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The settlement of reef-building corals is critical to the survival

and recovery of reefs. Recent evidence indicates that coral

larvae orient towards reef sound, yet the components of the

acoustic environment that may attract coral larvae and induce

settlement are unknown. Here we investigated the effects of

ambient soundscapes on settlement of Porites astreoides coral

larvae using in situ chambers on reefs differing in habitat

quality (coral and fish abundance). Mean larval settlement was

twice as high in an acoustic environment with high levels of

low-frequency sounds, typical of a high-quality, healthy reef;

this result was observed in both natural light and dark

treatments. Overall, the enhancement of coral settlement

by soundscapes typical of healthy reefs suggests a positive

feedback where soundscape properties of reefs with elevated

coral and fish abundance may facilitate coral recruitment.
1. Introduction
Distributions of bottom-dwelling marine organisms are not

random, and, in part, this is driven by differences in the supply

and settlement of reproductive propagules (i.e. larvae). Most

marine invertebrates with sessile juvenile and adult life stages,

including reef-building corals, produce planktonic larvae whose

settlement into a favourable habitat is critical to the maintenance

and growth of adult populations. For these organisms, larval
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habitat selection and settlement are key life-history processes [1]. Settlement of planktonic coral larvae onto a

suitable habitat is a determinant of future survival in corals and the biodiverse reef habitats they support

[1,2]. Despite their small size and biological simplicity relative to many fish, crustacean and mollusc

larvae (e.g. single larval development stage, lack of organs, no specialized swimming appendages), coral

larvae display a range of behavioural and settlement responses to a combination of habitat-related

physical, chemical and biological variables [3]. While poor swimming ability precludes the capacity to

navigate horizontally to reefs against currents, detection of and responses to habitat cues confers some

degree of active habitat selection by larvae at settlement, and this sensory capability increases the

probability of successful coral recruitment [3,4].

Coral planulae respond to physical variables such as light and pressure, possibly facilitating their encounter

with the substrate and the selection of favourable depths and light regimes in which to settle [5–7]. Reef water-

and substrate-borne chemical cues, produced by resident organisms (e.g. algae, microbes, conspecifics), as well

as local substrate properties such as texture and colour, are also known to influence coral larval settlement rates

[5,8,9]. However, experiments investigating particular settlement cues often occur in laboratory environments,

with cues in isolation, and not necessarily at ecologically relevant levels of stimuli. A major deficit in

understanding the environmental drivers of settlement is translating the effects of a single cue to the

ambient environment where larvae respond to complex cuescapes [3].

Biological and physical acoustic cues emanating from potential settlement sites can provide larvae with

relevant sensory information complementary to the local substrate and water properties. Soundscape

variation has been found to influence reef-fish and crustacean settlement [10–12], but its role in coral

settlement is less understood. An initial behavioural study carried out in Curaçao showed that larvae of

the reef-building coral Orbicella faveolata moved toward speakers playing reef sounds [13]. A field

experiment using the same species and location examined coral settlement in relation to three reef

soundscapes and revealed increased coral settlement under exposure to higher levels (5–10 dB) of low-

frequency (25–1000 Hz) reef sounds [14], but light level variation at the sites was not controlled for and

may have also impacted settlement patterns. Further, reef community characteristics, such as the benthic

cover and fish assemblages, were not concomitantly quantified, thus limiting the interpretation of

relationships between reef quality, soundscapes and settlement. Overall, these two initial works provide

evidence that coral larvae can respond to reef soundscape elements, but relating the salient reef sounds to

local reef characteristics and controlling for other environmental cues is needed to better understand the

role of acoustic cues in coral settlement. This study investigated the effects of ambient (i.e. natural)

soundscapes on the settlement responses of Porites astreoides coral larvae at well-characterized reef sites

while testing for the light dependence of the acoustic cues. The aim was to expand upon the previous

study of soundscape effects on coral settlement, using larvae of a common coral species in the Caribbean

[15] and reefs with established links between soundscapes and community characteristics.
2. Material and methods
2.1. Coral collections, spawning and larval chambers
Eight colonies of the brooding coral Porites astreoides were collected on reefs off the island of St John, in the US

Virgin Islands (18.313848 N, 64.764398 W) on 22 June 2017 from 10 m depth. These broodstock colonies were

not collected at the experimental test sites but rather an adjacent reef outside the Virgin Islands National Park

where we were permitted for coral collection. Prior to the field tests, colonies were maintained in a shaded

outdoor ambient seawater-supplied aquarium. Six coral colonies spawned overnight during the July new

moon (22–24 July) and larvae were collected each morning and maintained in 0.2 mm filtered seawater.

