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Abstract

Age of information is a recently proposed metric that measures the freshness of in-
formation at a destination receiving data from an information source. It has become
popular in the networking and queuing community, especially for studying delivery
of real time status updates. In this thesis, we explore applications of AoI to mobile
and adhoc networks. More specifically, we look at two problems - 1) Age optimal
information collection and dissemination from locations arranged on a graph, using
a mobile agent that travels between them, and 2) Age-based transmission schemes
for a group of mobile agents which need to continuously exchange information while
moving around in a cell partitioned network. We also derive expressions for age met-
rics for discrete time queuing systems under various service disciplines, and service
and arrival time distributions.
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Chapter 1

Introduction

Consider a system in which a source generates updates that traverse a network to

reach the destination. The goal of the system is to ensure that the destination

gets fresh information. Age of information (AoI), a destination centric metric of

information freshness, was first introduced in [1]. It measures the time that has

elapsed since the last received fresh update was generated at the source. Over the

past few years, a rapidly growing body of work has analyzed AoI for various queuing

systems [1–10] and wireless networks [11–17].

Throughout this work, we assume a

discrete-time slotted system. Depending

on the setting, we consider active sources

which can generate fresh packets in ev-

ery time-slot, as well as uncontrollable

sources which generate packets accord-

ing to some random process. The age

process 𝐴(𝑡) at any destination increases by 1 in every time-slot in which it does not
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Time (slotted)

Age Process

H1

1 

H1

H3

H2

New update delivered 

Age A(t)

H3

Figure 1-1: Age 𝐴(𝑡) evolution with time 𝑡 for an active source with inter-update
intervals 𝐻1, 𝐻2, 𝐻3, and so on.

receive a useful update. For every useful update, the age drops to the amount of the

time that has elapsed since the delivered update was generated at the source.

We track the age process 𝐴(𝑡) as the value of AoI at the beginning of every time-

slot. Assume that the 𝑖th packet is generated at time 𝑡𝑖. Then, 𝐴(𝑡) satisfies the

following recursion

𝐴(𝑡 + 1) =

⎧⎪⎨⎪⎩𝐴(𝑡) + 1, if no delivery at time 𝑡

min{𝑡− 𝑡𝑖, 𝐴(𝑡)} + 1, if 𝑖 is delivered.

Note that for an active source, the age always drops to 1 upon delivery of an update,

since only the most recent update is delivered. See Figures 1-1 and 1-2 for examples

of age evolution for active and uncontrollable sources.
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Age Process
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t1' ­ t1
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Figure 1-2: Age 𝐴(𝑡) evolution with time 𝑡 for an uncontrollable source with packet
generation times 𝑡1, 𝑡2, 𝑡3, ... and packet delivery times 𝑡′1, 𝑡′2, 𝑡′3, ...

1.1 Motivation for Age of Information

Age of information is extremely useful as a metric for freshness in networks where

the main concern is real time delivery of status updates. There has been a rapidly

growing body of literature applying AoI as a metric of interest to various networking

applications, e.g. cache updating [18], networked control systems [19, 20], networks

with real-time traffic such as wireless sensor networks or real time processing in

augmented and virtual reality systems, [12–17,21,22], and vehicular networks [11].

AoI is a distinct notion from throughput and delay, the more traditional QoS

metrics used in networking literature. and leads to different scheduling policies as

compared to schemes that attempt to minimize throughput and delay. We will see

this in detail later.

15



1.2 Metrics for Age of Information

It is common in AoI literature to look at both peak age and average age. The peak

age 𝐴p for an age process 𝐴(𝑡) is the time average of its peak values. Observe that

the age process 𝐴(𝑡) reaches peak in the time-slot that it receives a useful packet

delivery, since the age drops in the next time-slot. Thus, the expression for peak age

is given by

𝐴p , lim sup
𝑇→∞

𝑡=𝑇∑︀
𝑡=1

𝐴(𝑡)1{update delivered at time 𝑡}

𝑡=𝑇∑︀
𝑡=1

1{update delivered at time 𝑡}

.

The average age 𝐴ave is just the time average of the entire age process, and is given

by the following expression

𝐴ave , lim sup
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

𝐴(𝑡).

In the next section we discuss the difference between AoI for discrete time systems

as we have introduced above and AoI for continuous time system, as is common in

literature.

1.3 AoI for discrete time Queues

As discussed earlier, age of information (AoI) has been analyzed for a large variety

of queuing systems over the past few years. Here, we provide a brief survey of these

results. AoI was first studied for the first come first serve (FCFS) M/M/1, M/D/1,

and D/M/1 queues in [1]. AoI for M/M/2 and M/M/∞ was studied in [2,3], in order

to demonstrate the advantage of having parallel servers. In [8], age was analyzed for

16



parallel last come first serve (LCFS) servers, with preemptive service. Age analysis

for queues with packet deadlines, in which a packet deletes itself after its deadline

expiration, is considered in [9, 10, 23]. In [24], age has been analyzed under packet

transmission errors. In [4], AoI for the LCFS queue with Poisson arrivals and Gamma

distributed service was considered. In [5, 6], the LCFS queue scheduling discipline,

with preemptive service, is shown to be age optimal, when the service times are

exponentially distributed.

More recently, a complete characterization of age distribution for FCFS and LCFS

queues, with and without preemption, was done in [7, 25]. In [26], it is proved that

a heavy tailed service minimizes age for LCFS queue under preemptive service and

the G/G/∞ queue.

As is evident from the literature, AoI has thus far been analyzed in detail for con-

tinuous time queuing models. Discrete time queuing systems often arise in practice,

especially in wireless networks [15], and are the focus of this thesis. In [15], the au-

thors derived peak and average age expressions for the discrete time FCFS G/Geo/1

queue. The result lead to the derivation of separation principle in scheduling and

rate control for age minimization in wireless networks.

In Chapter 2, we analyze age metrics for various discrete time queuing models

using the results and analytical tools developed in [7, 25, 26]. We first consider the

FCFS Geo/G/1 queue, with and without vacations. When taking vacations, we note

that taking deterministic vacations, is the best resort towards minimizing age. We

then derive peak and average age expressions for the discrete time LCFS G/G/1 with

preemptive service. We build upon proof techniques from earlier results [15, 26, 27],

and find that observations from the continuous time scenario carry forward to the

discrete time scenario.

In the next two sections, we introduce the two problems that are the main focus

17



of this thesis and discuss related works in literature.

1.4 Mobility on a Graph

Many emerging applications depend on the collection and delivery of status up-

dates between a set of ground terminals and a central terminal using mobile agents.

Examples include: measuring traffic at road intersections [28], temperature, and pol-

lution in cities [29], ocean monitoring using underwater autonomous vehicles [30],

and surveillance using UAVs [31]. All of these applications depend upon regular sta-

tus updates, that are communicated in a timely manner, so as to keep the central

terminal and the ground terminals updated with fresh information.

Age of Information (AoI), the metric described earlier, captures timeliness of re-

ceived information [1,15,32]. Unlike packet delay, AoI measures the lag in obtaining

information at the destination node, and is therefore suited for applications involving

gathering or dissemination of time sensitive updates. Age of information, at a desti-

nation, is defined as the time that elapsed since the last received information update

was generated at the source. AoI, upon reception of a new update packet, drops to

the time elapsed since generation of the packet, and grows linearly otherwise.

We consider the problem of AoI minimization in gathering and dissemination

of information updates, between a set of ground terminals and a central terminal.

The information updates can be as small as a single packet containing temperature

information or a high fidelity image or a video file. The ground terminals are equipped

with low power transmitters, and a mobile agent is used to gather and disseminate

information.

The age or freshness of information gathered and disseminated depends on the

trajectory of the mobile agent, whose mobility is constrained to a mobility graph

18



𝐺 = (𝑉,𝐸). The mobile agent can move from ground terminal 𝑖 to ground terminal

𝑗 only if (𝑖, 𝑗) ∈ 𝐸. This model can be used to capture the fact that the agent may

not be able to move between any arbitrary locations due to topological limitations.

We discuss the system model and our results in detail in Chapter 3.

1.4.1 Related Work

The problem of persistent monitoring in dynamic environments has been considered

in [33–35] using tools from optimal control. These works focus on minimizing uncer-

tainty when source locations are time varying, rather than timely monitoring over a

fixed set of locations. There is also a large body of work focused on planning trajecto-

ries for a mobile agent to optimize traditional performance metrics in wireless sensor

networks; primarily throughput, delay and network lifetime; by leveraging variants

of the Travelling Salesman Problem (TSP) [36–40]. We observe connections to this

line of work, when we establish the optimality of a Hamiltonian cycle trajectory in

a symmetric setting.

Optimal sampling trajectories for signals using mobile agents have been con-

sidered in [41] and [42]. However, these works deal with sampling rates and perfect

reconstruction of time invariant fields rather than freshness of information for sources

generating real-time updates.

Closer to our work in this thesis are [43] and [44], in which some approximation

trajectories to minimize maximum latency on metric graphs were proposed. In [45],

the authors consider trajectory planning for a mobile agent to minimize AoI. They

obtain the best permutation of nodes for the mobile agent to visit in sequence, given

Euclidian distances between the nodes. In our work, mobility is constrained by a

general graph 𝐺, and we seek the optimal trajectory over the space of all trajectories
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allowed on this graph 𝐺, not just permutations of nodes.

In the following section, we introduce a setting with multiple mobile nodes in an

ad-hoc wireless network.

1.5 AoI in Mobile Ad-Hoc Networks

Consider a situation in which mobile nodes need to be aware of each other’s state

information (position, velocity, etc.) or global information of the environment to

make decisions. These decisions crucially depend on the dynamic nature of the

environment, for example, mobile robots cooperating to perform a task over some

region, or self-driving cars moving safely across a city without colliding, or mobile

nodes traversing a time-changing environment and delivering information to a base

station.

To achieve such a goal, it is crucial to have continuous status updates between

mobile nodes and it is plausible that the overall system performance depends on how

frequently nodes/destinations receive fresh information about the dynamic phenom-

ena. Age of Information is a metric that helps us capture precisely this idea of fresh

information, and guides the design of communication protocols that achieve better

system performance. In Chapter 4, we discuss the scaling of AoI in a cell partitioned

network with multiple mobile agents under i.i.d. mobility.

1.5.1 Related Work

The motivation for this work comes from the well established line of work on ca-

pacity and delay scaling and trade-off analysis in adhoc wireless networks with and

without mobility. We provide a brief survey of the major works along these lines.
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For a complete survey, see [46]. While results in these settings typically have sim-

plified modelling assumptions, the general scaling and achievability results provide

key insight into designing better practical wireless networks and evaluating their

performance.

The study of capacity scaling in ad-hoc wireless networks begins with the sem-

inal work by Gupta and Kumar in [47], where they develop the protocol model for

analyzing wireless networks. In this work, they assume 𝑛 identical randomly located

nodes, each capable of transmitting at a fixed rate and using a fixed range, forming

a wireless network. They derive fundamental capacity limits in this unicast network

model and develop simple schemes to achieve order optimal throughput rates per

node. However, their model consists of fixed nodes and does not take mobility into

account.

Grossglauser and Tse extend the model to include mobility in [48] and [49]. They

come to the conclusion that mobility drastically changes throughput scaling in ad-

hoc wireless networks, and it is in fact possible to have constant throughput per

node even as the number of nodes grows very large. They develop a simple two-hop

relaying scheme to achieve this throughput.

Throughput and delay scaling, and the tradeoff between them were analyzed

in [50–53] under simple mobility models, like i.i.d. mobility. Similar results were

derived for Brownian mobility in [54]. We will focus on the model developed in [51]

- using cell partitioned networks with i.i.d. or Markov mobility.

Observe that all the works that we have discussed till now only dealt with unicast

networks, i.e. 𝑛 nodes are divided into 𝑛/2 source-destination pairs, each with their

own traffic. Capacity and delay scaling in a cell partitioned broadcast mobile net-

work, where all nodes receive traffic from a set of sources, was analyzed in [55]. The

authors observed that there is nearly no capacity-delay tradeoff in such networks,
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i.e. one can achieve near order optimal throughput and delay simultaneously. This

motivates our study of age of information in mobile ad-hoc networks. We consider

a broadcast scenario similar to [55], a cell partitioned network similar to [51], and

try to find AoI optimal packet forwarding schemes along with AoI scaling with the

network size.

There has been prior work on AoI scaling in wireless networks, primarily [56],

where the authors consider fixed nodes under the unicast scenario similar to the

Gupta-Kumar model and analyze AoI scaling. [57] discusses the age of gossip mes-

sages in a mobile ad-hoc network using spatial mean field analysis, while [11] discusses

AoI in vehicular networks as a useful metric for analyzing performance. We discuss

our system model and results in detail in Chapter 4.

1.6 Outline and Contributions

The remainder of this thesis is organized as follows

∙ Chapter 2 describes age of information for discrete time queues. We establish

a general relationship between AoI for a discrete time slotted system with AoI

in a corresponding continuous time queuing system. We derive closed form ex-

pressions for discrete time AoI for various arrival and service time distributions,

and queuing disciplines, extending results on continuous time AoI.

∙ Chapter 3 describes the mobility on a graph problem. First, we introduce

the information gathering problem. We consider the design of trajectories for

the mobile agent to minimize peak and average age. We consider the space of

randomized trajectories, in which the mobile agent traverses edges according to

a random walk on the mobility graph 𝐺. We show that a randomized trajectory
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is in fact peak age optimal, and that it can be obtained in polynomial time

using the Metropolis-Hastings algorithm. We then prove that solving for the

average age optimal trajectory is NP-hard, in a symmetric setting, and propose

a heuristic randomized trajectory that is simultaneously peak age optimal and

factor-8ℋ average age optimal, where ℋ is the mixing time of the randomized

trajectory on 𝐺. The factor ℋ can scale with the graph size, especially if

the graph is not well connected. Thus, we propose an age-based trajectory,

in which the mobile agent uses the current AoI to determine its motion, and

show that it is factor-2 optimal in a symmetric setting. We then introduce the

information dissemination problem. Here, the central terminal sends updates

for each ground terminal via the mobile agent. The mobile agent queues these

update packets in a first-come-first-serve (FCFS) queue, and delivers them to

the respective ground terminal when the mobile agent reaches it. We, now,

not only have to design the trajectory of the mobile agent, but also determine

the optimal rate at which the central terminal generates information updates

for each ground terminal. We show that the peak age optimal randomized

trajectory of the information gathering problem, along with a simple update

generation rate, is at most a factor-𝑂(ℋ) optimal, in both peak and average

age.

