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Abstract

Relation Extraction (RE) refers to the problem of extracting semantic relationships
between concepts in a given sentence, and is an important component of Natural
Language Understanding (NLU). It has been popularly studied in both the general
purpose as well as the medical domains, and researchers have explored the effective-
ness of different neural network architectures. However, systematic comparison of
methods for RE is difficult because many experiments in the field are not described
precisely enough to be completely reproducible and many papers fail to report abla-
tion studies that would highlight the relative contributions of their various combined
techniques. As a result, there is a lack of consensus on techniques that will generalize
to novel tasks, datasets and contexts.

This thesis introduces a unifying framework for RE known as REflex, applied on
3 highly used datasets (from the general, biomedical and clinical domains), with the
ability to be extendable to new datasets. REflex allows exploration of the effect of
different modeling techniques, pre-processing, training methodologies and evaluation
metrics on a dataset of choice. This work performs such a systematic exploration
on the 3 datasets and reveals interesting insights from pre-processing and training
methodologies that often go unreported in the literature. Other insights from this
exploration help in providing recommendations for future research in RE.

REflex has experimental as well as design goals. The experimental goals are in
identification of sources of variability in results for the 3 datasets and provide the
field with a strong baseline model to compare against for future improvements. The
design goals are in identification of best practices for relation extraction and to be a
guide for approaching new datasets.
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Chapter 1

Introduction

This chapter motivates the need for a unifying framework for Relation Extraction

(RE). It is also meant as an overview of current modeling approaches in the field, to

show the breadth of the research performed in the past.

1.1 Motivation

Relation Extraction (RE) has gained a lot of interest from the community with the

introduction of the Semeval tasks from 2007 by Girju et al. [18] and 2010 by Hen-

drickx et al. [22]. The field is a subset of information extraction (IE) with the goal

of finding semantic relationships between concepts in a given sentence, and is an im-

portant component of Natural Language Understanding (NLU). Applications include

automatic knowledge base creation, question answering, as well as analysis of un-

structured text data. Since the introduction of RE tasks in the general and medical

domains, many researchers have explored the performance of different neural network

architectures on the datasets.

However, progress in RE is hampered by reproducibility issues as well as the dif-

ficulty in assessing which techniques in the literature will generalize to novel tasks,

datasets and contexts. This thesis introduces REflex, an open source unifying frame-

work for RE, that allows researchers to perform various modeling and model-complementing

explorations on a new dataset of their choice (see section 1.4 for goals and contribu-
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tions).

This chapter is organized as follows: section 1.2 gives a brief introduction to RE,

followed by two literature review sections. The first is a quantitative review section

1.3.1 providing evidence of the problems hindering progress in the field. Following this

is a methods literature review section 1.3.2, which reviews past modeling techniques

and existing open source frameworks and evaluation studies in NLP. The chapter

concludes by summarizing the problems hindering progress in RE, and provides con-

tributions made by the thesis to address these problems.

1.2 Relation Extraction Definition

Relation Extraction (RE) is a popular task in Natural Language Processing (NLP)

research, and the goal of RE is to find semantic relationships between entities in

a document. A relation is defined as a function 𝑡 = 𝑟(𝑒1, 𝑒2, ...𝑒𝑛) where 𝑒𝑖 are

entities in a predefined relation 𝑟 in a document 𝐷. More commonly, the community

considers binary relations of the form father-of(Manuel Blum, Avrim Blum). Relation

Classification (RC) is a subset of RE that involves distinguishing between relation

types as opposed to detecting whether a relation exists between entities.

This task has been commonly applied in the general as well as biomedical domains.

In particular, Ravichandran and Hovy [57] employ the use of relational patterns for

answering factoid questions related to topics such as birthdate, location and definition.

Zhang et al. [86] apply a neural model to the slot-filling task (an alias for relation

classification rather than extraction), which assists in populating knowledge bases.

They predict varied relations such as spouse, siblings and title.

In the biomedical domain, Liu et al. [44] extracted protein-protein interactions

using a feature-based approach with a support vector machine (SVM) classifier. The

relation they try to discover is a tertiary relation between a protein, organism and a

location. In a sentence like, Exoenzyme S is an extracellular product of Pseudomonas

aeruginosa, they predict the existence of the Protein-Organism-Location relation be-

tween Exoenzyme S, Pseudomonas aeruginosa and extracellular. In the biomedical
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domain, relation extraction can have important applications such as assisting in drug

discovery and in detection of cancerous genes [3]. In particular, drug-drug interaction

extraction [67] is useful in allowing for automatic identification of drug interactions,

in order to reduce the time spent by health care professionals in reviewing the medical

literature. This detection is also an important research area in patient safety as the

interactions can have life threatening effects.

1.3 Literature Review

This section consists of two types of literature reviews: a quantitative one providing

evidence into the problems hindering progress in RE and a methods one, introducing

the modeling and evaluation techniques commonly used in the field.

1.3.1 Quantitative Literature Review

To motivate the problems hampering progress in RE, I performed a systematic search

process as of February 2019 by looking at the cited by list on Google Scholar (roughly

ordered by number of citations) of the 3 dataset papers: Hendrickx et al. [22] (semeval),

Segura-Bedmar et al. [67] (ddi) and Uzuner et al. [71] (i2b2). I skimmed through the

first 40 papers for the semeval paper, 110 papers for the ddi paper and 578 papers

for the i2b2 paper, looking specifically for neural relation extraction papers.

Upon applying this filtering procedure, I found 22 papers for semeval (+ 4 papers

that were not in the search list, but were cited in section 1.3.2), 15 papers for ddi

(+ 2 papers from the section 1.3.2) and 12 papers for i2b2. There was an overlap

of 2 papers in the semeval and ddi list, but since they were being applied to the

biomedical tasks, I decided to move them to the ddi list. Finally, there were 24

papers for semeval, 17 papers for ddi and 12 papers for i2b2. For the final list of

papers, please refer to Appendix A. In total, there are 53 relevant neural RE papers

discussed in the following subsections, filtered from a total of 728 papers.
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Reproducibility

Reproducibility is important for validating previous work and building upon it [16].

Lack of reproducibility can be attributed to many factors such as difficulty in availabil-

ity of source code [24] and omission of sources of variability such as hyperparameter

details [12].

Only 16 out of the 53 relevant papers had released their source code. In the

semeval list, only 6 out of 24 total papers had source code available. This number

was 6 out of 17 for ddi and 4 out of 12 for i2b2. Additionally, much of this code

was lacking in modularity to be easily extendable to new datasets. In many cases,

the process of reproducing the paper results was also unclear and lack of proper

documentation made this more difficult.

Models were more frequently evaluated on only one dataset. However, papers

in the general domain often evaluated their models on a larger number of datasets

than the biomedical domain. In semeval, an average of 1.75 datasets were evaluated,

with 8 papers being evaluated on more than 1 dataset. Out of these papers, one

was evaluated on 6 datasets and the other was evaluated on 7 datasets. Only one

of these papers had source code available, which was not mentioned in the paper

and was found by additional search on Google. In ddi, 1.23 datasets were evaluated

on average with 4 papers being evaluated on 2 datasets. For i2b2, 1.42 datasets

were evaluated on average, and this number was driven by one paper evaluated on 5

datasets whose source code was not publicly available.

Most papers from the list mentioned some hyperparameter details. However, the

list was often incomplete, and the common missing hyperparameters were number of

epochs, batch size and whether a random initialization seed was set for the model

or the random functions used in the code. Some papers that used the early stop

mechanism were missing information about the size and criterion of the early stop

evaluation data. Papers also failed to mention if a specific hyperparameter search

strategy like grid search, manual search, or random search was performed [5].
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Ablation Studies

Ablation studies are important in understanding the sources of variation in results

as well as which parts of the model drive performance. While 20 of the 24 papers

in the semeval list performed ablation studies, very few from the ddi and i2b2

list performed them. 7 of 17 papers performed an ablation study in ddi and 3 of 12

papers did so for i2b2. In ablation studies and other reported experiments, key details

related to pre-processing were missing, which we found critical in our experiments.

1.3.2 Methods Literature Review

Survey of Modeling Techniques

Given the popularity of neural relation extraction in the recent years, there is an

abundance of papers that apply similar techniques to different datasets. Despite

neural relation extraction existing since 2012, the biomedical domain saw a less rapid

application of these models as compared to the general domain, as seen in the following

subsections. And even though these papers investigated different neural network

architectures for this task, no studies were published that explored the extent of

improvement offered by non-modeling techniques such as pre-processing, evaluation

techniques and hyperparameter tuning techniques for RE.

General domain Relation extraction over the general purpose domain has

seen rapid progress in recent years with the introduction of the SemEval 2007

and 2010 tasks on relation classification between pairs of nominals, as well as

2018 task on relation extraction and classification in scientific papers [18, 22,

17]. The submissions to the 2007 and 2010 tasks involved the use of varied

classification models such as Naive Bayes, k-nearest neighbor (k-NN), Maximum

Entropy (MaxEnt) and SVM classifiers. Neural Network (NN) applications to

NLP were only made popular in 2011 by Collobert et al.. In 2012, Socher

et al. [69] applied a matrix-vector based recursive neural network (MVRNN)

using a syntactic parse tree feature to improve performance for the SemEval
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2010 dataset on top of existing non-neural techniques. However, Zeng et al. [81]

were the first to applied a model not based on semantic features. They applied

a Convolutional Neural Network (CNN) architecture with novel position-based

features to the same task and achieve a better performance than MVRNN. Since

then, the field of neural relation extraction saw many advances. In 2015, Zeng

et al. [82] introduced a distant supervision technique for relation classification

using a multi-pooling approach over CNNs. In the same year, various other CNN

based approaches were introduced [66] (CRCNN model used in my experiments)

and [76] and so were Recurrent Neural Network (RNN) based approaches [84, 15,

77]. 2016 saw even more complex models and better performance on relation

classification [50, 73, 8, 78]. Finally, more recent methods explored different

architectures beyond the standard RNN and CNN, by using graph convolutions

over dependency trees of the sentences [88]. Another recent method reduced

relation extraction to answering simple reading comprehension questions [34].

