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Electrohydrodynamics of an ionic liquid meniscus during evaporation
of ions in a regime of high electric field
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(Received 22 October 2018; revised manuscript received 21 February 2019; published 26 June 2019)

Numerical investigations are presented for an ionic liquid meniscus undergoing evaporation of ions in a regime
of high electric field. A detailed model is developed to simulate the behavior of a stationary meniscus attached to
a liquid feed system. The latter serves as a proxy for commonly utilized electrospray emitters such as needles and
capillary tubes. Two solution families are identified for prototype liquid analogous to the ionic liquid 1-ethyl-
3-methylimidazolium tetrafluoroborate (EMI-BF4). The first belongs to a regime of low electric field in which
the meniscus is blunt and does not emit charge. The second belongs to a regime of high electric field in which
a conelike meniscus produces charge from a sharp tip. Electrohydrodynamic features of the meniscus in this
regime are presented. These reveal that the meniscus is Stokesian and hydrostatic and governed by conduction.
The applied electric field influences both the shape of the meniscus and the current that it produces while the
impedance of the feed system—which must be above a threshold value in order to ensure that the current, and
therefore the flow, remains below a maximum value—influences the meniscus current but not the macroscopic
shape. In general, this shape deviates from Taylor’s idealized cone.

DOI: 10.1103/PhysRevE.99.063108

I. INTRODUCTION

Molecular and atomic ions are extractable from the surface
of an electrified liquid through the agency of a strong electric
field. This phenomenon serves as the foundation for the liquid
metal ion sources (LMIS) that have found use in a variety
of applications ranging from electric micropropulsion [1,2],
etching and deposition [3], and analytical instrumentation [4].
Such broad technological utility has led to high levels of
both empirical [5] and theoretically [6] development. Due to
the high electrical conductivity, LMIS beams are generally
typified by low energy spread and high current. The latter in
particular is understood to be an integral component of the
source in that it confers strong space charge effects that damp
perturbations to the meniscus and provide a mechanism for
stability [7]. Ionic liquids (ILs) are room temperature molten
salts with conductivities that are small in relation to those of
liquid metals. Emission of ions from such liquids is a more
recent development with heritage in electrospray [8,9] but
of significant interest on account of the wide spectrum of
complex molecular chemistries to which they facilitate access.
These include heavy ions that are useful in electric propulsion,
where the thrust-to-power ratio scales as the root of the ion
mass [10–12], and highly reactive ions capable of precision
etching [13]. Unlike LMIS, ionic liquid ion sources (ILIS)
emit more modest currents that typically preclude substantial
space charge effects [14], giving the source a unique charac-
ter that remains to be fully appreciated. Although ILIS are
already finding application, improved understanding of their
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behavior is expected to serve as an important bridge to more
robust service and expansion of use.

In the simplest electrospray configuration a liquid menis-
cus is formed at the end of a long tube or needle which is
disposed in a dielectric medium. This could be vacuum [15],
air [16], or an insulating liquid of sufficient dielectric strength
[17]. The meniscus is stressed with an electric field that is
applied through a relative bias between the tube or needle and
a distant electrode. A well-established instability exists in the
case of an electric field acting on the interface of two fluids.
When the traction of the field is strong enough to overcome
the binding effects of surface tension, a rapid rearrangement
occurs in which the surface adopts a quasiconic geometry
that serves to mediate a compromise between electrical and
interfacial forces. The canonical structure, known commonly
as a Taylor cone [15], supports a field that scales as r−1/2,
where r is the distance from the meniscus tip. In order to avoid
a singularity at the tip, a thin jetlike protuberance will emanate
from the zenith of this cone and usher charge under the action
of electrical surface shear. The jet ultimately breaks into a fine,
monodisperse aerosol as a result of capillary instability. The
jet width, electrosprayed droplet size, and the droplet mass per
unit charge are all proportional to the resistivity of the liquid
and its flow rate through the cone [18,19]. External control of
the flow rate and liquid conductivity are therefore useful tools
in the regulation of the aerosol properties. In this way jets as
small as 10 nm can be produced before the electric field acting
on the surface of the cone-to-jet transition region becomes
substantial enough to extract individual ions (no solvation)
through a kinetic process akin to thermal evaporation [20,21].
This produces a mixed beam of droplets and ions that is
characterized by a bimodal distribution of specific charge. The
droplets provide a low specific charge peak while the ions
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FIG. 1. Evolution of a cone-jet as the flow rate is reduced. Top:
At high flow rates Q the meniscus resembles a classical Taylor cone
(angle θT ≈ 49.2◦) and exhibits a characteristic protuberance at the
tip. The tip supplies a train of electrosprayed droplets that propagate
under the influence of the external field E . It may eventually shed
ions and other charges of low solvation as its diameter dj decreases in
response to waning flow. Bottom: Under certain conditions, very low
flow rates lead to complete extinction of the jet, such that only ions
emanate from a sharp tip through electrically induced evaporation.

provide a much higher counterpart. Under certain conditions,
further reductions to the flow facilitate complete extinction
of the jet, such that ions evaporate in the absence of any
droplets (Fig. 1). Aside from liquid metals [3], concentrated
aqueous acids [22], and ILs [23,24] are among a very limited
number of liquids known to support this unique mode of
electrohydrodynamic charge emission.

The seminal work of Perel et al. in the late 1960s estab-
lished, for the first time, the viability of the pure ion mode with
nonmetallic liquids [22]. This work leveraged concentrated
solutions of sulfuric acid but received little follow-up until the
early 2000s when Romero-Sanz and colleagues extended the
finding to ILs [23]. Recent work has shown that, in contrast
to the amenability of the LMIS to a wide variety of emitter
configurations, the ILIS is most compatible with a simple
needle geometry. This owes primarily to the strong proclivity
of tubes to sporadically generate droplets when the liquid
does not satisfy an obscure combination of high conductivity
and surface tension [25]. Currents vary roughly linearly with
the applied electric field but typically reside in a range from
approximately 100 nA to 1000 nA that is low in comparison
to the output of common LMIS [26–28]. This limits space
charge effects and apparently makes the quality of the source
susceptible to the specific properties of the working liquid and
the details of its emitter [14].

