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Abstract

Recently, magnetic gears have drawn significant interest as a promising alternative
to their mechanical counterparts by introducing features such as generating high
torque at low speed, reduced acoustic noise and vibrations, low maintenance, inher-
ent overload protection, improved reliability, physical isolation between shafts, and
contactless power transfer. Conventional electrical machines can be combined with
magnetic gears to form a compact device called a magnetically-geared machine. They
have found their way into mechatronics, wind turbines, wave energy generation and
electric vehicles. Such devices can be studied by numerical techniques or analytical
frameworks. The former such as finite element methods (FEM), although powerful, is
expensive and time-consuming, while the latter approach like flux-tube based models
provide a flexible yet reasonable solution for preliminary designs and optimizations.
In this thesis, there has been a comprehensive study on flux-tube based modeling
and finite element analysis of the machine. The stator is represented using flux-tube
based carterâĂŹs coefficient and a surface current density. The permanent magnets
are modeled by different approaches including magnetization density, Coulombian
fictitious charges and Amperian currents. The air-gap permeances are also modeled
by flux-tubes. Closed-form expressions for the magnetic fields has been extracted.
The developed torques has been calculated by different techniques including Maxwell
stress tensor, Lorentz force and Kelvin force density. These options provide designers
with a universal and flexible framework, enabling them to pick the best technique
according to the configuration and application. The field modulation concepts and
the gearing effects have been investigated using the developed analytical framework
as well as 2D and 3D FEM, whose results agree. Both radial-flux and axial-flux con-
figurations, the two main structures of rotating electrical machines, have been studied
as well.
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And say, “My Lord, increase me in knowledge.” 

Quran [20:114]  
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Chapter 1 

Introduction 
 

 

 

1.1 Magnetically-geared machines 

Electrical machines and electromagnetic devices have the important role of energy 

conversion between electrical and mechanical forms.  Recently, magnetic gears have drawn 

significant attention as a promising dual to mechanical gears by featuring advantages such 

as generating high torque at low speed, reduced acoustic noise and vibrations, low 

maintenance, inherent overload protection, improved reliability, physical isolation between 

shafts, and contactless power transfer [1]-[4]. Conventional electrical machines are usually 

integrated with mechanical gears to match the torque-speed characteristics required by the 

application, in which magnetic gears are a promising substitution that can simply be 

attached to any mechanical or electrical machine [2]-[3], or can be combined with electric 

machines into compact device [4]. They have found their way into robotics and 

mechatronics, wind turbines [5], wave energy generation [6]-[8] and electric vehicles [9].  

Magnetic gears can be connected to conventional electric machines with isolated 

magnetic circuits [2]. Also, they can be combined into a single compact machine called 

magnetically-geared machines [4]. Recently, valuable studies has been done on both radial-

flux [10]-[12] and axial-flux [13]-[15] magnetic gears using finite element analysis. 

Almost more works has been done in the study of magnetic gears and magnetically-

geared machines by finite element analysis than using analytical methods, so there is still 

a big demand for the modeling of magnetic gears and specially magnetically-geared 

machines which can be used in the investigation of the nature of the machine as well as 

preliminary design stages and optimizations. A magnetic equivalent circuit is presented for 

magnetic gears very recently [16]-[17]. Another valuable contribution to the field is [18], 

in which a magnetic gear has been modeled by solving Laplace’s and Poison’s equation; 

although, the accuracy of the framework is not that good and such models do not have a 
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flexibility in complex structures, it opens a new door to the analytical study of magnetic 

gears. Investigation of the magnetic fields within the machine in order to understand the 

field modulation and gearing effect has been done in [19] and [20] as well. 

1.2 Thesis contributions 

Contributions of this thesis to the field of electrical machines and specifically magnetic 

gears can be summarized in the following points: 

 Utilization of two-dimensional and three-dimensional finite element method as 

a power numerical tool in the design and analysis of electrical machines, 

especially magnetically geared permanent magnet machines. 

 Investigation and implementations of the flux-tube method, also called 

magnetic equivalent circuit (MEC), as a flexible yet accurate analytical 

framework for the study of the physics, analysis, design and optimization of 

electromagnetic devices, especially magnetically-geared machines. 

 Development of a novel analytical model for magnetically-geared machines for 

the two cases of rotating modulator ring and rotating PM ring. The accuracy of 

the model has been varied by FEM, showing a very close agreement between 

the analytical and numerical results. 

 Modeling the stator and the PMs by employing different techniques such as 

magnetization density, Amperian currents and coulombian fictitious charges, 

providing a general framework so that a suitable technique can be used based 

on the geometry of the machine for further study of such devices. 

 Extracting closed-form expressions for the magnetic fields and the developed 

torque using different approaches including Maxwell stress tensor, Lorentz 

force and Kelvin force. These options give the designers a flexibility to choose 

the best technique according to the configuration and application of the device. 

 Study the nature and behavior of magnetically geared machines and extracting 

its main characteristics such as torque, field and back-EMF with different 
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scenarios and conditions. This study is done both analytically using the model 

and numerically using 2D and 3D FEM. 

 Study the behavior of both radial-flux and axial-flux configurations of 

magnetically-geared synchronous machines as the two main structures of 

electrical machines using 2D and 3D FEM. 

1.3 Thesis structure  

Chapter 2 is devoted to finite-element method (FEM) as a powerful numerical 

technique that provides an accurate analysis, although it might be expensive and time-

consuming. A detailed study and development of a novel structure for switched reluctance 

machines (SRMs) using 2D FEM has been studied. Analytical approaches provide fast and 

relatively accurate solutions that could be utilized in the design optimizations, as well as 

providing physical concepts for the designers. Both numerical or analytical techniques may 

be used in the analysis of electrical machines. Numerical approaches like finite element 

method (FEM), although accurate, are usually expensive and too time-consuming to be 

used in the design optimizations, while analytical models by providing fast, yet accurate 

solutions are a very good trade-off between accuracy and simplicity—useful in preliminary 

design stages. Chapter 3 is on the flux-tube based modeling of electromagnetic devices. 

Also, modeling of a switched reluctance motor as a very good example has been studied. 

It is shown that the developed model has superiorities in terms of accuracy and flexibility 

over the existing ones. All taken together, it is tried to show that analytical models are 

appropriate for preliminary stages of the design optimization, and numerical techniques are 

suitable for final verification of the results. 

In chapter 4, a comprehensive analytical model for magnetically-geared permanent 

magnet machines has been developed using different approaches. An attempt has been 

made to employ different techniques to provide a universal framework so that a set of 

options will be provided for the designers and engineers, enabling them to pick the suitable 

method based on the configuration and geometry of the device. A flux-tube based model 

for the Carter’s coefficient has been obtained to account for the slot effect. Detailed study 

of the air-gap field has been done, based on which analytical expressions of the air-gap 
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permeances has been extracted; a simplified model and an accurate one has been proposed. 

The stator is modeled by magnetomotive force and a surface current density. The 

permanent magnets are modeled with three techniques: magnetization density, Coulombian 

model and Amperian current representation. The air-gap flux has been obtained and finally 

a closed-form expression for the developed torque has been extracted by employing 

different techniques: Maxwell stress tensor, Lorentz force and Kelvin force density. The 

modulation concept and the gearing effect has been studied as well. All the aforementioned 

procedures have been performed for two cases: modulator ring as the rotor or the PM ring 

as the rotor. 

In chapter 5, a radial-flux magnetically-geared machine has been studied using 2D 

FEM. It has been shown that the results obtained from the developed analytical model 

correlate well with those obtained from FEM, and there is a match between the discussed 

concepts. Main characteristics of the machine including torque-angle curve, torque profile, 

back-EMF, magnetic flux density distribution are also extracted. Harmonics analysis is 

also performed to investigate the modulation effect. Chapter 6 is devoted to the study of an 

axial-flux magnetically-geared machine as one of the two main structures of electrical 

machines. It is analyzed using 3D FEM. Finally, we will be talking about the conclusions 

and the future works in chapter 7. 
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Chapter 2 

Finite Element Analysis 
 

 

 

 

2.1 Introduction 

Finite-element method (FEM) is a powerful numerical technique that provides an 

accurate analysis, although it might be expensive and time-consuming [21]. Analytical 

approaches provide fast and relatively accurate solutions that could be utilized in the design 

optimizations, as well as providing physical concepts for the designers. All taken together, 

analytical models are appropriate for preliminary stages of the design procedure, and 

numerical techniques for final verification of the results. It is also worth noting that there 

has been a remarkable interest in FEM-based study of variety of electric machines, from 

eddy-current couplers [22]-[25] to induction motors [26]. 

2.2 FEM-based analysis and design of a novel switched reluctance motor 

In this section, two-dimensional finite element method (2D FEM) is employed in 

design and analysis of a novel topology for 8/10 two-phase switched reluctance motors 

(TPSRM). The related paper has been recently presented in 2018 IEEE Industry 

Applications Society Annual Meeting (IAS) by the author of this master thesis [27]. It has 

also been published in [28]. In the proposed TPSRMs, a wound stator pole of the same 

phase as the flux return path is embedded. Thanks to FEM, the motor is studied and fully 

analyzed. Through a comprehensive comparison, superiorities of the proposed 8/10 

TPSRM over two analogous 6/10 [29] and 9/12 [30] TPSRMs. FEM has been employed to 

study, analyze and design of the proposed switched reluctance machine in this chapter. 

2.2.1 Topology of the TPSRM 

Fig. 2.1 shows the geometry of the 8/10 TPSRM, in which the two adjacent stator poles 

and the diametrically opposite poles have the same phase. The topology and specifications 

of the proposed, 6/10, and 9/12 TPSRMs to be compared, are presented in Fig. 2.2 and 
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Table 2.1. The stator outer radius and stack length of the three motors are equal. The 

common feature of them is that they provide a return path for the flux so that the back iron 

flux path is shortened compared to conventional SRMs in which the flux flows through the 

whole stator/rotor back iron.  

 
 

Figure 2.1: Geometry of the proposed switched reluctance motor 

 

Table 2.1: Machine specifications 

parameter 
8/10 

SRM  

9/12 

SRM 

6/10 

SRM 

stator outer diameter, Do (mm) 82 82 82 

stator back iron thickness, bsy (mm) 3.85 6 6 

stator pole height, hs (mm) 12 12.6 10.29 

stator inner diameter, D (mm) 50.3 44.8 49.42 

air-gap length, lg (mm) 0.17 0.17 0.17 

rotor outer diameter, d (mm) 49.96 44.46 49.08 

rotor pole height, hr (mm) 4 8.54 9.09 

rotor back iron thickness, bry (mm) 13.98 7.09 8.85 

rotor shaft diameter, Dsh (mm) 14 13.2 13.2 

stator pole arc, βs (deg) 14 13.8 16 

rotor pole arc, βr (deg) 16 13.2 18.9 

stack length, L (mm) 25.4 25.4 25.4 

available winding space, Aw (mm2) 64 64 67 

number of windings, Nw 8 6 4 
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number of turns per pole, Tph 110 110 110 

 
Figure 2.2: Topology and main flux paths of (a) the proposed 8/10 TPSRM, (b) the 9/12 TPSRM, and (c) 

the 6/10 TPSRM 

2.2.2  Topology 

In the proposed 8/10 TPSRM, the return flux path is designed such that another wound 

stator pole is embedded in the motor, resulting in a significant flux increase and 

subsequently a higher torque density. Also, both the core volume in which the flux reverses 

is reduced. Moreover, the traverse flux paths in the rotor/stator back irons are shortened 

(lower MMF required). Fig. 2.3 illustrate the flux paths within the motor for the aligned 

condition under the excitation of phase 1. The bold line indicates the main flux path, while 

the thin line denotes the path having a very small amount of flux flows. 

 
Figure 2.3: Flux paths within the proposed 8/10 TPSRM when phase 1 is excited under the aligned 

condition. 
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The pole combinations (S/R) for TPSRMs with four stator poles are 4/2, 4/6, 4/10, 4/14, 

4/18; that is, R=S*{0.5, 1.5, 2.5, 3.5, …}. As shown in Fig. 2.4, the return path is obtained 

by merging the stator with its duplicate that is rotated by a multiple of rotor pole pitch θrp. 

The main flux path is also shown. In Fig. 2.4(a), a 4/6 TPSRM stator is merged with a 

duplicate rotated by θrp to achieve an 8/6 TPSRM. However, the problem is that the two 

adjacent stator poles of different phase are too close to each other to provide enough 

winding space. 

 
Figure 2.4: (a) Merging a 4/6 SRM stator with a duplicate after θr rotation to achieve 8/6 SRM, (b) 

merging a 4/10 SRM stator with a duplicate after θr rotation to achieve 8/10 SRM, (c) merging a 4/14 SRM 

stator with a duplicate after θr rotation to achieve 8/14 SRM 

In Fig. 2.4(b), a 4/10 TPSRM stator is merged by a duplicate rotated by θrp to achieve 

a novel 8/10 TPSRM, where we have a satisfactory space for stator windings (design 

candidate). 
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In Figs. 2.4(c) and (d), a 4/14 TPSRM stator is merged by a duplicate, while the stator 

is rotated by 2θrp. The main drawback of the former is the same as that of the first topology, 

i.e., very small winding areas. Generally, the closer the value of α to the value of γ, the 

larger the winding space. Although this problem is somewhat solved in the latter, the larger 

number of rotor poles needs an increased switching, increased flux path lengths, and 

increased number of flux reversals (increased hysteresis loss) in the rotor poles.  

2.2.3 Design formulas  

The angle between two nearby stator poles, which is equal to rotor pole pitch angle, is 

as follows: 

360 / rN    (2.1) 

The angle between two faraway stator poles γ can be obtained by solving the following 

proportion: 

2 720

360s sN N

 
 


   

  (2.2) 

Rotor poles pitch angle is as follows: 

360 /rp rN 
  (2.3) 

The following criterion should be satisfied to efficiently design the stator yoke length: 

0.5 sp sy spb     (2.4) 

The stator pole width can simply be obtained as in below: 

sin sin
2 2 2 2

sp s s
sp

D
D

  


   
     

     (2.5) 

In order to effectively utilize the inter-pole area for stator windings, the following 

criterion should be satisfied [30]: 
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1.4c s ch h h    (2.6) 

where, hc is winding height. The stator outer diameter is: 

2 2o sy sD D b h  
  (2.7) 

Rotor pole height can also be obtained as in below: 

 2 2 / 2r g sh ryh D l D b   
 (2.8) 

2.2.4 Sensitivity analysis of stator and rotor parameters 

Fig. 2.5 shows the design algorithm. To achieve a satisfactory design, machine 

dimensions are optimally designed to maximize the average torque under a constant stack 

length and outer diameter. 

 
Figure 2.5: Design algorithm 
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Fig. 2.6(a) shows the average torque sensitivity versus simultaneous variations of rotor 

pole angle βr and stator pole angle βs, in which the optimal point is where stator and rotor 

teeth operate near the knee of the core saturation curve. Fig. 2.6(b) shows that a very small 

stator pole height hs results in a too small winding area while a very large value decreases 

the air-gap radius (torque leg). The average torque sensitivity versus rotor pole height hr is 

given in Fig. 2.6(c), showing that a very small value decreases the reluctance difference 

reducing the torque while a very large value increases the flux path length and thus, higher 

MMF requirements. Fig. 2.6(d) shows the average torque versus the stator yoke length bsy. 

Fig. 2.6(e) shows the torque versus yoke thickness. 

 
Figure 2.6: Sensitivity of average torque versus (a) variations of rotor pole angle and stator pole angle, (b) 

stator pole height, (c) rotor pole height, (d) stator yoke thickness, and (e) rotor yoke thickness. 
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2.2.5 Flux analysis 

Fig. 2.7 illustrates flux lines and flux density distribution within the machine for 

unaligned and aligned conditions when phase 1 is excited. 

 
 

Figure 2.7: (a) Flux lines, (b) flux density distribution of machine under unaligned and aligned conditions 

when phase a is excited. 

Flux variation in different core sections under a 360-degree rotor rotation is shown in 

Fig. 2.8. The core sections from which the flux lines flow and the corresponding positive 

directions are also depicted. It is seen from Fig. 2.8(a) that always flux flows into the stator 

yoke between the teeth of two different phases only in one direction—no flux reversal. 

Fig. 2.7(b) shows the flux traversing the stator yoke between the teeth of the same phases 

(assume phase 1), illustrating ten times flux reversals in a complete rotor rotation. The 

negative values come from energizing the other phase (phase 2), starting from zero (at the 

unaligned position of phase 2) to the maximum (at the aligned position of phase 2). 

However, it is seen in Fig. 2.7(c) that the corresponding flux density in this section is very 

small—minor loss. The flux flowing into a rotor tooth, as shown in Fig. 2.8(c), denotes 

four times flux reversals in one rotor revolution which occurs when the rotor tooth is 

unaligned with the pole that is to be excited. The number of flux reversals is not large in 

this section. Fig. 2.8(d) shows the flux flowing into the rotor yoke in a full rotor rotation, 

showing a very small magnitude for variations—no significant flux reversal. Figs. 2.8(e) 
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and (f) illustrate the flux flowing into the stator tooth of phase 1 and 2 without any flux 

reversals. 

 
Figure 2.8:  Flux analysis in core sections under a 360-degree rotor rotation: (a) stator yoke between teeth 

of two different phases, (b) stator yoke between teeth of two similar phases, (c) rotor tooth, (d) rotor yoke, 

(e) tooth of stator phase 1a, and (f) tooth 

 

In the two valuable works done in the design of a 6/10 TPSRM [29] and a 9/12 TPSRM 

[30], the main disadvantage of the common pole is the negative torque (NT) caused by the 

flux traversing the other phase when one phase is excited. Fig. 2.9 shows the corresponding 
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flux lines under aligned and unaligned conditions. It is seen that when phase 1 is excited, 

a small part of the generated flux flows through phase 2 producing a negative torque, which 

is larger in 9/12 TPSRM compared to 6/10 TPSRM because a larger amount of flux flows 

into the adjacent phase due to its shorter path. This issue is addresses in the proposed 8/10 

TPSRM by employing another wound pole of the same phase as the flux return path—no 

negative torque caused by passing a minor flux through the other phase. 

 
Figure 2.9: Flux lines of (a) existing 9/12 TPSRM and (b) existing 6/10 TPSRM under unaligned and 

aligned conditions (NT denotes the regions where negative torque is produced). 

Fig. 2.10 illustrates a comparison of the regions, including flux reversals as well as 

those without any flux reversals or having very minor flux reversals. The major flux 

reversal in the proposed 8/10 TPSRM occurs in the rotor teeth due to the main flux path of 

a phase, while the flux reversal in the stator yoke between the teeth of the same phases 

occurs due to the minor flux path developed by the other phase excitation, and is less 

significant comparatively. In the existing 9/12 TPSRM, flux reversal happens in the 

essential core sections, including rotor/stator poles, rotor yoke, and the stator yoke section 

between the teeth of different phases. However, no flux reversal occurs in the common 

pole and the adjacent stator yokes. In the existing 6/10 TPSRM, major flux reversals occur 

in the rotor yoke and teeth, while minor flux reversals happen in the stator poles and yokes 

due to the excitation of the other phase. However, there is no reversal in the common pole. 
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Figure 2.10: Regions with flux reversal in red 

 

 

2.3 Results and comparisons 

Herein, a study is carried out and the main characteristics of the proposed machine are 

analyzed. Saturation characteristics of the utilized iron is shown in Fig. 2.11. Fig. 2.12 

shows the flux linkage characteristics of the machine for the aligned and unaligned 

conditions. The torque-angle characteristics under different stator currents is given in Fig. 

2.13 which shows an acceptable agreement between experimental results and those 

obtained from FEM. 

 

 

Figure 2.11: Saturation characteristics of the iron 
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Figure 2.12:  Flux linkage characteristic under aligned and unaligned positions 

 

 
Figure 2.13: Torque-angle characteristic of the motor 

 

In this section, a comparison between the three motors under the same volume is carried 

out. In Fig. 2.14, torque angle characteristics of the three motors for various stator currents 

are compared. Because of elimination of negative torques, higher torques are obtained for 

the proposed 8/10 TPSRM, while there is a negative torque in the 9/12 and 6/10 TPSRMs 

(yellow regions). Fig. 2.15 presents the average and peak torques of the three motors for 

different stator currents, showing an enhancement for the proposed structure. 



37 

 

 

Figure 2.14: Comparison of torque-angle characteristics of (a) 8/10 TPSRM, (b) 9/12 TPSRM and (c) 6/10 

TPSRM 
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Figure 2.15: Comparisons of SRMs: (a) peak torque and (b) average torque for different stator currents. 

 

Comparison of the torque densities, as given in Fig. 2.16(a), illustrate the superiorities 

of the proposed motor. Moreover, a new efficiency index is defined as the ratio of torque 

density to the number of windings per phase (TWP) as in below: 

torquedensity
TWP

number of windings per phase


 (2.9) 

Fig. 2.16(b) illustrates the TWP index for the three motors which reveals the 

superiorities of the proposed TPSRM. The other interesting point is that the TWP of the 

6/10 TPSRM is greater than that of the 9/12 TPSRM, although the torque density of the 

9/12 TPSRM is greater than that of the 6/10 TPSRM. As in Table 2.2, copper loss of the 

proposed motor is a bit higher, reflecting the its topological ability to provide larger 

winding area, but the utilized iron and associated core loss is smaller. In a nutshell, the 

proposed motor shows higher torque to weight ratio, torque to volume ratio and efficiency. 
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Figure 2.16: Intelligent comparisons of SRMs: (a) torque density and (b) efficiency index TWP for 

different stator currents. 