∙ Chapter 4 considers the problem of characterizing AoI in a mobile wireless ad-

hoc network setting. We discuss the cell partitioned model with i.i.d. mobility.

We then introduce the single-source model and provide an optimal broadcast

policy. We also demonstrate scaling of AoI with the size of the network in three

different regimes. We then develop a heuristic policy for the multiple source

setting and provide numerical results comparing different forwarding policies.
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Chapter 2

AoI for Discrete Time Queues

2.1 Relating Continuous and Discrete AoI

As discussed earlier, we track the age process 𝐴(𝑡) as the value of AoI at the beginning

of every time-slot. Assume that the 𝑖th packet is generated at time 𝑌𝑖. Then, 𝐴(𝑡)

satisfies the following recursion

𝐴(𝑡 + 1) =

⎧⎪⎨⎪⎩𝐴(𝑡) + 1, if no service at time 𝑡

min{𝑡− 𝑌𝑖, 𝐴(𝑡)} + 1, if 𝑖 is served.

Both peak and average age are defined as usual. The peak age 𝐴p is the time

average of age values at time instants when there is useful packet delivery. The

average age 𝐴ave is the time-average of the entire age process 𝐴(𝑡). Note that when

25



a useful packet delivery occurs in time-slot 𝑡, then 𝐴(𝑡 + 1) ≤ 𝐴(𝑡). Thus,

𝐴p , lim sup
𝑇→∞

𝑡=𝑇∑︀
𝑡=1

𝐴(𝑡)1{𝐴(𝑡+1)≤𝐴(𝑡)}

𝑡=𝑇∑︀
𝑡=1

1{𝐴(𝑡+1)≤𝐴(𝑡)}

, and (2.1)

𝐴ave , lim sup
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

𝐴(𝑡). (2.2)

Now, consider a continuous time queue corresponding to the original discrete

time system. In this queue, we assume the interval [𝑡, 𝑡 + 1) to correspond to the 𝑡𝑡ℎ

time-slot in our discrete system. Packets arriving in our original discrete system at

time-slot 𝜏 arrive at time 𝑡 = 𝜏 in the new system, while packets departing at time-

slot 𝜏 in the discrete system actually depart at time 𝑡 = 𝜏 + 1. For this continuous

time system, we define the age process 𝐴cont.(𝑡) as a continuous time process that

increases linearly at a rate of 1, until it receives a fresh update, and then drops to

the age of the received update. That is,

𝐴cont.(𝑡) = 𝑡− 𝑌𝑖,

where 𝑌𝑖 is the time at which packet 𝑖 finished processing and is the freshest packet

to have finished processing. Let the age peaks of this process be 𝐴1, 𝐴2, ... Then, we

can define peak and average age for this continuous process as follows -

𝐴p
cont. , lim sup

𝑁→∞

𝑡=𝑁∑︀
𝑛=1

𝐴𝑛

𝑁
, and (2.3)
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Figure 2-1: Age 𝐴(𝑡) evolution over time 𝑡 along with the corresponding continuous
age process. 𝑋𝑖 are inter-arrival times, 𝑆𝑖 are service times for packet 𝑖.

𝐴ave
cont. , lim sup

𝑇→∞

1

𝑇

∫︁ 𝑇

𝑡=1

𝐴cont.(𝑡). (2.4)

We now relate the expressions of peak and average age in the discrete time sce-

nario to the corresponding continuous time scenario.

Theorem 1. The peak and average age for any discrete time queue, assuming

that the peak and average age of the corresponding continuous time age process
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are well defined, is given by

𝐴p = 𝐴p
cont. − 1, (2.5)

and

𝐴ave = 𝐴ave
cont. −

1

2
. (2.6)

Proof. An explanation for this result is easy to see via a graphical argument. Observe

in Figure 2-1 that the peaks of 𝐴(𝑡) and 𝐴cont.(𝑡) always differ by 1. This is true

regardless of the service or arrival time distributions and the queuing discipline. Thus

if the value 𝐴p
cont. is well defined, 𝐴p is also well defined and is given by Equation 2.5.

Similarly, consider any time interval [𝑡, 𝑡 + 1). The discrete age process stays

constant in this time interval at 𝐴(𝑡) and the area under the curve is just 𝐴(𝑡). The

continuous age process 𝐴cont.(𝑡) increases from 𝐴(𝑡) to 𝐴(𝑡) + 1 in any such interval,

and the area under it is given by 𝐴(𝑡) + 1
2

since it has an added triangle of area 1
2
.

This implies that

∫︁ 𝑇+1

𝑡=1

𝐴cont.(𝑡) =
𝑇∑︁
𝑡=1

∫︁ 𝑡+1

𝑡

𝐴cont.(𝑡) =
𝑇∑︁
𝑡=1

(𝐴(𝑡) +
1

2
). (2.7)

Assuming that the continuous time average age 𝐴ave
cont. is well defined, we can

divide Equation 2.7 by 𝑇 + 1 and take the limit supremum as 𝑇 goes to ∞ to get

Equation 2.6. This completes our proof.

Theorem 1 tells us that for the analysis for AoI in discrete time queues, it is

sufficient to analyze the AoI of a corresponding continuous time queuing system

with the same service and arrival distributions, and the same queuing discipline. As
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discussed in Section 1.3, analysis for continuous time queuing systems has already

been done in a variety of settings and can thus be directly applied to the discrete time

setting. We discuss closed form expressions for AoI in a few discrete time systems in

the following sections.

2.2 Geo/G/1 Queue

Consider a discrete time Geo/G/1 queue, where an arrival occurs at time 𝑡 with

probability 𝜆 in an i.i.d. fashion, while the service times 𝑆 are generally distributed

with mean E [𝑆] = 1/𝜇. The arrival process is thus i.i.d. geometric with parameter

𝜆, and both the arrival interval as well as service times are positive integers.

According to our convention, if the service time of a packet is 1, then it gets served

in the same time-slot as the one in which it was generated.

We obtain expressions for peak and average age for this discrete time Geo/G/1

queue. Observe that this corresponds to the FCFS G/G/1 setting analyzed in [25],

but with the same arrival time distribution (i.i.d. geometric) and service time dis-

tribution, albeit with support on positive integers.

Theorem 2. The peak and average age for the discrete time Geo/G/1 queue are

given by

𝐴p =
1

𝜆
+

1

𝜇
+

𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
− 1, (2.8)

and

𝐴ave =
1

𝜇
+

(1 − 𝜆)(1 − 𝜌)

𝜆𝐿𝑆(1 − 𝜆)
+

𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
, (2.9)

where 𝐿𝑆(𝑥) , E[𝑥𝑆] is the probability generating function of 𝑆 and 𝜌 = 𝜆
𝜇
< 1.
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Proof. Using Theorem 1, we can use the expression for peak age derived for the

corresponding continuous time FCFS queue from [25]

𝐴p = 𝐴p
cont. − 1 = E [𝑇 + 𝑋] − 1, (2.10)

where 𝑇 denotes the time an update sends in the queue and 𝑋 is the inter-arrival

time between two updates. From [58, Chapter 4.6.1], for a Geo/G/1 queue we have

E[𝑇 ] =
𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
+

1

𝜇
, (2.11)

where 𝑆 denotes the service time. Substituting this and E [𝑋] = 1
𝜆

in (2.10), we

obtain the expression for peak age.

For average age, we again find the average age of the corresponding continuous

time system 𝐴ave
cont., and then use Theorem 1 to get the final result. For the derivation

of 𝐴ave
cont. see Appendix A.1.

We observe that the peak age expression for a Geo/G/1 queue is near identical

to that of the M/G/1 queue derived in [26] with an additional term −𝜌
2(1−𝜌)

− 1
2

added

due to the discretization. We use the probability generating function for analyzing

average age due to the discrete nature of the service distribution.

2.3 Geo/G/1 Queue with Vacations

Consider a discrete time Geo/G/1 queue with vacations, where an arrival occurs at

time 𝑡 with probability 𝜆 in an i.i.d. fashion, while the service times 𝑆 are generally

distributed positive integers with mean E [𝑆] = 1/𝜇. When the queue is empty, the

server takes i.i.d. vacations 𝑉 that are generally distributed with mean E [𝑉 ], until
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a new arrival enters the queue. Geo/G/1 queues with vacations were used to find

age optimal random walks for information dissemination on graphs in [27]. M/M/1

queues with vacations were also used to study the age of updates in a simple relay

network in [59]. We obtain an expression for peak age and bounds for average age

in the FCFS discrete time Geo/G/1 queue with vacations. Since the arrivals in any

time time-slot are i.i.d. Bernoulli, from now on we refer to this queue as a Ber/G/1

queue with vacations.

Theorem 3. The peak age for the discrete time Ber/G/1 queue with vacations

is given by

𝐴p =
1

𝜆
+

1

𝜇
+

𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
+

E [𝑉 2]

2E [𝑉 ]
− 3

2
, (2.12)

and the average age is upper bounded by the peak age

𝐴ave ≤ 𝐴p +
1

2
. (2.13)

Proof. As usual, the peak age for the corresponding continuous time FCFS queue is

given by [25]

𝐴p
cont. = E [𝑇 + 𝑋] . (2.14)

Given that vacation times are distributed i.i.d according to random variable 𝑉 , using

a residual time argument one can show that [60]

E[𝑇 ] =
𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
+

1

𝜇
+

E [𝑉 2]

2E [𝑉 ]
− 1

2
, (2.15)

where 𝑆 denotes the service time. We will prove this in detail in Section 3.3. Sub-
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stituting this and E [𝑋] = 1
𝜆

in (2.14), we obtain the expression for peak age using

Theorem 1.

For the corresponding continuous time FCFS queue, the average age 𝐴ave
cont. is

given by [1]

𝐴ave
cont. =

E[𝑋2
𝑛]/2 + E[𝑋𝑛𝑇𝑛]

E[𝑋𝑛]
=

1

𝜆
− 1

2
+ 𝜆E[𝑋𝑛𝑇𝑛], (2.16)

where 1
𝜆

= E[𝑋𝑛] and a packet arrives in every time-slot with probability 𝜆, 𝑋1, 𝑋2, ...

are i.i.d. packet inter-arrival times and 𝑇1, 𝑇2, ... are corresponding times spent in the

system by each packet. Observe that 𝑋𝑛 and 𝑇𝑛 are negatively correlated (see [25] for

a proof). Intuitively, a smaller inter-arrival time means more congestion and more

time spent in the system. Thus,

𝐴ave ≤ 1

𝜆
− 1

2
+ 𝜆E [𝑋𝑛]E [𝑇𝑛] = E [𝑋𝑛] + E [𝑇𝑛] − 1

2
= 𝐴p +

1

2
, (2.17)

where the last equality is due to Theorem 1. Thus, the average age is upper bounded

by the peak age of the system up to a constant.

We observe that the peak age for a Ber/G/1 queue with vacations splits into

two terms - the peak age for a Ber/G/1 queue without vacations, as derived in the

previous section, and a term that depends only on the vacations. From Figure 2-2,

we also observe numerically that the lighter the tail of the vacation distribution,

better the age. We see that deterministic vacations minimize average age, given a

fixed value of E [𝑉 ].
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Figure 2-3: Age 𝐴(𝑡) evolution in time 𝑡 for an LCFS queue with preemption.

2.4 LCFS Queues

Consider a discrete time LCFS G/G/1 queue with preemptive service, in which a

newly arrived packet gets priority for service immediately. We assume that packets

arrive at the beginning of a time-slot and leave at the end of a time-slot. Update

packets are generated according to a renewal process, with inter-generation times

distributed according to 𝑝𝑋 . The service times are distributed according to 𝑝𝑆, i.i.d.

across packets.

Using Theorem 1 and results from [26], we can directly obtain closed form ex-

pressions for peak and average age for general inter-generation and service time

distributions.
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Let 𝑋𝑖 denote the inter-generation time between the 𝑖th and (𝑖 + 1)th update

packet. Due to preemption, not all packets get serviced on time to contribute to

age reduction. We illustrate this in Figure 2-3. Observe that packets 2 and 3 arrive

before packet 4. However, packet 2 is preempted by packet 3, which is subsequently

preempted by packet 4. Thus, packet 4 is serviced before 2 and 3. Service of packet

2 and 3 (not shown in figure) does not contribute to age curve 𝐴(𝑡) because they

contain stale information.

Theorem 4. For the discrete time LCFS G/G/1 queue, the peak and average

age are given by

𝐴p
G/G/1 =

E [𝑋]

P [𝑆 ≤ 𝑋]
+

E [𝑆I𝑆≤𝑋 ]

P [𝑆 ≤ 𝑋]
− 1,

and

𝐴ave
G/G/1 =

1

2

E [𝑋2]

E [𝑋]
+

E [min (𝑋,𝑆)]

P [𝑆 ≤ 𝑋]
− 1

2
,

where 𝑋 and 𝑆 denotes the independent inter-generation and service time random

variables, respectively.

Proof. The proof follows directly from Theorem 1 and the age analysis of continuous

time LCFS G/G/1 queues in [26]. For a more direct proof of this result, see [61].

35



THIS PAGE INTENTIONALLY LEFT BLANK

36



Chapter 3

Mobility on a Graph

3.1 System Model

We consider a central terminal that needs to communicate with a set of ground

terminals 𝑉 . The ground terminals are equipped with low power, low range radio

communication devices, and cannot directly communicate with the central terminal,

or with each other. An autonomous mobile agent 𝑚, is used as a relay between

the central terminal and the ground terminals, while moving across the geographical

region where the ground terminals are spread.

The mobility of the agent is constrained by a mobility graph 𝐺 = (𝑉,𝐸), where

𝑚 can travel from ground terminal 𝑖 to ground terminal 𝑗 only if (𝑖, 𝑗) ∈ 𝐸. The

graph 𝐺, thus, constraints the set of allowable moves. We consider a time-slotted

system, with slot duration normalized to unity. In the duration of a time-slot, the

mobile agent stays at a ground terminal to gather or disseminate information, and

moves to any of its neighbours in 𝐺 for the next time-slot. The mobility graph can

be constructed from the limitations of a slot duration, distances between ground
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terminals, and speed of the mobile agent.

We consider two problems: information gathering and information dissemination.