A clear understanding of the source and its relationship to
key operating parameters has remained elusive as a result of
several important empirical limitations. These include, e.g.,
the difficulty in resolving the morphology of the meniscus
tip and its internal flow. Similarly to what has been done
with cone-jets [29], where inferences based on the electro-
sprayed beam are insufficient for resolving key properties
of the meniscus, several attempts have been made to ap-
proach this problem from a computational perspective. Collins

explored incipient electrohydrodynamic tip streaming from
leaky dielectric films and found that, in the limit as the charge
relaxation time becomes the smallest global timescale, the tip
begins to exhibit a conic cusp which is likely prerequisite to
ion emission [30]. Higuera investigated a small (nanoscopic)
sessile drop of ionic liquid undergoing steady evaporation
[31]. A hydrostatic condition and conduction-limited charge
transport were found to prevail. This paper builds on those
works by advancing a basic ILIS continuum model that is
germane to a meniscus of practical (microscopic) size ser-
viced by a feeding architecture, where the latter is intended
to capture important effects relating to the emitter. It is bench-
marked against previous studies and used to study a family of
ionic liquid emission solutions, recently reported by Coffman
[32,33], that are believed to hold practical significance. Spe-
cial emphasis is placed on generic features of the meniscus
during emission and the influence of various parameters that
are amenable to external control, such as the applied electric
field, the meniscus size, and the impedance of the needle or
feeding tube.

II. GOVERNING PHYSICS

A. Emission field, tip sharpness, and characteristic current

Evaporation of charged species from the surface of an elec-
trified liquid meniscus formed in vacuo is a kinetic process
taken to obey [34,35]

je = σ
kBT

h
exp

[
−�G − G

(
E v

n

)
kBT

]
, (1)

where je is the current emitted per unit surface area, σ is the
local density of surface charge, kB is Boltzmann’s constant,
T is the liquid temperature, h is Planck’s constant, �G is an
evaporation energy barrier for solvated species, and E v

n is the
normal component of the local vacuum electric field. G(E v

n ) is
a reduction factor due to E v

n that assumes the form G(E v
n ) =

(q3E v
n /4πε0)1/2 for polar media based on the Schottky hump.

Here q is the charge state of evolving species and ε0 is the
permittivity of vacuum. Since �G/kBT is typically large in
practical situations, little to no emission is seen until �G −
G(E v

n ) = O(kBT ) � �G, such as when

E v
n ≈ 4πε0(�G)2

q3
≡ E∗, (2)

which is interpreted as a critical field for strong evaporation.
Unlike hard-body or solid field emitters, e.g., hot cathodes,
steady emission from the electrified meniscus is only permis-
sible when the liquid interface is able to reach a mechanical
balance between the forces of electrical traction and surface
tension. To a good approximation it is therefore appropriate
to take τ e

n ∼ 2γ /r∗ near the tip, where τ e
n is the normal

electric traction in vacuum and r∗ is the inverse of the char-
acteristic tip curvature. After invoking the Maxwell tensor
the former is expanded to yield τ e

n = ε0/2[(E v
n )2 − ε(El

n)2 +
(ε − 1)E2

t ], where E v
n and El

n are both orthogonal to the
interface—on the vacuum and liquid sides, respectively—and
consistent with the boundary relation for idealized surface
charge, i.e., σ = ε0(E v

n − εEl
n). Et is the tangential elec-

tric field at the surface. The characteristic field within the
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meniscus during emission will in general depend on the
evaporation state and properties of the liquid but may be of
order E∗/ε at most. Taking El

n = O(E∗/ε) during evaporation
with Et = 0 at the tip by symmetry and E v

n ≈ E∗ yields
ε0(E∗)2(ε − 1)/2ε ∼ 2γ /r∗. Consistency with the use of the
kinetic law, Eq. (1), requires ε � 1, a condition which is
effectively satisfied by many ionic liquids [36]. In the polar
limit, the appropriate length scale for the meniscus tip is
therefore

r∗ = 4γ

ε0(E∗)2 = q6γ

4π2ε3
0 (�G)4 . (3)

The distance r∗ here may be interpreted as the extent of the
meniscus over which fields of order E∗ act. As a result, the
size of the area from which charge will emanate is π (r∗)2 to
first a approximation. The prevailing current is then of order
I∗ ∼ π (r∗)2 j∗, where j∗ is a characteristic current density.
This is determined by recognizing that charge transport in
the liquid obeys j = K0El

n when Ohm’s law is valid and con-
duction dominates—see below for congruent findings. In the
steady state, the motion of this charge must identically balance
kinetic losses at the interface. Invoking Eq. (1) and imposing
this condition with E v

n = E∗ yields j∗ = K0E∗ε−1(1 + χ )−1.
Note that the exponent from the general kinetic law vanishes
now by virtue of the vacuum field E∗, which by definition
requires the argument to be precisely zero. The factor in the
denominator χ = hK0/εε0kBT is an important dimensionless
group representing the ratio of the kinetic emission time
h/kBT to the characteristic charge relaxation time εε0/K0 in
the liquid. There are two asymptotic limits: In the liquid metal
limit χ � 1 as a result of very high electrical conductivity
while the ionic liquid limit implies χ � 1. The current density
is then

j∗ ≈
{

ε0E∗kBT
h , χ � 1

K0E∗
ε

(
1 − hK0

εε0kBT

)
, χ � 1

. (4)