 

 

Table 2.2: Comparison of characteristics 

Parameter 8/10 SRM 9/12 SRM 6/10 SRM 

iron weight (kg) 0.618 0.656 0.559 

copper weight (kg) 0.14 0.105 0.07 

average Torque (Nm) at 5A 1.121 0.545 0.401 

torque to weight ratio (Nm/kg) 1.479 0.716 0.637 

copper loss (W) 12.34 9.77 7.2 

core loss (W) 0.356 1.9 1.2 

output power (W) 117.39 57.07 41.99 

efficiency (%) 90.24 83.02 83.33 
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Chapter 3 

Flux-Tube Modeling 
 

 

 

 

3.1 Introduction 

Both numerical or analytical techniques may be used in the analysis of electrical 

machines. Numerical approaches like finite element method (FEM), although accurate, are 

usually expensive and too time-consuming to be used in the design optimizations, while 

analytical models by providing fast, yet accurate solutions are a very good trade-off 

between accuracy and the required time—useful in preliminary design stages. 

Analytical frameworks for analysis of electrical machines may be performed using the 

solution of Laplace’s and Poison’s equations [18], or by employing flux-tube based 

techniques [31]-[34]. The former, although very powerful, might be complicated for many 

geometries, incapable of taking iron saturation into account, while the latter is usually 

simpler and effective in many configurations without any symmetry, and is able to account 

for iron saturation and most material properties, e.g. both PM characteristics. In this chapter, 

a new flux-tube based model for switched reluctance machines, as a very good example, 

has been developed. Analytical models are the best candidates for design optimization and 

parametric analysis of electric machines [35] and [36]. 

3.2 Flux-tube based modeling and design of switched reluctance machines 

This section is about a comprehensive flux-tube based modeling of switched reluctance 

motors, whose related paper together with experimental verifications will be submitted as 

soon as possible [37]. The main advantage of the established closed-form framework is the 

ability to continuously calculate machine characteristics over the entire operating range. 

Finally, FEM is employed to evaluate effectiveness of the developed model and 

demonstrate its superiorities over the existing approaches. Fig. 3.1 and Table 3.1 1illustrate 
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the geometry and specifications of a switched reluctance machine for which the proposed 

model is developed. 

 
Figure 3.1:  Geometry of a typical switched reluctance machine 

 

Table 3.1: Specifications 

parameter symbol value 

stator outer diameter (mm) Do 80 

stator back iron thickness (mm) bsy 6 

stator pole height (mm) hs 10 

stator inner diameter (mm) D 24 

air-gap length (mm) lg 0.2 

rotor outer diameter (mm) d 23.8 

rotor pole height (mm) hr 10 

rotor back iron thickness (mm) bry 7.8 

rotor shaft diameter (mm) Dsh 6 

stator pole arc (deg) βs 15 

rotor pole arc (deg) βr 15 

stack length (mm) L 25 

number of turns per phase Tph 100 

number of phases q 4 

number of rotor poles Pr 6 

number of stator poles Ps 8 

iron material M19-24G 
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3.3 Air-gap flux tubes 

To model the machine, four operating regions, shown in Fig. 3.2, are considered: 

 Region a: no overlapping condition 

 Region b: the beginning of overlapping 

 Region c: overlapping condition 

 Region d: fully aligned condition 

 
Figure 3.2:  Operating regions for modeling: (a) no overlapping, (b) the beginning of overlapping, (c) 

overlapping and (d) fully aligned conditions 

Each row of Figs. 3.3, i.e. (a)-(d), illustrates the scheme for defining the reluctances for 

each of the mentioned regions. The first column shows the corresponding flux paths within 

the whole machine (1), the second column provides more detail one (2), and the third 

column depicts the reluctance elements (3). The air-gap permeances are as in below: 

 Pg1: the permeance of the flux from the base of the stator tooth to the upper part 

of the rotor tooth. The tube width is lg. 

 Pg2: the permeance of the flux from the middle part of the stator tooth to the top 

of the rotor tooth. 

 Pg3: the permeance of the flux from the upper part of the stator tooth to the 

upper part of the rotor tooth. (it does not appear in the region b) 

 Pg4: the permeance of the flux from the top of the stator tooth to the middle 

section of the rotor tooth. 

 Pg5: the permeance of the flux from the upper section of the stator tooth to the 

base of the rotor tooth. 

 Pg6: the permeance of the flux from top of stator tooth to top of rotor tooth. 

(only in the regions c and d) 
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Figure 3.3: Flux lines within the whole machine (1), in the air-gap area (2) and the corresponding 

reluctances (3) for the four conditions a, b, c and d 
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In order to achieve a comprehensive model including detailed elements, a separate 

circuit is considered for each of the mentioned permeances Pgj (j=1,2,…,6), as shown in 

Fig. 3.4. This enables us to more accurately model the iron-part reluctances (stator/ rotor 

teeth and yokes). 

 
Figure 3.4: (a) MEC and (b) simplified circuit of the jth branch 

The rotor pole pitch θrp and half of it θ0 are defined as in below: 

 2 /rp rN 
 (3.1) 

/ 2o rp 
 (3.2) 

As seen in Fig. 3.5, the angular distance between the centers of rotor and stator teeth is 

θ0-θ. Although many studies have approximated the angles α and γ to be 90 degrees, herein 

their actual values are calculated to obtain a higher accuracy as: 

  
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 (3.4) 
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It is worth noting that the impact of α and γ on the whole precision arises in cases near 

the unaligned condition where these angles are faraway from 90 degrees; as seen in Fig. 3.5, 

reluctance estimations is rough in the linearized model. 

 
Figure 3.5:  Integration paths for (a) Pg1, (b) Pg2, (c) Pg3, (d) Pg4, (e) Pg5, (f) Pg6, (g) Pg1 and Pg5 for 

region d 
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According to the integration paths shown in Fig. 3.5, Pg1 to Pg6 are calculated as: 

 
     
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Executing the integration yields: 
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We have: 

 
  

  
 

  
 

/2 /2 /2
0

/2 /2 /2

2
/2 /2 /2

0

0

; 0 / 2
lg

; / 2
lg

o s r

o s r

o s r

D

o r s
D

g
D

o r s o

Ldx

x
P

Ldx

x

   

   

   


   





    



  

  

  


    

 
    
 




 (3.7) 

Executing the integration yields: 
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Also, 
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Executing the integration yields: 
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it yields: 
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it yields: 

 
 

 

  
0

5

/ 2
1

/ 2 / 2 / 2 / 2

g

g

g o r s g

lL
P ln

l D l

 


      

  
  

       

 (3.14) 

 

 

 

 

 

1

/2
6

6 /2
0 0

;    

;

             0 0 / 2

1
/ 2

2 2
g

o r s

D
g

o r s o

s rg D l

P dr

R
Lr

   


    

 
  





   

  

  
     

          



 (3.15) 

so,  
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 (3.16) 

According to the integration path shown in Fig. 3.5(g), in the case of fully aligned 

condition (θ= θ0), the Pg1 and Pg5 are calculated as in below: 
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We achieve  

     0
1 5 1g o g o

L
P P Ln


    


    

 (3.18) 

3.4 Iron-part Reluctances 

Having the permeability of iron, the corresponding reluctance are calculated as in below: 

/spj spj spj spjR l A  (3.19) 

/rpj rpj rpj rpjR l A  (20) 

/ryj ryj ryj ryjR l A  (21) 

/syj syj syj syjR l A  (3.22) 

Most existing frameworks simplify the modeling by assumptions such as equal areas for 

the rotor/stator pole reluctances (the whole pole [40] or divided by the number of paths 

[39]; Arp, Asp), equal areas for rotor/stator yoke reluctances (the whole yoke area or divided 

by the number of paths; Ary, Asy) [39], equal lengths for rotor/stator pole reluctances (the 

whole pole height; hs, hr) [40].  

In our model, by defining the factor Kj, it has been assumed that the area associated with 

each reluctance element is proportional to the corresponding flowing flux as in below: 
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 
 

 

 

 
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... , j 1, ,6
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g j

g g gj t t
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mmf K

P P P P

     


  
         (3.23) 

where, Pt is the total permeance by the following: 

   
6

1t gjj
P P 


  (3.24) 

Thus, effective areas associated with the jth branch are calculated as: 

     spj j spA K A   (3.25) 

     rpj j rpA K A   (3.26) 

     syj j syA K A 
 

(3.27) 

     ryj j ryA K A   (3.28) 

where Aspj, Arpj, Asyj and Aryj are respectively total areas of stator pole, rotor pole, stator 

yoke and rotor yoke, as in below: 

 / 2sp sA L D  (3.29) 

  / 2rp r gA L D l   (3.30) 

sy syA Lb  (3.31) 

ry ryA Lb  (3.32) 

Relatively accurate values of the lengths of all stator/rotor pole reluctances are calculated. 

According to Fig. 3.6(a), the lengths of the jth stator and rotor yokes reluctances are 

calculated as in below: 

 / 2 / 2 / 2syj sy o sy syl b D b b     (3.33) 

 / 2 / 2 / 2ryj ry sh ry ryl b D b b     (3.34) 

According to Fig. 3.6(b), the effective lengths of stator pole reluctance for each branch 

is determined as in the following: 
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    1 / 2 / 2 / 2 / 2sp s o s r gl h D l         
 

 (3.35) 

  2 / 2 / 2sp s o sl h D         (3.36) 

  3 / 2 / 2 / 2 / 2sp s o s rl h D           (3.37) 

4sp sl h  (3.38) 

 5 / 2sp s gl h l   (3.39) 

6sp sl h  (3.40) 

Similarly, for the rotor, we have: 

 1 / 2rp r gl h l   (3.41) 

2rp rl h  (3.42) 

  3 / 2 / 2 / 2 / 2rp r o r s gl h D l         
 

 (3.43) 

  4 / 2 / 2rp r o r gl h D l       
 

 (3.44) 

    5 / 2 / 2 / 2 / 2rp r o r s g gl h D l l          
 

 (3.45) 

6rp rl h  (3.46) 

Finally, the flux flowing into the jth branch is determined as: 

/gj ph eqjT i R   (3.47) 

where, Reqj is the equivalent reluctance given below 

    1/ 2 2eqj syj ryj spj gj rpjR R R R R R      (3.48) 

Air-gap flux density within the jth branch is calculated as: 

/gj gj gjB A  (3.49) 
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(b) 

Figure 3.6:  Flux lines in (a) teeth and (b) yokes of stator and rotor. 

3.5 Nonlinear Algorithm 

An iterative algorithm, whose diagram is shown in Fig. 3.7, is used to calculate the 

permeability of iron reluctances. Assigning an initial value, air-gap flux density for each 

branch is calculated. Then, the corresponding flux densities within the stator pole, rotor 

pole, stator yoke and rotor yoke are determined as in below: 

         /spj gj spj gj gj spjB B A A    (3.50) 

         /rpj gj rpj gj gj rpjB B A A    (3.51) 

     / 2   syj gj syj gj gj syjB B A A    (3.52) 

     / 2   ryj gj ryj gj gj ryjB B A A    (3.53) 
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where areas associated with air-gap flux tubes are as follows: 

1g gA Ll  (3.54) 
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 (3.55) 

   

 
0

3

,0 / 2

0, / 2

r o r s

g

o r s o

L
A

      

    

     
 

   

 (3.56) 
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L D
A

L D

    

      

   
 
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 (3.57) 

5g gA Ll  (3.58) 
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 (3.59) 

Afterward, the new relative permeabilities are found using the saturation curve [31] and 

[38]. First, the auxiliary permeabilities are directly extracted from the B-H curve: 

( ) ( 1) ( 1)

0
ˆ /k k k

spj spj spjB H    (3.60) 

( ) ( 1) ( 1)

0
ˆ /k k k

rpj rpj rpjB H    (3.61) 

( ) ( 1) ( 1)

0
ˆ /k k k

syj syj syjB H    (3.62) 

( ) ( 1) ( 1)

0
ˆ /k k k

ryj ryj ryjB H    (3.63) 

Then, the actual relative permeabilities are determined by: 

( ) ( ) ( 1) 1ˆ[ ] [ ]k k d k d

spj spj spj      (3.64) 

( ) ( ) ( 1) 1ˆ[ ] [ ]k k d k d

rpj rpj rpj      (3.65) 

( ) ( ) ( 1) 1ˆ[ ] [ ]k k d k d

syj syj syj      (3.66) 

( ) ( ) ( 1) 1ˆ[ ] [ ]k k d k d

ryj ryj ryj      (3.67) 

where d is the damping constant (chosen 0.15). The stop criteria is as in below: 
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( ) ( 1) ( 1)[ ] /k k k

spj spj spj       (3.68) 

( ) ( 1) ( 1)[ ] /k k k

rpj rpj rpj       (3.69) 

( ) ( 1) ( 1)[ ] /k k k

syj syj syj       (3.70) 

( ) ( 1) ( 1)[ ] /k k k

ryj ryj ryj       (3.71) 

 
Figure 3.7: Nonlinear algorithm 

 

3.6  Flux Linkage and Inductance Calculations 

The inductance associated with each branch is calculated as: 

 , /j ph gjL i T i   (3.72) 
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Thus, the total inductance and flux linkage as a function of θ are determined by: 

   
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1
, ,jj

L i L i 


  (3.73) 

     
6

1
,   ,   , jj

ii L i i L i   


    (3.74) 

3.7  Flux Density Distribution 

By dividing the developed MEC into six separate branches, the flux flowing into each 

branch and then the step-wise approximation of flux densities is obtained as in below: 

     / (j 1,2,... 6  , )gj gj gjB A   (3.75) 

3.8  Torque Calculations 

Co-energy is calculated as follows: 

    21
,

2
cW i L i    (3.76) 

The developed torque under a constant current is determined by: 

 
 ,

,
c

i const

W i
T i











 (3.77) 

into which by substituting (76), we achieve the following: 

 
 21

,
2

dL
T i i

d





   (3.78) 

3.9 Evaluation 

Herein, characteristics of a typical machine, whose specifications are given in Table I, 

are extracted and then evaluated and compared with those obtained from FEM as well as 

the existing model [39]. Fig. 3.8 shows the saturation curve of the utilized steel (M19-24G). 

Fig. 3.9 illustrates the flux linkage characteristic of the machine for different rotor positions 

from unaligned to aligned conditions, obtained by the proposed model, existing model and 

FEM, illustrating the higher accuracy of the proposed model. The air-gap flux density 
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distribution for the four main operating conditions of the machine (aligned, overlapping, 

beginning of overlapping, unaligned) is shown in Fig. 3.10, in which the comparison with 

FEM demonstrate its admired precision. Fig. 3.11 shows the torque-angle characteristic of 

the machine for different stator currents, from which a satisfactory correlation between the 

analytical framework and FEM can be seen. In addition, it is worth noting that unlike the 

existing models in which computation are done for discrete points, in the proposed model, 

these calculations are continuously performed over any range of angular position.  In 

Fig. 3.12, the maximum and mean torques of the machine versus stator current are shown, 

illustrating a very close agreement with FEM. Table 3.2 lists the discrepancies between 

models, showing the superiorities of the proposed approach. 

 
Figure 3.8: B-H characteristic of the utilized steel with grade M19-24G 

 

 
Figure 3.9: Flux linkage characteristics at different rotor positions 
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Figure 3.10:  Air-gap flux density distribution at different positions 
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Figure 3. 11: Torque-angle characteristics of the machine 

 

 
Figure 3.12: Maximum torque-current and average torque-current characteristics 

 

 

Table 3.2: Comparison of characteristics 

Angle (deg) Proposed model (%) Existing model (%) 

0 10.61 20.35 

15 4.65 14.41 

18 5.22 10.78 

23 3.16 9.27 

30 1.84 6.46 
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Chapter 4 

Analytical Framework for Radial-Flux 
Magnetically-Geared Machines 
 

 

4.1 Introduction and Machine geometry 

Almost more works has been done in the study of magnetic gears and magnetically-

geared machines by finite element analysis than using analytical methods, so there is still 

a big demand for the modeling of magnetic gears and specially magnetically-geared 

machines. Such can be used in the investigation of the nature of the machine as well as 

preliminary design stages and optimizations. A magnetic equivalent circuit is presented for 

magnetic gears very recently [16]-[17] which is a nice contribution to the field, but a set of 

formulas and matrices has to be solved for each set of machine parameters. Another 

valuable work is [18], in which a magnetic gear has been modeled by solving Laplace’s 

and Poison’s equation; the accuracy of the framework is not very good and generally, such 

models do not have a flexibility in dealing with complex geometries. The books [41]-[43] 

are great one on electromagnetic study of electric machines. Another valuable piece on 

permanent magnet machines is [44] 

In this chapter, we are trying to propose an analytical framework and closed-form 

expressions for magnetically-geared machines that can be employed in the preliminary 

design stages of the device as well as analysis and performance predictions. This analytical 

models can also be utilized in design optimizations. Fig. 4.1 shows the cross section of an 

inside-out radial-flux magnetically-geared synchronous machine. It consists of three main 

parts: the stator, the modulator rotor and the permanent magnet rotor; either of the rotors 

can be the stationary part while the other part will be the rotating part. The stator, having 

any type of winding, is the inner part of the machine, a series of alternating surface 

permanent magnets are used on the inner side of the outer back-iron, and the modulator 

ring is placed in between.  
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Figure 4.1: Cross section of an inside-out radial-flux magnetically-geared machine. 

Table 4.1 illustrates any symbol in the Fig. 4.1. It is seen that there is still a relationship 

between the stator pole pairs (consider Ps=2), PM rotor pole pairs (Pm=10) and the number 

of flux modulators (Pp=12). we have: 

p m sP P P   (4.1) 

Table.  4.1: Geometric parameters of the machine. 

Parameter Symbol 

inner air-gap gi 

outer air-gap go 

modulator height hp 

permanent magnet height hm 

stator pole pairs Ps 

PM pole pairs Pm 

number of modulators Pmod 

outer radius of stator (after applying 

carter’s coefficient) 
Ri 

inner radius of PMs Ro 

inner yoke thickness Lyi 

outer yoke thickness Lyo 

PM arc θm 
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4.2 Linearly expansion of the geometry  

In order to easily illustrate the ideas and perform the calculations, the machine 

geometry has been expanded linearly along the average radius of the air-gap given below: 

2

i o
av

R R
R


  (4.2) 

The linearly expanded geometry of the machine is shown in Fig. 4.2. 

 

Figure 4.2: Linearly expanded geometry of the machine in slotted model. 

4.3 Carter’s coefficient and slot modeling 

In a slotted-stator machine, the slots can be modeled by carter’s coefficient [44]. 

Fig. 4.3 shows the flux lines and magnetic flux density distribution in an air-gap having 

slotted-stator on the bottom side and surface-mounted permanent magnets for the sake of 

modeling on the other side. It is seen that the flux lines which are facing the stator teeth 

take a shorter path—almost the air-gap length—, while those facing the stator slots take a 

longer path; therefore, the effective air-gap is larger than the physical air-gap. 

 

Figure 4.3: flux lines and magnetic flux density distribution in an air-gap having slots. 

In order to account for the effect of the two mentioned regions, we employ a slot pitch 

of the stator including a tooth and a slot. The associated region is also modeled with proper 
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boundary conditions as in Fig. 4.4 to solve the Poisson’s equation for magnetic vector 

potential A in a region without any current. In a 2d problem, vector potential as in below: 

2 2
2

2 2
0z z

z

A A
A

x y

 
   

 
 (4.3) 

It is worth noting that in a two-dimensional problem, magnetic vector potential Az(x,y) 

only has z-component while magnetic flux density and magnetic field intensity have x- and 

y-components. We have: 

z zA A a  (4.4) 

( , ,0)z z
x x y y

A A
B B a B a A B

y x

 
      

 
 (4.5) 

1 1 1
( , ,0)x x y y x yH H a H a B H B B

  
      (4.6) 

 We have Neumann boundary condition on the iron boundaries because the flux lines 

are perpendicular to the iron edges. In other words, magnetic field intensity H is zero in an 

infinitely permeable iron, and due to the continuity of the tangential components Ht where 

there isn’t any surface current density on the boundary, Ht is also zero in the air-gap and 

on the iron boundaries. 

0 0 0iron air iron z
t t

A
H H H

n


     


 (4.7) 

where n is the normal component of the boundary. We also have Neumann boundary 

condition the bottom edge of the problem to which the flux lines as well as the magnetic 

field intensity are perpendicular. 

0 0z
x

A
H

y


  


 (4.8) 

There is Dirichlet boundary condition on the left and right sides of the air-gap. As in 

below: 
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1z zleft
A A  (4.9) 

2z zright
A A  (4.10) 

 

Figure 4.4: (a) Dirichlet and Neumann boundary conditions of the problem 

To solve the problem, it is needed to choose two reasonable values for Az1 and Az2. 

Assuming average magnetic flux density of 1 Tesla in the air-gap, it will be possible to 

come up with fine values. As shown in Fig. 4.5(a), the net flux passing through a surface S 

enclosed by closed line C is the surface integral of magnetic flux density vector B over 

surface S, or is the closed line integral of the magnetic vector potential A over line C as in 

below: 

. .
S c

B ds A dl     (4.11) 

It is obtained by substituting B in terms of A and employing Stokes’ theorem. In a 2D 

problem where A is only in the z-direction, flux is easily calculated as in below: 

1 2( )z z zL A A L L A      (4.12) 

where Az1 and Az1 are values of Az at the two points in the xy-plane as shown in Fig. 4.5(b), 

and L is the axial length of the problem in the z-direction. In case of having a uniform 

magnetic flux density B or in approximations, we have: 

avL w B   (4.13) 
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Combining the last two equations, we have: 

z avA w B   (4.14) 

where w=ws+wt in our case. 