Biomedical Domain Advances in the biomedical domain have been inspired

from techniques in the general domain, but have happened at a slower pace.

There exist relation extraction challenges in this domain as well, including the

drug-drug interaction extraction task known as DDI Extraction [67] (ddi) and

the relation classification task on clinical notes [71]. For both challenges, par-

ticipants submitted non-neural models, but there has been considerable work

on these datasets since their respective years. Despite the many modeling tech-

niques proposed by researchers working in the general purpose domain, most

papers built on top of the idea of using CNN with position-based embeddings

from [81]. Even for more recent tasks involving relation extraction from scien-

tific abstracts [2, 17], this modeling technique seems to be a common baseline

[32, 62, 26]. The first time a neural model was applied to ddi was in 2016 by

Liu et al. [43]. The model involved dataset specific pre-processing on top of the

CNN with the position features model proposed by Zeng et al.. Around the

same time and with similar performance, Zhao et al. [89] introduced a syntax
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CNN method, that made use of word embeddings based on the syntactic parse

of the sentence on top of position embeddings as well as grammatical features.

In the same vein as the multi-pooling approach by Zeng et al. [82], Luo et al.

[47] proposed a segmented CNN approach with position embeddings in 2017 by

dividing the sentence into 5 parts based on the position of the entities. Simi-

larly, He et al. [21] applied a multi-pooling architecture on top of a CNN with

position embeddings and a loss function with a category-level constraint ma-

trix. The same authors also explored a unified CNN-RNN architecture in [20].

Similar to the shortest dependency path idea by Xu et al. [77], Li et al. [35]

used an RNN along the shortest dependency path along with character-based

convolutions to extract relations in two common biomedical datasets. Finally,

a recent discussing the improvement that character embeddings can provide for

a biomedical dataset is Nguyen and Verspoor [51]. Character embeddings is a

popular idea employed previously in the relation extraction domain [32].

Prior frameworks and studies

Existing open source frameworks Literature review suggests that the field

of relation extraction would benefit from an open source, extendable and trans-

parent framework. While there do exist recently created frameworks for RE such

as Björne and Salakoski [7] and Kang et al. [29], they are based on a support

vector machine (SVM). There does not exist a generalizable neural network-

based framework for this field. In terms of existing products, Amazon released

the Amazon Comprehend Medical API, allowing relation extraction for clinical

notes, but this is more of a black-box model, which is not as beneficial to the

research community.

Existing evaluation studies Even though there is a gap between the gen-

eral and medical relation extraction domains at the moment, more mainstream

research is now being applied to medical datasets. A recent study by Mandya

et al. [49] employed a combined LSTM-CNN model for cross-sentence relation
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extraction to semeval and a biomedical dataset with the aim to show state of

the art performance on the biomedical domain. Additionally Zhao et al. [89]

provided a detailed ablation study on the effect of performance provided by neg-

ative instance filtering, which is a pre-processing technique specific to ddi, as

well as the modeling techniques that they choose. Outside the relation extrac-

tion domain, impact of non-modeling techniques is being studied more recently,

with Reimers and Gurevych [58] reporting the effect of different hyperparame-

ters in the performance for the named entity recognition (NER) task. The same

authors also studied the effects of random initialization seeds to the perfor-

mance of models in [60], with the conclusion that comparing score distributions

of two models is much more impactful than simply comparing one evaluation

score. Recently, [14] discussed similar problems for the question-answering field.

The effects of pre-processing for sentiment analysis and text categorization were

tested in [9]. Addressing the replication and reproduction issue for NER and

Wordnet:Similarity tasks is an older work by Fokkens et al. [16]. They spoke

about the impact of different non-modeling techniques such as preprocessing,

experimental setup, versioning, system output and system variation for these

tasks and conclude that these categories are important to explore in order to

maintain reproducibility of results. Another recent paper aiming to understand

the text processing capabilities of CNN filters is Jacovi et al. [25]. RE would

benefit from such studies to understand the true source of performance gains in

results. Current studies in RE are local in nature in that they simply focus on

the improvement offered by modeling techniques rather than those provided by

non-modeling techniques, such as a range of pre-processing techniques.
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1.4 Goals and Contributions

Given the lack of detailed evaluation studies in RE, it is difficult to assess the causes

of large variability of results, which makes a fair comparison of models a difficult

task. An open-source unifying framework enabling the comparison of various training

methodologies, pre-processing, modeling techniques and evaluation metrics would

help add clarity to what techniques add true performance and generalize best. The

contributions of this work is as follows:

1. An open-source unifying framework known as REflex1, that is extendable to

new datasets.

2. Exploration of modeling and model-complementing (training methodologies and

pre-processing) techniques on 3 popular RE datasets, along with a discussion

of the implications of different evaluation metrics, particularly for the medical

settings.

1code available at https://github.com/geetickachauhan/relation-extraction
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Chapter 2

Data

This chapter introduces the different datasets used for the exploratory piece of the

thesis, mentioning intricacies such as their class distributions and inter-annotator

agreements. These details will be critical in latter chapters when I discuss the ap-

propriateness of the evaluation metrics for new as well as the current datasets. A

summary of important information about these datasets is also present in table 2.4.

For the rest of the thesis, medical datasets refer to the ddi and i2b2 datasets. All

datasets were evaluated for the classification task, but the medical datasets were also

evaluated for the detection task (explained more in section 3.1.4 of chapter 3).

2.1 Semeval 2010

semeval [22] consists of 8000 training sentences as well as 2,717 test sentences for the

multi-way classification of semantic relations between pairs of nominals. There are a

total of 19 relations (where 18 relations consist of taking directionality into account),

with an Other class which is considered noisy, with annotators classifying this class

if no fit was found in the other classes. The official evaluation reported macro-F1

scores and did not count the Other class in calculations. Inter-annotator agreement

for this dataset is between 60% and 95%. The class distribution in the Semeval 2010

dataset is listed in table 2.1.
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Class Name Num Example
Cause-Effect(e1,e2) 688 those cancers were caused by radiation exposuresCause-Effect(e2,e1) 1318
Component-Whole(e1,e2) 940 my apartment has a large kitchenComponent-Whole(e2,e1) 942
Content-Container(e1,e2) 748 a bottle full of honey was weighedContent-Container(e2,e1) 332
Entity-Destination(e1,e2) 1688 the boy went to bedEntity-Destination(e2,e1) 2
Entity-Origin(e1,e2) 1136 letters from foreign countriesEntity-Origin(e2,e1) 296
Instrument-Agency(e1,e2) 194 phone operatorInstrument-Agency(e2,e1) 814
Member-Collection(e1,e2) 156 there are many trees in the forestMember-Collection(e2,e1) 1224
Message-Topic(e1,e2) 980 the lecture was about semanticsMessage-Topic(e2,e1) 288
Product-Producer(e1,e2) 646 a factory manufactures suitsProduct-Producer(e2,e1) 788
Other 2820 -

Table 2.1: Class distribution of semeval. The column Num = number of examples per
relation. Because the relation names are self-explanatory, examples of relation types
are provided with the involved entities underlined. Other class omits the example
column because it is noisy and does not have a representative example.

2.2 DDI Extraction

ddi [67] consists of 1,017 texts with 18,491 pharmacological substances and 5,021

drug-drug interactions from PubMed articles in the pharmacological literature. A

total of 5 relations are present with a None class indicating no interaction between

the drug pairs. The official evaluation reported macro-F1 scores for classification,

along with a detection macro-F1. While classification was a multi-class classification

task, detection converted the problem into a binary classification between non-None

classes and None classes (explained more in chapter 3). The class distribution is

listed in table 2.2.
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Class Name Num Description
Advise 863 recommendation or advice related to the use of the two drugs
Effect 1591 effect related to the drug-drug interaction
Int 228 an interaction occurs without providing more information
Mechanism 1299 mechanism of the interaction
None 21948 No interaction

Table 2.2: Class distribution of ddi. The column Num = Number of examples per
relation.

2.3 i2b2/VA 2010 relations

i2b2 [71] consists of discharge summaries from Partners Healthcare and the MIMIC

II Database [63]. They released 394 training reports, 477 test reports and 877 unan-

notated reports for this purpose. After the challenge, only a part of the data was

publicly released for research and the dataset consists of 8 non-None relations in

three categories: Medical Problem - Problem, Problem - Test and Problem - Treat-

ment relations. There were also None relations present in each of the three categories.

The official evaluation reported micro-F1 scores and did not count the None class in

calculations. The class distribution is listed in table 2.3. The table lists the 3 different

types of None classes, but the model was fed in all of these as the None type. This

does not make a difference in score reporting because these classes were not included

in official evaluation scores for this dataset.