The primary interest pertains to the latter case, where it is
now clear that fields of the order E∗/ε do in fact prevail within
the meniscus during strong evaporation. This is a direct result
of limited conductivity. In the ionic liquid limit it follows
that the characteristic current density must be of order j∗ ∼
K0E∗/ε, and so for the total current

I∗ = π (r∗)2K0E∗

ε
= K0γ

2q9

4π2εε5
0 (�G)6 , (5)

which is apparently very sensitive to the solvation barrier of
evolving species. Typical ionic liquid properties include the
solvation energy �G ∼ 1–2 eV [20,34], the ambient conduc-
tivity K0 ∼ 1 S/m [37], the dielectric constant ε ∼ 10–100
[36], the surface tension γ ∼ 0.01–0.1 N/m [38], the specific
charge q/m ∼ 106 C/kg, the density ρ ∼ 103 kg/m3 [39],
the nominal (room temperature) viscosity μ0 ∼ 0.01–0.1 Pa-
s [38,39], the thermal conductivity kT ∼ 0.1 W/m K [39],
and the thermal capacity cp ∼ 103 J/kg K [39]. Under these
conditions the characteristic electric field, tip size, and current
are E∗ ∼ 108–109 V/m, r∗ ∼ 10-8–10-7 m, and I∗ ∼ 10-8–
10-6 A, where the latter is a good indication of the spectrum of
experimentally observed values [14]. Clearly, the very strong

electric fields that are required to overcome the kinetic barrier
presuppose a sharp meniscus tip.

B. Space charge

The high currents of liquid metals result in a cloud of ions
surrounding the meniscus tip. The effects of this cloud on
the local potential field are known to significantly influence
the behavior of the source, in part by tempering the emission
[7]. The more modest currents of ionic liquids accompany a
rarefied form of this cloud [14]. Consider from the Poisson
equation ∇ · E = ρsc/ε0 that the electric field induced by the
ion cloud is E∗

sc = ρ∗
scr∗/ε0. The space charge density ρ∗

sc =
j∗/v∗

sc depends on the evaporation current j∗ = K0E∗/ε and
a characteristic ion speed v∗

sc = (2q�∗
sc/m)1/2 that is deter-

mined through an interplay of kinetic and electric potential
energies, i.e., m(v∗

sc)2 = q�∗
sc. The potential change near the

tip is �∗
sc = E∗r∗ and thus E∗

sc = K0/εε0(mE∗r∗/2q)1/2. In
relation to the characteristic evaporation field E∗,

E∗
sc

E∗ = K0

εε0

(
r∗

2E∗
m

q

)1/2

, (6)

where the right-hand side is the ratio of the gas-phase ion
residence time, r∗/v∗

sc, to the charge relaxation time, εε0/K0.
Under typical ionic liquid conditions this is small, from 10−2

to 10−1, indicating that space charge effects are tenuous.
Notice, however, that for liquid metals that the same analysis
confirms the preponderance of space charge effects since
E∗

sc/E∗ → ∞ in the perfect conductor limit.

C. Hydraulics

The flow of liquid induced by evaporation exhibits a char-
acteristic velocity u∗ = j∗/ρ(q/m) near the meniscus tip. Due
primarily to the high specific charge of ions, the correspond-
ing Reynolds number Re = ρu∗r∗/μ0 and the ratio of viscous
stresses to surface tension stresses-capillary number Ca =
μ0u∗/γ —are both small, indicating a regime of Stokesian
motion in a quasihydrostatic meniscus.

D. Transport processes

The balance of electrical surface shear, of order σE∗/ε,
and viscous stress at the tip produces a flow of characteristic
speed u∗

τ = ε0E∗2r∗/μ0ε that is comparable to u∗, i.e., u∗
τ =

O(u∗). The characteristic residence time for species moving
through the meniscus tip is therefore r∗/u∗. The timescales
for electrical and thermal conduction are, respectively, εε0/K0

and ρcp(r∗)2/kT . These are fast on the scale of the residence
time, between 10 and 104 times shorter, indicating that con-
vection processes are subordinate to conduction.

III. MODEL FORMULATION

Figure 2 depicts a meniscus model in which a volume
of liquid is attached to a flat horizontal plate under vacuo
with a prescribed wetting radius r0 that could in general
be much larger than r∗, as is typical in practice [14,23,25].
The plate comprises a hole of the same radius, r0, causing the
liquid contact line to remain pinned when the wetting angle
is sufficiently high. For numerical convenience the plate is
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FIG. 2. Modeling configuration for an evaporating ionic liquid
meniscus. An axisymmetric meniscus is attached to a conductive
plate under vacuo with a contact radius r0 (arbitrary contact angle)
and stressed by an applied electric field E0 that is asymptotically
uniform at distances much greater than r0 from the plate. Fresh liquid
enters the meniscus during steady evaporation at a pressure p by a
reservoir that is charged to a prescribed pressure pr and a feeding
line with characteristic impedance Rh.

infinite in the radial direction and assumed to be a perfect
conductor. In connection with a distant counterelectrode this
defines an axial electric field E0 that is asymptotically uniform
very far from the meniscus. The shape of the meniscus is
contingent on a mechanical balance that is influenced in part
by this field. A reservoir of liquid exists beneath the plate
where it is charged to a pressure pr and in communication
through a feed line of characteristic impedance Rh, such that
pr − p = RhQ, where p is the mean pressure of the liquid
on the plate and Q = I (q/m)−1/ρ is the flow rate due to
evaporation.