Larval production ranged from 53 to 388 larvae over three nights. On 25 July, larvae from all colonies and

spawning nights were pooled, and 18 groups of 55 actively swimming larvae were selected (990 total

larvae). Groups were randomly assigned to one of nine light or nine dark 140 ml polypropylene

chambers (preconditioned with reef water for one month) filled with 0.7 mm filtered seawater to remove

zooplankton grazers but retain seawater bacteria and smaller phytoplankton.

Each chamber contained two preconditioned (one month) settlement surfaces: a clay stilt (3.8 cm

diameter) and a red cable tie (10.2 cm length; shown in an earlier study [16] to attract settling coral

larvae). While these surfaces do not represent naturalistic substrate, such as coral rubble or crustose

coralline algae, for coral larvae to encounter, they were selected to provide standardized substrate and

surface area across treatments and to limit the influence of other (i.e. chemical) cues. Light chambers were

transparent, allowing ambient light ingress, while dark chambers were identical to light chambers except



Table 1. Description of study sites, including benthic coverage, fish abundance and ambient light environment recorded during
the experiments.

characteristic Tektite Reef Cocoloba Reef off-reef sand

benthic coverageb

(mean+ s.d. %)

hard coral 27.0+ 5.2 6.5+ 4.5 0

soft coral 1.0+ 1.1 5.2+ 2.1 0

sponge 13.7+ 1.0 0.5+ 0.5 0

macroalga 41.2+ 1.1 55.8+ 10.6 12.3+ 6.0

cyanobacterial mats 5.7+ 5.5 0.5+ 1.2 0

sand 2.7+ 2.4 28.0+ 13.0 87.7+ 6.0

rubble 7.5+ 14.2 1.3+ 1.8 0

othera 1.3+ 1.0 2.2+ 2.2 0

fishc mean abundance (+s.d.) 165.7+ 76.2 51.0+ 16.9 10.0+ 6.6

species richness 36 21 2

ambient daytime light lux (mean+ s.d.) 1170+ 872 1525+ 1253 7340+ 6753
aOther category includes hydroids, dead coral and pavement.
bSix benthic survey transects were conducted at each site.
cThree fish video transects were conducted at each site.
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externally covered with black tape to prevent light penetration. Absolute light levels and quality were not

measured during experiments, as the aim here was not to create specific light treatments or investigate

effects of light on the settlement, but rather to control for any between-site light differences and test

whether the presence or absence of light would influence responses to potential acoustic cues.

2.2. Settlement experiments
Following larval addition, three light and three dark settlement chambers were each affixed to a 0.75 m

vertical pole deployed at three sites: Tektite Reef (18.309628N, 64.722188W), Cocoloba Reef (18.315288N,

64.760658W) and an off-reef sand site with no reef structure within 100 m (18.317898 N, 64.750598 W) (table 1

and figure 1c). Sites differed in biophysical habitat characteristics (table 1) known to influence soundscape

properties [17]. The experimental set-up included acoustic recorders (SoundTrap ST-300, Ocean Instruments

NZ), recording continuously at 48 kHz, and temperature/light loggers (HOBO Pendant UA-002, Onset

Corporation). A recorder and HOBO logger were affixed at the top of each experimental pole, approximately

0.75 m above the seafloor. The chambers and instruments were secured 0.2–0.5 m above the seafloor in

7–10 m water depth (figure 1c). Light sensors were positioned facing upward and sampled every 10 min.

The six chambers on each pole were positioned in random vertical order, alternating the side of the pole to

which they were affixed so that no chamber was directly above another, to limit shading effects. For the reef

sites, the experimental set-up was placed in the approximate centre of the reef structure.