In the information gathering problem, every time the mobile agent reaches a ground

terminal 𝑖 ∈ 𝑉 , the ground terminal sends a fresh update to the mobile agent, which

is immediately relayed to the central terminal. The age 𝐴𝑖(𝑡), at the central terminal,

for the ground terminal 𝑖 drops to 1. When the mobile agent is not at the ground

terminal 𝑖, the age 𝐴𝑖(𝑡) increases linearly. See Figure 3-1. The evolution of 𝐴𝑖(𝑡) in

the information gathering problem can be written as:

𝐴𝑖(𝑡 + 1) =

⎧⎪⎨⎪⎩𝐴𝑖(𝑡) + 1, if 𝑚(𝑡) ̸= 𝑖

1, if 𝑚(𝑡) = 𝑖

(3.1)

where 𝑚(𝑡) denotes the location of the mobile agent at time 𝑡. Note that the age

evolution depends on the trajectory that the mobile agent follows on the mobility

graph 𝐺.
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Figure 3-1: Information gathering problem: time evolution of age 𝐴𝑖(𝑡); 𝐻𝑘,𝑖 is the
𝑘th return time to terminal 𝑖.

In the information dissemination problem, the central terminal generates updates

for each ground terminal. The generated updates are then transmitted to the mobile

agent. The mobile agent queues updates received from the central terminal in a set

of 𝑉 FCFS queues, one for each ground terminal. The mobile agent delivers the

head-of-line update in queue 𝑖, to ground terminal 𝑖, when it reaches 𝑖. The central

terminal has no control over the FCFS queues on the mobile agent, however, it can

control the update generation rate 𝜆𝑖, for each ground terminal 𝑖.

The age 𝐴𝑖(𝑡), at the ground terminal 𝑖, increases by 1 every time the mobile

agent is not at 𝑖, or when it is at 𝑖 but has no updates to deliver. Otherwise, a

successful delivery of the head-of-line update occurs in time slot 𝑡, and the age 𝐴𝑖(𝑡)

drops to the age of the head-of-line update in queue 𝑖. See Figure 3-2. This evolution

39



t1'

Age Ai(t)

Time (slotted)

Age Process

t1 t2 t2' t3 t3' t4 t4'

t1' ­ t1 + 1

Agent m visits ground terminal i and
Qi(t) is not empty

t3' ­ t3 + 1

Figure 3-2: Information dissemination problem: time evolution of age 𝐴𝑖(𝑡); 𝑡𝑘, 𝑡
′
𝑘

are the generation and reception times of the 𝑘th status update for terminal 𝑖.

of age 𝐴𝑖(𝑡) can be written as:

𝐴𝑖(𝑡 + 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴𝑖(𝑡) + 1, if 𝑚(𝑡) ̸= 𝑖

𝐴𝑖(𝑡) + 1, if 𝑚(𝑡) = 𝑖 and 𝒬𝑖(𝑡) = ∅

𝑡−𝐺𝑖(𝑡) + 1, if 𝑚(𝑡) = 𝑖 and 𝒬𝑖(𝑡) ̸= ∅

, (3.2)

where 𝐺𝑖(𝑡) is the time of generation of the head of line packet in queue 𝑖, at time 𝑡,

and 𝒬𝑖(𝑡) denotes the set of packets in the mobile agent’s queue 𝑖 at time 𝑡.

3.1.1 Age Metrics

AoI is an evolving function of time. We consider two time average metrics of AoI.

Average age, for ground terminal 𝑖, is defined as the time averaged area under the
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age curve:

𝐴ave
𝑖 , lim sup

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

𝐴𝑖(𝑡). (3.3)

In Figures 3-1 and 3-2, we see that the age 𝐴𝑖(𝑡) peaks before a fresh update is

delivered. In the information gathering case, a fresh update is delivered every time

the mobile agent visits 𝑖, i.e. 𝑚(𝑡) = 𝑖. Whereas, in the information dissemination

case, a fresh update is delivered whenever 𝑚(𝑡) = 𝑖 and the queue 𝒬𝑖(𝑡) ̸= ∅. The

peak age 𝐴p
𝑖 , for ground terminal 𝑖, defined as an average of all the peaks in the age

evolution curve 𝐴𝑖(𝑡), can be written as

𝐴p
𝑖 , lim sup

𝑇→∞

𝑡=𝑇∑︀
𝑡=1

𝐴𝑖(𝑡)1{𝑚(𝑡)=𝑖}

𝑡=𝑇∑︀
𝑡=1

1{𝑚(𝑡)=𝑖}

, (3.4)

in the information gathering case and

𝐴p
𝑖 , lim sup

𝑇→∞

𝑡=𝑇∑︀
𝑡=1

𝐴𝑖(𝑡)1{𝑚(𝑡)=𝑖,𝒬𝑖(𝑡)̸=∅}

𝑡=𝑇∑︀
𝑡=1

1{𝑚(𝑡)=𝑖,𝒬𝑖(𝑡)̸=∅}

, (3.5)

in the information dissemination case.

We define the network peak and average age to be

𝐴p =
∑︁
𝑖∈𝑉

𝑤𝑖𝐴
p
𝑖 and 𝐴ave =

∑︁
𝑖∈𝑉

𝑤𝑖𝐴
ave
𝑖 , (3.6)

where 𝑤𝑖 > 0 are weights representing the relative importance of a ground terminal

𝑖. Our goal is to minimize network peak and average age.
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3.1.2 Trajectory Space

We use T to denote a reasonably large space of trajectories:

T = { Trajectory 𝒯 | 𝑓𝑖(𝒯 ) exists and is positive ∀ 𝑖 ∈ 𝑉 } ,

where 𝑓𝑖(𝒯 ) denotes the fraction of time-slots, the trajectory 𝒯 , is at ground terminal

𝑖:

𝑓𝑖(𝒯 ) = lim
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

1{𝑚(𝑡)=𝑖}. (3.7)

For a trajectory 𝒯 ∈ T, the limit (3.7) exists and is positive for all 𝑖 ∈ 𝑉 . This

requirement is to ensure that the peak and average age are both finite and well

defined.

Peak and average age depend on the trajectory 𝒯 ∈ T. We use 𝐴p(𝒯 ) and

𝐴ave(𝒯 ) to denote network peak and average age, respectively, for 𝒯 ∈ T. In the

following two sections, we introduce the problem of finding trajectories that minimize

network peak and average age, and try to find solutions to these problems.

3.2 Information Gathering

In this section, we consider the problem of age optimal information gathering with

active sources. We define optimal peak and average age to be

𝐴p*
𝒢 = min

𝒯 ∈T
𝐴p(𝒯 ), and 𝐴ave*

𝒢 = min
𝒯 ∈T

𝐴ave(𝒯 ), (3.8)

where T denotes the space of all trajectories for the mobile agent.

We first consider randomized trajectories, where the mobile agent moves accord-
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ing to a random walk on the mobility graph. We shall show that for peak age

optimality, such randomized trajectories suffices. We then show that the average

age optimization is NP-hard, and propose a heuristic randomized trajectory. In Sec-

tion 3.2.5, we propose an age-based trajectory for better average age performance.

3.2.1 Randomized Trajectories

We start by defining the class of randomized trajectories:

Definition A trajectory 𝑚(𝑡), on mobility graph 𝐺, is said to be a randomized

trajectory if 𝑚(𝑡) is an irreducible Markov chain defined by a transition proba-

bility matrix P:

P𝑚(𝑡 + 1) = 𝑗|𝑚(𝑡) = 𝑖 = 𝑃𝑖,𝑗, (3.9)

for all 𝑡 and 𝑖, 𝑗 ∈ 𝑉 , where 𝑃𝑖,𝑗 = 0 for (𝑖, 𝑗) /∈ 𝐸.

For convenience, we shall refer to 𝑚(𝑡), defined above, as the randomized tra-

jectory P, where P to denote the matrix with entries 𝑃𝑖,𝑗. Note that 𝑃𝑖,𝑗 is the

probability that the mobile agent, when at ground terminal 𝑖, moves to ground ter-

minal 𝑗 for the next time slot. The constraint: 𝑃𝑖,𝑗 = 0 for (𝑖, 𝑗) /∈ 𝐸, ensures that

the randomized trajectory adheres to the mobility constraints defined by 𝐺.

We assume in the definition of a randomized trajectory P, that 𝑚(𝑡) is an irre-

ducible Markov chain over the state space 𝑉 . This is desired, since the mobile agent

has to traverse through all the nodes, repeatedly, for a positive fraction of time, or

otherwise the resulting peak and average age would be unbounded.
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For any randomized trajectory P, we obtain explicit expressions for network peak

and average age. We use the notation 𝐴p(P) and 𝐴ave(P) to show explicit dependence

of peak and average age on the randomized trajectory P.

Theorem 5. The network peak and average age for a randomized trajectory P

is given by

𝐴p(P) =
∑︁
𝑖∈𝑉

𝑤𝑖

𝜋𝑖

, and 𝐴ave(P) =
∑︁
𝑖∈𝑉

𝑤𝑖𝑧𝑖𝑖
𝜋𝑖

, (3.10)

where 𝜋 is the unique stationary distribution obtained by solving 𝜋P = 𝜋 and 𝑧𝑖𝑖

are diagonal elements of the matrix 𝑍 , (𝐼 − P + Π)−1, where Π is an 𝑛 × 𝑛

matrix with entries Π𝑖,𝑗 , 𝜋𝑗, ∀𝑖, 𝑗 ∈ 𝑉 .

Proof. The key step in proving the result above is to observe that the peak age of the

ground terminal 𝑖, namely 𝐴p
𝑖 , depends only on the mean of return times to terminal

𝑖; see Figure 3-1. Whereas, the average age 𝐴ave
𝑖 for 𝑖 depends on both, the mean

and the variance, of return times to terminal 𝑖.

Given a randomized trajectory P, the mean of return times to terminal 𝑖 is given

by 1
𝜋𝑖

, while the second moment of the return times is given by −1
𝜋𝑖

+ 2𝑧𝑖𝑖
𝜋2
𝑖

; see [62].

Using this fact, we are able to obtain the explicit expressions for peak and average

age. Let 𝐴𝑝
𝑖 be the peak age for ground terminal 𝑖. We define 𝐻𝑘,𝑖 to be the 𝑘th

return time to ground terminal 𝑖. Then, the 𝑘th age peak for 𝐴𝑖(𝑡) has a value of

𝐻𝑘,𝑖. Let 𝐾 be the total number of returns to 𝑖 over a time-horizon 𝑇 . Then, the
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expected peak age of ground terminal 𝑖 is given by

𝐴𝑝
𝑖 = lim

𝑇→∞
E

[︃ 𝑡=𝑇∑︀
𝑡=1

𝐴𝑖(𝑡)1{𝑚(𝑡)=𝑖}

𝑡=𝑇∑︀
𝑡=1

1{𝑚(𝑡)=𝑖}

]︃
= lim

𝐾→∞
E
[︂

1

𝐾

𝑡=𝐾∑︁
𝑘=1

𝐻𝑘,𝑖

]︂
. (3.11)

Note that return times to a ground terminal 𝑖 are i.i.d. random variables given a

randomized trajectory P. So, we can use the law of large numbers to get

𝐴𝑝
𝑖 = E[𝐻1,𝑖] =

1

𝜋𝑖

, (3.12)

where 𝜋𝑖 is the stationary distribution for Markov chain P. The last equality follows

from the fact that the expected return time to a state 𝑖 for an irreducible Markov

chain is given by the inverse of its stationary probability. Thus, the network age is

given by

𝐴p =
∑︁
𝑖∈𝑉

𝑤𝑖𝐴
𝑝
𝑖 =

∑︁
𝑖∈𝑉

𝑤𝑖

𝜋𝑖

. (3.13)

For average age, we define a renewal-reward process using 𝐻𝑘,𝑖 as our i.i.d.

renewal intervals and sum of age 𝐴𝑖(𝑡) during each interval as our reward. Let

𝑇𝑘,𝑖 =
∑︀𝑘−1

𝑙=1 𝐻𝑙,𝑖 be the starting time of the 𝑘th renewal. The total reward in be-

tween two visits to ground terminal 𝑖 is the sum of the 𝑖th age process 𝐴𝑖(𝑡) across

all time-slots during that interval.

Note that, for the 𝑘th renewal interval, 𝐴𝑖(𝑡) grows from 1 to 𝐻𝑘,𝑖 over the 𝐻𝑘,𝑖

time-slots. Thus, the total reward for the 𝑘th renewal interval is given by -

𝑡=𝑇𝑘,𝑖+𝐻𝑘,𝑖∑︁
𝑡=𝑇𝑘,𝑖

𝐴𝑖(𝑡) =

𝐻𝑘,𝑖∑︁
𝑎=1

𝑎 =
𝐻2

𝑘,𝑖 + 𝐻𝑘,𝑖

2
. (3.14)
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Note that this reward is also i.i.d. across renewals as it depends only on 𝐻𝑘,𝑖. Thus,

by application of the elementary renewal theorem for renewal-reward processes we

get

𝐴ave
𝑖 = lim

𝑇→∞
E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

𝐴𝑖(𝑡)

]︂
=

E[𝐻2
1,𝑖 + 𝐻1,𝑖]

2E[𝐻1,𝑖]
. (3.15)

For irreducible Markov chains, we know the following results hold [62]:

E[𝐻1,𝑖] =
1

𝜋𝑖

,∀𝑖 ∈ 𝑉 and (3.16)

E[𝐻2
1,𝑖] =

−1

𝜋𝑖

+
2𝑧𝑖𝑖
𝜋2
𝑖

, (3.17)

for all 𝑖 ∈ 𝑉 , where 𝑧𝑖𝑖 is the 𝑖th diagonal element of the matrix 𝑍 = (𝐼 − 𝑃 + Π)−1,

with Π being a matrix in which all rows are the stationary distribution vector 𝜋:

Π𝑖,𝑗 = 𝜋𝑗 for all 𝑖, 𝑗 ∈ 𝑉 .

Substituting (3.16) and (3.17) in (3.15), we get

𝐴ave
𝑖 =

𝑧𝑖𝑖
𝜋𝑖

, (3.18)

for all 𝑖 ∈ 𝑉 , and therefore,

𝐴ave =
∑︁
𝑖∈𝑉

𝑤𝑖𝐴
ave
𝑖 =

∑︁
𝑖∈𝑉

𝑤𝑖𝑧𝑖𝑖
𝜋𝑖

. (3.19)

3.2.2 Peak Age Minimization

We first formulate the peak age minimization problem over the space of randomized

trajectories. We shall see that a peak age optimal randomized trajectory suffices for
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optimality over the space of all trajectories.

Using the results in Theorem 5, we can write the peak age minimization problem

over the space of randomized trajectories as:

Minimize
P,𝜋

∑︁
𝑖∈𝑉

𝑤𝑖

𝜋𝑖

,

subject to 𝑃𝑖,𝑗 ≥ 0, ∀(𝑖, 𝑗), and P1 = 1,

𝜋P = 𝜋, 1𝑇𝜋 = 1, and 𝜋𝑖 ≥ 0 ∀𝑖

𝑃𝑖,𝑗 = 0, ∀(𝑖, 𝑗) /∈ 𝐸,

P is irreducible.

