
Physics-based machine learning
and data-driven reduced-order modeling

by

Renee C. Swischuk
B.sc., Texas A&M University (2017)

Submitted to the Center for Computational Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Computation for Design and Optimization

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Center for Computational Engineering

May 22, 2019
Certified by. .

Karen Willcox
Visiting Professor of Aeronautics and Astronautics

Thesis Supervisor
Certified by. .

Boris Kramer
Postdoctoral Research Associate

Department of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Youssef Marzouk

Associate Professor of Aeronautics and Astronautics
Director, Center for Computational Engineering

2

Physics-based machine learning

and data-driven reduced-order modeling

by

Renee C. Swischuk

Submitted to the Center for Computational Engineering
on May 22, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Computation for Design and Optimization

Abstract

This thesis considers the task of learning efficient low-dimensional models for dynam-
ical systems. To be effective in an engineering setting, these models must be pre-
dictive – that is, they must yield reliable predictions for conditions outside the data
used to train them. These models must also be able to make predictions that enforce
physical constraints. Achieving these tasks is particularly challenging for the case of
systems governed by partial differential equations, where generating data (either from
high-fidelity simulations or from physical experiments) is expensive. We address this
challenge by developing learning approaches that embed physical constraints.

We propose two physics-based approaches for generating low-dimensional pre-
dictive models. The first leverages the proper orthogonal decomposition (POD) to
represent high-dimensional simulation data with a low-dimensional physics-based pa-
rameterization in combination with machine learning methods to construct a map
from model inputs to POD coefficients. A comparison of four machine learning meth-
ods is provided through an application of predicting flow around an airfoil. This
framework also provides a way to enforce a number of linear constraints by modifying
the data with a particular solution. The results help to highlight the importance of
including physics knowledge when learning from small amounts of data.

We also apply a data-driven approach to learning the operators of low-dimensional
models. This method provides an avenue for constructing low-dimensional models of
systems where the operators of discretized governing equations are unknown or too
complex, while also having the ability to enforce physical constraints. The method-
ology is applied to a two-dimensional combustion problem, where discretized model
operators are unavailable. The results show that the method is able to accurately
make predictions and enforce important physical constraints.

Thesis Supervisor: Karen Willcox
Title: Visiting Professor of Aeronautics and Astronautics

3

Thesis Supervisor: Boris Kramer
Title: Postdoctoral Research Associate
Department of Aeronautics and Astronautics

4

Acknowledgments

I would like to thank Professor Karen Willcox for this amazing opportunity and all

her help along the way. I would also like to thank Boris Kramer. This work would

not have been possible without the two of you. I’d like to dedicate this thesis to Brian

Burrows and our dog Daisy, who moved from warm sunny Texas to keep me company

in Boston.

5

6

Contents

1 Introduction 21

1.1 Machine learning . 21

1.2 Reduced-order modeling . 23

1.3 Motivation and thesis outline . 24

2 Physics-based machine learning 27

2.1 A physics-inspired parameterization of physical fields 27

2.1.1 Numerical approximation of physical fields 27

2.1.2 Computing the POD basis . 28

2.1.3 Parameterizing physical fields in the POD basis 29

2.1.4 Enforcing physical constraints in POD parameterizations . . . 30

2.1.5 Particular solution illustrative example 32

2.1.6 Particular solution extensions 34

2.2 Machine learning methods . 37

2.2.1 Learning problem setup . 38

2.2.2 Neural network . 38

2.2.3 Multivariate polynomial regression 40

2.2.4 k-nearest-neighbors model . 40

2.2.5 Decision tree regression model 41

2.3 Aerodynamic example . 42

2.3.1 Problem setup: Predicting the flow over an airfoil 42

2.3.2 Aerodynamic results . 43

2.4 Conclusion . 46

7

3 Learning structured reduced-order models 53

3.1 Operator inference . 53

3.1.1 Problem setup . 54

3.1.2 Least-squares problem . 57

3.1.3 Implementation details . 58

3.2 Transformation of variables . 59

3.3 Using particular solutions to enforce physical constraints 60

3.3.1 Enforcing physical constraints within operator inference 60

3.3.2 Summary of algorithm . 63

3.3.3 Particular solution illustrative example 64

3.4 Combustion application . 69

3.4.1 Governing equations . 69

3.4.2 Computational domain . 74

3.4.3 The GEMS dataset . 75

3.4.4 Learning framework: Quadratic reduced-order model 77

3.4.5 Implementation details . 79

3.4.6 Results . 82

3.5 Conclusion . 102

4 Conclusion and future work 103

4.1 Conclusion . 103

4.2 Future work . 103

A Additional pressure time traces 105

A.1 Monitor location 2 . 105

A.1.1 Training with 2500 snapshots 105

A.1.2 Training with 5000 snapshots 107

A.1.3 Training with 7500 snapshots 108

A.1.4 Training with 10000 snapshots 109

A.2 Monitor location 3 . 110

A.2.1 Training with 2500 snapshots 110

8

A.2.2 Training with 5000 snapshots 111

A.2.3 Training with 7500 snapshots 112

A.2.4 Training with 10000 snapshots 113

A.3 Monitor location 4 . 114

A.3.1 Training with 2500 snapshots 114

A.3.2 Training with 5000 snapshots 115

A.3.3 Training with 7500 snapshots 116

A.3.4 Training with 10000 snapshots 117

B Specific volume formulation of the Euler equations 119

9

10

List of Figures

2-1 Heated rod example: Auxiliary solutions q̄0 (left) and q̄𝐿 (center) used

to create the particular solution, and snapshot mean (right). 34

2-2 Heated rod example: Time averaged errors in prediction of the tem-

perature field over the spatial domain. For comparison, we compute

the POD basis and coefficients using three different snapshot matrices:

the original snapshot matrix (dash dot), the snapshots with a par-

ticular solution subtracted (solid), and the snapshots with the mean

subtracted (dash). 35

2-3 Structure of a neural net with a two dimensional input, two hidden

layers and a one dimensional output. 38

2-4 Inputs and output quantity of interest for the aerodynamic example.

High-fidelity CFD solver (top) and low-dimensional model (bottom). . 42

2-5 POD singular values and relative cumulative energy for the airfoil pres-

sure field snapshot set. 44

2-6 True pressure field (a) and predictions using POD in combination with

four machine learning methods (b)-(e). 48

2-7 The absolute error field produced by predictions using POD in combi-

nation with four machine learning methods. 49

2-8 The mean absolute error (MAE) over all lift coefficients when making

predictions of a pressure field for a Mach number that has been held

out during training. Each whisker shows the minimum, mean and

maximum MAE. 50

11

2-9 Time comparison for training and prediction using four different ma-

chine learning methods. 51

3-1 True temperature fields over time (top left), predicted temperature

fields from the learned reduced-order models over time (top right), and

the absolute error of predicted temperature fields over time (bottom).

Each one-dimensional temperature field solution is a horizontal line

stacked vertically in time and colored according to the temperature.

The black line denotes where the training ends and testing begins. . . 67

3-2 Time averaged errors in prediction of the temperature field over the

spatial domain. For comparison, we compute the POD basis and coef-

ficients using three different snapshot matrices: the original snapshot

matrix (dash dot), the snapshots with a particular solution subtracted

(solid), and the snapshots with the mean subtracted (dash). 68

3-3 A single injector combustor showing the computational domain [67]. . 74

3-4 The computational domain and state variable monitor locations. . . 75

3-5 A snapshot of pressure and temperature at time 𝑡 = 0.0159999𝑠. . . . 76

3-6 The condition number of the original data matrix, D, vs. basis size for

different sized training sets. 81

3-7 The cumulative energy (top left), relative projection error (top right)

and L-curve for 𝑟 = 5 (bottom left) and 𝑟 = 8 (bottom right) for first

2500 snapshots. 84

3-8 Pressure time traces for basis size of 𝑟 = 5. Training with 2500 snap-

shots. Black vertical line denotes the end of the training data and the

beginning of the test data. 85

3-9 Pressure time trace for basis size of 𝑟 = 8. Training with 2500 snap-

shots. Black vertical line denotes the end of the training data and the

beginning of the test data. 85

12

3-10 The cumulative energy (top left), relative projection error (top right)

and L-curve for 𝑟 = 9 (bottom left) and 𝑟 = 15 (bottom right) for first

5000 snapshots. 87

3-11 Pressure time traces for basis size 𝑟 = 9. Training with 5000 snap-

shots. Black vertical line denotes the end of the training data and the

beginning of the test data. 87

3-12 Pressure time traces for basis size of 𝑟 = 15. Training with 5000

snapshots. Black vertical line denotes the end of the training data and

the beginning of the test data. 88

3-13 The cumulative energy (top left), relative projection error (top right)

and L-curve for 𝑟 = 13 (bottom left) and 𝑟 = 22 (bottom right) for

first 7500 snapshots. 90

3-14 Pressure time traces for basis size 𝑟 = 13. Training with 7500 snap-

shots. Black vertical line denotes the end of the training data and the

beginning of the test data. 90

3-15 Pressure time traces for basis size of 𝑟 = 22. Training with 7500

snapshots. Black vertical line denotes the end of the training data and

the beginning of the test data. 91

3-16 The cumulative energy (top left), relative projection error (top right)

and L-curve for 𝑟 = 17 (bottom left) and 𝑟 = 29 (bottom right) for

first 10000 snapshots. 93

3-17 Pressure time traces for basis size 𝑟 = 17. Training with 10000 snap-

shots. Black vertical line denotes the end of the training data and the

beginning of the test data. 93

3-18 Pressure time traces for basis size of 𝑟 = 29. Training with 10000

snapshots. Black vertical line denotes the end of the training data and

the beginning of the test data. 94

3-19 Normalized absolute error (3.69) of each species vs. basis size averaged

over the spatial domain at the last time step of training data. Training

with 10000 snapshots. 95

13

3-20 Relative error (3.68) of pressure and temperature vs. basis size av-

eraged over the spatial domain at the last time step of training data

(top). Absolute error (3.70) of 𝑥 and 𝑦 velocity vs. basis size averaged

over the spatial domain at the last time step of training data (bottom).

Training with 10000 snapshots. 96

3-21 Integrated species at each time step for different basis sizes. Training

with 10000 snapshots. 97

3-22 Predictive results for pressure at the last time step of training data.

Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization

set to 𝜆 = 3.0E+04. 98

3-23 Predictive results for 𝑥 velocity at the last time step of training data.

Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization

set to 𝜆 = 3.0E+04. 98

3-24 Predictive results for 𝑦 velocity at the last time step of training data.

Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization

set to 𝜆 = 3.0E+04. 99

3-25 Predictive results for temperature at the last time step of training data.

Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization

set to 𝜆 = 3.0E+04. 99

3-26 Predictive results for CH4 molar concentration at the last time step of

training data. Training with 10000 snapshots, a basis size of 𝑟 = 29

and regularization set to 𝜆 = 3.0E+04. 100

3-27 Predictive results for O2 molar concentration at the last time step of

training data. Training with 10000 snapshots, a basis size of 𝑟 = 29

and regularization set to 𝜆 = 3.0E+04. 100

3-28 Predictive results for CO2 molar concentration at the last time step of

training data. Training with 10000 snapshots, a basis size of 𝑟 = 29

and regularization set to 𝜆 = 3.0E+04. 101

14

3-29 Predictive results for H2O molar concentration at the last time step of

training data. Training with 10000 snapshots, a basis size of 𝑟 = 29

and regularization set to 𝜆 = 3.0E+04. 101

A-1 Pressure time traces for basis size of 𝑟 = 5 at location 2. Training with

2500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 105

A-2 Pressure time trace for basis size of 𝑟 = 8 at location 2. Training with

2500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 106

A-3 Pressure time traces for basis size of 𝑟 = 9 at location 2. Training with

5000 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 107

A-4 Pressure time trace for basis size of 𝑟 = 15 at location 2. Training with

5000 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 107

A-5 Pressure time traces for basis size of 𝑟 = 13 at location 2. Training

with 7500 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 108

A-6 Pressure time trace for basis size of 𝑟 = 22 at location 2. Training with

7500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 108

A-7 Pressure time traces for basis size of 𝑟 = 17 at location 2. Training with

10000 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 109

A-8 Pressure time trace for basis size of 𝑟 = 29 at location 2. Training with

10000 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 109

15

A-9 Pressure time traces for basis size of 𝑟 = 5 at location 3. Training with

2500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 110

A-10 Pressure time trace for basis size of 𝑟 = 8 at location 3. Training with

2500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 110

A-11 Pressure time traces for basis size of 𝑟 = 9 at location 3. Training with

5000 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 111

A-12 Pressure time trace for basis size of 𝑟 = 15 at location 3. Training with

5000 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 111

A-13 Pressure time traces for basis size of 𝑟 = 13 at location 3. Training

with 7500 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 112

A-14 Pressure time trace for basis size of 𝑟 = 22 at location 3. Training with

7500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 112

A-15 Pressure time traces for basis size of 𝑟 = 17 at location 3. Training with

10000 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 113

A-16 Pressure time trace for basis size of 𝑟 = 29 at location 3. Training with

10000 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 113

A-17 Pressure time traces for basis size of 𝑟 = 5 at location 4. Training with

2500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 114

A-18 Pressure time trace for basis size of 𝑟 = 8 at location 4. Training with

2500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 114

16

A-19 Pressure time traces for basis size of 𝑟 = 9 at location 4. Training with

5000 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 115

A-20 Pressure time trace for basis size of 𝑟 = 15 at location 4. Training with

5000 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 115

A-21 Pressure time traces for basis size of 𝑟 = 13 at location 4. Training

with 7500 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 116

A-22 Pressure time trace for basis size of 𝑟 = 22 at location 4. Training with

7500 snapshots. Black vertical line denotes the end of the training data

and the beginning of the test data. 116

A-23 Pressure time traces for basis size of 𝑟 = 17 at location 4. Training with

10000 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 117

A-24 Pressure time trace for basis size of 𝑟 = 29 at location 4. Training with

10000 snapshots. Black vertical line denotes the end of the training

data and the beginning of the test data. 117

17

18

List of Tables

3.1 Range of values for GEMS data. 77

19

20

Chapter 1

Introduction

To begin, we introduce the fields of machine learning in Section 1.1 and projection-

based model reduction in Section 1.2. We discuss the challenges faced in data-driven,

physics-based learning and how our two approaches address these challenges. Moti-

vation and an outline is provided in Section 1.3.

1.1 Machine learning

The goal in many machine learning algorithms is to learn a map from input data to

output data for prediction or classification, but can also include learning how data

are distributed or clustered, or learning important features of the data for dimension

reduction. Regardless of the task, machine learning can be divided into three main

paradigms: supervised, unsupervised, and reinforcement learning.

Supervised learning refers to learning a function from input to output data. The

data that the algorithm bases its learning on is referred to as training data. The

algorithm will learn a function that fits this training data well, then the algorithm can

be used to make predictions of output data given new, unseen input data. Regression

and classification are two examples of supervised learning, where classification refers

to the case when output data consists of discrete class labels and regression to the case

when output data are continuous. Common, state-of-the-art techniques for supervised

learning used in this thesis include Neural Networks [47], Decision trees [8], k-nearest

21

neighbors [51], and linear and polynomial regression [17]. There are many other

types of supervised learning algorithms in the literature of numerous science and

engineering fields, for example support vector machines, ensemble methods and naive

Bayes’ classifiers. For a review of supervised algorithms for classification see [60, 34, 1]

and for regression see [44, 17, 7].

Unsupervised learning refers to learning hidden structure when output data are

not available. Clustering is one of the most commonly used unsupervised learning al-

gorithms [19, 31]. The goal of clustering is to learn where clusters exist based on just

having input data. This can be especially useful when the data are high dimensional

and visualization is not available. One use of clustering could be to assign classifica-

tion labels based on the clusters when labels are not available. Another important

type of unsupervised learning is dimension reduction. In particular, principal com-

ponent analysis (PCA) [32], looks at the variation among input data to identify the

principal axis of the data. PCA is also known in the reduced-order modeling commu-

nity as proper orthogonal decomposition (POD) and in the stochastics community as

the Karhunen-Loéve (KL) expansion.

Reinforcement learning has aspects of both supervised and unsupervised learning.

This type of learning refers to a type of interactive learning, where a “learning agent”

explores a data space based on knowledge it has learned, and with each step forward,

an associated reward is given to the action, and this reward is used to determine the

next action to take. These types of algorithms learn as they explore their environment

and are often referred to as approximate dynamic programming algorithms [6]. The

basic aspects of reinforcement learning is to define a policy for how to behave, a

reward for defining the goal (maximize reward), and a value function that defines the

total reward in the long run. For an in-depth description of reinforcement learning

and state-of-the-art techniques see [61].

The applications of data-driven modeling and machine learning methods in an en-

gineering setting are incredibly vast. In the manufacturing industry, machine learning

is used to create intelligent manufacturing systems, or smart manufacturing, where

product life cycle data are collected and used to improve both the products and the

22

manufacturing process [46, 63]. Real-time data are also being used to perform predic-

tive maintenance and condition monitoring. In [66], a survey of condition monitoring

techniques using support vector machines is presented. A naive Bayes’ classifier for

condition monitoring of unmanned aircraft is presented in [10, 11, 12]. The work in

[62] uses real-time flight data to detect faulty aircraft sensors and provide corrected

flight data using k-nearest-neighbors and autocorrelation. In health care, applications

include real-time patient alerts and disease identification. In [68], fuzzy k-nearest-

neighbors is used to diagnose Parkinson’s disease in humans and image classification

is used to detect symptoms of diseases in plants with support vector machine based

classification [13] as well as deep neural network based classification [45]. Data-driven

network planning and design is another important area of research with applications

in aircraft scheduling [38], traffic prediction for route planning [39], and energy grid

management [15], to name a few.

1.2 Reduced-order modeling

Reduced-order modeling is a method for deriving efficient low-dimensional represen-

tations of high-fidelity models. Common application areas include those in which

the high-fidelity model is a discretization of governing partial differential equations

(PDEs). In this thesis, we focus on projection-based methods, those that project

the system onto a low-dimensional subspace. Data-driven projection-based methods

construct this subspace from a set of simulation data, referred to as snapshots, that

represent the dynamics of the system given different inputs, similar to the use of train-

ing data in machine learning. The subspace is defined by a low-dimensional basis that

represents these snapshots and also provides an opportunity to embed physical con-

straints into the problem. For a survey of projection-based model reduction methods

see [4].

We focus on projection-based methods whose low-dimensional basis is computed

using the proper orthogonal decomposition (POD) of snapshot data [41, 28, 58] com-

bined with the standard Galerkin projection to reduce the dimensionality of the sys-

23

tem [58]. While this approach has seen much success in applications such as tur-

bulence [58], combustion [29] and aerodynamic flows [9], there are other methods to

compute the low-dimensional subspace including Krylov subspace methods [2, 21],

balanced truncation [22], and the reduced basis method [56].

Data-driven model reduction methods attempt to learn the function from inputs

to outputs in the form of either a map, using machine learning-based methods, or in

the form of reduced operators without explicitly knowing full order model operators

(i.e. without knowing the governing equations). Machine learning-based techniques

include the work in [42], where the map from inputs to POD coefficients is learned

using an adaptive combination of self-organizing maps and local response surfaces,

and the work in [64, 27] learns the map from inputs to POD coefficients with neural

networks. In [14], learning the POD coefficients is coupled with a greedy approach

to actively guide the sampling in the input domain. In [55], physics-informed neural

networks are used to create efficient surrogate models using small amounts of data and

further, as a way to perform data-driven discovery of PDEs. Data-driven techniques

for learning the operators of reduced-order models includes the work in [52], which

finds the linear reduced operators that best fit reduced snapshot and control data

based on the dynamic mode decomposition. Similarly, the work in [50, 35] uses least-

squares regression to find reduced operators of dynamical systems with low-order

polynomial terms.