 

Figure 4.5: Closed line C enclosed by open surface S in (a) 3D problem and (b) 2D problem. 

We take ws=4 mm, wt=5 mm and g=4 mm, so for Bav=1 Tesla in the air-gap we have 

ΔAz=0.009×1=0.009 wb/m. we assign Az1=0 to the left side and Az2=0.009 wb/m to the 

right side of the air-gap. As shown in Fig. 4.6, flux lines have the expected values and 

behave the way that we expected, magnetic vector potential is in the z-direction, average 

magnetic flux density distribution in the air-gap is 1 Tesla, and magnetic flux density 

vectors have a downward direction that matches the flux pathing through the surface which 

is -0.009 wb per unit length. 
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Figure 4.6:  Field simulation in one slot pitch region: (a) flux lines and magnetic vector potential and (b) 

magnetic flux density distribution and vectors. 

 

It is worth noting that the slot depth hs is large enough that no flux reaches the bottom 

of the slot and all flux lines are attracted to the sides. Based on the flux lines in the region, 

the flux tube model is offered to determine the reluctance in an air-gap facing a slotted 

stator. The permeance Pg1 is calculated as in below: 

/2

0
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0

2

sw

g

i
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P

g l
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



  (4.15) 

We have: 
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2
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 (4.16) 

The permeance Pg2 is calculated as in below: 

0
2

t
g

i

w L
P

g


  (4.17) 
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The total permeance is: 

1 22g g gP P P   (4.18) 

We have: 

0

4
ln 1

4

t s
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i i

w w
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g g






   
    

   
 (4.19) 

In case of ignoring the fringing effect due to the slots, the air-gap permeance is: 

0
g

i

wL
P

g

   (4.20) 

Therefore, the Carter’s coefficient is: 

1

4
1 ln 1
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g g s s
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g ig
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P w w gR






   

       
   

 (4.21) 

It is seen that as long as the slot is deep enough, kc is independent of hs and is only a 

function of slot opening ws, slot pitch w and air-gap length gie. Finally, as shown in 

Fig. 4.7(b), an equivalent slotless stator with efficient air-gap length gie can be employed 

where 

; 1ie c i cg k g k   (4.22) 

  

Figure 4.7: (a) flux-tube modeling of an air-gap having slotted stator and (b) equivalent slotless stator with 

efficient air-gap length. 
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After applying the Carter’s coefficient to the air-gap length and using the equivalent 

surface current density of the stator winding, we get the original and the expanded 

geometries of the machine as in Figs 4.8 and 4.9. 

 

 

Figure 4.8: Geometry of the machine with an equivalent slotless stator 

 

Figure 4.9: Linearly expanded geometry of the machine with an equivalent slotless stator 
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4.4 Permeance modeling 

4.4.1 Simplified model 

The air gap permeance relates magnetic flux density distribution to MMF distribution. 

Here we extract the permeance per unit area, so it has the dimension of H/m2. The simplest 

model to approximate the permeance distribution is a square wave model shown in 

Fig. 4.10 in which we have: 

0
max

ie o mg g h


 

 
 (4.23) 

0
min

modie o mg h g h


 

  
 (4.24) 

 

Figure 4.10: Square wave approximation of spatial distribution of the air-gap permeance 

The Fourier series representation of the square wave approximation of the permeance 

is: 

max min max min mod 0

1

1 4 1
( ) ( ) sin ( )cos ( )

2 2 2n

n
n p

n


  







 
        

 
  (4.25) 

where 

0 max min

1
( )

2
     (4.26) 

1 max min

1 4
( )

2 
     (4.27) 
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The space fundamental of the waveform is: 

0 1 mod 0( ) cos ( )p       (4.28) 

where θ0 is shown in Fig. 4.10. 

4.4.2 Flux-tube model 

Flux lines and magnetic flux density distribution in the air-gap region is shown in 

Fig. 4.11. It is seen that when modulator height is small enough compared to the distance 

between two adjacent modulators, a part of the flux takes the air path, and when modulator 

height is large enough compared to the distance between two adjacent modulators, all of 

the flux take the modulator path. As shown in the latter case, all the magnetic flux tends to 

take the modulator path after a critical point, and thus Pmin will be almost constant while 

equation (4.25) offer a value that is always decreasing with an increase in hp—the biggest 

problem with the square wave model explained earlier. 
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Figure 4.11: Flux lines and magnetic flux density distribution in the air-gap region (a) when modulator 

height is small enough compared to the distance between two adjacent modulators that a part of the flux 

takes the air path and (b) when modulator height is large enough compared to the distance between two 

adjacent modulators that all of the flux take the modulator path. 

To attain a better observation, we take the highlighted region in Fig. 4.12 to be solved. 

All other the regions are the repetition of this pattern. The boundary conditions are 

illustrated. We have Neumann boundary condition on the iron edges because it is assumed 

to be infinitely permeable and thus the flux lines are perpendicular to its surface. We also 

have Dirichlet boundary condition on the left and right sides of the region. 

 

Figure 4.12: (a) Dirichlet and Neumann boundary conditions of the problem 

The above problem for the two mentioned conditions has been solved as given in 

Fig. 4.13. It is seen that when modulator height is small enough compared to the distance 

between two adjacent modulators, a part of the flux lines takes the air path and there exists 

a non-zero magnetic flux density there, and when modulator height is large enough 

compared to the distance between two adjacent modulators, all of the flux lines take the 

modulator path and magnetic flux density distribution is zero in the top of the air region. 

Therefore, there will be two flux tube models but what is the boundary on which we have 

to switch between the two models? 
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Figure 4.13: Field simulation in the selected region when the modulator height is small enough that a part 

of the flux takes the air path: (a) flux lines and magnetic vector potential and (b) magnetic flux density 

distribution and vectors. 

 

 

Figure 4.14: Field simulation in the selected region when the modulator height is large enough that all of 

the flux takes the modulator path: (a) flux lines and magnetic vector potential and (b) magnetic flux density 

distribution and vectors. 

Based on the field observations, the two flux tube models depicted in Fig. 4.15 and 

Fig. 4.16 are offered for the two conditions mentioned.  
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Model A: 

In model A, a part of the flux takes the air in the inter-modulator region as shown in 

Fig. 4.15. The yellow region is associated with the reluctance Pmax which is biggest 

permeance per unit area as calculated below: 

0
max

ie o mg g h


 

 
 (4.29) 

The middle permeance per unit area is related to the green region. What is the boundary 

point between the green and pink flux tubes? When should our model switch between these 

two tubes? The flux lines take the green region as long as length of the path they take in 

the air, given below, is shorter that the path they have to take in the inter-modulator region. 

( ) ie o ml r g g h r     (4.30) 

where r is the radius of the quarter circles in the flux tube. The condition to be met is: 

mod
mod( ) ie o m

h
l r g h g h r


       (4.31) 

Therefore, the permeance areas associated with green and pink flux tubes are hmod/π 

and wmod-2hmod/π. The permeance per unit area is: 

0( )mid

ie o m

r
g g h r




 

  
 (4.32) 

To simplify calculations by stepwise approximation of curve, the permeance average 

permeance per unit area is 

mod /

0

mod 0

1

/

h

mid

ie o m

dr

h g g h r




 
  

    (4.33) 

We obtain: 
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ie o m
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h g g h

  
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 (4.34) 

The smallest permeance per unit area is related to the pink flux tube as calculated 

below: 

0
min

modie o mg h g h


 

  
 (4.35) 

 

 

 

Figure 4.15: Flux tube model for hm <π wm/when the modulator height is small enough that a part of the 

flux takes the air path. 

In this case, Fourier series representation of the reluctance spatial distribution is: 
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After mathematical manipulation, we have: 

   mod
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where mod / avh R    is the angle related to area of Pmid calculated as in below: 

For fundamental (n=1), we have: 
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 (4.41) 

Then, we have 0 1 mod 0( , ) cos ( )t p       

Model B: 

In model B, all of the flux takes the path of infinitely permeable modulators as shown 

in Fig. 4.16. What is the boundary to switch between the models of model A and model B? 

It is obvious that with an increase in modulator height hmod, the pink flux tube vanishes 

after a critical point. This critical point is when the two green flux tubes in the inter-

modulator region with total area of 2hmod/π takeover the whole inter-modulator area wmod, 

so the condition to switch to model B will be: 

mod mod
mod mod

2

2

h w
w h




    (4.42) 

The yellow region which is associated with the reluctance Pmax is the biggest permeance 

per unit area as calculated before: 
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 (4.43) 

The permeance per unit area which is related to the green region is calculated as in 

below: 
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We obtain: 
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Figure 4. 16: Flux tube model for hm >π wm/2 when the modulator height is large enough that all of the 

flux takes the modulator path 

In this case, Fourier series representation of the reluctance distribution is: 
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where 
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0 max min
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( )
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     (4.47) 

1 max min

1 4
( )

2 
     (4.48) 

The space fundamental component is also as in the following: 

0 1 mod 0( , ) cos ( )t p       (4.49) 

In the case of rotating modulators, we have: 

0 mt     (4.50) 

where ωm is the mechanical speed of the rotor and ξ is the initial position at time t=0. In 

the case of stationary modulators and having the PMs as the rotating part, we have θ=0 and 

then, 

0 1 mod( ) cos p     (4.51) 

4.5 Modeling of the stator 

In this section, magneto motive force, equivalent surface current density and tangential 

magnetic field intensity of the stator are obtained. 

4.5.1 MMF produced by stator 

In this section we will obtain the magnetomotive force produced by the stator which 

will be used in calculation of the radial component of the magnetic field density in the air-

gap. Fig. 4.17(a) shows a typical 2-pole (Ps=1) three-phase stator with concentrated 

windings. The positive direction of the pulsating fluxes produced by each phase is also 

depicted (negative currents produce a flux in the opposite direction). The resultant of these 

three pulsating fluxes is a rotating field in the air-gap. 

Figs. 4.17(b)-(d) show the flux lines (closed path of Ampere’s law) and the 

corresponding spatial distribution of the magnetomotive forces (pulsating fluxes) for the 

three phases at time t=0 where ia=Is, ib=-Is/2 and ic=-Is/2. The resultant magnetomotive 
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force, as shown in Fig. 4.17 (e), is a traveling wave for t>0. The amplitude of the MMF of 

each phase is obtained from Ampere’s circuital law as in below: 

.
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a a
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p g p
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Also, 
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p
    (4.53) 

where N is the number of turns per phase and N/ps is the number of turns per phase per 

pole, and phase currents are: 
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The Fourier series representation of the spatial distribution of the three magnetomotive 

forces are as in below: 
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The Fourier representation series of the spatial distribution of the total magnetomotive 

forces can be obtained directly from the step-wise waveform in Fig. 4.17(e) directly or by 

mathematical calculations as in below: 
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By substitution of the magnetomotive forces and the currents, we have: 
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 (4.61) 

We have, 
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 (4.62) 

For n=1, 7, 13, etc., we have the first part of each pair in the three lines of the equation 

above, resulting in a forward traveling wave in the air-gap. The nth component is as in 

below: 
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while for n=5, 11, etc., we have the first part of each pair in the three lines of the 

equation above, resulting in a backward traveling wave in the air-gap. The nth component 

is as in the following: 
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Therefore, the fundamental component (n=1) is: 
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In the reality, usually we will not employ full-pitched concentrated windings, so to 

account for the winding configuration, the winding factor kw can be included into the above 

relationship as in below: 

 1( , ) sins s sF t F p t       (4.66) 
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where δ is the current angle and the winding factor is defined as in below: 

w p dk k k  (4.68) 

where kp and kb are pitch and distribution factors, respectively. In a short-pitched winding, 

the pitch factor for the nth harmonic is as in below: 
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k


  (4.69) 

where α refers to the angular displacement between the two sides of a coil in electrical 

degrees. For a full-pitched coil α=π. 

In a distributed winding, the distribution factor for the nth harmonic is given below: 

sin
2

sin
2

dn

nm

k
n

m




  (4.70) 

where γ is the slot angular pitch in electrical degrees and m is the number of slots per pole 

per phase. For a concentrated winding m=1 and so kd=1. 
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Figure 4.17: A typical three-phase two-pole stator with concentrated windings: (a) stator phases and field 

axis of each phase, (b) flux lines and MMF produced by phase a, (c) flux lines and MMF produced by 

phase b, (d) flux lines and MMF produced by phase c, and (e) the resultant traveling MMF in the air-gap 
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4.5.2  Equivalent surface current density of stator 

In this section, we obtain the equivalent surface current density of the stator that plays 

the role of the stator winding embedded the slots in the slotless winding after employing 

the carter’s coefficient. It will be used in torque calculations on the stator as well as in 

extracting the tangential component of the magnetic field intensity on the surface of the 

stator. Using the Ampere’s circuital law for the closed curve C in Fig. 4.18, we have: 

. z i
C

H dl K R    (4.71) 

Magnetic field intensity is zero in infinitely permeable irons, so it leads to: 

/2 /2

/2 /2

r r

r r z i z

i

H Hg
g H g H K R K

R

   

   




 

 


    


 (4.72) 

The limit of the difference quotient above as Δθ approaches to zero leads to the 

derivative of Hr with respect to θ as in below: 

/2 /2

0
lim

r r
r

z

i i

H H Hg g
K

R R

   

  

 

 

 
   

 
 (4.73) 

On the other hand, we know that 

s rF g H  (4.74) 

Combining the two leads to: 

1
( , ) s

z

i

F
K t

R








 (4.75) 

By substitution of Fs, we obtain the fundamental component as in below 

 
3 4

( , ) cos
2 2

s
z w s

i

NI
K t k p t

R
   


    (4.76) 

It can be written as in below: 
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 1( , ) cosz z sK t K p t       (4.77) 

1

3 4

2 2

s
z w

i

NI
K k

R
  (4.78) 

 

Figure 4.18: Closed line of the Ampere’s law enclosing the surface current density of the stator. 

 

4.5.3  Tangential component of magnetic field intensity on surface of stator 

Tangential component of the magnetic field intensity on the surface of the stator will 

be used in determining the shear stress on the stator surface using Maxwell stress tensor. 

Using Ampere’s law over the contour C shown in Fig. 4.19, and knowing that magnetic 

intensity within infinitely permeable iron of stator is zero, we have: 

0 z zH K H K      (4.79) 

By substituting Kz, we obtain the fundamental component as in below: 

 1( , ) cos sH t H p t        (4.80) 

1

3 4

2 2

s
w

i

NI
H k

R



  (4.81) 
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Figure 4.19: Closed line of the Ampere’s law around the boundary of stator surface 

 

4.6 Permanent magnet modeling 

This part is devoted to calculation of the magnetomotive force, equivalent magnetic 

charge and equivalent Amperian current of the PMs. 

4.6.1 MMF force produced by PMs 

The magnetomotive force produced by permanent magnets, which will be used in 

calculation of the radial component of the magnetic flux density distribution, can be written 

as in below: 

( ) ( )m mF h M   (4.82) 

where hm is the PM height and the magnetization density of permanent magnets M, shown 

in Fig. 4.20(a), is related to PM’s residual flux density Br as in below: 

0

1
rM B


  (4.83) 

We also know that 

0( )H B M   (4.84) 

The permanents magnets are alternating in the polarity and have an arc angle of θm, so 

Fourier series representation of the demagnetization density distribution can be written as 

in below: 
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0

1 0

4
( ) sin cos ( )

2

m mr
m

n
odd

n pB
M n p

n


  

 





   (4.85) 

Then, the fundamental component leads to a continuous magnetization sheet as shown 

in Fig. 4.21(a). It can be represented as in the following: 

0 0( , ) cos ( )mM t M p     (4.86) 

where 

0

0

4
sin

2

m mr
pB

M


 
  (4.87) 

In the case of rotating magnets, we have: 

0 mt     (4.88) 

where ωm is the mechanical speed of the rotor and ξ is the initial position at time t=0. When 

the modulators are the rotating part and PMs are stationary, we have θ0=0 and then, 

0( ) cos mM M p   (4.89) 

4.6.2 Coulombian magnetic charge model of PMs 

Using the so-called Coulombian model, the permanent magnets can be represented by 

fictitious magnetic charges that can be used in torque calculation by employing Kelvin 

magnetization force density [42] and [43]. The magnetization density M results in the 

fictitious charge density ρm as in below: 

0.m M    (4.90) 

In radially magnetized permanent magnets, we have: 

0
r

m

M

r
 


   (4.91) 
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In a permanent magnet having a uniform magnetization, the divergence of M is zero 

throughout the volume. In this case, a magnetic surface charge density is defined as in the 

following: 

0
ˆ. ( )a b

m n M M     (4.92) 

where n is the unit normal vector of the surface boundary. It is worth noting that positive 

and negative magnetic surface charge densities should be assigned to the surface 

boundaries of a permanent magnet such that M vectors originate from negative charges and 

terminates on positive charges—the rule. As shown in Fig. 4.20(b), the surfaces magnetic 

charges on the two sides on PMs, whose normal vector are in the radial direction, are 

obtained as in below: 

0m M    (4.93) 

The fundamental component as shown in Fig. 4.21(b), obtained from the fundamental 

component of the surface charge density distribution shown in Fig. 4.21(a), is obtained as: 

0 0 0( , ) cos ( )m mt M p        (4.94) 

When the modulators are the rotating part and PMs are stationary, we have θ0=0 and 

then, 

0 0( ) cosm mM p      (4.95) 

4.6.3 Amperian current model of PMs 

Magnetization of permanent magnets can be modeled by an equivalent current density 

called Amperian currents [42]–[43] which can be used in torque calculations by employing 

Lorentz force. The equivalent current density of magnetization M can be extracted as in 

below: 

mJ M  (4.96) 
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For radially magnetized PMs, the equivalent current is in the z-direction is obtained as 

in the following: 

1
m

M
J

r 


 


 (4.97) 

In a permanent magnet having a uniform magnetization, the curl of M is zero 

throughout the volume. In this case, a surface current density is defined as in the following: 

ˆ
mK M n   (4.98) 

where n is the unit normal vector of the surface boundary. It is worth noting that positive 

(in +z direction) and negative (in -z direction) surface current densities should be assigned 

to the surface boundaries of a permanent magnet such that they produce a flux in the same 

direction as M—right hand rule in Ampere’s law. As shown in Fig. 4.20(c), the surfaces 

current densities on the two sides of PMs, whose normal vector are in the θ direction, are 

obtained as in below: 

mK M   (4.99) 

This is singularity at the side surfaces of a radially-magnetized PM. The radius r in the 

curl representation of Amperian currents can be seen by looking at the nature of an impulse. 

If θ0 is the left side position of the right PM, on which there is a singularity, according to 

the definition of an impulse, we have: 

0 0 0

0 0 0

( ) ( ) ( )m m m

M
J dl M J r d M J d

r

  

  

    
  

  

        (4.100) 

The fundamental component as shown in Fig. 4.21(c), obtained from the fundamental 

component of the magnetization density distribution shown in Fig. 4.21(a), is obtained as: 

0
0

1
( , , ) sin ( )m

m m

M pM
J r t p

r r
  




   


 (4.101) 
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When the modulators are the rotating part and PMs are stationary, we have θ0=0 and 

then, 

0( , ) sinm
m m

M p
J r p

r
   (4.102) 

 

Figure 4.20: Permanent magnet modeling: (a) magnetization, (b) equivalent fictitious charge and (c) 

equivalent surface current density 
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Figure 4.21: Permanent magnet modeling using the fundamental component: (a) magnetization, (b) 

equivalent fictitious charge and (c) equivalent surface current density 

 

4.6.4 Tangential component of the magnetic field intensity on the surface of 
PMs 

Tangential component of the magnetic field intensity on the surface of the PMs will be 

used in determining the shear stress on the surface of PMs using Kelvin force density. The 

tangential component of the field Hθ can be approximated based on the radial component 

of the field Hr. The filed is perpendicular to the surface of the infinitely permeable iron, so 

0
o mr R h

H  
  (4.103) 
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As shown in Fig. 4.22, using a linear approximation of Hθ in the PM region, Hθ can be 

represented as a linear function of r with the rate of ∂Hθ/∂θ. 

[ ( )]
o o m

o o mr R r R h

H
H H R R h

r


   


   


 (4.104) 

It leads to: 

o
mr R

H
H h

r


 


 


 (4.105) 

Ampere’s law in a current-free region says that: 

1
0 (0 0) (0 0) ( ) 0r

r z

H H
H a a a

r r






 
        

 
 (4.106) 

so, 

1 r
H H

r r





 


 
 (4.107) 

Substituting (4.107) into (4.105), we obtain Hθ as a function of Hr on the surface of the PM 

(r=Ro): 

o

m r

r R
o

h H
H

R





 


 (4.108) 

 

Figure 4.22: Linear approximation of the flux lines at the surface of PMs 
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4.7 Radial component of the magnetic flux density distribution 

In this section, radial component of the magnetic flux density distribution will be 

calculated for the cases of rotating modulators and rotating PMs. 