Class Name Num Description
PIP 2203 Medical problem indicates medical problem
PP-None 12506 -
TeCP 504 Test conducted to investigate medical problem
TeRP 3053 Test reveals medical problem
TeP-None 2964 -
TrAP 2617 Treatment is administered for medical problem
TrCP 526 Treatment causes medical problem
TrIP 203 Treatment improves medical problem
TrNAP 174 Treatment is not administered because of medical problem
TrWP 133 Treatment worsens medical problem
TrP-None 4462 -

Table 2.3: Class distribution of i2b2. The column Num = number of examples per
relation.
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Dataset Relations Evaluation Metric Interannotator Agreement Detection
semeval 18 Macro-F1 0.6-0.95 No
ddi 5 Macro-F1 >0.8; 0.55-0.72 Yes
i2b2 8 Micro-F1 - Yes

Table 2.4: Dataset information, with column Detection referring to whether detection
task from section 3.1.4 in chapter 3 was evaluated on. Relations column only includes
relations used in the official evaluation metric. ddi was built from two separately
annotated sources and therefore contains two interannotator agreements.

2.4 Official Challenge Tasks Compared Against

In this work, I compare my results against the following challenge tasks for each

dataset:

∙ Semeval 2010 task 8: Multi-Way Classification of Semantic Relations between

Pairs of Nominals

∙ DDI Extraction 2013 task 9.2: Extraction of drug-drug interactions

∙ i2b2/VA 2010 challenge on relation classification
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Chapter 3

Methodology

This chapter introduces the conceptual picture of the framework, briefly mentioning

the higher level details of the stages in the pipeline. Background information related

to the baseline model used and evaluation metrics is mentioned in the latter sections.

3.1 Framework

Figure 3-1: Systematic exploration framework. Each dataset results computed sepa-
rately.
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The framework breaks up various parts of processing into different stages, allowing

for modular addition of components in the future. First, a formatter converts the

raw dataset into a common input format accepted by the preprocessor, and the pre-

processed dataset is then fed to the model. The model then performs the training after

which evaluator performs evaluation on the test set (or development set for cross

validation). With this framework, I run the experiments described in the following

subsections:

3.1.1 Pre-Processing

Various pre-processing methods are tested after performing simple tokenization and

lower-casing of the words: entity blinding used by Liu et al. [43], commonly applied

stop-word and punctuation removal, digit normalization applied for ddi in [89],

and named entity recognition related replacement (this is known as NER blinding

in this work). I used the spaCy framework1 to perform tokenization as well as to

identify punctuations and digits.

Stop word removal is a common technique in Natural Language Processing (NLP)

to remove commonly used words such as the and is in order to simplify the sentence.

The technique was first coined in Luhn [45], and was commonly used in Information

Retrieval (IR) to make the processing of natural language queries faster and more

accurate. This was commonly used in Information Retrieval (IR), first coined in [45].

Digit normalization refers to the replacement of all decimals and integers in

the sentence by the word number. Instead of using regular expressions to search for

decimals and digits, I used spaCy’s like_num argument which identifies decimals and

digits as well as language specific words like ten or hundred.

Entity blinding and NER blinding are similar concept blinding techniques

where the first is performed based on gold standard annotations, while the second

is performed by running NER on the original sentence. I replace the words in the

sentence matching the entity or named entity span with the target label and use those

for training and testing.
1https://github.com/explosion/spaCy

32



Entity labels for semeval were not annotated with type information, whereas

ddi identified drugs and i2b2 identified medical problems, tests and treatments.

Therefore, entity labels for semeval were ENTITY, for ddi were DRUG and for i2b2

were PROBLEM, TREATMENT and TEST. In this work, I use fine-grained concept

type to refer to the presence of more than one concept type, as in the the case of

i2b2.

NER labels for semeval consisted of those provided by the large english model

by spaCy and provided standard types such as PERSON and ORGANIZATION,

whereas those for the medical datasets was provided by the scispacy medium size

model2 and did not provide types. In this case, blinding consisted of replacing the

words in the sentence by Entity.

As an example of blinding, consider the sentence in figure B-1 in chapter 4. The

result of entity blinding that sentence is shown in figure 3-2.

Figure 3-2: Result of entity blinding for a sentence in the i2b2 dataset

3.1.2 Model

I employ a baseline model based upon [81] and [66], which is a convolutional neural

network (CNN) with position embeddings and a ranking loss (referred to as CRCNN in

this work and explained in subsection 3.2.1). The model is initialized with pre-trained

word embeddings. The model for the general domain dataset is initialized with senna

embeddings by Collobert et al. [13], whereas that for the medical domain (biomedical

and clinical) is initialized with the PubMed-PMC-wikipedia embeddings released by

Pyssalo et al. [54]. Many perturbations on top of CRCNN model are tested, such as

2https://allenai.github.io/scispacy/
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piecewise max-pooling, as suggested by Zeng et al. [82] and ELMo embeddings

Peters et al. [53]. To compare different featurizations of contextualized embeddings, I

also employ the embeddings generated by the BERT model (rather than the standard

fine-tuning approach).

The fine-tuning approach, which tends to be computationally expensive, has been

thoroughly explored for multiple tasks, including medical relation extraction by Lee

et al. [33], but the approach of using contextualized embeddings has not been explored

in the literature as much. I chose to explore different ways of incorporating the BERT

contextualized embeddings for researchers that wanted to utilize a less computation-

ally intensive technique, while still aiming for performance gains for their task.

Because ELMo provides token level embeddings, they were concatenated with the

word and position embeddings from CRCNN before the convolution phase. According

to the terminology used in section 3.2.1, new feature embeddings were generated by

concatenating the word embeddings, word position embeddings as well as the ELMo

embeddings on a word-by-word basis.

BERT, in contrast, provides word-piece level as well as sentence level embed-

dings. The word-piece level embeddings were concatenated similar to ELMo (known

as BERT-tokens) after the individual word pieces were averaged to form one word

embedding. For example, if BERT split the word “playing” to generate embeddings

for “play” and “##ing,” I averaged the embeddings for the two word pieces to form

one word embedding for “playing.” The sentence level embeddings were concatenated

with the fixed size sentence representation, known as 𝑟𝑥 in section 3.2.1, which is

output after convolution of word and position embeddings (known as BERT-CLS).

3.1.3 Training Methodologies

Two ways of doing hyperparameter tuning were explored: manual tuning and ran-

dom search [5].

Evaluating on 3 datasets meant that I needed to identify a default list of hyperpa-

rameters by tuning on one of the datasets before identification of the hyperparameter

list for the other two. I chose semeval for initial tuning due to its larger literature
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Hyperparameter Values
epoch {50,100,150,200}
lr decay [1e-3, 1e-4, 1e-5]
sgd momentum {T, F}
early stop {T, F}
pos embed {10, 50, 80, 100}
filter dimension {50, 150}
filter size 2-3-4, 3-4-5
batch size {70, 30}

Table 3.1: Hyperparameters explored for the first pass of manual search. lr decay
means learning rate decay at [60, 120] epochs, pos embed refers to the position em-
bedding size.

Hyperparameter Distributions
epoch uniform(70, 300)
lr {constant, decay}
lr init uniform(1e-5, 0.001)

filter size 2-3, 2-3-4, 2-3-4-5
3-4-5, 3-4-5-6

early stop {T, F}
batch size uniform(30, 70)

Table 3.2: Hyperparameter distributions for random search. Those written in {} are
picked with equal probabilities. The learning rate (lr) was uniformly initialized, and
decayed from 0.001 to the lr init value (used as a post decay value in this scenario) at
half of the number of epochs. If early stop was true, patience was set to a fifth of the
number of epochs. I ran 100-120 experiments for each dataset to search for optimal
hyperparameters.

and because the CRCNN model was originally evaluated on this dataset. I started with

reference hyperparameters listed in Zeng et al. [81] and Santos et al. [66] and iden-

tified default hyperparameters after tuning on a dev set randomly sampled from the

training data of the semeval dataset. These default hyperparameters3 were used as

starting points for manual tuning on the medical datasets as well as random search

for all datasets.

I perform manual tuning on a subset of the hyperparameters, mentioned in table

3.1. In order to avoid overfitting in cross validation pointed out by Cawley and

Talbot [10], I perform a nested cross validation procedure, keeping a dev fold for

hyperparameter tuning and a held out fold for score reporting.

3listed in source code
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On these dev folds, I perform paired t-tests for each of the perturbations to the

parameters listed in table 3.1. The first pass involves changing one hyperparameter

per experiment and noting the ones that cause a statistically significant improvement,

which helps in identification of a narrower list of hyperparameters to tune on. I further

refine the hyperparameter values in our second pass by testing on values similar to

those that were leading to statistically significant improvements in the first pass. For

example, if I noticed that lower epoch values were helpful in the first pass, I tested

them in combination with the other optimal hyperparameter values (from first pass)

in the second pass.

For each of the datasets, I tune based on their official challenge evaluation metrics

listed in chapter 2. ddi and i2b2 had 5-fold nested cross validation performed on

them, whereas semeval had 10-fold cross validation performed.

Random search was performed based on the official evaluation metrics for each

dataset, on a fixed dev set randomly sampled from the training data. Distributions

used for the search are listed in table 3.2.

3.1.4 Evaluation

The official challenge problems for all datasets compared models based on multi-class

classification, but for the medical datasets, I was also interested in the changes in

model performance if the task was treated as a binary classification problem. This

was based on the rationale that in the drug literature, for example, pharmacologists

would not want to sacrifice the ability to identify a potentially life threatening drug

interaction pair, even if the type of the drug pair is not known. Therefore, I report

results for the multi-class as well as binary classification scenario. For clarity, let us

refer to them in the rest of the thesis as classification and detection respectively.