1.3 Motivation and thesis outline

Many success stories using machine learning require the use of millions of data points

for training. For example, the ImageNet competition of 2012 that publicized deep

learning for image recognition, was based on a library of more than 14 million images

[37]. This need for large amounts of data is the first challenge to using machine

learning in an engineering setting; many engineering applications involve expensive

physics simulations, making it prohibitive to produce large amounts of data. This

leads to a second challenge; producing predictive models that can learn and enforce

24

the physics of a model based on small amounts of simulation data. As a way to

address these challenges, we leverage the physics-based parameterizations available in

the model reduction community with the efficient predictive methods of the machine

learning community, and present two methods for physics-based machine learning.

In Chapter 2 we combine a physics-inspired parameterization with machine learn-

ing to construct low-dimensional predictive models that can enforce physical con-

straints. In Chapter 3 we apply a data-driven method for learning the operators of

reduced-order models to a non-linear combustion problem, where intrusive reduced-

order modeling is prohibitive. And finally, in Chapter 4 we conclude and provide

some avenues for future work.

25

26

Chapter 2

Physics-based machine learning

In this chapter we present an approach to physics-based machine learning using con-

cepts from model reduction. Section 2.1 describes the physics-inspired parameteriza-

tion, followed by the machine learning problem in Section 2.2. An application to flow

over an airfoil is presented in Section 2.3 and concluding remarks in Section 2.4.

2.1 A physics-inspired parameterization of physical

fields

We describe a numerical approximation of physical fields in Section 2.1.1, how the

POD basis is computed in Section 2.1.2 and how we use this basis to enforce physical

constraints using particular solutions in Section 2.1.3 and Section 2.1.4. An illustra-

tive example using a particular solution is provide in Section 2.1.5 and some additional

constraints that can be enforced are discussed in Section 2.1.6.

2.1.1 Numerical approximation of physical fields

We consider systems that map inputs onto physical fields. Denote a field as a function

𝑞 : 𝒳 ×𝒯 ×𝒫 → R, with the spatial domain 𝒳 , time domain 𝒯 , and input domain 𝒫 .

Thus, the field 𝑞 varies in space and time, and depends on the input of the system. Our

focus is on learning approximate models of 𝑞 from data 𝒟 ⊂ {𝑞(x, 𝑡;p) |x ∈ 𝒳 , 𝑡 ∈

27

𝒯 ,p ∈ 𝒫} in a way that respects the underlying physical constraints of the system.

With this approximate model, given new input values, we can make predictions of

physical fields that satisfy certain physical constraints.

The behavior of these systems is characterized by physical laws and governing

equations, which are often represented in the form of PDEs. Numerical models for

these systems arise from the discretization of the governing PDEs using methods such

as finite difference approximations [26, 59], finite element [30] or finite volume [16]

methods. The resulting discrete systems are able to embed the physical governing

equations but often produce systems that are high-dimensional, making solutions

expensive to compute. Instead of learning this high-dimensional model from data,

we seek to learn a low-dimensional approximate model from the data. Our first step

is to introduce the notion of a physics-inspired low-dimensional parameterization.

This parameterization is derived using the POD basis, which allows us to compute a

low-dimensional representation of discretized physical fields .

2.1.2 Computing the POD basis

Consider the field 𝑞(·, 𝑡;p) at time 𝑡 ∈ 𝒯 and input p ∈ 𝒫 . To compute the

POD basis, we consider finite-dimensional approximations q(𝑡;p) ∈ R𝑛𝑥 of 𝑞(·, 𝑡;p),

where 𝑛𝑥 is the (typically large) dimension of the finite-dimensional discretization of

the spatial domain. In the POD literature, q(𝑡;p) is called a “snapshot” [58] and

we will collect many such snapshots in order to compute the POD basis. These

snapshots may be computational solutions generated by a numerical model, or they

may be sensed data (or a combination). Consider the set of 𝑛𝑠 = 𝑛𝑡𝑛𝑝 snapshots,

{q(𝑡𝑖;p𝑗) | 𝑖 = 1, . . . , 𝑛𝑡, 𝑗 = 1, . . . , 𝑛𝑝}, which are snapshots at 𝑛𝑡 different time in-

stances 𝑡1, . . . , 𝑡𝑛𝑡 ∈ 𝒯 and 𝑛𝑝 different inputs p1, . . . ,p𝑛𝑝 ∈ 𝒫 . Define the snapshot

matrix 𝑄 ∈ R𝑛𝑥×𝑛𝑠 , which contains the snapshots q(𝑡𝑖;p𝑗) as its columns. Thus, each

row in the snapshot matrix corresponds to a spatial location (e.g., a discretization

point for a finite difference model or a sensor location for sensed data snapshots) and

each column corresponds to a snapshot.

28

The (thin) singular value decomposition (SVD) of 𝑄 is written

𝑄 = 𝑉 Σ𝑊⊤, (2.1)

where the columns of the matrices 𝑉 ∈ R𝑛𝑥×𝑛𝑠 and 𝑊 ∈ R𝑛𝑠×𝑛𝑠 are the left and

right singular vectors of 𝑄, respectively. The singular values 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑛𝑠 ≥ 0

of 𝑄 give the diagonal matrix Σ = diag(𝜎1, 𝜎2, . . . , 𝜎𝑛𝑠) ∈ R𝑛𝑠×𝑛𝑠 . The POD basis of

dimension 𝑟, 𝑉 𝑟 = [𝑣1, . . . ,𝑣𝑟], is then defined as the 𝑟 left singular vectors of 𝑄 that

correspond to the 𝑟 largest singular values. This yields an orthonormal basis that

provides an efficient low-dimensional representation of the snapshot data. Among

all orthonormal bases of size 𝑟, the POD basis minimizes the least squares error of

snapshot reconstruction,

min
𝑉 𝑟∈R𝑛𝑥×𝑟

||𝑄− 𝑉 𝑟𝑉
⊤
𝑟 𝑄||2𝐹 =

𝑛𝑠∑︁
𝑘=𝑟+1

𝜎2
𝑘. (2.2)

The sum of the squares of the singular values corresponding to those left singular

vectors not included in the POD basis gives the square of the error in the snapshot

representation. Thus, the singular values provide quantitative guidance for choosing

the size of the POD basis, based on the number of basis vectors needed to accurately

represent the given snapshot data. A typical approach is to choose 𝑟 so that

∑︀𝑟
𝑘=1 𝜎

2
𝑘∑︀𝑛𝑠

𝑘=1 𝜎
2
𝑘

> 𝜖, (2.3)

where 𝜖 is a user-specified tolerance, typically taken to be 90% or greater. The

lefthand side of Equation (2.3) is often referred to as the cumulative energy captured

by the first 𝑟 POD basis vectors.

2.1.3 Parameterizing physical fields in the POD basis

The POD basis is learned from snapshot data of the system of interest and so provides

a physics-based parameterization of the field 𝑞. If we are given a snapshot q(𝑡;p), we

29

can compute its low-dimensional representation by projecting it onto the POD basis

as

𝛼(𝑡;p) = 𝑉 ⊤
𝑟 q(𝑡;p),

where 𝛼(𝑡;p) = [𝛼1(𝑡;p), . . . , 𝛼𝑟(𝑡;p)] ∈ R𝑟 are referred to as the POD coefficients of

the snapshot q(𝑡;p). Thus, the field 𝑞 can be approximated by a linear expansion in

the POD basis:

q̃(𝑡;p) =
𝑟∑︁

𝑘=1

𝑣𝑘𝛼𝑘(𝑡;p), (2.4)

where 𝛼𝑘(𝑡;p) is a POD expansion coefficient and q̃(𝑡;p) denotes the POD approxi-

mation of the field 𝑞(·, 𝑡;p) at time 𝑡 and input p.

Our learning task is now transformed into learning a model for the POD coeffi-

cients 𝛼𝑘(𝑡;p). This transformation has two advantages. First, the dimension of the

unknowns has been reduced from 𝑛𝑥 in the original discrete representation q(𝑡;p) to 𝑟

in the POD representation. As we will see in the example problems, typically 𝑟 ≪ 𝑛𝑥

for the target problems of interest. Second, the representation in Equation (2.4)

provides a mechanism for embedding physical constraints.

2.1.4 Enforcing physical constraints in POD parameterizations

Mathematically, physical constraints may be enforced in a variety of ways. One

approach is to impose constraints on the inference of the 𝛼𝑘 coefficients; that is, to pose

the learning problem as a constrained optimization problem. This is the approach

used in [54] to conserve linear and quadratic constraints arising from the physical

design problem. Another approach is to embed the constraints into the form of the

POD representation. For example, we can consider an alternative representation to

Equation (2.4) as

q̃(𝑡;p) = q̄ +
𝑟∑︁

𝑘=1

�̄�𝑘𝛼𝑘(𝑡;p), (2.5)

where q̄ is a particular solution also referred to in some literature as a static correction

[23]. The particular solution is chosen to embody particular attributes of the solution

that we wish to enforce. In Equation (2.5) we use the notation �̄�𝑘 to emphasize that

30

the POD basis vectors may be different to those used in Equation (2.4).

As one example, consider the case where the particular solution q̄ is chosen to sat-

isfy a particular set of prescribed inhomogeneous boundary conditions and the POD

basis vectors �̄� are defined so that they satisfy homogeneous boundary conditions.

Then by construction, q̃ in Equation (2.5) will satisfy the inhomogeneous boundary

conditions regardless of the values of 𝛼𝑘. To see this, we partition a quantity of in-

terest vector as q =
[︁
q𝑏 q𝑓

]︁
, into entries associated with the prescribed boundary

conditions, q𝑏, and the remaining free entries, q𝑓 . Now define the particular solution

q̄ =
[︁
q̄𝑏 q̄𝑓

]︁
, where q̄𝑏 are the desired prescribed inhomogeneous boundary condi-

tions and q̄𝑓 are the remaining entries of the particular solution. The POD basis

vectors, �̄�, are computed using the same methodology described in Section 2.1.2, but

operating on the modified snapshot set {q(𝑡𝑖;p𝑗) − q̄ | 𝑖 = 1, . . . , 𝑛𝑡, 𝑗 = 1, . . . , 𝑛𝑝}.
Note that by subtracting the particular solution q̄, the modified snapshots q(𝑡𝑖;p𝑗)−q̄

satisfy homogeneous boundary conditions, that is, they have the form q(𝑡𝑖;p𝑗)− q̄ =

[0
(︀
q𝑓 (𝑡𝑖;p𝑗) − q̄𝑓

)︀
]. Then by the properties of the singular value decomposition

(i.e., that the singular vectors 𝑣𝑘 must be linear combinations of the modified snap-

shots), the POD basis vectors also satisfy homogeneous boundary conditions and the

representation in Equation (2.5) will recover the desired inhomogeneous boundary

conditions.

To see that the singular vectors satisfy homogeneous boundary conditions, con-

sider the SVD of Q ∈ R3×2 defined as Q = VΣW⊤. We can rearrange this equation

and solve for V as V = QWΣ−1, where we have used the fact that W⊤W = I.

Writing this out we get

V = QWΣ−1 =

⎡⎢⎢⎢⎣
𝑞1,1𝑤1,1 + 𝑞1,2𝑤2,1 𝑞1,1𝑤1,2 + 𝑞1,2𝑤2,2

𝑞2,1𝑤1,1 + 𝑞2,2𝑤2,1 𝑞2,1𝑤1,2 + 𝑞2,2𝑤2,2

𝑞3,1𝑤1,1 + 𝑞3,2𝑤2,1 𝑞3,1𝑤1,2 + 𝑞3,2𝑤2,2

⎤⎥⎥⎥⎦Σ−1. (2.6)

Thus, we can see that each column of V (i.e. each basis vector) is a linear combination

31

of the snapshots (columns) of Q. In other words,

𝑣𝑘 =
𝑛𝑡∑︁
𝑖=1

𝑛𝑝∑︁
𝑗=1

𝑐𝑖,𝑗,𝑘q(𝑡𝑖;p), (2.7)

where 𝑐𝑖,𝑗,𝑘 is a coefficient. Therefore, if the row of Q corresponding to the boundary

of interest contains all zeros, the singular vectors will also contain all zeros in that

row.

This idea can be extended to include multiple particular solutions, as well as

particular solutions scaled by functions of time and inputs, chosen to satisfy more

complicated physical conditions. In this case, we write

q̃(𝑡;p) =

𝑛𝑞∑︁
𝑗=1

𝑓𝑗(𝑡;p)q̄𝑗 +
𝑟∑︁

𝑘=1

�̄�𝑘𝛼𝑘(𝑡;p), (2.8)

where 𝑛𝑞 is the number of particular solutions (one for each boundary condition to

enforce) and 𝑓𝑗(𝑡;p) is some function of time and inputs that scales the 𝑗th particular

solution, q̄𝑗. In this case, one must make corresponding modifications to subtract

out all 𝑛𝑞 scaled particular solutions, 𝑓𝑗(𝑡;p)q̄𝑗, from the snapshot set, so that the

modified snapshots—and thus the basis vectors—satisfy homogenous conditions in

the appropriate entries. This is explained in more detail in the following section with

an application to the heat equation.

2.1.5 Particular solution illustrative example

As an illustrative example, consider the use of particular solutions to enforce boundary

conditions in a model predicting the evolution of temperature in a one-dimensional

heated rod of length 𝐿. The output quantity of interest, 𝑞(𝑥, 𝑡, 𝜅), is the temperature

field over the rod, which varies as a function of distance along the rod, 0 ≤ 𝑥 ≤ 𝐿,

time, 𝑡 ≥ 0 and the thermal diffusivity of the rod, 𝜅 > 0. The evolution of the

temperature is governed by the heat equation

𝜕𝑞

𝜕𝑡
= 𝜅

𝜕2𝑞

𝜕𝑥2
, (2.9)

32

along with specified boundary conditions and initial conditions. To demonstrate how

to determine an appropriate particular solution, consider the specific case that the

boundary at the left end of the rod (𝑥 = 0) is prescribed to follow a time-dependent

forcing function, 𝑞(0, 𝑡, 𝜅) = 𝑓0(𝑡), and the boundary at the right end of the rod is

constrained to a fixed temperature value, 𝑞(𝐿, 𝑡, 𝜅) = 𝛾𝐿.

We wish to create a POD reconstruction of the form of Equation (2.8) that respects

these two boundary conditions. To do this, we first solve an auxiliary problem with

the same heated rod problem setup but with boundary conditions 𝑞(0, 𝑡, 𝜅) = 0 and

𝑞(𝐿, 𝑡, 𝜅) = 1. Denote the resulting steady-state solution as q̄𝐿. This first auxiliary

problem solution is used to enforce the boundary condition at 𝑥 = 𝐿. Second, solve

an auxiliary problem with boundary conditions 𝑞(0, 𝑡, 𝜅) = 1 and 𝑞(𝐿, 𝑡, 𝜅) = 0,

and denote the resulting steady-state solution as q̄0. This second auxiliary problem

solution is used to enforce the boundary condition at 𝑥 = 0. Then to reconstruct

solutions for our original problem, we define the particular solution as

q̄ = 𝑓0(𝑡)q̄0 + 𝛾𝐿q̄𝐿.

It can be seen that subtracting this particular solution off each snapshot (noting that

when considering each snapshot, 𝑓0(𝑡) must be evaluated at the time corresponding

to that snapshot) yields a modified snapshot set with homogenous boundary con-

ditions, which in turn leads to a POD basis that satisfies homogenous boundary

conditions. Reconstruction of solutions via Equation (2.8) is then guaranteed to re-

cover the boundary conditions.

Figure 2-1 plots the auxiliary solutions q̄0 and q̄𝐿, along with the mean of a snap-

shot set generated by sampling different values of time and thermal diffusivity for

a case with boundary conditions 𝑞(0, 𝑡, 𝜅) = 3 sin(2𝑡) and 𝑞(𝐿, 𝑡, 𝜅) = 3. It can be

seen that the auxiliary solution q̄𝐿 is qualitatively similar to the mean (which is to

be expected in this specific problem setup since the average boundary condition at

the left end is zero), whereas q̄0 introduces the behavior needed to model the time-

dependent boundary condition applied to the left end of the rod. Figure 2-2 shows

33

the time-averaged errors in reconstructions (where the POD coefficients are deter-

mined using a decision tree, as described in Section 2.2). The enforcement of the

boundary conditions is indicated by the zero errors at 𝑥 = 0 and 𝑥 = 𝐿. Note that a

standard approach to POD is to subtract the mean as the particular solution. While

this method is able to enforce any constant boundary conditions (where the mean is

equal to the boundary value), it cannot enforce any time dependent conditions, as

seen at 𝑥 = 0 in Figure 2-2.

0 L
2 L

0.5
1.0
1.5
2.0
2.5
3.0

Te
m

pe
ra

tu
re

q0

0 L
2 L

Spatial Location

qL

0 L
2 L

mean

Figure 2-1: Heated rod example: Auxiliary solutions q̄0 (left) and q̄𝐿 (center) used
to create the particular solution, and snapshot mean (right).

2.1.6 Particular solution extensions

In the previous section, we showed that with the formulation in Equation (2.8), sub-

tracting a particular solution can enforce both constant and time dependent Dirichlet

boundary conditions. The ability to satisfy this type of physical constraint is a pow-

erful property of a predictive model in engineering applications. As it turns out,

not only can we enforce Dirichlet boundary conditions, we can enforce any linear

constraint. This is due to the linear combination used to reconstruct our snapshots

(see Equation (2.8)). In this subsection, we prove that a variety of linear constraints

can be enforced using this framework, including Neumann boundary conditions and

divergence free conditions.

34

Figure 2-2: Heated rod example: Time averaged errors in prediction of the tem-
perature field over the spatial domain. For comparison, we compute the POD basis
and coefficients using three different snapshot matrices: the original snapshot ma-
trix (dash dot), the snapshots with a particular solution subtracted (solid), and the
snapshots with the mean subtracted (dash).

Enforcing Neumann boundary conditions Assume that our snapshots come

from some first order finite difference discretization and satisfy a inhomogeneous,

time dependent Neumann boundary conditions at the discrete spatial location 𝑥𝑏 i.e.,

q𝑏(𝑡;p) − q𝑏−1(𝑡;p)

∆𝑥
= 𝑓(𝑡),

where q𝑏(𝑡;p) is the 𝑏th element in q corresponding to the value of 𝑞 at spatial location

𝑥𝑏, ∆𝑥 is the spatial step size and 𝑓(𝑡) is some function of time. Note that this setup

can be used for a constant Neumann condition by setting 𝑓(𝑡) to be a constant. Define

a modified snapshot as m(𝑡;p) = q(𝑡;p) − 𝑓(𝑡)q̄, where q̄ is a solution to the same

problem, but with a Neumann boundary condition equal to 1 at 𝑥𝑏, i.e.

q̄𝑏 − q̄𝑏−1

∆𝑥
= 1,

35

and free elsewhere. So we have

m𝑏(𝑡;p) −m𝑏−1(𝑡;p) = (q𝑏(𝑡;p) − 𝑓(𝑡)q̄𝑏) − (q𝑏−1(𝑡;p) − 𝑓(𝑡)q̄𝑏−1)

= (q𝑏(𝑡;p) − q𝑏−1(𝑡;p)) − 𝑓(𝑡)(q̄𝑏 − q̄𝑏−1)

= (∆𝑥)𝑓(𝑡) − 𝑓(𝑡)(∆𝑥)

= 0,

which implies that each modified snapshot will have homogeneous Neumann boundary

conditions at 𝑥𝑏. To see that the basis vectors, 𝑣𝑘, corresponding to the modified

snapshots will also have homogeneous Neumann boundary conditions, recall that

our basis vectors are linear combinations of our modified snapshots, as shown in

Equation (2.7). Therefore, we have

𝑣𝑘,𝑏 − 𝑣𝑘,𝑏−1 =
𝑛𝑡∑︁
𝑖=1

𝑛𝑝∑︁
𝑗=1

𝑐𝑖,𝑗,𝑘(m𝑏(𝑡𝑖;p𝑗;) −m𝑏−1(𝑡𝑖;p𝑗))

=
𝑛𝑡∑︁
𝑖=1

𝑛𝑝∑︁
𝑗=1

𝑐𝑖,𝑗,𝑘 * 0 = 0, for 𝑘 = 1, ..., 𝑟,

where 𝑣𝑘,𝑏 is the 𝑏th element in the 𝑘th basis vector which shows that the basis vectors

satisfy a homogeneous Neumann boundary condition at 𝑥𝑏, as desired. Thus, if we

are given a new, predicted reduced snapshot �̂�(𝑡𝑖;p𝑗) ∈ R𝑟, we can reconstruct it

using Equation (2.8) as

q̂(𝑡𝑖;p𝑗) = V𝑟�̂�(𝑡𝑖;p𝑗) + 𝑓(𝑡𝑖)q̄.