4.7.1 Modulators as the rotor 

In the case of rotating modulators, radial component of the magnetic flux density can 

be obtained from the following equation: 

 ( , ) ( , ) ( ) ( , )r s mB t F t F t       (4.109) 

where 

 1( , ) sins s sF t F p t       (4.110) 

0( ) cosm m mF h M p   (4.111) 

0 1 mod mod( , ) cos[ ( )]mt p p t         (4.112) 

Substitution of the three above equations leads to: 

  

 

1 0

0 1 mod mod

( , ) sin cos

cos[ ( )]

r s s m m

m

B t F p t h M p

p p t

    

  

    

   
 (4.113) 

We have: 

 

 

1 0

1 1 mod mod

0 0
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( , ) sin
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cos cos[ ( )]

r s s

s s m

m m

m m m
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F p t p p t

h M p

h M p p p t
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
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   

     

 

   

 (4.114) 

Using 

1 1
sin cos sin( ) sin( )

2 2
          (4.115) 

1 1
cos cos cos( ) cos( )

2 2
          (4.116) 

we end up in the six terms below: 
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    

 (4.117) 

Knowing that the periodic traveling wave A sin(pθ-ωt) has p poles and rotation speed 

of ω/p, the whole idea of modulation can be seen in the above formula as shown in Fig. 4.23.  

 

Figure 4.23: Modulation of the rotating field produced by stator and stationary PMs to the other side of the 

air-gap through rotating modulators 

 

We will show in the future that: 

 The first three terms are the magnetic fields produced by MMF of the stator 

having ps pole pairs, so we have three fields having the following pole pairs as 

shown in Fig. 4.24: 

- ps pole pairs out of interaction with the DC component 

- pmod+ps and pmod - ps pole pairs out of interaction with the fundamental 

harmonic of the permeance 
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Figure 4.24: The pole pair of fields produced by the interaction of stator MMF having ps pole with pmod 

modulators 

 

- In the finite element analysis, we will show that the magnitude of the 

harmonic pmod - ps is actually higher than that the magnitude of the harmonic 

pmod + ps which might be a result of leakage fluxes of interaction of other 

harmonics of the air-gap and magneto motives forces of stator and PMs. 

 The last three terms are the magnetic fields produced by MMF of the PMs 

having pm pole pairs, so we have three fields having the following pole pairs as 

shown in Fig. 4.25: 

- pm pole pairs out of interaction with the DC component 

- pmod+pm and pmod – pm pole pairs out of interaction with the fundamental 

harmonic of the permeance 

 

Figure 4.25: The pole pair of fields produced by the interaction MMF of PMs having pm pole with pmod 

modulators 

 The first term is the rotating field produced by the stator (having electrical 

frequency ω) in the stator air-gap which has ps pole pairs and rotation speed of 

ω/ps. The forth term is the stationary field produced by PMs in the PM air-gap 

which has pm pole pairs. These two terms do not contribute in energy conversion 

and average torque production.  

 The second and the third terms are actually stationary magnetic fields in the 

PM air-gap (having pm pole pairs) that are modulated form of the rotating 

magnetic field of the stator in the stator air-gap (having ps pole pairs and 

rotation speed of ω/ps) using rotating modulators and are able to contribute in 

energy conversion in the PM air-gap and produce a torque by interaction with 

the field produced by the PMs in the certain conditions below: 
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1. Matching the pole pair of one of these stationary fields (ps±pmod) with the 

number of PM poles (±pm) so that they can be locked at a specific torque 

angle. 

2. Rotor mechanical speed of ωm=±ω/pmod. 

Then, they can simply be represented as in below: 

 1 1 m mod

1
sin

2
sF p p       (4.118) 

 1 1 mod

1
sin

2
s mF p p       (4.119) 

 The fifth and the sixth terms are actually rotating magnetic fields in the stator 

air-gap (having ps pole pairs and rotation speed of ω/ps) that are modulated 

form of the stationary magnetic field of PMs in the PM air-gap (having pm 

pole pairs) using rotating modulators and are able to contribute in energy 

conversion in the stator air-gap and produce a torque by interaction with the 

field produced by the stator in the certain conditions below: 

1. Matching the pole pair of one of these rotating fields (pm±pmod) with the 

number of PM poles (±ps) so that they can be locked at a specific torque 

angle. 

2. Rotor mechanical speed of ωm=±ω/pmod. 

Then, they can simply be represented as in below: 

 0 1 mod

1
cos

2
m s sh M p t p       (4.120) 

 0 1 mod

1
cos

2
m s sh M p t p       (4.121) 

 

4.7.2 Permanent magnets as the rotor 

In the case of rotating PMs, radial component of the magnetic flux density can be 

obtained from the following equation: 

 ( , ) ( , ) ( , ) ( )r s mB t F t F t       (4.122) 
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where 

 1( , ) sins s sF t F p t       (4.123) 

0 m( , ) cos[ ( )]m m m mF t h M p p t       (4.124) 

0 1 mod( ) cos p     (4.125) 

Substitution of the three above equations leads to: 
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 (4.126) 

We have: 
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 (4.127) 

Like the previous section, it can be rewritten as in below: 
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    
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    

 (4.128) 

Similar to the previous section, the whole idea of modulation can be seen in the above 

formula as shown in Fig. 4.26. 
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Figure 4. 26: Figure 4.26: Modulation of the rotating field produced by stator and rotating PMs to the other 

side of the air-gap through stationary modulators 

 We will show in the future that: 

 The first three terms are the magnetic fields produced by MMF of the stator 

having ps pole pairs, so we have three fields having the following pole pairs: 

- ps pole pairs out of interaction with the DC component 

- pmod+ps and pmod - ps pole pairs out of interaction with the fundamental 

harmonic of the permeance 

 The last three terms are the magnetic fields produced by MMF of the PMs 

having pm pole pairs, so we have three fields having the following pole pairs: 

- pm pole pairs out of interaction with the DC component 

- pmod+pm and pmod - pm pole pairs out of interaction with the fundamental 

harmonic of the permeance 

 The first term is the rotating field produced by the stator (having electrical 

frequency ω) in the stator air-gap which has ps pole pairs and rotation speed of 

ω/ps. The forth term is the rotating field produced by PMs in the PM air-gap 

which has pm pole pairs and rotation speed of ωm. These two terms do not 

contribute in energy conversion and average torque production.  

 The second and the third terms are actually rotating magnetic fields in the PM 

air-gap (having pm pole pairs and rotation speed of ωm) that are modulated form 
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of rotating magnetic fields of stator in the stator air-gap (having ps pole 

pairs and rotation speed of ω/ps) using stationary modulators and are able to 

contribute in energy conversion in the PM air-gap and produce a torque by 

interaction with the field produced by the PMs in the certain conditions below: 

1. Matching the pole pair of one of these rotating fields (ps±pmod) with the 

number of PM poles (±pm) so that they can be locked at a specific torque 

angle. 

2. Rotor mechanical speed of ωm=±ω/pmod. 

Then, they can simply be represented as in below: 

 1 1 mod

1
sin ( )

2
s sF p p t       (4.129) 

 1 1 mod

1
sin ( )

2
s sF p p t       (4.130) 

 The fifth and the sixth terms are actually the rotating magnetic field in the 

stator air-gap (having ps pole pairs and rotation speed of ω/ps) that are 

modulated form of the rotating magnetic field of PMs in the PM air-gap 

(having pm pole pairs and rotation speed of ωm) using stationary modulators 

and are able to produce a torque by interaction with the field generated by the 

stator in the certain conditions below: 

1. Matching the pole pair of one of these rotating fields (pm±pmod) with the 

number of PM poles (±ps) so that they can be locked at a specific torque 

angle. 

2. Rotor mechanical speed of ωm=±ω/pmod. 

Then, they can simply be represented as in below: 

 0 1 mod m

1
cos ( ) )

2
m m sh M p p t p       (4.131) 

 0 1 mod m

1
cos ( ) )

2
m m sh M p p t p       (4.132) 
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4.7.3 Finite element analysis of magnetic field modulation and gearing effect 

In this section, we perform a finite element analysis to evaluate the idea of field 

modulation as well as the modeling. For the ease of analysis, we employ a stationary field 

produced by a sinusoidal surface current density Kz(θ) on an infinitely permeable back iron, 

in front of which we have the modulator ring and then the second back iron. The field in 

the two air-gaps will be analyzed to see how the modulation works when the field produced 

in the first air-gap passes the modulator ring and reaches the second air-gap. We also take 

a linearized geometry. The magnetomotive F is produced by the surface current density Kz 

given below: 

2
( ) cosm sF x F p x

L

  
   

  
 (4.133) 

Also, 

2
( ) sinz s sK x K p x

L

  
   

  
 (4.134) 

where L is the horizontal length of the system and ps is the number of poles of the stator. 

The DC component and the first three components of the air-gap permeance is taken into 

account as given below: 

0 1 mod 2 mod 3 mod

2 2 2
( ) cos cos 2 cos 3x p x p x p x

L L L

            
               

          

 (4.135) 

where pmod is the number of modulators. The magnetic flux density distribution is then 

calculated as in below: 

( ) ( ) ( )yB x F x x   (4.136) 

By expressing the product of the two cosines in a sums, it is seen that the produced 

field has seven components with the following pole pairs: 

 ps pole pairs 

 pmod±ps pole pairs (with the same magnitude) 



98 

 

 2 pmod±ps pole pairs (with the same magnitude) 

 3 pmod±ps pole pairs (with the same magnitude) 

As shown in Fig. 4.27, finite element analysis is performed for such system in which 

ps=4, pmod=15, L=10cm and Km=0.1 A/mm2. The concept of modulation and flux paths can 

be seen.  

 

Figure 4.27: Flux lines and magnetic flux density distribution produced by a sinusoidal surface current 

density on the surface of the bottom back iron 

 

Fig. 4.28 illustrates magnetic flux density distribution in the first and the second air-

gaps whose FFT is shown in Fig. 4.29. The mentioned components obtained out of 

analytical computations can be observed in the space harmonic spectrum.  

Observations: 

 The significant point is that the magnitudes of the pairs of pmod±ps, and 2pmod±ps, 

or 3pmod±ps are not the same, while they were equal in the analytical calculations. 

For example, magnitude of pmod-ps pole-pair spectrum is larger than pmod+ps in 

the second air-gap. The reason might be the leakage fluxes or the effect of 

higher harmonics of the permeance distribution or the accuracy of its modeling. 

 The gearing idea is to match the number of pole pairs of the PMs on the second 

back iron with one of the harmonics produced by modulation of the field 

generated in the first air-gap. Considering the first pair (pmod±ps), we have two 

options: 

1) modm sp p p   (4.137) 

2) modm sp p p   (4.138) 
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 Based on the FFF of the special distribution of field in the second air-gap, the 

first one has a higher magnitude, so it will be the best candidate for pole 

matching. Therefore, given the pole pair values of the stator ps and the PM rotor 

pm, the following number will be the candidate for the number of modulator 

pieces: 

mod modm s m sp p p p p p      (4.139) 

For the studied case, we have pm=11. 

 Another reason for taking this option is that a higher number of modulator 

pieces means that the width of the modulators is smaller which allows flor less 

flux leakage. 

 

Figure 4.28: Magnetic flux density distribution in the first air-gap and the second air-gap 
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Figure 4.29: Space harmonic spectrum (pole pair of the field components) in the first and second air-gaps 

 

4.8 Torque production in a geared machine with rotating modulators  

Two analytical frameworks are proposed here to model magnetically-geared machines 

in which the modulators are the rotor. Fig. 4.30 shows the block diagram of the first method 

in which the developed torque is obtained using Maxwell stress tensor and Kelvin force. 

The stator current produces a MMF from which an equivalent surface current density on 

the surface of stator, which is also equal to the tangential component of the magnetic field 

intensity, is derived. Also, the MMF produced by permanent magnets and an equivalent 

surface charge density is derived. The radial component of the magnetic flux density is also 

obtained using the total MMF and the air-gap reluctance derived from flux tube modeling. 

Carter coefficient is used in the air-gap length corrections as well. Having both tangential 

and normal components of the magnetic field on the stator surface, the shear stress and 



101 

 

subsequently the developed torque on the stator side is determined using Maxwell stress 

tensor. Having the equivalent surface charge and the tangential component of the magnetic 

field on the surface of PMs, the shear stress and subsequently the developed torque on the 

PM side is determined using Kelvin force. 

Fig. 4.31 shows the block diagram of the second method in which the developed 

torques on both stator and PM sides are obtained using Lorentz force. The stator current 

produces a MMF from which an equivalent surface current density on the surface of stator 

is derived. Also, the MMF produced by permanent magnets and an equivalent Amperian 

current density is derived. The radial component of the magnetic flux density is also 

obtained using the total MMF and the air-gap reluctance derived from flux tube modeling. 

Carter coefficient is used in the air-gap length corrections as well. Having the surface 

current density on the stator surface, Amperian current density in the PM region and also 

the radial component of the magnetic flux density, the developed torque can be easily 

obtained in both sides using Lorentz force. 
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4.8.1 Toque calculations using Maxwell stress tensor in radial-flux rotating 
machines 

Maxwell stress tensor is usually employed in microscopic field description of forces—

the way Poynting’s theorem is used in field discretion of energy flow. Maxwell stress 

tensor is the rewritten form of Lorenz law and is solely in terms of magnetic fields, so it 

can be used to calculate force in situations in which the currents (charged particles) are not 

available or hard to calculate to be used in Lorentz force. In cylindrical coordinates (r, θ, z), 

Maxwell stress tensor is as in below: 

rr r rz

r z

zr z zz

T T T

T T T T

T T T



  



 
 


 
  

 (4.140) 

where stress tensor Tij in electromagnetics is as in the following: 

2 2

0 0

0 0

1 1 1
( )

2
ij i j i j ijT E E B B E B  

 
     (4.141) 

where i and j can be r, θ or z, and δij is the Kronecker’s delta which is 1 if i=j, otherwise 0. 

For magnetic fields, e.g. in electric machines, we have: 

2

0 0

1 1

2
ij i j ijT B B B 

 
   (4.142) 

where 

2 2 2 2 ˆ ˆ ˆ;r z r r z zB B B B B B a B a B a         (4.143) 

Maxwell stress tensor can be rewritten as in below: 

2 2 2

2 2 2

0

2 2 2

2

1

2

2

r z
r r z

r z
r z

z r
z r z

B B B
B B B B

B B B
T B B B B

B B B
B B B B





 






  
 
 

  
  

 
  

 
 

 (4.144) 
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Similar to the role of Poynting vector S in field description of energy flow in Poynting’s 

theorem, the divergence of the sensor in cylindrical coordinates is the vector of volume 

force density (with the dimension of N/m3) as in the following: 

1
ˆ.

1
ˆ

1
ˆ

r rrrr rz
v r

r z r r

zzr zz zr
z

A A AA A
f T a

r r z r

A A A A A
a

r r z r

AA A A
a

r r z r

 

    










   
      

   

    
    

   

  
    

   

 (4.145) 

Then, force (with the dimension of N) on an object surrounded by closed surface S 

having the volume vol can be obtained as in below: 

.

r

vol

z

F

F F T dv

F



 
 

  
 
  

  (4.146) 

Using Stokes’ theorem, we have: 

ˆ.

r

S

z

F

F F T n dA

F



 
 

 
 
  

  (4.147) 

As shown in Fig. 4.32, the stress on a surface has two components: the normal 

component which is called normal stress and the parallel component which is called shear 

stress. There are actually three stresses operating on a surface, two of which are parallel to 

surface whose resultant is the shear stress. The normal stress, which is actually the normal 

force per unit area, will be as in below: 

ˆ ˆ( . )n n n   (4.148) 

 The shear stress, which is actually the tangential force per unit area, is then the remaining 

as in below:  

ˆ ˆ( . )n n     (4.149) 
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Figure 4.32: Stress, shear stress and normal stress 

 

Then, the developed torque on a lever arm vector r is as in below: 

ˆ( . )e

S

T r T n dA   (4.150) 

Generally, for a surface having the unit normal vector of n=(nr, nθ, nz), the surface force 

density (with the dimension of N/m2) is as in below: 

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ. .

ˆ ˆ ˆ

r rr r rz r rr r r rz z

r z r r z z

z zr z zz z zr r z zz z

f T T T n T a T a T a

f f T n T T T n T a T a T a

f T T T n T a T a T a

  

        

  

        
       

     
       
               

 (4.151) 

In two-dimensional analysis of radial-flux rotating machines having internal rotor, the 

magnetic field does not have any z-component (Bz=0), so Tiz=Tzi=0. As shown in Fig. 4.33, 

for a cylinder of radius R encompassing the rotor, normal vector of the side surface (Sr+), 

top surface (Sz+) and bottom surface (Sz-) are n=(1, 0, 0), n=(0, 0, 1) and n=(0, 0, -1), 

respectively.  

 

Figure 4.33: Stresses on a cylinder encompassing the rotor of a radial-flux rotating machine. 
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The force density on the closed surface integral over a cylinder surrounding the rotor 

can be separated into three open surface integrals of the side surface, the top surface and 

the bottom surface as in below: 

ˆ ˆ ˆ ˆ( . ) ( . ) ( . ) ( . )

r z z

r z z

S S S S

F T n dA T a R d dz T a r dr d T a r dr d  

 

         (4.152) 

As shown in Fig. 4.33, the tensor (force density vector) operating on the three surfaces 

of the cylinder are calculated as in below: 

2 2

0 0

2 2

0 0

2

0

1
0

2
1

1
ˆ ˆ ˆ. 0 . 0

2
0 0

0 0
2

r

r
rr r r

rr

r
S r r r r rr r r

zz

B B
T T B B

T
B B

f T a T B B T T T a T a

B
T


 


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 

 





 
  

     
     

           
         
 
  

 (4.153) 
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0 0
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0 0
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rr r r
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z r r zz z
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T T B B

B B
f T a T B B T T a
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 
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 

 





 
  

     
     

          
         
 
  

 (4.154) 
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

 
  

     
     

            
          
 
  

 (4.155) 

Therefore, the three integral can rewritten as in below:  



108 

 

ˆ ˆ ˆ ˆ( ) ( )

r z z

rr r r zz z zz z

S S S

F T a T a R d dz T a r dr d T a r dr d    

 

        (4.156) 

The last two terms will cancel. In fact, the negative sign in Tzz shows that the last two 

terms are just the forces which tend to keep the rotor within the stator region, produced by 

fluxes which tend to take the shortest path with the minimum reluctance. These normal 

stresses on these top and base surfaces are as in below: 

2

0

:
2

z n z

B
S a





  (4.157) 

2

0

:
2

z n z

B
S a


   (4.158) 

The stress on the side surface of the cylinder has two components: Tθr in the tangential 

direction the contributes to the torque production and Trr whose spatial average around the 

cylinder is zero because the normal force at any point on the cylinder will be canceled by 

a negative value on the opposite side. On the side surface, the shear stress and the normal 

stress can be obtained as: 

2 2

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ: ( . ) [( ). ]
2

r
r n rr r r r r rr r r

B B
S n n T a T a a a T a a

  





      (4.159) 

0

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ: ( . ) ( )r rr r r rr r r rS n n T a T a T a T a B B a       


         (4.160) 

Therefore, the developed electromagnetic torque is as in below: 

ˆ( . )

r

e

S

T r T n dA



   (4.161) 

It leads to the following: 

2 2

2

0 0 0

( ) ( )

L

e

r rT R B H R d dz R L B H d

 

         (4.162) 
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where C can be any closed circle of radius R in the air-gap as shown in Fig. 4.34. In 

certain conditions where the shear stress on the surface has a spatial average of 

2

0

1
( ) ( )

2
rB H d



   


    (4.163) 

the average toque will be 

22eT R L     (4.164) 

Observation: 

 The clear observation in the above equation is that the developed torque is just 

the average shear stress <τ> (average force density) times the surface area 2πRL 

times the torque leg R. 

 We know that this equation leads to the same torque regardless of the circle 

path C of radius R we take, so the stress should be larger for lower radii.  

1 2 1 2R R      (4.165) 

 The the torque is independent of R and can be calculated from the closed line 

integral over ANY circle C in the air-gap region. 

1
( ) ( )

2
r

C

B H dl  


    (4.166) 

2 ( ) ( )e

r

C

T R L B H d     (4.167) 

 Since the shear stress and the torque are independent of the radius of the 

cylinder, they can be obtained from averaging over air-gap volume (or air-gap 

area in 2D analysis). It is useful in FEM when the meshed air-gap is not very 

fine. 

2

0 0

1
( ) ( )

o

i

RL

e

r

o i R

T r B H r dr d dz
R R



  
     (4.168) 

so 
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1
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o
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e
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o i o iR S

L
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R R R R



       
    

 (4.169) 

where Ri and Ro can be inner and outer radii of the air-gap region (hollow 

cylinder). The arbitrary circle C in the air-gap and the air-gap surface area Sg 

(yellow area) are shown in Fig. 4.34. 

 If the normal and tangential components of the field are orthogonal, the average 

shear stress will be zero. The following trigonometric pairs are orthogonal: 

 1 2 1 2sin sinp and p where p p    

 1 2 1 2sin cosp and p where p p    

 sin cosp and p   

Therefore, the pair that results in a nonzero average shear stress is: 

 0 0sin sin ( )
2

p and p where


      

 

 

Figure 4.34: Arbitrary closed line C and air-gap surface area Ag employed in torque calculations using 

Maxwell stress tensor. 

 

It is worth noting that the developed electromagnetic torque can be obtained from the 

shear stress on either stator or rotor. As illustrated in Fig. 4.35, it can be shown that the 

shear stresses on the two sides of the air-gap are in opposite directions. Unit normal vector 

of the rotor surface is in +r direction, so we have: 
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 (4.170) 

Unit normal vector of the stator surface is in -r direction, so we have: 
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rr r rz rr r r
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 (4.171) 

It is seen that both shear and normal stresses are in the opposite directions. 