Detection results were obtained using our evaluation scripts by treating existing

relations as one class, ignoring the types outputted by the model. The other class in

this task was the None or Other class, representing non-existing relations. Note that

I did not re-train the model for this task.

In addition to evaluating on 2 tasks for the medical and 1 task for the general
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dataset, I comment on the implications of different evaluation metrics in section 4.2.5

of chapter 4. For example, it is important to note recall versus precision performance

for a drug pair interaction setting where it is more critical to identify a potentially

dangerous drug interaction, even if there is a tradeoff with precision.

3.2 Baseline model and Evaluation Metrics

This section introduces the CNN model architecture (CRCNN) by Santos et al. [66] as

well as from Jin et al. [26]. It also details the evaluation metrics used in this work.

3.2.1 CNN Model Details

Figure 3-3 from Jin et al. [26] presents the architecture of the CNN model. The model

first takes the tokenized sentence, as well as the targeted entities, and transforms it to

a sequence of continuous embedding vectors (subsection 3.2.1). Next, the model uses

a convolution layer to transform the embedded sentence to a fixed-size representation

of the whole sentence. Finally, it computes the score for each relation class via a

linear transformation (subsection 3.2.1). The overall system is trained end-to-end via

a cross entropy loss augmented with a variant of negative sampling (subsection 3.2.1).

Feature Embeddings

Given a sentence 𝑥 =
[︁
𝑥1, . . . , 𝑥𝑛

]︁
, the tokens 𝑥𝑖 are featurized into continuous embed-

ding vectors via concatenated word embeddings (𝑒𝑤𝑖) and word position embeddings

(𝑒𝑤𝑝𝑖): 𝑒𝑖 = [𝑒𝑤𝑖 , 𝑒𝑤𝑝𝑖 ]. For conceptual simplicity, I refer to 𝑥 as a vector instead of a

matrix by collapsing the embedding level dimensionality.

Word Embeddings Word representations are encoded by the column vector in the

embedding matrix 𝑊𝑤𝑜𝑟𝑑 ∈ R𝑑𝑤×|𝑉 |, where 𝑉 is the vocabulary of the dataset. Each

column 𝑊𝑤𝑜𝑟𝑑
𝑖 ∈ R𝑑𝑤 is the word embedding vector for the 𝑖th word in the vocabulary.

This matrix is trainable during the optimization process and initialized by pre-trained

embedding vectors described in subsection 3.1.2.

37



Figure 3-3: Illustration of CNN model architecture.

Word Position Embeddings (WPEs) In general, the information needed to

determine the sentence’s relations mostly comes from the words close to the two

entities. In addition, some information needs to be input into the model to indicate

which words are entities. The word’s relative position to either entity is used as a

feature to fulfill the above-mentioned two functions. For instance, in the sentence

“the probabilistic model used in the alignment” shown in Figure 3-3, the relative

distance of all the words to the left entity “probabilistic model” is −1, 0, 0, 1, 2, 3, 4

and that to the right entity “alignment” is −6,−5,−4,−3,−2,−1, 0. Each relative

distance is mapped into a vector of dimension 𝑑𝑤𝑝, which is randomly initialized

then updated during training. Each word 𝑤 has two relative distances 𝑤𝑝1 and 𝑤𝑝2

with respect to two entities 𝑒𝑛𝑡𝑖𝑡𝑦1 and 𝑒𝑛𝑡𝑖𝑡𝑦2, and each distance is mapped to

corresponding embedding vector and the position embedding 𝑒𝑤𝑝 of word 𝑤 is the

concatenation of these two vectors: 𝑒𝑤𝑝 = [𝑒𝑤𝑝1 , 𝑒𝑤𝑝2 ].

Sentence Representation and Scoring

After featurization, a sentence 𝑥 of length 𝑁 is represented as 𝑒 = [𝑒1, 𝑒2, ...𝑒𝑁 ] (after

collapsing the embedding level dimensionality). I denote 𝑒𝑖:𝑖+𝑗 as the concatenation

38



of featurized tokens: 𝑒𝑖:𝑖+𝑗 = [𝑒𝑖, 𝑒𝑖+1, ..., 𝑒𝑖+𝑗]. A convolution operation involves a

filter weight matrix 𝑊 ∈ R(𝑑𝑤+2𝑑𝑤𝑝)×𝑘, which is applied to a window of k words to

produce a new feature 𝑐𝑖, as represented by:

𝑐𝑖 = tanh(𝑊 · 𝑒𝑖:𝑖+𝑘−1 + 𝑏),

where 𝑏 ∈ R(𝑑𝑤+2𝑑𝑤𝑝)×1 is a bias term. This filter is applied to each possible window of

words in the sentence 𝑒1:ℎ, 𝑒2:ℎ+1, ..., 𝑒𝑁−ℎ+1:𝑁 to produce a feature map matrix 𝐶 =

[𝑐1, 𝑐2, ..., 𝑐𝑁−𝑘+1]. For conceptual simplicity, let us collapse the matrix 𝐶 to a vector

𝑐 by ignoring the feature embeddings dimension, 𝑑𝑤+2𝑑𝑤𝑝. A max pooling operation

is then applied to this feature map to obtain the maximum value 𝑐 = 𝑚𝑎𝑥{c} as the

feature corresponding to this particular filter. This is how one feature is extracted by

one filter. And the model can use multiple filters with varying window sizes and filter

parameters to produce multiple features. All obtained features are then concatenated

to form the fixed size sentence representation 𝑟𝑥. Given the vector representation 𝑟𝑥

of the sentence 𝑥, class scores are computed via a linear transformation mediated by

a trainable matrix 𝑊 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. The relation class is then inferred by taking the index of

the maximum score in the class scores, 𝑠(𝑥).

Loss with Negative Sampling

After obtaining the score vector 𝑠(𝑥) for the sentence 𝑥, a loss function is applied,

motivated by ideas in negative sampling as follows. Let 𝑦 be the correct label for

sentence 𝑥, and 𝐼 = 𝒴 ∖ {𝑦} be the set of all incorrect labels for 𝑥. Then, the loss is

computed:

𝐿 = log
(︁
1 + 𝑒𝛾(𝑚

+−𝑠(𝑥)𝑦)
)︁
+ log

(︁
1 + 𝑒𝛾(𝑚

−+max𝑦′∈𝐼(𝑠(𝑥)𝑦′))
)︁
,

where 𝑚+ and 𝑚− are margins, 𝛾 is the penalty scale factor. Minimizing this loss

function will both increase the score of the correct label and decrease that of the
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Figure 3-4: Sample space of Predictions

wrong label. Intuition behind the ranking loss function is provided in Santos et al.

[66]. Adam optimizer [31] was used to minimize the loss function.

3.2.2 Evaluation Metrics

A helpful visualization of the sample space of predictions is provided by the figure

3-4 by Walber, licensed under a Creative Commons Attribution-ShareAlike 4.0 Inter-

national license. Let us shorten False Positives to FP, False Negatives to FN, True

Positives to TP and True Negatives to TN. In a multi-class setting, the following (ex-

cept Accuracy) are calculated for each class and aggregated to compute either macro

or micro statistics:

Precision (P)

This is a measure of the number of relevant items from those selected, also referred

to as specificity in the literature. This is computed as 𝑇𝑃
𝑇𝑃+𝐹𝑃

.
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Recall (R)

This is a measure of the number of relevant items that are selected, also referred to

as sensitivity. This is computed as 𝑇𝑃
𝑇𝑃+𝐹𝑁

.

F1

A harmonic mean of Precision and Recall, it is meant to capture the performance of

a model on both statistics equally. This is computed as 2*(𝑃*𝑅)
𝑃+𝑅

.

Accuracy

In this work, accuracy is not calculated on a per-class basis, and is simply provided

as one overall score for the model. Accuracy is a measure of the number of correct

predictions out of the total predictions, and in a multi-class setting with classes

∈ {1, .., 𝑛}, can be computed as 𝑇𝑃1+...+𝑇𝑃𝑛

𝑇𝑃1+...+𝑇𝑃𝑛+𝐹𝑃1+...+𝐹𝑃𝑛
.

Macro vs Micro Statistics

P, R and F1 can be computed as one score as either macro or micro statistics. While

macro statistics average the individual scores for all classes, micro statistics consider

the individual example numbers in their calculations.

When the classes ∈ {1, ..., 𝑛}, macro-P will be computed as 𝑃1+...+𝑃𝑛

𝑛
. This is

similar to the calculations for R and F1. In contrast, micro-P will be computed

as 𝑇𝑃1+...+𝑇𝑃𝑛

𝑇𝑃1+...+𝑇𝑃𝑛+𝐹𝑃1+...+𝐹𝑃𝑛
; micro-R will be computed as 𝑇𝑃1+...+𝑇𝑃𝑛

𝑇𝑃1+...+𝑇𝑃𝑛+𝐹𝑁1+...+𝐹𝑁𝑛
; and

micro-F1 will be computed as the harmonic mean of these calculated micro-P and

micro-R.

Each metric is affected differently by class distributions, and their implications

are discussed in chapter 4, subsection 4.2.5.
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Chapter 4

Results and Discussion

This chapter introduces the results from different experiments, and discusses impor-

tant takeaways in the latter sections.