(3.20)

Note that P characterizes a randomized trajectory, while 𝜋 is the unique stationary

distribution associated with it.

This problem is difficult to solve because the irreducibility constraint cannot be

expressed in a simple, solvable manner. Further, relaxing the irreducibility constraint

can yield a trivial solution like P = 𝐼, which are neither irreducible nor anywhere

close to optimal.

However, the problem (3.20) can be transformed to finding an irreducible P, with

a given stationary distribution. This is a simpler problem and can be solved using

the Metropolis-Hastings algorithm.

Lemma 1. Let 𝜋*
𝑖 ,

√
𝑤𝑖∑︀

𝑗∈𝑉

√
𝑤𝑗

, for all 𝑖 ∈ 𝑉 , to be a distribution on 𝑉 , and a

randomized trajectory P satisfy 𝜋*P = 𝜋*. Then, (𝜋*,P) solves (3.20).

Proof. Suppose we could choose any stationary distribution 𝜋 on 𝑉 . Then to mini-

mize the network peak age, we would need to solve the following optimization prob-
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lem

Minimize
𝜋

∑︁
𝑖∈𝑉

𝑤𝑖

𝜋𝑖

,

subject to
∑︁
𝑖

𝜋𝑖 = 1,

𝜋𝑖 ≥ 0,∀𝑖 ∈ 𝑉.

(3.21)

Using KKT conditions for the optimization problem (3.21), it is straightforward to

see that

𝜋*
𝑖 =

√
𝑤𝑖∑︀

𝑖

√
𝑤𝑖

,∀𝑖 ∈ 𝑉. (3.22)

Clearly, if we could find a randomized trajectory P that achieves this stationary

distribution 𝜋*, then it would be peak age optimal. Thus, any randomized trajectory

P that satisfies 𝜋* = 𝜋*P is peak age optimal.

Observe that the expression above implies that the fraction of time spent at a

node is proportional to the square root of its weight. This is similar to the “square

root principle” first derived in peer-to-peer settings in [63]. Similar square root based

scheduling results have been derived for minimizing age in single hop networks [18,64]

Lemma 1 implies that a randomized trajectory P, that satisfies 𝜋*P = 𝜋*, is a

peak age optimal, over the space of all randomized trajectories. We now construct one

such randomized trajectory: for 𝜋* given in Lemma 1, define a Metropolis-Hastings

randomized trajectory Pmh:

𝑃mh
𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑃 rw
𝑖,𝑗 min(1,

𝜋*
𝑗𝑃

rw
𝑗,𝑖

𝜋*
𝑖 𝑃

rw
𝑖,𝑗

), if 𝑖 ̸= 𝑗 and (𝑖, 𝑗) ∈ 𝐸

1 −
∑︀
𝑗:𝑗 ̸=𝑖

𝑃mh
𝑖,𝑗 , if 𝑖 = 𝑗

0, otherwise

, (3.23)
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where

𝑃 rw
𝑖,𝑗 =

⎧⎪⎨⎪⎩
1
𝑑𝑖
, if 𝑖 ̸= 𝑗 and (𝑖, 𝑗) ∈ 𝐸

0, otherwise
, ∀𝑖, 𝑗 ∈ 𝑉, (3.24)

and 𝑑𝑖 equals the out degree of terminal 𝑖 in the mobility graph 𝐺. It is known that

such a randomized trajectory Pmh satisfies 𝜋*P = 𝜋* [62]. We, therefore, have the

following result.

Theorem 6. The Metropolis-Hastings randomized trajectory Pmh solves (3.20),

i.e. it is peak age optimal over the space of all randomized trajectories.

We considered randomized trajectories, where the mobile agent moves from ter-

minal 𝑖 to 𝑗 with probability 𝑃𝑖,𝑗. We now show that, for peak age optimality, such

a randomization suffices.

Theorem 7. The Metropolis-Hastings randomized trajectory Pmh is peak age

optimal over the space of all trajectories T, namely 𝐴p*(Pmh) = 𝐴p*
𝒢 .

Proof. We establish a more general result. Namely, any randomized trajectory which

satisfies 𝜋*P = 𝜋*, where 𝜋*
𝑖 =

√
𝑤𝑖∑︀

𝑗∈𝑉

√
𝑤𝑗

, is peak age optimal over the space of all

trajectories:

𝐴p*(P) = 𝐴p*
𝒢 .

To prove this, it suffices to argue that the peak age for any trajectory is lower bounded

by
∑︀

𝑖∈𝑉
𝑤𝑖

𝜋*
𝑖
, where 𝜋* is as given in Theorem 6.
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Let 𝐻𝑘,𝑖 to be the 𝑘th return time to node 𝑖. If 𝐾 is the total number of returns

to ground terminal 𝑖 over a time horizon 𝑇 , then the peak age 𝐴p
𝑖 is given by

𝐴p
𝑖 = lim sup

𝑇→∞

𝑡=𝑇∑︀
𝑡=1

𝐴𝑖(𝑡)1{𝑚(𝑡)=𝑖}

𝑡=𝑇∑︀
𝑡=1

1{𝑚(𝑡)=𝑖}

= lim sup
𝐾→∞

1

𝐾

𝑘=𝐾∑︁
𝑘=1

𝐻𝑘,𝑖. (3.25)

Now, the fraction of time-slots in which the mobile agent is at ground terminal 𝑖, is

given by

𝑓𝑖 = lim
𝑇→∞

𝑡=𝑇∑︀
𝑡=1

1{𝑚(𝑡)=𝑖}

𝑇
= lim

𝐾→∞

𝐾
𝑘=𝐾∑︀
𝑘=1

𝐻𝑘,𝑖

=
1

𝐴p
𝑖

, (3.26)

and therefore, 𝐴p =
∑︀

𝑖∈𝑉 𝑤𝑖𝐴
p
𝑖 =

∑︀
𝑖∈𝑉

𝑤𝑖

𝑓𝑖
. Note that 𝑓𝑖, being the fraction of

time-slots the mobile agent is at terminal 𝑖, is a distribution over 𝑉 . Thus, 𝐴p can

be lower bounded by

𝐴p =
∑︁
𝑖∈𝑉

𝑤𝑖𝐴
𝑝
𝑖 ≥ min

{𝑓𝑖≥0,
∑︀

𝑖 𝑓𝑖=1}

∑︁
𝑖∈𝑉

𝑤𝑖

𝑓𝑖
=

∑︁
𝑖∈𝑉

𝑤𝑖

𝜋*
𝑖

, (3.27)

where the last equality is obtained by solving the optimization problem, just as in

the proof of Lemma 1.

Thus, we are able to obtain a peak age optimal trajectory, namely Pmh. Further,

the matrix Pmh can be computed in polynomial time; in 𝑂(|𝑉 |2) time. Therefore,

the peak age minimization problem is solved in polynomial time. For details on how

to derive the Metropolis-Hastings Markov chain and a nice geometric interpretation,

see [65] and [66].
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3.2.3 Average Age Minimization

We now consider the average age minimization problem. We first argue that in the

symmetric setting, namely 𝑤𝑖 = 1 ∀ 𝑖 ∈ 𝑉 ,1 the average age minimization problem

is NP-hard

Theorem 8. The problem of finding an average age optimal trajectory is NP-hard

in the symmetric setting of 𝑤𝑖 = 1 ∀ 𝑖 ∈ 𝑉 .

Proof. To prove NP-hardness, we establish equivalence between the average age min-

imization problem and the Hamiltonian cycle problem, in the symmetric setting. We

know that more connected the graph, lower is its network average age. Therefore,

the average age for G = (V, E) is lower bounded by the average age for the com-

plete graph K(V), given by |𝑉 |(|𝑉 |+1)
2

. This lower bound can be obtained by using

Theorem 9 and setting 𝑤𝑖 = 1, ∀𝑖.

If the graph is Hamiltonian, we can achieve this average age lower bound by

setting the trajectory equal to a Hamiltonian cycle. This is because in a cyclical

trajectory, the agent visits every terminal exactly once in every |𝑉 | time-slots. Fur-

ther, if the graph is not Hamiltonian, the optimal average age is strictly greater than
|𝑉 |(|𝑉 |+1)

2
. This is because in the absence of a cycle on graph 𝐺, the agent cannot visit

every terminal exactly once every |𝑉 | time-slots. Therefore, if an algorithm were to

solve the average age problem then the same algorithm could be used to determine

whether the graph G is Hamiltonian or not; which is the Hamiltonian cycle problem.

Since the Hamiltonian cycle problem is NP-complete, the average age minimization
1The weights 𝑤𝑖 only measure relative significance of ground terminals. Thus, setting 𝑤𝑖 =

1 ∀ 𝑖 ∈ 𝑉 is equivalent to setting 𝑤𝑖 = 𝑤𝑗 ∀ 𝑖, 𝑗 ∈ 𝑉 .
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problem must be NP-hard.

Since solving the average age minimization problem is hard, we derive a lower

bound on average age. Intuitively, if the mobility graph is better connected then it

should yield a lower age. This is because a better connected mobility graph imposes

fewer restrictions on mobility. The following result obtains a lower bound on network

average age by comparing it with the network average age of a complete graph.

Theorem 9. For any trajectory 𝒯 ∈ T, the network average age is lower bounded

by

𝐴ave(𝒯 ) ≥ 1

2

∑︁
𝑖∈𝑉

(︂
𝑤𝑖

𝜋*
𝑖

+ 𝑤𝑖

)︂
, (3.28)

where 𝜋*
𝑖 =

√
𝑤𝑖∑︀

𝑗∈𝑉
√
𝑤𝑗

for all 𝑖 ∈ 𝑉 .

Proof. Let 𝐻𝑘,𝑖 be the 𝑘th return time to ground terminal 𝑖, and 𝐾 be the total

number of returns to 𝑖 over a time-horizon 𝑇 . Then the average age 𝐴ave
𝑖 is given by

(see proof of Theorem 1):

𝐴ave
𝑖 = lim

𝑇→∞

1

𝑇

𝑡=𝑇∑︁
𝑡=1

𝐴𝑖(𝑡) = lim
𝐾→∞

𝑘=𝐾∑︀
𝑘=1

(𝐻2
𝑘,𝑖 + 𝐻𝑘,𝑖)

2
𝑘=𝐾∑︀
𝑘=1

𝐻𝑘,𝑖

. (3.29)

Define the empirical first and second moment of return times be 𝐻̂𝑖 , 1
𝐾

𝑘=𝐾∑︀
𝑘=1

𝐻𝑘,𝑖

and 𝐻̂
(2)
𝑖 , 1

𝐾

𝑘=𝐾∑︀
𝑘=1

𝐻2
𝑘,𝑖, respectively. Further, define V̂ar𝑖 , 𝐻̂

(2)
𝑖 − 𝐻̂2

𝑖 to be the
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empirical variance of return times. From (3.29), we have

𝐴ave
𝑖 =

1

2
+ lim

𝐾→∞

𝐻̂
(2)
𝑖

2𝐻̂𝑖

=
1

2
+ lim

𝐾→∞

(︁
𝐻̂𝑖

)︁2

+ V̂ar𝑖

2𝐻̂𝑖

. (3.30)

Using Cauchy-Schwarz inequality, we can obtain V̂ar𝑖 ≥ 0. Applying this to (3.30),

we get

𝐴ave
𝑖 ≥ 1

2
+ lim

𝐾→∞

𝐻̂𝑖

2
, (3.31)

Let 𝑓𝑖 be the fraction of time-slots in which the mobile agent is at ground terminal

𝑖. Then,

𝑓𝑖 = lim
𝑇→∞

𝑡=𝑇∑︀
𝑡=1

1{𝑚(𝑡)=𝑖}

𝑇
= lim

𝐾→∞

𝐾
𝑘=𝐾∑︀
𝑘=1

𝐻𝑘,𝑖

=
1

lim𝐾→∞ 𝐻̂𝑖

, (3.32)

since 𝑓𝑖 is well defined and positive for all trajectories in T. Substituting (3.32)

in (3.31) we get 𝐴ave
𝑖 ≥ 1

2
+ 1

2𝑓𝑖
, for all 𝑖, and

𝐴ave =
∑︁
𝑖∈𝑉

𝑤𝑖𝐴
ave
𝑖 ≥ 1

2

∑︁
𝑖∈𝑉

𝑤𝑖 +
1

2

∑︁
𝑖∈𝑉

𝑤𝑖

𝑓𝑖
. (3.33)

Note that 𝑓𝑖, being the fraction of time-slots the mobile agent is at terminal 𝑖, is a

distribution over 𝑉 . Thus, the average age in (3.33) can be lower bounded by

𝐴ave ≥ 1

2

∑︁
𝑖∈𝑉

𝑤𝑖 +
1

2
min

{𝑓𝑖≥0,
∑︀

𝑖 𝑓𝑖=1}

∑︁
𝑖∈𝑉

𝑤𝑖

𝑓𝑖
,

=
1

2

∑︁
𝑖∈𝑉

𝑤𝑖 +
1

2

∑︁
𝑖∈𝑉

𝑤𝑖

𝜋*
𝑖

,

which proves the result.
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Note that the term
∑︀

𝑖∈𝑉
𝑤𝑖

𝜋*
𝑖

is nothing but the optimal peak age 𝐴p*
𝒢 ; see Theo-

rem 7. Furthermore, the lower bound in Theorem 9 is independent of the trajectory

𝒯 . Therefore, we get

𝐴ave*
𝒢 = min

𝒯 ∈T
𝐴ave(𝒯 ) ≥ 𝐴ave

LB =
1

2
𝐴p*

𝒢 +
1

2

∑︁
𝑖∈𝑉

𝑤𝑖, (3.34)

where T is the space of all trajectories. It must be noted that a similar result was

derived in the case of link scheduling for age minimization in [15]. The similarity

of the result is rooted in the fact that the information gathering problem in the

complete graph case is equivalent to the link scheduling problem in [15], in which at

most one link can be activated simultaneously.

3.2.4 A Heuristic Randomized Trajectory

Motivated by the peak age optimality results of the previous section, we restrict

ourselves to the space of randomized trajectories, and propose a heuristic, called the

fastest-mixing randomized trajectory, and prove an average age performance bound

for it.

