS

TM traveling waves in TectaY1870C/+, Tectb –/– and wild-type mice
To characterize differences in TectaY1870C/+ and Tectb –/– TMs, we measured wave motions [3] of isolated TMs

from each mutant. TM segments were excised from the basal turn of the mouse cochlea and suspended between two
supports immersed in AE. Forces were applied in the radial direction to these TM segments by driving one of the
supports at audio frequencies (10-20 kHz).

Figure 1 shows the frequency dependence of speed (A-C) and decay (D-F) for TectaY1870C/+ (n = 7 preparations),
Tectb –/– (n = 4 preparations), and wild-type (n = 5 preparations) TMs pooled across a range of audio frequencies
(10-20 kHz). Wild-type TM segments exhibited the highest wave speeds over the measured frequency range, while
Tectb –/– and TectaY1870C/+ TM speeds were significantly lower by ∼20% and ∼40%, respectively.

Decay constants tended to decrease with increasing frequency (Figure 1). TectaY1870C/+ and wild-type TMs had
similar decay constants with ranges spanning 135–400 µm between 10-20 kHz. In contrast, decay constants for
Tectb –/– TMs were significantly smaller (by as much as a factor of 2.25) than those of TectaY1870C/+ or wild-type
TMs.

TM material properties in TectaY1870C/+, Tectb –/– and wild-type mice
We developed a lumped model consisting of a distributed series of masses coupled by viscous and elastic elements

[3] and used this model to determine the relationship between wave properties and material properties.
Estimates of shear storage modulus, G′, are similar for TectaY1870C/+(23.8 ± 3.5 kPa; n = 5 TM preparations,

15-20 kHz) and Tectb –/– (20.2 ± 8.1 kPa; n = 4 TM preparations, 15-20 kHz) TMs. However, these stiffness are
significantly reduced from that of wild-types (47.7± 8.8 kPa; n = 5 TM preparations, 15-20 kHz). While G′ is similar
in TectaY1870C/+ and Tectb –/– mutant TMs, there are significant differences in TM shear viscosity, η . TectaY1870C/+

TMs have significantly lower η values (0.073 ± 0.033 Pa·s; n = 5 TM preparations, 15-20 kHz) compared to both
Tectb –/– (0.23 ± 0.033 Pa·s; n = 4 TM preparations, 15-20 kHz) and wild-type TMs (0.22 ± 0.048 Pa·s; n = 5 TM
preparations, 15-20 kHz), indicating that the basal regions of the cochlea, the key difference between TectaY1870C/+

and Tectb –/– TMs is in their shear viscosity.

Porosity is greater in TectaY1870C/+ TMs than in Tectb –/– or wild-type TMs
To understand the mechanisms underlying this difference in shear viscosity between TectaY1870C/+ and Tectb –/–

TMs, we also probed poroelastic properties. To characterize the porous nature of the TM, we increased the viscosity
of the AE bath using PEGs with a range of molecular weights from 8-900 kDa, chosen to provide a range of radii of
gyration [10]. Figure 2 shows that adding large molecular weight PEGs (right panel) had negligible effect on wave
speed and decay, but adding small molecular weight PEGs (left panel) increased speeds and decreased decay constants,
suggesting that only PEGs small enough to permeate TM pores are able to alter the TM’s internal shear viscosity and
impact wave properties. Medium size PEGs (200-400 kDa, middle panel) only altered wave properties of TectaY1870C/+

TMs, suggesting that the porosity of TectaY1870C/+ TMs is greater than those of Tectb –/– and wild-type TMs.
To verify that the changes in wave properties observed were due to changes in viscosity, we also characterized TM

