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Abstract

The complex etiology of neurodegenerative diseases is not fully understood, and
the characterization of cellular pathways that are dysfunctional in these diseases is key
for therapeutic development. Chemical and genetic perturbagens can probe cellular
pathways to shed insight about both disease etiology and potential therapeutic targets.
We analyzed the functional effects of chemical perturbagens in neurodegenerative
disease models as evidenced by changes in transcriptomic, metabolomic, epigenomic,
and proteomic data ("multi-omics" data). Our studies revealed novel modes of action for
small molecule compounds that promote survival in a model of Huntington's Disease, a
fatal neurodegenerative disorder. Integration of our multi-omics data using an
interpretable network approach revealed that the autophagy and bioenergetics cellular
pathways are affected by different sets of compounds that promote survival. Using
staining and western blot assays, we validated the effect on autophagy for one set of
compounds and found that the compounds activate this pathway. Using a cellular
bioenergetics assay, we found that a second set of compounds shifts the bioenergetic
flux from mitochondrial respiration to glycolysis, validating our network results. In a
second study related to Huntington's Disease, we analyzed the effects of two peripheral
huntingtin gene silencing techniques in mouse liver. We show that the transcriptional
and metabolomic changes associated with both genetic silencing methods converge on
similar cellular pathways, such as the immune response and fatty acid metabolism. As a
whole, this thesis presents new insights into the functional effects of perturbagens that
could impact neurodegenerative disease pathology and drug discovery.

Thesis Supervisor: Ernest Fraenkel
Title: Professor of Biological Engineering
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Chapter 1: Introduction

1.1 Neurodegenerative Disorders

Neurodegenerative disorders are characterized by the progressive death of

specific neuronal populations. Patients typically present a mixture of clinical features,

involving disruptions in behavior, cognition, and movement (Dugger and Dickson, 2017).

By the presence of abnormal protein conformations, the most common disorders can be

classified as amyloidoses, tauopathies, a-synucleinopathies, or TDP-43 proteinopathies

(Dugger and Dickson, 2017). Many neurodegenerative disorders share the pathogenic

molecular mechanism of protein misfolding and aggregation, which can cause

disruptions in normal cellular processes and ultimately, neuronal dysfunction and death

(Kumar et al., 2016). Impaired nucleocytoplasmic transport, mitochondrial dysfunction,

and autophagy dysregulation are common features of neurodegeneration (Bhat et al.,

2015; Kim and Taylor, 2017; Kiriyama and Nochi, 2015). Few treatments exist for

neurodegenerative disorders, most of which target symptoms and not the underlying

disease pathology (Cummings, 2017). There remains a critical need to bridge the gap

between neurobiology and clinical therapy.

1.1.1 Huntington's Disease

Huntington's Disease (HD) is a rare, fatal neurodegenerative disorder affecting

between 10 and 14 out of 100,000 in Western populations and is caused by a CAG

triplet expansion in the huntingtin gene on chromosome 4 (McColgan and Tabrizi,

2018). This autosomal dominant mutation, discovered in 1993, encodes an expanded

polyglutamine (polyQ) domain of the huntingtin protein (Kumar et al., 2015). Unaffected

individuals have less than 35 CAG repeats in the polyQ domain, while the disease

inflicts those with over 39 repeats with complete penetrance. Due to the instability of the

polyQ expansion between generations, HD is progressive and there is genetic

anticipation (Zuccato et al., 2010). The mean age of onset is 40 years, with death

occurring approximately 15 to 20 years later (Ross and Tabrizi, 2011). The symptoms of

HD include defects in movement, cognition, and behavioral function (Schulte and

Littleton, 2011). There is no effective therapy to halt the progression of the disease

(Kumar et al., 2015).
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Although the exact function of huntingtin is unclear, it appears to play several

roles within the cell. It is an essential protein, required for early embryonic development,

and is ubiquitously expressed in most cells and within all cellular compartments (Kumar

et al., 2015; Ross and Tabrizi, 2011). Huntingtin has been shown to interact with many

proteins and also to be involved in transcription, antiapoptotic activity, and the trafficking

processes of vesicles and organelles (Schulte and Littleton, 2011). Within brain cells,

mutant huntingtin is misfolded and forms aggregates, causing loss of wild-type functions

and gain of toxic new functions (Labbadia and Morimoto, 2013). These functions involve

transcriptional dysregulation, impaired cytoskeletal motor functions, compromised

energy metabolism, and abnormal immune activation (Labbadia and Morimoto, 2013).

Together, they result in the massive striatal neuronal cell death seen in HD patients,

with medium spiny neurons in the striatum selectively targeted by the disease (Ross,

2002).

1.1.2 Spinal Muscular Atrophy

Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative

disorder that affects motor neurons in the spinal cord and brainstem (Ahmad et al.,

2016). SMA is the leading genetic cause of infant death attributed to respiratory

insufficiency and is characterized by muscle weakness and severe physical disability

(Farrar et al., 2017). The worldwide incidence of SMA is between 1 in 6,000 to 1 in

10,000 individuals (Ahmad et al., 2016). SMA is caused by mutations in the survival

motor neuron 1 gene (SMN1), which result in SMN protein deficiency (Farrar et al.,

2017). The full-length splicing isoform of the almost identical gene SMN2 can partially

compensate for the protein deficiency, and the copy number of SMN2 determines the

subtype of the disease, categorized by severity (Maharshi and Hasan, 2017). One FDA-

approved therapy, nusinersen, exists for the treatment of SMA and works by increased

the production of full-length SMN2 protein (Maharshi and Hasan, 2017).

1.1.3 Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is an adult onset, neurodegenerative

disorder characterized by the degeneration of upper and lower motor neurons in the
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brain and spinal cord (Hardiman et al., 2017). ALS has an incidence of 1-2 per 100,000

and a mean survival time of 3-5 years (Chen et al., 2018). The clinical features of ALS

include progressive muscle weakness and atrophy throughout the body (Chen et al.,

2018). Two FDA-approved treatments are available for ALS, but neither is effective in

halting disease progression (Chia et al., 2018). The heterogeneity and unknown

pathophysiology of the disease complicate diagnosis and the search for treatment

options. ALS cases can be classified using differences in initial symptom presentation

site, progression rate, cognitive disruption, and behavioral changes (Chen et al., 2018).

Common pathophysiological features of ALS include hyperexcitability, weight loss and

pain, and nearly all patients succumb to respiratory failure (Chen et al., 2018; Do-Ha et

al., 2018; Hardiman et al., 2017).

Unlike Huntington's Disease, only about 10% of patients have familial disease

(Chia et al., 2018). The remaining sporadic cases have unknown etiology. In 1993, the

gene SODi was identified to be associated with ALS, and more than 30 genes,

including C9orf72, TARDBP, and FUS, have since been linked to the disease (Chia et

al., 2018; Hardiman et al., 2017). Many of these genes are linked to protein aggregation

phenotypes, which cause dysfunction in many cellular processes. Pathways known to

be dysregulated in ALS include protein homeostasis, mitochondrial dynamics, RNA

metabolism, cytoskeletal integrity, axonal transport, and DNA damage (Chia et al.,

2018). However, mutations in the genes involved in these pathways cannot explain the

majority of ALS cases, and it is unclear how environmental and lifestyle factors play a

role in the disease (Hardiman et al., 2017).

1.2 Systems Biology and Omics Data Types

One approach to gain a better understanding of neurodegenerative disorder

pathophysiology is to use systems biology. Since the 1990's, new experimental and

bioinformatic tools have allowed for the high throughput analysis of biological data and

the emergence of the modern field of systems biology (Medina, 2013; Schneider, 2013).

The development of omics technologies has resulted in significant advances in our

understanding of basic biology, such as the sequencing of the human genome.

13



Systems biology provides a computational framework to model complex

biological systems, such as cells or organisms, as a whole (Altaf-UI-Amin et al., 2014;

Breitling, 2010). This approach is in contrast to the more traditional reductionist methods

to investigate biology, where complex problems are broken down into a set of simpler

problems (Medina, 2013). In systems biology, genome-scale measurements of the

molecules that make up a system are organized in the context of molecular networks.

The connections between molecules in a network can provide information about the

system's structure, dynamics, design principles, and rules of control and regulation

(Altaf-UI-Amin et al., 2014; Medina, 2013).

There are many data types that can be used in systems biology, generally

referred to as "omics" measurements. Omics measurements interrogate the entire set of

a given level of biological molecules (Schneider, 2013). These measurements could

include genome sequences, molecular structures, gene expression, binding sites and

domains, protein-protein interactions, mass spectrometry, and metabolic pathways

(Altaf-UI-Amin et al., 2014). Clinically, omics data can provide valuable information

about therapeutic targets and biomarkers, disease subtypes, personalized medicine,

disease mechanism and drug interactions, leading to better diagnostics and new drug

candidates (Kedaigle and Fraenkel, 2018; Schneider, 2013).

1.2.1 Transcriptomics

The transcriptome refers to the set of all RNA transcripts in a cell, tissue, or

organism. Quantification of the RNA transcripts can provide information about gene

expression, splicing events, transcriptional structure, post-transcriptional modifications

and the different species of transcripts, including mRNAs, non-coding RNAs, and small

RNAs (Wang et al., 2009). Currently, there are two dominant methods for measuring the

transcriptome, microarrays and RNA-Seq.

Microarrays measure a set of transcript abundances via their hybridization to an

array of complementary probes (Lowe et al., 2017). The transcripts are fluorescently

labeled, and the fluorescence intensity at each probe indicates the transcript abundance

for that probe sequence (Lowe et al., 2017). Though microarrays are cost-effective and

not labor-intensive, they have limitations due to their reliance on existing knowledge
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about genome sequence and probe design. Most probes do not have predictable

hybridization characteristics, and the resulting microarrays have high background levels

and a limited range of detection (Pozhitkov et al., 2007; Wang et al., 2009).

RNA-Seq is a method by which RNA from the entire transcriptome is extracted

from cells, converted into cDNA, amplified, and then sequenced (Wang et al., 2009).

There are a variety of ways to customize an RNA-Seq experiment, including different

strategies for transcript enrichment, fragmentation, amplification, strand-specificity, and

single or paired-end sequencing (Lowe et al., 2017). Sequencing output is the limiting

factor in RNA-Seq studies because a large number of reads is required to ensure

sufficient coverage of the transcriptome of interest. There are also bioinformatic

challenges to working large sequencing data sets. Compared to microarrays, RNA-Seq

is often the preferred technology because it has better dynamic range, requires lower

input RNA amounts, is not limited by known genomic sequences, can provide

information about sequence variation, and has relatively low background signal (Lowe

et al., 2017; Wang et al., 2009).

1.2.2 Epigenomics

The epigenome indicates the genome-wide chromatin state. While the genome's

primary sequence is relatively static across cell types, the epigenome can vary greatly

and lead to distinct gene expression programs and biological functions (Kundaje et al.,

2015). Histone modifications, chromatin accessibility, and DNA methylation comprise

the epigenomic state, which can be assessed using several methods, such as ChIP-

Seq, DNase-Seq, and ATAC-Seq (Kundaje et al., 2015).

Histone modifications contribute to the dynamic nature of chromatin. The

combination of modifications, such as acetylation and methylation, across the genome

can be read as a "histone code" (Jenuwein, 2001). Histone modifications can provide

information about transcriptional states and whether a region is euchromatic or

heterochromatic (Jenuwein, 2001). Acetylation is typically associated with accessible

chromatin, while methylation can be associated with open or compacted chromatin.

For example, the H3K4mel, H3K4me3 and H3K36me3 marks are all associated

with open and transcribed chromatin, while the H3K9me3 and H3K27me3 are
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associated with compacted and repressed chromatin (O'Geen et al., 2011). Also, each

mark has distinct characteristics and targets. H3K4mel is associated with

transcriptional enhancers, H3K4me3 is associated with gene promoter regions, and

H3K36me3 is associated with transcribed regions of the genome (Heintzman et al.,

2007; O'Geen et al., 2011). Though H3K9me3 and H3K27me3 are both associated with

repressive chromatin, each mark is associated with distinct sets of target genes

(O'Geen et al., 2011).

ChIP-Seq is a technique for assaying protein-DNA binding and can be used to

identify genome-wide profiles of transcription factors, histone modifications, DNA

methylation and nucleosome positioning (O'Geen et al., 2011; Park, 2009). ChIP-Seq

uses antibodies to select specific proteins or nucleosomes, which are bound to DNA

fragments. The DNA fragments of interest are sequenced directly and can be used to

identify regions of the genome bound to the protein or nucleosome (O'Geen et al.,

2011). ChIP-Seq is often limited by cost, sequencing depth, input material, and antibody

quality (Park, 2009).

Unlike ChIP-Seq, DNase-Seq is a method of mapping DNase I hypersensitive

sites, which can be used to predict the location of genetic regulatory elements (Boyle et

al., 2008). DNase-Seq uses the DNase I nuclease to digest chromatin. DNase I

preferentially cuts at a DNase I hypersensitive sites and inserts a linker that can be

identified by sequencing (Boyle et al., 2008). Sequencing reads can be used to identify

DNase I hypersensitivity sites, which are associated with regulatory regions such as

enhancers, promoters, silencers, insulators, and locus control regions (Boyle et al.,

2008). This method can reveal novel relationships between chromatin accessibility,

transcription, and transcription factor occupancy (Thurman et al., 2012).

ATAC-Seq is another sequencing-based assay that can be used to investigate

chromatin accessibility. Unlike DNase-Seq, ATAC-Seq uses the Tn5 transposase to

insert sequencing adaptors into accessible regions of chromatin. Sequencing reads can

then be used to identify open-chromatin regions across the epigenome (Buenrostro et

al., 2013). ATAC-Seq can simultaneously interrogate transcription factor occupancy,

nucleosome positions in regulatory sites, and chromatin accessibility genome-wide.
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Compared to DNase-Seq, it also requires less input material, is faster, and is less labor-

intensive (Buenrostro et al., 2013).

1.2.3 Metabolomics

The set of all metabolites in a cell, tissue, or organism makes up the metabolome

(Clish, 2015). Metabolomics involves the measurement of endogenous and exogenous

small-molecule compounds that are the substrates and products of biochemical

reactions (Liu and Locasale, 2017). Metabolomics platforms include mass spectrometry-

based methods and nuclear magnetic resonance (Liu and Locasale, 2017). There are

several protocols for mass spectrometry, and the choice of protocol depends on the

type of molecules of interest. For example, lipids and polar metabolites have different

sample preparation and chromatography protocols (Clish, 2015). Mass spectrometry

methods can also be classified as targeted or untargeted. Targeted mass spectrometry

refers to the measurement of absolute concentrations of molecules and typically

requires reference standards (Liu and Locasale, 2017). As a result, relatively few

metabolites can be measured in this way. Untargeted mass spectrometry, on the other

hand, profiles thousands of unknown features. However, metabolite identification in

untargeted mass spectrometry presents a significant bottleneck in deriving biological

knowledge from such studies (Dunn et al., 2013). Other limitations for metabolomics

include batch effects, instrument variation, and the diversity of technologies without

standard operating procedures (Clish, 2015; Liu and Locasale, 2017).