Using the results in Theorem 5, the average age minimization problem over the
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space of randomized trajectories can be written as

Minimize
P,𝜋,Z

∑︁
𝑖∈𝑉

𝑤𝑖𝑧𝑖𝑖
𝜋𝑖

,

subject to 𝑃𝑖,𝑗 ≥ 0, ∀ (𝑖, 𝑗), and P1 = 1,

𝜋P = 𝜋, 1𝑇𝜋 = 1, and 𝜋𝑖 ≥ 0 ∀𝑖

𝑃𝑖,𝑗 = 0, ∀(𝑖, 𝑗) /∈ 𝐸,

P is irreducible,

Π𝑖,𝑗 = 𝜋𝑗 ∀ (𝑖, 𝑗),

𝑍 = (𝐼 −P + Π)−1.

(3.35)

Here, P is the randomized trajectory and 𝜋 the unique stationary distribution corre-

sponding to P. Solving (3.35) can be computationally complex. Not only do we have

the irreducibility constraint, but also a non-linear constraint in 𝑍 = (𝐼 −P + Π)−1.

We next upper bound the network average age, for any randomized trajectory P

of the mobile agent. We first define mixing time for a randomized trajectory.

To do this, we first discuss the notion of stopping rules and stopping times in a

Markov chain. A stopping rule is a rule that observes the walk on a Markov chain

and, at each step, decides whether or not to stop the walk based on the walk so far.

Stopping rules can make probabilistic decisions and therefore the time at which the

walk stops, called the stopping time, is a random variable.

Mixing Time [67] The hitting time from state distribution 𝜎1 to 𝜎2 on a Markov

chain is the minimum expected stopping time over all stopping rules that, beginning

at 𝜎1, stop in the exact distribution of 𝜎2. In other words, it is the expected number

of steps that the optimal stopping rule takes to move from 𝜎1 to 𝜎2. This is denoted
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by ℋ(𝜎1, 𝜎2). The mixing time ℋ of a Markov chain P is then defined as

ℋ , sup
𝜎∈Δ(𝑉 )

ℋ(𝜎, 𝜋), (3.36)

where Δ(𝑉 ) is the collection of all distributions on 𝑉 and 𝜋 is the stationary distri-

bution of P. In other words, it is the expected time taken to reach stationarity using

the optimal stopping rule and starting at the worst initial distribution.

Lemma 2. The network average age for a randomized trajectory P is upper

bounded by

𝐴ave(P) =
∑︁
𝑖∈𝑉

𝑤𝑖𝑧𝑖𝑖
𝜋𝑖

≤ 4ℋ𝐴p(P) +
∑︁
𝑖∈𝑉

𝑤𝑖, (3.37)

where ℋ denotes the mixing time of the randomized trajectory P.

Proof. First, we define the quantity

𝒵 , max
𝑖

∑︀
𝑗

|𝑧𝑖𝑗 − 𝜋𝑗|, called the discrepancy of the randomized trajectory P. This

definition implies that 𝑧𝑖𝑖 ≤ 𝒵 +𝜋𝑖, ∀𝑖 ∈ 𝑉. Thus, we get the following upper bound:

∑︁
𝑖∈𝑉

𝑤𝑖𝑧𝑖𝑖
𝜋𝑖

≤
∑︁
𝑖∈𝑉

(︂
𝑤𝑖𝒵
𝜋𝑖

+ 𝑤𝑖

)︂
. (3.38)

However, from [68] we know that 𝒵 ≤ 4ℋ, where ℋ is the mixing time of the

randomized trajectory P. Thus, we have the required result

∑︁
𝑖∈𝑉

𝑤𝑖𝑧𝑖𝑖
𝜋𝑖

≤
∑︁
𝑖∈𝑉

(︂
4𝑤𝑖ℋ
𝜋𝑖

+ 𝑤𝑖

)︂
= 4ℋ𝐴p(P) +

∑︁
𝑖∈𝑉

𝑤𝑖,

where the last equality follows from Theorem 5.
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We use this relation and suggest the following heuristic for minimizing age: Find the

fastest mixing randomized trajectory P on the mobility graph 𝐺 that minimizes peak

age.

From the proof of Theorem 7, we know that for a randomized trajectory P to

be peak age optimal all we need is 𝜋𝑖 ∝
√
𝑤𝑖, where 𝜋 is the stationary distribution

of P. It, therefore, suffices to find P that satisfies 𝜋𝑖 ∝
√
𝑤𝑖, and simultaneously

minimizes the mixing time ℋ. We call this the fastest-mixing randomized trajectory,

and use P* to denote it. The following result provides a way to obtain P* by solving

a convex program.

Theorem 10. The fastest mixing randomized trajectory can be found by solving

the following convex optimization problem:

Minimize
P

𝜇(P) = ||P− Π*||2,

subject to 𝑃𝑖,𝑗 ≥ 0, ∀(𝑖, 𝑗),

P1 = 1,

𝜋*P = 𝜋*, Π*
𝑖,𝑗 = 𝜋*

𝑖 ∀ 𝑖, 𝑗 ∈ 𝑉,

𝑃𝑖,𝑗 = 0,∀(𝑖, 𝑗) /∈ 𝐸.

(3.39)

Here ||𝐴||2 denotes the spectral norm of matrix 𝐴 and 𝜋*
𝑖 =

√
𝑤𝑖∑︀

𝑗∈𝑉
√
𝑤𝑗
, ∀𝑖 ∈ 𝑉 .

Proof. From [65], we know that the fastest mixing, reversible Markov chain on a

graph 𝐺(𝑉,𝐸) having the stationary distribution 𝜋 can be found by formulating the
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following convex program:

Minimize
P

||𝐷1/2P𝐷−1/2 − 𝑞𝑞𝑇 ||2,

subject to 𝑃𝑖,𝑗 ≥ 0, ∀(𝑖, 𝑗)

P1 = 1,

𝜋*P = P𝑇𝜋*,

𝑃𝑖,𝑗 = 0,∀(𝑖, 𝑗) /∈ 𝐸.

(3.40)

Here 𝐷 = diag(𝜋*) and 𝑞 = (
√
𝜋*
1,
√
𝜋*
2, ...,

√
𝜋*
𝑛). Note that we do not require re-

versibility, so we can replace the detailed balance constraint 𝜋*P = P𝑇𝜋* with the

global balance constraint 𝜋*P = 𝜋*. Also, left and right multiplying (𝐷1/2P𝐷−1/2 −

𝑞𝑞𝑇 ) by matrices 𝐷−1/2 and 𝐷1/2, respectively, does not change the spectral norm;

since P has the same eigen-values as 𝐷1/2P𝐷−1/2 and 𝑞𝑞𝑇 has the same eigen-values

as 𝐷−1/2𝑞𝑞𝑇𝐷1/2 [65]. Further, observe that 𝐷−1/2𝑞𝑞𝑇𝐷1/2 = 𝑞𝑞𝑇 = Π*, where

Π*
𝑖,𝑗 = 𝜋*

𝑖 ∀ 𝑖, 𝑗 ∈ 𝑉. Thus, the optimization problem reduces to (3.39). This proves

the required result.

This convex program (3.39) finds a randomized trajectory P on 𝐺 that is closest

to the stationary randomized walk Π*, in the spectral norm sense. Also, 𝑃 * is peak

age optimal on graph 𝐺, since it satisfies 𝜋*
𝑖 ∝ √

𝑤𝑖. Note that, the problem (3.39)

can be solved in polynomial time by converting it to a semi-definite program [65].

We now bound the average age performance of the fastest-mixing randomized

trajectory.
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Theorem 11. The network average age of the fastest-mixing randomized trajec-

tory is at most 8ℋ-factor away from the optimal average age:

𝐴ave(P*)

𝐴ave*
𝒢

≤ 8ℋ, (3.41)

where ℋ is the mixing time of 𝑃 *.

Proof. Note that the peak age for the fastest-mixing randomized trajectory P* is

given by 𝐴p(P*) =
∑︀

𝑖∈𝑉
𝑤𝑖

𝜋*
𝑖
, since 𝜋*P* = 𝜋*. From Theorem 9, a lower bound on

average age is given by

𝐴ave
LB =

∑︁
𝑖∈𝑉

1

2

(︂
𝑤𝑖

𝜋*
𝑖

+ 𝑤𝑖

)︂
=

1

2
𝐴p(P*) +

1

2

∑︁
𝑖∈𝑉

𝑤𝑖. (3.42)

To prove the result, it suffices to argue that 𝐴ave(P*)/𝐴LB ≤ 8ℋ. From (3.42)

and Lemma 2, we get

𝐴ave(P*)

𝐴ave
LB

≤
4ℋ𝐴p(P*) +

∑︀
𝑖∈𝑉 𝑤𝑖

1
2
𝐴p(P*) + 1

2

∑︀
𝑖∈𝑉 𝑤𝑖

, (3.43)

≤ 8ℋ, (3.44)

since ℋ is always greater than or equal to 1.

To see the usefulness of the fastest-mixing randomized trajectory, and Theo-

rem 11, consider a random geometric graph 𝒢(𝑛, 𝑟). The graph consists of 𝑛 nodes

spread over a unit square with a link between every two nodes that are within a dis-

tance 𝑟. If 𝑣 is the physical speed of the mobile agent, then 𝑟 must equal 𝑣𝜏 , where

𝜏 is the slot duration. We know that mixing time of 𝒢(𝑛, 𝑟) is 𝑂
(︀
log𝑛
𝑟2

)︀
, and there-
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fore, the fastest-mixing randomized trajectory would be at most 𝑂
(︁

log𝑛
𝑣2𝑚𝑎𝑥𝜏

2

)︁
factor

optimal. For highly connected graphs, such as Dirac graphs in which the degree of

each node is at least |𝑉 |/2, we have constant factor of optimality; since the mixing

times are 𝑂(1). [69] establishes a connection between the existence of long paths

in graphs and their mixing times and that it is hard to find even constant factor

approximations to the problem of finding the longest path on a general graph.

3.2.5 Age-based Trajectories

In the last two sub-sections, we proposed two randomized trajectories, namely Pmh

and P*. Both were peak age optimal, while the latter was also factor-ℋ average age

optimal. We also noted that solving the average age problem is generally hard. We

now propose an age-based trajectory which can be constant factor age optimal.

Age-based trajectory In every time slot, agent 𝑚 moves to the location that

has the highest weighted function of 𝐴𝑖(𝑡). Specifically, if 𝑚(𝑡) = 𝑖 then

𝑚(𝑡 + 1) = arg max
𝑗:(𝑖,𝑗)∈𝐸

𝑤𝑗𝑔 (𝐴𝑗(𝑡)) , (3.45)

for all 𝑖, 𝑗 ∈ 𝑉 and time 𝑡, where 𝑔(·) is an increasing function. We assume that

ties are broken in order of vertex indices.

Examples of functions include 𝑔(𝑎) = 𝑎 and 𝑔(𝑎) = 𝑎 + 𝑎2. The idea for an age-

based trajectory comes from results on age optimal scheduling [12, 64] that develop

index based methods which are constant factor optimal. In the symmetric setting,
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Figure 3-3: Mobility graph restricted to a binary tree.

where 𝑤𝑖 = 1 ∀ 𝑖 ∈ 𝑉 , the function 𝑔(·) does not matter and the agent moves greedily

to the neighbouring node with the highest age.

In fact, we observe that the age-based trajectory is a repeated depth-first traversal

of the mobility graph 𝐺. This can be verified easily when the mobility graph is a tree.

Consider the tree in Figure 3-3, and assume that we start at the root node 1 with

age for all nodes being zero. The trajectory of the agent following the rule described

above would be 1 → 2 → 4 → 2 → 5 → 2 → 1 → 3 → 6 → 3 → 7 → 3 → 1... This

is precisely the depth-first traversal of the tree graph.

In the symmetric setting, where 𝑤𝑖 = 1 ∀ 𝑖 ∈ 𝑉 , we now prove that the age-based

trajectory is factor-2 optimal.

Theorem 12. In the symmetric setting 𝑤𝑖 = 1 ∀ 𝑖 ∈ 𝑉 , the network average age

𝐴ave for the age-based trajectory is bounded by

𝐴ave

𝐴ave*
𝒢

≤ 2|𝑉 | + 1

|𝑉 | + 1
≤ 2, (3.46)

for any increasing function 𝑔(·).

Proof. The number of steps taken to cover every vertex of a graph by performing a

depth first search (DFS) traversal is upper bounded by 2|𝑉 |, since every vertex is
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visited at least once and the sum total of visits after the first visit to all nodes is

at most |𝑉 |. This is because every repeated visit to a vertex means that at least

one new vertex was visited. Thus, every location gets visited at least once in every

2|𝑉 | time-slots. This implies that the average age of every terminal can be upper

bounded by (2|𝑉 |+1)
2

.

However, from our earlier discussion, we know that the average age of any terminal

is lower bounded by (|𝑉 |+1)
2

if all the weights are 1. Combining the upper and lower

bounds, we have the required result.

This age-based policy can be implemented in an online fashion if the mobile agent

has access to age 𝐴𝑖(𝑡) of the neighboring terminals. The complexity of implementing

this trajectory is then at most linear in the time-horizon and |𝑉 |. However, it also

suggests a polynomial time “offline” algorithm that does not need knowledge of ages

or computation in every time-slot to achieve the same result -

1. Assume that the agent always starts at a fixed node 𝑣. Compute a depth-first

traversal on the graph 𝐺(𝑉,𝐸) starting at node 𝑣.

2. Compute the shortest path from the last visited node in the dfs traversal to 𝑣.

3. Append the path from step 2 to the dfs traversal in step 1. Follow this trajec-

tory plan iteratively.

Note that both the dfs traversal and the shortest path can be computed be-

forehand in polynomial time. Using exactly the same arguments as for the greedy

algorithm, this trajectory plan also achieves factor 2 optimality in the equal weight

setting.

The utility of index-based policies is in situations where we include unreliable

packet deliveries or time-varying weights and mobility graphs in our model. While
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Markov chain based analysis works only for fixed graphs known beforehand, the

age-based trajectory can be easily modified for use in dynamic settings. Showing

performance guarantees in such settings is also an interesting line of future work.

3.3 Information Dissemination

We now consider the information dissemination problem. The central terminal gener-

ates updates for every ground terminal 𝑖, at rate 𝜆𝑖, according to a Bernoulli process.

The generated updates for the ground terminal 𝑖 are sent to the mobile agent, which

get queued in the 𝑖th FCFS queue. The mobile agent follows a trajectory 𝒯 , and de-

livers the head-of-line update in queue 𝑖 to terminal 𝑖, when it reaches it. The FCFS

queue assumption is motivated by uncontrollable MAC layer queues implemented in

practice, where the generated updates get queued for transmission [11,15].