4.1 Introduction

In the following section, I present the results for experiments pertaining to pre-

processing, modeling and training methodologies, as described in section 3.1 of chapter

3. Appendix D reports the different evaluation metrics for each of these experiments.

Experiments on the medical datasets involved hyperparameters found after per-

forming manual search individually on them, while those on semeval involved default

hyperparameters. Refer to section 3.1.3 of chapter 3 for details on the experimental

set up.

Using the fixed set of hyperparameters for each dataset, I tested the perturbations

for pre-processing and modeling listed in tables 4.1 and 4.2. Perturbations on the

hyperparameter search are listed in table 4.3 and compare performance with different

hyperparameter values found using different tuning strategies.

Evaluation was performed on the standard classification and additional detection

task scores, described in section 3.1.4 of chapter 3. In tables 4.1 and 4.2, these scores

are reported under the Class and Detect columns respectively.

In each result table in this chapter, test results are mentioned at the top, followed
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by cross validated results (with standard deviation) mentioned below in smaller font.

Official test set results are reported to compare against current literature, but cross

validation scores are used to perform statistical significance in the form of a paired

t-test. The paired t-tests are performed on the results found from the held-out sets in

all the cross validation folds. In the following discussion, performance is claimed to

be worse or better only if the test set results reflect these and statistical significance

is found on the held out cross validation sets.

4.2 Discussion

Recently, CNNs have achieved strong performance for text classification and are typ-

ically more efficient than recurrent architectures [4, 28, 74, 85]. The speed of the

baseline CRCNN model allows the exploration of multiple alternatives for every stage

of the pipeline. I discuss these results pertaining to the classification task for all

datasets and the detection task for the medical datasets.

The results in this section demonstrate that 1) pre-processing choices can cause the

largest variation in performance, 2) reporting scores on one test-set split is problematic

due to split bias, 3) featurization technique matters for contextualized embeddings,

4) picking the right hyperparameters is important to performance and 5) picking the

right evaluation metrics should be driven by class imbalance issues.

4.2.1 Pre-processing

Often, papers fail to mention the importance of pre-processing in performance im-

provements. Experiments in table 4.1 reveal that they can cause larger variations in

performance than modeling.

I applied pre-processing changes with the CRCNN model with default hyperparam-

eters for semeval and manual hyperparameters for the medical datasets. All com-

parisons are performed against the original pre-processing technique, which involved

using the original dataset sentences in training and test.
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Preprocess
Dataset semeval ddi i2b2

Class Detect Class Detect

Original 81.55 65.53 81.74 59.75 83.17
80.85 (1.31) 82.23 (0.32) 88.40 (0.48) 70.10 (0.85) 86.45 (0.58)

Entity Blinding 72.73 67.02 82.37 68.76 84.37
71.31 (1.14) 83.56 (2.05)∙ 89.45 (1.05)∙ 76.59 (1.07) 88.41 (0.37)

Punct and Digit 81.23 63.41 80.49 58.85 81.96
80.95 (1.21)∙ 80.44 (1.77) 87.52 (0.98) 69.37 (1.43)∙ 85.82 (0.43)

Punct, Digit and Stop 72.92 55.87 76.57 56.19 80.47
71.61 (1.25) 78.52 (1.99) 85.65 (1.21) 68.14 (2.05)∙ 84.84 (0.77)

NER Blinding 81.63 57.22 79.03 50.41 81.61
80.85 (1.07)∙ 78.06 (1.45) 86.79 (0.65) 66.26 (2.44) 86.72 (0.57)∙

Table 4.1: Preprocessing techniques with CRCNN model. Row labels Original = simple tokeniza-
tion and lower casing of words, Punct = punctuation removal, Digit = digit removal and Stop =
stop word removal. Test set results at the top with cross validated results (average with stan-
dard deviation) below. All cross validated results are statistically significant compared to Original
preprocessing (𝑝 < 0.05) using a paired t-test except those marked with a ∙

Punctuation and Digits are important in the biomedical domain

Removal of punctuation and digits (punct) hurts classification and detection per-

formance for the ddi dataset, which is a biomedical dataset. On the other hand,

performance on i2b2 is worse only for the detection task. Statistical significance is

not found for the other tasks and datasets.

This indicates that punctuation and digits are more important for the ddi dataset

and that they are important only for the detection of relations for i2b2. To further

investigate which of punctuation and digit normalization was the larger contributor

in worse performance, I looked at examples where misclassifications were occuring.

Details of this analysis are located in appendix B, section B.1.

Stop words are important in relation extraction settings

Removal of punctuation, digits and stop words (stop) is hurting performance more

than punct (statistically significant for ddi and semeval with 𝑝 < 0.005). This effect

is less drastic for i2b2: stop is not statistically significantly worse than punct for

classification task, but is significantly worse with 𝑝 = 0.015 for the detection task.
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This indicates that stop words are important for relation extraction.

Looking at examples misclassified by stop revealed important stop words for

different relations in the datasets. This analysis is present in section B.4 of appendix

B.

Fine-grained concept types could be helpful in general because of their

ability to simplify the sentence

The availability of fine-grained concept types is likely to boost performance in re-

lation extraction settings. The i2b2 dataset provided fine-grained concept types in

the form of medical problem, test and treatments. Entity blinding causes almost 9%

improvement in classification performance and 1% improvement in detection perfor-

mance. In contrast, ddi only provided gold standard annotations for drug types in

the sentence, and while this does not cause statistically significant improvements for

cross validation, it does improve test set classification performance by about 1.5% and

detection performance by 1%. For these medical datasets, NER blinding consisted

of replacing the detected named entities by Entity because named entity types were

not available (more details in section 3.1.1 of chapter 3). Due to the coarse-grained

nature of the entities, it hurts classification performance significantly, and detection

performance a little. Further investigations into these are located in appendix B in

sections B.2 and B.3.

Entity blinding hurts performance for semeval, possibly due to the coarse grain

nature of the replacement and the entity bias [87]. The replacement loses associations

between the entity mentions and relation types, which reduces performance. While

a finer-grain replacement in this setting (NER blinding) does not cause a statisti-

cally significant change in performance, it has been shown to be a helpful feature by

[69]. To recall, entity blinding involved replacement of entity words by Entity, while

NER blinding involved replacing named entities in the sentence with labels such as

ORGANIZATION and PERSON (more details in section 3.1.1 of chapter 3).
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Reasonable performance is maintained on the Detection task

For the medical datasets, while classification performance varies highly with different

pre-processing techniques, detection is relatively unaffected. In a setting where one

cares more about detection of relationships rather than multi-class classification, one

would be able to get away with using non-complicated pre-processing techniques to

maintain reasonable performance.

4.2.2 Split Bias: Why reporting on one test set score is prob-

lematic

All 3 datasets evaluate models based on one score on the test set, which is common

practice for NLP challenges. Reporting one score as opposed to a distribution of

scores has been shown to be problematic by Reimers and Gurevych [59] for sequence

tagging. Recently, Crane [14] discuss similar problems for question-answering. My

experiments show that even if you keep the same random initialization seed (all our

experiments have a fixed random initialization seed), split bias can be another source

of variation in scores.

Significance testing of some cross validated results reveals no significance even

when the test set result improves in performance. This is particularly concerning for

ddi where entity blinding (called drug blinding in the literature) is used as a standard

pre-processing technique without ablation studies demonstrating its effectiveness. Re-

sults suggest the contrary: entity blinding seems to help test set performance for ddi

in table 4.1, but shows no statistical significance. Table 4.5 further demonstrates that

using this in conjunction with other techniques results in test score variations despite

being statistically insignificant.

No statistical significance is seen even when the test set result worsens in perfor-

mance for BERT-CLS in table 4.2 where it hurts test set performance on ddi but is

not statistically significant when cross validation is performed.
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Modeling
Dataset semeval ddi i2b2

Class Detect Class Detect

CRCNN 81.55 65.53 81.74 59.75 83.17
80.85 (1.31) 82.23 (0.32) 88.40 (0.48) 70.10 (0.85) 86.45 (0.58)

Piecewise pool 81.59 63.01 80.62 60.85 83.69
80.55 (0.99)∙ 81.99 (0.38)∙ 88.47 (0.48)∙ 73.79 (0.97) 89.29 (0.61)

BERT-tokens 85.67 71.97 86.53 63.11 84.91
85.63 (0.83) 85.35 (0.53) 90.70 (0.46) 72.06 (1.36) 87.57 (0.75)

BERT-CLS 82.42 61.3 79.63 56.79 81.91
80.83 (1.18)∙ 82.71 (0.68)∙ 88.35 (0.77)∙ 67.37 (1.08) 85.43 (0.36)

ELMo 85.89 66.63 83.05 63.18 84.54
84.79 (1.08) 84.53 (0.96) 90.11 (0.56) 72.53 (0.80) 87.81 (0.34)

Table 4.2: Modeling techniques with original preprocessing. Test set results at the top with cross
validated results (average with standard deviation) below. All cross validated results are statistically
significant compared to CRCNN model (𝑝 < 0.05) using a paired t-test except those marked with a
∙. In terms of statistical significance, comparing contextualized embeddings with each other reveals
that BERT-tokens is equivalent to ELMo for i2b2, but for semeval BERT-tokens is better than
ELMo and for ddi BERT-tokens is better than ELMo only for detection.