1.2.4 Proteomics

The proteome refers to the set of all proteins present in a cell, tissue or organism,

and is complex, dynamic, and represents the functional information of genes (Aslam et

al., 2017). The characterization of the proteome includes expression, structure,

functions, interactions and post-translational modifications, such as phosphorylation or

ubiquitination (Aslam et al., 2017). Mass spectrometry is a key technology in quantifying

protein expression. There are different mass spectrometry protocols, such as tandem

mass spectrometry or MS3 (Aslam et al., 2017; McAlister et al., 2014). In bottom-up

proteomics, the proteins in a sample are first broken down into peptides, the mass
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spectrometry analysis is performed on the individual peptides, and the information is

combined together to reveal protein identities (Gundry et al., 2009). There are many

customizable steps to the mass spectrometry protocols, including protein purification

and digestion, peptide tagging, peptide enrichment, and peptide cleanup (Gundry et al.,

2009). The examination of the proteome is limited by cost, access to facilities with

skilled personnel, and databases for protein mapping (Aslam et al., 2017).

1.3 Computational Modeling of Biological Systems

To interpret the wealth of data generated by the omics technologies,

computational techniques must be implemented. Many methods have been developed

to reduce the dimensionality of large data sets, cluster and classify samples or features

based on molecular profiles, correlate sets of molecules or phenotypes, find biologically

meaningful pathway enrichments, and understand the connectivity and dependencies of

molecules (Altaf-UI-Amin et al., 2014; Kedaigle and Fraenkel, 2018; Parikshak et al.,

2015; Prathipati and Mizuguchi, 2015; Wood et al., 2015). These methods can help

define the functions of unknown omics molecules, predict and detect interacting proteins

or complexes, analyze evolution of sequences or molecules across species, integrate

information across omics data types, determine the most important molecules within the

omics data, find biomarkers for disease diagnosis, identify drug targets and drug

interactions, and compare different biological mechanisms (Altaf-UI-Amin et al., 2014).

Data-driven methods for analyzing multi-dimensional data include dimensionality

reduction and correlation approaches (Wood et al., 2015). Dimensionality reduction

serves to project the multi-dimensional data onto a smaller number of dimensions. It can

reduce the complexity of the data, increase interpretability, and be used to classify

samples. Commonly used techniques include principal component analysis and t-SNE

(Giuliani, 2017; Oliveira et al., 2018). Other correlation approaches, such as hierarchical

clustering and partial least squares regression, can assess the dependencies between

features or group samples and features based on their similarity (Bourgeois and

Kreeger, 2017; MacLachlan et al., 2017; Si et al., 2014).

Pathway analysis extends correlation approaches by using prior knowledge

about gene coregulation (Wood et al., 2015). Databases such as the Kyoto
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Encyclopedia of Genes and Genomes (KEGG), the Gene Ontology (GO), Reactome,

and WikiPathways relate genes and other molecules based on their mechanistic

connections or functional relationships (Ashburner et al., 2000; Carbon et al., 2019;

Fabregat et al., 2018; Kanehisa et al., 2017; Slenter et al., 2018). Enrichment tools,

such as GOrilla and IMPaLA, use these databases to perform statistical enrichment for

given gene or metabolite sets (Eden et al., 2009; Kamburov et al., 2011).

A more sophisticated technique to model omics data is network analysis. Gene

regulatory networks, protein interaction networks, and Bayesian networks can be

leveraged to identify connections between molecules and visualize the dependencies in

the omics data (Wood et al., 2015). Given a priori information, causality can even be

inferred from undirected networks. There are a variety of computational tools that use

interaction networks to integrate different omics data. These tools include ANIMA,

NetworKIN, MAGNETIC, PARADIGM, PathLinker, HotNet2, Hierarchical HotNet,

PIUMet and Omics Integrator, and the choice of tool depends on the types of input data,

background interactome, and biological questions of interest (Deffur et al., 2018;

Leiserson et al., 2015; Linding et al., 2007; Pirhaji et al., 2016; Reyna et al., 2018; Ritz

et al., 2016; Tuncbag et al., 2016; Vaske et al., 2010; Webber et al., 2018). The

resulting networks constructed by each method are graphs with nodes that represent

genes, proteins or metabolites, and edges that represent the potential links between

them, weighted with interaction probabilities. Using machine learning algorithms, such

as the Prize Collecting Steiner Forest algorithm, subnetworks most relevant to the

omics data can prioritize biological pathways for further interrogation (Tuncbag et al.,

2013).

Depending on the available data and prior knowledge, other types of models can

be implemented. When several parameters are known a priori, mathematical models

can be built using differential equations to provide detailed predictions of a system's

dynamics (Simeoni et al., 2018). However, the information regarding parameters is

generally unknown and there are usually too many variables to model. In this case, logic

models can be used to predict the behavior of a system. Logic models can provide a

good approximation of a system without the need for a large parameter space (Wynn et

al., 2012).
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1.4 Perturbagens in Biological Systems

To understand the link between particular biological pathways and the dynamics

of a system, perturbagens can be applied. These perturbagens refer to any condition

that can alter cellular state and can be broadly classified as chemical or genetic

(Keenan et al., 2018). Chemical perturbagens are small molecule compounds. These

include FDA-approved drugs and research toolkit compounds. Genetic perturbagens

include gene silencing, editing or overexpression constructs, such as antisense

oligonucleotides, RNAi, and CRISPR/Cas constructs (Lamb et al., 2006).

Previous large-scale studies have focused on profiling perturbagens in different

cell models. For instance, a gene regulatory network was developed using

transcriptional signatures from 1,484 yeast gene deletion mutants (Kemmeren et al.,

2014). The analysis of these genetic perturbagens led to the identification of several

gene-specific repressors (Kemmeren et al., 2014). The Connectivity Map consortium

has created a catalog of thousands of reduced-representation gene expression profiles

from chemical and genetic perturbagens in multiple human cell types (Lamb et al.,

2006; Subramanian et al., 2017). The NIH Library of Integrated Network-Based Cellular

Signatures (LINCS) program is a collaborative effort to create a network-based

understanding of human biology by cataloging gene expression, proteomic, cell

morphology, and epigenomic profiles from tens of thousands of pharmacological,

genetic, and environmental perturbagens in multiple cell lines (Keenan et al., 2018;

Litichevskiy et al., 2018).

The response of a system to perturbagens can reveal valuable information about

the mechanisms of the system. In a disease context, the functional pathways altered by

perturbagens that ameliorate a disease phenotype can be studied to reveal new

therapeutic targets and aid in drug discovery (Wood et al., 2015). Omics technologies

and the accompanying computational methods can reveal the functional pathways

affected by the perturbagens. For chemical perturbagens, these functional pathways

represent the modes of action of the compounds (Mulas et al., 2017).
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1.4.1 Chemical Perturbagens in Drug Discovery

Traditionally in drug discovery, chemical perturbagens with potentially unknown

targets are screened against a disease phenotype, with the goal of finding a therapeutic

candidate. These high-throughput screens can quickly find lead compounds for drug

development, but typically require thousands of molecules to be tested. They also often

require serendipity, provide little mechanistic insight, and are unable to capture complex

phenotypes (Varma et al., 2008). In the context of neurodegenerative disorders,

screening assays are typically based on aggregation or cell death phenotypes, which

only represent a subset of the multifaceted pathophysiology of these diseases (Varma

et al., 2008).

Once a small molecule compound is identified to be disease-modifying, it must

undergo vigorous testing (Mohs and Greig, 2017). This follow-up is crucial to

understand the compounds' effects at the cell, tissue, and organism levels. Compounds'

known binding targets, or mechanisms of action, do not necessarily dictate their

complex downstream functional effects, or modes of action (MoAs) (Tulloch et al.,

2018). Unpredicted MoAs of drug candidates can result in clinical trial failure, an

expensive outcome of 86% of drug development programs (Wong et al., 2018).

Bioactivity and drug response data for chemical perturbagens have been

recorded in several online databases. The Genomics of Drug Sensitivity in Cancer

database is the largest public resource for drug sensitivity and response information in

hundreds of cancer cell lines (Yang et al., 2013). DrugBank contains information about

drug targets and interactions, as well as the influence of hundreds of drugs on

metabolite, gene expression, and protein expression levels (Wishart et al., 2018).

ChEMBL is a bioactivity database with compound targets, structures, and phenotypic

data (Gaulton et al., 2017). Similarly, the Drug Repurposing Hub is a collection of

detailed annotations for compounds that have been tested in human clinical trials or are

marketed around the world (Corsello et al., 2017). These databases can be used to

compare perturbagens or identify perturbagens with a desired effect for repurposing or

synergy studies.
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1.4.2 The Search for Modes of Action

The search for compounds' MoAs is a challenge that can stretch across decades

(Mohs and Greig, 2017). Previous studies have shown that in some cases, MoAs can

be inferred from omics data under restricted conditions, such as when a reference

compound with a known MoA was available. For example, transcriptomic signatures of

small molecule compounds were correlated with their sensitivity patterns across human

cancer cell lines to identify their MoAs (Rees et al., 2016). Using reference compounds

with known MoAs, compounds with similar profiles to the reference were found to have

shared MoAs. In a study to combat antibiotic resistance, regression analysis was

applied to untargeted metabolomic data to predict the MoAs of uncharacterized

antimicrobial compounds in bacteria (Zampieri et al., 2018). MoAs could only be

predicted for the uncharacterized compounds by their metabolite profile similarity to the

reference compounds. Because of their reliance on reference compounds, both of these

methods require additional data to predict novel MoAs.

As mentioned previously, the Connectivity Map and LINCS projects have created

catalogs of gene expression and proteomics profiles from pharmacological

perturbagens for the purpose of determining MoAs. The Connectivity Map includes

gene expression data for 978 landmark genes from their Li 000 assay (Lamb et al.,

2006). The expression of an additional 11,350 genes is claimed to be inferred from the

landmark genes (Lamb et al., 2006; Subramanian et al., 2017). The LINCS project

extended the Connectivity Map to include proteomic data for epigenetic histone

modifications and 96 phosphoproteins using the global chromatin profiling and P100

assays, respectively (Litichevskiy et al., 2018). Connectivity scores were calculated for

each compound pair to highlight the similarities between compounds with similar gene

expression or proteomic profiles. The catalog and connectivity approach allow for

comparisons between small molecules, but they do not provide direct knowledge about

unknown modes of action unless reference compounds are compared. The relatively

small set of genes, proteins, and phosphosites that are directly measured limit the

feature space and could be problematic when compounds affect unmeasured entities.

Because compounds can have unpredicted effects, the inferred expression for the extra

11,350 genes could be incorrect. Also, the connectivity approach does not reveal the
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connections between the genes or proteins that lead to functional alterations in

biological pathways.

Approaches that require reference compounds must be improved to permit

discovery of novel MoAs. To overcome the reference compound dependency, a

regulatory network algorithm, DeMAND, was developed to use gene expression profiles

to identify compounds' protein targets and activity modulators (Woo et al., 2015). This

tool was able to identify novel MoAs for compounds in B cells and breast cancer cells,

and it did not require reference compounds. However, though individual protein targets

were predicted to be relevant to a compound's pharmacological effect, the tool did

require prior knowledge of context-specific gene-regulatory interactions. This limits its

general use because in many disease contexts, especially neurodegenerative

disorders, such interactions are not fully characterized. Elucidating the MoAs of

compounds remains a major hurdle and novel approaches with general application will

be crucial to increasing the success rate of clinical trials and drug repurposing efforts

(Tulloch et al., 2018; Wehling, 2009).

1.5 Overview of Thesis Contents

The goal of this thesis is to understand the effects of perturbagens in models of

neurodegenerative disorders using multiple omics data and computational analyses. In

Chapter 2, we describe a general multi-omics network approach for identifying modes of

action (MoAs) of chemical perturbagens. We sought to identify novel MoAs for

compounds identified in the search for drugs to treat Huntington's Disease. We

gathered transcriptomic, metabolomic, epigenomic, and proteomic data from HD cells

treated with a subset of these compounds. To find the underlying MoAs for each group,

we used a feature selection approach that leverages prior biological data encoded in a

molecular interaction network. A machine-learning network optimization algorithm

applied to this large interactome reveals the altered biological pathways. Finally, we

experimentally validated the most HD-relevant MoAs.

In the context of HD, Appendix A describes work done in collaboration with Dr.

Jeff Carroll at Western Washington University. We compared the transcriptomic and

metabolomic effects of two huntingtin gene silencing techniques in the mouse liver. We
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found significant transcriptomic changes, but few metabolomic changes. Similar cellular

pathways were affected by both silencing techniques.

Chapter 3 and Appendix B describe work done in collaboration with the

NeuroLINCS consortium. The NeuroLINCS consortium explores the molecular

mechanisms underlying SMA and ALS. In Chapter 3, we describe a cell freezing

protocol to perform ATAC-Seq on motor neurons derived from induced pluripotent stem

cells derived from patients with SMA. The loss of SMN1 in these cells can be

considered a genetic perturbagen. Flash frozen cells had disrupted chromatin, whereas

cryopreserved cells retained their chromatin structure for ATAC-Seq profiling. In

Appendix B, we characterize motor neurons from induced pluripotent stem cells derived

from patients with ALS. These cells carry hexanucleotide expansions in C9orf72.

Network analysis of the changes in omics data induced by this genetic perturbagen

revealed causal and compensatory cellular pathways in ALS.
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2.1 Abstract

High-throughput screening and gene signature analyses frequently identify lead

therapeutic compounds with unknown modes of action (MoAs), and the resulting

uncertainties can lead to the failure of clinical trials. We developed a multi-omics

approach for uncovering MoAs through an interpretable machine learning model of the

transcriptomic, epigenomic, metabolomic, and proteomic effects of compounds (Figure

2-1). We applied this approach to examine compounds with beneficial effects in models

of Huntington's disease, finding common MoAs for previously unrelated compounds that

were not predicted based on similarities in the compounds' structures, connectivity

scores, or binding targets. We experimentally validated two such disease-relevant

MoAs, autophagy activation and bioenergetics manipulation. Our interpretable machine

learning approach can be used to find and evaluate MoAs in future drug development

efforts.
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Figure 2-1 Graphical Abstract
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2.2 Introduction

Unknown modes of action of drug candidates can lead to unpredicted

consequences on effectiveness and safety. Computational methods, such as the

analysis of gene signatures, and high-throughput experimental methods have

accelerated the discovery of lead compounds that affect a specific target or phenotype

(Lamb et al., 2006; Litichevskiy et al., 2018; Subramanian et al., 2017). However, these

advances have had not dramatically changed the rate of drug approvals. Between 2000

and 2015, 86% of drug candidates failed to earn FDA-approval, with toxicity or a lack of

efficacy being common reasons for their clinical trial termination (Wehling, 2009; Wong

et al., 2018). Even compounds identified for binding to a specific target can have

complex downstream functional consequences, or modes of action (MoAs) (Tulloch et

al., 2018). Understanding the MoAs of compounds remains a crucial challenge in

increasing the success rate of clinical trials and drug-repurposing efforts (Tulloch et al.,

2018; Wehling, 2009).

Computational approaches have contributed to the discovery of MoAs. Using the

Connectivity Map data, tools like MANTRA can predict MoAs of new compounds based

on their gene expression similarity to reference compounds with known MoAs (lorio et

al., 2013). To combat antibiotic resistance, reference compounds were also used to

infer MoAs of uncharacterized antimicrobial compounds by comparing their untargeted

metabolomic profiles in bacteria (Zampieri et al., 2018). From human cancer cell lines,

basal gene expression signatures were correlated with sensitivity patterns of

compounds to identify previously unknown activation mechanisms and compound

binding targets (Rees et al., 2016). Similarly, gene expression profiles of human

lymphoma cells treated with anti-cancer drugs were compared using the gene

regulatory network-based DeMAND algorithm to predict novel targets and unexpected

similarities between the drugs (Woo et al., 2015). However, all of these methods require

prior context-specific knowledge, such as data from reference compounds with known

MoAs, sensitivity data, or gene-regulatory interactions.