We can check that the original inhomogeneous Neumann boundary condition is en-

forced in the reconstructed snapshot

q̂𝑏(𝑡;p) − q̂𝑏−1(𝑡;p) = 𝑣𝑘,𝑏�̂�(𝑡;p) + 𝑓(𝑡)q̄𝑏 − (𝑣𝑘,𝑏−1�̂�(𝑡;p) + 𝑓(𝑡)q̄𝑏−1)

= (𝑣𝑘,𝑏 − 𝑣𝑘,𝑏−1)�̂�(𝑡;p) + 𝑓(𝑡)(q̄𝑏 − q̄𝑏−1)

= 0 + 𝑓(𝑡)∆𝑥 = 𝑓(𝑡)∆𝑥,

36

which implies that regardless of what �̂� we are given (regardless of what the ma-

chine learning algorithm predicts), the reconstruction using this basis will satisfy the

inhomogeneous Neumann boundary conditions.

Enforcing divergence conditions Consider the two-dimensional velocity field,

𝑞(x,y, 𝑡;p), in a fluid flow problem. Assume we do not have a divergence free field,

i.e.

∇ · 𝑞(x,y, 𝑡;p) =
𝜕𝑞(x,y, 𝑡;p)

𝜕x
+

𝜕𝑞(x,y, 𝑡;p)

𝜕y
= 𝑑 ̸= 0.

Assuming some first order finite difference discretization, we can approximate the

divergence as we did with the Neumann boundary conditions as

∇ · 𝑞(x,y, 𝑡;p) ≈ q𝑖,𝑗(𝑡;p) − q𝑖−1,𝑗(𝑡;p)

∆𝑥
+

q𝑖,𝑗(𝑡;p) − q𝑖,𝑗−1(𝑡;p)

∆𝑦
,

where q𝑖,𝑗(𝑡;p) refers to a finite approximation of the solution field 𝑞 at spatial location

(𝑥𝑖, 𝑦𝑗). We can define a modified snapshot as m(𝑡;p) = q(𝑡;p) − 𝑑q̄, where q̄ is a

finite approximation of a solution, 𝑞, with ∇ · 𝑞 = 1. Then, following the same steps

as we did for enforcing the Neumann boundary conditions, we can conclude that the

divergence of our reconstructed solutions will aways be equal to 𝑑. Although a slightly

more important feature is that when the snapshots are divergence free, 𝑑 = 0, we can

guarantee that the reconstructed predictions will always be divergence free as well.

2.2 Machine learning methods

The numerical examples in this section use four different machine learning methods

to infer the physics-based low-dimensional models. In the following subsections, we

describe the learning problem setup and then provide a brief overview of each machine

learning method. Specific implementation choices for each modeling approach are

given in Section 2.3.

37

Input Layer Hidden Layers Output Layer

Figure 2-3: Structure of a neural net with a two dimensional input, two hidden layers
and a one dimensional output.

2.2.1 Learning problem setup

For each machine learning method, we learn a surrogate model for the map 𝛼 : 𝒫 → 𝒞
from inputs p ∈ 𝒫 to outputs 𝛼(p) ∈ 𝒞. The outputs 𝛼(p) are the POD coefficients

defined in Section 2.1; we consider the specific case of 𝑟 POD coefficients, 𝛼(p) =

[𝛼1(p), . . . , 𝛼𝑟(p)]. The inputs are system parameters; we consider the specific case

of 𝑚 inputs: p = [𝑝1, . . . , 𝑝𝑚]. Note that we dropped the dependence of 𝛼 on time

for ease of exposition, and in some cases, time may be considered an input.

Consider the case that we have 𝑛𝑠 snapshots, where each snapshot corresponds to

a different input. We collect the inputs corresponding to each snapshot in the matrix

P ∈ R𝑛𝑠×𝑚. We collect the corresponding POD coefficients for each snapshot in the

matrix C ∈ R𝑛𝑠×𝑟. Our input and output data, P and C, are divided into training

and test sets denoted by (Ptrain,Ctrain) and (Ptest,Ctest), respectively. We denote the

number of training data as 𝑛train and the number of test data as 𝑛test. The goal is to

learn the map 𝛼 : 𝒫 → 𝒞 from the training data (Ptrain,Ctrain). The remainder of

this section provides an overview of the four methods used to make predictions.

2.2.2 Neural network

The first model considered is a fully connected, feed-forward neural network. Neural

network models estimate the output 𝛼(p) at an input p using weights and biases that

are adapted to the data during training. With the use of adaptivity, these models are

38

structured but can achieve great flexibility. A disadvantage of using a neural net is

that interpretation of the resulting model may be difficult.

A neural net consists of sequential layers of nodes that define a mapping between

an input and an output. The basic structure of a neural net is shown in Figure 2-3.

The first layer of nodes is called the input layer, which directly receives the input

to the model. The number of nodes in the input layer is equal to the number of

inputs. In each hidden (i.e, not an input or output) layer, 𝑙, there are ℓ𝑙 nodes. The

𝑖th node in layer 𝑙 is denoted as 𝜂𝑖𝑙 for 𝑖 ∈ {1, . . . , ℓ𝑙}. Each node takes an input,

evaluates an activation function, 𝑔, and produces an intermediate output, 𝑜𝑖𝑙, which

is used as an input to nodes in the next layer, 𝑙 + 1. Every node in a given layer is

connected to every node in the following layer (fully connected) and information is

passed forward through the network (feed-forward). Each of these connections are

given a weight, 𝑤𝑖
𝑙 , and a bias, 𝑏𝑖𝑙, which defines the importance and the effect of a

particular input to the output [47]. The activation function, 𝑔(ℎ𝑖
𝑙), at each node is a

function of ℎ𝑖
𝑙 = 𝑤𝑖

𝑙𝑜
𝑖
𝑙−1 + 𝑏𝑖𝑙 and thus depends on the input to the node, the weight

assigned to the connection to that node and the bias. The output for node 𝜂𝑖𝑙 is

determined by evaluating the activation function 𝑜𝑖𝑙 = 𝑔(ℎ𝑖
𝑙). The last layer is the

output layer, which produces the final output. The number of nodes in the last layer

is equal to the number of output values.

To train a neural net, training inputs, Ptrain, and corresponding training outputs,

Ctrain, are provided to the model. The training process iterates forward and backwards

over the network, adjusting weights and biases so as to minimize the mean squared

error between predicted and actual training outputs [57]. Each pair of forward and

backward passes is referred to as an epoch. The computational complexity of training

a neural net is approximately linear with the size of the network (nodes and layers),

which in turn depends upon the dimension of the input and output, and with the

number of epochs, assuming a smooth activation function [40].

39

2.2.3 Multivariate polynomial regression

The second model considered is multivariate polynomial regression (MPR), which

approximates the outputs 𝛼(p) using least squares regression. For the applications

in this paper, we use quadratic polynomial functions. Thus, our model for a POD

coefficient 𝛼 is written as

𝛼(p) = 𝑏0 +
𝑚∑︁
𝑖=1

𝑏𝑖𝑝𝑖 +
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖

𝑐𝑖𝑗𝑝𝑖𝑝𝑗, (2.10)

where the 𝑏𝑖, 𝑖 = 0, 1, . . . ,𝑚 and 𝑐𝑖𝑗, 𝑖 = 1, . . . ,𝑚, 𝑗 = 𝑖, . . . ,𝑚 are the coefficients of

the quadratic model. These coefficients are determined via least squares regression

that minimizes the mean squared error between the predicted and actual training

outputs.

The largest computational complexity in fitting this model arises from solving the

least squares system, the dimension of which scales quadratically with the number

of input parameters 𝑚. Still, in our numerical experiments below, the quadratic

regression model is much cheaper to train and to evaluate than the neural network

model.

2.2.4 k-nearest-neighbors model

The k-nearest-neighbors (kNN) model can be interpreted as a localized form of mul-

tivariate regression: the approximation is computed over a local set of 𝑘 training

samples that are the closest neighbors of the evaluation point p in the input space.

Due to the local nature of kNN approximations, the resulting models do not provide

a global interpretation of the underlying relationship between inputs and outputs.

Therefore kNN is an unstructured but flexible scheme, balancing the simplicity of

polynomial regression with the flexibility of localized models.

We consider a standard implementation of kNN that approximates 𝛼(p) by aver-

aging the outputs associated with the 𝑘 nearest neighbors. The predicted output of

the kNN model is the weighted average of the training outputs at each of the neigh-

40

bors. This is in essence a localized linear regression model. During training, a k-d

tree [5, 18] partitions the data along each input dimension and can be constructed in

𝒪(𝑚𝑛train) time, where 𝑚 is the dimension of the input, without explicitly calculating

any 𝑚-dimensional distances. This allows for fast nearest neighbor searches averaging

on the order of 𝒪(log(𝑛train)) [5, 18].

2.2.5 Decision tree regression model

The fourth model considered expands on the use of nearby neighbors to make pre-

dictions via localized regression models. A decision tree partitions the input domain

into many regions and makes local average estimates of the output. This is performed

in a top down fashion where the data are recursively partitioned at each node using

a greedy algorithm to group similar data together. Each node is assigned a certain

split criteria, which aims to make a split that creates similar valued subsets of data.

Nodes in the tree continue to split the data into left and right child nodes using a

series of logical statements. This process continues until certain stopping criteria are

met and nodes cease to split, becoming leaf nodes. After the data are partitioned

into multiple regions, a piecewise constant regression model is built. Within each

region (i.e, within each leaf node), a constant function is fit as the average of each

value in the region.

Efficient methods for constructing decision trees are available [8]. Once a tree has

been learned, predictions can be made rapidly. Given an input, only simple logic

statements are processed to reach a leaf node where an average value is computed to

obtain the output. Partitioning the training data along each input dimension results

in a computational complexity of 𝒪(𝑚𝑛train log(𝑛train)) to build the tree. If a deci-

sion tree is approximately balanced, this allows for fast predictions on the order of

𝒪(log(𝑛train)).

41

2.3 Aerodynamic example

The following case study considers the prediction of the flow around an airfoil, using

data generated from a large-scale computational fluid dynamics (CFD) simulation.

2.3.1 Problem setup: Predicting the flow over an airfoil

Figure 2-4: Inputs and output quantity of interest for the aerodynamic example.
High-fidelity CFD solver (top) and low-dimensional model (bottom).

The input parameters considered are the freestream Mach number, 𝑀 , and the

airfoil lift coefficient, 𝑐𝑙. Thus we have 𝑚 = 2 parameters with the input parameter

vector p = [𝑝1 𝑝2] = [𝑀 𝑐𝑙]. The output quantity of interest is the pressure field

around the airfoil, which varies as a function of the input parameters. In reality, the

pressure field is a continuous (infinite-dimensional field), varying over the spatial do-

main. An expensive physics-based model computes a high-fidelity finite-dimensional

approximation of the pressure field using a CFD model. In this example, we use the

SU2 CFD tool suite [48], a multi-purpose open-source solver, specifically developed

for aerospace applications. SU2 uses a finite volume method to discretize the under-

lying PDEs. Here we use the Euler equations to model the inviscid steady flow over

the airfoil. We consider a range of Mach numbers, spanning subsonic and transonic

flow regimes. Flow tangency boundary conditions are imposed on the airfoil surface

and the farfield boundary is approximately 20 chord lengths away from the airfoil.

SU2’s discretization of the pressure field has 𝑛𝑥 = 9027 degrees of freedom; that

42

is, each SU2 pressure field solution is a vector of dimension 𝑛𝑥 = 9027, where each

entry corresponds to the predicted pressure at a different spatial location in the com-

putational domain. We use training data generated by SU2 to learn a cheap surrogate

model, but clearly this dimensionality of 𝑛𝑥 = 9027 is too high to use directly as the

model output in our machine learning setting. We use the methodology described

in Section 2.1 to reduce the dimensionality of the output representation using the

POD. To achieve this, snapshots are generated for a domain of Mach numbers from

𝑀 = 0.6 to 𝑀 = 0.8 in increments of 0.01. At each Mach number, the following seven

lift coefficients are used: 𝑐𝑙 = 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9. This provides a total of

𝑛𝑠 = 147 snapshots, where each snapshot is a high-fidelity pressure field solution, rep-

resented as a high-dimensional vector. From these snapshots, we compute the POD

basis vectors. For each snapshot, we compute the corresponding POD expansion coef-

ficients, which describe the representation of the snapshot in the POD basis according

to Equation 2.5, where q̄ is set to be the mean over all training snapshots. We then

use the four machine learning methods described in Section 2.2 to fit models between

the input parameters p and the POD coefficients 𝛼(p). Figure 2-4 summarizes the

input and output configuration associated with the high-fidelity SU2 solver and the

low-dimensional model.

2.3.2 Aerodynamic results

First, we determine the appropriate number of POD modes to use in our reduced

model. Figure 2-5 shows the POD singular values for the full dimensional pressure

fields and the corresponding cumulative energy as defined in Equation 2.3.

Based on Figure 2-5, we use the first 𝑟 = 10 POD basis vectors to represent the

pressure fields. Thus, our low-dimensional, machine learning models make predictions

of the coefficients 𝛼(p) = [𝛼1, . . . , 𝛼10] and then the predicted pressure fields are

reconstructed using Equation 2.5. To assess the accuracy of each model, we withhold

the set of samples corresponding to a particular Mach number from the training set

and make predictions of the pressure solutions at the withheld Mach number. At

each Mach number there are seven lift coefficients, so withholding a Mach number

43

(a) Singular values. (b) Cumulative energy.

Figure 2-5: POD singular values and relative cumulative energy for the airfoil pressure
field snapshot set.

involves withholding seven samples as a test set. To illustrate the performance of the

various models, Figure 2-6 shows the actual and predicted pressure fields for the case

of Mach number 𝑀 = 0.7 and lift coefficient 𝑐𝑙 = 0.7, note that these input values lie

in the middle of our range of values. All pressure fields produced with 𝑀 = 0.7 have

been held out of the training set used for making these predictions.

The true pressure field is shown in Figure 2-6a. Figure 2-6b shows the predicted

pressure field using a neural network model. In this case, the neural net is imple-

mented with one hidden layer containing 50 nodes and a sigmoid activation function

defined as

𝑔(ℎ) =
1

1 + 𝑒−ℎ
. (2.11)

The neural net cost function is defined as the mean squared error and is minimized

using stochastic gradient descent with a learning rate of 0.1 and 10000 epochs. Fig-

ure 2-6c shows the predicted pressure field using multivariate polynomial regression.

Our two predictor variables are Mach number, 𝑀 , and lift coefficient, 𝑐𝑙, and the re-

gression model is computed using quadratic (degree 2) polynomials following (2.10).

Figure 2-6d shows the predicted pressure field using kNN regression. The number of

neighbors, 𝑘, is set to 5 and the weights are inversely proportional to the Euclidean

distance to each neighbor. Figure 2-6e shows the predicted pressure field using deci-

sion tree regression. No restrictions were set on the depth of the tree, resulting in 279

nodes in total, 140 of those as leaf nodes. Figure 2-7 shows the pointwise absolute

44

error of the fields corresponding to each of the predictions in Figure 2-6. It can be

seen that the neural network model has the largest regions of significant error of all

the machine learning models. The kNN and decision tree models both do an excellent

job of capturing the pressure field, and for the quadratic regression model the error

is mainly localized towards the trailing edge of the airfoil upper surface.

To further quantify the performance of the methodology, we calculate the mean

absolute error (MAE) over the entire field for each of the seven lift coefficient values.

For each Mach number in turn, we repeat the process of holding out samples for

that Mach number, training the surrogate models, predicting the pressure fields, and

computing the MAE over the held-out test set. Figure 2-8 plots the results. For each

Mach number, the plot shows the minimum, mean and maximum of the seven MAEs

for that Mach number. Again it can be seen that the neural network models have the

worst performance (note the different scale on the neural net plot), despite having the

largest training time and largest prediction time (see Figure 2-9). For these times,

the models are implemented in Python 2.7 and tested on a 2.3 GHz Intel Core i5.

Decision trees, quadratic polynomial regression and kNN regression have clearly

outperformed the neural network in this example. The relationship between the inputs

(Mach number and lift coefficient) and the output quantity of interest (pressure) is

non-linear and in theory should be better captured by a neural network model than

by the simpler regression models. However, in this example the limited amount of

training data is limiting the performance of the neural net. This suggests that while

neural nets have become the machine learning models of choice in many applications

with massive amounts of data (e.g., retail, finance), in an engineering setting the

training data is often expensive to obtain and is sparse—as in this example, the

training data are generated by running an expensive simulation—and other modeling

strategies may be more appropriate. In this example, the strong performance of the

kNN and decision tree models is notable and relates to the power of localization.

As noted above, the relationship between inputs and outputs in this aerodynamic

problem is non-linear, but it is well known that locally linearized models can provide

accurate representations—in fact, locally linearized models are already widely used in

45

many CFD physics-based engineering models. The kNN and decision tree modeling

approaches further exploit the combined power of localization and linearization by

also learning the neighborhood of locality during the model training phase.

2.4 Conclusion

The aerodynamic case study helps to demonstrate that the POD is an effective way

to parametrize a high-dimensional output quantity of interest in order to define a low-

dimensional map suitable for data-driven learning. The POD representation provides

computational tractability by making the map from inputs to POD coefficients low-

dimensional. It also provides a way to embed physical constraints and it aids in

physical interpretability of the resulting learned models. We have also highlighted the

important point that the availability of data in an engineering setting is typically much

less than it is in other machine learning applications. This is because engineering data

are often generated from expensive physics-based simulation codes or from sensors

embedded on a physical system. Our results highlight the need to account for this

lack of data in choosing an appropriate machine learning strategy. While neural

networks have considerable modeling flexibility, there are pitfalls when training data

coverage of the input space is sparse. In such settings, a simpler kNN or polynomial

regression model may be safer choices—even when the underlying physical phenomena

exhibit non-linear behavior, the power of the POD representation can transform the

problem into one that is amenable to a simpler representation. It is important to note

that the kNN model with a small number of neighbors outperformed other machine

learning methods. This shows the power of using simple, explainable models but

combining them with localization over the parameter space—an approach long used

in engineering modeling, but formalized through the kNN training process. An issue

seen with this approach arises when we attempt to extrapolate, or predict outside

the range of training data. This is due to the lack of dynamics learned by the model.

While we can enforce certain physical constraints, the governing dynamics that define

the behavior of the solutions over time or from one input parameter to the next are

46

unknown to the machine learning model, making extrapolation difficult. In the next

chapter, we present a methodology for incorporating the structure of the governing

equations into a low-dimensional model.

47

(a) True pressure field.

(b) Neural net. (c) Multivariate polynomial regression.

(d) kNN regression. (e) Decision tree.