Larvae were completely isolated within settlement chambers, allowing exposure to ambient sounds

(polypropylene plastics have high acoustic transparency with attenuation between 0.24 and 0.5 dB mm21

[18]) while preventing exposure to other water-borne habitat cues (e.g. reef water chemicals). Chambers

were recovered after 62 h and maintained in seawater tables during the 6-h processing period in which

settled corals were enumerated. The use of static filtered seawater was necessary to isolate putative

acoustic cues from water-borne cues. While this may present concerns about coral larval health, previous

coral larval rearing and laboratory experiments have used static culturing techniques with far higher

densities over similar time periods without water quality or mortality issues [13,14]. In our study,

unsettled actively swimming larvae were still present, suggesting that conditions remained sufficient for

larval survival. We did not detect dead larvae or particulate matter from decaying larvae in the chambers,

further indicating that chamber conditions were suitable for the survival of the larvae.

2.3. Soundscape and habitat characterization
Acoustic recordings were analysed to compare the experimental soundscapes, initially by examining

acoustic spectra (sound power as a function of frequency). Digital recording samples were analysed
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Figure 1. Larval settlement varied according to site and sound pressure level. Photographs of study sites (a) Tektite Reef, (b) Cocoloba
Reef and (c) off-reef sand with experimental set-up. (d ) Squares represent mean (+s.d.) larval settlement in the light and dark chambers
(left axis), with symbol plus (þ) indicating settlement values for each replicate. Settlement was significantly higher at Tektite compared
with the other sites, in both the dark and light treatments (two-way ANOVA, p , 0.01, ‘a’ versus ‘b’). Circles indicate mean sound pressure
levels (SPL+ s.d.) in the low-frequency band (right axis) during the experiment, with the line signifying the SPL trend.
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using MATLAB code written to compare the acoustic characteristics of the three sites for the duration of the

experiment. Frequency composition of the ambient soundscapes was compared using acoustic spectra

(sound power as a function of frequency) across measured frequencies (50–20 000 Hz). Mean power

spectral densities were estimated (Hamming window, non-overlapping 0.5-s windows) within 1-min

samples across the total experiment length (62 h). Root-mean-square (RMS) sound pressure levels (SPL;

dB re 1 mPa) were calculated for each site in the 1-min samples, within two frequency bands of interest.

The lower analysis band (50–1000 Hz) contains the majority of fish-produced acoustic signals, as well as

noise generated by wind and waves, while the higher analysis band (1000–20 000 Hz) primarily

represents the acoustic energy derived from invertebrate sounds (e.g. snapping shrimp) [17].

Additionally, to assess differences in acoustic variables between study sites in more detail, values of RMS

octave-band levels (dB re 1 mPa; centroid frequencies at 62.5, 125, 250, 500, 1000, 2000, 4000, 8000 and 16

000 Hz) were generated for each 1-minute sample and a Kruskal–Wallis test was applied to test the

effect of experimental site on octave-band levels. Because reef soundscapes exhibit diel variability,

spectrograms were produced to further visually characterize acoustic differences between sites.

Benthic cover and fish diversity and abundance at the sites were characterized during July 2017 using

SCUBA-based visual surveys as previously described [17]. Benthic surveys included six 10 m-long

transects, with benthic cover recorded every 10 cm. For fish, three 30 m-long, 2 m-wide video transects

were performed at each site, with fish enumerated and identified. Fish abundances were calculated as

the total number per transect, and fish species richness was the total number of species identified at

each site. Fish were infrequent and in low abundance at the off-reef sand site, and thus the occasional

fish was counted, identified by the diver and recorded underwater.



Table 2. Summary of coral settlement two-way ANOVA statistical comparisons and Tukey’s pairwise comparisons. (d.f., degrees of
freedom; sum Sq, sum of squares; Dm, difference of means).