More general approaches to discover MoAs are urgently needed. In the context

of late-onset neurodegenerative disorders like Huntington's Disease (HD), screening

efforts focused on protein aggregation, neuronal death, and caspase activation
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phenotypes have found many compounds that have disease-altering potential, but none

have been successful in clinical trials (Varma et al., 2008). HD is an autosomal

dominant, fatal neurodegenerative disorder that results in massive striatal neuronal cell

death (Kumar et al., 2015). The disease is caused by a trinucleotide repeat expansion in

the huntingtin gene, which encodes an expanded polyglutamine domain in the

huntingtin protein (Kumar et al., 2015). Although the exact function of huntingtin is

unclear, it has been shown to interact with many proteins and to be involved in

transcription, anti-apoptotic activity, and the trafficking processes of vesicles and

organelles (Schulte and Littleton, 2011). Within brain cells, mutant huntingtin causes

transcriptional dysregulation, impaired cytoskeletal motor functions, compromised

energy metabolism, and abnormal immune activation (Schulte and Littleton, 2011).

Over the years, many compounds have been discovered that confer a protective

effect in HD model systems (Zuccato et al., 2010). In some cases, direct binding targets

are known, but these may not always be in the therapeutic pathway. A study using a

small molecule sphingolipid enzyme inhibitor, for example, found a novel MoA related to

histone acetylation through the analysis of gene expression and epigenetic profiles in

the murine STHdh0 111 HD cell model (Pirhaji et al., 2017). As all small-molecule

therapeutics have so far failed to modify HD in clinical trials, understanding the disease-

relevant MoAs is critical to guide future therapeutic approaches that could target these

pathways with new molecules.

We reasoned that the discovery of MoAs must begin with an unbiased approach.

Some compounds may have largely transcriptional effects, while others may primarily

impact signaling or metabolism. With improvements in omics technology, it is now

possible to systematically assess each of these areas. Technologies such as RNA-Seq,

ChIP-Seq, and mass spectrometry provide extensive measurements of gene

expression, chromatin accessibility, metabolite expression, protein expression, and

post-translational modifications. The integration of these omics data can provide a more

comprehensive view of the compounds and allow for discoveries that could be

overlooked in the analysis of any individual dataset (Kedaigle and Fraenkel, 2018).

To systematically reveal disease-relevant MoAs, we developed a multi-omics

machine learning approach (Figure 2-2) that does not require context-specific prior
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knowledge or reference compounds. We used a hierarchical data generation strategy

and began with a set of compounds previously reported to alleviate an HD phenotype in

at least one HD model system. We filtered the compounds using a viability assay to find

those that are protective in the well-established murine striatal STHdh0 111 HD cell

model. We then profiled compound-treated cells using transcriptomics and untargeted

metabolomics. Interestingly, we show that previously unrelated compounds cluster

together based on their molecular profiles. For two interesting clusters of compounds,

we then gathered proteomic data and epigenomic data.

Clusters of compounds
with similar omics effects

0 0

Compounds that rescue
viability in HD cell model

0@ @ 00
S . .. S

0 ; . .

Figure 2-2 General workflow of study.

Compounds with unknown MoAs were found to be protective in HD cells. After multi-

omics profiling, groups of protective compounds were shown to cluster together. An

interpretable machine learning (ML) model revealed compounds' MoAs, which were

validated experimentally.
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To reveal the MoAs for these compounds we applied an interpretable machine-

learning algorithm. We mapped each type of molecular data to a network of molecular

interactions. Network optimization of this large interactome highlights the functional

changes induced by the compounds. This approach prioritized two disease-relevant

processes, autophagy activation and mitochondrial respiration inhibition, as key MoAs

of a subset of these compounds. Through cellular imaging, biochemical, and energetics

assays, we confirmed these MoAs in the STHdh0 111 murine model. We also

demonstrated that these effects on autophagy are reproducible across species and

across cell types. To our knowledge, this is the first report of using machine learning on

transcriptomic, epigenomic, metabolomic, and proteomic data to profile compounds'

effects and determine disease-relevant MoAs. Our results and multi-omics network

approach can be used to guide targeted drug selection and repurposing in HD and other

disease contexts.

2.3 Results

2.3.1 Cell Viability Assay Categorizes Compounds by Protectiveness

More than 100 compounds were previously reported to reverse a disease

phenotype in at least one HD model system (Bates et al., 2014). We examined 30 of

these compounds that were commercially available (Table 2-Si), and determined their

protectiveness in the well-established STHdh cell culture model of HD. These murine

striatal neuronal progenitor cells express the polyglutamine-expanded (STHdh0 111) or

wild-type (STHdhQ7 ) human huntingtin gene (Trettel et al., 2000). As has been

previously reported, STHdh0 111 and STHdhQ 7 cells differ in their sensitivity to serum

deprivation (Trettel et al., 2000). As a result, we tested the ability of compounds to

extend the viability of STHdh0 111 cells under these conditions. Of the compounds, 14

were significantly protective (p-value < 0.001) when compared to the STHdh0 111 vehicle

control (Figure 2-3A). The remaining 16 compounds either did not significantly decrease

cell death or were toxic to the cells at all tested concentrations.
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2.3.2 Molecular Profiles Reveal Unexpected Similarities between Compounds

To assess the compounds' molecular effects on transcription and metabolism,

we performed RNA-Seq and untargeted metabolite profiling on STHdh0 111 cells treated

with the 14 protective compounds and vehicle control, in triplicate. We also included the

STHdhQ 7 vehicle control for comparison. We measured the levels of 18,178 genes,

1,530 untargeted lipids, and 1,805 untargeted polar metabolites in all samples. In most

of the compound-treated samples, we found thousands of statistically significant

differentially expressed genes (FDR-adjusted p-value < 0.05) compared to the

STHdh0 111 vehicle control (Figure 2-3B). Though some compounds affected several

hundred measured metabolites, many of the compounds had little effect on the lipids

and polar metabolites (Figure 2-3B).

To reveal similarities between the compounds' profiles, we clustered the RNA,

lipid, and polar metabolite data separately (Figure 2-4A). In the gene expression data,

five compounds reproducibly clustered tightly together in a group distinct from the

STHdh0 111 vehicle control samples. Although these compounds formed only one distinct

group in the gene expression data, they separated into two distinct groups in the

metabolite profiling data. Cyproheptadine, loxapine, and pizotifen form Group A and

were previously shown to block caspase activation and increase ERK activation

(Sarantos et al., 2012). Group B, surprisingly, consists of the previously unrelated

compounds diacylglycerol kinase inhibitor II (DKI) and meclizine. Some compounds,

such as 4-deoxypyrididoxine (DOP) and cysteamine, can be separated from the

STHdh0 111 vehicle control samples only in the metabolite data, but do not cluster tightly

with other compounds. Compounds that clustered together did not have the most similar

structures, calculated using the maximum common substructure Tanimoto coefficients

in ChemMine tools (Figure 2-S2) (Backman et al., 2011). Likewise, compound pairs with

the strongest connectivity scores, as reported by the Connectivity Map using their

L1 000 gene expression data, did not cluster together in the omics data (Figure 2-S3)

(Subramanian et al., 2017).
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Figure 2-4 Omics profiles reveal unexpected similarities between compounds.

(A) Clustering of metabolite profiling data reveals two distinct groups of compounds that

are inseparable in the.gene expression data, as displayed in t-SNE plots. The blue and

red ellipses indicate the Group A and Group B compounds, respectively. Q7SST =

STHdhQ 7 SST control; Q 111 SST = STHdh0 111 SST control; Mec = meclizine; NaB =

sodium butyrate; Cypro = cyproheptadine; Lox = loxapine; DOP = 4-Deoxypyridoxine;

Seli = selisistat; TSA = trichostatin A; DKI = diacylglycerol kinase inhibitor II; Nico =

nicotinamide; Nort = nortriptyline; FTY720-P = fingolimod phosphate; Halo =

haloperidol; Pizo = pizotifen; Cyst = cysteamine.

(B) Clustering of proteomics data, as shown in three-dimensional PCA plots.

See also Figures 2-S1-S3, Tables 2-S2-S6.
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To further characterize the compounds in Groups A and B, we performed global

proteomics and phosphoproteomics analysis. We identified and measured the levels of

6,281 proteins and 2,560 phosphosites in controls and compound-treated cells. We

selected two compounds from Group A, cyproheptadine and loxapine, and the two

compounds in Group B because they had the most RNA and metabolite changes

compared to the STHdh0 111 vehicle controls. These four compounds show several

statistically significantly differentially expressed proteins and phosphosites, and they

also cluster reproducibly by their respective groups in both types of proteomic data

(Figure 2-4B). The differential genes and proteins of the Group A compounds are

significantly enriched (FDR-adjusted p-value < 0.05) in 882 and 2 gene ontology (GO)

processes, respectively (Tables 2-S2, 2-S4). The Group B differential genes are

significantly enriched (FDR-adjusted p-value < 0.05) in 911 GO processes, but the

Group B differential proteins have no significant GO process enrichment (Table 2-S5).

Using the IMPaLA tool for metabolite pathway analysis, the Group A and Group B

differential metabolites are significantly enriched (FDR-adjusted p-value < 0.05) in 82

and 42 pathways, respectively (Tables 2-S3, 2-S6).

2.3.3 Machine Learning Network Models Prioritize HD-Relevant Modes of Action

Analyzed separately, the omics data provide a confusing perspective of the

changes associated with each compound, pointing to hundreds of potential pathways

and processes. To develop a comprehensive view of the compounds' downstream

effects, we turned to dimensionality reduction approaches that leverage known

molecular interactions. PIUMet and Omics Integrator use network optimization to

identify a subset of the input features that can be linked to each other through direct or

indirect molecular interactions (Pirhaji et al., 2016; Tuncbag et al., 2016). We first

applied PIUMet to map untargeted metabolomics to the interactome.

To identify the regulatory factors driving changes in transcription, we profiled the

H3K4me3 epigenetic modification, which is associated with promoter regions in

accessible chromatin, using ChIP-Seq (Heintzman et al., 2007). Though we found few

differential peaks between STHdhQ 111 control cells and compound-treated cells, we

used the overall epigenetic signature as a measurement of transcription factor binding
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accessibility. We predicted transcription factors using a motif analysis approach applied

to the differentially expressed genes and the H3K4me3 regions.

We then applied Omics Integrator for graph-constrained dimensionality reduction.

The inputs were the differential metabolites, proteins, phosphoproteins, and predicted

transcriptional regulators for each of the two compound groups. After filtering the

networks based on node robustness and specificity, we found significant GO

enrichment for pathways relevant in HD. The Group A network was highly enriched for

the autophagy, protein localization and transport, and cytoskeleton organization

processes (Table 2-S7). The Group B network was highly enriched for the mitochondrial

electron transport, sterol metabolism, and amino acid processes (Table 2-S8). Based on

the network enrichment, we prioritized the autophagy and mitochondrial respiration

pathways for further experimental testing (Figure 2-5A-B).
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Figure 2-5 Machine learning network models prioritize HD-relevant pathways.

(A) The autophagy pathway is significantly enriched (p-value < 0.05) in the Group A

compound network, a subnetwork of which is shown. The highlighted yellow region

indicates those proteins that are part of the autophagy GO term.

(B) The electron transport chain is significantly enriched (p-value < 0.05) in the Group B

compound network, a subnetwork of which is shown. The highlighted yellow region

indicates those proteins that are part of the electron transport chain GO term, part of the

mitochondrial respiration pathway.

See also Tables 2-S7, 2-S8.
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2.3.4 Autophagy is Up-Regulated by Group A Compounds

Autophagy, which appeared in the optimized networks, is also known to be

dysregulated in HD (Martin et al., 2015). We measured the levels of autophagic

vacuoles in the STHdh0 111 cells using fluorescent staining. We found that the Group A

compounds significantly increased the fluorescence intensity, indicating an increase in

the number of autophagic vacuoles (Figure 2-6A). To further quantify autophagy

differences, we examined levels of microtubule-associated protein light chain 3 (LC3),

which is widely used to monitor autophagy (Mizushima and Yoshimori, 2007). We

quantified the levels of LC3-ll and LC3-l by Western blots in control and compound-

treated cells. We found a significant increase in the LC3-ll to LC3-1 ratio with treatment

of the Group A compounds, but no significant change with treatment of the Group B

compounds (Figure 2-6B-C), indicating that the Group A compounds increase formation

of autophagic vacuoles. To determine whether this increase was due to an activation of

autophagy or a degradation blockage of the autophagic vacuoles, we treated the cells

with and without bafilomycin Al (bafA), an inhibitor of late-stage autophagy (Mizushima

and Yoshimori, 2007). We found a further increase in the LC3-ll to LC3-1 ratio in all of

the conditions upon treatment of bafA, indicating that the Group A compounds activate

autophagy in the STHdh0 111 cells.

As STHdh0 111 cells derive from a mouse model of HD, we also tested whether

the MoA was relevant in human cells. In human, neuronal SH-SY5Y cells, the

fluorescent staining assay showed an increase in the number of autophagic vacuoles in

the Group A compound-treated cells compared to control cells (Figure 2-S4). Similar

results were obtained in HEK293 cells, which are also human but non-neuronal. In both

cell types, the Group A compounds significantly increase the LC3-ll to LC3-l ratio, while

the Group B compounds do not significantly change the ratio (Figure 2-7A-D). The

addition of bafA further increased the ratio in all conditions, indicating an activation of

autophagy by the Group A compounds in all three cell types.
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Figure 2-6 Autophagy is up-regulated by Group A compounds in murine

STHdh 111 cells.

(A) Fluorescent staining of autophagic vacuoles in Group A compound-treated cells

compared to Group B compound-treated or control cells. Blue fluorescence indicates

nuclei and green fluorescence indicates autophagic vacuoles.

(B) A representative western blot showing LC3-1l and LC3-1 levels to determine how the

compounds affect autophagy. BafA was used to determine whether the compounds

activate autophagy or inhibit vacuole degradation.

(C) Quantification of the LC3-1l to LC3-1 ratio normalized to the control from the western

blot. Data are represented as mean SD. *p-value < 0.05 compared to Control; **p-

value < 0.05 compared to condition-matched non-bafA treatment.
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Figure 2-7 Autophagy is up-regulated by Group A compounds in human SH-

SY5Y and HEK293 cells.

(A) A representative western blot showing LC3-1l and LC3-1 levels to determine how the

compounds affect autophagy in SH-SY5Y cells.

(B) A representative western blot showing LC3-ll and LC3-1 levels to determine how the

compounds affect autophagy in HEK293 cells.

(C) Quantification of the LC3-ll to LC3-1 ratio normalized to the control in SH-SY5Y cells

from the western blot. *p-value < 0.05 compared to Control; **p-value < 0.05 compared

to condition-matched non-bafA treatment.

(D) Quantification of LC3-ll to LC3-1 ratio normalized to the control in HEK293 cells from

the western blot. Data are represented as mean SD. *p-value < 0.05 compared to

Control; **p-value < 0.05 compared to condition-matched non-bafA treatment.