Figure 2-6: True pressure field (a) and predictions using POD in combination with
four machine learning methods (b)-(e). 48

(a) Neural net. (b) Multivariate polynomial regression.

(c) kNN Regression. (d) Decision tree.

Figure 2-7: The absolute error field produced by predictions using POD in combina-
tion with four machine learning methods.

49

(a) Neural net. (b) Multivariate polynomial regression.

(c) kNN. (d) Decision tree.

Figure 2-8: The mean absolute error (MAE) over all lift coefficients when making
predictions of a pressure field for a Mach number that has been held out during
training. Each whisker shows the minimum, mean and maximum MAE.

50

Figure 2-9: Time comparison for training and prediction using four different machine
learning methods.

51

52

Chapter 3

Learning structured reduced-order

models

In this chapter, we discuss an approach to learning the operators of reduced-order

models, which allows us to simulate the system outside of the range of training data in

a physics-informed manner. Additionally, we show that by incorporating our partic-

ular solution approach into the learning phase, we can guarantee physical constraints

to be satisfied within the predicted solutions.

In Section 3.1 we discuss the operator inference approach according to [50]. In

Section 3.2 and Section 3.3 we briefly discuss how variable lifting can help broaden

the type of non-linear systems that can be learned and how particular solutions can

be used in operator inference. We provide an application of the approach to a two-

dimensional combustion problem in Section 3.4 and a conclusion in Section 3.5.

3.1 Operator inference

In this section we discuss the operator inference problem setup, the least-squares

approach to learning the operators of reduced-order models and some implementation

details.

53

3.1.1 Problem setup

In the previous chapter, we considered systems that map inputs to physical fields.

In many cases this map comes in the form of governing PDEs. Consider the specific

case where the map is a system of ordinary differential equations (ODEs) of the form

q̇(𝑡) = Aq(𝑡) + H(q(𝑡) ⊗ q(𝑡)) + Bu(𝑡) + c, (3.1)

that arise from the spatial discretizations of governing PDEs. Here, q(𝑡) ∈ R𝑑𝑛𝑥 is

the discretized state vector at time 𝑡 that approximates the field 𝑞 from Chapter 2,

where 𝑑 is the number of variables and 𝑛𝑥 is the number of discrete locations in

the spatial domain, q̇(𝑡) ∈ R𝑑𝑛𝑥 is the time derivative of the state vector (velocity

vector) at time 𝑡, u(𝑡) ∈ R𝑝 are the inputs at time 𝑡, A ∈ R𝑑𝑛𝑥×𝑑𝑛𝑥 is the matrix of

coefficients of linear terms, H ∈ R𝑑𝑛𝑥×(𝑑𝑛𝑥)2 is the matrix of coefficients of quadratic

terms, B ∈ R𝑑𝑛𝑥×𝑝 is the input operator, c ∈ R𝑑𝑛𝑥 is a constant vector and q(𝑡)⊗q(𝑡)

is the Kronecker product defined as

q⊗ q = [𝑞1q
⊤ 𝑞2q

⊤ . . . 𝑞𝑑𝑛𝑥q
⊤]⊤ (3.2)

= [𝑞21 . . . 𝑞1𝑞𝑑𝑛𝑥 𝑞2𝑞1 . . . 𝑞𝑑𝑛𝑥𝑞1 𝑞𝑑𝑛𝑥𝑞2 . . . 𝑞2𝑑𝑛𝑥
]⊤ ∈ R(𝑑𝑛𝑥)2 ,

where 𝑞𝑖 is the 𝑖th element of the vector q. Equation (2.9) in Chapter 2 is an example

of a system that admits a linear system of ODEs after spatial discretization, i.e. a

model of the form q̇(𝑡) = Aq(𝑡). The state vector, q(𝑡), is a vector containing the

values of all variables over the entire discretized problem domain at a single time

instance, 𝑡. Note that in the previous chapter, we considered state vectors containing

only 𝑑 = 1 physical variable. So, for example, if we have 𝑑 = 2 variables, say pressure

and temperature, and we have 𝑛𝑥 = 500 points in our computational domain (this

could be the number of elements in a finite element discretization, number of nodes

in a finite difference discretization, etc.), then each variable will have 500 values and

q(𝑡) ∈ R𝑑𝑛𝑥 = R1000. These variables will be stacked in the vector, so the first

𝑛𝑥 values in q(𝑡) refer to pressure and the second 𝑛𝑥 values refer to temperature.

54

Systems of this form arise in many engineering applications and as the number of

discrete points in the domain increases, the dimensionality of these problems can

become extremely large. Typically, solving these high-dimensional, non-linear ODEs

is expensive and the discretized operators governing these systems may not even be

accessible. The combination of these two issues makes non-intrusive, data-driven

reduced-order models extremely useful in the science and engineering community.

The first step to data-driven learning is to generate training data. The data are

produced by solving the full-order model, Equation (3.1), at various time steps and/or

input values. We can then define our snapshot matrix as

Q = [q0 q1 . . . q𝐾] ∈ R𝑑𝑛𝑥×𝐾 , (3.3)

where 𝐾 is the number of snapshots and, for the remainder of this section,

q𝑖 = q(𝑡𝑖) ∈ R𝑑𝑛𝑥 is the state vector at time 𝑡𝑖 where 0 < 𝑡0 < 𝑡1 < · · · < 𝑡𝐾 < 𝑇

with a time step size of ∆𝑡 = 𝑡𝑖 − 𝑡𝑖−1. The SVD of our snapshot matrix is defined as

Q = VΣW⊤,

where V ∈ R𝑑𝑛𝑥×𝐾 , Σ ∈ R𝐾×𝐾 and W ∈ R𝐾×𝐾 . The 𝑟 ≪ 𝑑𝑛𝑥 dimensional POD

basis, V𝑟 = [v1, ...,v𝑟], is the first 𝑟 columns of V. Following the classical method of

snapshots introduced by Sirovich [58], we can project the full dimensional operators

onto the POD basis using a standard Galerkin projection resulting in a reduced-order

model of the form

̂̇︀q(𝑡) = ̂︀Â︀q(𝑡) + ̂︀H(̂︀q(𝑡) ⊗ ̂︀q(𝑡)) + ̂︀Bu(𝑡) + ̂︀c, (3.4)

where ̂︀A = V⊤
𝑟 AV𝑟 ∈ R𝑟×𝑟, ̂︀H = V⊤

𝑟 H(V𝑟 ⊗ V𝑟) ∈ R𝑟×𝑟2 , and ̂︀B = V⊤
𝑟 B ∈ R𝑟×𝑝

are the reduced operators, ̂︀c = V⊤
𝑟 c ∈ R𝑟 is the reduced constant vector and̂︀q(𝑡) = V⊤

𝑟 q(𝑡) ∈ R𝑟 and ̂̇︀q(𝑡) = V⊤
𝑟 q̇(𝑡) ∈ R𝑟 are the reduced state and time

derivative vectors, respectively. This intrusive method for computing the reduced

operators requires one to know the full order operators, A,H, and B, an assumption

55

we would like to avoid. Instead, our goal is to learn these reduced operators non-

intrusively from the reduced data using the approach proposed in [50].

We define the reduced snapshot matrix as

̂︀Q = V⊤
𝑟 Q = [̂︀q0 . . . ̂︀q𝐾] ∈ R𝑟×𝐾 . (3.5)

The reduced time derivative data at each time step is stored in the matrix

̂̇︀Q = [̂̇︀q0 ̂̇︀q1 . . . ̂̇︀q𝐾] ∈ R𝑟×𝐾 ,

where each ̂̇︀q𝑖 is computed from ̂︀Q using the 5-point approximation of the time

derivative defined as

̂̇︀q𝑖 =
−̂︀q𝑖+2 + 8̂︀q𝑖+1 − 8̂︀q𝑖−1 + ̂︀q𝑖−2

12∆𝑡
. (3.6)

The first two and last two time derivatives are computed using first order forward

and backward Euler approximations, respectively. Note that any method for approx-

imating the time derivative could be used here. Lastly, we need the corresponding

input data. These values are obtained by evaluating the known input at our discrete

time steps and storing them in an input matrix,

U = [u0, . . . ,u𝐾] ∈ R𝑝×𝐾 ,

where each u𝑖 = u(𝑡𝑖) ∈ R𝑝 is the input evaluated at time step 𝑡𝑖. The basic problem

statement can be described as follows:

Problem 1 Given snapshot data, Q, from Equation (3.3), find reduced-order opera-

tors,
[︁̂︀A, ̂︀H, ̂︀B,̂︀c]︁, that fit the reduced-order model in Equation (3.4).

In the following subsection, we describe how this problem is solved using least-

squares minimization following the approach in [50].

56

3.1.2 Least-squares problem

The operator inference algorithm solves Problem 1 by solving a least-squares problem.

This is done by learning the operators that satisfy Equation (3.4), which is equivalent

to finding the operators that solve the following minimization problem

min̂︀A∈R𝑟×𝑟, ̂︀H∈R𝑟×𝑟2 ,̂︀B∈R𝑟×𝑝,ĉ∈R𝑟

𝐾∑︁
𝑖=1

⃦⃦⃦ ̂︀Â︀q𝑖 + ̂︀H(̂︀q𝑖 ⊗ ̂︀q𝑖) + ̂︀Bu𝑖 + ĉ− ̂̇︀q𝑖

⃦⃦⃦2

2
, (3.7)

which can also be written in matrix form as

min̂︀A∈R𝑟×𝑟, ̂︀H∈R𝑟×𝑟2 ,̂︀B∈R𝑟×𝑝,ĉ∈R𝑟

⃦⃦⃦ ̂︀Â︀Q + ̂︀H(̂︀Q⊗ ̂︀Q) + ̂︀BU + ĉ1⊤
𝐾 − ̂̇︀Q⃦⃦⃦2

2
, (3.8)

where 1⊤
𝐾 ∈ R1×𝐾 is the length 𝐾 row vector of 1’s. Transposing the equation

produces the following

min̂︀A∈R𝑟×𝑟, ̂︀H∈R𝑟×𝑟2 ,̂︀B∈R𝑟×𝑝,ĉ∈R𝑟

⃦⃦⃦⃦ ̂︀Q⊤ ̂︀A⊤ + (̂︀Q⊗ ̂︀Q)⊤ ̂︀H⊤ + U⊤̂︀B⊤ + 1𝐾 ĉ
⊤ − ̂̇︀Q⊤

⃦⃦⃦⃦2

2

, (3.9)

which can also be written as

min
O∈R𝑟×(𝑟+𝑟2+𝑝+1)

⃦⃦⃦⃦
DO⊤ − ̂̇︀Q⊤

⃦⃦⃦⃦2

2

, (3.10)

revealing the familiar least-squares formulation where

O = [̂︀A ̂︀H ̂︀B ĉ] ∈ R𝑟×(𝑟+𝑟2+𝑝+1), (3.11)

and

D =
[︁̂︀Q⊤ (̂︀Q⊗ ̂︀Q)⊤ U⊤ 1𝐾

]︁
∈ R𝐾×(𝑟+𝑟2+𝑝+1). (3.12)

It was proven in [49] that Equation (3.10) can be written as 𝑟 independent least-

squares problems of the form

min
o𝑖∈R𝑟+𝑟2+𝑝+1

‖Do𝑖 − r𝑖‖22 𝑖 = 1, . . . , 𝑟, (3.13)

57

where o𝑖 is a column of O⊤ (or a row of O) and r𝑖 is a column of ̂̇︀Q⊤
.

Once the operators have been inferred, the reduced-order model can be simulated

using a time stepping scheme. In our examples a fourth order Runge-Kutta scheme

was employed.

3.1.3 Implementation details

Due to the redundant terms computed in ̂︀Q ⊗ ̂︀Q, the least-squares problem may

become ill-posed. Thus, the Kronecker product is replaced with the term

̂︀Q2 = [̂︀q2
0 ̂︀q2

1 . . . ̂︀q2
𝐾] ∈ R𝑠×𝐾 ,

where 𝑠 = 𝑟(𝑟+1)
2

. Each vector ̂︀q2
𝑗 is defined, according to [50], as

̂︀q2
𝑗 =

⎡⎢⎢⎢⎣
q
(1)
𝑗

...

q
(𝑟)
𝑗

⎤⎥⎥⎥⎦ ∈ R𝑠, (3.14)

where

q
(𝑖)
𝑗 = ̂︀𝑞𝑖,𝑗

⎡⎢⎢⎢⎣
̂︀𝑞𝑖,𝑗
...̂︀𝑞𝑟,𝑗

⎤⎥⎥⎥⎦ ∈ R𝑖, (3.15)

where ̂︀𝑞𝑖,𝑗 is the 𝑖th element of the vector ̂︀q𝑗. Now, instead of learning the operator̂︀H ∈ R𝑟×𝑟2 , the new operator ̂︀F ∈ R𝑟×𝑠 is learned, which satisfies the equivalent

least-squares problem

min̂︀A∈R𝑟×𝑟,̂︀F∈R𝑟×𝑠,̂︀B∈R𝑟×𝑝,ĉ∈R𝑟

⃦⃦⃦⃦ ̂︀Q⊤ ̂︀A⊤ + (̂︀Q2)⊤̂︀F⊤ + U⊤̂︀B⊤ + 1𝐾 ĉ
⊤ − ̂̇︀Q⊤

⃦⃦⃦⃦2

2

, (3.16)

which can also be written as

min
O∈R𝑟×(𝑟+𝑠+𝑝+1)

⃦⃦⃦⃦
DO⊤ − ̂̇︀Q⊤

⃦⃦⃦⃦2

2

, (3.17)

58

where

O = [̂︀A ̂︀F ̂︀B ĉ] ∈ R𝑟×(𝑟+𝑠+𝑝+1), (3.18)

and

D =
[︁̂︀Q⊤ (̂︀Q2)⊤ U⊤ 1𝐾

]︁
∈ R𝐾×(𝑟+𝑠+𝑝+1). (3.19)

While this change helps with the issue of ill-posedness of the least-squares problem,

regularization becomes necessary to infer operators that produce a stable system.

Specifically, we use a L2 regularization penalty on the off-diagonal elements of the

operator ̂︀A and on all elements of the remaining operators. With this regularization,

our least-squares problem becomes

min
o𝑖∈R𝑟+𝑠+𝑝+1

‖Do𝑖 − r𝑖‖22 + 𝜆 ‖P𝑖o𝑖‖22 , (3.20)

where 𝜆 is the regularization parameter and P𝑖 is the 𝑟 + 𝑠 + 𝑝 + 1 identity matrix

with the 𝑖th diagonal set to zero so that we avoid minimizing the diagonal elements

of A. It should be noted that the regularization parameter, 𝜆, is problem specific and

should be chosen accordingly. We discuss a method for selecting 𝜆 in Section 3.4.5.

3.2 Transformation of variables

Operator inference provides an efficient, data-driven approach to learning the reduced

operators of linear or quadratic systems, but many engineering systems exhibit differ-

ent types of non-linearities that, at first glance, do not fit into the operator inference

framework. It has been shown that for many systems exhibiting non-quadratic non-

linearities, applying variable transformations or introducing new variables (known as

lifting in [36, 20]) can produce a system that is at most quadratic in its state variables.

This work allows for a much broader class of non-linear systems to be learned using

the operator inference framework.

Consider a system with general non-linearities of the form

q̇(𝑡) = 𝑓(q(𝑡)), (3.21)

59

where 𝑓 is some non-linear function. Recall that the state vector contains 𝑑 variables

over the domain of size 𝑛𝑥, so we can write the state vector as q = [q1 q2 . . . q𝑑]⊤

where each q𝑖 ∈ R𝑛𝑥 . Following [36, 20], we would like to find a mapping ℳ : q ↦→ s,

where s ∈ R𝑙𝑛𝑥 , 𝑙 ≥ 𝑑, is a state vector containing q in addition to new variables that

are functions of q, such that the system is quadratic in the new state s.

State transformations can also be used to produce a quadratic system. In this

case, the goal is to find a mapping ℳ : q ↦→ s, where s ∈ R𝑑𝑛𝑥 is a state vector

such that one or more variables is a function of the original variables, and instead of

adding variables, we replace them. An example of a variable transformation is the

specific volume representation of the Euler equations, where density is replaced with

specific volume to produce a system that is quadratic (see e.g. [53] and Appendix B).

3.3 Using particular solutions to enforce physical con-

straints

In addition to learning the physics that govern the dynamics of these systems, we

would also like to enforce physical constraints in our learned models as we did in

Section 2.1.4. In this section, we provide the the guidelines for enforcing linear con-

straints using particular solutions within the operator inference framework and also

provide an illustrative example using the same heated rod problem from Section 2.1.5.

3.3.1 Enforcing physical constraints within operator inference

Consider subtracting a particular solution, q̄ ∈ R𝑑𝑛𝑥 , from each column in the original

snapshot matrix, Q ∈ R𝑑𝑛𝑥×𝐾 . This could be for example, the mean of the snapshots

and we would define the modified snapshot matrix, M ∈ R𝑑𝑛𝑥×𝐾 , as

M = Q− q̄1⊤
𝐾 = [m(𝑡0) m(𝑡1) . . . m(𝑡𝐾)] ∈ R𝑑×𝐾 , (3.22)

where 1⊤
𝐾 ∈ R1×𝐾 is the length 𝐾 row vector of 1’s and m(𝑡𝑖) = q(𝑡𝑖) − q̄. Now,

M represents the deviations from the particular solution. Assuming that we have no

60

input (u = 0), our dynamical system becomes

q̇(𝑡) =
d
d𝑡

(m(𝑡) + q̄) = A(m(𝑡) + q̄) + H((m(𝑡) + q̄) ⊗ (m(𝑡) + q̄)) + c

= A(m(𝑡) + q̄) + H(m(𝑡) ⊗m(𝑡)) + H(m(𝑡) ⊗ q̄)

+ H(q̄⊗m(𝑡)) + H(q̄⊗ q̄) + c

= Am(𝑡) + Aq̄ + 2H(m(𝑡) ⊗ q̄) + H(m(𝑡) ⊗m(𝑡))

+ H(q̄⊗ q̄) + c (3.23)

= Am(𝑡) + 2H(m(𝑡) ⊗ q̄) + H(m(𝑡) ⊗m(𝑡)) + c̃ (3.24)

= Ãm(𝑡) + H(m(𝑡) ⊗m(𝑡)) + c̃, (3.25)

where Ãm(𝑡) = Am(𝑡) + 2H(m(𝑡)⊗ q̄) (justified below) and c̃ = Aq̄+H(q̄⊗ q̄) +c.

The third equality (Equation (3.23)) is a result of H being symmetric, which we can

assume without loss of generality. Since our particular solution is time-independent,
dq̄
d𝑡 = 0, the dynamical system for m(𝑡) is

ṁ(𝑡) = Ãm(𝑡) + H(m(𝑡) ⊗m(𝑡)) + c̃. (3.26)

Below we discuss how the quadratic operator H can be symmetrized without changing

the dynamics of the system according to [3] and we also show that the term

2H(m(𝑡) ⊗ q̄) in the definition of Ãm(𝑡) is in fact linear in m(𝑡).

Symmetry of H According to [3], the quadratic operator H ∈ R𝑛𝑥×𝑛2
𝑥 is a ma-

tricized form of the 3-tensor ℋ ∈ R𝑛𝑥×𝑛𝑥×𝑛𝑥 . Specifically, it is the mode-1 matri-

cization of ℋ(𝑖1,𝑖2,𝑖3), where 𝑖1, 𝑖2, 𝑖3 is the index set of the 3-tensor. If we assume

𝑖1, 𝑖2, 𝑖3 ∈ {1, 2} as in [3], then the mode-1 matricization is defined, according to [3]

and [33], as

ℋ(1) =

⎡⎣ℋ(1,1,1) ℋ(1,2,1) ℋ(1,1,2) ℋ(1,2,2)

ℋ(2,1,1) ℋ(2,2,1) ℋ(2,1,2) ℋ(2,2,2)

⎤⎦ . (3.27)

It is also shown in [3] that we can make H symmetric without changing any of the

dynamics of the system. We include the two-dimensional example from [3] to illustrate

61

this. Consider the two-dimensional quadratic system

q̇(𝑡) = H(q(𝑡) ⊗ q(𝑡)), with H =

⎡⎣𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

⎤⎦ .