 

Figure 4.35: Maxwell stress tensor and shear stress on the surfaces of rotor and stator 

We should be careful about the fact that a minus sign comes in if the torque calculated 

using the shear stress on the stationary part—the stator, so 

2 22 2e

i rotor o statorT R L R L          (4.172) 

The point is that we take the one whose calculation is easier according to the situation 

we have. For example, in case of having a surface current density on the surface of an 

infinitely permeable iron, the tangential magnetic field intensity is just equal to the surface 

current density. Since the calculated torque is constant regardless of the radius, the shear 

stress is larger on the surface of rotor than on the surface of stator for an inner-rotor radial-

flux machine: 

i o rotor statorR R      (4.173) 
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It is also consistent with fact that the fields Br and Hθ are larger on rotor surface (smaller 

radii) than on stator surface (larger radii). Also, in cases where the air-gap length is very 

small compared to rotor radius (g<<Ri), the torque can be calculated using the average 

radius and the shear stress on either side, and also the shear stresses have equal amplitudes 

but opposite directions. 

2 22 2e

ave rotor ave statorT R L R L          (4.174) 

rotor stator        (4.175) 

4.8.2 Torque on stator side using Maxwell stress tensor 

Fig. 4.36 shows the stress tensors and shear stresses on the surfaces of stator, PM ring 

and modulator ring for the radial-flux magnetically-geared machine having rotating 

modulators. It is seen that: 

 shear stresses on the two sides of each of the air-gaps are in the opposites 

direction. 

 the shear stress on a surface whose normal is in +z direction is equal to the 

Maxwell stress tensor on that surface, i.e. the stator surface and outer surface of 

the modulator ring. 

 the shear stress on a surface whose normal is in -z direction is equal to the minus 

Maxwell stress tensor on that surface, i.e. surface of the PM ring and inner 

surface of the modulator ring. 
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Figure 4.36: Maxwell stress tensors and shear stresses on the surfaces of stator, PM ring and modulator 

ring in a magnetically-geared machine 

 

For the ease of calculation of the torque produced in the first air-gap, we try to extract 

the Maxwell stress tensor and the shear stress on the surface of the stator on which Hθ can 

be easily obtained through boundary conditions. As calculated, we have: 

 1( , ) cos sH t H p t        (4.176) 

The shear stress, which is also equal to the Maxwell stress tensor Tθr radius Ri, is as in 

the following: 
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 (4.177) 
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It can be observed that: 

 the first, the second, the third and the forth terms of the radial component of 

flux density are orthogonal to the tangential component of the field intensity, 

so the spatial average of their multiplication is zero, and their interaction doesn’t 

produce any average shear stress.  

 the fifth and the sixth terms are not orthogonal to the tangential component of 

the field intensity, so their interaction might be able to produce a shear stress 

and contribute in the torque production in certain conditions: matching of pole 

pairs and rotation speeds. 

 either the fifth term or the sixth term can produce an average shear stress. They 

cannot average to a non-zero value at the same time because the number of 

poles in Hθ cannot match the number of poles of both terms (pm-pmod and 

pm+pmod). Both cases will be analyzed. 

Employing the fifth term of the flux density: 

By employing the fifth term of the radial component of the magnetic flux density, the 

shear stress can be written as: 

 

 
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  

  

    
 (4.178) 

To produce an average shear stress, the pole pairs and the rotation speeds must match. 

By the way, the product of the two cosines can be expressed in a sum as in below: 
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       

 (4.179) 

Any of the two parts above might lead to a constant value and have a non-zero spatial 

average if the two conditions below are met: 

 pole condition: the coefficient of θ is zero 
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 speed condition: the coefficient of t is zero 

Again, either the first part or the second part can meet the two mentioned conditions. 

They cannot both meet the two conditions at the same time. Both cases will be analyzed. 

Meeting the pole and speed conditions for the first part of the fifth term: 

 pole condition:  

mod mod0s m m sp p p p p p       (4.180) 

 speed condition:  

mod

mod

0m mp
p


        (4.181) 

The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the reverse direction of the excitation. In this case, the 

shear stress is: 

 1 0 1 mod

1
cos

4
s mH h M p      (4.182) 

This situation is a candidate. 

Meeting the pole and speed conditions for the second part of the fifth term: 

 pole condition:  

mod mod0s m m sp p p p p p       (4.183) 

 speed condition:  

mod

mod

0m mp
p


       (4.184) 

The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the same direction as the excitation. In this case, the shear 

stress is: 

 1 0 1 mod

1
cos

4
s mH h M p      (4.185) 
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This situation is a candidate. 

Which term should be chosen? 

As observed in the finite element analysis of the radial component of the magnetic flux 

density distribution (section 4.7.3), magnitude of the lowest harmonics produced by the 

modulation is larger, so it would be the candidate (pmod=ps+pm). Another reason for taking 

this option is that a higher number of modulator pieces means that the width of the 

modulators is smaller which allows flor less flux leakage. 

Employing the sixth term of the flux density: 

Now is the turn for analyzing the next case. By employing the sixth term of the radial 

component of the magnetic flux density, the shear stress can be written as: 
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 (4.186) 

To produce an average shear stress, the pole pairs and the rotation speeds must match. 

By the way, the product of the two cosines can be expressed in a sum as in below: 
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       

 (4.187) 

Similar to the previous case, any of the two parts above might lead to a constant value 

and have a non-zero spatial average if the pole and the speed conditions are met. Again, 

either the first part or the second part can meet the two mentioned conditions. They cannot 

both meet the two conditions at the same time. Both cases will be analyzed. 

Meeting the pole and speed conditions for the first part of the sixth term: 

 pole condition:  

mod mod0 ( )s m m sp p p p p p        (4.188) 

 speed condition:  
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mod

mod

0m mp
p


       (4.189) 

The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the same direction as the excitation. In this case, the shear 

stress is: 

 1 0 1 mod

1
cos

4
s mH h M p      (4.190) 

Meeting the pole and speed conditions for the second part of the sixth term: 

 pole condition:  

mod mod0 ( )s m m sp p p p p p        (4.191) 

 speed condition:  

mod

mod

0m mp
p


        (4.192) 

The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the reverse direction of the excitation. In this case, the 

shear stress is: 

 1 0 1 mod

1
cos

4
s mH h M p      (4.193) 

Which term should be chosen? 

The two parts of the last term are the candidates. 

Developed torque: 

It seen that employing the fifth or the sixth term results in the same derivations with a 

minus sine difference. Generally, the shear stress for the rotor rotation in both directions is 

as in below: 

 1 0 1 mod

mod

1
cos ;

4
s m mH h M p

p



        (4.194) 

where 
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   (4.195) 

Being careful about the negative sign, the developed electromagnetic torque can be 

calculated using the shear stress on the surface of stator as in below: 

22e

stator i sT R L      (4.196) 

By substituting <τs>, M0 and Hθ1, we obtain: 

  1 mod

0 mod

3 4
sin cos ;

2 2

e m mr
stator i w s m m

pB
T R Lk N I h p

p

 
  

 
      (4.197) 

4.8.3 Torque on stator side using Lorentz force 

Lorentz electromagnetics force acting on a particle of charge q with a velocity v in an 

electric field E and a magnetic field B is as in below [42]: 

( )F q E v B    (4.198) 

Having the volume charge density ρ, the volume force density is as in the following 

 ( )f E v B    (4.199) 

The current density corresponding to a charge density ρ having speed of v is J=ρ v. 

Then, the Lorentz force density can be rewritten as in below: 

f E J B    (4.200) 

In the presence of only magnetic fields, for example in electric machines, it reduces to: 

f J B   (4.201) 

Then, the developed torque in the volume vol can be obtained as in below: 

e

vol vol

T r f dv r J B dv       (4.202) 
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In two-dimensional analysis of electric machines in cylindrical coordinates, where 

current density Jz is in the z-direction and magnetic flux density Br is in r-direction, the 

developed torque is obtained as in below: 

( , ) ( , )e

z r

S

T L r J r B r r dr d     (4.203) 

In the cases where there exists a surface current density Kz on the circle path C having 

a radius R, the developed torque is calculated as in below: 

2( ) ( , ) ( ) ( , )e

z r z r

C C

T L R K B R R d LR K B R d         (4.204) 

Having the fundamental component of the surface current density on the surface 

of the stator as shown in Fig. 4.37 and given below: 

 1( , ) cosz z sK t K p t       (4.205) 

the developed torque can be obtained by Lorentz law as in the following: 
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     (4.206) 

where, by substituting Kz and Br, the term inside the integral can be written as in below: 
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 (4.207) 
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Taking the same analysis as in the previous section, substituting the simplified term 

into the torque expression, and calculating the integral leads to the same formulations.  

 

Figure 4.37: Surface current density of stator 

 

4.8.4 Torque on PM side using Kelvin force and magnetic charge model of PMs 

Kelvin magnetization force density can be used in finding the force on a magnetic 

charge in the presence of a magnetic field [42]-[43]. Force density acting on magnetic 

charge density ρm in a magnetic field of H can be obtained as in the following: 

mf H  (4.208) 

Also, force density acting on magnetic surface charge density σm in a magnetic field of 

H can be obtained as in the following: 

mf H  (4.209) 

where, in the case of the studied magnetic gear, the magnetic field H has two components 

as in below: 

ˆ ˆ
r rH H a H a    (4.210) 

Because of symmetry, the resultant force in the radial direction produced by Hr is zero 

and only Hθ produces a shear stress on PMs represented by the fundamental of the surface 

charge density distribution as shown in Fig. 4.38 and given in the following: 
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0 0( ) cosm mM p      (4.211) 

 

Figure 4.38: Equivalent surface magnetic charge density of PMs 

 

Tangential component of the magnetic field intensity on the surface of PMs can also 

be calculated as in below: 

o

m r

r R
o

h H
H

R





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
 (4.212) 

Substitution of Hr =Br/µ0 from section 4.7.1 yields the following: 
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 (4.213) 

The shear stress on the PMs can be calculated as: 
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 (4.214) 

It can be observed that: 
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 the first, the forth, the fifth and the sixth terms of the tangential component of 

the field Hθ are orthogonal to the surface charge distribution, so the spatial 

average of their multiplication is zero, and their interaction doesn’t produce any 

average shear stress.  

 the second and the third terms are not orthogonal to the tangential component 

of the field intensity, so their interaction might be able to produce a shear stress 

and contribute in the torque production in certain conditions: matching of pole 

pairs and rotation speeds. 

 either the second term or the third term can produce an average shear stress. 

They cannot average to a non-zero value at the same time because the number 

of poles in σm cannot match the number of poles of both terms (ps-pmod and 

ps+pmod). Both cases will be analyzed. 

Employing the second term of the flux density: 

By employing the second term of the tangential component of the magnetic flux density, 

the shear stress can be written as: 
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 (4.215) 

To produce an average shear stress, the pole pairs and the rotation speeds must match. 

By the way, the product of the two cosines can be expressed in a sum as in below: 
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 (4.216) 

Any of the two parts above might lead to a constant value and have a non-zero spatial 

average if the two conditions below are met: 
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 pole condition: the coefficient of θ is zero 

 speed condition: the coefficient of t is zero 

Again, either the first part or the second part can meet the two mentioned conditions. 

They cannot both meet the two conditions at the same time. Both cases will be analyzed. 

Meeting the pole and speed conditions for the first part of the second term: 

 pole condition:  

mod mod0 ( )m s m sp p p p p p        (4.217) 

 speed condition:  

mod
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
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The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the same direction the excitation. In this case, the shear 

stress is: 
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Meeting the pole and speed conditions for the second part of the second term: 

 pole condition:  

mod mod0m s m sp p p p p p       (4.220) 

 speed condition:  
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
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The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the same direction as the excitation. In this case, the shear 

stress is: 
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This situation is a candidate. 

Which term should be chosen? 

The second term is taken, so it would be the candidate (pmod=ps+pm).  

Employing the third term of the flux density: 

By employing the third term of the tangential component of the magnetic flux density, 

the shear stress can be written as: 
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 (4.223) 

To produce an average shear stress, the pole pairs and the rotation speeds must match. 

By the way, the product of the two cosines can be expressed in a sum as in below: 
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 (4.224) 

Any of the two parts above might lead to a constant value and have a non-zero spatial 

average if the pole and the speed conditions are met. Again, either the first part or the 

second part can meet the two mentioned conditions. They cannot both meet the two 

conditions at the same time. Both cases will be analyzed. 

Meeting the pole and speed conditions for the first part of the third term: 

 pole condition:  

mod mod0m s m sp p p p p p       (4.225) 

 speed condition:  

mod

mod

0m mp
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
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The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the same direction the excitation. In this case, the shear 

stress is: 

0 1 1 m mod

1
cos( )

4

m
m s

o

h
M F p p

R
      (4.227) 

This situation is a candidate. 

Meeting the pole and speed conditions for the second part of the third term: 

 pole condition:  

mod mod0 ( )m s m sp p p p p p        (4.228) 

 speed condition:  

mod

mod

0m mp
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
        (4.229) 

The first condition is the proposed number of modulators and the second is the 

mechanical speed of the rotor in the same direction as the excitation. In this case, the shear 

stress is: 
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4

m
m s
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M F p p

R
       (4.230) 

Which term should be chosen? 

Second part of the second term and first part of the third term are the cases. 

Developed torque: 

Taking the second part of the second term (positive speed ωm=ω/pmod and pmod=pm+ps) 

and first part of the third term (negative speed ωm=-ω/pmod and pmod=pm-ps), the shear stress 

for the rotor rotation in both directions is as in below: 
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1
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4

m
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o

h
M F p p

R p


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where 
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    (4.232) 

Being careful about the negative sign, the developed electromagnetic torque can be 

calculated using the shear stress on the surface of PMs as in below: 

22e

PM o mT R L      (4.233) 

By substituting <τs>, M0 and Hθ1, we obtain: 
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 (4.234) 

4.8.5 Torque on PM side using Lorentz force and Amperian current model of 
PMs 

The permanent magnets can also be represented by Amperian currents based on which 

the developed torque can be obtained using Lorentz force. The equivalent current density 

of PMs is as in below: 

0( , ) sinm
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r
   (4.235) 

The developed torque can be calculated using the following surface integral over the 

area S shown in Fig. 4.39 as in the following: 
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 (4.236) 
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Figure 4.39: Equivalent Amperian current density distribution of PMs 

 

The minus sign is because we are calculating the modulator torque using PM ring 

torque. The term inside the integral can be written as: 
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 (4.237) 

Spatial average of the product of sin pmθ with the first, the forth, the fifth and the sixth 

terms is zero because they are orthogonal, but the second and the third terms of Br might 

be able to produce a torque. Product of sin pmθ with the second term of Br will be: 
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 (4.238) 
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Meeting the pole condition pmod=ps-pm and the speed condition ωm=ω/pmod for the first 

part, or meeting the pole condition pmod=ps+pm and the speed condition ωm=ω/pmod for the 

second part, it reduces to: 

1 1 mod

1
cos( )

4
sF p     (4.239) 

Product of sin pmθ with the third term of Br will be: 
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 (4.240) 

Meeting the pole condition pmod=pm-ps and the speed condition ωm=-ω/pmod for the first 

part, or meeting the pole condition pmod=-(ps+pm) and the speed condition ωm=-ω/pmod for 

the second part, it reduces to: 

1 1 mod

1
cos( )

4
sF p     (4.241) 

Taking the second part of the product with the second term and first part of the product 

with the third term, and substitution of the two terms in the torque equation gives the 

following: 
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Substitution of Fs1 and M0 results in the following equation: 
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 (4.243) 

For relatively large machines, we have: 
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22 2o m o m m o mR h R h h R h    (4.244) 

Then, the developed torque can be calculated as in below: 
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 (4.245) 

It is seen that the value obtained from this method is the same as the previous method 

if Ro>>hm. 

4.8.6 Total torque  

In the case of rotating 

e e e

stator PMT T T   (4.246) 

Substitution of the two term leads to the following expression: 
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 (4.247) 

The ± in the cosine argument is according to the mechanical speed ωm=±ω/pmod. The ± 

behind the ±pm/ps is based on the pole combination which is negative if pmod=pm+ps (so 

the shear stresses will add) and positive if pmod=pm-ps (so shear stresses will subtract). For 

relatively large machines, we have: 

modi o i o avR and R h R R R    (4.248) 

Then- we have: 



131 

 

 1 mod

0

3 4
1 sin cos ;

2 2

e m m mr
av w s

d

m

os

m

m

p pB
T R L k N I h p

pp





 

 

 
  


  



 (4.249) 

Defining the torque angle as in below: 

modp    (4.250) 

we have: 
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Torque angle characteristics of the machine is shown in Fig. 4.40. Unit check for the 

torque expression is done in Appendix C. 

 

Figure 4.40: Torque angle characteristics for a geared machine with rotating modulators 

 

4.8.7 Gearing effect  

The ratio between the toque produced on the stator and the PM sides is as in below: 

e

mPM

e

stator s

pT

T p
   (4.252) 

The positive sign is for the pole combination pmod=pm+ps in which the shear stresses in 

the two sides of the modulator will add, while the negative sign is for the pole combination 

pmod=pm-ps in which the shear stresses in the two sides of the modulator will subtract. 
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The gearing ratio, defined as ratio of the torque on the rotor (modulators) to the torque 

on the stator, can be calculated as in below: 

mod mod s m

s s s

T p p p

T p p


   (4.253) 

 

Defining the speed ratio as the ratio of the rotating field of the stator to the mechanical 

speed of the rotor (modulator ring), we have: 
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 (4.254) 

If pm>ps, we will end in a geared machine having lower speed and a higher torque. 

4.8.8 Power balance 

The power into the machine (in motoring case) is the developed electromagnetic torque 

of the stator times the velocity of the stator rotating filed as in below: 
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It is worth noting that negative electrical power refers to the stator as an input port —

motoring mode, while a positive electrical power refers to an output port—generating mode.  

The mechanical power is the total torque at the rotor (modulator ring) times the 

mechanical speed of the machine as in below 
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 (4.256) 
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Knowing that ps±pm=±pmod, the power balance can be observed. 

4.9 Torque production in a machine with rotating PMs 

Two analytical frameworks are proposed here to model magnetically-geared machines 

in which the Pm ring are the rotor. Fig. 4.41 shows the block diagram of the first method 

in which the developed torque is obtained Kelvin force. The stator current produces a MMF. 

Also, the MMF produced by permanent magnets and an equivalent surface charge density 

is derived. The radial component of the magnetic flux density is also obtained using the 

total MMF and the air-gap reluctance derived from flux tube modeling. Carter coefficient 

is used in the air-gap length corrections as well. Having the equivalent surface charge and 

the tangential component of the magnetic field on the surface of PMs, the shear stress and 

subsequently the developed torque on the PM side is determined using Kelvin force. 

Fig. 4.42 shows the block diagram of the second method in which the developed 

torques on PM side is obtained using Lorentz force. The stator current produces a MMF. 

Also, the MMF produced by permanent magnets and an equivalent Amperian current 

density is derived. The radial component of the magnetic flux density is also obtained using 

the total MMF and the air-gap reluctance derived from flux tube modeling. Carter 

coefficient is used in the air-gap length corrections as well. Having the Amperian current 

density in the PM region and also the radial component of the magnetic flux density, the 

developed torque can be easily obtained using Lorentz force. 
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4.9.1 Torque on PM rotor using Kelvin force and magnetic charge model of 
PMs 

The fundamental component of the surface charge density distribution is as in below: 

0 0( , ) cos ( )m m mt M p t          (4.257) 

Tangential component of the magnetic field intensity on the surface of PMs can also 

be calculated as in below: 
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
 (4.258) 

Substitution of Hr =Br/µ0 from section 4.7.2 yields the following: 
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 (4.259) 
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 (4.260) 

The shear stress on the PMs can be calculated as: 

 

 

 

 

0

1 0

1 1 mod mod

1 1 mod mod

0 0 m m

0 1 mod mod m m

( , ) ( , )

cos ( )

cos

1
( )cos ( )

2

1
( )cos ( )

2

sin( )

1
( )sin ( )

2

1

2

m m

m
m m

o

s s s

s s s

s s s

m m m m

m m m m

m

t H t

h
M p t

R

F p p t

F p p p p t

F p p p p t

h M p p p t p

h M p p p p p t p

h

   

  

  

  

  

  

  



  

   

     

     

   

     

  0 1 mod mod m m( )sin ( )m m mM p p p p p t p  


     


 (4.261) 

The first, the forth, the fifth and the sixth terms of the tangential component of the field 

Hθ are orthogonal to the surface charge distribution, so the spatial average of their 

multiplication is zero, but the second and the third terms might be able to produce a shear 
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stress and contribute in the torque production if they meet pole and speeds conditions. 