See also Figure 2-S4.
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2.3.5 Bioenergetics are Altered Differently by Each Group of Compounds

The network analysis of Group B compounds suggested an MoA relating to

bioenergetics, which are also known to be affected in HD (Kedaigle et al., 2019). To test

this, we used the Seahorse Real-Time ATP Production assay to measure the rates of

mitochondrial respiration and glycolysis in STHdh0 111 control and compound-treated

cells. We found that both Group B compounds indeed inhibited mitochondrial respiration

and enhanced glycolysis compared to the control cells, but the total ATP production

levels were unchanged (Figure 2-8A-C). Interestingly, we also found significantly

enhanced mitochondrial respiration and slightly enhanced glycolysis ATP production

rates by the Group A compounds. The net ATP production was increased by the Group

A compounds compared to the STHdh0 111 control cells. The two groups of compounds

show seemingly opposite effects, where the Group A compounds primarily rescue the

mitochondrial respiration deficit and the Group B compounds rescue the glycolysis

deficit present in the STHdh0 111 cells compared to the STHdh0 7 cells.

2.4 Discussion

The molecular effects of drug candidates are complex and can be difficult to

interpret. Cataloguing efforts, such as those by the Connectivity Map, LINCS and

Genomics of Drug Sensitivity in Cancer consortia, have made it possible to rapidly

compare small molecules using expression or bioactivity data (Gaulton et al., 2017;

Lamb et al., 2006; Litichevskiy et al., 2018; Rees et al., 2016; Subramanian et al., 2017;

Wishart et al., 2018a; Yang et al., 2013). In cases where a compound of interest shows

similarities to one with known MoAs, this process can lead to functional insights.

However, these compendia themselves contain thousands of compounds that do not

match up to any reference.

Our findings demonstrate the value of an approach that combines multi-omics

with an interpretable machine learning method to determine previously unknown MoAs,

even in the absence of a comparable reference. Using this approach, we identified and

experimentally validated Huntington's Disease-relevant MoAs for two classes of

compounds.
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Figure 2-8 Bioenergetics are altered differently by Group A and Group B

compounds in STHdh0111 cells.

(A) Quantification of the mitochondrial respiration ATP production rate normalized to the

STHdh0 111 control.

(B) Quantification of the glycolysis ATP production rate normalized to the STHdh0 111

control.

(C) Quantification of the total ATP production rate normalized to the STHdh0 111 control.

Data are represented as mean SEM. *p-value < 0.05.
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Although the 30 compounds tested in this study were previously shown to

reverse an HD phenotype, their disease-relevant MoAs were unknown. Analyzing the

14 protective compounds, we found that unexpected compounds had similar molecular

effects. These clusters of compounds would not have been predicted solely based on

the compounds' phenotypic viability readouts, structural similarities, connectivity scores,

or known binding targets (Figures 2-3A, 2-S2, 2-S3).

It is important to note that the disease-relevant MoA might be distinct from that

previously reported in the literature. Cyproheptadine and meclizine are both

antihistamines known to antagonize the histamine H1 receptor (Wishart et al., 2018a).

Based on their reported MoAs and their effectiveness in HD models, these two

antihistamines might have been expected to have similar therapeutic mechanisms.

However, the two compounds have dissimilar omics profiles and fall in different clusters

(Figure 2-4A). Indeed, our machine learning approach predicted that they would have

different effects on autophagy and bioenergetics, which we confirmed experimentally.

On the other hand, our approach suggested, and we experimentally confirmed, a

common disease-relevant MoA for DKI and meclizine, whose reported targets

(diacylglycerol kinase and histamine H1 receptor, respectively) are unrelated. Thus, the

phenotypic effects of a compound can be unpredictable even when a direct target is

known.

Taken together, the five different omics data types show the extensive changes

that occur after compound treatment in the STHdh 111 cells. Groups A and B affected a

similar number of genes and are nearly indistinguishable in their RNA profiles (Figure 2-

3A). For these compounds, metabolite profiling data proved more useful than the gene

expression data in revealing their different effects. These distinct groups are reproduced

in the proteomic data and ultimately reflect the functional differences in biological

processes, such as in the autophagy and bioenergetics pathways. Metabolomic assays

are less expensive than proteomic assays, but unlike the transcriptomic data, they still

provide the resolution needed to suggest differences between the two groups of

compounds. However, other compounds showed little to no effect on metabolites, but

did robustly alter gene expression. It is also noteworthy that though the clusters of

compounds were the same, the Group A compounds affected more proteins and
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phosphosites than the Group B compounds, whereas the Group B compounds affected

more lipids and polar metabolites than the Group A compounds (Figure 2-Si). Thus,

there may be no single omics method that will provide sufficient data for all compounds.

Each omics data type highlights changes induced by the compounds, but an

interpretable machine learning approach for dimensionality reduction prioritized cellular

processes that connected the omics effects. The physical interaction networks allowed

us to identify and prioritize the autophagy and mitochondrial respiration pathways as

processes affected by the Group A and Group B compounds, respectively (Figure 2-5A-

B). These pathways were not top hits in the gene, metabolite, or protein enrichments for

either group of compounds (Tables 2-S2-S6). In each data type alone, there are

hundreds to thousands of changes and no direct mechanistic insight, but physical

interaction models enable identification of compounds' MoAs.

One limitation to our approach is that the networks have undirected edges and

do not provide causal information for the highlighted processes. Instead, the pathways

currently must be tested experimentally to ascertain the directionality of the changes.

Using the network results to guide experimental efforts, we determined that autophagy

is activated by Group A compounds and that mitochondrial respiration is inhibited by

Group B compounds in the STHdh0 111 cells (Figures 2-6A-C, 2-8A-C). The specific

effects on autophagy, mitochondrial respiration, and glycolysis by the Group A

compounds were previously unknown. We verified that the Group A compounds

activate autophagy in other cell lines, namely human SH-SY5Y and HEK293 cells

(Figures 2-7A-D, 2-S2A-B). It has been reported that the Group B compound meclizine

is an inhibitor of mitochondrial respiration and activator of glycolysis, which we

confirmed (Gohil et al., 2013; Hong et al., 2016). The other Group B compound, DKI,

has not previously been associated in changes in bioenergetics, but has the same effect

as meclizine in the STHdh 111 cells. Though our multi-omics machine learning approach

can identify a compound's MoAs, it does not pinpoint the precise changes in the

pathways required to produce the compound's effect. Future experimental efforts to

modulate specific parts of the autophagy and bioenergetic pathways could lead to an

increased understanding of the compounds' effects.
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The omics data we collected in this study are available and can be used to guide

drug repurposing efforts. For example, we hypothesize that the Group A compounds

could be strong drug candidates for diseases where autophagy is deficient, like in

neurodegenerative diseases. Similarly, the compounds we profiled can be used as

reference compounds for existing methods of MoA identification. For instance, if the

omics profiles for a new compound are comparable to those in Group B, then it

suggests that the new compound would also affect bioenergetics. Overall, our multi-

omics machine learning approach can be used to find and evaluate compounds' MoAs

to optimize drug development in HD and other diseases.

2.5 Methods

EXPERIMENTAL MODEL AND SUBJECT DETAILS

STHdh Cell Lines

Conditionally immortalized wild-type STHdh0 7 (female, Coriell CH00097, RRID:

CVCLM590) and mutant huntingtin homozygous knock-in STHdh 111 (female, Coriell

CH00095, RRID: CVCLM591) murine striatal progenitor cell lines were purchased from

Coriell. Cells were maintained at 33'C with 5% CO2 and cultured in Dulbecco's modified

Eagle's medium (DMEM, Corning 10-013) supplemented with 10% fetal bovine serum

(FBS, Gemini Bio-Products 100-106), and 1% penicillin/streptomycin (Gemini Bio-

Products 400-109).

SH-SY5Y Cell Line

Human neuroblastoma SH-SY5Y (ATCC@ CRL-2266 T M , female, RRID:

CVCL_0019) cells were purchased from ATCC. Cells were maintained at 370C with 5%

C02 and cultured in a 1:1 mixture of ATCC-formulated Eagle's Minimum Essential

Medium (ATCC 30-2003) and F12 medium (ThermoFisher Scientific 11765-054)

supplemented with 10% fetal bovine serum (Gemini Bio-Products 100-106).

HEK293T/17 Cell Line

Human embryonic kidney HEK293T/17 (ATCC@ CRL-11268TM, female, RRID:

CVCL_1926, referred to as HEK293 in text) cells were purchased from ATCC. Cells
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were maintained at 370C with 5% CO2 and cultured in Dulbecco's modified Eagle's

medium (DMEM, Corning 10-013) supplemented with 10% fetal bovine serum (FBS,

Gemini Bio-Products 100-106), 1% penicillin/streptomycin (Gemini Bio-Products 400-

109), and L-glutamine (Sigma-Aldrich G7513).

METHOD DETAILS

Compound Treatment

STHdh cells were incubated in serum-free medium with a compound or vehicle

control (DMSO, Sigma-Aldrich 67-68-5) for 24 hours. We chose a treatment time of 24

hours because of the time required to produce a significant cell death phenotype in the

STHdh0 111 cells. SH-SY5Y and HEK293 cells were incubated in their respective

complete medium with a compound or vehicle control (DMSO, Sigma-Aldrich 67-68-5)

for 24 hours. The compounds were dissolved in DMSO or water before being added to

each medium. For some of the autophagy western blot samples, we also treated the

cells for 2 hours with 100nM bafilomycin Al (Sigma-Aldrich B1793).

Viability Assay

Cell viability was measured using high-content imaging. STHdh0 111 cells were

seeded at 6,000 cells/well in black 96-well microplates. After 24 hours, the cells were

treated with a compound or vehicle. After another 24 hours, 1 ug/mL calcein-AM

(ThermoFisher Scientific C3099), 2ug/mL propidium iodide (P1, ThermoFisher Scientific

P3566), and 1.5ug/mL Hoechst 33442 (ThermoFisher Scientific H3570) were added to

detect and quantify live, dead and total cells, respectively. After a 20-minute incubation,

the Cellomics Arrayscan Platform (ThermoFisher Scientific) was used for image

acquisition and quantitative analysis. lmageJ was used to create composite images

(Schneider et al., 2012). STHdhQ 7 cells with vehicle were also tested using the same

procedure, but with a seeding density of 4,500 cells/well to account for the differences in

growth rate between the cell lines.

51



RNA-Seq

RNA was extracted from compound- or vehicle-treated cells in triplicate using

Zymo Research Quick-RNA T M MiniPrep (Plus) kit (Zymo Research R1058) and RIN

values were tested using Advanced Analytical. All samples had RIN values greater than

0.85. Libraries were prepared using NEBNext@ Ultra TM Directional RNA Library Prep Kit

for Illumina@ (New England Biolabs E7420L) and NEBNext@ Poly(A) mRNA Magnetic

Isolation Module kit (New England Biolabs E7490L). Libraries were multiplexed and

sequenced on an Illumina Hi-Seq 2000 for single-end 50bp reads.

Untargeted Metabolomics

STHdhQ 111 cells were grown on 10cm dishes in triplicate at a seeding density of

1.06 million cells/well. Compound- or vehicle-treated cells were washed with cold 0.9%

NaCl. To each 10cm dish of cells, 660uL LC/MS-grade methanol containing internal

standards and 330uL LC/MS-grade water were added. Cells were scraped and

transferred to Eppendorf tubes, where 450uL chloroform was added. Samples were

vortexed at maximum speed (20,817 rcf) for 10 minutes at 4'C. Each layer was

collected separately, avoiding the precipitate at the interface of the two layers, and dried

by speedvac. Lipid and polar metabolite profiling were performed by members of the

Whitehead Institute Metabolite Profiling Core Facility.

Lipid Profiling

For lipid profiling, cells were resuspended in 50uL 60/35/5

acetonitrile/isopropanol/water (v/v/v) and 5uL was injected for LC/MS analysis. Please

see Keckesova et al. and Smulan et al. for a detailed description of the LC/MS analysis

(Keckesova et al., 2017; Smulan et al., 2016). Lipid identification and relative

quantification was performed using LipidSearch (ThermoFisher Scientific / Mitsui

Knowledge Industries). The identified lipids were subjected to quality control filtering

and normalization by total signal (Keckesova et al., 2017).
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Polar Metabolite Profiling

For polar metabolite profiling, cells were resuspended in 1OuL water and 2uL

was injected for LC/MS analysis. Please see Birsoy et al. and Chen at al. for a detailed

description of the LC/MS analysis (Birsoy et al., 2015; Chen et al., 2016). Untargeted

analysis was performed using Progenesis CoMet (Nonlinear Dynamics) using the

default settings. Features were filtered based on replicate injections and a dilution

series of a pooled sample prepared by mixing equal aliquots of the biological samples.

Specifically, the filtering criteria were CV < 0.4 across the four replicate injections and R

> 0.9 across a four-point dilution series (comprising 0.1X, 0.3X and 1X concentrations,

and a double-volume injection). Features that were not lowest according to the

Progenesis quantification in the blank water injection samples were discarded.

H3K4me3 ChIP-Seq

Compound- or vehicle-treated cells were crosslinked with 1 % formaldehyde for 8

minutes and quenched with glycine for 5 minutes, lysed in 2X lysis buffer (50mM Tris-

HCI pH8, 150mM NaCl, 1% Triton X-100, 0.1% Na Deoxycholate, 5mM CaCI2 and

protease inhibitors) for 20 minutes on ice, and digested with 1 00u MNase (New England

Biolabs M0247) for 10 minutes at 370C. The MNase digestion was terminated by

addition of 10mM EDTA. Chromatin was incubated with the anti-H3K4me3 antibody

(Millipore 07-473, RRID: AB_1977252) overnight at 40C, followed by incubation with

Protein G beads (Invitrogen 10004D) for 2 hours at 40C. The beads were washed with

PBS (6x) and samples were eluted in EB (10mM Tris-HCI pH8, 5mM EDTA, 300mM

NaCl, 0.1% SDS) supplemented with Proteinase K (New England Biolabs P8107S).

SPRI beads were used for clean-up and yield was measured using Qubit Fluorimeter.

Libraries were prepared using NEBNExt@ Ultra T M 11 DNA Library Prep Kit for Illumina

(New England Biolabs E7645S). Libraries were sequenced on an Illumina Hi-Seq 2000

for single-end 50bp reads.

Proteomics

Proteomics were performed by members of the Thermo Fisher Scientific Center

for Multiplexed Proteomics at Harvard Medical School. Proteomic data was collected
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from cells treated with Group A compounds, Group B compounds, or vehicle controls in

triplicate. Please see Weekes et al., McAlister et al., and below for detailed descriptions

of the assay (McAlister et al., 2014; Weekes et al., 2014). In brief, sample processing

steps included cell lysis, tandem protein digestion using LysC and trypsin, peptide

labeling with Tandem Mass Tag 6-plex reagents, IMAC enrichment of phosphopeptides,

and peptide fractionation. Multiplexed quantitative mass spectrometry data were

collected on an Orbitrap Fusion or Lumos mass spectrometer operating in an MS3

mode using synchronous precursor selection for the MS2 to MS3 fragmentation. Using

the SEQUEST algorithm, MS/MS data were searched against a Uniprot mouse

database with both the forward and reverse sequences. Additional data processing

steps included controlling peptide and protein level false discovery rates, assembling

proteins from peptides, and protein quantification from peptides.