We can expand this as

𝑞1(𝑡) = 𝑎𝑞1(𝑡)
2 + 𝑏𝑞1(𝑡)𝑞2(𝑡) + 𝑐𝑞2(𝑡)𝑞1(𝑡) + 𝑑𝑞2(𝑡)

2

𝑞2(𝑡) = 𝑒𝑞1(𝑡)
2 + 𝑓𝑞1(𝑡)𝑞2(𝑡) + 𝑔𝑞2(𝑡)𝑞1(𝑡) + ℎ𝑞2(𝑡)

2.

Now, substituting 𝑗 = 𝑏+𝑐
2

and 𝑘 = 𝑓+𝑔
2

, we find the equivalent expressions

𝑞1(𝑡) = 𝑎𝑞1(𝑡)
2 + 𝑗𝑞1(𝑡)𝑞2(𝑡) + 𝑗𝑞2(𝑡)𝑞1(𝑡) + 𝑑𝑞2(𝑡)

2

𝑞2(𝑡) = 𝑒𝑞1(𝑡)
2 + 𝑘𝑞1(𝑡)𝑞2(𝑡) + 𝑘𝑞2(𝑡)𝑞1(𝑡) + ℎ𝑞2(𝑡)

2.

So by replacing H with H̃ =

⎡⎣𝑎 𝑗 𝑗 𝑑

𝑒 𝑘 𝑘 ℎ

⎤⎦, we have, for any q,p ∈ R2,

H̃(q⊗ p) =

⎡⎣𝑎𝑞1𝑝1 + 𝑗𝑞1𝑝2 + 𝑗𝑞2𝑝1 + 𝑑𝑞2𝑝2

𝑒𝑞1𝑝1 + 𝑘𝑞1𝑝2 + 𝑘𝑞2𝑝1 + ℎ𝑞2𝑝2

⎤⎦
=

⎡⎣𝑎𝑝1𝑞1 + 𝑗𝑝1𝑞2 + 𝑗𝑝2𝑞1 + 𝑑𝑝2𝑞2

𝑒𝑝1𝑞1 + 𝑘𝑝1𝑞2 + 𝑘𝑝2𝑞1 + ℎ𝑝2𝑞2

⎤⎦ = H̃(p⊗ q).

This implies that without changing the dynamics of the system, we can always rewrite

H in an equivalent, symmetric form. Throughout this thesis, we consider without loss

of generality, only symmetric H.

Linearity of Ã Recall Equation (3.24):

q̇(𝑡) = Am(𝑡) + 2H(m(𝑡) ⊗ q̄) + H(m(𝑡) ⊗m(𝑡)) + c̃.

Consider the term 2H(m(𝑡) ⊗ q̄) and assume we have a two dimensional system as

62

we did in the example above. We can expand this term out explicitly as

2H(m(𝑡) ⊗ q̄) = 2

⎡⎣𝑎 𝑗 𝑗 𝑑

𝑒 𝑘 𝑘 ℎ

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑚1𝑞1

𝑚1𝑞2

𝑚2𝑞1

𝑚2𝑞2

⎤⎥⎥⎥⎥⎥⎥⎦ (3.28)

= 2

⎡⎣𝑎𝑚1𝑞1 + 𝑗𝑚1𝑞2 + 𝑗𝑚2𝑞1 + 𝑑𝑚2𝑞2

𝑒𝑚1𝑞1 + 𝑘𝑚1𝑞2 + 𝑘𝑚2𝑞1 + ℎ𝑚2𝑞2

⎤⎦ (3.29)

= 2

⎡⎣(𝑎𝑞1 + 𝑗𝑞2)𝑚1 + (𝑗𝑞1 + 𝑑𝑞2)𝑚2

(𝑒𝑞1 + 𝑘𝑞2)𝑚1 + (𝑘𝑞1 + ℎ𝑞2)𝑚2

⎤⎦ (3.30)

= 2

⎡⎣𝑎𝑞1 + 𝑗𝑞2 𝑗𝑞1 + 𝑑𝑞2

𝑒𝑞1 + 𝑘𝑞2 𝑘𝑞1 + ℎ𝑞2

⎤⎦⎡⎣𝑚1

𝑚2

⎤⎦ (3.31)

= Dm(𝑡). (3.32)

So, we have that

Am(𝑡) + 2H(m(𝑡) ⊗ q̄) = (A + D)m(𝑡) := Ãm(𝑡), (3.33)

thus, we can rewrite Equation (3.24) as

q̇(𝑡) = Ãm(𝑡) + H(m(𝑡) ⊗m(𝑡)) + c̃, (3.34)

where Ã = A + D.

3.3.2 Summary of algorithm

The steps of the operator inference algorithm that includes a particular solution are

summarized below.

Algorithm 1

1. Construct modified snapshot matrix, M, by subtracting the particular solu-

tion, q̄, as in Equation (3.22).

63

2. Compute POD basis from the modified snapshot matrix M.

3. Compute the time deriative matrix ̂̇︁M according to Equation (3.6).

4. Reduce the snapshot and time derivative data to obtain ̂︁M and ̂̇︁M according

to Equation (3.5).

5. Learn the operators,
[︁̂︀A, ̂︀H,̂︀c]︁, that fit Equation (3.26) by solving the least

squares problem in Equation (3.13).

6. Simulate the learned reduced-order model using a time stepping scheme to

produce ̂︀m(𝑡) at each time step.

7. Reconstruct and add the particular solution back to each solution:

q(𝑡) = V𝑟 ̂︀m(𝑡) + q̄.

3.3.3 Particular solution illustrative example

To illustrate the effect of using particular solutions within operator inference, con-

sider the application of the heat equation from Section 2.1.5, which models the time

evolution of the temperature distribution over a rod. The heat equation is written as

𝜕𝑞

𝜕𝑡
= 𝜅

𝜕2𝑞

𝜕𝑥2
,

where 𝜅 ∈ R is the thermal diffusivity of the rod and 𝑞(𝑥, 𝑡, 𝜅) is the temperature at

location 𝑥 at time 𝑡 with a given thermal diffusivity, 𝜅. The problem specifications

are the same as in Section 2.1.5. Namely, a spatial domain ranging from 𝑥 = 0 to

𝑥 = 𝐿, and boundary conditions set to

𝑞(0, 𝑡, 𝜅) = 3 sin(2𝑡) (3.35)

𝑞(𝐿, 𝑡, 𝜅) = 3. (3.36)

64

The initial condition for generating the data is set to 𝑞(𝑥, 0, 𝜅) = 3𝑥
𝐿

and then dis-

carded. We discard this snapshot because it ends up being exactly equal to one of

our particular solutions, but in general, the initial value can be kept. We discretize

space into 𝑛𝑥 = 200 nodes from 0 to 𝐿 = 4 using centered finite difference. After

spatial discretization, this system can be written in the familiar linear form

q̇(𝑡) = Aq(𝑡),

where q(𝑡) ∈ R𝑛𝑥 is the discretized state vector and A ∈ R𝑛𝑥×𝑛𝑥 is the tridiagonal

finite difference matrix. To simulate this system and produce training data, we set

the thermal diffusitivity to 𝜅 = 0.5 and discretize time using Crank-Nicolson finite

difference with a time step size set to ∆𝑡 = 0.01 from 𝑡 = 0 to 𝑡 = 2𝜋. This produces

𝐾 = 627 total snapshots and the first 𝑛train = 314 are used for training. The first

𝑛train = 314 snapshots range from 𝑡 = 0.01 to 𝑡 = 𝜋 + 0.01 and thus, includes the

entire range of values that the time dependent boundary condition can take.

Our particular solution, q̄, is made up of two scaled auxiliary solutions, q̄0 and

q̄𝐿, that enforce the boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿, respectively. The first

auxiliary solution, q̄0, is the steady state solution to the same heated rod problem

but with boundary conditions set to 𝑞(0, 𝑡, 𝜅) = 0 and 𝑞(𝐿, 𝑡, 𝜅) = 1. The second

auxiliary solution, q̄𝐿, is the steady state solution to the same heated rod problem

but with boundary conditions set to 𝑞(0, 𝑡, 𝜅) = 1 and 𝑞(𝐿, 𝑡, 𝜅) = 0. The particular

solution is defined exactly as in Section 2.1.5 as

q̄ = 3 sin(2𝑡)q̄0 + 3q̄𝐿. (3.37)

We then define a modified snapshot as

m(𝑡𝑖) = q(𝑡𝑖) − q̄,

65

and the modified snapshot matrix as

M =
[︁
m(𝑡0) m(𝑡1) . . . m(𝑡𝑛train)

]︁
∈ R𝑛𝑥×𝑛train ,

where each modified snapshot satisfies homogeneous boundary conditions at 𝑥 = 0

and 𝑥 = 𝐿. The POD basis is comprised of the first 𝑟 left singular vectors of the

modified snapshot matrix, M. We choose a basis size of 𝑟 = 15, which captures over

99.9% of the cumulative energy of the modified snapshots.

Following Equation (3.25), the reduced-order model for ̂︀m(𝑡𝑖) = V⊤
𝑟 m(𝑡𝑖) has a

linear term and a constant term of the form

̂̇︀m(𝑡) = ̂︀A ̂︀m(𝑡) + ̂︀c,
which can be learned using operator inference where the constant term, ̂︀c, is of the

form ̂︀c = V⊤
𝑟 (Aq̄). No regularization was used when solving the least-squares prob-

lem. Once the operators are learned, we simulate the system for 627 time steps from

𝑡 = 0.01 to 𝑡 = 2𝜋 with a time step size of ∆𝑡 = 0.01. The initial state was set to the

first snapshot in the training set. Once the solutions are obtained and reconstructed

to the full dimension, the particular solution must be added back to each one, taking

care to add the correct time dependent particular solution to each snapshot.

All 627 true temperature fields are visualized in Figure 3-1a, where each one-

dimensional temperature field is stacked vertically in time and colored according to

the temperature. The predicted temperature fields are shown for comparison in Fig-

ure 3-1b. The absolute error between the true temperature fields and the predicted

fields is shown in Figure 3-1c. Note that both the oscillating and constant boundary

conditions are enforced in the predicted solutions. As a comparison to the analysis

done in Section 2.1.5, we show the time averaged absolute error in the prediction of the

temperature in Figure 3-2. In this figure, we compare three approaches; subtracting

a particular solution as was presented in this section, denoted as “particular”, sub-

tracting the mean of the snapshots, denoted as “mean”, and simply using the original

snapshots, denoted as “raw”. Note that subtracting a particular solution is the only

66

approach that can enforce the time dependent boundary condition on the left side of

the domain at 𝑥 = 0. An interesting difference from Section 2.1.5 is that operator

inference is able to enforce the constant boundary condition when using the original

snapshots, which is something that our machine learning approach in Chapter 2 was

not able to do.

(a) The true temperature fields over time. (b) The predicted temperature fields over
time.

(c) The absolute error of predictions over
time.

Figure 3-1: True temperature fields over time (top left), predicted temperature fields
from the learned reduced-order models over time (top right), and the absolute error of
predicted temperature fields over time (bottom). Each one-dimensional temperature
field solution is a horizontal line stacked vertically in time and colored according to
the temperature. The black line denotes where the training ends and testing begins.

67

Figure 3-2: Time averaged errors in prediction of the temperature field over the
spatial domain. For comparison, we compute the POD basis and coefficients using
three different snapshot matrices: the original snapshot matrix (dash dot), the snap-
shots with a particular solution subtracted (solid), and the snapshots with the mean
subtracted (dash).

68

3.4 Combustion application

We applied operator inference to a single injector combustion problem presented by

Huang et al [29]. The complex non-linear physics and implementations of combustion

applications makes intrusive reduced-order modeling challenging. In the remainder

of this section, we provide the specifications for generating the simulation data, the

operator inference setup including how a variable transformation is used to improve

our approximate model of the dynamics and lastly, we present the results and future

extensions.

3.4.1 Governing equations

The dynamics of this problem are governed by the conservation equations for mass,

momentum, energy and species mass fractions. For this two-dimensional problem,

the vector of conservative variables is defined as

𝑞 =
[︁
𝜌 𝜌𝑢 𝜌𝑣 𝜌𝐸 𝜌𝑌1 . . . 𝜌𝑌𝑛sp

]︁⊤
, (3.38)

where 𝜌 is the density (kg
m3), 𝑢 and 𝑣 are the 𝑥 and 𝑦 velocity (m

s), respectively,

𝐸 = 𝑒 + 1
2
(𝑢2 + 𝑣2) is the total energy (J), where 𝑒 is the internal energy (J) and

1
2
(𝑢2 + 𝑣2) is the kinetic energy (J), and 𝑌𝑙 is the 𝑙th species mass fraction with

𝑙 = [1, . . . , 𝑛sp] and 𝑛sp defined as the number of chemical species.

The conservation equation for mass is defined as

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
= 0. (3.39)

The conservation equations for momentum in the 𝑥 and 𝑦 directions are defined

as

𝜕𝜌𝑢

𝜕𝑡
+

𝜕𝜌𝑢2 + 𝑝

𝜕𝑥
+

𝜕𝜌𝑢𝑣

𝜕𝑦
−

(︂
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦
𝜕𝑦

)︂
= 0 (3.40)

𝜕𝜌𝑣

𝜕𝑡
+

𝜕𝜌𝑢𝑣

𝜕𝑥
+

𝜕𝜌𝑣2 + 𝑝

𝜕𝑦
−
(︂
𝜕𝜏𝑦𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑦
𝜕𝑦

)︂
= 0, (3.41)

69

where 𝑝 is pressure (Pa) and 𝜏𝑖𝑗 are elements of the two-dimensional viscous shear

tensor defined as

𝜏 = �̂�

⎡⎣ 1
3
𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑥

+ 𝜕𝑢
𝜕𝑦

1
3
𝜕𝑣
𝜕𝑦

⎤⎦ , (3.42)

where �̂� is the mixture viscosity coefficient.

The conservation equation for energy is defined as

𝜕𝜌𝐸

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝐸 + 𝑝𝑢 + 𝑗𝑞𝑥 − 𝜏𝑥𝑥𝑢− 𝜏𝑦𝑥𝑣) +

𝜕

𝜕𝑦

(︀
𝜌𝑣𝐸 + 𝑝𝑣 + 𝑗𝑞𝑦 − 𝜏𝑥𝑦𝑢− 𝜏𝑦𝑦𝑣

)︀
= 0,

(3.43)

where j𝑞 =
[︀
𝑗𝑞𝑥 𝑗𝑞𝑦

]︀⊤ is the diffusive heat flux vector defined as

j𝑞 = −𝑘∇𝑇 + 𝜌

𝑛sp∑︁
𝑙=1

𝐷𝑙ℎ𝑙∇𝑌𝑙 + Q, (3.44)

where 𝑇 is the temperature (K), 𝑘 is an averaged thermal conductivity, 𝐷𝑙 is the

diffusion coefficient for the 𝑙th species into the mixture, which is an approximation

used to model the multi-component diffusion as the binary diffusion of each species

into a mixture and ℎ𝑙 is the partial enthalpy of the 𝑙th species where we use the

relationship

𝑒 =

𝑛sp∑︁
𝑙=1

ℎ𝑙𝑌𝑙 +
𝑝

𝜌
.

The three terms in the definition of the heat flux (Equation (3.44)) represent heat

transfer due to conductivity, species diffusion and heat generation from a volumetric

source denoted by Q.

The conservation equation for a single species mass fraction, 𝑌𝑙, is

𝜕𝜌𝑌𝑙

𝜕𝑡
+

𝜕𝜌𝑢𝑌𝑙 + 𝑗𝑚𝑙,𝑥
𝜕𝑥

+
𝜕𝜌𝑣𝑌𝑙 + 𝑗𝑚𝑙,𝑦

𝜕𝑦
= 𝑀𝑙�̇�𝑙, (3.45)

where

j𝑚𝑙 =
[︁
𝑗𝑚𝑙,𝑥 𝑗𝑚𝑙,𝑦

]︁⊤
=

[︁
𝜌𝐷𝑙

𝜕𝑌𝑙

𝜕𝑥
𝜌𝐷𝑙

𝜕𝑌𝑙

𝜕𝑦

]︁⊤
70

is the diffusive mass flux vector of species 𝑙, 𝑀𝑙 is the molar mass (g
mol) of the 𝑙th

species and �̇�𝑙 is the production rate of the 𝑙th species.

We can write these conservation equations compactly in vector form as

𝜕𝑞

𝜕𝑡
+ ∇ · (K−K𝑣) = S, (3.46)

where K and K𝑣, represent the inviscid and viscous flux terms, respectively, and

S = [0 0 0 0 𝑀1�̇�1 . . . 𝑀𝑛sp�̇�𝑛sp]⊤ is the source term. The inviscid flux, K

in Equation (3.46), is defined as

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝜌𝑢𝐸 + 𝑝𝑢

𝜌𝑢𝑌1

...

𝜌𝑢𝑌𝑛sp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�⃗� +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌𝑣

𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

𝜌𝑣𝐸 + 𝑝𝑣

𝜌𝑣𝑌1

...

𝜌𝑣𝑌𝑛sp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�⃗�, (3.47)

The viscous flux, K𝑣 in Equation (3.46), is defined as

K𝑣 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

𝜏𝑥𝑥

𝜏𝑦𝑥

𝜏𝑥𝑥𝑢 + 𝜏𝑦𝑥𝑣 − 𝑗𝑞𝑥

−𝑗𝑚1,𝑥
...

−𝑗𝑚𝑛sp,𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�⃗� +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

𝜏𝑥𝑦

𝜏𝑦𝑦

𝜏𝑥𝑦𝑢 + 𝜏𝑦𝑦𝑣 − 𝑗𝑞𝑦

−𝑗𝑚1,𝑦
...

−𝑗𝑚𝑛sp,𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�⃗�, (3.48)

For boundary conditions, we impose a non-reflecting boundary condition at the

downstream end, while maintaining the chamber pressure via

𝑝back(𝑡) = 𝑝back,ref[1 + 𝐴 sin(2𝜋𝑓𝑡)] (3.49)

71

where 𝑝back,ref = 1.0 × 106 Pa, 𝐴 = 0.1 and 𝑓 = 5000Hz. The specific heat ratio, 𝛾, is

defined as

𝛾 =
𝑐p,mixture

𝑐v,mixture
=

𝑛sp∑︁
𝑙=1

𝑌𝑙𝑐p,𝑙

𝑛sp∑︁
𝑙=1

𝑌𝑙𝑐v,𝑙

=

𝑛sp∑︁
𝑙=1

𝑌𝑙𝑐p,𝑙

𝑛sp∑︁
𝑙=1

𝑌𝑙

(︂
𝑐p,𝑙 −

𝑅𝑢

𝑀𝑙

)︂ , (3.50)

where 𝑅u = 8.314 J
mol K is the universal gas constant, 𝑐p is the specific heat at a

constant pressure and 𝑐v is the specific heat at a constant volume. We also use the

ideal gas relation 𝑐p − 𝑐v = 𝑅𝑢. The top and bottom wall boundary conditions are

no-slip conditions, and for the upstream boundary we impose constant mass flow at

the inlets.