4.2.3 Modeling

In table 4.2, I tested the generalizability of the commonly used piecewise pooling

technique proposed in [82], a variant of which was applied in the model by Luo

et al. for i2b2. I also tested the improvements offered by different featurizations of

contextualized embeddings, which has not been explored much for relation extraction.

Modeling changes were applied with the original pre-processing technique for the

CRCNN model with default hyperparameters for semeval and manual hyperparam-

eters for the medical datasets. All comparisons are performed with the baseline

performance of the CRCNN model.

Piecewise pooling is not a generalizable technique

While piecewise pooling helps i2b2 by 1%, it hurts test set performance on ddi and

doesn’t affect performance on semeval. It may be intuitive to split pooling by entity

location, but this technique is not experimentally found to be generalizable to other

datasets.
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Hyperparam Tuning
Dataset semeval ddi i2b2

Class Detect Class Detect

Default 81.55 62.55 80.29 55.15 81.98
80.85 (1.31) 81.62 (1.35) 87.76 (1.03) 67.28 (1.83) 86.57 (0.58)

Manual Search - 65.53 81.74 59.75 83.17
82.23 (0.32)∙ 88.40 (0.48)∙ 70.10 (0.85) 86.45 (0.58)∙

Random Search 82.2 62.29 79.04 55.0 80.77
81.10 (1.26)∙ 75.43 (1.48) 83.54 (0.60) 60.66 (1.43) 82.73 (0.49)

Table 4.3: Hyperparameter tuning methods with original preprocessing and fixed CRCNN model.
Test set results at the top with cross validated results (average with standard deviation) below. All
cross validated results are statistically significant compared to Default with 𝑝 < 0.05 except those
marked with a ∙. Note that hyperparameter tuning can involve much higher performance variation
depending on the distribution of the data. Therefore, even though there is no statistical significance
in the manual search case for the held out fold in the ddi dataset, there was statistical significance
for the dev fold which drove those set of hyperparameters. For both ddi and i2b2 datasets, manual
search is better than random search with 𝑝 < 0.05.

Contextualized embeddings should be featurized correctly in CNN models

Contextualized embeddings generally boost performance, but they should be concate-

nated with the word embeddings before the convolution stage. ELMo and BERT-

tokens boosted performance significantly for all datasets, but BERT-CLS hurt perfor-

mance for the medical datasets. While BERT-CLS boosted test set performance for

semeval, this was not found to be a statistically significant difference for cross vali-

dation. Note that ELMo was featurized similarly to BERT-tokens and featurization

details are present in section 3.1.2 of chapter 3.

This indicates that the technique of featurizing the contextualized embeddings

matters for a CNN architecture. Concatenating the contextualized embeddings with

the word embeddings keeps a tighter coupling, which is helpful for relation extraction

where the word level associations are essential in predicting the relation type.

4.2.4 Hyperparameter Tuning

Bergstra and Bengio [5] show the superiority of random search over grid search in

terms of faster convergence, but leave to future work automating the procedure of

manual tuning, i.e. sequential optimization. Bayesian optimization strategies could
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help with this [68] but often require expert knowledge for correct application. I tested

how manual tuning, requiring less expert knowledge than Bayesian optimization,

would compare to the random search strategy in table 4.3.

Manual search outperformed random search

Tables in appendix C demonstrate that random search reduces the variability of

results and converges to better performance than the default hyperparameters. Ad-

ditionally, manual search outperformed random search for both i2b2 and ddi corpus.

Both methods present different challenges for barrier of entry.

Manual search is often criticized for the high barrier of entry [5]. Knowledge about

which hyperparameters are more important in specific contexts can make this search

faster and provide improved results. My proposed two-pass method helps in develop-

ing intuition on the important hyperparameters by changing each hyperparameter in

isolation to test the statistical significance of the performance difference. By further

changing the narrow list of hyperparameters found from the first pass, convergence

to better results is found in the second pass.

Random search, on the other hand, can be complicated because one needs to pick

the right distributions for the hyperparameters and the right search space. A larger

search space and sub-optimal distributions run into the possibility of running too

many experiments in a hyperparameter space leading to lower performance. Ideally,

random search should run enough experiments in the vicinity of the global maxima

to converge to it faster. Additional findings related to result distributions for random

search is present in appendix C.

4.2.5 Evaluation Metrics

Picking the right evaluation metric is critical, and it is important to choose a metric

that has the biggest delta between the performance of different models. Test set

results for different evaluation metrics on the pre-processing and modeling techniques

are presented in the tables of appendix D.
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The choice of macro or micro statistics is dictated by class imbalance

When using micro and macro statistics (precision, recall and F1), class imbalance of

the dataset dictates the one to pick. Macro statistics are highly affected by imbal-

ance, whereas micro statistics are able to recover well. Despite suffering due to class

imbalance, though, macro statistics may be more appropriate than micro as they

provide stronger discriminative capabilities by providing equal importance to classes

of smaller sizes. However, micro statistics are as discriminative as macro statistics in

settings when the classes are relatively balanced. In the next two paragraphs, I will

discuss claims pertaining to the classification task.

Compared to semeval, ddi and i2b2 suffer from stark class imbalances as seen

in chapter 2.4. semeval has a number of examples in classes (for those affecting the

metrics) ranging from 200 or 300 to 1000. Its Other class has about 3000 examples

which are not included in the official metric calculations. ddi has one class with 228

examples, while the others have about 1000 examples. The None class has 21,948

examples which is included for the official score calculations. i2b2 has 5 classes in the

100-500 range, while the others contain about 2000 examples. None is the largest class

with 19,934 examples which are not included in the official micro F1 score calculation.

Using micro statistics is reasonable for i2b2 because the highly imbalanced class is

not included in the calculations. Therefore, this metric is able to be as discriminative

as macro statistics. For example, test set micro F1 between baseline and entity

blinding techniques is 59.75 and 68.76, while that for macro F1 is 36.44 and 43.76.

In contrast, using micro statistics is a bad idea for ddi because the performance on

the None class would drive most of the predictive results of the model. For example,

micro-F1 between baseline and NER blinding is 88.69 and 86.18, whereas macro-F1

is 65.53 and 57.22. semeval does not have a stark contrast between micro and macro

scores due to Other class not being included in the calculation. Using either metric

to evaluate models is reasonable for this dataset.
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Precision vs Recall comparison

For both ddi and i2b2 datasets, the delta between macro-Precision (macro-P) and

macro-Recall (macro-R) is higher than that between micro-P and micro-R (with pre-

cision being higher than recall). For example, the delta is 3.2 for micro statistics

comparison, whereas the delta is 15.04 for macro statistics for the baseline result of

the i2b2 dataset. This indicates that recall is not as good compared to precision

for relations with fewer examples in the dataset. This is an important consideration

for medical settings where the availability of a class-balanced dataset may be diffi-

cult. Therefore, those settings looking for deployable models that may value recall

higher than precision should evaluate models based on metrics such as Precision-

Recall curves in addition to the standard F1 scores calculated for NLP challenge

tasks.

Task comparison

The detection task does not suffer from such variations due to the lower class imbal-

ance. For example, ddi dataset micro-F1 between baseline and NER blinding model

is 90.01 and 88.74, while macro-F1 is 81.74 and 79.03. This further suggests that mod-

eling differences and pre-processing differences cause more variation in performance

in settings when the class imbalance is higher.

Accuracy and Micro statistics

Finally, accuracy and micro statistics result in the same number when all relation

classes trained on are evaluated on. Refer to the accuracy equation in section 3.2.2

of chapter 3, which is equivalent to micro-P by definition. The reason micro-R is

equivalent to accuracy is because the sum of False Negatives in a multi-class setting

become equivalent to the sum of False Positives for each class (to avoid duplicates).

Therefore, in datasets such as ddi, evaluating on either should be ok. The other

datasets would have similar trends if they had not ignored Other and None classes

from the official evaluation metric calculations.
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4.3 Additional Experiments

In order to compare my results with current state-of-the-art results for each dataset,

I ran additional experiments to test combinations of techniques that showed improve-

ments in section 4.2. These are listed in tables 4.4 and 4.5.

Section 4.2.1 showed that even though the entity blinding technique was not sta-

tistically significantly better for ddi, it was improving test set performance. The

table 4.5 shows the variation in test set performance, and shows that performing en-

tity blinding does not cause statistically significant improvements even when used in

combination with other modeling techniques. This further demonstrates that entity

blinding is not a helpful pre-processing technique for ddi.

In table 4.5, using entity blinding with contextualized embedding helps test set

performance for the E + ent row, but hurts test set performance for the B + ent row

when compared with the respective contextualized embedding results from table 4.2.

However, these results are not statistically significant. This further strengthens the

claim made in section 4.2.2 about statistical significance being necessary to gauge the

generalizability of a technique across different splits of the same dataset.

Comparison to current state of the art methods

The best classification test set results found are listed in table 4.6. Note that I do not

compare the extraction task for datasets other than ddi because the official challenges

only compared classification results. Even though the official challenge did not rank

models based on the detection task, recent papers in the ddi literature mention these

results.

I report results in table 4.6 to perform a comparison to state-of-the-art approaches

consistent with the current method, and show why this leads to unfair comparisons.