The dimensionless equations and boundary conditions
governing the problem of steady evaporation from this
meniscus span two distinct domains (vacuum, liquid) and
two boundaries (liquid-vacuum interface, plate). Lengths are
scaled by the prescribed contact radius r0, areas by r2

0 , stresses
by the capillary pressure pc = 2γ /r0, electric fields by a value
Ec satisfying ε0E2

c = pc [11,40,41], charge densities by ε0Ec,
current densities by K0Ec, velocities by the corresponding
speed uc = mK0Ec/ρq, and temperatures by the reference
value T0. Conductivity and viscosity are scaled by the nominal
values K0 and μ0, defined at ambient temperature. Scaling in
this manner yields the dimensionless parameters

B = r∗

r0
, � = K ′T0

K0
, ψ = �G

kBT0
, χ = hK0

εε0kBT0
,

We = ρ(u∗)2r∗

2γ
, Ca = μ0u∗

2γ
, Gz = ρcpu∗r∗

kT
,

Kc = εε0u∗

K0r∗ , H = ( j∗r∗)2

K0kT T0
, CR = K0Ecr3

0

2γ ρ

(
m

q

)
RH

as well as E0, ε, and pr . B is an important meniscus size
parameter that will in general be much less than unity for
conditions of interest. � is a parameter describing thermally
induced perturbations to the electrical conductivity of the
liquid, for which K ′ is an appropriate thermal sensitivity

(S/m K), while ψ describes the emission kinetics. The con-
stants We, Ca, and Gz are modified Weber, capillary, and
Graetz numbers, respectively. Kc is the ratio of the charge
relaxation time to the characteristic residence time of liquid
in the meniscus tip. H is the ratio of Ohmic heat generation to
conductive dissipation and CR relates a characteristic pressure
drop K0Ecr2

0 (m/q)RH/ρ to surface tension.

A. Vacuum domain

Outside the liquid

∇2φv = 0, with (7)

Ev = −∇φv , (8)

where −∇φv → E0i very far from the meniscus, with i a unit
vector normal to the plate.

B. Liquid domain

Inside the liquid

∇ · j = 0, (9)

∇ · v = 0, (10)

ε2We(v · ∇)v = ∇ · τ, (11)

∇2T + ε2 H

B

(
j · j
K

)
− ε

Gz√
B

(v · ∇T ) = 0, (12)

K = 1 + �(T − 1), and (13)

μ = K−1, (14)

where j and v are the current density and velocity in the liquid.
Equations (9)–(11) represent charge continuity, mass continu-
ity, and momentum conservation. In the latter, τ = −pI + τ ′
is a stress tensor with the viscous (deviatoric) component

τ ′ = εCa
√

Bμ[∇v + (∇v)T ], (15)

Equation (12) is a liquid heat equation with convection while
Eqs. (13) and (14) describe the temperature-dependent elec-
trical conductivity and viscosity. These assume a constant
product μK = μ0K0 [42,43] and linear excursions of the form
K0 + K ′(T − T0).

C. Liquid-vacuum interface

At the liquid-vacuum interface

τe
n − n · τ · n = 1

2
∇ · n, (16)

t · τ · n = τe
t , (17)

v · n = je (18)

je = σT

εχ
exp

(
−ψ

T

{
1 − B1/4

√
E v

n

})
, (19)

je − KEl
n = KcB3/2σ (n · ∇v · n) − KcB3/2v · ∇σ, (20)

σ = E v
n − εEl

n, (21)
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I =
∫

jedA, and (22)

(n · ∇)T = 0, (23)

where n and t are unit vectors normal and tangent to the
liquid surface, along which ∇ · n is the local curvature. The
superscripts v and l denote the vacuum and liquid sides,
respectively. Equations (16) and (17) are balances of normal
and tangential stresses involving the dimensionless Maxwell
components [44,45]

τe
n = (

E v
n

)2 − ε
(
El

n

)2 + (ε − 1)E2
t , (24)

τe
t = 2σEt , (25)

where En = E · n and Et = E · t . Equations (18) and (19) are
a kinematic condition and the kinetic evaporation rate. Equa-
tions (20)–(23) represent charge transport, surface charge
density, total current, and thermal flux. Note that the charge
transport equation is the central relationship governing the
evolution of the surface charge. At the tip, this charge is es-
pecially critical for determining the character of the meniscus
[30].

D. Plate

At the plate (z = 0)

v = I

π
i, p = pr − ICR for r < 1,

�l = 0, T l − 1 = 0 for r < 1,

φv = 0, T − 1 = 0 for r > 1. (26)

Equations (26) assign reference values to the potential, tem-
perature, and pressure of the liquid exiting the feeding line.
Notice here that �l = 0 and T l/T0 = 1 are used to ensure
that the liquid matches the ambient conditions of the plate.
These should be good approximations insofar as the plate is
a good electrical and thermal conductor. The flow emerging
from the feeding line is assumed to be fully developed so that
any pressure gradients in the radial direction are small.

IV. NUMERICAL METHOD

Stationary solutions satisfying the governing equations
are computed using finite-element and iterative methods. An
initial guess is made for the meniscus shape and parameterized
in axisymmetric cylindrical space as z = h(r), where h is
some function of r defined on the dimensionless interval
r ∈ [0, 1]. The meniscus corresponding to this shape is an-
alyzed to determine the electrical, hydraulic, and thermal
fields that would prevail if the surface were motionless, i.e.,
in a state of mechanical equilibrium. The vacuum region
outside of the meniscus and the meniscus itself are in-
cluded in these numerical calculations while the effects of the
feeding architecture are expressed through the conditions of
Eqs. (26) on the boundary of the numerical domain. The liquid
flow upstream of the plate is treated analytically through a
lumped impedance RH that should in general be quantified by
an independent analysis for specific feeding configurations.

Partitioning of the model in this way has greatly enhanced the
affordability of calculations.