The source term, S in Equation (3.46), is defined by considering a 1-step combus-

tion reaction governed by

CH4 + 2O2 = CO2 + 2H2O,

as presented in [65], with 𝑛sp = 4. The corresponding general stoichiometric equation

is defined as

0 =

𝑛sp∑︁
𝑙=1

𝜈𝑙𝜒𝑙, (3.51)

where 𝜒1 = CH4, 𝜒2 = O2, 𝜒3 = CO2, 𝜒4 = H2O and 𝜈𝑙 is the net stoichiometric

coefficients of each species with 𝜈1 = −1, 𝜈2 = −2, 𝜈3 = 1 and 𝜈4 = 2. By considering

the molar concentration, 𝑐𝑙, of the 𝑙th species, measured at discrete times, we can use

a finite difference approach to define the production rate of the 𝑙th species as

�̇�𝑙 =
d𝑐𝑙
d𝑡

= 𝜈𝑙Γ𝑟, (3.52)

where Γ𝑟 is the reaction rate, independent of the species index, 𝑙. The reaction rate

can be approximated by

Γ𝑟 = 𝑘

𝑛react∏︁
𝑙=1

𝑐𝑜𝑙𝑙 , (3.53)

where 𝑛react = 2 is the number of reactants, 𝑘 is the rate coefficient and 𝑜𝑙 is the

72

reaction order of the 𝑙th reactant. In our case 𝑜1 = 0.2 and 𝑜2 = 1.3. The rate

coefficient, 𝑘, can be described by the Arrhenius equation as

𝑘 = 𝐴 exp

(︂−𝐸𝑎

𝑅u𝑇

)︂
, (3.54)

where 𝐴 = 2 × 1010 is the pre-exponential constant and 𝐸𝑎 is the energy required to

reach a chemical reaction, measured in Joules and referred to as the activation energy.

Now, we can write the equations defining the evolution of the chemical reaction as

�̇�1 =
d[CH4]

d𝑡
= −𝐴 exp

(︂−𝐸𝑎

𝑅𝑢𝑇

)︂
[CH4]

0.2[O2]
1.3 (3.55)

�̇�2 =
d[O2]

d𝑡
= −2𝐴 exp

(︂−𝐸𝑎

𝑅𝑢𝑇

)︂
[CH4]

0.2[O2]
1.3 = 2

d[CH4]

d𝑡
(3.56)

�̇�3 =
d[CO2]

d𝑡
= 𝐴 exp

(︂−𝐸𝑎

𝑅𝑢𝑇

)︂
[CH4]

0.2[O2]
1.3 = −d[CH4]

d𝑡
(3.57)

�̇�4 =
d[H2O]

d𝑡
= 2𝐴 exp

(︂−𝐸𝑎

𝑅𝑢𝑇

)︂
[CH4]

0.2[O2]
1.3 = −2

d[CH4]

d𝑡
, (3.58)

where [CH4] = 𝑐1, [O2] = 𝑐2, [CO2] = 𝑐3, and [H2O] = 𝑐4 are the molar concentrations.

The general relationship between a species molar concentration, 𝑐𝑙, and a species mass

fraction, 𝑌𝑙, is

𝑌𝑙 =
𝑐𝑙𝑀𝑙

𝜌
. (3.59)

In our case, 𝑙 ∈ [1, 2, 3, 4], 𝑌1 is the mass fraction of CH4, 𝑌2 is the mass fraction of

O2, 𝑌3 is the mass fraction of CO2 and 𝑌4 is the mass fraction of H2O. The molar

mass of CH4 is 𝑀1 = 16.04 g
mol , the molar mass of O2 is 𝑀2 = 32.0 g

mol , the molar mass

of CO2 is 𝑀3 = 18.0 g
mol , and the molar mass of H2O is 𝑀4 = 44.01 g

mol .

The General Equation and Mesh Solver (GEMS) computational fluid dynamics

code [25] solves these conservation equations in terms of the primitive variables

𝑞𝑝 =
[︁
𝑝 𝑢 𝑣 𝑇 𝑌1 . . . 𝑌𝑛sp

]︁⊤
.

73

Equation (3.46) in primitive variables is written as

Γ𝑝
𝜕𝑞𝑝
𝜕𝑡

+ ∇ · (K−K𝑣) = S, (3.60)

where the transformation Jacobian, Γ𝑝, from conservative to primitive variables is

defined as

Γ𝑝 =
𝜕𝑞

𝜕𝑞𝑝
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑅𝑇

0 0 −𝑝
𝑅𝑇 2 0

𝑢
𝑅𝑇

𝑝
𝑅𝑇

0 −𝑝𝑢
𝑅𝑇 2 0

𝑣
𝑅𝑇

0 𝑝
𝑅𝑇

−𝑝𝑣
𝑅𝑇 2 0

1
𝛾−1

𝑢 𝑣 0 0

𝑌𝑙

𝑅𝑇
0 0 −𝑝𝑌𝑙

𝑅𝑇 2
𝑝

𝑅𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.61)

where we have used the equation of state

𝑝 = 𝜌𝑅𝑇 and 𝑒 =
𝑝

𝛾 − 1
. (3.62)

3.4.2 Computational domain

A single injector combustor is shown in Figure 3-3, with the computational domain

outlined in red. Our domain is a simplified two-dimensional version of the computa-

tional domain, shown in Figure 3-4. This figure also denotes the four locations where

we monitor the state variables. The domain is discretized into 𝑛𝑥 = 38523 cells.

Figure 3-3: A single injector combustor showing the computational domain [67].

74

Figure 3-4: The computational domain and state variable monitor locations.

3.4.3 The GEMS dataset

The set of discretized variables used for operator inference is

q = [p u v 𝜌−1 [CH4] [O2] [CO2] [H2O]]⊤ ∈ R𝑑𝑛𝑥 ,

where 𝜌−1 ∈ R𝑛𝑥 is the specific volume. The motivation for using the primitive

variables 𝑝, 𝑢 and 𝑣, and the specific volume is that the conservation equations for

mass, momentum and energy for viscous flow with no source term become quadratic

in these variables when written in primitive form (see Appendix B for justification).

Thus, a quadratic reduced-order model based on these variables can be expected to

yield a reasonable approximation to the dynamics [36, 53]. The species are measured

in molar concentrations. The number of variables is 𝑑 = 8, and the number of elements

in the domain at each time step is 𝑛𝑥 = 38523.

The full-order model is simulated for a time duration of 1ms with a time step size

of ∆𝑡 = 1×10−7s, resulting in 𝐾 = 10000 snapshots of dimension 8×38523 = 308184.

Therefore, our snapshot matrix is

Q = [q0 q1 . . . q𝐾] ∈ R𝑑𝑛𝑥×𝐾 = R308184×10000,

where q𝑖 ∈ R𝑑𝑛𝑥 is the snapshot at time step 𝑡𝑖. Figure 3-5 shows representative

snapshots of pressure and temperature. The fuel and oxidizer input streams both

have a constant mass flow rate of 5.0kg
s and 0.37kg

s , respectively. The fuel is composed

75

of gaseous methane and the oxidizer is 42% gaseous O2 and 58% gaseous H2O, as

described in [29].

(a) Pressure (Pa)

(b) Temperature (K)

Figure 3-5: A snapshot of pressure and temperature at time 𝑡 = 0.0159999𝑠.

The range of variable values for the given data is shown in Table 3.1. The mag-

nitude of each variable is notably different. Pressure is of the order 106 while species

concentrations can be as low as 10−12. This large scaling difference presents a chal-

lenge when learning from data. We also see that velocity ranges from positive to

negative values and includes zero. In an effort to have a well posed least-squares

problem and to deal with the numerical issues related to small species concentrations

and velocities, we scale each variable to be in the range [−1, 1]. To scale a variable,

p ∈ R𝑛𝑥 , to a range [𝑎, 𝑏],

pscaled = 𝑠p + 𝑎− min(p)𝑠,

where 𝑠 = 𝑏−𝑎
max(p)−min(p)

.

76

Variable Minimum Mean Maximum Avg Percent Deviation
pressure (p) 9.226 × 105 1.142 × 106 1.433 × 106 4.492
𝑥 velocity (u) -222.930 69.637 307.147 67.609
𝑦 velocity (v) -206.990 1.304 186.548 830.898
specific volume (𝜌−1) 0.0533 0.220 0.674 42.443
CH4 molar concentration ([CH4]) 0.0 0.063 1.169 139.628
O2 molar concentration ([O2]) 0.0 0.056 0.097 51.189
CO2 molar concentration ([CO2]) 0.0 0.002 0.012 119.189
H2O molar concentration ([H2O]) 0.0 0.154 0.232 32.972

Table 3.1: Range of values for GEMS data.

3.4.4 Learning framework: Quadratic reduced-order model

Due to the highly non-linear dynamics of this problem, lifting the variables such that

the governing equations are in quadratic form leads to a high-dimensional system of

ODEs with algebraic constraints. Thus, as an initial step to learning a reduced-order

model for this problem, we propose to approximate its dynamics with a quadratic

reduced-order model of the form

̂̇︀q(𝑡) = ̂︀Â︀q(𝑡) + ̂︀F̂︀q(𝑡)2 + ̂︀B𝑢(𝑡),

where ̂̇︀q(𝑡), ̂︀q(𝑡) ∈ R𝑟, ̂︀A ∈ R𝑟×𝑟, ̂︀F ∈ R𝑟×𝑠, and ̂︀B ∈ R𝑟. To learn the operators

of this reduced-order model, we solve the regularized least-squares problem shown in

Equation (3.20). We approximate the input to the system with the additive linear

term B𝑢(𝑡) where 𝑢(𝑡) = 𝑝back from Equation (3.49).

The performance of the algorithm is extremely dependent on the data used to

learn the operators, so the amount of data and fidelity of the time derivative data

are crucial to success. We experiment with varying amounts of training data in

Section 3.4.6, but in general we take some subset of the snapshots (i.e. the first 𝑛train

snapshots) and store them in a matrix denoted

Qtrain = [q0 q1... q𝑛train] ∈ R𝑑𝑛𝑥×𝑛train ,

where 𝑑𝑛𝑥 = 308184 and 𝑛train is the number of snapshots we choose for training. We

then compute the POD basis from this data, denoted as V𝑟 ∈ R𝑑𝑛𝑥×𝑟, and examine

77

the decay of the singular values to determine the appropriate number, 𝑟, of basis

vectors to keep. The training data are then reduced to an 𝑟-dimensional space by

projecting the data onto the POD basis as

̂︀Qtrain = V⊤
𝑟 Q

train ∈ R𝑟×𝑛train .

With this reduced training data, we can compute the time derivative data, ̂̇︀Q, using

the five point stencil defined in Equation (3.6). Note that this equation cannot be

computed for the first two and last two time steps, so we use first order accurate

forward and backward Euler approximations. The time derivative is computed at

each time step from the reduced data and stored in a matrix denoted

̂̇︀Qtrain
= [̂̇︀q0 ̂̇︀q1 . . . ̂̇︀q𝑛train

] ∈ R𝑟×𝑛train .

The last set of data we need before learning the operators is the input data. In our

case, the input at each time step is a scalar defined in Equation (3.49), which takes

the value

𝑢(𝑡) = 𝑝back(𝑡) = 1.0 × 106[1 + 0.1 sin(1 × 104𝜋𝑡)].

We store the input at each time step in the matrix U ∈ R1×𝑛train where the 𝑖th element

of U is 𝑢(𝑡𝑖). We can now assemble the data matrix

D =

[︂(︁̂︀Qtrain
)︁⊤ (︁

(̂︀Qtrain)2
)︁⊤

U⊤

]︂
,

and solve the least-squares problem

min
o𝑖∈R𝑟+𝑠+𝑝+1

‖Do𝑖 − r𝑖‖22 + 𝜆 ‖P𝑖o𝑖‖22 , (3.63)

from Equation (3.20).

78

3.4.5 Implementation details

Below we outline a few key implementation issues that arise when applying operator

inference to the GEMS dataset.

SVD implementation Due to the large size of this dataset, we implement the

randomized SVD algorithm, introduced in [43], with a truncation value of 500 to

compute our POD basis. By taking advantage of the relationship between the eigen-

values of Q⊤Q and the singular values of Q, we are able to easily compute the entire

range of singular values to help determine an appropriate basis size. The relationship

is found by using the fact that we can decompose Q as Q = VΣW⊤ and considering

the singular value decomposition of Q⊤Q, defined as

Q⊤Q = (VΣW⊤)VΣW⊤ (3.64)

= WΣV⊤VΣW⊤ (3.65)

= WΣ2W⊤. (3.66)

Since W is an orthonormal matrix, W⊤ = W−1, therefore Equation (3.66) implies

that the right singular vectors of Q are the eigenvectors of Q⊤Q and the singular

values of Q are equal to the square root of the eigenvalues of Q⊤Q. The matrix

Q⊤Q ∈ R𝐾×𝐾 is much smaller than Q, so computing the eigendecomposition is

relatively cheap. This allows us to use the cumulative energy of the singular values to

determine the appropriate basis size. Recall Equation (2.3) from Section 2.1.2, where

the POD basis size, 𝑟, was chosen so that

∑︀𝑟
𝑘=1 𝜎

2
𝑘∑︀𝑑𝑛𝑥

𝑘=1 𝜎
2
𝑘

> 𝜖,

where 𝜖 is a user-specified tolerance and the left-hand side is referred to as the cu-

mulative energy captured by the first 𝑟 POD basis vectors. Additionally, we look at

the relative projection error of the POD basis to help determine an appropriate basis

79

size. The relative projection error of the 𝑟-dimensional POD basis is computed as

ℰproj =
‖Q−V𝑟V

⊤
𝑟 Q‖2𝐹

‖Q‖2𝐹
= 1 −

∑︀𝑟
𝑘=1 𝜎

2
𝑘∑︀𝑑𝑛𝑥

𝑘=1 𝜎
2
𝑘

. (3.67)

Not only does this error help choose an appropriate basis size, it also helps to deter-

mine how much of the error in predicted snapshots is due to the POD approximation.

Regularization The regularization penalty is another important parameter whose

value affects the performance of this algorithm. We use an L2 regularization penalty

(also known as Tikhonov regularization or ridge regression) as described in Sec-

tion 3.1.3, which requires a a user-defined regularization parameter, 𝜆. The addition

of a regularization term essentially introduces a trade-off between operators that fit

the data well and operators with small values. Fitting the data well is an obvious

feature we would like in our operators. Although, when we over fit to the data, we

find that the operators contain larger values. This causes the resulting reduced-order

model to become unsteady and causes simulations to eventually blowup to infinity.

Regularization remedies this by keeping the values in the operators small, although

if 𝜆 is too large, the data will be poorly fit. To help determine appropriate values of

𝜆, we consider the “L-curve" discussed in [24]. The L-curve is a way of visualizing

the effects of different values of 𝜆 on the norm of the residual (data fit) against the

norm of the solution. The L-curve criterion recommends choosing a value for 𝜆 that

lies in the corner of the curve, nearest the origin. For each training set size and re-

spective basis sizes, we compute the L-curve to help determine appropriate values for

𝜆. Regularization also helps to reduce the condition number of the least-squares data

matrix,
[︁
D 𝜆P

]︁⊤
, which as shown in Figure 3-6, is quite large for this application.

We note that the condition number of the data matrix decreases as we add more data,

suggesting a richer dataset.

80

Figure 3-6: The condition number of the original data matrix, D, vs. basis size for
different sized training sets.

Error measures Before evaluating the error of the method, we must decide on

appropriate error metrics for each variable. The error is computed after the learned

reduced-order model solutions have been reconstructed back into the full dimension

and scaled back to the original variable ranges. Recall Table 3.1, which showed the

range of values for each variable. Below we provide details on how error is computed

for each variable:

∙ For pressure and temperature, the values are always positive and well above

zero, so we use a standard relative error, defined as

ℰrelative =
|qtrue − qpredicted|

|qtrue|
. (3.68)

∙ Due to the small values of species concentrations (on the order of 10−12), divid-

ing by the true value can skew a small error. Thus, for species concentrations,

we use a normalized absolute error, defined as

ℰnabs =
|qtrue − qpredicted|

max(|qtrue|)
. (3.69)

∙ A similar issue arises with 𝑥 and 𝑦 velocity, where the variable ranges include

81

zero. For velocity, we compute absolute error, defined as

ℰabs = |qtrue − qpredicted|. (3.70)

3.4.6 Results

For this problem, we are provided 𝐾 = 10000 full state vectors representing 1ms

of data and another 1ms of testing data, where only variable values at the monitor

locations shown in Figure 3-4 are recorded. To evaluate performance and investigate

how the amount of training data affects predictions, we chose four different sized

training sets; the first 2500, 5000, 7500 and 10000 snapshots. We use each training

set to learn the operators of the reduced-order model and then simulate the model

for 20000 time steps. The initial value and time step size are the same as those for

the training set. For each training size, we compare the time trace of pressure over

all 20000 time steps at the cell located at (0.0, 0.0225) in the domain (denoted as

monitor location 1 in Figure 3-4). Time traces for monitor locations 2, 3, and 4 are

shown in Appendix A. Additionally, for a training set size of 10000, we include the

average error over the domain at the last time step in the training set vs. basis size,

the integral of the species concentrations over all 10000 time steps and field plots for

each variable at the last time step in the training set.

Training with 2500 snapshots The cumulative energy of the singular values of

the first 2500 snapshots is shown in Figure 3-7a and the relative projection error is

shown in Figure 3-7b. The singular values that correspond to a cumulative energy of

.975 and .99 are shown in red and green, respectively. We use basis sizes of 𝑟 = 5,

capturing 97.5% of the total energy, and 𝑟 = 8, capturing 99% of the total energy. In

Figures 3-7c and 3-7d we show the L-curve for each basis size. According to the L-

curve criterion, for a basis of 𝑟 = 5, a regularization parameter around 𝜆 = 1.0E+04 is

recommended, although this results in an unstable system. The smallest 𝜆 values that

result in a stable system are 𝜆 = 3.0E+05 and 5.0E+05. The pressure time traces for

these systems are shown in Figures 3-8a and 3-8b. For a basis of size 𝑟 = 8, a similar

82

regularization value would be preferred, but again results in an unstable system. The

only regularization value that produced a stable system was 𝜆 = 5.0E+05 and the

pressure time trace is shown in Figure 3-9a. Prediction of the training data (to the

left of the vertical line) gets worse as the regularization value increases, illustrating

the regularization trade-off. This small training set size does not capture enough

information to have predictive capabilities, regardless of basis size and regularization

parameter. Both the phase and the amplitude of the predictions have large errors.

83

(a) Cumulative energy of singular values.
The leading 𝑟 = 5 singular values capture
97.5% of the energy and the leading 𝑟 = 8
capture 99%.

(b) Relative projection error computed using
Equation (3.67).

(c) L-curve for basis size of 𝑟 = 5. (d) L-curve for basis size of 𝑟 = 8.

Figure 3-7: The cumulative energy (top left), relative projection error (top right) and
L-curve for 𝑟 = 5 (bottom left) and 𝑟 = 8 (bottom right) for first 2500 snapshots.

84

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(a) 𝜆 = 3.0E+05.

0.015 0.016 0.017

Time (s)

0.8

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(b) 𝜆 = 5.0E+05.

Figure 3-8: Pressure time traces for basis size of 𝑟 = 5. Training with 2500 snapshots.
Black vertical line denotes the end of the training data and the beginning of the test
data.

0.015 0.016 0.017

Time (s)

0.50

0.75

1.00

1.25

P
re

ss
u

re

×106

ROM, r = 8

TRUE

(a) 𝜆 = 5.0E+05.

Figure 3-9: Pressure time trace for basis size of 𝑟 = 8. Training with 2500 snapshots.
Black vertical line denotes the end of the training data and the beginning of the test
data.

85

Training with 5000 snapshots The cumulative energy of the singular values of

the first 5000 snapshots is shown in Figure 3-10a and the relative projection error is

shown in Figure 3-10b. The singular values that correspond to a cumulative energy

of .975 and .99 are shown in red and green, respectively. We use basis sizes of 𝑟 = 9,

capturing 97.5% of the total energy, and 𝑟 = 15, capturing 99% of the total energy.