test d.f. sum Sq F-value p-value

reef 2 880 11.0 0.002*

light/dark 1 80 2.0 0.182

pairwise comparisons

comparison Dm p q p-value

Tektite versus Cocoloba, light and dark 15.0 3 5.82 0.004*

Tektite versus off-reef sand, light and dark 14.7 3 5.68 0.005*

Off-reef sand versus Cocoloba, light and dark 0.33 3 0.13 0.996

Tektite versus off-reef sand, light only 15.3 3 4.20 0.029*

Tektite versus Cocoloba, light only 14.0 3 3.84 0.046*

Cocoloba versus off-reef sand, light only 1.33 3 0.37 0.964

Tektite versus Cocoloba, dark only 16.0 3 4.39 0.023*

Tektite versus off-reef sand, dark only 14.0 3 3.84 0.046*

Off-reef sand versus Cocoloba, dark only 2.0 3 0.55 0.921

*p , 0.05.
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3. Results
3.1. Larval settlement greatest on reef with abundant fish and coral
Coral larvae settled in all chambers, primarily on clay stilts (5–43 chamber21) with minimal settling on

red zip ties or chamber walls (0–4 chamber21). Larval settlement differed significantly by site (two-way

ANOVA, F2,12 ¼ 11.021, p , 0.01; table 2) and was significantly greater for chambers at Tektite Reef

compared with Cocoloba Reef and the off-reef sand site, irrespective of the light environment

(Tukey’s pairwise comparisons, difference of means ¼ 14.0–16, p , 0.05; table 2). Tektite Reef also had

the highest coral and fish abundance and diversity (table 1), compared with Cocoloba Reef and the

off-reef sand site (figure 1). The elevated settlement at Tektite Reef compared to the other sites was

approximately two times higher in the natural light treatment and two to three times higher in the

dark treatment (figure 1d ). Notably, the standard deviations were generally smaller in the dark than

light treatments for all sites.
3.2. Soundscape differed between sites during experiment
Sound levels differed significantly between experimental sites across frequencies (figure 2a, octave-band

analysis: Kruskal–Wallis, p , 0.001). Tektite Reef was highest in lower-frequency acoustic amplitudes.

Low frequencies on coral reefs tend to reflect higher fish abundance and diversity and are also the

frequencies sensitive to many marine invertebrates [17,19,20]. Higher frequency sounds, indicative of

snapping shrimp, were greatest at Cocoloba Reef (figure 2d ). The Tektite Reef soundscape differed

from the other sites predominantly with a notable peak in acoustic power between 300 and 800 Hz

(figure 2a). Cocoloba Reef and the off-reef site showed a similar frequency composition (figure 2a),

with broad peaks in spectra from 100 to 300 Hz and 2 to 10 kHz, but Cocoloba Reef was

approximately 10 dB (ca 3�) louder.

Temporal trends reveal marked acoustic differences among sites (figure 2b). In the lower-frequency,

fish-dominated band, Tektite Reef demonstrated crepuscular chorusing, with increased activity

throughout the daytime (figure 2b(i)); this fish chorusing was less evident at Cocoloba Reef and

absent off-reef (figure 2b(ii,iii)). In the high-frequency snapping-shrimp band, Cocoloba Reef and the

off-reef site showed strong crepuscular peaks and night-time dominance while Tektite Reef exhibited

asymmetrical peaks (figure 2b). Overall, reef soundscapes were higher in sound levels at all

frequencies (figure 2c) compared with the off-reef site, and Tektite Reef showed the highest sound

levels in the fish-dominant frequency band.
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Figure 2. Inter-site variation in soundscape characteristics during settlement experiments. (a) Acoustic power spectra (dark lines denote
median, light lines, interquartile range) showing different spectral shapes at Tektite Reef compared to Cocoloba Reef and the off-reef site
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4. Discussion

This field experiment was designed to test the effect of habitat-related soundscape variability on the

larval settlement of a common Caribbean brooding coral Porites astreoides. Our data establish that

soundscape variation can influence coral settlement in this species, regardless of light environment,

and demonstrate highest larval settlement under exposure to the soundscape of a healthier reef

environment, with abundant hard corals, sponges and fishes. Previously, larvae of the free-spawning

coral Orbicella faveolata were found to orient and move towards reef sound [13] and to show a

settlement response corresponding to reef soundscape levels in a low-frequency band (25–1000 Hz)

[14]. Similarly, the enhanced larval settlement at Tektite Reef appears most likely related to the

soundscape differences present in lower frequencies which typically include many fish calls [21].