Our objective is to minimize the network peak age and average age over the space
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of update generation rates 𝜆 and all trajectories T:

𝐴p*
𝒟 = min

𝒯 ∈T,𝜆

∑︁
𝑖∈𝑉

𝑤𝑖𝐴
p
𝑖 , and 𝐴ave*

𝒟 = min
𝒯 ∈T,𝜆

∑︁
𝑖∈𝑉

𝑤𝑖𝐴
ave
𝑖 , (3.47)

where 𝐴p
𝑖 denotes peak age and 𝐴ave

𝑖 denotes the average age of terminal 𝑖. Their evo-

lution is given by (3.2). For convenience, we have omitted their explicit dependence

on 𝒯 ∈ T and 𝜆.

Motivated by the results for the information gathering problem, we consider ran-

domized trajectories. Note that an arriving update in queue 𝑖 has service time equal

to the inter-visit times to ground terminal 𝑖, provided the update arrived when the

queue 𝑖 was not-empty; 𝒬𝑖(𝑡) ̸= ∅. However, when an update arrives to an empty

queue 𝑖, the time to delivery is not the inter-visit time, and depends on the location

of the mobile agent at the time of arrival.

Since the analysis of age for such a queueing system may be difficult, we provide

an upper bound, by comparing the the 𝑖th queue with a discrete time Ber/G/1 queue

with vacations: whenever the 𝑖th queue is empty pretend that it goes on a vacation,

with vacation times having the same distribution as inter-visit time; otherwise the

service times for the queue are just inter-visit times. Clearly, the age process of such

a FCFS queue is an upper bound for the age process 𝐴𝑖(𝑡). Thus, we upper bound

the peak age 𝐴p
𝑖 and average age 𝐴ave

𝑖 , by the peak and average age of this Ber/G/1

queue with vacations. We first analyze peak and average age of a Ber/G/1 queue

with vacations.
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3.3.1 Age for Ber/G/1 Queue with Vacations

Consider a discrete time FCFS Ber/G/1 queue with vacations, where an arrival

occurs with probability 𝜆, the service times 𝑆 are generally distributed with mean

E [𝑆] = 1/𝜇, and the vacation times 𝑉 are also generally distributed.

We obtain an expression for the peak age of a discrete time Ber/G/1 queue with

vacations, and a bound on average age using Theorem 1.

Lemma 3. The peak age for a discrete time FCFS Ber/G/1 queue with vacations

is given by

𝐴p =
1

𝜆
+

1

𝜇
+

𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
+

E [𝑉 2]

2E [𝑉 ]
− 3

2
, (3.48)

where 𝜌 = 𝜆
𝜇
, while the average age is upper-bounded by peak age, namely 𝐴ave ≤

𝐴p + 1
2
.

Proof. The continuous peak age for the FCFS queue is given by

𝐴p
cont. = E [𝑇 + 𝑋] , (3.49)

where 𝑇 denotes the time an update spends in the queue and 𝑋 is the inter-arrival

time between two updates. Given that vacation times are distributed i.i.d according

to random variable 𝑉 , we have

E[𝑇 ] =
𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
+

1

𝜇
+

E [𝑉 2]

2E [𝑉 ]
− 1

2
, (3.50)

where 𝑆 denotes the service time distribution. Substituting this and E [𝑋] = 1
𝜆

in (3.49), we obtain the expression for peak age.
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Derivation of System Time

The proof is a discretized version of the proof for M/G/1 queues with vacations using

residual service times as discussed in [70].

Let us define the residual service time for an update at time 𝑡, given by 𝑅(𝑡), as

the amount of time remaining until the update currently at the head of the queue is

complete, excluding the current time-slot. If the queue is empty, 𝑅(𝑡) equals zero.

From [70] we know that the expected waiting time in the queue can be found

using the residual service times as follows

E [𝑇𝑄] =
E [𝑅]

1 − 𝜌
, (3.51)

where 𝜌 = 𝜆
𝜇
, E [𝑆] = 1

𝜇
and E [𝑅] = lim

𝑇→∞
E
[︂

1
𝑇

𝑡=𝑇∑︀
𝑡=0

𝑅(𝑡)

]︂
. As in [70], E [𝑅] can be

computed using a graphical argument. Let service times for the 𝑚th packet be 𝑋𝑚,

and let the 𝑘th vacation time be 𝑉𝑘. Let the total number of packets served be 𝑀(𝑇 )

and the total number of vacations be 𝐿(𝑇 ), over the entire time-horizon 𝑇 . Then,

we have

1

𝑇

𝑡=𝑇∑︁
𝑡=0

𝑅(𝑡) =
1

2

𝑀(𝑇 )

𝑇

𝑚=𝑀(𝑇 )∑︀
𝑚=1

(𝑋2
𝑚 −𝑋𝑚)

𝑀(𝑇 )
+

1

2

𝐿(𝑇 )

𝑇

𝑘=𝐿(𝑇 )∑︀
𝑘=1

(𝑉 2
𝑘 − 𝑉𝑘)

𝐿(𝑇 )
. (3.52)

Using the strong law of large numbers and the fact that 𝑀(𝑇 )
𝑇

→ 𝜆 and 𝐿(𝑇 )
𝑇

→ (1−𝜌)
E[𝑉 ]

,

we get

E [𝑅] =
𝜆(E [𝑆2] − E [𝑆])

2
+

(1 − 𝜌)(E [𝑉 2] − E [𝑉 ])

2E [𝑉 ]
. (3.53)
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Combining (3.51) and (3.53), we get

E [𝑇𝑄] =
𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
+

E [𝑉 2]

2E [𝑉 ]
− 1

2
. (3.54)

The total time spent in the system by a packet is given by the sum of its waiting

time in the queue and its processing time, which implies

E [𝑇 ] = E [𝑆 + 𝑇𝑄] =
1

𝜇
+

𝜆E[𝑆2] − 𝜌

2(1 − 𝜌)
+

E [𝑉 2]

2E [𝑉 ]
− 1

2
, (3.55)

since E [𝑆] = 1
𝜇
.

Average Age

Consider a 𝐵𝑒𝑟/𝐺/1 queue with vacations that has i.i.d. packet inter-arrival times

𝑋1, 𝑋2, ... Let 𝑇𝑛 be the total time spent in the system by the 𝑛th packet. Then, the

continuous average age is given by [1]:

𝐴ave
cont. =

1

𝜆
− 1

2
+ 𝜆E[𝑋𝑛𝑇𝑛], (3.56)

where 1
𝜆

= E[𝑋𝑛]. To evaluate the term E[𝑋𝑛𝑇𝑛], we observe that larger inter-arrival

times 𝑋𝑛 between packets mean lesser wait times in the system 𝑇𝑛 for individual

packets. Thus, 𝑋𝑛 and 𝑇𝑛 are negatively correlated. Note that for negatively corre-

lated random variables the following holds

E [𝑋𝑛𝑇𝑛] ≤ E [𝑋𝑛]E [𝑇𝑛] . (3.57)
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This implies

𝐴ave ≤ 1

𝜆
− 1

2
+ 𝜆E[𝑋𝑛]E [𝑇𝑛] = E [𝑋𝑛] + E [𝑇𝑛] − 1

2
= 𝐴p +

1

2
, (3.58)

since E[𝑋𝑛] = 1/𝜆.

3.3.2 Age Minimization Problem

Using Lemma 3, we now obtain an upper-bound on both, network peak and average

age, for a given randomized trajectory P and update generation rates 𝜆.

Lemma 4. For a randomized trajectory P and packet generation rates 𝜆, the

peak and average age for a ground terminal 𝑖 is upper-bounded by

𝐴UB
𝑖 =

1

𝜋𝑖

[︂
1 + 𝑧𝑖𝑖 +

1

𝜌𝑖
+

𝑧𝑖𝑖𝜌𝑖
1 − 𝜌𝑖

]︂
− 𝜌𝑖

1 − 𝜌𝑖
− 1

2
, (3.59)

for all 𝑖 ∈ 𝑉 , where 𝜋 is the unique stationary distribution of P, 𝑍 = (𝐼 − P +

Π)−1, Π is a matrix with all rows equal to the stationary distribution vector 𝜋,

and 𝜌𝑖 ,
𝜆𝑖

𝜋𝑖
.

Proof. See Appendix A.2.

We propose a policy, i.e. a randomized trajectory P and update generation rate

𝜆, that minimizes the age upper-bound 𝐴UB =
∑︀

𝑖∈𝑉 𝑤𝑖𝐴
UB
𝑖 :
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Definition Separation Principle Policy

1. Mobile agent follows the randomized trajectory P* obtained by solv-

ing (3.39).

2. Generate updates for the ground terminal 𝑖 at rate

𝜆*
𝑖 =

𝜋*
𝑖

1 +
√︀
𝑧*𝑖𝑖 − 𝜋*

𝑖

, (3.60)

where 𝜋*
𝑖 =

√
𝑤𝑖∑︀

𝑗∈𝑉 𝑤𝑗
and 𝑧𝑖𝑖 are diagonal elements of the matrix 𝑍 = (𝐼 −

P* + Π*)−1.

We call it the separation principle policy for two reasons. Firstly, P* is the

fastest-mixing randomized trajectory, which we proposed for minimizing average age

in the information gathering problem. Secondly, the update generation rate for the

ground terminal 𝑖, depends only on 𝑧𝑖𝑖 and 𝜋𝑖, which are functions of the first and

second moments of the return times to terminal 𝑖 under trajectory P*:

E [𝐻𝑖] =
1

𝜋𝑖

and E
[︀
𝐻2

𝑖

]︀
= − 1

𝜋𝑖

+
2𝑧𝑖𝑖
𝜋𝑖

,

where 𝐻𝑖 denotes the return time to terminal 𝑖, starting from 𝑖, under the fastest

mixing randomized trajectory P*. We now bound the performance of this separation

principle policy.
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Theorem 13. The peak and average age of the separation principle policy is

bounded by

𝐴p

𝐴p*
𝒟

≤ 4ℋ + 4
√
ℋ + 2 and

𝐴ave

𝐴ave*
𝒟

≤ 8ℋ + 8
√
ℋ + 4,

where ℋ is the mixing time of the randomized trajectory P*.

Proof. We formulate the upper bound age minimization problem and use an ap-

proach similar to Lemma 2 and Theorem 7. We want to solve the upper bound age

minimization problem, which can be stated as:

Minimize
P,𝜌

∑︁
𝑖∈𝑉

𝑤𝑖𝐴
UB
𝑖 ,

subject to 𝑃𝑖,𝑗 ≥ 0, ∀(𝑖, 𝑗),

P1 = 1,

𝑃𝑖,𝑗 = 0, ∀(𝑖, 𝑗) /∈ 𝐸,

P is irreducible.

(3.61)

We first find the optimal packet generation rates given a random walk P. Observe

that the optimal queue utilization factors 𝜌𝑖 can be solved for given any fixed irre-

ducible random walk P, i.e.

𝜌*𝑖 (P) = arg min
𝜌𝑖∈[0,1]

𝐴UB
𝑖 (P, 𝜌𝑖) =

1

1 +
√
𝑧𝑖𝑖 − 𝜋𝑖

(3.62)

and

min
𝜌𝑖∈[0,1]

𝐴UB
𝑖 (P, 𝜌𝑖) = 𝐴UB

𝑖 (P, 𝜌*𝑖 ) =
𝑧𝑖𝑖 − 𝜋𝑖 + 2

√
𝑧𝑖𝑖 − 𝜋𝑖 + 2

𝜋𝑖

. (3.63)
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Thus, the upper bound age minimization problem reduces to

Minimize
P

∑︁
𝑖∈𝑉

𝑤𝑖

(︂
𝑧𝑖𝑖 − 𝜋𝑖 + 2

√
𝑧𝑖𝑖 − 𝜋𝑖 + 2

𝜋𝑖

)︂
,

subject to 𝑃𝑖,𝑗 ≥ 0, ∀(𝑖, 𝑗),

P1 = 1,

𝑃𝑖,𝑗 = 0, ∀(𝑖, 𝑗) /∈ 𝐸,

P is irreducible.

(3.64)

Now, we can relate the network age upper bound, given a random walk P, to its

mixing time ℋ. We assume optimal packet generation rates 𝜌*𝑖 (P).

∑︁
𝑖∈𝑉

𝑤𝑖𝐴
UB
𝑖 (𝑃, 𝜌*𝑖 (𝑃 )) =

∑︁
𝑖∈𝑉

𝑤𝑖

(︂
𝑧𝑖𝑖 − 𝜋𝑖 + 2

√
𝑧𝑖𝑖 − 𝜋𝑖 + 2

𝜋𝑖

)︂
,

≤
∑︁
𝑖∈𝑉

𝑤𝑖

(︂
𝒵 + 2

√
𝒵 + 2

𝜋𝑖

)︂
,

≤
∑︁
𝑖∈𝑉

𝑤𝑖

(︂
4ℋ + 4

√
ℋ + 2

𝜋𝑖

)︂
,

where inequalities follow from the same argument as in the proof of Lemma 2. Setting

P = P*, we obtain

∑︁
𝑖∈𝑉

𝑤𝑖𝐴
UB
𝑖 (P*, 𝜌*𝑖 (P

*)) ≤
∑︁
𝑖∈𝑉

𝑤𝑖

(︂
4ℋ + 4

√
ℋ + 2

𝜋*
𝑖

)︂
, (3.65)

where ℋ is the mixing time of 𝑃 *. Note that
∑︀

𝑖∈𝑉
𝑤𝑖

𝜋*
𝑖

is the optimal peak age in the

information gathering problem, i.e. 𝐴p*
𝒢 =

∑︀
𝑖∈𝑉

𝑤𝑖

𝜋*
𝑖
. This gives,

𝐴UB(P*,𝜌*)

𝐴p*
𝒢

≤ 4ℋ + 4
√
ℋ + 2. (3.66)
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Due to the presence of queues we have 𝐴p*
𝒢 ≤ 𝐴p*

𝒟 . This, (3.66), and the fact that

𝐴p(P*,𝜌*) ≤ 𝐴UB(P*,𝜌*), yields the peak age bound on the separation principle

policy:
𝐴p(P*, 𝜆*)

𝐴p*
𝒟

≤ 4ℋ + 4
√
ℋ + 2,

since 𝜌* = 𝜆*.

From the discussion following Theorem 9, we know that 2𝐴ave*
𝒢 ≥ 𝐴p*

𝒟 . Also,

𝐴ave*
𝒢 ≤ 𝐴ave*

𝒟 and 𝐴ave(P*,𝜌*) ≤ 𝐴UB(P*,𝜌*). Combining these with (3.66) gives us

𝐴ave(P*, 𝜆*)

𝐴ave*
𝒟

≤ 8ℋ + 8
√
ℋ + 4, (3.67)

since 𝜌* = 𝜆*.