Product of cos pm(θ-ωmt-ζ) with the second term of Hθ will be: 
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Meeting the pole condition pmod=ps-pm and the speed condition ωm=ω/pmod for the first 

part, or meeting the pole condition pmod=ps+pm and the speed condition ωm=-ω/pmod for the 

second part, it reduces to: 
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Product of cos pm(θ-ωmt-ζ) with the third term of Hθ will be: 
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 (4.264) 

Meeting the pole condition pmod=pm-ps and the speed condition ωm=ω/pmod for the first 

part, or meeting the pole condition pmod=-(ps+pm) and the speed condition ωm=-ω/pmod for 

the second part, it reduces to: 
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Finally, the shear stress will be as in below: 
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There are two cases out of the two parts of the second term of the tangential field, that 

results in the following shear stress expression: 

0 1 1 m

1
cos( );

4
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m
m s m

o
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R p
M F p p  


     (4.267) 

Developed torque: 

The following values will be substituted in the shear stress expression: 

1 0

0

3 4 4
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2 2 2

s m mr
s w

s

NI pB
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p


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The developed electromagnetic torque can be calculated using the shear stress on the 

surface of PMs as in below: 

22e

PM o mT R L     (4.269) 

By substituting <τs>, M0 and Fs1, we obtain: 
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4.9.2  Torque on PM rotor using Lorentz force and Amperian current model 
of PMs 

The permanent magnets can also be represented by Amperian currents as in below: 

0( , , ) sin ( )m
m m m

M p
J r t p t

r
       (4.271) 

The developed torque can be calculated using the following surface integral over the 

area S as in the following: 
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 (4.272) 

The term inside the integral can be written as: 
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 (4.273) 

Spatial average of the product of sin pm(θ-ωmt-ζ) with the first, the forth, the fifth and 

the sixth terms is zero because they are orthogonal, but the second and the third terms of 

Br might be able to produce a torque. Product with the second term of Br will be: 
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 (4.274) 

Meeting the pole condition pmod=ps-pm and the speed condition ωm=ω/pm for the first 

part, or meeting the pole condition pmod=ps+pm and the speed condition ωm=-ω/pmod for the 

second part, it reduces to: 
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Product with the third term of Br will be: 
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Meeting the pole condition pmod=pm-ps and the speed condition ωm=ω/pm for the first 

part, or meeting the pole condition pmod=-(ps+pm) and the speed condition ωm=-ω/pm for 

the second part, it reduces to: 

1 1 mod

1
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4
sF p    (4.277) 

Substitution of the two terms in the torque equation gives the following: 
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Taking the second part of the product with the second term and first part of the product 

with the third term, and substitution of Fs1 and M0 results in the following equation: 
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 (4.279) 

For relatively large machines, we have: 

22 2o m o m m o mR h R h h R h    (4.280) 

Then, the developed torque can be calculated as in below: 
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It is seen that the value obtained from this method is the same as the previous method if 

Ro>>hm. 

Defining the torque angle as in below: 

modp    (4.282) 

we have: 
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Torque angle characteristics of the machine is shown in Fig. 4.43. 

 

Figure 4.43: Torque angle characteristics for a geared machine with rotating PM ring 

 

4.9.3 Torque on stator  

The torque on the stator can obtained using Maxwell stress tensor or Lorenz force. The 

shear stress on the stator can be obtained using Maxwell stress tensor as in below: 
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 (4.284) 

The first, the second, the third and the fourth terms of the radial field are orthogonal to 

the tangential filed, so the spatial average of their product is zero, but the fifth and the sixth 

terms might be able to produce a shear stress and contribute in the torque production if they 

meet pole and speeds conditions. Product of with the fifth term of Br will be: 
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Meeting the pole condition pmod=pm-ps and the speed condition ωm=ω/pmod for the first 

part, or meeting the pole condition pmod=ps+pm and the speed condition ωm=-ω/pmod for the 

second part, it reduces to: 

0 1 1 mod

1
cos( );

4
m

mod

mh M H p
p




     (4.286) 

Product of with the sixth term of Br will be: 
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 (4.287) 
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Meeting the pole condition pmod=ps-pm and the speed condition ωm=ω/pmod for the first 

part, or meeting the pole condition pmod=-(ps+pm) and the speed condition ωm=-ω/pmod for 

the second part, it reduces to: 
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Taking the first and the second parts of the fifth term, shear stress expression is as in 

the following: 
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Having a minus sign for the stator node assumed to be an input, there developed torque 

will be: 
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In terms of the torque angle β, we have: 
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4.9.4 Gearing effect  

The gearing ratio, defined as ratio of the torque on the rotor (PM ring) to the torque on 

the stator, can be calculated as in below: 
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Defining the speed ratio as the ratio of the rotating field of the stator to the mechanical 

speed of the rotor (PM ring), we have: 
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If pm>ps, we will end in a geared machine having lower speed and a higher torque. 

4.9.5 Power balance 

The power into the machine (in motoring case) is the developed electromagnetic torque 

of the stator times the velocity of the stator rotating filed as in below: 
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It is worth noting that negative electrical power refers to the stator as an input port —

motoring mode, while a positive electrical power refers to an output port—generating mode. 

The mechanical power is the total torque at the rotor (modulator ring) times the 

mechanical speed of the machine as in below 
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 (4.295) 

The power balance can be observed. 
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Chapter 5 

Model Validation and 2D FEA of a Radial-Flux 
Magnetically-Geared Machine 
 

 

 

 
 

5.1 Introduction 
 

In this chapter, an inside-out radial-flux magnetically-geared machine is analyzed using 

two dimensional finite element analysis (FEA). The analytical framework in the chapter 4 

is also investigated and validated for the two cases of rotating modulators and rotating PMs. 

The gearing effect and harmonics analysis is performed using FFT. The meshed model is 

presented. The main characteristics of the machine such as torque-angle curve, torque 

profile, back EMF, magnetic flux density distribution and flux lines are extracted and 

studied as well. 

5.2  Machine geometry and specifications  
 

Fig. 5.1 shows the machine geometry having an inside-out (inner stator) configuration. 

Its specifications are given in Table 5.1. The three phase stator has a frequency of 50 Hz, 

four poles (ps=2), single layer winding, and 36 slots, i.e. three slots per pole per phase. 

There are 22 PMs (pm=11) on the outer back iron, so there will be 2+11=13 modulator 

pieces. The number of turns per coil (number of turns in a slot) is 30, so the total number 

of turns in each phase winding will be 180. Two cases will be investigated: rotating 

modulator ring, and rotating PM ring.  Slot dimensions are also given in Fig. 5.2 and 

Table 5.2. 
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Table.  5.1: Geometric parameters of the machine. 

Parameter Symbol value 

inner air-gap gi 1 mm 

outer air-gap go 1 mm 

modulator height hmod 6 mm 

permanent magnet height hm 5 mm 

PM pole ratio αm 0.9 

PM arc θm= αm(2π/pm) 14.72 deg 

PM residual flux Br 1.15 tesla 

stator pole pairs Ps 2 

PM pole pairs Pm 11 

number of modulators Pmod 13 

outer radius of stator Ri 50 mm 

axial length L 50 mm 

shaft diameter Dsh 10 mm 

outer yoke thickness Lyo 6 mm 

number of stator slot ns 36 

total number of turns per phase winding N 180 

electrical frequency of stator f 50 Hz 

mechanical speed of modulator rotor  230.78 rpm 

mechanical speed of PM rotor  272.73 rpm 

 

 

Figure 5.1: A typical inside-out radial-flux magnetically-geared machine. 
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Table.  5.2: Slot dimensions. 

Slot dimensions value 

hs0 1 mm 

hs1 0.7 mm 

hs2 20 mm 

bs0 2 mm 

bs1 5 mm 

bs2 1.5 mm 

 

 

Figure 5.2: Slot dimensions. 

5.3 Machine with rotating modulators 
 

In this section, the machine with rotating modulators will be analyzed. Field 

distribution, gearing effect, back EMF and torque characteristics will also be extracted and 

studied. At the stator frequency of 50 Hz, the mechanical speed of the PM rotor in rpm is: 

mod

2 30 2 50 30
230.77

13

f
rpm

p

 

 
     (5.1) 

5.3.1 Field analysis 
 

Fig. 5.3 shows the meshed model of the machine using two-dimensional finite element 

analysis in the software Ansoft Maxwell. It can be seen that smaller elements are used in 
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areas having more field variation, e.g. the air-gap, inter-modulator regions and PMs, while 

in the iron parts relatively larger elements are employed to reduce the simulation time. 

There are around 50000 elements in this meshed model that is used in the preliminary 

investigations. Fig. 5.4 illustrates a very fine meshed model for final analysis and result 

extraction. It includes around 90000 elements. 

 

Figure 5.3: A middle-level meshed model for the analyses. 

 

Figure 5.4: A very fine meshed model. 

 

Fig. 5.5 shows the flux lines within the machines for current loading of 21 Ampere-

turns in each slot. It can be seen that the stator has four poles (ps=2). Flux lines on the PM 

side behave the way that we expected. The interesting point is the effect of modulators on 
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the fluxed produced by the stator current and residual flux of PMs. Detailed study and 

harmonics analysis of this influence is performed in the next sections. Fig. 5.6 shows the 

magnetic flux density distribution within the machines that could somehow be predicted 

from the flux lines. 

 

Figure 5.5: Flux lines within the machine. 

 

Figure 5.6: Magnetic flux density distribution within the machine. 
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5.3.2   Field analysis of the gearing effect 
 

Fig. 5.7 illustrates the radial component of the magnetic flux density distribution on the 

two air-gaps of Fig. 5.6. The main harmonic (number of pole pairs of the MMF on that 

side) as well as the effect of modulator ring can be observed. 

 

Figure 5.7: Radial component of magnetic flux density distribution in (a) stator-side air-gap having four 

poles (ps=2) and (b) PM-side air-gap having 22 poles (pm=11). 

 

Fig. 5.8 illustrates the harmonics (pole pair) analysis of the radial component of the 

magnetic flux density distribution of the two air-gaps using FFT. In each air-gap, there are 

two sources of harmonics: the MMF on that side and the modulated form of the field on 

the other side. As we discussed in chapter 4, one part of the gearing idea is to match the 

number of pole pairs of the stator with one of the harmonics produced by modulation of 

the field generated by the PMs. Considering the first pair (pmod±pm), the two harmonics of 

2 and 24 can be seen on the stator side as shown in Fig. 5.8(a). The number of pole pair of 
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the stator field matches with the first one (2)., because the first one has a higher magnitude, 

so it will be the best candidate for pole matching. Another reason for taking this option is 

that a higher number of modulator pieces means that the width of the modulators is smaller 

which allows flor less flux leakage. The third reason is that the torques produced on the 

two sides of the modulator ring will add, as we discussed in chapter 4. The second part of 

the gearing idea is to match the number of pole pairs of the PMs with one of the harmonics 

produced by modulation of the field generated by the stator. Considering the first pair 

(pmod±ps), the two harmonics of 11 and 15 can be seen on the PM side as shown in 

Fig. 5.8(b). The number of pole pair of the PM field matches with the first one (11).  

 

Figure 5.8: Space harmonic spectrum (pole pair of the field components) in (a) the stator-side air-gap and 

(b) PM-side air-gap. 
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5.3.3 Torque and back-EMF 
 

Torque angle characteristics of the machine for current loading of 63 Ampere-turns is 

as in Fig. 5.9 which is almost a sinusoidal curve. To obtain this characteristics, the stator 

windings are excited with DC values which can be amplitude of the three phase currents at 

an arbitrary time, e.g. set of (Is,-Is/2,-Is/2), then the rotor is rotated with a constant speed to 

get the torque-angle curve, e.g. if the speed is 1 deg/sec, a curve as a function of mechanical 

angular displacement of the rotor will be obtained. 

A half period of the curve is 180 electrical degrees as well as 180/pmod mechanical 

degrees of the rotor angular displacement, as we expected from β=δ±pmodζ in section 4.8. 

The result of the analytical model is compared with that obtained from FEM. A close 

agreement between the flux-tube based models and FEM can be observed. It is seen that 

the model whose torque is obtained using Amperian current representation of PMs and 

Lorenz force is more accurate than the one whose torque is extracted by Maxwell stress 

tensor or fictitious charge model. Torque profile for the torque angle of 39.5 electrical 

degrees is also given in Fig. 5.10.  

 

 

Figure 5.9: Torque angle characteristics 
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Figure 5.10: Torque profile at synchronous speed of 230.78 rpm and torque angle of 39.5 electrical degrees 

(3.04 mechanical degrees) 

 

Fig. 5.11 presents the back-EMF waveforms with electrical frequency of 50 Hz while 

the rotor (modulator ring) is rotating at speed of 230.78 rpm. The waveforms are almost 

sinusoidal as its FFT is shown in Fig. 12. 

 

Figure 5.11: Back-EMF waveforms with frequency 50 Hz at rotor mechanical speed of 2πf/pmod 

=230.78 rpm. 

 

Figure 5.12: Harmonic analysis of the back-EMF waveform 



156 

 

5.4 Machine with rotating PMs 
 

In this section, the machine with rotating PMs will be analyzed. Field distribution, 

gearing effect, back EMF and torque characteristics will also be extracted and studied. At 

the stator frequency of 50 Hz, the mechanical speed of the PM rotor in rpm is:  

2 30 2 50 30
272.72

11m

f
rpm

p

 

 
     (5.2) 

5.4.1 Field analysis 

Fig. 5.13 shows the flux lines within the machines for current loading of 63 Ampere-

turns in each slot. It can be seen that the stator has four poles (ps=2). Flux lines on the PM 

side behave the way that we expected. Fig. 5.14 shows the magnetic flux density 

distribution within the machines that could somehow be predicted from the flux lines. 

 

Figure 5.13: Flux lines in the machine. 
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Figure 5.14: Magnetic flux density distribution within the machine. 

5.4.2 Torque and back-EMF 
 

Torque angle characteristics of the machine for current loading of 63 Ampere-turns is 

as in Fig. 5.15 which is almost a sinusoidal curve. The half period is 180 electrical degrees 

or 180/pm mechanical degrees of the rotor angular displacement, as we expected from 

β=δ±pmζ in section 4.9. Similar to the previous case, a close agreement between the flux-

tube based model and FEM is obtained; actually, the Lorentz force based model is more 

accurate than the one based on Maxwell stress tensor Fig. 5.16 presents the back-EMF 

waveforms with frequency of 50 Hz while the rotor (PM ring) is rotating at speed of 272.73 

rpm. The waveforms are almost sinusoidal as its FFT is shown in Fig. 17. 

 

 
Figure 5.15: Torque angle characteristics 
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Figure 5.16: Back-EMF waveforms with frequency 50 Hz at rotor mechanical speed of 2πf/pm 

=272.73 rpm. 

 

 
Figure 5.17: Harmonic analysis of the back-EMF waveform 

 

5.5   Torque and back-EMF analysis of the gearing effect 
 

As expected from the analytical framework in the chapter 4, it is seen that, at the same 

stator frequencies, the maximum torque in the case of rotating PM ring is smaller than the 

case of rotating modulator ring, while its mechanical speed at synchronous condition is 

higher; the reason is that the gearing ratio in the case of rotating modulators (1+pm/ps) is 

larger than the gearing ratio for the case of the rotating PM ring (pm/ps) which is also 

reflected in the closed form of the torque expressions in the two cases, as we obtained. It 

can also be observed that although the speeds the rotor in the two cases of rotating PM ring 

and rotating modulator ring are different, the frequency of the back-EMF is always the 

same—gearing effect. 
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Chapter 6 

3D FEA of an Axial-Flux Magnetically Geared 
Machine 
 

 

 
 

 

6.1 Introduction 
 

In this chapter, a single-sided axial-flux magnetically-geared machine is analyzed using 

finite element analysis. Three-dimensional FEM is employed in the work. Machine 

characteristics are also extracted and analyzed. The whole idea of machine operation that 

we obtained using the analytical framework is confirmed by the simulations performed in 

this chapter. 

6.2  Machine geometry and specifications  
 

Fig. 6.1 shows the machine configuration which called axial-flux or disc-type machine. 

Concentrated windings are used here. Each coil, which is wound over one stator pole, has 

110 turns. Each phase has four coils in series, so it has 440 turns.  The specifications of the 

machine are given in Table 6.1. 

The three phase stator has a frequency of 50 Hz, eight poles (ps=4). There are 22 PMs 

(pm=11) on the outer back iron, so there will be 4+11=15 modulator pieces. Two cases will 

be investigated: rotating modulator ring, and rotating PM ring.  Slot dimensions are also 

given in Fig. 5.2 and Table 5.2. Fig. 6.2 depicts the exploded view of the machine in which 

the configuration is more visible. 
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Table.  6.1: Geometric parameters of the machine. 

Parameter Symbol value 

Stator-side air-gap g1 1 mm 

Rotor-side air-gap g2 1 mm 

modulator height hmod 3 mm 

permanent magnet height hm 5 mm 

PM pole ratio αm 0.9 

PM arc θm= αm(2π/pm) 14.72 deg 

PM residual flux Br 1.18 tesla 

stator pole pairs Ps 4 

PM pole pairs Pm 11 

number of modulators Pmod 15 

outer radius of stator Ro 50 mm 

inner radius of machine Ri 30 mm 

outer yoke thickness Lyo 5 mm 

inner yoke thickness Lyi 5 mm 

Height of stator pole Hs 10 mm 

Arc ratio of stator pole αs 0.4 

number of stator slot ns 36 

number of turns per coil Ncoil 110 

electrical frequency of stator f 50 Hz 

mechanical speed of modulator rotor  200 rpm 

mechanical speed of PM rotor  272.73 rpm 

 

 

Figure 6.1: A typical axial-flux magnetically-geared machine 
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Figure 6.2: Exploded view of an axial-flux magnetically-geared machine 

 

6.3 Field analysis 
 

Meshed model of the machine, which is employed in the finite element analysis, is 

shown in Fig. 6.3. this not very fine but provides enough accuracy to investigate the ideas 

in the shortest time. In this case, stator of the machine is highly loaded to illustrate the 

fields more clearly. Fig. 6.4 shows magnetic flux density vectors within the machine and 

how they behave. Fig. 6.5 and Fig. 6.6 show magnetic flux density distribution in the 

stator-side air-gap for a line and a disc surface in the middle of the air-gap, respectively. 

The main harmonic of the stator (ps=4) as well as the modulated ones can be observed. 

Fig. 6.7 illustrates the magnetic flux density distribution on a disc within the stator-side 



162 

 

air-gap having the rotation speed of 750 rpm while the modulators in front of it with 

mechanical speed of 272.7 rpm are depicted as well. The gearing idea can be observed. 

 

Figure 6.3: Meshing of the model 

 

Figure 6.4: Magnetic flux density vectors within the machine 

 

Figure 6.5: Magnetic flux density distribution on a line in the middle of the stator-side air-gap 
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Figure 6.6: Magnetic flux density distribution on a disc surface in the middle of the stator-side air-gap 

  

Figure 6.7: Magnetic flux density distribution on a disc surface in the middle of the stator-side air-gap 

illustrating the modulation effect and how the harmonics match the PMs on the other side 

 

Fig. 6.8 and Fig. 6.9 show magnetic flux density distribution in the PM-side air-gap for 

a line and a disc surface in the middle of the air-gap, respectively. The main harmonic of 

the PM ring (pm=11) as well as the modulated ones can be observed. Fig. 6.10 illustrates 

the magnetic flux density distribution on a disc within the PM-side air-gap while the effect 

of the modulator pieces behind it can be observed. 
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Figure 6.8: Magnetic flux density distribution on a line in the middle of the PM-side air-gap 

 

Figure 6.9: Magnetic flux density distribution on a disc surface in the middle of the PM-side air-gap 

 

 

Figure 6.10: Magnetic flux density distribution on a disc surface in the middle of the PM-side air-gap 

illustrating the modulation effect and how the harmonics match the stator field on the other side 
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6.3.1 Torque and back-EMF 
 

In this analysis, current in the windings is about 2 Arms. Fig. 6. 11 and Fig. 6.12 show 

torque-angle characteristics of the machine when modulators and PMs are the rotor, 

respectively. The span of the half cycle is 180 electrical degrees for both, while it is 

180/15=12 mechanical degrees for the former and 180/11=16.3 mechanical degrees for the 

latter. Better curves could be obtained by using a higher number of mesh elements—

tradeoff between accuracy and time. Fig. 6.13 and Fig. 6.14 show the back-EMFs for the 

two cases when the rotors are rotating at the same angular speeds of 200rpm; it can be seen 

that the frequencies are not the same as result—gearing effect with different ratios. 

 

Figure 6.11: Torque angle characteristics when the modulator ring is the rotor 

 
Figure 6.12: Torque angle characteristics when the PM ring is the rotor 
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Figure 6.13: Back EMF when the modulator ring is the rotor 

 

 
Figure 6.14: Back EMF when the PM ring is the rotor 
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Chapter 7 

Conclusion and Future Works 
 

7.1 conclusions 
 

Analytical and numerical study of magnetically-geared machines is done in the 

research performed in this thesis. The former is performed by employing flux-tube methods 

and the latter is done using two-dimensional and three-dimensional finite element method 

(FEM) using the software Ansoft Maxwell. The two main structure of electrical machines, 

radial-flux and axial-flux configurations, are investigated. The flux-tube method, also 

called magnetic equivalent circuit (MEC), is very useful as a flexible yet accurate analytical 

framework for the study of the physics, analysis and design of the device. Development of 

this novel analytical model for magnetically-geared machines is done for the two cases of 

rotating modulator ring and rotating PM ring. Also, the model has been validated by FEM, 

showing a very close agreement between the analytical and numerical results. This 

framework can be utilized in preliminary designs and optimizations. The stator and the 

PMs are modeled by employing different techniques such as magnetization density, 

Amperian currents and coulombian fictitious charges, all of which provides a general 

framework so that a suitable technique can be used based on the geometry of the machine 

for further study of such devices. Closed-form expressions for the magnetic fields and the 

developed torques are extracted using different approaches including Maxwell stress tensor, 

Lorentz force and Kelvin force density. Advantage of the developed framework over 

existing ones is the flexibility and the capability to be applied to complex geometries. These 

options give the designers a flexibility to choose the most suitable technique according to 

the configuration and application of the device. Nature and behavior of magnetically-

geared machines are studied and its main characteristics such as torque, field and back-

EMF with different scenarios and conditions are extracted as well. 
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7.2 Future works 
Magnetically-geared machines, by introducing many advantages and superiorities, 

has been of great interest in both industry and academia. The lines below are among the 

future works as well as ideas and suggestions for those who want lead a research in this 

interesting field:  

 An attempt to reduce the discrepancy between the results obtained from the 

analytical model and FEM, although the accuracy is great and acceptable. The 

difference might be due to the flux leakage in the stator or the air-gap, or the 

saturation in the iron parts. 