Sample Preparation

All solutions are reported as final concentrations. Lysis buffer (8M Urea, 200mM

EPPS pH8, Protease and Phosphatase inhibitors from Roche) was added to the vehicle

and compound-treated cell pellets. The pellets were vortexed and sonicated to complete

cell lysis. Protein concentration of the lysate was determined by micro-BCA assay

(Pierce). Proteins were reduced with 5mM TCEP at room temperature for 15 minutes

and alkylated with 10mM lodoacetamide at room temperature for 30 minutes in the

dark. Proteins were precipitated using methanol and chloroform. Four volumes of

methanol were added to the cell lysate, followed by one volume of chloroform, and three

volumes of water. The mixture was vortexed and centrifuged to separate the chloroform

phase from the aqueous phase. The precipitated protein was washed with one volume

of ice-cold methanol. The washed precipitated protein was air dried. Precipitated protein

was resuspended in 200mM EPPS pH8. Proteins were digested with LysC (1:50;

enzyme:protein) overnight at room temperature and then further digested with trypsin

(1:100; enzyme:protein) for another 8 hours at 370C. Peptide concentration was

quantified using the micro-BCA assay (Pierce). Peptide (100ug) from each condition

was labeled with tandem mass tag (TMT6) reagents (1:4; peptide:TMT label) (Pierce)

for 2 hours at room temperature. Modification of tyrosine residues with TMT was
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reversed by the addition of 5% hydroxylamine for 15 minutes at room temperature. The

reaction was quenched with 0.5% TFA. Samples were combined at a 1:1:1:1:1:1 ratio,

desalted by C18 solid-phase extraction (SPE, Sep-Pak, Waters), and dried by

speedvac.

Phosphopeptide Enrichment

Phosphopeptides were enriched using the High-SelectTM Fe-NTA

Phosphopeptide Enrichment Kit (ThermoFisher Scientific). Briefly, the combined TMT6

labeled peptides were resuspended in 200pi binding buffer and incubated with

equilibrated resin for 30 minutes at room temperature. Unbound peptides were removed

and saved for total protein analysis. Resin was washed and bound peptides were eluted

with elution buffer. Eluted peptides were dried by speedvac, resuspended in 1 % TFA,

desalted by C18 SPE, and dried again. Peptides were resuspended and eluted into

glass MS vials from a stage tip packed in-house with 3M Empore resin into two fractions

at 20% and 70% ACN with 0.1% Formic acid. Eluted peptides were dried and

resuspended in 5% Formic Acid, 5% ACN for MS analysis.

Peptide Fractionation

Peptide fractionation was performed by HPLC bRP. The unbound fraction from

IMAC enrichment was dried by speedvac, resuspended in 1% TFA, and cleaned by C18

SPE. The desalted sample was dried by speedvac, resuspended in 5% ACN, 10mM

ammonium bicarbonate pH8, and fractionated off-line by basic pH reversed-phase into

96 fractions. Separation was performed using a 50-minute linear gradient from 15% to

45% acetonitrile in 10mM ammonium bicarbonate pH8 at a flow rate of 0.4mL/min over

a 300 Extend C18 column (Agilent). Fractions were combined in checkerboard fashion

into 24 samples and dried by speedvac.

Liquid Chromatography-MS3 Spectrometry

Of the 24 final fractions from the basic reverse phase, 12 fractions were analyzed

with LC-MS3 on an Orbitrap Fusion mass spectrometer (ThermoFisher Scientific)

equipped with a Proxeon Easy nLC 1000 for online sample handling and peptide
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separations. Approximately 5pg of peptide resuspended in 5% formic acid with 5%

acetonitrile was loaded onto a 100pm inner diameter fused-silica micro capillary with a

needle tip pulled to an internal diameter less than 5pm. The column was packed in-

house to a length of 35cm with a C18 reverse phase resin (GP1 18 resin 1.8pm, 120A,

Sepax Technologies). The peptides were separated using a 180-minute linear gradient

from 3% to 25% buffer B (100% ACN + 0.125% formic acid) equilibrated with buffer A

(3% ACN + 0.125% formic acid) at a flow rate of 600nL/min across the column. The

scan sequence for the Fusion Orbitrap began with an MS1 spectrum (Orbitrap analysis,

resolution 120,000, 350-1,500 m/z scan range, AGC target 4 x 105, maximum injection

time 50ms, dynamic exclusion of 120 seconds). The "Top10" precursors were selected

for MS2 analysis, which consisted of CID (quadrupole isolation set at 0.7 Da) and ion

trap analysis, AGC 1 x 104, NCE 35, maximum injection time 120ms). The top ten

precursors from each MS2 scan were selected for MS3 analysis (synchronous

precursor selection), in which precursors were fragmented by HCD prior to Orbitrap

analysis (NCE 65, max AGC 1 x 105, maximum injection time 150ms, isolation window

2 Da, resolution 50,000).

Phosphopeptide Data Collection

Phosphopeptide samples were analyzed with LC-MS3 on an Orbitrap Lumos

mass spectrometer (ThermoFisher Scientific) equipped with a Proxeon Easy nLC 1000

for online sample handling and peptide separations. Total peptide was resuspended in

5% formic acid + 5% acetonitrile was loaded onto a 100pm inner diameter fused-silica

micro capillary with a needle tip pulled to an internal diameter less than 5pm. The

column was packed in-house to a length of 35cm with a C18 reverse phase resin

(GP1 18 resin 1.8pm, 120A, Sepax Technologies). The peptides were separated using a

180-minute linear gradient from 3% to 25% buffer B (100% ACN + 0.125% formic acid)

equilibrated with buffer A (3% ACN + 0.125% formic acid) at a flow rate of 600nL/min

across the column. The scan sequence for the Fusion Orbitrap began with an MS1

spectrum (Orbitrap analysis, resolution 120,000, 400-1,400 m/z scan range, AGC target

1 x 106, maximum injection time 100ms, dynamic exclusion of 120 seconds). The

"Top1C" precursors were selected for MS2 analysis, which consisted of ClD (quadrupole
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isolation set at 0.5 Da) and ion trap analysis, AGC 2 x 104, NCE 35, maximum injection

time 60ms). The top ten precursors from each MS2 scan were selected for MS3

analysis (synchronous precursor selection), in which precursors were fragmented by

HCD prior to Orbitrap analysis (NCE 65, max AGC 2 x 105, maximum injection time

300ms, isolation window 2 Da, resolution 50,000).

LC-MS3 Data Processing and Analysis

A suite of in-house software tools was used for .RAW file processing and

controlling peptide and protein level false discovery rates, assembling proteins from

peptides, and protein quantification from peptides (McAlister et al., 2014; Weekes et al.,

2014). MS/MS spectra were searched against a Uniprot mouse database with both the

forward and reverse sequences. Database search criteria are as follows: tryptic with two

missed cleavages, a precursor mass tolerance of 50ppm, fragment ion mass tolerance

of 1.0 Da, static alkylation of cysteine (57.02146 Da), static TMT labeling of lysine

residues and N-termini of peptides (229.162932 Da), and variable oxidation of

methionine (15.99491 Da). TMT reporter ion intensities were measured using a 0.003

Da window around the theoretical m/z for each reporter ion in the MS3 scan. Peptide

spectral matches with poor quality MS3 spectra were excluded from quantitation (< 100

summed signal-to-noise across 6 channels and < 0.5 precursor isolation specificity).

Phosphopeptide searches included variable phosphorylation on serine, threonine, and

tyrosine residues (79.96633 Da). Phosphorylation site localization was scored with

ModScore. Phosphorylation sites with summed signal-to-noise < 100 across all 6

channels and/or < 0.5 precursor isolation specificity were excluded from quantitation.

Network Analysis

Differential proteins, phosphosites, m/z lipid and polar metabolite peaks, and

predicted transcription factors for each compound treatment compared to vehicle control

were mapped onto the interactome, comprised of physical interactions between proteins

(iRefindex v14), proteins and metabolites (HMDBv4.0, Recon3D), phosphosites and

kinases (PhosphositePlus), m/z peaks and matched metabolites (PIUMet), and

phosphosites and proteins (Brunk et al., 2018; Hornbeck et al., 2015; Pirhaji et al.,
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2016; Razick et al., 2008; Wishart et al., 2018b). The Prize-Collecting Steiner Forest

(PCSF) algorithm was applied using Omics Integrator 2 to find the set of highly relevant

pathways associated with each compound treatment (Tuncbag et al., 2016). PCSF was

run 100 times with random noise on the edges for robustness measurements and

random input sets for specificity measurements. The optimal network solution was

filtered by those nodes with at least 40% robustness and specificity.

Autophagic Vacuole Fluorescence Staining

Compound-treated and untreated STHdh 111 and STHdhQ 7 cells were seeded at

6,000 cells/well in black 96-well microplates. After 24 hours, compounds or vehicle

controls were added. After a further 24 hours, the Autophagy Detection Kit (Abcam

ab139484) was used to measure autophagic vacuoles in living cells, according to the

manufacturer's instructions. Hoechst 33442 (ThermoFisher Scientific H3570) was used

to stain the nuclei of cells. Cells with activated autophagy had bright green fluorescent

signal. ImageJ was used to create composite images (Schneider et al., 2012). Assay

conditions for the SH-SY5Y and HEK293 cells were similar, but with initial seeding

concentrations of 25,000 and 5,000 cells/well, respectively.

Western Blots

To quantify LC3 protein expression, adherent cells were scraped in 200pl ice-

cold RIPA buffer (50mM Tris-HCI pH8.0, 150mM NaCl, 1% Triton X-100, 0.5% Sodium

Deoxycholate, 0.1% SDS supplemented with freshly made protease inhibitors

(cOmplete T M , EDTA-free Protease Inhibitor Cocktail, Sigma-Aldrich 11873580001)).

Samples were incubated with agitation for 30 minutes at 40C and centrifuged at

12,000xg for 20 minutes at 4'C. The supernatant, containing the protein extracts, was

collected. Protein concentration was measured with the Bradford Assay. Protein lysates

were separated using SDS/PAGE electrophoresis and transferred to a PVDF

membrane. The membranes were rinsed and blocked for 1 hour at room temperature

and incubated overnight with primary antibodies in blocking solution with 0.1% Tween-

20. The following primary antibodies were used: anti-LC3B (Sigma-Aldrich L7543,

dilution 1:500, RRID: AB_796155); anti-Actin (Abcam 1801, dilution 1:1,000). The
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membranes were washed and incubated at room temperature for 1 hour with a

secondary antibody in a 1:1 PBS, blocking buffer solution with 0.1% Tween-20. The

following secondary antibody was used: 800CW Donkey anti-Rabbit IgG (Li-Cor

Biosciences 925-32213, dilution 1:10,000, RRID: AB_2715510). The membranes were

rinsed and scanned using the Odyssey infrared imaging system (Li-Cor Biosciences).

Protein expression was measured using integrated intensity readings in regions around

protein bands.

ATP Production Rate Assay

Compound-treated and untreated STHdhQ 111 and STHdhC 7 cells were seeded at

6,000 cells/well in black 96-well microplates. After 24 hours, compounds or vehicle

controls were added. After a further 24 hours, the Agilent Seahorse XF Real-Time ATP

Rate Assay Kit (Agilent 103592-100) was used to simultaneously measure the rate of

ATP productions from mitochondrial respiration and glycolysis, according to

manufacturer's instructions. Measurements were taken with the Agilent Seahorse

XFe96 analyzer at 330C. Assay conditions for the SH-SY5Y and HEK293 cells were

similar, but with a temperature of 370C and initial seeding concentrations of 25,000 and

5,000 cells/well, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Protectiveness of Compounds

From the fluorescent images of labeled cells, cell death was quantified as the

ratio of P-positive cells to Hoechst-positive cells using CellProfiler (Carpenter et al.,

2006). At least three independent 96-well plates with ten replicate wells each were

conducted for each compound and multiple concentrations spanning at least three

orders of magnitude were tested. The concentration at which there is minimal cell death

is reported for each compound (Table 2-S1). For each experiment, a Student's t-test

was applied, and Fisher's method was used to combine the independent experiments

and determine significance with a p-value threshold of 0.001. A protective compound in

the STHdh011 1 model is defined as one that significantly decreased the amount of cell

death compared to STHdhQ11' vehicle control.

59



Differentially Expressed Genes

Adapter sequences were trimmed from sequencing reads using Trimmomatic-

0.36 (Bolger et al., 2014). Reads were aligned to the GRCm38.p5 transcriptome

(https://www.gencodegenes.org/mouse/release_Ml2.html) and quantified using RSEM

(Li and Dewey, 2011). DESeq2 with batch effect modeling by collection day and time

was used to find differentially expressed genes for each compound treatment compared

to STHdh0 111 vehicle control (Love et al., 2014). The differentially expressed genes

were filtered using a Benjamini-Hochberg corrected p-value threshold of 0.05.

Differentially Expressed Metabolites

Metabolite quantification in positive and negative ionization mode was log2

normalized and analyzed using limma with batch effect modeling by collection day, and

differentially expressed metabolites were filtered using a Benjamini-Hochberg corrected

p-value threshold of 0.05 (Ritchie et al., 2015). Untargeted metabolite m/z peaks were

matched to known metabolites using PIUMet, with a metabolite database compiled

using HMDBv4.0 and Recon3D (Brunk et al., 2018; Pirhaji et al., 2016; Wishart et al.,

2018b).

Transcription Factor Prediction

ChIP-Seq adapter sequences were trimmed from sequencing reads using

Trimmomatic-0.36 and reads were aligned to the mm1O genome using Bowtie2 (Bolger

et al., 2014; Langmead and Salzberg, 2012). Reads were sorted and indexed, and

mitochondrial DNA was removed using samtools-1.3 (Li et al., 2009). Peaks were called

using MACS2 (Zhang et al., 2008). Motif analysis was used to predict transcription

factors that could be regulating the differentially expressed genes. Motifs were

annotated to the mm1O UCSC reference genome (http://genome.ucsc.edu/) using the

CIS-BP database (Waterston et al., 2002; Weirauch et al., 2014). A hypergeometric test

was used for each transcription factor to find those with motifs in regions intersecting

ChIP-Seq peaks and within 2kb of differentially expression genes for a given condition.

A Benjamini-Hochberg corrected p-value threshold of 0.05 was applied to assign

significance to transcription factor predictions.
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Differentially Expressed Proteins

Phosphosite quantification was normalized to protein quantification, and both

protein and phosphosite data were then log2 normalized and analyzed using limma

(Ritchie et al., 2015). Differentially expressed proteins and phosphosites were filtered

using a Benjamini-Hochberg corrected p-value threshold of 0.05.

Pathway Enrichment

Enrichment analyses of the differential genes, differential proteins, and network

proteins were performed using GOrilla with a background set of all genes measured, all

proteins measured, or all proteins present in the interactome, respectively (Eden et al.,

2009). Enrichment analyses of the differential metabolites were performed using

IMPaLA with a background set of all metabolites measured (Kamburov et al., 2011).

t-SNE Analysis

t-SNE was used to display the transcriptomic and metabolomic data as two-

dimensional projections. The inputs were matrices including gene, lipid, or polar

metabolite quantifications for each sample and perplexities were set to 15, 14, and 14,

respectively. t-SNE analysis was performed in R using the Rtsne package (Krijthe,

2015).

PCA Analysis

Because the number of samples in the proteomic data was lower than in the

other omics data types, t-SNE analysis was not applicable. Instead, we displayed the

protein and phosphosite data as three-dimensional PCA plots using the stats and rgl

packages in R (Adler et al., 2003; R Core Team, 2017).