This is not only because of the problem of split bias highlighted in section 4.2.2, but

also because different models are using different pre-processing techniques, which are

critical sources of variation in results. The issue is more pronounced for the medical

datasets, where omission of ablation studies is common as seen in section 1.3.1 of
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Technique
Task Classification Detection

E + ent 70.46 86.17
77.70(1.26) 89.36 (0.50)

B + ent 70.56 85.66
76.72 (1.04) 88.63 (0.33)

E + piece + ent 70.62 86.14
79.41 (0.53) 90.37 (0.44)

B + piece + ent 71.01 86.26
79.51 (1.09) 90.34 (0.53)

piece + ent 69.73 85.44
78.12 (1.10) 89.74 (0.44)

E + piece 63.19 84.92
74.76 (0.68) 89.90 (0.37)

B + piece 63.23 85.45
74.67 (0.89) 89.61 (0.68)

Table 4.4: Additional experiments for i2b2. E = ELMo, B = BERT-tokens, ent
= entity blinding, piece = piecewise pooling. All results are statistically significant
compared to BERT-tokens and ELMo models respectively from table 4.2 and piece +
ent row is statistically significant compared to piecewise pool model as well as entity
blinding model. These are all statistically significantly better than the CRCNN model
from table 4.2. All 𝑝 < 0.05.

chapter 1.

Wang et al. [73] report a result of 88% on semeval and do not provide any public

source code for replication purposes. Despite being below the state of the art range,

REflex provides the best performing publicly available model for this dataset.

Zheng et al. [90] report the best result on ddi (77.3%) but perform negative

instance filtering, which is a highly specific pre-processing technique that does not

fit with the flexible nature of REflex. This technique also makes the data smaller,

but the paper is unclear about whether they apply this technique to shorten the

test set as well. Unfortunately, the source code is not publicly available to answer

these questions. Additionally, cutting out sentences from the training as well as test

data would make the prediction task a lot easier and impractical to use in real-world

settings due to its highly specific nature.

Zhao et al. [89] already show that negative instance filtering causes a 4.1% im-
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Technique
Task Classification Detection

E + ent 68.69 83.72
86.25 (1.54) 91.35 (0.90)

B + ent 70.66 85.35
85.79 (1.54) 91.26 (0.63)

Table 4.5: Additional experiments for ddi. E = ELMo, B = BERT-tokens, ent =
entity blinding. Results are not statistically significant compared to BERT-tokens
and ELMo models respectively from table 4.2 and not from each other either.

Dataset Result Technique
semeval 85.89 ELMo
ddi 71.97, 86.53 BERT-tokens
i2b2 71.01 BERT-tokens + piece + ent

Table 4.6: Best test set classification results for all datasets, except ddi where detec-
tion results are mentioned after the classification results. piece = Piecewise pooling,
ent = entity blinding. Result corresponds to F1 scores, macro for semeval and ddi,
but micro for i2b2.

provement in test set performance. If my model were to use this pre-processing

technique, it would reach the state-of-the-art range in the classification task. On the

other hand, my results from the detection results outperform this model by 2.53%.

Sahu et al. [64] (code unavailable) report a state of the art result of 71.16% on

i2b2, which the results in table 4.6 are able to match. Note that [61] report a

result of 73.7% with a support vector machine, but they used a larger version of the

dataset. After the official challenge, only a subset of the data was publicly available,

so comparing against this number would not be fair.

Comparison against these numbers demonstrates that REflex is the only open-

source framework, capable of achieving performance in the state of the art ranges for

all 3 datasets I evaluate on. Therefore, REflex can be used as a strong baseline model

in future relation extraction studies.
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Chapter 5

Conclusion

Relation Extraction (RE) suffers from an issue with reproducibility and a lack of

consensus on generalizable techniques, which make it difficult to perform systematic

comparison of methods.

REflex is an open-source and extendable framework that will help the commu-

nity in performing systematic model and model-complementing explorations on new

datasets. For the 2 of the 3 datasets REflex is applied to, it is the only open source

model in the state-of-the-art ranges (shown in section 4.3 of chapter 4). Therefore,

the model can also be used as a strong baseline in future RE studies.

My exploration on the 3 datasets reveal variations offered by pre-processing and

training methodologies, which often go unreported. This indicates that comparing

models without having these techniques standardized can make it difficult to assess

the true source of performance gains. The key findings are:

∙ Pre-processing can have a strong effect on performance, sometimes more than

modeling techniques, as is the case of i2b2. Concept types seem to offer use-

ful information, perhaps revealing more general semantic information in the

sentence that can help with predictions. Fine-grained Gold standard annotated

concept types are most beneficial, but those from automatically extracted pack-

ages may also be useful as long as they consist of multiple types. Punctuation

and digits may hold more importance in biomedical settings, but stop words
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hold significance in all settings.

∙ Reporting on one test set score can be problematic due to split bias, and a cross

validation approach with significance tests may help ease some of this bias.

Drug blinding for ddi is commonly used in the literature but does not seem

to offer any statistically significant improvements. Therefore, this technique is

unnecessary for this domain.

∙ Contextualized embeddings are generally helpful but the featurizing technique

is important: for CNN models, concatenating contextualized embeddings with

the word embeddings before convolution is most beneficial.

∙ Picking the right hyperparameters for a dataset is important to performance. I

suggest an initial manual hyperparameter search based on cross validation sig-

nificance tests because that may be sufficient in most cases. If one is not pressed

for time, random search is a reasonable automated option for hyperparameter

tuning, but requires more experience for picking the right search space and the

right distributions for the hyperparameters.

∙ Picking the right evaluation metrics for a new dataset should be driven by class

imbalance issues for the classes chosen to be evaluated on.

The problems hindering progress in the RE community would be further eased

with appropriate future work highlighted in the following section.

5.1 Future Work

REflex provides the ability to easily include additional components that could help

with future analysis. Further extension to my methods could reveal more insights

about the datasets:

∙ Pre-processing methods can be dissected further to separately test the per-

formance variation with punctuation and digit normalization. Another useful
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future extension would be to test whether improvements are offered by NER

and gold standard entity type information as additional features.

∙ More modeling techniques such as long short-term memory networks (LSTM)

and plain CNN with cross entropy loss could be tested to compare the ability

of both models to capture entity interactions in the sentence. A study similar

to [25] could be performed in this case.

∙ More hyperparameter tuning methods such as Hyperopt [6], Spearmint [68] and

Grid Search [5] could be tested.

∙ More evaluation metrics such as AUPRC (area under the precision-recall curve)

could be compared for all modeling and pre-processing techniques.
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Appendix A

Quantitative Literature Review

In the table on the next page, the following columns are present:

cite = number of papers that cited the paper

code = whether code was publicly available (y for yes and ∙ for no)

ablation = whether an ablation study was performed

hyperparam = whether hyperparameter details were mentioned

cross val = whether cross validation details were mentioned

word-embed = whether information about word embeddings used was mentioned

datasets = number of datasets evaluated on
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Appendix B

Further investigation into

misclassified examples for

Pre-processing techniques

Section 4.2.1 in chapter 4 contains a prelude to this analysis.

B.1 Which of Punctuation and Digit Removal are

important for the medical datasets?

I gathered statistical information about the examples where punctuation and digit

removal (punct) led to an incorrect prediction, but original pre-processing (original)

led to a correct prediction, in table B.1. From these examples, numbers were blinded

in only 31 out of 150 sentences for ddi. This indicates that removal of punctuation

is driving the worse performance from this pre-processing technique for ddi.

For i2b2, only detection task was being hurt by punct, which is also seen in

table B.1 where None is contributing to most misclassifications. 399 sentences out of

963 had the numbers blinded here, which does not help in decoupling the effects of

punctuation versus digit normalization in the performance.
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Dataset Total Most misclass relation Digit normalization
Mean ± std Other stats

ddi 150 None (85) 0.56 ± 1.7 (16,0,0)
i2b2 963 None (649) 4.78 ± 2.97 (31,2,4)

Table B.1: Statistics on misclassified examples. Total = total misclassified examples,
Most misclass relation = relation that is most incorrectly predicted with number of
examples, Mean ± std = average and standard dev of number of digits that are
normalized per sentence, Other stats = (Max, Min, Median) of the number of digits
normalized per sentence. The total column represents about 3% of the test data for
ddi and 5% for i2b2.

B.2 Why does entity blinding help i2b2?

A further investigation into why entity blinding was improving classification perfor-

mance on i2b2 was necessary to prove or disprove my hypothesis that entity blinding

is helpful because of its ability to simplify the sentence.

First, I investigated whether quantitative information about entity overlap and

sentence and context length could have an effect on this result. For example, if

i2b2 had an unusually low train and test overlap compared to the other datasets, the

entity mentions would not have an effect in relation prediction. This would mean that

entity blinding was not hurting performance due to the specific way this dataset was

constructed and would weaken the hypothesis of fine-grained entity blinding being

helpful in general. Similarly, if sentence and context length was unusually low for

i2b2 compared to the other datasets, the entity mentions themselves would be larger

contributors to relation prediction.

Second, I performed a qualitative analysis by looking at the examples for which

the model with entity blinding (ent) was making correct relation predictions, but

the one with the original pre-processing technique (original) was making incorrect

relation predictions.

∙ The first quantitative finding was the percentage of test examples that had over-

lapping entities (those that had a relation label including None and Other) with

the training data, and the proportion of the training data that these examples

constituted. This is listed in table B.2.
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Dataset Test overlap Train overlap
semeval 8.5 3.5
ddi 28.59 13.78
i2b2 7.73 11.55

Table B.2: Percentage of overlapping entities. Test overlap is the percentage of test
examples with overlapping entities from the train data, whereas train overlap is the
percentage of training examples the overlapping entities were present in.