 Design optimization of the machine by using the closed-form expressions we 

extracted, and by employing genetic algorithm. 

 Building a prototype of the machine based on the optimized design whose results 

can be compared with those obtained from analytical model and FEM. 

 Parametric study and sensitivity analysis of the main characteristics of the device 

using the developed analytical framework 

 Accounting for practical considerations such as temperature and cooling conditions. 

 Analytical modeling of the machine by solving Laplace and Poisons’ equations as 

an alternative to flux-tube based methods. Such models have their own advantages 

and disadvantages. 

 Applying the modeling techniques to different structures, for example machines 

with interior PM or having double-stator or double-rotor configuration. 

 In addition to 2D FEA of the radial-flux structure, it can be analyzed using 3D FEM 

to account for end turns of the stator winding. 

 Deriving closed-form expressions for the machine back-EMF 

 Deriving closed-form expressions for stator inductances 
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 Deriving a dq-model for the machine 

 Control and drive study for the machine 
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Appendix A 

Matlab code and plots for the Fourier series 
representation of the reluctance models 
 

The code below is written to analyze the Fourier series for the models A and B of air-

gap the reluctance. 

%% Fourie series for reluctance model 
%% Model A 
clc;clear; 

  
gie=1e-3;    % inner air-gap 
go=1.5e-3;   % outer air-gap 
hm=5e-3;     % PM height 
hmod=4e-3;   % modulator height 
wmod=6e-3;   % modulator sidth 
u0=4*pi*1e-7; 

  
pmod=11;          % number of modulators 
Rav=pmod*wmod/pi; % average radius 
dt=hm/(Rav*pi);   % area of Pmid 

  
Pmax=u0/(gie+go+hm); 
Pmid=(u0/hmod)*log(1+hmod/(gie+go+hm)); 
Pmin=u0/(gie+hmod+go+hm); 

  

  
theta=0:(2*pi/pmod)/1000:2*pi/pmod; 
P=Pmax * (theta<pi/(2*pmod)) + Pmid * ( (theta>=pi/(2*pmod)) & 

(theta<pi/(2*pmod)+dt) )... 
    + Pmin*((theta>=pi/(2*pmod)+dt) & (theta<1.5*pi/pmod-dt)) + Pmid*( 

(theta>=1.5*pi/pmod-dt) & (theta<1.5*pi/pmod) )... 
    +Pmax*(theta>=1.5*pi/pmod); 

  
k=1; 
for N=[1 10 50] 

     
    a0=(pmod/pi)*( 0.5*(Pmax+Pmin)*(pi/pmod)+ (Pmid-Pmin)*dt); 

  
    PP=zeros(1,length(theta))+a0; 
    for n=1:2:N 
        an=(2/(n*pi))*(Pmax-Pmid)*sin(n*pi/2) + (2/(n*pi))*(Pmid-

Pmin)*sin(n*pi/2+n*pmod*dt); 
        PP=PP+an*cos(n*pmod*theta); 
    end 

  
    subplot(3,1,k) 
    plot(theta,P,theta,PP) 
    xlabel('\theta (deg)') 
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    ylabel('P (H/m^2)') 
    axis tight 
    title(['n=',num2str(N)]) 
    legend('P(\theta)', 'Fourier series') 

  
    k=k+1; 
end 

  
%% Model B 
clc;clear; 

  
gie=1e-3;    % inner air-gap 
go=1.5e-3;   % outer air-gap 
hm=5e-3;     % PM height 
hmod=4e-3;   % modulator height 
wmod=6e-3;   % modulator sidth 
u0=4*pi*1e-7; 

  
pmod=11;          % number of modulators 
Rav=pmod*wmod/pi; % average radius 

  
Pmax=u0/(gie+go+hm); 
Pmin=u0/(gie+hmod+go+hm); 

  
theta=0:(2*pi/pmod)/1000:2*pi/pmod; 
P=Pmax * (theta<pi/(2*pmod)) + Pmin*((theta>=pi/(2*pmod)) & 

(theta<1.5*pi/pmod))... 
    +Pmax*(theta>=1.5*pi/pmod); 

  

  
    k=1; 
for N=[1 10 50] 

     
    a0=0.5*(Pmax+Pmin); 

  
    PP=zeros(1,length(theta))+a0; 
    for n=1:2:N 
        an=(2/(n*pi))*(Pmax-Pmin)*sin(n*pi/2); 
        PP=PP+an*cos(n*pmod*theta); 
    end 

  
    subplot(3,1,k) 
    plot(theta,P,theta,PP) 
    xlabel('\theta (deg)') 
    ylabel('P (H/m^2)') 
    axis tight 
    title(['n=',num2str(N)]) 
    legend('P(\theta)', 'Fourier series') 

  
    k=k+1; 
end 

Fig. A.1 shows the Fourier series representation of the permeance spatial distribution 

in model A for n=1 (fundamental component), n=10 and n=50. Also, Fig. A. 2 shows the 
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Fourier series representation of the permeance spatial distribution in model B for n=1 

(fundamental component), n=10 and n=50. 

 

 

Figure A.1: Fourier series representation for the reluctance spatial distribution in model A 
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Figure A.2: Fourier series representation for the reluctance spatial distribution in model B 
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Appendix B 

Matlab code and plots for the Fourier series 
representation of the magnetization distribution 
of permanent magnets 
 

The code below is written to analyze the Fourier series for the magnetization 

distribution of the permanent magnets. 

 

%% Fourie series for reluctance model 
%% Model A 
clc;clear; 

  
Br=1.2; 
u0=4*pi*1e-7; 

  
pm=11;          % pole pair of PMs 
theta_p=2*pi/(2*pm); 
theta_m=0.8*theta_p; 
dt=pi/(2*pm)-theta_m/2; 

  
theta=0:(2*pi/pm)/1000:2*pi/pm; 

  
MM=(Br/u0) * (theta<(pi/(2*pm)-dt)) + 0 * ( (theta>=(pi/(2*pm)-dt)) & 

(theta<pi/(2*pm)+dt) )... 
    + (-Br/u0)*((theta>=pi/(2*pm)+dt) & (theta<(1.5*pi/pm-dt))) + 0*( 

(theta>=1.5*pi/pm-dt) & (theta<(1.5*pi/pm+dt)) )... 
    +(Br/u0)*(theta>=1.5*pi/pm+dt); 
k=1; 
for N=[1 10 50] 

     
    M=zeros(1,length(theta)); 
    for n=1:2:N 
        an=(4/(n*pi))*(Br/u0)*sin(n*pm*theta_m/2); 
        M=M+an*cos(n*pm*theta); 
    end 

  
    subplot(3,1,k) 
    plot(theta*(180/pi),MM,theta*(180/pi),M) 
    xlabel('\theta (deg)') 
    ylabel('M') 
    xlim([0,(180/pi)*2*pi/pm]) 
    title(['n=',num2str(N)]) 
    legend('M(\theta)', 'Fourier series') 

  
    k=k+1; 
end 
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Fig. B.1 shows the Fourier series representation of the spatial distribution of the 

magnetization of permanent magnets for n=1 (fundamental component), n=10 and n=50. 
 

 
Figure B.1: Fourier series representation for the reluctance spatial distribution the spatial distribution of 

the PM magnetization 
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Appendix C 

Unit Check for the torque expression 
 

The developed torque for a magnetic gear having modulators as the rotor be expressed 

as in below: 

 2

1 mod
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3 4
1 sin cos

2 2
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where the unit of the sets of parameters are given below: 
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According to Maxwell stress tensor HθBr, we know that [A/m.Tesla] is surface force 

density [N.m2], so mathematical manipulation leads to: 

   3 2 3[ / ] [ / ] [ / ] [ ] [ / ] [ ] [ . ]A m A Tesla A A m Tesla m N m m N m         

where Nm is the torque unit. 
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Appendix D 

FFT Analysis Using Simulink 
 

The data is first extracted from Ansoft Maxwell. Then it is imported to a Matlab m-file. 

Finally, it is saved to the workspace and imported to the Simulink (Simscape Power 

System) for FFF Analysis. The variables Tstop and Ts are inserted into Simulink file. The 

code below is a part of the m-file used. Fig. D.1 shows the Simulink sections. 

BB=[0,-0.549449374139776 
0.251320430970176,-0.497075457036888 
0.502640861940351,-0.447867604226871 
0.753961292910527,-0.399384620736442 
1.0052817238807,-0.35124354989325 
1.25660215485088,-0.352083496979221 
1.50792258582105,-0.364324532383236 
1.75924301679123,-0.385400514883324 
2.0105634477614,-0.41391983092116 
2.26188387873158,-0.452780550056095 
2.51320430970176,-0.509681479165294 
2.76452474067193,-0.549449542426018 
3.01584517164211,-0.56568854832708 

. 

. 

. 

. 

. 

. 

. 

250.817790108235,-0.562761837329154 
251.069110539205,-0.562160598660656 
251.320430970176,-0.550949398238422]; 

  
% x=BB(:,1); 
% y=BB(:,2); 
% plot(x,y) 
Bfield.time = BB(:,1); 
Bfield.signals.values = BB(:,2); 
Ts=BB(2,1)-BB(1,1); 

  
t_stop=BB(end,1); 

  
T=(BB(end,1)-BB(1,1)); 
freq=1/T; 
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Figure D.1: FFT analysis using Simulink (Simscape Power Systems) 
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Appendix E 

Matlab code for Analytical modeling of a radial-
flux magnetically-geared machine with rotating 
modulators using the flux-tube based permeance 
model and Maxwell stress tensor 
 

The code can be found below: 
% Analytical modeling of magnetically-geared machines 
% rotating modulators, flux-tube model 
% Sajjad Mohammadi @ MIT, 2AM, May 23, 2019 
clc;clear; 

  
Irms=2.1; % RMS current of stator (A) 
Is=sqrt(2)*Irms; % peak current of stator (A) 
N=180; % total number of turns in a phase winding 
f=50; % electrical frequency (Hz) 

  
ps=2; % stator pole pair 
pm=11; % PM pole pair 
pmod=ps+pm; % modulator pole pair 

  
alpha=0.9; % PM ratio 
T_pm=alpha*2*pi/(2*pm); % PM arc 

  
gi=1e-3;    % inner air-gap (m) 
go=1e-3;   % outer air-gap (m) 

  
hm=5e-3;     % PM height (m) 
hmod=6e-3;   % modulator height (m) 
%hmod=0.020498409140724+0.01 

  
R1=50e-3; % stator outer radius (m) 
R2=R1+gi+hmod+go; % inner radius of PMs (m) 
Rav=(R1+R2)/2; % average radius of modulators (m) 

  
slot=36; % number of stator slots 
mm=3; % slot per pole per phase (distributed winding) 
gamma=ps*2*pi/slot; % slot pitch (electrical degrees) 
kd=sin(mm*gamma/2)/(mm*sin(gamma/2)); % distribution factor 
kp=1; % pitch factor 
kw=kp*kd; % winding factor 

  
w=R1*2*pi/slot; % slot pitch (m) 
ws=2e-3; % slot opening (m) 
kc=( 1-(ws/w)+(4*gi/(pi*w))*log(1+pi*ws/(4*gi)) )^(-1); %Carter's 

coefficient 
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gie=kc*gi; %effective air-gap (m) 
g_diff=gie-gi; % g-difference 
R1=R1-g_diff; % reducing the stator outer radius by g-diffrence (m) 
Rav_t=(R1+R2)/2; % average radius of torque calculations (m) 

  
L=50e-3; % axial length (m) 

  
Br=1.15; % residual flux of PMs (T) 
u0=4*pi*1e-7; 
M0=Br/u0; % PM Magnetization 
Hc=837e3; 
ur=Br/(u0*Hc); 

  
T_mod=2*pi/(2*pmod); % modulator arc (rad) 
wmod=Rav*T_mod; % modulator width (m) 

  
% switching between the two flux tube models 
if hmod<(pi*wmod/2) 

     
    % Model A 
    Pmin=u0/(ur*(gie+hmod+go)+hm); 
    Pmid=(u0/hmod)*log(1+ur*hmod/(ur*(gie+go)+hm)); 
    Pmax=u0/(ur*(gie+go)+hm); 

  
    dt=hmod/(pi*Rav); 
    P0=(1/2)*(Pmax+Pmin)+(pmod*dt/pi)*(Pmid-Pmin); 
    P1=(2/pi)*(Pmax-Pmid)+(2/pi)*(Pmid-Pmin)*sin(pi/2+pmod*dt); 
    disp('model A') 
else 

     
    % Model B 
    Pmin=(2*u0/(pi*wmod))*log(1+pi*wmod/(2*(gie+go+hm))); 
    Pmax=u0/(gie+go+hm); 

  
    P0=(1/2)*(Pmax+Pmin); 
    P1=(1/2)*(4/pi)*(Pmax-Pmin); 
    disp('model B') 
end 

  
beta=0:0.01:pi; % torque angle (rad) 

  
Tmax=(3/2)*(4/pi)*(R1+R2*pm/ps)*(Br/u0)*L*kw*N*Is*hm*P1*sin(pm*T_pm/2); 

% maximum torque 
% 

Tmax=(3/2)*(4/pi)*(1+pm/ps)*(Br/u0)*Rav_t*L*kw*N*Is*hm*P1*sin(pm*T_pm/2

); % maximum torque 
Torque=-Tmax*sin(beta); % torque angle curve 

  
disp(Tmax) 
plot(beta*((1/pmod)*180/pi),-Torque) 
xlabel('Torque angle (mech deg)') 
ylabel('Torque (Nm)') 
grid; grid minor 
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% spatial distribution of the radial field  
delta=0; % current angle 
zeta=0; % modulator intial angle 
omega=2*pi*f; 
omega_m=omega/pmod; % mechanical speed (rad/sec) 
time=0; %time 

  
Fs1=(-3/2)*(4/pi)*(N*Is/(2*ps))*kw; 

  
theta=0:0.01:2*pi; % spatial angular position 

  
% spatial distribution of Br 
Br=Fs1*P0*sin(ps*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin((ps-pmod)*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin( (ps+pmod)*theta-omega*time-delta)... 
  +hm*M0*P0*cos(pm*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm-pmod)*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm+pmod)*theta-pm*omega_m*time-pm*zeta); 
figure 
plot((180/pi)*theta,Br) 
xlabel('theta (mech deg)') 
ylabel('B_r (T)') 
grid; grid minor 

  
% for TTF analysis using simulink 
Bfield.time = theta'; 
Bfield.signals.values = Br'; 
Ts=theta(2)-theta(1); 

  
t_stop=theta(end); 

  
T=(theta(end)-theta(1)); 
freq=1/T; 
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Appendix F 

Matlab code for Analytical modeling of a radial-
flux magnetically-geared machine with rotating 
modulators using the flux-tube based permeance 
model and Lorentz law on Amperian current of 
PMs 
 

The code can be found below: 

 
% Analytical modeling of magnetically-geared machines 
% rotating modulators, flux-tube model 
% Sajjad Mohammadi @ MIT, 2AM, May 23, 2019 
clc;clear; 

  
Irms=2.1; % RMS current of stator (A) 
Is=sqrt(2)*Irms; % peak current of stator (A) 
N=180; % total number of turns in a phase winding 
f=50; % electrical frequency (Hz) 

  
ps=2; % stator pole pair 
pm=11; % PM pole pair 
pmod=ps+pm; % modulator pole pair 

  
alpha=0.9; % PM ratio 
T_pm=alpha*2*pi/(2*pm); % PM arc 

  
gi=1e-3;    % inner air-gap (m) 
go=1e-3;   % outer air-gap (m) 

  
hm=5e-3;     % PM height (m) 
hmod=6e-3;   % modulator height (m) 
%hmod=0.020498409140724+0.01 

  
R1=50e-3; % stator outer radius (m) 
R2=R1+gi+hmod+go; % inner radius of PMs (m) 
Rav=(R1+R2)/2; % average radius of modulators (m) 

  
slot=36; % number of stator slots 
mm=3; % slot per pole per phase (distributed winding) 
gamma=ps*2*pi/slot; % slot pitch (electrical degrees) 
kd=sin(mm*gamma/2)/(mm*sin(gamma/2)); % distribution factor 
kp=1; % pitch factor 
kw=kp*kd; % winding factor 

  
w=R1*2*pi/slot; % slot pitch (m) 
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ws=2e-3; % slot opening (m) 
kc=( 1-(ws/w)+(4*gi/(pi*w))*log(1+pi*ws/(4*gi)) )^(-1); %Carter's 

coefficient 

  
gie=kc*gi; %effective air-gap (m) 
g_diff=gie-gi; % g-difference 
R1=R1-g_diff; % reducing the stator outer radius by g-diffrence (m) 
Rav_t=(R1+R2)/2; % average radius of torque calculations (m) 

  
L=50e-3; % axial length (m) 

  
Br=1.15; % residual flux of PMs (T) 
u0=4*pi*1e-7; 
M0=Br/u0; % PM Magnetization 
Hc=837e3; 
um=Br/(u0*Hc); 

  
T_mod=2*pi/(2*pmod); % modulator arc (rad) 
wmod=Rav*T_mod; % modulator width (m) 

  
% switching between the two flux tube models 
if hmod<(pi*wmod/2) 

     
    % Model A 
    Pmin=u0/(gie+hmod+go+hm); 
    Pmid=(u0/hmod)*log(1+hmod/(gie+go+hm)); 
    Pmax=u0/(gie+go+hm); 

  
    dt=hmod/(pi*Rav); 
    P0=(1/2)*(Pmax+Pmin)+(pmod*dt/pi)*(Pmid-Pmin); 
    P1=(2/pi)*(Pmax-Pmid)+(2/pi)*(Pmid-Pmin)*sin(pi/2+pmod*dt); 
    disp('model A') 
else 

     
    % Model B 
    Pmin=(2*u0/(pi*wmod))*log(1+pi*wmod/(2*(gie+go+hm))); 
    Pmax=u0/(gie+go+hm); 

  
    P0=(1/2)*(Pmax+Pmin); 
    P1=(1/2)*(4/pi)*(Pmax-Pmin); 
    disp('model B') 
end 

  
beta=0:0.01:pi; % torque angle (rad) 

  
Ts=(3/2)*(4/pi)*(R1)*(Br/u0)*L*kw*N*Is*hm*P1*sin(pm*T_pm/2); 
Tm=(3/2)*(4/pi)*(R2*hm+hm^2)*pm/ps*(Br/u0)*L*kw*N*Is*P1*sin(pm*T_pm/2); 

%lorentz law 
Tmax=Ts+Tm; 
% 

Tmax=(3/2)*(4/pi)*(1+pm/ps)*(Br/u0)*Rav_t*L*kw*N*Is*hm*P1*sin(pm*T_pm/2

); % maximum torque 
Torque=-Tmax*sin(beta); % torque angle curve 
disp(Tmax) 
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plot(beta*((1/pmod)*180/pi),-Torque) 
xlabel('Torque angle (mech deg)') 
ylabel('Torque (Nm)') 
grid; grid minor 

  
% spatial distribution of the radial field  
delta=0; % current angle 
zeta=0; % modulator intial angle 
omega=2*pi*f; 
omega_m=omega/pmod; % mechanical speed (rad/sec) 
time=0; %time 

  
Fs1=(-3/2)*(4/pi)*(N*Is/(2*ps))*kw; 

  
theta=0:0.01:2*pi; % spatial angular position 

 
% spatial distribution of Br 
Br=Fs1*P0*sin(ps*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin((ps-pmod)*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin( (ps+pmod)*theta-omega*time-delta)... 
  +hm*M0*P0*cos(pm*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm-pmod)*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm+pmod)*theta-pm*omega_m*time-pm*zeta); 
figure 
plot((180/pi)*theta,Br) 
xlabel('theta (mech deg)') 
ylabel('B_r (T)') 
grid; grid minor 

  
% for TTF analysis using simulink 
Bfield.time = theta'; 
Bfield.signals.values = Br'; 
Ts=theta(2)-theta(1); 

  
t_stop=theta(end); 

  
T=(theta(end)-theta(1)); 
freq=1/T; 
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Appendix G 

Matlab code for Analytical modeling of a radial-
flux magnetically-geared machine with rotating 
modulators using the simplified permeance model 
and Maxwell stress tensor 
 

The code can be found below: 

% Analytical modeling of magnetically-geared machines 
% rotating modulators, simplified model 
% Sajjad Mohammadi @ MIT, 2AM, May 23, 2019 
clc;clear; 

  
Irms=2.1; % RMS current of stator (A) 
Is=sqrt(2)*Irms; % peak current of stator (A) 
N=180; % total number of turns in a phase winding 
f=50; % electrical frequency (Hz) 

  
ps=2; % stator pole pair 
pm=11; % PM pole pair 
pmod=ps+pm; % modulator pole pair 

  
alpha=0.9; % PM ratio 
T_pm=alpha*2*pi/(2*pm); % PM arc 

  
gi=1e-3;    % inner air-gap (m) 
go=1e-3;   % outer air-gap (m) 

  
hm=5e-3;     % PM height (m) 
hmod=6e-3;   % modulator height (m) 