The numerical fields are used to check the balance of nor-
mal stresses at the interface, Eqs. (16) and (17), and determine
the status of the meniscus dynamics. The balance of tangential
stress is always satisfied. If guess z = h(r) does not coincide
identically with an equilibrium shape, then a residue τ r

n of the
form

τe
n − n · τ · n − 1

2∇ · n = τ r
n (27)

will in general exist on the surface. This residue relates in
some way to the dynamics of the meniscus and implies a
motion of the interface. Solutions for the stationary menis-
cus are, therefore, configurations in which τ r

n → 0 globally.
This is achieved here through a simple relaxation method
permitting the interface to slowly evolve in the direction of its
preferred equilibrium. Consider that for a prescribed z = h(r)
the corresponding surface tension (Laplace) pressure is given
by PL = ∇ · n/2. After expansion of the divergence term

hrr + hr

r

(
1 + h2

r

) − 2
(
1 + h2

r

)3/2
PL = 0, (28)

where hr and hrr are the first and second spatial derivatives
of z = h(r), respectively. This is a second order nonlinear
ordinary differential equation that maps between PL(r) and a
corresponding shape. Now consider an initial meniscus guess
z = hi(r) for which the attendant residue (τ r

n )i is nonzero. In
an effort to reduce the residue for a subsequent iteration the
interface may be relaxed by adding to the current Laplace
distribution Pi

L a small measure of (τ r
n )i, such that

Pi+1
L = Pi

L + β
(
τ r

n

)i
. (29)

Here β is a relaxation parameter residing on the interval
β ∈ (0, 1] that helps to control the rate of interfacial evolution.
An updated shape z = hi+1(r) is found after solving Eq. (28)
with PL = Pi+1

L and used to initiate a new set of calculations
for which it is generally expected that (τ r

n )i+1 < (τ r
n )i. Pro-

vided a stationary meniscus exists for the given parameter set,
after many relaxing iterations the residues become sufficiently
small. Numerical termination is therefore invoked when the
condition

τ r
n

τR
� � (30)

is satisfied. τR is a reference stress and � is a number much
less than unity. In most cases that follow these numerical pa-
rameters are taken as � = 10−2, β = 10−2, and τR = ‖τ‖∞,
where ‖τ‖∞ is the local maximum norm (largest local stress).
Note that the max norm is typically τe

n, particularly in prox-
imity to the meniscus tip, while � ensures that the residue is
never greater than 1% of any dominant stress.

V. RESULTS AND DISCUSSION

Direct empirical validation of the model is challenging on
account of the absence of high-resolution meniscus visualiza-
tions. The literature is, however, replete with theoretical inves-
tigations of electrified interfaces—see, e.g., Refs. [15,46,47].
Most cases treat sessile or pendant drops for which the volume
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is invariant. Such situations can be addressed with the present
model by substituting

p = p(E0,V ) (31)

for the pressure relation p = pr − ICR describing the effects
of the feeding flow. The constant-volume p may be identified
iteratively as an extra step in the numerical method. This
procedure is used here to benchmark the model against the
findings of Higuera for ion emission from ionic liquid sessile
drops [31]. Dielectric drops (no emission) are investigated
elsewhere [33] and contrasted with the findings of Wohlhuter
and Basaran [47].

The generalized (free-volume) meniscus problem with
feeding flow is treated thereafter in the case of small B where
the contact line r0 is large in comparison to the characteristic
tip size r∗ since this is the situation that is most commonly en-
countered in practice [14,23,25]. A test liquid is designed with
properties similar to those of 1-ethyl-3-methylimidazolium
tetrafluoroborate (EMI-BF4), an IL that is widely employed
in empirical evaporation studies [10,11,23]. The neat IL is
modeled at room temperature (T0 = 300 K) using K0 = 1
S/m, K ′ = 0.04 S/m K, q/m = 106 C/kg, μ0 = 0.037 Pa s,
kT = 0.2 W/m K, cp = 1500 J/kg K, γ = 0.05 N/m, �G =
1 eV, and ρ = 103 kg/m3. Note that the dielectric constant
ε = 10 is appropriate [36] but relatively apolar in compar-
ison to those of typical electrolytic solutions, e.g., aqueous
solutions. These properties establish the dimensionless pa-
rameters � = 12, ψ = 38.6, χ = 1.81 × 10−3, We = 2.26 ×
10−6, Ca = 0.026; Gz = 0.024, Kc = 1.32 × 10−4, and H =
0.176, while those that remain (E0, Pr , B, CR) form a subspace
that is explored numerically. Two primary solution families
are identified: one spanning a regime of low electric field
for which meaningful emission is absent and another in a
regime of high electric field where evaporation is substantial.
The former is established in the literature [46–49] while the
latter has only recently been reported by Coffman [32,33]. The
high-field family is expanded on here. A prototype solution is
presented to highlight electric, hydraulic, and thermal proper-
ties of the meniscus which are representative of the regime.
The meniscus is sized B = 0.05 in this case to preserve
ease of graphical representation while still ensuring that it
reasonably resides in the small-B limit. The dependence of
the meniscus morphology and emission current on the applied
field, meniscus size, and feeding flow setup are also delineated
to emphasize important relationships to external variables.
These are shown for the specific case pr = 0, chosen for its
numerical economy and relevance to practical configurations,
e.g., solid needle electrospray emitters.