In Figures 3-10c and 3-10d we show the L-curve for each basis size. According to the

L-curve criterion, for a basis of 𝑟 = 9, a regularization parameter around 𝜆 = 3.0E+04

is preferred. This value produces a stable system and the pressure time trace is shown

in Figure 3-11a. We also found that 𝜆 = 5.0E+04 produces a stable system and the

pressure time trace is shown in Figure 3-11b. Both of these systems perform well

on the training data, and produce better predictions on test data than training with

2500 snapshots. Particularly, the phase of the prediction now aligns with that of the

true pressure, but the amplitude of the prediction is much lower than the truth. The

L-curve for a basis of 𝑟 = 15 is not as informative. The only regularization parameters

that produce a stable system are 𝜆 = 1.0E+05 and 𝜆 = 3.0E+05. The pressure time

traces are shown in Figure 3-12. The effect of high regularization on the training data

is again present, and we have lost the predictive performance of using 𝑟 = 9. This

could be a result of the large regularization or a result of too many uninformative

basis vectors being kept.

86

(a) Cumulative energy of singular values.
The leading 𝑟 = 9 singular values capture
97.5% of the energy and the leading 𝑟 = 15
capture 99%.

(b) Relative projection error computed using
Equation (3.67).

(c) L-curve for basis size of 𝑟 = 9. (d) L-curve for basis size of 𝑟 = 15.

Figure 3-10: The cumulative energy (top left), relative projection error (top right)
and L-curve for 𝑟 = 9 (bottom left) and 𝑟 = 15 (bottom right) for first 5000 snapshots.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(b) 𝜆 = 5.0E+04.

Figure 3-11: Pressure time traces for basis size 𝑟 = 9. Training with 5000 snapshots.
Black vertical line denotes the end of the training data and the beginning of the test
data.

87

0.015 0.016 0.017

Time (s)

0.9

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(a) 𝜆 = 1.0E+05.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(b) 𝜆 = 3.0E+05.

Figure 3-12: Pressure time traces for basis size of 𝑟 = 15. Training with 5000 snap-
shots. Black vertical line denotes the end of the training data and the beginning of
the test data.

88

Training with 7500 snapshots The cumulative energy of the singular values of

the first 7500 snapshots is shown in Figure 3-13a and the relative projection error is

shown in Figure 3-13b. The singular values that correspond to a cumulative energy

of .975 and .99 are shown in red and green, respectively. We use basis sizes of 𝑟 = 13,

capturing 97.5% of the total energy, and 𝑟 = 22, capturing 99% of the total energy.

In Figures 3-13c and 3-13d we show the L-curve for each basis size. The L-curve

for a basis of 𝑟 = 13 is a bit skewed, but 𝜆 = 3.0E+04 and 5.0E+04 are relatively

close to the origin. A value of 𝜆 = 3.0E+04 produces an unstable system, but the

pressure time traces for 𝜆 = 5.0E+04 and 1.0E+05 are shown in Figure 3-14a and 3-

14b. Using a regularization value of 𝜆 = 5.0E+04 again performs well on the training

data and maintains the correct phase of the test data. The amplitude is slightly

larger than training with 5000, but still not large enough. Using a regularization

value of 𝜆 = 1.0E+05 also performs well on the training but appears to be overfit as

the prediction of the test data seems to veer away from the truth. For a basis size

of 𝑟 = 22, the L-curve indicates a regularization parameter of 𝜆 = 1.0E+04, which

produces an unstable system. Although, the pressure time traces using 𝜆 = 3.0E+04

and 5.0E+04 are shown in Figures 3-15a and 3-15b. The performance on the training

data is still accurate, but the magnitude of the predicted test data is still much smaller

than the truth.

89

(a) Cumulative energy of singular values.
The leading 𝑟 = 13 singular values capture
97.5% of the energy and the leading 𝑟 = 22
capture 99%.

(b) Relative projection error computed using
Equation (3.67).

(c) L-curve for basis size of 𝑟 = 13. (d) L-curve for basis size of 𝑟 = 22.

Figure 3-13: The cumulative energy (top left), relative projection error (top right) and
L-curve for 𝑟 = 13 (bottom left) and 𝑟 = 22 (bottom right) for first 7500 snapshots.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 13

TRUE

(a) 𝜆 = 5.0E+04.

0.015 0.016 0.017

Time (s)

0.9

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(b) 𝜆 = 1.0E+05.

Figure 3-14: Pressure time traces for basis size 𝑟 = 13. Training with 7500 snapshots.
Black vertical line denotes the end of the training data and the beginning of the test
data.

90

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(b) 𝜆 = 5.0E+04.

Figure 3-15: Pressure time traces for basis size of 𝑟 = 22. Training with 7500 snap-
shots. Black vertical line denotes the end of the training data and the beginning of
the test data.

91

Training with 10000 snapshots The cumulative energy of the singular values of

the first 10000 snapshots is shown in Figure 3-16a and the relative projection error is

shown in Figure 3-16b. The singular values that correspond to a cumulative energy

of .975 and .99 are shown in red and green, respectively. We use basis sizes of 𝑟 = 17,

capturing 97.5% of the total energy, and 𝑟 = 29, capturing 99% of the total energy.

In Figures 3-16c and 3-16d we show the L-curve for each basis size. The L-curve for a

basis of 𝑟 = 17 is somewhat uninformative in this case. The regularization parameters

chosen were 𝜆 = 3.0E+04 and 1.0E+05, which lie in the middle of the L-curve. The

pressure time traces corresponding to these systems are shown in Figure 3-17. These

results far outperform any of the previous ones. The performance on the training

data is once again accurate. The prediction amplitude is much closer to the truth

and the phase accuracy is maintained. We notice a slightly larger amplitude (closer

to the truth) in the prediction of the test data when using a smaller regularization

value. For a basis of size of 𝑟 = 29, the L-curve indicates a regularization parameter

around 𝜆 = 3.0E+04. Stable systems are produced for 𝜆 = 3.0E+04 and 5.0E+04,

shown in Figure 3-18. The phase in the prediction is closer to the truth, although the

amplitude is slightly less than using 𝑟 = 17. Overall, the increase in training data

clearly improves the predictive performance of the learned system.

92

(a) Cumulative energy of singular values.
The leading 𝑟 = 17 singular values capture
97.5% or the energy and the leading 𝑟 = 29
capture 99%.

(b) Relative projection error computed using
Equation (3.67).

(c) L-curve for basis size of 𝑟 = 17. (d) L-curve for basis size of 𝑟 = 29.

Figure 3-16: The cumulative energy (top left), relative projection error (top right) and
L-curve for 𝑟 = 17 (bottom left) and 𝑟 = 29 (bottom right) for first 10000 snapshots.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

1.3

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

1.3

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(b) 𝜆 = 1.0E+05.

Figure 3-17: Pressure time traces for basis size 𝑟 = 17. Training with 10000 snapshots.
Black vertical line denotes the end of the training data and the beginning of the test
data.

93

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(b) 𝜆 = 5.0E+04.

Figure 3-18: Pressure time traces for basis size of 𝑟 = 29. Training with 10000
snapshots. Black vertical line denotes the end of the training data and the beginning
of the test data.

94

In this case, we also compute the average error of each variable over the entire do-

main at the last time step of the training set (the 10000th time step). The normalized

absolute error, defined in Equation (3.69), is shown for each species in Figure 3-19.

Relative error, defined in Equation (3.68), is shown for pressure and temperature in

the top portion of Figure 3-20. For 𝑥 and 𝑦 velocity, we show the absolute error in the

bottom portion of Figure 3-20. These plots show that overall, the error is decreasing

with an increasing basis size. At a basis size of 18, 22, and 24 the systems were

unstable and stopped early, so these basis sizes are excluded from the figure. The

cause of this may be due to the fact that the same regularization parameter was used

for each of these, 𝜆 = 3.0E+04, and ideally one would pick a parameter specific for

the basis size.

Figure 3-19: Normalized absolute error (3.69) of each species vs. basis size averaged
over the spatial domain at the last time step of training data. Training with 10000
snapshots.

95

Figure 3-20: Relative error (3.68) of pressure and temperature vs. basis size averaged
over the spatial domain at the last time step of training data (top). Absolute error
(3.70) of 𝑥 and 𝑦 velocity vs. basis size averaged over the spatial domain at the last
time step of training data (bottom). Training with 10000 snapshots.

96

In Figure 3-21, we show the integrated species concentrations over time. To com-

pute these, at each time step in our simulation, we take the sum of each species over

the domain. This measure monitors whether our model conserves species mass, a

critical feature of a physically meaningful simulation. As the discretization of the full

order model becomes finer, point-wise error may become large and misleading if the

mass is shifted slightly into the neighboring cells. The integrated species concentra-

tion complements the evaluation of point-wise errors and provides a global view of

the error in the domain.

Figure 3-21: Integrated species at each time step for different basis sizes. Training
with 10000 snapshots.

As our last measure of accuracy, we compare the variables over the entire domain

at the last time step of the training data. We provide the true field, the predicted

field and an error field for each variable in Figures 3-22–3-29. Again, for pressure

and temperature, we use a relative error (Equation (3.68)). For 𝑥 and 𝑦 velocity we

use an absolute error (Equation (3.70)) and for species molar concentrations we use

a normalized absolute error (Equation (3.69)).

97

(a) True pressure. (b) Predicted pressure.

(c) Relative error of pressure.

Figure 3-22: Predictive results for pressure at the last time step of training data.
Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization set to 𝜆 =
3.0E+04.

(a) True 𝑥 velocity. (b) Predicted 𝑥 velocity.

(c) Absolute error of 𝑥 velocity.

Figure 3-23: Predictive results for 𝑥 velocity at the last time step of training data.
Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization set to 𝜆 =
3.0E+04.

98

(a) True 𝑦 velocity. (b) Predicted 𝑦 velocity.

(c) Absolute error of 𝑦 velocity.

Figure 3-24: Predictive results for 𝑦 velocity at the last time step of training data.
Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization set to 𝜆 =
3.0E+04.

(a) True temperature. (b) Predicted temperature.

(c) Relative error of temperature.

Figure 3-25: Predictive results for temperature at the last time step of training data.
Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization set to 𝜆 =
3.0E+04.

99

(a) True CH4. (b) Predicted CH4.

(c) Normalized absolute error of CH4.

Figure 3-26: Predictive results for CH4 molar concentration at the last time step of
training data. Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization
set to 𝜆 = 3.0E+04.

(a) True O2. (b) Predicted O2.

(c) Normalized absolute error of O2.

Figure 3-27: Predictive results for O2 molar concentration at the last time step of
training data. Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization
set to 𝜆 = 3.0E+04.

100

(a) True CO2. (b) Predicted CO2.

(c) Normalized absolute error of CO2.

Figure 3-28: Predictive results for CO2 molar concentration at the last time step of
training data. Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization
set to 𝜆 = 3.0E+04.

(a) True H2O. (b) Predicted H2O.

(c) Normalized absolute error of H2O.

Figure 3-29: Predictive results for H2O molar concentration at the last time step of
training data. Training with 10000 snapshots, a basis size of 𝑟 = 29 and regularization
set to 𝜆 = 3.0E+04.

101

3.5 Conclusion

The operator inference algorithm is a data-driven method for learning reduced-order

models of linear and polynomial dynamical systems. This framework is particu-

larly useful when intrusive reduced-order modeling is not feasible. We applied the

quadratic operator inference framework to a two-dimensional combustion problem,

where computing intrusive reduced-order models is difficult due to the complicated

multi-physics equations and implementations. While a quadratic model form is an

approximation of the complex multi-physics of combustion, our results show that our

learned quadratic reduced-order model can predict important quantities of interest

and also conserve species accurately. On the implementation side, we found that not

only did the training size effect the performance of this algorithm, the regularization

had a strong influence as well. Overall, the results show that the method is able

to produce accurate results even when approximating highly non-linear systems as

quadratic.

102

Chapter 4

Conclusion and future work

4.1 Conclusion

In this thesis, we presented methods that lie at the interfaces between reduced-order

modeling and machine learning. By leveraging the physics-based parameterization of

projection-based reduced-order modeling and the efficiency of machine learning algo-

rithms, we are able to construct low-dimensional models for physical systems while

maintaining certain physical constraints of the problem. With the use of particular

solutions, we can enforce linear constraints such as boundary conditions, divergence

conditions, conservation laws, etc. The data-driven operator inference algorithm al-

lows the low-dimensional model to reflect the structure of the original governing

equations of the data, producing a system that can simulate the true dynamics of

the system. In the examples considered herein, these methods proved to be able to

capture the complex dynamics found in thermal dynamics, aerodynamic flow and the

highly non-linear reacting flow found in combustion.

4.2 Future work

In Chapter 2 we found that we can enforce physical constraints outside the machine

learning algorithm, by parameterizing data before the machine learning algorithm

sees it and ensuring that regardless of the prediction, certain constraints will be

103

satisfied upon reconstruction. A downside of this method is that, due to the linearity

in reconstruction, only linear constraints can be enforced. An interesting extension

would be to incorporate constraints within the machine learning model itself. That is,

alter the machine learning algorithm such that it only predicts solutions that satisfy a

certain constraint. This would provide more flexibility in the type of constraint that

could be satsified, for example, non-linear constraints or constraints on all values

in the domain. The main challenge with this is ensuring that the efficiency of the

machine learning algorithm is not lost, since enforcement of constraints would require

many constrained optimization problems to be solved during each iteration of training

and with each prediction.

The next step in the application of operator inference in Chapter 3 is to incorporate

variable lifting to produce a system that is truly quadratic. As discussed previously,

lifting the combustion governing equations leads to a system of algebraic constraints

that must be dealt with.

104

Appendix A

Additional pressure time traces

In this section, we provide pressure time traces for monitor locations 2, 3 and 4 shown

in Figure 3-4

A.1 Monitor location 2

A.1.1 Training with 2500 snapshots

0.015 0.016 0.017

Time (s)

1.2

1.4

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(a) 𝜆 = 3.0E+05.

0.015 0.016 0.017

Time (s)

1.0

1.2

1.4

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(b) 𝜆 = 5.0E+05.

Figure A-1: Pressure time traces for basis size of 𝑟 = 5 at location 2. Training with
2500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

105

0.015 0.016 0.017

Time (s)

1.0

1.5

2.0

P
re

ss
u

re

×106

ROM, r = 8

TRUE

(a) 𝜆 = 5.0E+05.

Figure A-2: Pressure time trace for basis size of 𝑟 = 8 at location 2. Training with
2500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

106

A.1.2 Training with 5000 snapshots

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-3: Pressure time traces for basis size of 𝑟 = 9 at location 2. Training with
5000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(a) 𝜆 = 1.0E+05.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(b) 𝜆 = 3.0E+05.

Figure A-4: Pressure time trace for basis size of 𝑟 = 15 at location 2. Training with
5000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

107

A.1.3 Training with 7500 snapshots

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 13

TRUE

(a) 𝜆 = 5.0E+04.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 13

TRUE

(b) 𝜆 = 1.0E+05.

Figure A-5: Pressure time traces for basis size of 𝑟 = 13 at location 2. Training
with 7500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-6: Pressure time trace for basis size of 𝑟 = 22 at location 2. Training with
7500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

108

A.1.4 Training with 10000 snapshots

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(b) 𝜆 = 1.0E+05.

Figure A-7: Pressure time traces for basis size of 𝑟 = 17 at location 2. Training with
10000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-8: Pressure time trace for basis size of 𝑟 = 29 at location 2. Training with
10000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

109

A.2 Monitor location 3

A.2.1 Training with 2500 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(a) 𝜆 = 3.0E+05.

0.015 0.016 0.017

Time (s)

0.8

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(b) 𝜆 = 5.0E+05.

Figure A-9: Pressure time traces for basis size of 𝑟 = 5 at location 3. Training with
2500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

0.5

1.0

P
re

ss
u

re

×106

ROM, r = 8

TRUE

(a) 𝜆 = 5.0E+05.

Figure A-10: Pressure time trace for basis size of 𝑟 = 8 at location 3. Training with
2500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

110

A.2.2 Training with 5000 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-11: Pressure time traces for basis size of 𝑟 = 9 at location 3. Training
with 5000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(a) 𝜆 = 1.0E+05.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(b) 𝜆 = 3.0E+05.

Figure A-12: Pressure time trace for basis size of 𝑟 = 15 at location 3. Training
with 5000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

111

A.2.3 Training with 7500 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 13

TRUE

(a) 𝜆 = 5.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 13

TRUE

(b) 𝜆 = 1.0E+05.

Figure A-13: Pressure time traces for basis size of 𝑟 = 13 at location 3. Training
with 7500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-14: Pressure time trace for basis size of 𝑟 = 22 at location 3. Training
with 7500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

112

A.2.4 Training with 10000 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(b) 𝜆 = 1.0E+05.

Figure A-15: Pressure time traces for basis size of 𝑟 = 17 at location 3. Training
with 10000 snapshots. Black vertical line denotes the end of the training data and
the beginning of the test data.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-16: Pressure time trace for basis size of 𝑟 = 29 at location 3. Training with
10000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

113

A.3 Monitor location 4

A.3.1 Training with 2500 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(a) 𝜆 = 3.0E+05.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 5

TRUE

(b) 𝜆 = 5.0E+05.

Figure A-17: Pressure time traces for basis size of 𝑟 = 5 at location 4. Training
with 2500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.0

1.2

1.4

P
re

ss
u

re

×106

ROM, r = 8

TRUE

(a) 𝜆 = 5.0E+05.

Figure A-18: Pressure time trace for basis size of 𝑟 = 8 at location 4. Training with
2500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

114

A.3.2 Training with 5000 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 9

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-19: Pressure time traces for basis size of 𝑟 = 9 at location 4. Training
with 5000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(a) 𝜆 = 1.0E+05.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 15

TRUE

(b) 𝜆 = 3.0E+05.

Figure A-20: Pressure time trace for basis size of 𝑟 = 15 at location 4. Training
with 5000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

115

A.3.3 Training with 7500 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 13

TRUE

(a) 𝜆 = 5.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 13

TRUE

(b) 𝜆 = 1.0E+05.

Figure A-21: Pressure time traces for basis size of 𝑟 = 13 at location 4. Training
with 7500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 22

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-22: Pressure time trace for basis size of 𝑟 = 22 at location 4. Training
with 7500 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

116

A.3.4 Training with 10000 snapshots

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.2

P
re

ss
u

re

×106

ROM, r = 17

TRUE

(b) 𝜆 = 1.0E+05.

Figure A-23: Pressure time traces for basis size of 𝑟 = 17 at location 4. Training
with 10000 snapshots. Black vertical line denotes the end of the training data and
the beginning of the test data.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(a) 𝜆 = 3.0E+04.

0.015 0.016 0.017

Time (s)

1.0

1.1

1.2

P
re

ss
u

re

×106

ROM, r = 29

TRUE

(b) 𝜆 = 5.0E+04.

Figure A-24: Pressure time trace for basis size of 𝑟 = 29 at location 4. Training with
10000 snapshots. Black vertical line denotes the end of the training data and the
beginning of the test data.