  
R1=50e-3; % stator outer radius (m) 
R2=R1+gi+hmod+go; % inner radius of PMs (m) 
Rav=(R1+R2)/2; % average radius of modulators (m) 

  
slot=36; % number of stator slots 
mm=3; % slot per pole per phase (distributed winding) 
gamma=ps*2*pi/slot; % slot pitch (electrical degrees) 
kd=sin(mm*gamma/2)/(mm*sin(gamma/2)); % distribution factor 
kp=1; % pitch factor 
kw=kp*kd; % winding factor 

  
w=R1*2*pi/slot; % slot pitch (m) 
ws=2e-3; % slot opening (m) 
kc=( 1-(ws/w)+(4*gi/(pi*w))*log(1+pi*ws/(4*gi)) )^(-1); %Carter's 

coefficient 
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gie=kc*gi; %effective air-gap (m) 
g_diff=gie-gi; % g-difference 
R1=R1-g_diff; % reducing the stator outer radius by g-diffrence (m) 
Rav_t=(R1+R2)/2; % average radius of torque calculations (m) 

  
L=50e-3; % axial length (m) 

  
Br=1.15; % residual flux of PMs (T) 
u0=4*pi*1e-7; 
M0=Br/u0; % PM Magnetization 

  
% Simplest Model 
Pmax=u0/(gi+go+hm); 
Pmin=u0/(gi+hmod+go+hm); 
P0=(1/2)*(Pmax+Pmin); 
P1=(1/2)*(4/pi)*(Pmax-Pmin); 

  
beta=0:0.01:pi; % torque angle (rad) 

  
Tmax=(3/2)*(4/pi)*(1+pm/ps)*(Br/u0)*R2*L*kw*N*Is*hm*P1*sin(pm*T_pm/2); 

% maximum torque 
Torque=-Tmax*sin(beta); % torque angle curve 

  
disp(Tmax) 
plot(beta*((1/pmod)*180/pi),-Torque) 
xlabel('Torque angle (mech deg)') 
ylabel('Torque (Nm)') 
grid; grid minor 
  

% spatial distribution of the radial field  
delta=0; % current angle 
zeta=0; % modulator initial angle 
omega=2*pi*f; 
omega_m=omega/pmod; % mechanical speed (rad/sec) 
time=0; %time 

  
Fs1=(-3/2)*(4/pi)*(N*Is/(2*ps))*kw; 

  
theta=0:0.01:2*pi; % spatial angular position 
% spatial distribution of Br 
Br=Fs1*P0*sin(ps*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin((ps-pmod)*theta-(omega-pmod*omega_m)*time-

delta+pmod*zeta)... 
  +(1/2)*Fs1*P1*sin( (ps+pmod)*theta-(omega+pmod*omega_m)*time-delta-

pmod*zeta )... 
  +hm*M0*P0*cos(pm*theta)... 
  +(1/2)*hm*M0*P1*cos((pm-pmod)*theta+pmod*omega_m*time+pmod*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm+pmod)*theta-pmod*omega_m*time-pmod*zeta); 
figure 
plot((180/pi)*theta,Br) 
xlabel('theta (mech deg)') 
ylabel('B_r (T)') 
grid; grid minor 
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Appendix H 

Matlab code for Analytical modeling of a radial-
flux magnetically-geared machine with rotating 
PMs using the flux-tube based permeance model 
and Maxwell stress tensor 
The code can be found below: 

% Analytical modeling of magnetically-geared machines 
% rotating PMs, flux-tube model 
% Sajjad Mohammadi @ MIT, 2AM, May 23, 2019 
clc;clear; 

  
Irms=2.1; % RMS current of stator (A) 
Is=sqrt(2)*Irms; % peak current of stator (A) 
N=180; % total number of turns in a phase winding 
f=50; % electrical frequency (Hz) 

  
ps=2; % stator pole pair 
pm=11; % PM pole pair 
pmod=ps+pm; % modulator pole pair 

  
alpha=0.9; % PM ratio 
T_pm=alpha*2*pi/(2*pm); % PM arc 

  
gi=1e-3;    % inner air-gap (m) 
go=1e-3;   % outer air-gap (m) 

  
hm=5e-3;     % PM height (m) 
hmod=6e-3;   % modulator height (m) 

  
R1=50e-3; % stator outer radius (m) 
R2=R1+gi+hmod+go; % inner radius of PMs (m) 
Rav=(R1+R2)/2; % average radius of modulators (m) 

  
slot=36; % number of stator slots 
mm=3; % slot per pole per phase (distributed winding) 
gamma=ps*2*pi/slot; % slot pitch (electrical degrees) 
kd=sin(mm*gamma/2)/(mm*sin(gamma/2)); % distribution factor 
kp=1; % pitch factor 
kw=kp*kd; % winding factor 

  
w=R1*2*pi/slot; % slot pitch (m) 
ws=2e-3; % slot opening (m) 
kc=( 1-(ws/w)+(4*gi/(pi*w))*log(1+pi*ws/(4*gi)) )^(-1); %Carter's 

coefficient 

  
gie=kc*gi; %effective air-gap (m) 
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g_diff=gie-gi; % g-difference 
R1=R1-g_diff; % reducing the stator outer radius by g-diffrence (m) 
Rav_t=(R1+R2)/2; % average radius of torque calculations (m) 

  
L=50e-3; % axial length (m) 

  
Br=1.15; % residual flux of PMs (T) 
u0=4*pi*1e-7; 
M0=Br/u0; % PM Magnetization 

  
T_mod=2*pi/(2*pmod); % modulator arc (rad) 
wmod=Rav*T_mod; % modulator width (m) 

  
% switching between the two flux tube models 
if hmod<(pi*wmod/2) 

     
    % Model A 
    Pmin=u0/(gie+hmod+go+hm); 
    Pmid=(u0/hmod)*log(1+hmod/(gie+go+hm)); 
    Pmax=u0/(gie+go+hm); 

  
    dt=hmod/(pi*Rav); 
    P0=(1/2)*(Pmax+Pmin)+(pmod*dt/pi)*(Pmid-Pmin); 
    P1=(2/pi)*(Pmax-Pmid)+(2/pi)*(Pmid-Pmin)*sin(pi/2+pmod*dt); 
    disp('model A') 
else 

     
    % Model B 
    Pmin=(2*u0/(pi*wmod))*log(1+pi*wmod/(2*(gie+go+hm))); 
    Pmax=u0/(gie+go+hm); 

  
    P0=(1/2)*(Pmax+Pmin); 
    P1=(1/2)*(4/pi)*(Pmax-Pmin); 
    disp('model B') 
end 

  
beta=0:0.01:pi; % torque angle (rad) 

  
Tmax=(3/2)*(4/pi)*(pm/ps)*(Br/u0)*R2*L*kw*N*Is*hm*P1*sin(pm*T_pm/2); % 

maximum torque 
Torque=-Tmax*sin(beta); % torque angle curve 

  
disp(Tmax) 
plot(beta*((1/pm)*180/pi),-Torque) 
xlabel('Torque angle (mech deg)') 
ylabel('Torque (Nm)') 
grid; grid minor 

  

  
% spatial distribution of the radial field  
delta=0; % current angle 
zeta=0; % modulator intial angle 
omega=2*pi*f; 

  



193 

 

% [be careful about pm or pmod] 
omega_m=omega/pm; % mechanical speed (rad/sec)  
time=0; %time 

  
Fs1=(-3/2)*(4/pi)*(N*Is/(2*ps))*kw; 

  
theta=0:0.01:2*pi; % spatial angular position 
% spatial distribution of Br 
Br=Fs1*P0*sin(ps*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin((ps-pmod)*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin( (ps+pmod)*theta-omega*time-delta)... 
  +hm*M0*P0*cos(pm*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm-pmod)*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm+pmod)*theta-pm*omega_m*time-pm*zeta); 
figure 
plot((180/pi)*theta,Br) 
xlabel('theta (mech deg)') 
ylabel('B_r (T)') 
grid; grid minor 

  
% for TTF analysis using simulink 
Bfield.time = theta'; 
Bfield.signals.values = Br'; 
Ts=theta(2)-theta(1); 

  
t_stop=theta(end); 

  
T=(theta(end)-theta(1)); 
freq=1/T; 
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Appendix I 

Matlab code for Analytical modeling of a radial-
flux magnetically-geared machine with rotating 
PMs using the flux-tube based permeance model 
and Lorentz law on Amperian current of PMs 
 

% Analytical modeling of magnetically-geared machines 
% rotating PMs, flux-tube model 
% Sajjad Mohammadi @ MIT, 2AM, May 23, 2019 
clc;clear; 

  
Irms=2.1; % RMS current of stator (A) 
Is=sqrt(2)*Irms; % peak current of stator (A) 
N=180; % total number of turns in a phase winding 
f=50; % electrical frequency (Hz) 

  
ps=2; % stator pole pair 
pm=11; % PM pole pair 
pmod=ps+pm; % modulator pole pair 

  
alpha=0.9; % PM ratio 
T_pm=alpha*2*pi/(2*pm); % PM arc 

  
gi=1e-3;    % inner air-gap (m) 
go=1e-3;   % outer air-gap (m) 

  
hm=5e-3;     % PM height (m) 
hmod=6e-3;   % modulator height (m) 

  
R1=50e-3; % stator outer radius (m) 
R2=R1+gi+hmod+go; % inner radius of PMs (m) 
Rav=(R1+R2)/2; % average radius of modulators (m) 

  
slot=36; % number of stator slots 
mm=3; % slot per pole per phase (distributed winding) 
gamma=ps*2*pi/slot; % slot pitch (electrical degrees) 
kd=sin(mm*gamma/2)/(mm*sin(gamma/2)); % distribution factor 
kp=1; % pitch factor 
kw=kp*kd; % winding factor 

  
w=R1*2*pi/slot; % slot pitch (m) 
ws=2e-3; % slot opening (m) 
kc=( 1-(ws/w)+(4*gi/(pi*w))*log(1+pi*ws/(4*gi)) )^(-1); %Carter's 

coefficient 

  
gie=kc*gi; %effective air-gap (m) 
g_diff=gie-gi; % g-difference 
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R1=R1-g_diff; % reducing the stator outer radius by g-diffrence (m) 
Rav_t=(R1+R2)/2; % average radius of torque calculations (m) 

  
L=50e-3; % axial length (m) 

  
Br=1.15; % residual flux of PMs (T) 
u0=4*pi*1e-7; 
M0=Br/u0; % PM Magnetization 

  
T_mod=2*pi/(2*pmod); % modulator arc (rad) 
wmod=Rav*T_mod; % modulator width (m) 

  
% switching between the two flux tube models 
if hmod<(pi*wmod/2) 

     
    % Model A 
    Pmin=u0/(gie+hmod+go+hm); 
    Pmid=(u0/hmod)*log(1+hmod/(gie+go+hm)); 
    Pmax=u0/(gie+go+hm); 

  
    dt=hmod/(pi*Rav); 
    P0=(1/2)*(Pmax+Pmin)+(pmod*dt/pi)*(Pmid-Pmin); 
    P1=(2/pi)*(Pmax-Pmid)+(2/pi)*(Pmid-Pmin)*sin(pi/2+pmod*dt); 
    disp('model A') 
else 

     
    % Model B 
    Pmin=(2*u0/(pi*wmod))*log(1+pi*wmod/(2*(gie+go+hm))); 
    Pmax=u0/(gie+go+hm); 

  
    P0=(1/2)*(Pmax+Pmin); 
    P1=(1/2)*(4/pi)*(Pmax-Pmin); 
    disp('model B') 
end 

  
beta=0:0.01:pi; % torque angle (rad) 

  
Tmax=(3/2)*(4/pi)*(R2*hm+hm^2)*pm/ps*(Br/u0)*L*kw*N*Is*P1*sin(pm*T_pm/2

); %lorentz law 
Torque=-Tmax*sin(beta); % torque angle curve 

  
disp(Tmax) 
plot(beta*((1/pm)*180/pi),-Torque) 
xlabel('Torque angle (mech deg)') 
ylabel('Torque (Nm)') 
grid; grid minor 

  

  
% spatial distribution of the radial field  
delta=0; % current angle 
zeta=0; % modulator intial angle 
omega=2*pi*f; 

  
% [be careful about pm or pmod] 
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omega_m=omega/pm; % mechanical speed (rad/sec)  
time=0; %time 

  
Fs1=(-3/2)*(4/pi)*(N*Is/(2*ps))*kw; 

  
theta=0:0.01:2*pi; % spatial angular position 
% spatial distribution of Br 
Br=Fs1*P0*sin(ps*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin((ps-pmod)*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin( (ps+pmod)*theta-omega*time-delta)... 
  +hm*M0*P0*cos(pm*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm-pmod)*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm+pmod)*theta-pm*omega_m*time-pm*zeta); 
figure 
plot((180/pi)*theta,Br) 
xlabel('theta (mech deg)') 
ylabel('B_r (T)') 
grid; grid minor 

  
% for TTF analysis using simulink 
Bfield.time = theta'; 
Bfield.signals.values = Br'; 
Ts=theta(2)-theta(1); 

  
t_stop=theta(end); 

  
T=(theta(end)-theta(1)); 
freq=1/T; 
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Appendix J 

Matlab code for Analytical modeling of a radial-
flux magnetically-geared machine with rotating 
PMs using the simplified permeance model and 
Maxwell stress tensor 
 

The code can be found below: 

% Analytical modeling of magnetically-geared machines 
% rotating PMs, simplified model 
% Sajjad Mohammadi @ MIT, 2AM, May 23, 2019 
clc;clear; 

  
Irms=2.1; % RMS current of stator (A) 
Is=sqrt(2)*Irms; % peak current of stator (A) 
N=180; % total number of turns in a phase winding 
f=50; % electrical frequency (Hz) 

  
ps=2; % stator pole pair 
pm=11; % PM pole pair 
pmod=ps+pm; % modulator pole pair 

  
alpha=0.9; % PM ratio 
T_pm=alpha*2*pi/(2*pm); % PM arc 

  
gi=1e-3;    % inner air-gap (m) 
go=1e-3;   % outer air-gap (m) 

  
hm=5e-3;     % PM height (m) 
hmod=6e-3;   % modulator height (m) 

  
R1=50e-3; % stator outer radius (m) 
R2=R1+gi+hmod+go; % inner radius of PMs (m) 
Rav=(R1+R2)/2; % average radius of modulators (m) 

  
slot=36; % number of stator slots 
mm=3; % slot per pole per phase (distributed winding) 
gamma=ps*2*pi/slot; % slot pitch (electrical degrees) 
kd=sin(mm*gamma/2)/(mm*sin(gamma/2)); % distribution factor 
kp=1; % pitch factor 
kw=kp*kd; % winding factor 

  
w=R1*2*pi/slot; % slot pitch (m) 
ws=2e-3; % slot opening (m) 
kc=( 1-(ws/w)+(4*gi/(pi*w))*log(1+pi*ws/(4*gi)) )^(-1); %Carter's 

coefficient 
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gie=kc*gi; %effective air-gap (m) 
g_diff=gie-gi; % g-difference 
R1=R1-g_diff; % reducing the stator outer radius by g-diffrence (m) 
Rav_t=(R1+R2)/2; % average radius of torque calculations (m) 

  
L=50e-3; % axial length (m) 

  
Br=1.15; % residual flux of PMs (T) 
u0=4*pi*1e-7; 
M0=Br/u0; % PM Magnetization 

  
% Simplest Model 
Pmax=u0/(gi+go+hm); 
Pmin=u0/(gi+hmod+go+hm); 
P0=(1/2)*(Pmax+Pmin); 
P1=(1/2)*(4/pi)*(Pmax-Pmin); 

  
beta=0:0.01:pi; % torque angle (rad) 

  
Tmax=(3/2)*(4/pi)*(pm/ps)*(Br/u0)*Rav_t*L*kw*N*Is*hm*P1*sin(pm*T_pm/2); 

% maximum torque 
Torque=-Tmax*sin(beta); % torque angle curve 

  
disp(Tmax) 
plot(beta*((1/pm)*180/pi),-Torque) 
xlabel('Torque angle (mech deg)') 
ylabel('Torque (Nm)') 
grid; grid minor 

  
% spatial distribution of the radial field  
delta=0; % current angle 
zeta=0; % modulator intial angle 
omega=2*pi*f; 

  
% [be carful about pm or pmod] 
omega_m=omega/pm; % mechanical speed (rad/sec)  
time=0; %time 

  
Fs1=(-3/2)*(4/pi)*(N*Is/(2*ps))*kw; 

  
theta=0:0.01:2*pi; % spatial angular position 
% spatial distribution of Br 
Br=Fs1*P0*sin(ps*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin((ps-pmod)*theta-omega*time-delta)... 
  +(1/2)*Fs1*P1*sin( (ps+pmod)*theta-omega*time-delta)... 
  +hm*M0*P0*cos(pm*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm-pmod)*theta-pm*omega_m*time-pm*zeta)... 
  +(1/2)*hm*M0*P1*cos((pm+pmod)*theta-pm*omega_m*time-pm*zeta); 
figure 
plot((180/pi)*theta,Br) 
xlabel('theta (mech deg)') 
ylabel('B_r (T)') 
grid; grid minor 
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Appendix K 

Matlab code for parametric analysis 
 

For sweeping over hmod, in rotating modulator case the code can be found below. It can 

simply be generalized to other parameters. The analysis is in the condition of a constant 

Ro. 

% parametric analysis if [Ro is constant] 

  
% magnetically-geared machines 
% rotating modulators, flux-tube model 
% Sajjad Mohammadi @ MIT, 2AM, May 24, 2019 
clc;clear; 

  
%   x1 x2  x3 x4   x5   x6    x7   x8   x9    x10    x11   x12    x13 
%x=[ps pm  f  N    gi   go   hmod  hm  alpha  Br    Irms   Ro      L] 
x =[2  11 50 180  1e-3 1e-3  6e-3 5e-3  0.9   1.1   2.1   58e-3  50e-

3]; 
% all parameters below are equeal to  corresponding element in  vector 

x... 
% if we want to sweep a parameter it will not be equal to the vector... 
% element but will be equal to the sweep variable 

  
xx=(3:0.1:30)*1e-3; % hmod 
ii=1; 
for val=xx 

  
Irms=x(11); % RMS current of stator (A) 
Is=sqrt(2).*Irms; % peak current of stator (A) 
N=x(4); % total number of turns in a phase winding 
f=x(3); % electrical frequency (Hz) 

  
ps=x(1); % stator pole pair 
pm=x(2); % PM pole pair 
pmod=ps+pm; % modulator pole pair 

  
alpha=x(9); % PM ratio 
T_pm=alpha.*2.*pi/(2.*pm); % PM arc 

  
gi=x(5);    % inner air-gap (m) 
go=x(6);   % outer air-gap (m) 

  
hm=x(8);     % PM height (m) 

  
hmod=val; 
% hmod=x(7);   % modulator height (m) 

  
R2=x(12); % stator outer radius (m) 
R1=R2-(gi+hmod+go); % inner radius of PMs (m) 
Rav=(R1+R2)/2; % average radius of modulators (m) 
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slot=36; % number of stator slots 
mm=3; % slot per pole per phase (distributed winding) 
gamma=ps.*2.*pi/slot; % slot pitch (electrical degrees) 
kd=sin(mm.*gamma/2)/(mm.*sin(gamma/2)); % distribution factor 
kp=1; % pitch factor 
kw=kp.*kd; % winding factor 

  
w=R1.*2.*pi/slot; % slot pitch (m) 
ws=2e-3; % slot opening (m) 
kc=( 1-(ws/w)+(4.*gi/(pi.*w)).*log(1+pi.*ws/(4.*gi)) )^(-1); %Carter's 

coefficient 

  
gie=kc.*gi; %effective air-gap (m) 
g_diff=gie-gi; % g-difference 
R1=R1-g_diff; % reducing the stator outer radius by g-diffrence (m) 
Rav_t=(R1+R2)/2; % average radius of torque calculations (m) 

  
L=x(13); % axial length (m) 

  
Br=x(10); % residual flux of PMs (T) 
u0=4.*pi.*1e-7; 
M0=Br/u0; % PM Magnetization 

  
T_mod=2.*pi/(2.*pmod); % modulator arc (rad) 
wmod=Rav.*T_mod; % modulator width (m) 

  
% switching between the two flux tube models 
if hmod<(pi.*wmod/2) 

     
    % Model A 
    Pmin=u0/(gie+hmod+go+hm); 
    Pmid=(u0/hmod).*log(1+hmod/(gie+go+hm)); 
    Pmax=u0/(gie+go+hm); 

  
    dt=hmod/(pi.*Rav); 
    P0=(1/2).*(Pmax+Pmin)+(pmod.*dt/pi).*(Pmid-Pmin); 
    P1=(2/pi).*(Pmax-Pmid)+(2/pi).*(Pmid-Pmin).*sin(pi/2+pmod.*dt); 
    disp('model A') 
else 

     
    % Model B 
    Pmin=(2.*u0/(pi.*wmod)).*log(1+pi.*wmod/(2.*(gie+go+hm))); 
    Pmax=u0/(gie+go+hm); 

  
    P0=(1/2).*(Pmax+Pmin); 
    P1=(1/2).*(4/pi).*(Pmax-Pmin); 
    disp('model B') 
end 

  
beta=0:0.01:pi; % torque angle (rad) 

  
Ts=(3/2)*(4/pi)*(R1)*(Br/u0)*L*kw*N*Is*hm*P1*sin(pm*T_pm/2); 
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Tm=(3/2)*(4/pi)*(R2*hm+hm^2)*pm/ps*(Br/u0)*L*kw*N*Is*P1*sin(pm*T_pm/2); 

%lorentz law 

  
Tmax(ii)=Ts+Tm; 
ii=ii+1; 
end 

  
plot(xx,Tmax) 
xlabel('h_m_o_d') 
ylabel('Torque (Nm)') 
axis tight 
grid 

 

The result is shown in Fig. K.1 

 

Figure K.1: Parametric analysis over hmod 
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