The separation principle policy is factor 𝑂(ℋ) peak age and average age optimal.

It is worthwhile to note that a similar separation principle policy was established

in a completely different setting of scheduling links for age minimization in [15].

Theorem 13 generalizes that result to a graph.

3.4 Simulation Results

We test the performance of our proposed trajectories on three different kinds of

mobility graphs: random geometric graphs 𝒢(𝑛, 2√
𝑛
),2 grid graphs with diagonal

edges, and 3-connected ring or cycle graphs; see Figure 3-4. We use 𝑛 to denote the

number of ground terminals, namely 𝑛 = |𝑉 |. For the age-based policy, we set the

function 𝑔(𝑎) = 𝑎2 + 𝑎, inspired by the index based policies in [15]. Link weights

are picked uniformly at random from the interval (1, 2] in an independent manner.
2Setting 𝑟 = 2√

𝑛
for random geometric graphs ensures connectivity w.h.p.
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(a) (b) (c)

Figure 3-4: (a) A random geometric graph with 100 nodes, (b) A grid graph with 81
nodes and diagonal edges, and (c) A 3-connected ring or cycle graph with 21 nodes.

We run our simulations for a total of 50000 time-slots, to get a good estimate of the

peak and average age.

We consider the information gathering problem, and plot peak and average age

for all the proposed trajectories of the mobile agent: the Metropolis-Hastings ran-

domized trajectory Pmh, fastest mixing randomized trajectory P*, and age-based

trajectory. Figure 3-5 plots peak age as a function of network size 𝑛 for the random

geometric graph 𝒢 (𝑛, 2/
√
𝑛). We observe that the peak age for all the three proposed

trajectories match. We know from Theorems 7 and 10 that that the two randomized

trajectories, namely, the Metropolis-Hastings randomized trajectory Pmh and the

fastest mixing randomized trajectory P*, are both peak age optimal. Figure 3-5,

therefore, suggests that even the age-based trajectory for the mobile agent is peak

age optimal.

In Figure 3-6 we plot the average age performance of the proposed trajectories, as

a function of network size 𝑛. Also plotted is the lower bound for average age derived

in Theorem 9. We see that the age-based policy is nearly average age optimal,

while the fastest mixing randomized trajectory P* performs slightly better than the
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Figure 3-5: Information gathering problem in 𝒢(𝑛, 2/
√
𝑛): network peak age as a

function of network size 𝑛 for several proposed trajectories of the mobile agent.

Metropolis-Hastings randomized trajectory Pmh.

Theorem 11 proved that the fastest mixing randomized trajectory P* is at least

factor-8ℋ optimal. Figure 3-6 validates this conclusion: for example, for 𝑛 = 90

ground terminals, the average age for the fastest mixing randomized trajectory P*

is approximately a factor 3 away from the lower bound.

In Figures 3-7 and 3-8 we plot the average age performance for several proposed

trajectories, as a function of the network size. The age-based policy, again outper-

forms the two randomized trajectories, and is nearly optimal. We observe that the

average age for the fastest mixing randomized trajectory P*, namely 𝐴ave(P*), is

much worse in the ring graph than in the grid graph. This is because the mixing

time for the ring graph is much larger than for the grid graph.

In Figure 3-9, we simulate the performance of the separation principle policy
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Figure 3-6: Information gathering problem in 𝒢(𝑛, 2/
√
𝑛): network average age as a

function of network size 𝑛 for several proposed trajectories of the mobile agent. We
average over 10 random graphs for each value of 𝑛.
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Figure 3-7: Information gathering problem in the Grid graph: network average age
as a function of network size 𝑛 for several proposed trajectories of the mobile agent.

for the information dissemination problem, for graph 𝒢(𝑛, 2/
√
𝑛), and compare its

age performance with the information gathering problem. We observe a significant

deterioration of age, as a function of network size 𝑛, in the information dissemination

case in comparison to the information gathering case. This, we note, is the cost of

uncontrollable queues in the system on age performance.

3.5 Conclusions and Future Work

We considered the trajectory planning problem for a mobile agent, that traverses

through a mobility graph 𝐺, to help timely exchange of information updates be-

tween a central terminal and a set of ground terminals 𝑉 . In the information gath-

ering problem, we showed that a randomized trajectory, namely the fastest-mixing
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Figure 3-8: Information gathering problem in the Ring graph: network average age
as a function of network size 𝑛 for several proposed trajectories of the mobile agent.
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randomized trajectory, is peak age optimal and factor-ℋ average age optimal. We

showed that obtaining an average age optimal trajectory can be NP-hard, while we

constricted the peak age optimal trajectory in polynomial time. To improve the

average age, we proposed an age-based policy, and showed it to be factor-2 aver-

age age optimal, in a symmetric setting. In the information dissemination problem,

we proposed a separation principle policy, in which the mobile agent follows the

fastest mixing randomized trajectory with a simple rate control. We proved that the

separation principle policy is factor-𝑂(ℋ) optimal, in both peak and average age.

We plan to extend our work with results for the age-based policy with general

weight configurations. We also plan to look at graphs with edge-weights which

represent distances or travel times between nodes, in contrast to our setting where

we assume that the travel time between neighboring nodes is always equal to a single

time-slot. Another interesting extension is to consider age optimal gathering or

dissemination of information using multiple mobile agents in a similar graph based

setting and understanding age of information in mobile ad-hoc networks in general.

This motivates the second part of this thesis.

78



Chapter 4

AoI in Mobile Ad-hoc Networks

4.1 Single Source Model

We consider 𝑁 mobile nodes moving across a torus of unit area divided into 𝐶 cells

of equal size.

i.i.d. Mobility - The nodes move in an i.i.d. manner across time-slots, i.e.

any node is equally likely to be found in any of the cells at any given time-slot,

independent of the positions of other nodes.

There is a source cell in which phenomenon of interest is taking place, and a

destination cell which wants to keep track of what is happening at the source. Al-

ternatively, all the mobile nodes want to keep track of what is happening at the

source.
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Figure 4-1: In this example 𝑁 = 12 and 𝐶 = 36. The red cell is the source, while
the green cell is the destination, and the dots represent locations of mobile nodes at
a particular time instant.

Cell Partitioned Network - Whenever a node enters the source cell, it samples

the phenomenon happening there (receives a packet), for broadcasting in a later time-

slot. Within each cell, if a node transmits a packet, every other node in that cell

receives it correctly in the same time-slot. There is no interference between nodes

transmitting in different cells. The destination receives packets from the mobile

nodes, when they are in the destination cell.

A natural way to measure the freshness of information at the destination about

the source is the Age of Information 𝐴(𝑡), defined as the number of time-slots ago

the current information at the destination was generated at the source. Similarly,

we define 𝐴𝑖(𝑡) as the number of time-slots ago the current information at node 𝑖

was generated at the source. The expected long term average at the destination can

then be expressed as

𝐴𝑜𝐼 = lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

𝐴(𝑡)

]︂
. (4.1)

In this work, we find the optimal policy for transmission of packets in the above

model that minimizes 𝐴𝑜𝐼 at the destination. We also provide upper and lower
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bounds on expected long term average age of the system under different user node

densities and the optimal policy.

4.1.1 Policy

The optimal packet broadcast policy in this setting is obvious. In every cell, we allow

the node with the freshest information about the source to broadcast to every other

node in the cell. The fact that this policy achieves minimum age at the destination

can be proven by a sample path type argument. Consider a node and look at its age

with respect to the source. In every time-slot, it receives the freshest information it

can possibly receive, based on its location, by using the above policy. Thus, under

this policy, any node delivering packets to the destination has the lowest possible

age with respect to the source and so the destination also has minimum possible age

with respect to the source. Observe that this result is independent of the mobility

model of the underlying nodes. This is a crucial result that, as we will see, does not

necessarily hold when we have multiple sources and destinations.

4.1.2 Age Analysis

We now want to analyze expected long term average age at the destination under

the optimal policy given 𝑁 agents, 𝐶 cells and i.i.d. mobility. For this, we will use

a result from [71] on age of information under random updates. Here, we state the

result without proof. See [71] for details

Lemma 5. Consider a source that randomly generates packets with i.i.d. packet

inter-generation times 𝑋1, 𝑋2, ... and a network cloud that delivers these packets
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to the destination with i.i.d. service times 𝑆1, 𝑆2, .... Then, the following holds

lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

𝐴(𝑡)

]︂
≤ E[𝑋2

1 ] + 2E[𝑋1]E[𝑆1]

2E[𝑋1]
. (4.2)

Further, if packet generation times are geometrically distributed, the above equa-

tion reduces to

lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

𝐴(𝑡)

]︂
≤ E[𝑋1] + E[𝑆1]. (4.3)

Comparing the setting described in Lemma 5 to our model - the packet generation

times correspond to time-slots in which some node visits the source cell and the

network cloud is the set of 𝑁 mobile nodes delivering packets to the destination.

Lemma 6. The packet inter-generation times in our model are i.i.d. and geo-

metrically distributed with parameter 𝑝 = 1 − (1 − 1
𝐶

)𝑁 .

Proof. Consider the event 𝐸𝑡 that some node visits the source cell at time-slot 𝑡.

Then, by i.i.d. mobility, we have that

P(𝐸𝑡) = 1 − (1 − 1

𝐶
)𝑁 ,∀𝑡

and events 𝐸𝑡 are independent for all 𝑡. Thus, inter-visit times to the source cell

are geometrically distributed with the required parameter. These inter-visit times

can also be viewed as hitting times to the source cell given 𝑁 nodes with i.i.d.
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mobility.

We also note that for every packet picked up on a visit to the source cell, a packet

which is at least as fresh is guaranteed to be delivered to the destination in a random

time interval that is independent of corresponding inter-generation times. This will

function as our service times analogue in Lemma 5.

For a packet 𝑠 that is picked up by some node on a visit to the source cell at

time-slot 𝑡, we define the following two time-intervals -

1. 𝐹𝑠 = Flooding Time = the first time-instance since time-slot 𝑡 until every

mobile node has a copy of the packet picked up at time 𝑡 or a fresher packet

under the optimal policy, and

2. 𝐻𝑠 = Hitting Time = the first time some node visits the destination, starting

from time-slot 𝑡 + 𝐹𝑠 + 1.

Given these quantities, we have the following result

Lemma 7. For a visit to the source cell that picks up packet 𝑠, a packet that is

at least as fresh as the packet 𝑠, is guaranteed to be delivered to the destination in

at-most 𝐹𝑠 + 𝐻𝑠 time-slots after pickup, where 𝐹𝑠 and 𝐻𝑠 are random variables

as defined above.

Again, using independence across time-slots, these upper bound packet service

times are i.i.d. and independent of corresponding packet generation intervals. Putting

together the results from Lemmas 5, 6, and 7 we have an upper bound on the ex-

pected long term average age at the destination under the optimal policy.
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Lemma 8. Given the model described in section 4.1, with the optimal broadcast

policy described in section 4.1.1, we have

lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

𝐴(𝑡)

]︂
≤ 2E[𝐻] + E[𝐹 ], (4.4)

where 𝐻 is the hitting time to the source/destination as described earlier, and

𝐹 is the single packet flooding time in a system of 𝑁 nodes and 𝐶 cells with single

packet broadcast allowed in every cell in every time-slot.

Proof. Observe that packets are picked up in i.i.d. intervals of time 𝐻1, 𝐻2, 𝐻3, ...

distributed according to the hitting time required to reach the source. These packets

are delivered in time that is upper bounded by i.i.d. intervals 𝐹1 +𝐻 ′
1, 𝐹2 +𝐻 ′

2, 𝐹3 +

𝐻 ′
3, ... where 𝐹𝑖 is the time to flood the 𝑖𝑡ℎ packet and 𝐻 ′

𝑖 is the hitting time to the

destination once every node has the 𝑖𝑡ℎ packet.

Using Lemma 6, 𝐻1, 𝐻
′
1, 𝐻2, 𝐻

′
2, ... are i.i.d. geometric random variables. Now,

we can apply the extension of Lemma 5 for geometric inter-arrivals to get the required

result.

We can also find an upper bound for the maximum age across all mobile nodes

with respect to the source (the broadcast setting).

Lemma 9. Given the model described in section 4.1, with the optimal broadcast

policy described in section 4.1.1, we have -

lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

max
𝑖∈[𝑁 ]

𝐴𝑖(𝑡)

]︂
≤ E[𝐻] + E[𝐹 ], (4.5)
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where 𝐻 is the hitting time to the source as defined earlier, and 𝐹 is the sin-

gle packet flooding time in a system of 𝑁 nodes and 𝐶 cells with single packet

broadcast allowed in every cell in every time-slot.

Proof. The key idea is that we can drop the extra time required to hit the destination

after the flooding process in our proof of Lemma 8. The result follows automatically.

These results allow us to find upper bounds for age, provided expressions for

hitting times and flooding times are available in such a setting. We will consider

three different scaling regimes of 𝑁 and 𝐶 and derive upper bound on age for these

regimes.

Constant Density - Consider the setting when 𝑁/𝐶 is a constant as 𝑁 goes to

infinity, i.e. the density of mobile nodes per cell remains constant. Such a setting

has been considered in detail in [51,55]. In both these works, the authors show that

the expected flooding time for a single packet in the broadcast network is 𝑂(log(𝑁)).