A. Constant-volume meniscus

Solution in the low-field regime are bracketed by the
null field E0 = 0 on one side and a nonzero electric field
corresponding to a “turning point” on the other [46,47].
When the elongation of the meniscus is defined as Ze = z0/r0,
where z0 = h(r = 0) is the height of the meniscus on the
axis of symmetry, the turning point coincides with the field at
which the incremental elongation ceases to be bounded, i.e.,
dZe/dE0 → ∞. Two solution branches comprise this family:
an unstable branch of sharp menisci (high elongation) and a
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(a) (b)V

V

FIG. 3. Comparison of evaporation results for ionic liquid
droplets of constant volume. The findings of Higuera [31] for
volumes V = 0.5, 1, 1.5, and 2 (dashed curves) are shown next
to those computed with the present model. (a) Elongation of the
droplets, Ze = h(r = 0), as a function of applied electric field. The
droplet volume is increasing in the direction of increasing elongation.
(b) Surface charge σ at the tip of the meniscus. The droplet volume
increases from right to left.

stable counterpart typified by rounded structures [15]. Only
the latter is physical. The menisci of perfectly conducting
liquids [15], insulating liquids [47–49], and ionic liquids [33]
are all qualitatively similar on this branch.

Higuera [31] has modeled the shapes and evaporation
properties of ionic liquid sessile droplets on the stable branch
using time-resolved techniques. Axisymmetric droplets are
attached to a conductive plate with constant wetting radius
r0 and volume V . The liquid medium is relatively polar (ε =
50) but permits evaporation of ions with very high specific
charge when the applied electric field is sufficiently strong.
Droplet volumes include V = 0.5, 1, 1.5, and 2 with B =
0.25, where the latter implies meniscus sizes of order r∗. The
liquid properties are ε = 50, χ = 4.12 × 10−4, ψ = 20, and
Ca = Kc = � = We = Gz = H = 0. Figure 3 presents
a comparison of select results from the reference with those
attained by the model described in this work. These are rep-
resented by dashed and solid curves, respectively. Figure 3(a)
delineates the elongation Ze of the meniscus in response to
E0, showing that the stationary meniscus extends weakly in
response to low electric fields before terminating at a turning
point. Figure 3(b) delineates the surface charge computed at
the meniscus tip. Depletion of charge at the surface beyond a
threshold field (decreasing σ ) is indicative of emission and a
symptom of the inability of electrical conduction (limited K)
to keep pace with the rate of ion extraction at the interface.

The model confirms the results of the Higuera [31] and
suggests that small menisci with B of order unity are capable
of supporting emission for fields E0 below that of the turning
point. When B is small, however, they imply that emission is
not likely to take place since the surface field is unable to reach
sufficient strength. This can be appreciated by considering
that, at the null field, the meniscus is subject to a simplified
mechanical balance p = ∇ · n/2 that produces a spherical
section for which r0κt may be small depending on the size of
the contact line and the drop volume. Here κ−1

t is the radius of
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FIG. 4. Select characteristics of solutions in the low-field regime
for pr = −0.50, −0.25, 0, 0.25, 0.50, 0.75, and 0.90. (a) Limiting
meniscus shapes at the end of the stable solution branch (turning
point) in the low-field regime with electric field E0 = 0.72, 0.61,
0.52, 0.42, 0.33, 0.23, and 0.14, respectively. The reservoir pressure
increases in the direction of increasing elongation. (b) Electric field
E v

n at the tip of the meniscus. The maximum field corresponds to
the turning point (maximum curvature) but remains limited to E v

n =
O(1), precluding emission from a large meniscus. The reservoir
pressure decreases from left to right.

curvature of the meniscus tip. Although he meniscus elongates
and sharpens as the field is increased, r0κt is at most of order
unity as the turning point is reached. The electric field acting
at the tip is therefore E v

n = O(Ec). Since the scale Ec is related
to the characteristic evaporation field E∗ through the size
parameter B, i.e., Ec/E∗ = B1/2, this indicates that the ratio
E v

n /E∗ ∼ B1/2 is of a low magnitude when the meniscus is
large, precluding meaningful emission. Coupled with the fact
that the turning point typically coincides with the highest field
for which stationary solutions, this provides strong evidence
to suggest that the low-field regime does not correspond to
the emission observed in practice [47].

B. Meniscus with feeding flow

Solutions to the generalized problem with a feeding ar-
chitecture (p = pr − ICR) in the low-field regime are qual-
itatively similar to those of the constant-volume drop. Fig-
ure 4(a) depicts meniscus shapes at the turning point for
various pr . These exhibit the limiting (highest) tip curvature
in this regime. Figure 4(b) depicts the corresponding tip field.
Note that the electric field at the turning point is in general a
function of the reservoir pressure, decreasing in the direction
of increasing pr . This is similar to the sessile droplet case in
which the turning point field decreases in inverse proportion to
the droplet volume—see Fig. 3(a). Due to the lack of emission
when B � 1, these results are independent of the feeding
impedance CR.

Stationary solutions of the low-field regime cease to exist
as the electric field is increased infinitesimally at the turning
point. This is generically true in the large meniscus limit, the
properties of the liquid notwithstanding. A second family of
solutions may, however, exist in a region of high electric field
under special conditions [32,33]. The extent of this region is

finite and does not overlap that of the low-field regime. Unlike
the blunt “egglike” structures that typify the low-field regime,
the meniscus in this regime is “conelike,” supporting emission
from a sharp tip.

Figure 5 presents salient properties of a high-field pro-
totype solution calculated at E0 = 1.0, B = 1/20, CR = 103,
and pr = 0. Figure 5(a) depicts the shape of the meniscus
while Figs. 5(b)–5(d) show the stress distribution, the electric
potential, and the surface charge of the interface, respectively.
Here, the potential is normalized by the characteristic loss
through the tip �∗ = E∗r∗/ε and the surface charge by ε0E v

n ,
the value corresponding to the condition of full electrical
relaxation. Figures 5(e) and 5(f) depict components of the
flow field at the interface and its temperature distribution. The
temperature scale �T ∗ = K0�

∗2/kT follows from a balance
of Ohmic dissipation and thermal conduction.