Indeed, fish abundance and diversity were higher at Tektite Reef. Interestingly, a graded settlement

response to the SPL in the low-frequency band (50–1000 Hz) was not detected, i.e. Cocoloba Reef did

not generate settlement levels between those observed at Tektite Reef and the off-reef site. Still,

Cocoloba Reef and the off-reef site soundscapes differed primarily in sound intensity rather than any

other obvious spectral or temporal qualities (e.g. same spectral shapes, figure 2a). This implies that the

acoustic driver of larval response to the Tektite Reef soundscape was more specific than simply higher

sound levels, and could have resulted from the sounds of specific fish (e.g. the 300–800 Hz peak)

and/or the strong crepuscular chorusing that were both absent from the Cocoloba Reef and off-reef

sites. An alternative possibility is that coral larvae may only respond to low-frequency (50–1000 Hz)

acoustic cues above a certain intensity threshold. This would also lead to the results we observed if

the threshold intensity fell between that of Tektite Reef and Cocoloba Reef. Distinguishing between

the two possible drivers of the observed results (fish calls or intensity threshold) warrants further study.

Together, the habitat surveys, acoustic monitoring and settlement results indicate a possible link between

habitat quality, soundscape and coral settlement whereby diverse and abundant soniferous communities

may provide cues for settling corals. However, precisely which acoustic cues are important and whether

variation in their levels or diel patterns affect settlement remain open questions. Moreover, while this

study expands knowledge of coral settlement processes by establishing that soundscape cues can

influence settlement for a coral species with a brooding reproductive strategy, the roles of genetic

variation, parental effects and local adaptation in this larval response are unknown. Further work is

needed to test how widely applicable acoustic settlement cues are across coral species and geographies.

Coral larval settlement was enhanced at Tektite Reef both in the dark and ambient light treatments,

suggesting that the soundscape is a cue used both in the natural light and dark environments. While

settlement responses to soundscape variation were found irrespective of light environment, the influence

of soundscape was most pronounced when coral larvae were required to settle in the dark. Sound may be

a particularly important cue in light-limited environments such as at night or on mesophotic reefs and is

a compelling avenue for future settlement cue investigation. Owing to the nature of the light scattering

environment, our study sites did differ in light intensity, but this variation did not appear to relate to

observed settlement patterns. There also tended to be greater standard deviations under natural light

compared with dark conditions. Perhaps this was related to the naturally varying light cue, or perhaps

there is an interaction of light and sound conditions. Further study would be needed to disentangle the

individual and synergistic effects of these variables. To our knowledge, no previous studies have

examined coral settlement in darkness, and here we demonstrate that the settlement of algal symbiont-

bearing corals can indeed occur in darkness. Coral larvae are known to have settlement preference for

particular light intensities [22] and spectral qualities [7], and future multifactorial experiments are needed

to establish the relative influences of light and acoustic properties on coral settlement. In addition,

experiments to identify diel patterns of coral settlement (i.e. does settlement occur continuously or

preferentially at night or day?) are essential to inform hypotheses about which soundscape elements may

be important and how these cues interact with the light regime.

Overall, we demonstrate that increased coral settlement occurs in the presence of a low-frequency,

fish-chorus dominated soundscape. Such a soundscape is often representative of a healthier, more

diverse reef. Further, the influence of the soundscape is important to coral larvae independent of light

environment. The coral larvae in this study appear to respond to the soundscape of a favourable

settlement site, shown here to be a reef with higher sound levels in fish calling acoustic frequencies.

This suggests a positive feedback loop where reefs of higher coral cover and fish abundance generate

soundscapes best suited to attract coral larvae, which in turn sustain the healthy coral community and

habitat for fish (similar to a mechanism proposed for fish [23]). It follows that reefs in poor health

could struggle to attract the coral recruits needed for recovery. Yet, with further work to establish the
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relevant cues, playback treatments of low-frequency reef-fish communities could be employed in

restoration schemes. While relationships between reef quality and soundscape have been previously

documented [17,24], this study provides new details on the relationship between reef habitat and

biota, the soundscape, light environment and coral settlement. Given that reefs face increasing

anthropogenic pollution, including noise [25] and soundscape alteration through habitat degradation

[23], understanding the role of sound-mediated settlement in coral recruitment may be critical to

enhancing coral populations and conserving reefs.
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