Network Visualization

Networks were visualized in Cytoscape (Shannon et al., 2003). In each network,

the nodes are proteins, phosphosites, transcription factors, or metabolites. The

proteomic data are mapped onto proteins and phosphosites. The integration of the

RNA-Seq and ChIP-Seq data provided transcription factor predictions. The metabolite
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data is shown as metabolite peaks connected to m/z-matched known metabolites. The

edges represent the physical interactions between the molecules. Bigger nodes are

more robust, as determined by the PCSF randomizations. The red and blue colors

indicate the log2 fold change, as determined by the omics data.

Western Blot Analysis

The LC3-II/LC3-1 ratio was calculated for each sample, with and without the

addition of bafilomycin Al (bafA). For each compound condition without bafA, a

Student's t-test was applied to the three replicates of the compound-treated samples

compared to the vehicle control samples. Significance was determined with a p-value

threshold of 0.05. For each compound condition with bafA, a Student's t-test was

applied to the three replicates of the bafA-treated samples compared to their respective

condition's bafA-untreated samples. Significance was determined with a p-value

threshold of 0.1. The LC3-lI/LC3-1 ratios for samples in each cell line are normalized to

their respective controls in the quantification, such that the control samples are have a

ratio of 1 (Figures 2-6, 2-7).

Quantifying ATP Production Rates

For each compound condition, a Student's t-test was applied to the data for the

replicates (at least 6 per treatment) of the compound-treated samples compared to the

vehicle control samples.

Dendrogram Clustering

Using the controls and the four compounds in Groups A and B analyzed with all

of the omics data, a distance matrix was calculated for each data type using the

Euclidean distance measure in the stats package in R (R Core Team, 2017).

Dendrograms were created using the distance matrices for each data type using the

hclust function with the Ward clustering method in the stats package in R (R Core

Team, 2017).
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Calculating Structural Similarities

Identifiers for each compound were uploaded to ChemMine tools and the

"Similarity Workbench" feature was used to compare each pair of compounds. The tool

calculates atom pair and reports maximum common substructure (MCS) scores with the

Tanimoto coefficient as the similarity measure (Backman et al., 2011).

Calculating Connectivity Similarities

The Li 000 connectivity scores between pairs of compounds were assessed

using the "Touchstone" analysis tool as part of the Connectivity Map (Lamb et al., 2006;

Subramanian et al., 2017). Only eight of the 30 compounds profiled were part of the

Connectivity Map dataset.

DATA AND SOFTWARE AVAILABILITY

Deposited Data

The RNA-Seq and ChIP-Seq data have been deposited in the Gene Expression

Omnibus with accession number GSE129144.

2.6 Supplemental Information

Supplemental Information includes four figures and eight tables.
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Figure 2-S1 Distinct omics data lead to different clustering patterns between the

compound-treated and control samples.

Related to Figure 2-4.
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Laoapne

Socium butyate (NaB) 1 0.188

Mcotinamide 0.231 0.143

4-Deaxypyridoane (DOP) 0.538 0.2 0.135

Cystearmine 0.28 0.3 0.167 0.094

Haloperidol 0.111 0.233 0.25 0.179 0.14 Similarity
Score

- 1.00
Tridchostatin A (TSA) 0.263 0.13 0.222 0.292 0.16 0.178

Fingolimod phosphate (FTY720-P) 0.231 0.238 0.111 0.233 0.207 0.179 0.118 0.50

Selisistat 0.303 0.258 0.265 0.167 0.273 0.3 0.263 0.231
0.00

Pizotifen 1 0.31 0.237 0.265 0.237 0.136 0.28 0.25 0.167 0.13

Nortriptyline 0.783 0.321 0.243 0.273 0.243 0.143 0.292 0.261 0.174 0.133

Diacyglycerol kinase inhibitor 11 (DKI) *0.486 0.474 0.182 0.151 0.163 0.173 0.083 0.15 0.158 0.105 0.158

Medizine 0.25 0.351 0.275 0.205 0.167 0.182 0.192 0.097 0.206 0.219 0.088 0.151

Cyproheptadine 0.082 0.105 0.095 0.129 0.138 0.087 0.092 0.103 0.06 0.091 0.094 0.077 0.096

0~ I

N0

Figure 2-S2 Groupings of compounds would not be predicted based on structural

similarities determined by maximum common substructure (MCS) Tanimoto

coefficients.

Each number within the matrix indicates the similarity score calculated using the MCS

Tanimoto coefficients. Cells on the diagonal were assigned a similarity score of 1.

Related to Figure 2-4.
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Score

100 89.76 42.24 99.01 100
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25

0
9.55 6.61 42.49 54.41

Cyproheptadine 61.82 100 98.1 3.14 15.18 90.52 42.08 38.1

Haloperidol 100 80.6 84.71 43.55 83.8 79.54

.6

61.93 70.83

0 sP~

,,Acp

Perturbagen

Figure 2-S3 Groupings of compounds would not be predicted based on their

L1000 connectivity scores.

Each number within the matrix indicates the connectivity score, where the compound on

the y-axis was used as the query and the compound on the x-axis was used as the

perturbagen. Cells on the diagonal were assigned a connectivity score of 100.

Related to Figure 2-4.
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A
Cyproheptadine Loxapine

Control SH-SY5Y

DKI Meclizine

B
Cyproheptadine Loxapine

Control HEK293

DKI Meclizine

Figure 2-S4 Staining of autophagic vacuoles is increased by Group A

compounds in (A) SH-SY5Y and (B) HEK293 cells.

Related to Figure 2-7.
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Table 2-S1 Dose, vendor, literature reference, FDA-approval status, and known

targets for the 30 tested compounds.

Related to Figure 2-3.

Literature FDA Known DrugBank
Compound Dose Vendor Reference Approval Targets

Meclizine 10uM Sigma-Aldrich Gohil et al., Yes HRH1, NR1132013
Bates, Tabrizi,

Sodium butyrate 1mM Sigma-Aldrich and Jones, No --

2014
Sarantos, HRH1, HTR2A,

Cyproheptadine 10uM Sigma-Aldrich Papanikolaou, HTR2C, CHRM1
Ellerby, and Ys CHRM2, CHRM3,
Hughes,2012 HTR7

DRD2, DRD1,
HTR2A, HTR2C,
HTR1A, HTR1B,
HTR1D, HTR1E,
HTR3A, HTR5A,
HTR6, HTR7,
ADRA1A,
ADRA1 B,

Sarantos, ADRA2A,

Loxapine 10uM Sigma-Aldrich Papanikolaou, ADRA2B,
Ellerby, and Ys ADRA2C,
Hughes, 2012 ADRB1, CHRM1,

CHRM2, CHRM3,
CHRM4, CHRM5,
DRD3, DRD4,
DRD5, HRH1,
HRH2, HRH4,
SLC6A4,
SLC6A2,
SLC6A3

x r 4mM Sigma-Aldrich Pirhaji et al., No --Deoxypyridoxine 2017

Selisistat 10uM Selleckchem Westerberg et No SIRT1al., 2015
Bates, Tabrizi,

Trichostatin A 1OnM Sigma-Aldrich and Jones, No --

2014
Diacylglycerol 10uM Sigma-Aldrich Zhang et al., No --kinase inhibitor 11 2012

Bates, Tabrizi, ETA, LDHA,
Nicotinamide 0.5nM Sigma-Aldrich and Jones, Yes PARP1, SIRT5,

2014 BST1

Nortriptyline 1nM Sigma-Aldrich Lauterbach et Yes SLC6A2
al., 2013 SLC6A4, HTR2A,_
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HTR1A, HRH1,
ADRA1IA,
ADRA1 D,
CHRM1, CHRM2,
CHRM3, CHRM4,
CHRM5, HTR2C,
HTR6, ADRA1B,
DRD2

Fingolimod 250nM Santa Cruz Pirhaji et al., No --
phosphate Biotechnology 2016

DRD2, DRD1,

Haloperidol 0.5nM Cayman Lauterbach et GRIN2B, HTR2A,
Chemical al., 2013 DRD3, MCHR1,

SLC18A2
CHRM1, CHRM2,
CHRM3, HTR2A,
HTR2B, HTR2C,

Sarantos, HTR1A, HTR1B,
Sa.ano, HTR1D, HRH1,

Pizotifen 5uM Sigma-Aldrich Papanikolaou, Yes ADRA1A,Ellerby, and AR1
Hughes, 2012 ADRAIB,ADRAII D,

ADRA2A,
ADRA2B,
ADRA2C

Bates, Tabrizi, Cystine, SST,
Cysteamine 250uM Sigma-Aldrich and Jones, Yes NPY2R

2014

Sodium Bates, Tabrizi,

phenylbutyrate 1OOnM Sigma-Aldrich and Jones, Yes TYRB, NPR
2014
Bates, Tabrizi,

Methylene blue 1nM Sigma-Aldrich and Jones, Yes GUCY1A2, NOS1
2014
Bates, Tabrizi, MTOR, FKBP1A,

Rapamycin 1nM Sigma-Aldrich and Jones, Yes FGF2
2014

PPARA, PPARD,

Bezafibrate 100nM Cayman Chandra et al., PPARG, NR1 12,
Chemical 2016 RXRA, RXRB,

RXRG
Zuccato,

Epigallocatechin 100nM Cayman Valenza, and No AHR, DNMT1,

gallate Chemical Cattaneo, DHFRL1
2010
Bates, Tabrizi, CKM, CKMT1A,

Creatine 500uM Sigma-Aldrich and Jones, Yes CKB, CKMT2,
2014 SLC6A8, GAMT

69



Bates, Tabrizi,
Cystamine 250uM Sigma-Aldrich and Jones, No --

2014
SLC6A2,
SLC6A4, HTR2A,
ADRB2, ADRB1,
SMPD1, HRH1,
ADRA1A,
ADRA1 B,

Desipramine 1uM Sigma-Aldrich Lauterbach et Yes ADRA1 D,
al., 2013 CHRMI, CHRMV2,

CHRM3, CHRM4,
CHRM5, HTR1A,
HTR2C, DRD2,
ADRA2A,
ADRA2B,
ADRA2C

7,8- 100nM Cayman Jiang et al., No --
Dihydroxyflavone Chemical 2013

RPSL, RPSD,
Bates, Tabrizi, IL1B, ALOX5,

Minocycline 10uM Sigma-Aldrich and Jones, Yes MMP9, VEGFA,
2014 CASP1,CASP3,

CYCS
MTNR1A,
MTNR1B, ESR1,

Melatonin lOnM Sigma-Aldrich Lauterbach et Yes RORB, CALMI1,
al., 2013 MPO, EPX,

CALR, ASMT,
NQO2

Subeoylnilie Hcklyet l.,HDACI, HDAC2,

ydreroya ni cid 1 nM Sigma-Aldrich 2Hockly et al., Y HDAC6,
HDAC8, ACUC1

Bates, Tabrizi, PPARG, VDR,
Curcumin lOnM Sigma-Aldrich and Jones, Yes ABCC5, CBR1,

2014 GSTP1
Wang, Gines,

Celastrol 1 nM Sigma-Aldrich c onal',No --and Gusella,
2005

Fingolimod luM Sigma-Aldrich Di Pardo et al., Yes S1PR5, HDAC1
2014__ _ _ _ __ _ _ _ _ _ _

Wang, Gines,

Juglone 1nM Sigma-Aldrich MacDonald, No --and Gusella,
_______________________________2005
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Table 2-S4 GO enrichment for the differentially expressed proteins affected by

Group A compounds.

Related to Figure 2-4.

Number Number of

GO . P FDR- Enrichment o otal #TotP Group A #DEP_A

Term Description value adjusted score proteins in GO differential in GO
p-value (#TotP) term proteins term

(#DEP A
GO:003 Collagen fibril 1.38 4.07E- 2.48 6098 26 1703 180199 organization E-05 02

GO:004 Macro- 1.07 4.21E- 1.9 6098 68 1703 36
3413 lcl E-05 02

glycosylation ___ ______________ ___ _________
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Supplemental Excel tables can be found in the publication:

Table 2-S2 GO enrichment for the differentially expressed genes affected by

Group A compounds.

Related to Figure 2-4.

Table 2-S3 Pathway enrichment using IMPaLA for the differentially expressed

metabolites affected by Group A compounds.

Related to Figure 2-4.

Table 2-S5 GO enrichment for the differentially expressed genes affected by

Group B compounds.

Related to Figure 2-4.

Table 2-S6 Pathway enrichment using IMPaLA for the differentially expressed

metabolites affected by Group B compounds.

Related to Figure 2-4.

Table 2-S7 GO enrichment for the proteins in the Group A network.

Related to Figure 2-5.

Table 2-S8 GO enrichment for the proteins in the Group B network.

Related to Figure 2-5.
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3.1 Abstract

In recent years, the assay for transposase-accessible chromatin using

sequencing (ATAC-Seq) has become a fundamental tool of epigenomic research.

However, it is difficult to perform this technique on frozen samples because freezing

cells before extracting nuclei can impair nuclear integrity and alter chromatin structure,

especially in fragile cells such as neurons. Our aim was to develop a protocol for

freezing neuronal cells that is compatible with ATAC-Seq; we focused on a disease-

relevant cell type, namely motor neurons differentiated from induced pluripotent stem

cells (iMNs) from a patient affected by spinal muscular atrophy. We found that while

flash-frozen iMNs are not suitable for ATAC-Seq, the assay is successful with slow-

cooled cryopreserved cells. Using this method, we were able to isolate high quality,

intact nuclei, and we verified that epigenetic results from fresh and cryopreserved iMNs

quantitatively agree.

3.2 Introduction

Since its establishment, the assay for transposase-accessible chromatin using

sequencing (ATAC-Seq) has revolutionized the study of epigenetics (Buenrostro et al.,

2013, 2015a). This technique detects open-chromatin regions and maps transcription

factor binding events genome-wide by means of direct in vitro transposition of native

chromatin. Specifically, hyperactive Tn5 transposase is used to interrogate chromatin

accessibility by inserting high-throughput DNA sequencing adapters into open genomic

regions, which allows for the preferential amplification of DNA fragments located at sites

of active chromatin. Because the DNA sites directly bound by DNA-binding proteins are

protected from transposition, this approach enables the inference of transcription factor

occupancy at the level of individual functional regulatory regions. Furthermore, ATAC-

Seq can be utilized to decode nucleosome occupancy and positioning, by exploiting the

fact that the Tn5 transposase cuts DNA with a periodicity of about 150-200bp,

corresponding to the length of the DNA fragments wrapped around histones (Schep et

al., 2015). This periodicity is maintained up to six nucleosomes and provides information

about the spatial organization of nucleosomes within accessible chromatin. ATAC-Seq

signals thus allow for the delineation of fine-scale architectures of the regulatory
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framework by correlating occupancy patterns with other features, such as chromatin

remodeling and global gene induction programs.

Compared to other epigenetic methodologies, such as FAIRE-Seq and

conventional DNase-Seq, ATAC-Seq requires a small number of cells. Therefore, it is

suitable for work on precious samples, including differentiated cells derived from

induced pluripotent stem cells (iPSCs), primary cell culture, and limited clinical

specimens. Recently developed techniques, such as single-cell DNase sequencing

(scDNase-seq), indexing-first ChIP-Seq (iChIP), ultra-low-input micrococcal nuclease-

based native ChIP (ULI-NChIP), and ChlPmentation, allow for the epigenomic

investigation of small number of cells or even single cells without requiring microfluidic

devices (Brind'Amour et al., 2015; Jin et al., 2015; Lara-Astiaso et al., 2014; Schmidl et

al., 2015). However, these assays require multiple experimental steps. In contrast, in

ATAC-Seq the actual assay and library preparation are performed in a single enzymatic

reaction. Hence, this technique is less time-consuming and labor-intensive.