Figure 5(a) reveals the conelike nature of the meniscus
in this regime but highlights a substantial deviation from the
Taylor archetype. The idealized Taylor cone is predicated on
a simple mechanical interaction in which electrical traction
and surface tension globally equilibrate along a surface that
is of uniform potential [15]. The electric field E v

n in this case
varies generically as r−1/2, where r is the cylindrical radius,
admitting a discrete spectrum of spherical harmonics. Only
the Legendre function P1/2 is permitted on the surface. Due
to the location of the corresponding zero, classical Taylor
cones exhibit a universal 49◦ half-angle that is insensitive
to the intrinsic properties of the liquid. Deviation from this
cone represents a fundamental finding but should perhaps
come as no surprise since the mechanical balance is evidently
more complex. In addition to electrostatic traction and surface
tension, hydraulic pressure is seen to play a meaningful role
over much of the meniscus, particularly away from the tip
[Fig. 5(b)]. This is so much so that the balance in this spe-
cific case essentially excludes surface tension near the base,
resulting in a liquid surface that is almost coplanar with the
plate.

Morphological deviations from Taylor notwithstanding,
depletion of charge from the tip [Fig. 5(d)] and a correspond-
ing potential drop [Fig. 5(c)] indicate that the meniscus is
sharp enough under the given conditions to emit meaningful
charge. The current is approximately 160 nA for the test
liquid. In providing this charge the meniscus is found to
be hydrostatic and conduction controlled. Notice that the
tip is encircled by a curve C on which the electric field
coincides with the characteristic value E∗. Since the field
varies smoothly over the meniscus the exponent from the
kinetic law, Eq. (1), is of very dissimilar magnitudes on either
side of this line. Toward the tip its growth outpaces transport
in the liquid and results in a reduction of the local surface
charge from its equilibrium value ε0E v

n . The flow upstream
of this region is primarily tangent to the interface but turns
orthogonal (from the meniscus) on crossing the line C. The
maximum flow speed is of order u∗ from Fig. 5(e), ensuring
both the Stokesian hydrostatic character of the meniscus and
the governance of conduction. The former is further evidenced
by the stress distribution across the interface [Fig. 5(b)],
which implies that the effects of flow through the meniscus
are relatively insignificant and that the interplay of electrical
traction and surface tension dominates at the tip. Away from
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FIG. 5. Select properties of the steadily evaporating meniscus residing at the point E0 = 1, 1/B = 20, Pr = 0, and CR = 103 in parameter
space. (a) The meniscus shape (solid curve) plotted alongside a classical Taylor cone (dashed curve) for comparison. (b) The distribution of
stresses across the liquid-vacuum interface. The viscous stress accumulated in the meniscus itself, (−n · τ · n)m, is separated from the pressure
drop in the feeding line, −ICR, for clarity. (c) The distribution of electric potential across the liquid-vacuum interface, normalized by the
characteristic �∗ = E∗r∗/εr . (d) The distribution of surface charge across the liquid-vacuum interface, normalized by the normal component
of the displacement field in vacuum. (e) Normal (solid curve) and tangential (dashed curve) components of the fluid flow at the liquid-vacuum
interface, normalized by the characteristic u∗. (f) The temperature of the liquid-vacuum interface normalized by �T ∗.

the tip, only the pressure of the liquid on the plate −ICR is a
factor.

The potential drop through the meniscus has important
implications insofar as the energy of the emanating beam
is concerned. Charge must be conducted through the tip
region by a potential drop of order �∗ [Fig. 5(c)] since the
convected current ε0E∗u∗/r∗ is nominal. The speed u∗ is small
in comparison to the velocity of an ion after electrostatic
free-fall through the same potential, (q�∗/m)1/2, and so the
resistivity of the liquid is seen to reduce the kinetic energy of
emitted ions from the theoretical maximum by an amount—
several volts for common ILs—that is discernible on the scale
of typical driving voltages (0.1–1 kV). This could be one
explanation for the energy deficits observed in ionic liquid ion
sources [24,28].

Figure 6 delineates the dependence of the meniscus mor-
phology and the current on the meniscus size, the applied
electric field, and the feed impedance. Figure 6(a) depicts a
sequence of meniscus shapes for E0 = 0.7 and CR = 103 as
the size is increased from B−1 = 3.19 to 100. Note that the
upper limit of this size range is a computational threshold
beyond which calculations typically lose affordability on ac-
count of stiffness. While stationary solutions may exist for
larger menisci, the findings of Coffman et al. [32] suggest that

a limit of tenability may exist as B → 0. The corresponding
tip sharpness is presented in Fig. 6(d). Here the curvature of
the meniscus at the tip is κt = 1/rt = (∇ · n)t/2, and thus
the relationship to the characteristic emission scale becomes
rt/r∗ = 2/B(∇ · n)t . Figure 6(b) shows variations in the shape
of the meniscus for B−1 = 106 and CR = 103 as the field
is varied from E0 = 0.585 to E0 = 0.685. Experience with
the model suggests that these fields approximately represent
the range of feasible E0 for a meniscus of this size. Notice
that the low end of this range is somewhat larger than the
field corresponding to the turning point for the meniscus with
pr = 0, i.e., E0 ≈ 0.52, but not dramatically so. Figure 6(e)
depicts the emitted current over the same range normalized by
I∗, where I∗ = 477 nA for the prototype liquid, while Fig. 6(c)
shows the relationship between the normalized current I/I∗
and the feed impedance with E0 = 0.62 and B−1 = 106. Val-
ues of CR used to generate this data span several orders of
magnitude between CR = 3.3 × 106 (arbitrary cutoff) and a
value CR = 670 below which stationary solutions could not
be computed. Figure 6(d) elucidates the dependence of the tip
morphology on CR.