On the other hand, using Lemma 6, hitting time is a geometric random variable

with parameter 1 − (1 − 1/𝐶)𝑁 . Thus, we have

E[𝐻] =
1

1 − (1 − 1
𝐶

)𝑁
= Θ(1), and

E[𝐹 ] = 𝑂(log(𝑁)), as 𝑁 → ∞

Combining the above with Lemma 8, we get the following result
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Lemma 10. For the single source model, when 𝑁 → ∞ and 𝑁/𝐶 is a constant,

we have

lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

max
𝑖∈[𝑁 ]

𝐴𝑖(𝑡)

]︂
= 𝑂(log𝑁). (4.6)

Sparse Regime - We consider the sparse regime from [55], where 𝐶 = Θ(𝑁𝛼)

and 𝛼 > 1. We call this the sparse regime since the the number of cells grows faster

than the number of mobile nodes, so the density of mobile nodes goes to zero as

𝑁 → ∞. Using Lemma 6 to find the hitting time, and results from [55] to find a

bound for the flooding time, we get

E[𝐻] =
1

1 − (1 − 1
𝐶

)𝑁
= 𝑂(𝑁𝛼−1), and

E[𝐹 ] = 𝑂(𝑁𝛼−1 log(𝑁)), as 𝑁 → ∞

See Appendix A.3 for a proof of the hitting time order analysis. Combining the

results above with Lemma 8, we get the following result

Lemma 11. For the single source model, when 𝑁 → ∞ and 𝐶 = Θ(𝑁𝛼) with

𝛼 > 1, we have

lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

max
𝑖∈[𝑁 ]

𝐴𝑖(𝑡)

]︂
= 𝑂(𝑁𝛼−1 log𝑁). (4.7)

Observe that this is consistent with the constant density case as 𝛼 → 1.
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Dense Regime - We also consider the Dense regime from [55], where 𝐶 = Θ(𝑁𝛼)

and 𝛼 ∈ (0, 1). We call this the dense regime since the the number of cells grows

slower than the number of mobile nodes, so the density of mobile nodes goes to

infinity as 𝑁 → ∞. Using Lemma 6 to find the hitting time, and results from [55]

to find a bound for the flooding time, we get

E[𝐻] =
1

1 − (1 − 1
𝐶

)𝑁
= 𝑂(1), and

E[𝐹 ] = 𝑂(log(log(𝑁))), as 𝑁 → ∞

See Appendix A.3 for a proof of the hitting time order analysis. Combining the

results above with Lemma 8, we get the following result

Lemma 12. For the single source model, when 𝑁 → ∞ and 𝐶 = Θ(𝑁𝛼) with

𝛼 ∈ (0, 1), we have

lim
𝑇→∞

E
[︂

1

𝑇

𝑡=𝑇∑︁
𝑡=1

max
𝑖∈[𝑁 ]

𝐴𝑖(𝑡)

]︂
= 𝑂(log(log(𝑁))). (4.8)

Observe that in all the three regimes that we discussed, our age upper bound is

dominated in an order sense by the flooding time. That is, the flooding time is a

good approximation bound for age. We confirm this with simulations in Section 4.3.

4.2 Multiple Sources

We extend the model from previous sections to a setting with multiple sources.

Consider a cell partitioned communication model with 𝐶 cells on a unit torus and
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𝑁 agents moving across cells in an i.i.d manner. There are 𝐾 source cells, which

generate new status updates in every time-slot. If at any time-slot 𝑡, an agent 𝑖 is in

a source cell 𝑘, it receives a fresh packet from the source and its age 𝐴𝑘
𝑖 (𝑡+ 1) drops

to 1. Apart from direct updates received when agents are close to data sources, they

can communicate with other agents in the same cell. In every time-slot, a single

packet can be broadcast in every cell, and every agent within the cell receives it

correctly. The corresponding ages drop to the age of the broadcast packet.

Our goal is to find the time average age optimal broadcast policy in this mobile

ad-hoc network setting. Note that this is an especially challenging task due to the

changing connectivity between nodes as well as the multi-hop nature of communica-

tion. Minimizing AoI in a fixed multihop reliable network still remains an unsolved

problem. So, we provide a simple greedy policy motivated by the symmetry in the

our system and numerically compare its performance to other policies.

4.2.1 Policy

Local One-step Greedy Policy In every cell and in every time-slot, broadcast the

packet the packet which leads to maximum immediate drop in total age in the next

time-slot.

To prove that this policy is optimal, we need to show that the dynamic program-

ming recursion in our problem simplifies to a series of one-step greedy maximization

procedures. While we cannot prove this for general 𝑁 or 𝐶, we provide an argument

for why the greedy policy is indded optimal for the simplest multi-source setting

when 𝑁 = 2, 𝐾 = 2, and 𝐶 = 4.

We look at the simplest non-trivial setting of our model, i.e. 𝑁 = 2, 𝐾 = 2,

and 𝐶 = 4. Clearly, we can construct trajectories for which broadcasting packets

88



0 100 200 300 400 500 600 700 800

Mobile Nodes (N)

0

1

2

3

4

5

6

7

A
v

e
r
a

g
e
 A

g
e

Age at Destination

log(N)

Figure 4-2: Average Age at the destination as a function of number of mobile nodes,
for the constant density regime. We fix 𝑁/𝐶 = 2.5 nodes per cell

according to the greedy policy in every time-slot is not optimal. However, for every

such "bad" trajectory, we argue that we can create a "mirror trajectory" for which

the choosing the greedy action is better by a larger margin. Using the assumption

of i.i.d. mobility, all future trajectories are equally likely. Thus, in expectation,

broadcasting packets according to the greedy policy is expected average age optimal.

Observe that the optimality of the greedy policy relies heavily on the i.i.d. mobility

assumption, unlike the single-source case.

4.3 Simulation Results

From Figures 4-2, 4-3, and 4-4, we see that we can get good approximations for

average age as a function of the system size for the three regimes as we discussed

earlier. For Figure 4-2, we fix the density of mobile nodes to be 2.5 per cell and
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Figure 4-3: Average Age at the destination as a function of number of mobile nodes,
for the sparse density regime. We fix 𝐶 = Θ(𝑁1.25)
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Figure 4-4: Average Age at the destination as a function of number of mobile nodes,
for the dense regime. We fix 𝐶 = Θ(𝑁0.833)
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Figure 4-5: Network Average Age as a function of number of cells in the network for
the 2 source case. We fix 𝑁 = 2 and compare the greedy policy with a randomized
policy.

observe that average age grows logarithmically with 𝑁 , as expected from our age

analysis. For Figure 4-3, we allow 𝐶 to grow as fast as 𝑁1.25. Thus, we are in

the sparse regime, and observe that average age grows much faster, at a rate of

𝑁0.25 log(𝑁). For Figure 4-4, we allow 𝐶 to grow only as fast as 𝑁0.833. Thus, we

are in the dense regime, and observe that average age grows much slower - at a rate

of log(log(𝑁)).

In Figure 4-5, we compare the one step greedy policy derived for the multi-

source setting with a randomized that picks and broadcasts a packet uniformly at

random in each cell. We plot average age for 2 sources and 2 mobile nodes as the

number of communication cells increases. As expected, the age increases with 𝐶

for both policies, since the probability to hit the sources or land in a common cell

decreases with the number of cells. Also, the greedy policy performs better than the
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Figure 4-6: Network Average Age as a function of number of mobile nodes in the
network. We fix the number of cells 𝐶 = 100 and compare the greedy policy with a
randomized policy.

randomized policy, however, the difference is not significant.

In Figure 4-6, we compare the one step greedy policy derived for the multi-source

setting with a randomized that picks and broadcasts a packet uniformly at random

in each cell. We plot average age by fixing the number of cells to be hundred and

putting a source in each cell, as the number of mobile nodes increases. This can be

thought of as a model for field sensing using multiple mobile agents. As expected, the

age decreases with increasing 𝑁 for both policies, since the probability to hit sources

that haven’t been visited, or landing in a common cell, increases with the number of

nodes. Also, the greedy policy performs better than the randomized policy, however,

the difference is not significant.
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4.4 Conclusions and Future Work

In this chapter, we introduced a simple model to study age of information in mobile

ad-hoc networks. We studied the scaling of AoI with the size of the network in three

different regimes for the single source case, under the optimal packet forwarding

policy. We also developed a heuristic one-step greedy policy for the multi-source

case and provided numerical results to support our discussion.

The results presented in this chapter are preliminary, and a lot more work needs

to be done in understanding age of information in mobile ad-hoc networks. The

problem of minimizing weighted sum AoI in a multi-hop network with fixed reliable

links remains unsolved, and so does the corresponding problem in multi-hop networks

with wireless links and mobility. A better understanding of AoI scaling along with

lower bounds for networks with mobility is also an interesting direction of future

work.
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Appendix A

A.1 Proof for Average Age in Theorem 2

Consider a Geo/G/1 queue with i.i.d. geometric packet inter-arrival times 𝑋1, 𝑋2, ...

Let 𝑇𝑛 be the total time spent in the system by the 𝑛th packet. Then, the average

age for the corresponding continuous time system is given by [1]

𝐴ave
cont. =

E[𝑋2
𝑛]/2 + E[𝑋𝑛𝑇𝑛]

E[𝑋𝑛]
=

1

𝛾
− 1

2
+ 𝛾E[𝑋𝑛𝑇𝑛], (A.1)

where 1
𝛾

= E[𝑋𝑛] and a packet arrives in every time-slot with probability 𝛾. To

evaluate the term E[𝑋𝑛𝑇𝑛], we use the following recursion -

𝑇𝑛 = max{𝑇𝑛−1 −𝑋𝑛, 0} + 𝑆𝑛, (A.2)

where 𝑆𝑛 is the service time of the 𝑛th packet. Note that 𝑇𝑛−1 and 𝑆𝑛 are independent

of 𝑋𝑛. Let E [𝑆𝑛] = 1
𝜇

and 𝜌 , 𝛾
𝜇
. Evaluating E [𝑋𝑛𝑇𝑛], we have

E[𝑋𝑛𝑇𝑛] = E[𝑋𝑛 max{𝑇𝑛−1 −𝑋𝑛, 0}] + E[𝑆𝑛𝑋𝑛],

=
∞∑︁
𝑡=1

E[𝑋𝑛 max{𝑡−𝑋𝑛, 0}]P(𝑇 = 𝑡) +
E[𝑆]

𝛾
,

(A.3)
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where P(𝑇 = 𝑡) is the probability mass function of the total time spent by a packet

in the system. We need to evaluate the term E[𝑋𝑛 max{𝑡−𝑋𝑛, 0}].

E[𝑋𝑛 max{𝑡−𝑋𝑛, 0}] =
𝑡∑︁

𝑥=1

𝑥(𝑡− 𝑥)P(𝑋𝑛 = 𝑥),

=
𝑡∑︁

𝑥=1

𝑥(𝑡− 𝑥)𝛾(1 − 𝛾)𝑥−1,

=
2(1 − 𝛾)𝑡 − 2

𝛾2
+

𝑡(1 − 𝛾)𝑡 − (1 − 𝛾)𝑡 + 𝑡 + 1

𝛾
.

(A.4)

Using (A.3) and (A.4), we now compute E[𝑋𝑛𝑇𝑛] as

E[𝑋𝑛𝑇𝑛] =
2E[(1 − 𝛾)𝑇 ] − 2

𝛾2
+

E[𝑇 (1 − 𝛾)𝑇 ]

𝛾
+

E[𝑇 ] + 1 − E[(1 − 𝛾)𝑇 ]

𝛾
+

E [𝑆]

𝛾
.

(A.5)

We define 𝐿𝑇 (𝑥) , E[𝑥𝑇 ]. Then, E[(1 − 𝛾)𝑇 ] = 𝐿𝑇 (1 − 𝛾), and E[𝑇 (1 − 𝛾)𝑇 ] =

𝑑
𝑑𝑧
𝐿𝑇 (𝑧)

⃒⃒
𝑧=1−𝛾

(1− 𝛾). Also, from [58], we know that for a Geo/G/1 queue, the prob-

ability generating function of 𝑇 is given by the following equation

𝐿𝑇 (𝑧) =
(1 − 𝜌)(1 − 𝑧)𝐿𝑆(𝑧)

(1 − 𝑧) − 𝛾(1 − 𝐿𝑆(𝑧))
. (A.6)

Substituting 𝑧 = (1 − 𝛾) in the above expression we get

𝐿𝑇 (1 − 𝛾) = 1 − 𝜌, and

𝑑

𝑑𝑧
𝐿𝑇 (𝑧)

⃒⃒⃒⃒
𝑧=1−𝛾

=
(1 − 𝜌)

𝛾

(︂
1

𝐿𝑠(1 − 𝛾)
− 1

)︂
.

(A.7)
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Putting all of these together along with the expression for E [𝑇 ], we get

𝐴ave
cont. =

1

2
+ E[𝑆] +

(1 − 𝛾)(1 − 𝜌)

𝛾𝐿𝑆(1 − 𝛾)
+

𝛾E[𝑆2] − 𝜌

2(1 − 𝛾E[𝑆])
. (A.8)

A.2 Proof of Lemma 4

Consider a randomized trajectory P and Bernoulli arrival rates 𝜆 = (𝜆1, 𝜆2, . . .).

From the arguments made in Chapter 3.3, we know that the peak age for the ground

terminal 𝑖 is upper-bounded by the peak age of a discrete time FCFS Ber/G/1

queue with vacations, for which the service times and vacation times have the same

distribution as the inter-visit times 𝐻1,𝑖. Applying Lemma 3 we obtain

𝐴p
𝑖 ≤ 1

𝜋𝑖

[︂
1 + 𝑧𝑖𝑖 +

1

𝜌𝑖
+

𝑧𝑖𝑖𝜌𝑖
1 − 𝜌𝑖

]︂
− 𝜌𝑖

1 − 𝜌𝑖
− 1 , 𝐴UB

𝑖 , (A.9)

where we have used the first and second moment of inter-visit times 𝐻1,𝑖 [62]:

E[𝐻1,𝑖] =
1

𝜋𝑖

, E[𝐻2
1,𝑖] =

−1

𝜋𝑖

+
2𝑧𝑖𝑖
𝜋2
𝑖

,∀𝑖 ∈ 𝑉. (A.10)

Similarly, we know that the average age for the ground terminal 𝑖 is also upper-

bounded by the average age for the FCFS Ber/G/1 queue with vacations. Using the

fact that 𝐴ave ≤ 𝐴p + 1
2

for the Ber/G/1 queue with vacations (see Lemma 3), we

also get 𝐴ave
𝑖 ≤ 𝐴UB

𝑖 .

A.3 Hitting Time Order Analysis

From Lemma 6, we know that 𝐻 is a geometric random variable with parameter

1 − (1 − 1/𝐶)𝑁 . Thus,
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E[𝐻] =
1

1 − (1 − 1
𝐶

)𝑁
.

Now, if 𝐶 = Θ(𝑁𝛼), then there exists some fixed 𝑘 > 0 and 𝑁0 ≥ 1 possibly

dependent on 𝛼 such that

E[𝐻] ≤ 1

1 − (1 − 𝑘
𝑁𝛼 )𝑁

,∀𝑁 ≥ 𝑁0

For 𝛼 ∈ (0, 1), (1 − 𝑘
𝑁𝛼 )𝑁 converges to zero as 𝑁 goes to infinity. Thus,

lim
𝑁→∞

1

1 − (1 − 𝑘
𝑁𝛼 )𝑁

= 0,

which implies that

E[𝐻] = 𝑂(1),∀𝛼 ∈ (0, 1).

If 𝛼 ≥ 1, observe that there exists some 𝑐 > 0 such that for large enough 𝑁 ,

1

1 − (1 − 𝑘
𝑁𝛼 )𝑁

≤ 𝑐𝑁𝛼−1.

Thus,

E[𝐻] = 𝑂(𝑁𝛼−1),∀𝛼 ≥ 1.
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