117

118

Appendix B

Specific volume formulation of the

Euler equations

In this appendix, we show that the two-dimensional Euler equations are quadratic

when written in their specific volume formulation, providing motivation for using

the specific volume in our operator inference application to the GEMS dataset. The

two-dimensional Euler equations govern compressible inviscid flow and are defined by

the conservation equations for mass, momentum and energy. The equations can be

written in the conservative variables as

𝜕

𝜕𝑡

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝜌𝑢

𝜌𝑣

𝐸

⎞⎟⎟⎟⎟⎟⎟⎠ = − 𝜕

𝜕𝑥

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝑢(𝐸 + 𝑝)

⎞⎟⎟⎟⎟⎟⎟⎠− 𝜕

𝜕𝑦

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝑣(𝐸 + 𝑝)

⎞⎟⎟⎟⎟⎟⎟⎠ , (B.1)

where the state variables are density 𝜌, 𝑥 momentum 𝜌𝑢, 𝑦 momentum 𝜌𝑣, and total

energy 𝐸 with the equation of state 𝐸 = 𝑝
𝛾−1

+ 1
2
𝜌(𝑢2 + 𝑣2), where 𝑝 is pressure, 𝑢 is

𝑥 velocity, 𝑣 is 𝑦 velocity and 𝛾 is the specific heat ratio.

To begin, we need to convert the equations to their primitive variable form. Using

119

the chain rule, we can rewrite Equation (B.1) in vector form as

𝜕q

𝜕𝑡
= −𝜕f𝑥

𝜕𝑥
− 𝜕f𝑦

𝜕𝑦
(B.2)

= −𝜕f𝑥
𝜕q

𝜕q

𝜕𝑥
− 𝜕f𝑦

𝜕q

𝜕q

𝜕𝑦
(B.3)

= −A𝑥
𝜕q

𝜕𝑥
−A𝑦

𝜕q

𝜕𝑦
, (B.4)

where

q =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝜌𝑢

𝜌𝑣

𝐸

⎞⎟⎟⎟⎟⎟⎟⎠ , f𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝑢(𝐸 + 𝑝)

⎞⎟⎟⎟⎟⎟⎟⎠ , f𝑦 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝑣(𝐸 + 𝑝)

⎞⎟⎟⎟⎟⎟⎟⎠ , A𝑥 =
𝜕f𝑥
𝜕q

, and A𝑦 =
𝜕f𝑦
𝜕q

(B.5)

Define the set of primitive variables as

q̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝑢

𝑣

𝑝

⎞⎟⎟⎟⎟⎟⎟⎠ .

Again, using the chain rule, rewrite Equation (B.4) as

𝜕q

𝜕q̃

𝜕q̃

𝜕𝑡
= −A𝑥

𝜕q

𝜕q̃

𝜕q̃

𝜕𝑥
−A𝑦

𝜕q

𝜕q̃

𝜕q̃

𝜕𝑦
(B.6)

M𝑝
𝜕q̃

𝜕𝑡
= −A𝑥M𝑝

𝜕q̃

𝜕𝑥
−A𝑦M𝑝

𝜕q̃

𝜕𝑦
, (B.7)

120

where M𝑝 = 𝜕q
𝜕q̃

is the transformation Jacobian from conservative to primitive vari-

ables. Multiplying on the left by M−1
𝑝 we have

(B.8)
𝜕q̃

𝜕𝑡
= −M−1

𝑝 A𝑥M𝑝
𝜕q̃

𝜕𝑥
−M−1

𝑝 A𝑦M𝑝
𝜕q̃

𝜕𝑦
(B.9)

= −T𝑥
𝜕q̃

𝜕𝑥
−T𝑦

𝜕q̃

𝜕𝑦
. (B.10)

T𝑥 = M−1
𝑝 A𝑥M𝑝

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

−𝑢
𝜌

1
𝜌

0 0

−𝑣
𝜌

0 1
𝜌

0

(𝛾−1)(𝑢2+𝑣2)
2

−𝑢(𝛾 − 1) 𝑣(𝛾 − 1) 𝛾 − 1

⎞⎟⎟⎟⎟⎟⎟⎠A𝑥

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

𝑢 𝜌 0 0

𝑣 0 𝜌 0

(𝑢2+𝑣2)
2

𝜌𝑢 𝜌𝑣 1
𝛾−1

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
𝑢 𝜌 0 0

0 𝑢 0 1
𝜌

0 0 𝑢 0

0 𝛾𝑝 0 𝑢

⎞⎟⎟⎟⎟⎟⎟⎠

T𝑦 = M−1
𝑝 A𝑦M𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑣 0 𝜌 0

0 𝑣 0 0

0 0 𝑣 1
𝜌

0 0 𝛾𝑝 𝑣

⎞⎟⎟⎟⎟⎟⎟⎠ .

Now, we can write the conservation equations in terms of primitive variables as

𝜕𝜌

𝜕𝑡
= −𝑢

𝜕𝜌

𝜕𝑥
− 𝜌

𝜕𝑢

𝜕𝑥
− 𝑣

𝜕𝜌

𝜕𝑦
− 𝜌

𝜕𝑣

𝜕𝑦
(B.11)

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
− 1

𝜌

𝜕𝑝

𝜕𝑥
− 𝑣

𝜕𝑢

𝜕𝑦
(B.12)

𝜕𝑣

𝜕𝑡
= −𝑢

𝜕𝑣

𝜕𝑥
− 𝑣

𝜕𝑣

𝜕𝑦
− 1

𝜌

𝜕𝑝

𝜕𝑦
(B.13)

𝜕𝑝

𝜕𝑡
= −𝛾𝑝

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑝

𝜕𝑥
− 𝛾𝑝

𝜕𝑣

𝜕𝑦
− 𝑣

𝜕𝑝

𝜕𝑦
. (B.14)

121

Define the variable 𝜁 = 1
𝜌

as the specific volume and using the chain rule we have
𝜕𝜁
𝜕𝑡

= − 1
𝜌2

𝜕𝜌
𝜕𝑡

. So, we can remove Equation (B.11) describing 𝜌 and add an equation

describing 𝜁 as
𝜕𝜁

𝜕𝑡
= −𝑢

𝜕𝜁

𝜕𝑥
+ 𝜁

𝜕𝑢

𝜕𝑥
− 𝑣

𝜕𝜁

𝜕𝑦
+ 𝜁

𝜕𝑣

𝜕𝑦
.

The two-dimensional conservation equations in the specific volume formulation

are

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
− 𝜁

𝜕𝑝

𝜕𝑥
− 𝑣

𝜕𝑢

𝜕𝑦
(B.15)

𝜕𝑣

𝜕𝑡
= −𝑢

𝜕𝑣

𝜕𝑥
− 𝑣

𝜕𝑣

𝜕𝑦
− 𝜁

𝜕𝑝

𝜕𝑦
(B.16)

𝜕𝑝

𝜕𝑡
= −𝛾𝑝

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑝

𝜕𝑥
− 𝛾𝑝

𝜕𝑣

𝜕𝑦
− 𝑣

𝜕𝑝

𝜕𝑦
(B.17)

𝜕𝜁

𝜕𝑡
= −𝑢

𝜕𝜁

𝜕𝑥
+ 𝜁

𝜕𝑢

𝜕𝑥
− 𝑣

𝜕𝜁

𝜕𝑦
+ 𝜁

𝜕𝑣

𝜕𝑦
, (B.18)

which can be seen to be quadratic in the primitive variables. The GEMS governing

equations (Equation (3.46)) describe compressible reacting flow with both inviscid and

viscous terms as well as non-linear source terms on the right hand side. Note that the

above Euler equations (B.1) contain no source term, making this quadratic structure

an approximation of the true dynamics. The viscous terms in Equation (3.46) are

linear in the state variables and although the non-linear source terms are ignored in

this derivation, the resulting quadratic system still provides motivation for using the

specific volume in our operator inference application.

122

Bibliography

[1] Mohamed Aly. Survey on multiclass classification methods. Neural Networks,
19:1–9, 2005.

[2] Zhaojun Bai. Krylov subspace techniques for reduced-order modeling of large-
scale dynamical systems. Applied Numerical Mathematics, 43(1-2):9–44, 2002.

[3] Peter Benner and Tobias Breiten. Two-sided projection methods for nonlinear
model order reduction. SIAM Journal on Scientific Computing, 37(2):B239–
B260, 2015.

[4] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-
based model reduction methods for parametric dynamical systems. SIAM Re-
view, 57(4):483–531, 2015.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[6] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.
Athena Scientific, Belmont, MA, 1995.

[7] Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Larranaga. A
survey on multi-output regression. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 5:216–233, 2015.

[8] Leo Breiman, Jerome Friedman, Charles J Stone, and R A Olshen. Classification
and regression trees. Routledge, New York, 2017.

[9] Tan Bui-Thanh, Murali Damodaran, and Karen Willcox. Aerodynamic data
reconstruction and inverse design using proper orthogonal decomposition. AIAA
Journal, 42(8):1505–16, 2004.

[10] Brian Burrows, Benson Isaac, and Douglas L Allaire. A dynamic data-driven
approach to multiple task capability estimation for self-aware aerospace vehicles.
In 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Washington, DC, 13-17 June 2016.

[11] Brian J Burrows and Douglas L Allaire. A comparison of naive bayes classi-
fiers with applications to self-aware aerospace vehicles. In 18th AIAA/ISSMO

123

Multidisciplinary Analysis and Optimization Conference, Denver, CO, 5-9 June
2017.

[12] Brian J Burrows, Benson Isaac, and Douglas Allaire. Multitask aircraft capability
estimation using conjunctive filters. Journal of Aerospace Information Systems,
14(12):625–636, 2017.

[13] A Camargo and JS Smith. Image pattern classification for the identification
of disease causing agents in plants. Computers and Electronics in Agriculture,
66(2):121–125, 2009.

[14] Wang Chen, Jan S. Hesthaven, Bai Junqiang, Zhang Yang, and Yang Tihao. A
greedy non-intrusive reduced order model for fluid dynamics. AIAA Journal,
56(12):4927–4943, 2018.

[15] Panagiotis D Diamantoulakis, Vasileios M Kapinas, and George K Karagiannidis.
Big data analytics for dynamic energy management in smart grids. Big Data
Research, 2(3):94–101, 2015.

[16] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods.
Handbook of Numerical Analysis, 7:713–1018, 2000.

[17] L. Fahrmeir. Regression: models, methods and applications. Springer-Verlag
Berlin Heidelberg, 2013.

[18] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software, 3(3):209–226, 1977.

[19] Nizar Grira, Michel Crucianu, and Nozha Boujemaa. Unsupervised and semi-
supervised clustering: a brief survey. A Review of Machine Learning Techniques
for Processing Multimedia Content, Report of the MUSCLE European Network
of Excellence (FP6), 1:9–16, 2004.

[20] Chenjie Gu. QLMOR: A projection-based nonlinear model order reduction
approach using quadratic-linear representation of nonlinear systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(9):1307–1320, 2011.

[21] Serkan Gugercin. An iterative SVD-Krylov based method for model reduction
of large-scale dynamical systems. Linear Algebra and its Applications, 428(8-
9):1964–1986, 2008.

[22] Serkan Gugercin and Athanasios C Antoulas. A survey of model reduction by
balanced truncation and some new results. International Journal of Control,
77(8):748–766, 2004.

124

[23] KO Hall, Jeffrey P Thomas, and Earl H Dowell. Proper orthogonal decom-
position technique for transonic unsteady aerodynamic flows. AIAA Journal,
38(10):1853–1862, 2000.

[24] PC Hansen. The L-curve and its use in the numerical treatment of inverse
problems. Computational Inverse Problems in Electrocardiology, 5:119–142, 2001.

[25] Matthew E Harvazinski, Cheng Huang, Venkateswaran Sankaran, Thomas W
Feldman, William E Anderson, Charles L Merkle, and Douglas G Talley. Cou-
pling between hydrodynamics, acoustics, and heat release in a self-excited un-
stable combustor. Physics of Fluids, 27(4):045102, 2015.

[26] Jan S. Hesthaven. Numerical methods for conservation laws: From analysis to
algorithms. Computational Science and Engineering. Society for Industrial and
Applied Mathematics, Philadelphia, 2017.

[27] Jan S. Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of
nonlinear problems using neural networks. Journal of Computational Physics,
363:55–78, June 2018.

[28] P. Holmes, J.L. Lumley, and G. Berkooz. Turbulence, coherent structures, dy-
namical systems and symmetry. Cambridge University Press, Cambridge, UK,
1996.

[29] Cheng Huang, Karthik Duraisamy, and Charles Merkle. Investigations and im-
provement of robustness of reduced-order models of reacting flow. In AIAA
Scitech 2019 Forum, San Diego, California, 7-11 Jan, 2019.

[30] David Hutton. Fundamentals of finite element analysis. McGraw-Hill, New York,
NY, 2004.

[31] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264–323, 1999.

[32] Ian Jolliffe. Principal component analysis. Springer-Verlag New York, 2011.

[33] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

[34] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A
review of classification techniques. Emerging Artificial Intelligence Applications
in Computer Engineering, 160:3–24, 2007.

[35] B. Kramer, B. Peherstorfer, and K. Willcox. Feedback control for systems with
uncertain parameters using online-adaptive reduced models. SIAM Journal on
Applied Dynamical Systems, 16(3):1563–1586, 2017.

[36] Boris Kramer and Karen E Willcox. Nonlinear model order reduction via lifting
transformations and proper orthogonal decomposition. AIAA Journal, 2019.

125

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25, pages 1097–1105, 2012.

[38] JJ Langerman and EM Ehlers. Agent-based airline scheduling. Computers &
Industrial Engineering, 33(3-4):849–852, 1997.

[39] Thomas Liebig, Nico Piatkowski, Christian Bockermann, and Katharina Morik.
Dynamic route planning with real-time traffic predictions. Information Systems,
64:258–265, 2017.

[40] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational effi-
ciency of training neural networks. In Advances in Neural Information Processing
Systems 27, pages 855–863, 2014.

[41] J.L. Lumley. The Structures of Inhomogeneous Turbulent Flow. Atmospheric
Turbulence and Radio Wave Propagation, pages 166–178, 1967.

[42] Laura Mainini and Karen Willcox. Surrogate modeling approach to support
real-time structural assessment and decision making. AIAA Journal, 53(6):1612–
1626, 2015.

[43] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized al-
gorithm for the decomposition of matrices. Applied and Computational Harmonic
Analysis, 30(1):47–68, 2011.

[44] João Mendes-Moreira, Carlos Soares, Alípio Mário Jorge, and Jorge Freire De
Sousa. Ensemble approaches for regression: A survey. ACM Computing Survey,
45(10):1–40, 2012.

[45] Sharada P Mohanty, David P Hughes, and Marcel Salathé. Using deep learning
for image-based plant disease detection. Frontiers in Plant Science, 7, 2016.

[46] László Monostori, András Márkus, Hendrik Van Brussel, and E Westkämpfer.
Machine learning approaches to manufacturing. CIRP Annals, 45(2):675–712,
1996.

[47] Michael A Nielsen. Neural Networks and Deep Learning. Determination Press
USA, 2015.

[48] Francisco Palacios, Michael R Colonno, Aniket C Aranake, Alejandro Campos,
Sean R Copeland, Thomas D Economon, Amrita K Lonkar, Trent W Lukaczyk,
Thomas WR Taylor, and Juan J Alonso. Stanford University Unstructured
(SU2): An open-source integrated computational environment for multi-physics
simulation and design. In 51st AIAA Aerospace Sciences Meeting, pages 1–60,
Grapevine, Texas, January 2013.

126

[49] Benjamin Peherstorfer and Karen Willcox. Dynamic data-driven reduced-order
models. Computer Methods in Applied Mechanics and Engineering, 291:21–41,
2015.

[50] Benjamin Peherstorfer and Karen Willcox. Data-driven operator inference for
nonintrusive projection-based model reduction. Computer Methods in Applied
Mechanics and Engineering, 306:196–215, 2016.

[51] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[52] Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Dynamic mode
decomposition with control. SIAM Journal on Applied Dynamical Systems,
15(1):142–161, 2016.

[53] Elizabeth Qian, Boris Kramer, Alexandre Marques, and Karen Willcox. Trans-
form & learn: A data-driven approach to nonlinear model reduction. In AIAA
Aviation and Aeronautics Forum and Exposition, Dallas, TX, 17-21 June, 2019.

[54] Balaji Raghavan, Mohamed Hamdaoui, Manyu Xiao, Piotr Breitkopf, and Pierre
Villon. A bi-level meta-modeling approach for structural optimization using mod-
ified POD bases and diffuse approximation. Computers & Structures, 127:19–28,
2013.

[55] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial
differential equations. The Journal of Machine Learning Research, 19(1):932–
955, 2018.

[56] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive par-
tial differential equations. Archives of Computational Methods in Engineering,
15(3):1–47, 2007.

[57] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533, 1986.

[58] L. Sirovich. Turbulence and the dynamics of coherent structures. Part 1: Co-
herent structures. Quarterly of Applied Mathematics, 45(3):561–571, October
1987.

[59] Gordon D Smith. Numerical solution of partial differential equations: finite
difference methods. Oxford University Press, 1985.

[60] Shan Suthaharan. Machine learning models and algorithms for big data classifi-
cation. Springer US, 2016.

[61] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 2018.

127

[62] Renee C Swischuk and Douglas L Allaire. A machine learning approach to
aircraft sensor error detection and correction. In 2018 AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, 8-
12 Jan, 2018.

[63] Fei Tao, Qinglin Qi, Ang Liu, and Andrew Kusiak. Data-driven smart manufac-
turing. Journal of Manufacturing Systems, 48:157–169, 2018.

[64] Erva Ulu, Rusheng Zhang, and Levent Burak Kara. A data-driven investiga-
tion and estimation of optimal topologies under variable loading configurations.
Computer Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization, 4(2):61–72, 2016.

[65] Charles K Westbrook and Frederick L Dryer. Simplified reaction mechanisms for
the oxidation of hydrocarbon fuels in flames. Combustion Science and Technol-
ogy, 27(1-2):31–43, 1981.

[66] Achmad Widodo and Bo-Suk Yang. Support vector machine in machine condi-
tion monitoring and fault diagnosis. Mechanical Systems and Signal Processing,
21(6):2560–2574, 2007.

[67] Yen Yu, Loral O’Hara, James Sisco, and William Anderson. Experimental study
of high-frequency combustion instability in a continuously variable resonance
combustor (CVRC). In 47th AIAA Aerospace Sciences Meeting, Orlando, FL,
January 2009.

[68] Wan-Li Zuo, Zhi-Yan Wang, Tong Liu, and Hui-Ling Chen. Effective detec-
tion of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach.
Biomedical Signal Processing and Control, 8(4):364–373, 2013.

128

	Introduction
	Machine learning
	Reduced-order modeling
	Motivation and thesis outline

	Physics-based machine learning
	A physics-inspired parameterization of physical fields
	Numerical approximation of physical fields
	Computing the POD basis
	Parameterizing physical fields in the POD basis
	Enforcing physical constraints in POD parameterizations
	Particular solution illustrative example
	Particular solution extensions

	Machine learning methods
	Learning problem setup
	Neural network
	Multivariate polynomial regression
	k-nearest-neighbors model
	Decision tree regression model

	Aerodynamic example
	Problem setup: Predicting the flow over an airfoil
	Aerodynamic results

	Conclusion

	Learning structured reduced-order models
	Operator inference
	Problem setup
	Least-squares problem
	Implementation details

	Transformation of variables
	Using particular solutions to enforce physical constraints
	Enforcing physical constraints within operator inference
	Summary of algorithm
	Particular solution illustrative example

	Combustion application
	Governing equations
	Computational domain
	The GEMS dataset
	Learning framework: Quadratic reduced-order model
	Implementation details
	Results

	Conclusion

	Conclusion and future work
	Conclusion
	Future work

	Additional pressure time traces
	Monitor location 2
	Training with 2500 snapshots
	Training with 5000 snapshots
	Training with 7500 snapshots
	Training with 10000 snapshots

	Monitor location 3
	Training with 2500 snapshots
	Training with 5000 snapshots
	Training with 7500 snapshots
	Training with 10000 snapshots

	Monitor location 4
	Training with 2500 snapshots
	Training with 5000 snapshots
	Training with 7500 snapshots
	Training with 10000 snapshots

	Specific volume formulation of the Euler equations