The second quantitative finding was related to the average length of context

and sentence in all datasets. This information is listed in table B.3

Dataset Sentence length Context length
semeval 20 5
ddi 33 11
i2b2 48 15

Table B.3: Average sentence and context length of the datasets. Context length refers
to the number of words between the entities, including the entity words themselves.

Quantitative comparison of the datasets revealed that at least one other dataset

had similar statistics from comparisons in tables B.2 and B.3. Because entity

blinding was only helpful for i2b2 even though other datasets had similar quan-

titative information, I concluded that these findings did not weaken my original

hypothesis.

∙ The qualitative study revealed a total of 1815 examples (9.5% of the test data)

for which ent was making correct predictions but original was making in-

correct predictions. All sentences involved entities that were blinded and None

relation was incorrectly predicted the most (706 examples), followed by PIP and

TeRP. Overall, ent prevents more False Negatives : it allows correct prediction

of the relation label whereas original predicts the same examples as None.

i2b2 also divides relations into 3 disjoint higher level categories: Problem-

Problem, Problem-Test and Test-Treatment. Knowledge of entity types should

narrow down possible relation types to lead to fewer chances of error.

2 common types of examples were found for incorrect predictions by the baseline
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Figure B-1: Correct prediction being TeRP i.e. Test reveals Medical Problem, and
baseline model predicts None incorrectly. Periods omitted for presentation. Those en-
tities marked with Test and Problem are blinded by the entity blinding pre-processing
technique.

model:

1. original predicting None relation. In such cases, shortening of the sentence

by blinding might allow the model to focus highly on an indicative context

word. An example is present in figure B-1. In many such examples, the word

demonstrate appears multiple times in the context, and it is likely to be highly

indicative of the TeRP relation. Even for examples where original incorrectly

predicts a non-None relation, shortening of the sentence via blinding seems

helpful in focusing on meaningful context words.

2. original predicting an impossible relation. For example, PIP relation can

only exist between two medical problems. However, the baseline model incor-

rectly predicts PIP for relations between medical problems and tests. Figure

B-2 demonstrates such an example.

B.3 Why does NER blinding hurt performance on

the medical datasets?

To investigate the examples where NER blinding was leading to incorrect predictions,

but original pre-processing led to correct predictions, I gathered statistics about the

examples in table B.4. All sentences in the table consisted of entities that were

blinded.
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Figure B-2: Correct prediction being Test reveals Medical Problem, and baseline
model predicts PIP incorrectly. Periods omitted for presentation. Those entities
marked with Test and Problem are blinded by the entity blinding pre-processing
technique.

As seen in figures B-3 and B-4, the NER blinding technique for medical datasets is

too general, and will remove important words that contribute to the correct relation

prediction. 1

Dataset Total Most misclass relation Entity blinding
Mean ± std Other stats

ddi 311 None (155) 14.24 ± 8.17 (41,4,12)
i2b2 2024 None (818) 8.39 ± 5.82 (48,1,7)

Table B.4: Statistics on misclassified examples. Total = total misclassified examples,
Most misclass relation = relation that is most incorrectly predicted with number of
examples, Mean ± std = average and standard dev of number of entities that are
blinded per sentence, Other stats = (Max, Min, Median) of the number of entities
blinded per sentence. The total column represents about 6.6% of the test data for
ddi and 10.6% for i2b2.

B.4 Which stop words are important to different re-

lations in the datasets?

Looking at the examples where stop word removal (stop) led to an incorrect pre-

diction, but original pre-processing (original) led to the correct prediction revealed

that some stop words are important for specific relation predictions.
1Consequently, it is possible that using NER as a feature might be helpful in making the model

focus on these words important to the relation prediction

69



Figure B-3: Correct prediction being None, and model using NER blinding predicts
Effect incorrectly. Periods omitted for presentation. The text colored in blue is
blinded to ENTITY by the blinding.

Figure B-4: Correct prediction being TrAP i.e. Treatment is administered for Medical
Problem, and model using NER blinding predicts None incorrectly. Periods omitted
for presentation. The text colored in blue is blinded to ENTITY by the blinding.

B.4.1 Important stop words for semeval

364 examples (13.4% of the test data) had stop being harmful, but original leading

to correct predictions. The results in table 4.1 showed that punctuations and digits

were not harmful, but that stop was harmful. This indicates that removal of stop

words contributed to the worse performance of stop compared to original. Other

was the most incorrectly predicted relation, with 68 examples, followed by Entity-

Origin(e1,e2) and Entity-Destination(e1,e2).

In figure B-5, the removal of stop words shortens the sentence to focus more on

the word post, which likely leads to the incorrect prediction of Message-Topic(e2,e1).

Entity-Origin(e1,e2) and Entity-Destination(e1,e2) are location dependent and

the elimination of stop words such as from, into and put seem to be causing misclas-

sifications. Examples are shown in figures B-5, B-6 and B-7. Specifically for exam-

ple B-7, the removal of the word put changes the meaning of the phrase put inside

from an action oriented location phrase to inside, which is a passive word implying
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Figure B-5: Correct prediction being Other, and model using stop word removal
predicts Message-Topic(e2,e1) incorrectly. Periods omitted for presentation. The
text colored in blue are removed by the stop word removal technique.

Figure B-6: Correct prediction being Entity-Origin(e1,e2), and model using stop word
removal predicts Entity-Destination(e1,e2) incorrectly. Periods omitted for presenta-
tion. The text colored in blue are removed by the stop word removal technique and
those in red are normalized to NUMBER.

containment. This could explain why Entity-Destination(e1,e2) was misclassified to

Content-Container(e1,e2).

B.4.2 Important stop words for ddi

For this corpus, 267 sentences (5.7% of test data) were present where stop was harm-

ful, but original was helpful. None was the most incorrectly predicted relation,

with 135 examples, followed by Mechanism and Effect.

The most common stop word removed from the context was not, whose removal

likely triggered the prediction changing from None to another relation. As seen in

figure B-8, the removal of does not leaves the context with affect the clearance...

which likely leads to the incorrect Mechanism prediction.
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Figure B-7: Correct prediction being Entity-Destination(e1,e2), and model using
stop word removal predicts Content-Container(e1,e2) incorrectly. Periods omitted
for presentation. The text colored in blue are removed by the stop word removal
technique.

Figure B-8: Correct prediction being None, and model using stop word removal
predicts Mechanism incorrectly. Periods omitted for presentation. The text colored
in blue are removed by the stop word removal technique.

B.4.3 Important stop words for i2b2

1399 sentences (7.32% of the test data) had stop being harmful, but original be-

ing helpful. None was the most incorrectly predicted relation, with 776 examples,

followed by PIP and TrAP. There seemed to be no common stop words leading to

misclassification of the None relation, but there non-None relations were being mis-

classified to None due to stop words such as by, and and with. One example is shown

in figure B-9.
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Figure B-9: Correct prediction being PIP, and model using stop word removal predicts
None incorrectly. Periods omitted for presentation. The text colored in blue are
removed by the stop word removal technique.
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Appendix C

Random Search result distributions

For random search, the exact number of experiments run on each dataset differed

due to variability in the availability of computation time. A total of 107 experiments

were run for semeval, 104 for ddi and 134 for i2b2. Statistics for performance on

the randomly sampled dev set are present in tables C.1, C.2 and C.3.

Statistic
Search Subset All Top 10%

Mean 76.83 80.87
Stddev 9.93 0.31
Median 79.42 80.74
Max 81.37 81.37
Min 4.73 80.54
Range 76.64 0.83

Table C.1: Random Search experiment statistics for semeval. The two columns All
and Top 10% determine the subset of the results statistics are gathered for. All =
distribution of Macro-F1 scores over 107 experiments, top 10% = distribution over
top 10% of the results.

These tables demonstrate that random search reduces the variability of results

and converges to better performance than the default hyperparameters.

75



Statistic
Search Subset All Top 10%

Mean 80.24 82.08
Stddev 1.63 0.25
Median 80.45 82.04
Max 82.57 82.57
Min 71.21 81.74
Range 11.36 0.83

Table C.2: Random Search experiment statistics for ddi. The two columns All and
Top 10% determine the subset of the results statistics are gathered for. All = dis-
tribution of Macro-F1 scores over 104 experiments, top 10% = distribution over top
10% of the results.

Statistic
Search Subset All Top 10%

Mean 69.61 72.19
Stddev 1.54 0.39
Median 69.78 72.13
Max 72.86 72.86
Min 62.92 71.64
Range 9.94 1.22

Table C.3: Random Search experiment statistics for i2b2. The two columns All
and Top 10% determine the subset of the results statistics are gathered for. All =
distribution of Macro-F1 scores over 134 experiments, top 10% = distribution over
top 10% of the results.
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Appendix D

Evaluation Metric Results on Test

Data

Following are the results calculated with different evaluation metrics pertaining to

the discussion in section 4.2.5 of chapter 4. Each row represents a pre-processing,

modeling technique or combination based on the additional experiments run on each

dataset. Only test set results (as opposed to cross validation) are reported for ease

of analysis of the large table. In all the tables, Baseline refers to the CRCNN model

with original pre-processing and default hyperparameters for semeval and manual

hyperparameters for the medical datasets (ddi and i2b2). The following short forms

are used to refer to:

B = BERT-tokens (only used for the medical datasets tables)

E = ELMo (only used for the medical datasets tables)

Ent Blind = Entity Blinding (only used for i2b2 table)

Piece Pool = Piecewise Pooling (only used for i2b2 table)
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