It is essential to preserve the native chromatin architecture and the original

nucleosome distribution patterns for ATAC-Seq. Freezing samples prior to the

purification of nuclei can be detrimental to nuclear integrity and can affect chromatin

structures, thus restricting the application of ATAC-Seq to freshly-isolated nuclei (Trusal

et al., 1984). This limits the use of ATAC-Seq on clinical samples, which are typically

stored frozen, and represents a major logistical hurdle for long-distance collaborative

projects, for which sample freezing is often inevitable.

In an attempt to overcome this drawback, we identified a freezing protocol

suitable for native chromatin-based assays on neuronal cells. We tested the freezing

techniques using a disease-relevant cell type, namely motor neurons (iMNs)

differentiated from human iPSCs, which were derived from the fibroblasts of a patient

affected by spinal muscular atrophy (SMA). This disease is caused by homozygous loss

of the SMN1 gene and is characterized by the degeneration of lower motor neurons

(Ogino and Wilson, 2004).

We tested two different freezing methods: flash-freezing and slow-cooling

cryopreservation. Flash-freezing is a procedure in which the temperature of the sample

is rapidly lowered using liquid nitrogen, dry ice or dry ice/ethanol slurry, in order to limit
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the formation of damaging ice crystals. Conversely, slow-cooling cryopreservation

lowers the temperature of the sample gradually and makes use of cryoprotectants, such

as dimethyl sulfoxide (DMSO), to prevent ice crystal nucleation and limit cell

dehydration during freezing. Cryopreservation techniques are widely employed for cell

banking purposes and are routinely used in assisted reproduction technologies (Dovey,

2012; Paramanantham et al., 2015).

We introduced a number of experimental quality control (QC) checkpoints and

steps for data analysis to monitor the efficacy of the procedures and quantify potential

alterations induced by cell freezing.

3.3 Results and Discussion

3.3.1 Description of experimental design and overview of the protocol

We generated ATAC-Seq data on fresh (F), flash-frozen (FF), and cryopreserved

(C) iMNs by following the procedure outlined in Figure 3-1. Fresh and frozen neurons

were derived from the same pool of cells and processed in parallel in order to estimate

the effects of freezing on ATAC-Seq outcomes without any batch effect bias.

The ATAC-Seq protocol was adapted from Buenrostro et al., with some

modifications (Buenrostro et al., 2013, 2015b). Given that a successful ATAC-Seq

experiment begins with the isolation of high-quality intact nuclei, we first introduced a

quality control checkpoint consisting of the morphological evaluation of nuclei with either

Trypan Blue or DAPI staining, followed by the accurate quantification of those nuclei

using an automated cell counter. Precise counting of nuclei is important to ensure

optimal tagmentation (the simultaneous fragmenting of the DNA and insertion of adapter

sequences) and to limit the technical variability across samples. From a qualitative

perspective, individual intact nuclei with a round or oval shape should be observed with

no visible clumping. To exclude samples with severe degradation or over-tagmentation,

we assessed the quality of the treated chromatin samples by gel electrophoresis, as

described in Buenrostro et al. (Buenrostro et al., 2015b); if the chromatin was intact and

the transposase reaction was optimal, a DNA laddering pattern with a periodicity of

about 200bp should be observed, corresponding to fragments of DNA that were

originally protected by an integer number of nucleosomes (nucleosome phasing).
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Furthermore, we measured the enrichment of DNA accessible regions by performing

real-time qPCR analysis using known open-chromatin sites as positive controls and

Tn5-insensitive sites as negative controls. When assayed by real-time qPCR, high-

quality ATAC-Seq samples should show at least a 10-fold enrichment of positive control

sites compared to Tn5-insensitive sites. Finally, as we were principally interested in

open-chromatin profiling and not in nucleosome positioning, we introduced a size-

selection step to enrich for nucleosome-free fragments. After size-selection, libraries

were PCR-amplified and submitted for single-end sequencing.

PCIR

qPCR QC:,/V Gel Qc:I

FF F C

Nuclei QC: v Transposase reaction Sequencing

Figure 3-1 Outline of ATAC-Seq procedure using fresh, flash-frozen, and

cryopreserved iPSC-derived motor neurons.

The key experimental steps are nuclei extraction, transposase reaction, size selection,

PCR amplification and sequencing. The quality control (QC) checkpoints consist of

morphological evaluation of nuclei, agarose gel electrophoresis of libraries, and real-

time qPCR to assess the enrichment of open-chromatin sites. (F = fresh, FF = flash-

frozen, C = cryopreserved).

3.3.2 ATAC-Seq on iPSC-derived motor neurons (iMNs): flash-frozen cells

We first performed ATAC-Seq on fresh and flash-frozen iMNs. Differentiated

neuronal cells were generated as described in Methods. We performed
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immunocytochemistry experiments using antibodies against markers of mature motor

neurons to test the efficiency of the differentiation protocol; we showed that patient-

derived iPSCs were successfully differentiated into ISL1- and SM132-positive motor

neurons (Figure 3-2). Figure 3-3 shows ATAC-Seq outcomes from two representative

samples. Nuclei from fresh cells passed quality control, while nuclei from flash-frozen

neurons exhibited excessive clumping, likely caused by disruption of the nuclear

envelope and consequent leakage of DNA (Figure 3-3A). After the transposase

reaction, we assessed the quality of the resulting libraries by qualitative evaluation of

agarose gel electrophoresis. The library from freshly-isolated nuclei displayed clear

nucleosome phasing, while the library from flash-frozen neurons showed DNA smearing

on the gel (Figure 3-3B). This result strongly indicates that loss of chromatin integrity

occurred during flash-freezing. We proceeded with next-generation sequencing for one

fresh and one flash-frozen sample. We used the R package Gviz to plot the sequencing

data along genomic coordinates for manual inspection of tracks and local visualization

of peaks (Figures 3-3C and 3-Si). As a negative control, we treated human naked DNA

with the hyperactive Tn5 enzyme and sequenced this library alongside the ATAC-Seq

samples. ATAC-Seq peaks from fresh neurons were sharp and overlapped with

H3K4me3 signals from ENCODE ChIP-Seq datasets. Using a MACS2 q-value threshold

of 0.05, we obtained more than seventy thousand significant peaks using fresh cells. In

contrast, the reads from flash-frozen cells were distributed evenly across the entire

genome, similar to the results obtained with the negative control, and only 461

significant peaks were detected. Half of these peaks overlapped with the peaks from

fresh iMNs (Figure 3-S2).

These findings indicate that flash-freezing of iMNs is not suitable for ATAC-Seq.
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Figure 3-2 Fibroblast-derived iPSCs differentiate into SM132- and ISL1 -positive

motor neurons.

Differentiated cells were labeled to evaluate the immunoreactivity of SM132 (green) and

ISL1 (red) proteins, two markers of mature motor neurons. Nuclei were stained with

DAPI. Motor neurons were imaged with 1Ox magnification. The image on the right

represents a higher magnification of selected neurons. Scale bar = 75 pm.
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Flash-frozen

-m smon n - - - chrl:59,239,610-59,287,047

ATAC-Seq: Fresh

3-3 Representative results for ATAC-Seq

cells.

ATAC-Seq: Flash-frozen

Tn5-treated naked DNA

H3K4me3 (ENCODE)

carried out on fresh and flash-

(A) Nuclear morphological evaluation: nuclei from fresh cells were of high quality, while

excessive clumping was observed for nuclei from flash-frozen neurons. (B) Agarose gel

electrophoresis of libraries: the nucleosome phasing pattern on the gel was not detected

in flash-frozen samples, as opposed to fresh cells. (C) ATAC-Seq tracks were visualized

with the Gviz package: while we detected sharp peaks for fresh samples, the reads from

flash-frozen neurons were distributed noisily across the genome. (F = fresh, FF = flash-

frozen).
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3.3.3 ATAC-Seq on iPSC-derived motor neurons (iMNs): cryopreserved cells

Next, we compared ATAC-Seq results from fresh and cryopreserved cells.

Approximately one million fresh iMNs were transferred to Cryostor media and slowly

frozen, stored, and then thawed for processing. After thawing, we assessed the cell

death rate by evaluating chromatin condensation, which is a hallmark of apoptotic cells

(Ziegler and Groscurth, 2004). To this purpose, we stained the neurons with the cell-

permeable Hoechst 33342, then quantified chromatin condensation using fluorescent

microscopy. This dye brightly stains the condensed chromatin of cells undergoing

apoptosis (Figure 3-S3). The rate of cell death was 10.8% with standard deviation of

1.7; the fraction of nuclei recovered was higher than 70% (Table 3-Si). As shown in

Figure 3-4A, nuclei from the cryopreserved cells were of high quality and the

nucleosome laddering was detected by gel electrophoresis (Figure 3-4B). Sequencing

data from both fresh and cryopreserved samples showed sharp peaks and low

background signal (Figures 3-4C and 3-Si). Furthermore, the qPCR enrichment of the

positive control site (GAPDH gene promoter, Figure 3-5A top panel) over the Tn5-

insensitive site (gene desert region, Figure 3-5A bottom panel) was high and

comparable to that of fresh cells, as opposed to qPCR results from flash-frozen

neurons, for which less than 10-fold enrichment was observed (Figure 3-5B). We

obtained similar results using a second set of primers designed to amplify open-

chromatin and gene desert regions (Figure 3-S4). As in the case of fresh cells, we

obtained more than seventy thousand significant peaks using cryopreserved samples

(MACS2 q-value threshold = 0.05) (Table 3-1). There was high overlap in the number of

peaks obtained from fresh and cryopreserved iMNs (Figure 3-S5). These results reveal

that slow-cooling cryopreservation of iMNs is compatible with native chromatin-based

epigenetic assays.
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c) chrl:59,239,610-59,287,047

ATAC-Seq: Fresh

ATAC-Seq: Cryopreserved

Tn5-treated naked DNA

H3K4me3 (ENCODE)

Figure 3-4 Representative results for ATAC-Seq carried out on fresh and

cryopreserved cells.

(A) Nuclear morphological evaluation: similar to nuclei from fresh cells, nuclei from

cryopreserved neurons were intact and of high quality. (B) Agarose gel electrophoresis

of libraries: the nucleosome pattern on the gel was evident for both fresh and

cryopreserved samples. (C) ATAC-Seq tracks were visualized with the Gviz package:

peaks from both fresh and cryopreserved neurons were sharp and overlapped with

H3K4me3 ChIP-Seq peaks from ENCODE (F = fresh, C = cryopreserved).
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a) Human GAPDH gene promoter

ATAC-Seq (F)

ATAC-Seq (C)

ATAC-Seq (FF)

chrl2:6643305 - 6643405 (101 bp)

Human gene desert region

ATAC-Seq (F)

ATAC-Seq (C)

ATAC-Seq (FF)

chr5:104524544 - 104524649 (106 bp)

b)

qPCR fold enrichment

75

I 050-

25 -

0
C F

Figure 3-5 Real-time qPCR for the assessment of the quality of ATAC-Seq

libraries.

(A) Genomic locations of the primers used to amplify positive (human GAPDH gene

promoter) and negative (human gene desert region) control sites. (B) Fold enrichment

of the open-chromatin site over the Tn5-insensitive site: while real-time qPCR

experiments showed high enrichment for fresh and cryopreserved samples, poor results

were obtained with flash-frozen cells. (F = fresh, FF = flash-frozen, C = cryopreserved).
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Table 3-1 Information about sequencing data.

Sample # of total # of aligned # of significant Fraction of reads

reads reads peaks in significant

peaks (%)

F1 26,092,754 22,059,551 71,050 9.4

F2 30,730,456 25,950,925 70,073 9.1

F3 31,364,716 26,333,862 73,305 9.7

C1 28,201,642 24,577,487 73,973 10.1

C2 29,964,823 25,900,608 72,512 9.7

C3 28,018,248 23,660,777 70,547 9.2

FF 26,762,917 23,558,249 461 0.1

The numbers of total and aligned reads are indicated. The number of significant peaks

is similar across fresh and cryopreserved iMNs, while only 461 peaks were detected for

flash-frozen cells. The number of reads in significant peaks is > 9% for fresh and

cryopreserved samples, while it is only 0.10% for flash-frozen iMNs (F = fresh, FF =

flash-frozen, C = cryopreserved).
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3.3.4 Quantitative comparison of fresh and cryopreserved iMNs

We subsequently performed a series of analyses to quantitatively compare the

results from fresh and cryopreserved neurons. We generated sequencing data on three

technical replicates from both conditions to assess whether the cryopreservation

method induces any modifications in chromatin accessibility. All replicates originated

from the same initial batch of cells. Information about sequencing data for each sample

is reported in Table 3-1. The percentage of reads mapping to the human genome was

similar for all replicates, but cryopreserved samples displayed higher number of reads

mapping to mitochondrial DNA (Table 3-S2). Despite this discrepancy, we proceeded

with our analysis to assess the reproducibility of the epigenetic signal from nuclear DNA

across all replicates. To this purpose, we removed mtDNA reads, normalized the

libraries to have the same total read counts, and examined the number of reads in 5kb

genome windows (excluding ENCODE blacklisted regions). Overall, we observed high

reproducibility rates (R 0.978) between technical replicates in both fresh and

cryopreserved samples (Figure 3-6A). Remarkably, cryopreserved and fresh samples

were almost as highly correlated to each other (R 0.973) as the technical replicates,

which suggests that cryopreservation successfully preserves the read distribution

across the genome. Next, we generated average read profiles at transcriptional start

sites using the ngs.plot tool (Shen et al., 2014). As opposed to the signal from flash-

frozen iMNs, highly similar patterns were observed for fresh and cryopreserved cells

(Figure 3-6B). To further evaluate the similarity between cryopreserved and fresh

samples, we identified the peaks in each sample and assigned each one of these peaks

to neighboring features (promoters, exons, introns, distal intergenic regions and sites

located downstream of the gene) within 1 kb (Figure 3-6C). The distribution of peaks

with respect to features in the genome was highly similar across all samples, with most

of the peaks located in intergenic regions and promoters. Next, to identify and quantify

potential epigenetic alterations induced by the cryopreservation procedure, we

performed analysis to detect sites that were significantly different between fresh and

cryopreserved samples. MACS2-derived peaks across all samples were merged into

non-overlapping unique genomic intervals resulting in 75,711 sites. We then used

edgeR to detect the differences between the two conditions. We identified very few
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differentially enriched sites across the genome (210 out of 75,711 total = 0.28%); of

these, 25.2% were located on chromosome 10, and none of them were detected on

chromosome 16 (Figure 3-7A). No significant regional biases were observed for the

other chromosomes. The magnitude of the differences was small, never exceeding 3-

fold (Figure 3-7A and Figure 3-7B). The differentially enriched sites were mainly located

in intergenic regions and promoters (57.1% and 19.5%, respectively, Figure 3-7C). We

mapped 126 genes near these differentially enriched sites and performed Gene

Ontology analysis using GOrilla and DAVID 6.7 tools (Eden et al., 2009; Huang et al.,

2009a, 2009b). We did not detect any significant GO terms when using an adjusted p-

value threshold of 0.05.
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Figure 3-6 Quantitative comparison of fresh and cryopreserved cells.