waves in the presence of dextran at the same viscosity and M.W. as in the PEG experiments. In this case, wave speed
increased ∼42% and decay constants decreased ∼46% versus a speed increase of ∼37% and decay constant decrease
of ∼47% in the presence of PEG (Figure 3).
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FIGURE 1. TM traveling waves in tectorin mutant and wild-type mice. (A-C) Wave speed measurements pooled across
multiple TM samples. Median TM wave speeds of TectaY1870C/+ (red triangles) (n = 7 preparations), Tectb –/– (green crosses)
(n = 4 preparations), and wild-types (blue circles) (n = 5 preparations). (D-F) Wave decay constant measurements pooled
across multiple TM samples. TectaY1870C/+ (n = 7 TM preparations; red triangles) and wild type (n = 5 TM preparations;
blue circles) had similar wave decay constants (σ ) (135-325 µm for wild types and 140-400 µm for TectaY1870C/+ mutants),
whereas Tectb –/– segments had significantly lower σ estimates (80-225 µm).
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FIGURE 2. Polyethylene glycols (PEGs) with varying molecular weights (M.W.) and radii of gyration (rg) added to AE
surrounding TectaY1870C/+ and Tectb –/– TMs caused changes in wave speed and decay. Only the smallest molecular weight
PEGs changed wave properties in both mutants. Only in TectaY1870C/+ TMs did larger PEGs alter wave properties. Blue
shaded panels indicate cases where PEG did not alter TM wave properties.
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FIGURE 3. TM porosity and viscosity in wild-type mice. TM wave speeds (A) and decay constants (B) measured in AE,
AE with 15 mM PEG (8 kDa), and AE with 24 mM dextran (9-11 kDa) at 15-20 kHz (medians and interquartile ranges).
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FIGURE 4. Relation between TM wave decay and quality of tuning. (A) Schematic drawings (left) and images (right)
of Tectb –/– (top) and TectaY1870C/+ (bottom) TMs. Shaded regions illustrate the spatial extent of TM waves. (B) Relation
between TM decay constants and frequency tuning. The solid black line represents the relation between best place and best
frequency given by the cochlear map of the mouse [11]. (C) Qualities of tuning (Q10dB) calculated as shown in panel B for
Tectb –/– TectaY1870C/+ and TectaY1870C/+ TMs perfused with PEG (median and interquartile range at 20 kHz) and compared
to measurements of BM tuning (mean and standard deviation at 50 kHz, Russell et al. [14]).

DISCUSSION

Importance of TM shear viscosity
While previous studies have demonstrated the importance of TM stiffness in cochlear mechanics [2, 3, 5, 6, 13, 15],

our results suggest that shear viscosity is also an essential material property of the TM. Specifically, our results show
that TM stiffness alone cannot explain the hearing phenotypes of TectaY1870C/+ and Tectb –/– mutant mice. In addition
to stiffness, shear viscosity determines TM wave properties. Our measurements demonstrate that TM shear viscosity
is significantly lower in TectaY1870C/+ TMs than in Tectb –/– and wild-type TMs. Reducing TM shear viscosity reduces
transmission loss in longitudinally propagating waves, which in turn, allows TM waves in TectaY1870C/+ mutants to
propagate further (larger wave decay constants) than those in Tectb –/– mice (smaller wave decay constants.

Importance of TM porosity
Given that shear viscosity arises from the interaction of water with TM macromolecules, we tested the relation

between viscosity and porosity by introducing PEG molecules with different radii of gyration to the bath surrounding
the TM. We found a significant increase in the TM’s shear viscosity only when the radius of gyration of PEG was
sufficiently small to permeate the pores of the TM. The increase in internal shear viscosity induced by PEG molecules
alters both the speed and decay of TM waves. In particular, we show that 200-400 kDa PEGs (28-32 nm radii of
gyration) are able to alter the wave properties of TectaY1870C/+ TMs, but not those of wild-type and Tectb –/– TMs,



which are only affected by PEGs smaller than 200 kDa (22 nm radii of gyration) (Figure 3). Therefore, differences in
porosity account for differences in tuning between these mutants.

Implications for cochlear tuning
The effect of viscosity on TM waves and classical TM models is strikingly different. Classical models have

suggested that viscous damping in the subtectorial space plays a critical role in determining frequency tuning and
sensitivity in mammalian hearing [1, 12, 16]. In particular, fluid viscosity, such as that in the subtectorial space, limits
sensitivity and sharpness of cochlear tuning. Our results suggest that viscous loss in the TM has the opposite effect
on tuning. TectaY1870C/+ TMs exhibit less loss (shear viscosity), which in turn, increases the spatial extent of traveling
waves relative to Tectb –/– mutants. When combined with scaling symmetry and the cochlear map of the mouse cochlea,
this increase in spread of excitation would lead to broader tuning (Figure 4). Thus, TM waves may compensate (at
least in part) for the dissipative effects of fluid damping in the subtectorial space. Ultimately, our results demonstrate
that porosity plays a key role in determining the cochlear phenotypes of TectaY1870C/+ and Tectb –/– mutants and that
porosity represents a fundamental material property of the TM. This porosity, in combination with shear storage
modulus, determines the speed and decay of TM waves, contributing to the remarkable sensitivity and frequency
selectivity of mammalian hearing.
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