These suggest that the meniscus shape regularizes as B
becomes increasingly small and then varies only as a function
of the applied electric field while emitting a current of order
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FIG. 6. Select parametric characteristics in the high-field regime. Effects of the meniscus size [(a) and (d)], electric field [(b) and (e)], and
impedance [(c) and (f)] are represented. (a) Meniscus shapes for E0 = 0.7 and CR = 103. The meniscus size 1/B = 3.19, 4.26, 6.38, 17.0,
100, increasing in the direction of increasing elongation. A classical Taylor cone (dashed) provides spatial reference. (b) Meniscus shapes for
1/B = 106 and CR = 103. The electric field E0 = 0.585, 0.605, 0.625, 0.645, 0.665, 0.685, increasing in the direction of decreasing elongation.
A classical Taylor cone (dashed) provides spatial reference. (c) Electrical current for E0 = 0.62 and 1/B = 106 over a range of impedance.
(d) Radius of curvature at the meniscus tip for E0 = 0.7 and CR = 103 over a range of B. (e) Electrical current for 1/B = 106 and CR = 103

over a range of field. (f) Radius of curvature at the meniscus tip for E0 = 0.62 and 1/B = 106 over a range of impedance.

I∗ that may be the maximum which the source is capable of
supporting. The meniscus is initially blunt when B = O(1)
but begins to adopt a conic profile as the size is progressively
increased to the point at which the shapes are essentially
indistinguishable on the macroscopic scale of the base for all
B � 25 [Fig. 6(a)]. This is accompanied by an asymptotic re-
duction of the tip to a radius of order r∗ [Fig. 6(d)] and current
of order I∗. Conduction ensures that subsequent changes to
the field are met with linear variations of the latter [Fig. 6(e)],
congruent with many empirical observations [10,11]. The
pressure relationship p = pr − ICR requires that these result
in a change to the liquid pressure on the plate. As the field
and the current both increase, this is manifested as a decrease
is in the elongation of the meniscus which makes it appear as
though it is being slowly “sucked” back in the direction of the
plane z = 0 [Fig. 6(b)]. Unlike the field, the feed impedance
is found to influence the current of the source but not its
macroscopic shape. Closer inspection reveals this interesting
finding to be a byproduct of subtle changes to the microscopic
morphology of the tip. The tip sharpens or dulls as needed
to supply the necessary charge, and this apparently provide
a mechanism for controlling the total current with minimal
effect on the overall shape [Fig. 6(f)]. The macroscopic invari-
ance implies that the pressure of the liquid emerging from the
tube p = −ICR is fixed over the range of CR considered and

it follows that the current must vary in inverse proportion to
the impedance [Fig. 6(c)]. This is potentially a useful tool for
regulating the brightness of the source. There may however
be limits on the extent to which it is feasible since stationary
solutions could not be computed as CR approached a threshold
value for which the current was not much larger than I∗. A
possible explanation is that this is symptomatic of a tip which
can be no smaller than r∗. Insofar as a droplet with B ∼ 1 can
be taken as a proxy for the tip of a much larger meniscus, the
findings of Higuera strongly support this notion [31]. Given
that the pressure of the liquid on the plate p is of order unity, if
this is indeed the case it would imply that stationary solutions
necessarily require CR = O(εB−3/2) to ensure that the current
remains within feasible limits, i.e., of order I∗ or smaller.

VI. CONCLUSIONS

A mathematical model has been formulated to describe the
behavior of an electrified ionic liquid meniscus undergoing
evaporation of ions. The meniscus is attached to a liquid feed
system that serves as a proxy for the needles and capillary
tubes commonly used in electrospray practice. The amenabil-
ity of the ionic liquid 1-ethyl-3-methylimidazolium tetraflu-
oroborate to pure ion evaporation is well established. The
model is used to study the stationary properties of a prototype
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liquid of similar character over a range of empirically relevant
conditions. These include the size of the meniscus, the applied
electric field, and the impedance of the feed system. Two
distinct solution families are identified when the meniscus
is large in comparison to a characteristic length scale for
emission. The first belongs to a regime of low electric field
and is typified by a relatively blunt “egglike” meniscus that
does not emit charge. The second belongs to a regime of
high electric field in which a sharp meniscus supports ion
evaporation from its tip. This meniscus is “conelike” but still
deviates substantially from a perfect 49.2◦ Taylor cone. In this
regime the results indicate that the meniscus is hydrostatic
and that only a small portion of the tip is active in the
emission of charge. The surface of the meniscus is electrically
shielded outside of the active region and depleted of interfacial
charge within it, such that the local behavior is analogous
to that of a dielectric. The effects of convection are tenuous
and conduction dominates. Variations in electric current are
therefore linear with respect to the applied field. Increases to
the field increase the current and reduce the hydrostatic pres-
sure of the meniscus, leading to a reduction of its elongation
(height). Unlike the field, the feed impedance influences the
current but does not control the macroscopic shape of the
meniscus. Microscopic changes to the morphology of the tip
are instead responsibly for regulating the outflow of charge.

The sharpness of the tip and therefore the current are inversely
related to the impedance in a way that ensures invariance of
the liquid pressure, indicating that the meniscus shape is a
function of only the applied electric field. The current can
be increased by modulating the feed impedance only until
it is of the maximum characteristic order, corresponding to
the minimum characteristic tip size, at which point stationary
solutions begin to lose tenability.

Future work should strive to incorporate dynamics in the
model and investigate various instabilities to identify solutions
that are physical. The effects of space charge, albeit tenuous,
should also be investigated to better quantify their significance
in relation to other important facets of the source. Empir-
ical corroboration is also of critical importance and direct
meniscus visualizations are expected to be indispensable in
this regard. Efforts to obatain these will, however, necessitate
very careful experimental planning and execution since μm-
scale menisci and their sub-μm-scale features present inherent
imaging challenges.
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