(A) Correlative analysis of the number of reads in 5kb regions of the genome. The lower

left triangle of the figure shows the scatter plots of the log2 read counts for each pair of

technical replicates (5kb regions with less than 10 read counts were excluded from the

analysis). The upper right triangle displays the corresponding values of the Pearson

correlation coefficient. (B) Average read profiles across the transcriptional start sites

(TSS) using a 2.5 Kb window size. The overall pattern is very similar between fresh and

cryopreserved iMNs. (C) Location-based distribution analysis: the distribution of

neighboring genomic features to open-chromatin regions is highly similar between fresh

and cryopreserved samples. (F = fresh, FF = flash-frozen, C = cryopreserved).
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F2 0.979 0.975 0.973 0.973
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Figure 3-7 Differentially enriched sites detected between fresh and

cryopreserved samples.

(A) The fold-change values for differentially enriched sites between fresh and

cryopreserved samples are plotted as a function of the position of the sites across all

genome. The changes were small (< 3-old). (B) Genomic tracks of ATAC-Seq results

showing a differentially enriched site between fresh and cryopreserved samples. (C) Pie

chart showing the genomic location distribution of the differentially enriched sites.

In conclusion, we established a cell freezing protocol suitable for ATAC-Seq

experiments on iMs. As in the case of fresh neurons, the cryopreserved cells passed

all of the quality control checkpoints. Although we observed that higher numbers of

reads map to mitochondria DNA in cryopreserved iMNs, we demonstrated that the

epigenetic signal from nuclear DNA was highly reproducible between fresh and

cryopreserved neurons.
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We expect that the method we describe also applies to a wider variety of settings

and has the potential to greatly expand the number and types of samples that can be

studied with ATAC-Seq. In particular, it would be interesting to test the effectiveness of

this freezing procedure on additional cell types, especially heterogeneous samples such

as blood-derived cells, clinical specimens, and cell co-culture systems. Indeed, different

cell populations might display distinct sensitivity to freezing and thawing, with

consequent biases in the epigenetic outcomes. We have described a systematic

approach to assess the quality of ATAC-Seq data from frozen neurons and provided

guidelines that can be followed to test the applicability of this freezing method to other

sample types. We anticipate that this work will be of great value to epigenetic

investigators.

3.4 Methods

Primary cells and iPSC derivation

Source fibroblast lines were obtained from Coriell (GM09677) under institutional

review board approved protocols. The fibroblast-derived iPSC line 77iSMA-n5 was

created by the Cedars-Sinai Medical Center iPSC Core using the episomal vectors

pCXLE-hUL, pCXLE-hSK, and pCXLE-hOCT3/4-shp53-F (Addgene, from a previously

published protocol (Okita et al., 2011)). We transfected the fibroblasts with the vectors

using the Amaxa Human Dermal Fibroblast Nucleofector Kit. The 77iSMA-n5 line was

characterized by the Cedars-Sinai iPSC Core using the following quality control assays:

G-Band karyotyping, immunocytochemistry for pluripotency markers, embryoid body

formation, PluriTest, and qRT-PCR for endogenous pluripotency genes (Barrett et al.,

2014; Fuller et al., 2016; MOller et al., 2011; Okita et al., 2011; Sareen et al., 2012).
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Motor Neuron Precursors (iMPs)

The SMA patient line, 77iSMA-n5, was grown until 90% confluent using a

standard iPSC maintenance protocol. On Day 0 of differentiation, iPSCs were lifted as

single cells by Accutase treatment for 5 minutes at 370C. We counted the cells and re-

suspended them in Neuroectoderm differentiation media (NDM+LS), which contains 1:1

IMDM/F12, 1% NEAA, 2% B-27, 1% N2, 1% Antibiotic-Antimycotic, 0.2pM LDN193189

and 10pM SB431542. Next, we seeded 25,000 cells/well in a 384-well plate and

centrifuged the cells for 5 minutes at 200 rcf. On day 2, we transferred the neural

aggregates to a poly 2-hydroxyethyl methacrylate (poly-Hema) coated flask and

cultured them for an additional 3 days in NDM+LS media. On day 5, we seeded the

neural aggregates onto a tissue culture plate coated with laminin (50pg/mL) to induce

rosette formation. From day 12-18, the attached neural aggregates were transitioned to

Motor Neuron Specification Media (1:1 IMDM/F12, 1% NEAA, 2% B-27, 1% N2, 1%

Antibiotic-Antimycotic, 0.25pM all-trans retinoic acid (ATRA), 1 pM purmorphamine

(PMN), 20ng/mL brain-derived neurotrophic factor (BDNF), 20ng/mL glial cell line-

derived neurotrophic factor (GDNF), 200ng/mL ascorbic acid (AA) and 1 pM dibutyryl

cyclic-AMP (db-cAMP). On day 19 we selected the rosettes by incubating them with

Neural Rosette Selection Reagent (StemCell Technologies Cat#05832) for 45 minutes

at 371C. After selection, we collected the rosettes and transferred them to poly-Hema

coated T75 flasks and cultured the cells as iMPs in Motor Neuron precursor expansion

media (MNPEM), which contains 1:1 IMDM/F12, 1% NEAA, 2% B27, 1% N2, 1%

Antibiotic-Antimycotic, 0.1pM ATRA, 1pM PMN, 1OOng/mL EGF and 1OOng/mL FGF2.

We expanded the iMPs as aggregates in suspension using a mechanical passaging

method known as "chopping" for up to five passages (Shelley et al., 2014; Svendsen et

al., 1998). For cryopreservation, we pooled the aggregates and dissociated them via a

combined enzymatic (Accutase for 10 minutes at 370C) and mechanical dissociation

strategy to form a single cell suspension. The single cell suspension was then

concentrated via centrifugation (200 rcf for 5 minutes at 40C), re-suspended in Cryostor

(StemCell Technologies Cat #: 07930), cryopreserved using a controlled rate freezer

(Planer Inc.) and stored in gas-phase liquid nitrogen.
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Motor Neuron Cultures (iMNs)

We derived the iMNs by thawing the iMPs and immediately plating the single cell

suspension onto plastic tissue culture-treated plates coated with 50pg/mL laminin for

two hours at 370C. We seeded the iMPs in Motor Neuron Maturation Medium (MNMM)

Stage 1 consisting of 1:1 IMDM/F12, 1% NEAA, 2% B-27, 1% N2, 1% Antibiotic-

Antimycotic, 0.1pM ATRA, 1pM PMN, 10ng/mL BDNF, 10ng/mL GDNF, 200ng/mL AA,

1pM db-cAMP, and 2.5pM N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-

dimethylethyl ester (DAPT). We cultured the cells for a period of seven days. On day 7,

the plated cultures were transitioned to MNMM Stage 2 containing 98.8% Neurobasal

media, 1% non-essential amino acids, 0.5% Glutamax, 1% N2, 10ng/mL BDNF,

10ng/mL GDNF, 200ng/mL AA, 1pM db-cAMP, and 0.1pM Ara-C. We further

differentiated the iMNs in MNMM Stage 2 for a total of 21 days. On day 21, the iMNs

cultures were either fixed for immunocytochemistry or collected.

Cell collection, freezing, and thawing

For cell collection, the iMNs were washed once with 1X PBS, isolated via cell

scraper in 1X PBS, and centrifuged at 200 rcf for 5 minutes at 40C. Aliquots with

approximately one million cells were prepared for each experimental condition.

Flash-freezing: pellets (no supernatant) were flash-frozen in liquid nitrogen.

Cryopreservation: pellets were re-suspended in Cryostor media and frozen slowly in a

Mr. Frosty isopropyl alcohol chamber (FisherSci) at -80C. This procedure allowed us

to achieve a rate of cooling of -1 C/minute.

Both the flash-frozen isolated cell pellets and the cryopreserved iMNs were

stored for 10 days at -800C. To thaw the cryopreserved iMNs, we removed the cryovials

from -800C and quickly warmed them for 2 minutes in a 370C water bath. We

transferred the samples to 12ml of warm 1X PBS supplemented with 1X protease

inhibitor cocktail. We gently mixed each tube by inversion and removed an aliquot

(100pl) for cell death estimation using the chromatin condensation assay described

below. We centrifuged the cells at 200 rcf for 5 minutes at 40C, carefully aspirated all

the supernatant and proceeded with nuclei isolation. Flash-frozen cell pellets were

removed from -800C and immediately re-suspended in ice-cold cell lysis buffer.
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Chromatin condensation assay

Hoechst 33342 was added to 100pl of cell suspension at a final concentration of

1.5pg/ml. Cells were incubated for 15 minutes at 370C before proceeding with image

acquisition which was carried out using a 350nm UV excitation filter. Eight randomly

selected fields per sample were imaged at 40X magnification. Neurons were scored as

apoptotic when they showed condensed chromatin or fragmented nuclei with bright

Hoechst signal.

Immunocytochemistry

We fixed iMNs with 4% paraformaldehyde and blocked them with 5% donkey

serum with 0.1% Triton X-100 in 1X PBS. We incubated the cells overnight at 40C with

the following primary antibodies: anti-SM132 (mouse monoclonal, 1:1,000, BioLegend,

cat. no. SMI-32R) and anti-ISL1 (goat polyclonal, 1:250, R&D Systems, cat. no.

AF1 837). We subsequently rinsed the cells and incubated them with species-specific

Alexa Fluor 488-conjugated secondary antibody (donkey anti-mouse immunoglobulin G

(IgG), 1:1,000, Life Technologies, cat. no. A-21202) and Alexa Fluor 594-conjugated

secondary antibody (donkey anti-goat IgG, 1:1000, Life Technologies, cat. no. A-

11058). We counterstained nuclei using DAPI (lpg/mL). We acquired the images using

Nikon/Leica microscopes with 1 Ox magnification.

Purification of nuclei from iMNs

We re-suspended the cell pellets in ice-cold cell lysis buffer (10mM Tris-HCI,

pH7.4, 10mM NaCl, 3mM MgCI2, 0.1% IGEPAL CA-630) supplemented with IX

protease inhibitor cocktail (Roche). We incubated the cells on ice for 5 minutes and

centrifuged at 230 rcf for 5 minutes at 40C. We carefully removed the supernatant and

re-suspended the nuclei in 2 5pl of ice-cold IX Tagment DNA Buffer (Illumina). We

quantified the nuclei with Trypan Blue staining and the Countess@ Automated Cell

Counter (Invitrogen).
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DNA extraction

We purified the DNA from iMNs using the DNeasy Blood & Tissue Kit (Qiagen),

according to the manufacturer's instructions. We quantified the DNA using a NanoDrop

2000 instrument (Thermo Scientific) and used 50ng to prepare the DNA library using the

Nextera DNA Library Preparation Kit (Illumina), according to the manufacturer's

instructions. This library, obtained from naked DNA, was used as internal control to

determine the background level of intrinsic accessibility of genomic DNA and correct for

any Tn5 transposase sequence cleavage bias.

Chromatin tagmentation and sequencing

We used 50,000 nuclei for the transposase reaction, which was carried out as

described in Buenrostro et al. (Buenrostro et al., 2013). We subsequently purified the

samples with the DNA Clean & Concentrator-5 Kit (Zymo Research) and eluted them

with 2 0pl of Elution Buffer (Qiagen). We PCR-amplified the samples using 25pl of

Nextera PCR Master Mix (Illumina), 5pl of PCR Primer Cocktail (Illumina), 5pl of Index

primer 1 (i7, Illumina), and 5pI of Index primer 2 (i5, Illumina). We used the following

PCR reaction protocol: 3min 720C; 30sec 98'C; 8 cycles (1Osec 98'C, 30sec 63*C,

3min 72'C). We purified the samples with the DNA Clean & Concentrator-5 Kit (Zymo

Research), eluted them with 20pl of Elution Buffer (Qiagen), and loaded them on 2%

agarose gel (Invitrogen) for qualitative evaluation of libraries and size-selection. We

size-selected the following fractions: 175 - 250 bp (fraction "A", corresponding to a

nucleosome-free fragment size) and 250 - 625 bp (fraction "B"). We purified the DNA

from both gel fractions, using the QlAquick Gel Extraction Kit (Qiagen) following the

manufacturer's recommendation, and eluted it with 20pl of Elution Buffer (Qiagen). We

utilized the DNA from fraction "B" for qPCR-based qualitative analysis of libraries using

primers mapping to open-chromatin regions as positive control sites and gene desert

regions as negative control sites (Figures 3-5 and 3-S4). The sequences of the primers

used to amplify open-chromatin and gene desert regions are shown in Table 3-S3. We

also performed the qPCR assay using 10-fold serial dilutions of non-transposed

genomic DNA as a template to generate a calibration line for each primer pair and

correct for any differences in the primer efficiency. The fold enrichment of the open-
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chromatin site (OC) over the Tn5-insensitive site (INS) was calculated with the following

formula, as previously described: 2 to the power of [(OCn-OCa) - (INSn-INSa)], where

OCn is the qPCR threshold cycle number obtained for the OC qPCR primer pair using

transposed naked DNA as template, and INSa is the qPCR threshold cycle number

obtained for the INS qPCR primer pair using ATAC-Seq library as template (Ling and

Waxman, 2013). As an additional control, we carried out the qPCR assay using

transposed naked DNA. No fold-enrichment of open-chromatin sites should be detected

when using transposed naked DNA as a template. We prepared the amplification

reaction with 1X KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems) and 500nM

of forward and reverse primers. We carried out qPCR assays using a LightCycler@ 480

Instrument I (Roche), available at the MIT BioMicroCenter. We further amplified the

DNA from fraction "A" with 1X NEBNext High-Fidelity PCR Master Mix (New England

Biolabs), 200nM of Primer 1 (5'-AATGATACGGCGACCACCGA-3'), and 200nM of

Primer 2 (5'-CAAGCAGAAGACGGCATACGA-3'). We used the following PCR reaction

protocol: 30sec 980C; 4 cycles (1 Osec 980C, 30sec 650C, 30sec 720C); 5min 72*C. We

purified the final libraries using Agencourt AMPure XP beads (Beckman Coulter),

checked their quality using a Fragment Analyzer T M instrument (Advanced Analytical),

and measured their concentration by a qPCR-based method (KAPA Library

Quantification Kit for Illumina Sequencing Platforms). We submitted the samples to the

MIT BioMicroCenter for single-end sequencing with the Illumina HiSeq 2000 platform.

Bioinformatic analysis

We aligned sequencing reads to the hg19 genome build using BWA v.0.7.10. We

assessed the quality of the sequences using FastQC (more details on how the data was

processed can be found at http://openwetware.org/wiki/BioMicroCenter:Software#BMC-

BCCPipeline). Given the large percentage of mitochondrial reads found in some

samples, we removed mitochondrial reads from the analysis using custom UNIX scripts.

We determined open-chromatin regions (peaks) using MACS2 v.2.1.0.20150420 (q-

value threshold = 0.05) (Zhang et al., 2008). We used the sequencing data from

transposed naked DNA as a control. The differential analysis was performed using the

default settings in the package DiffBind version 1.16.0 (Ross-Innes et al., 2012). Briefly,
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read counts for each site were computed and differentially enriched sites between fresh

and cryopreserved conditions were identified using the edgeR package, with FDR < 0.1

(Robinson et al., 2009).
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3.5 Supplementary Information

Table 3-S1 Information about the number of cells used for the experiment, the

percentage of cell death assessed by chromatin condensation and the number of

nuclei recovered from cryopreserved (C) neurons.

Sample # of cells Cell death (%) # of recovered nuclei

C1 947,150 11.0 762,000

C2 1,282,500 8.3 921,000

C3 1,225,500 12.3 849,000

Table 3-S2 Mitochondrial

cryopreserved (C) iMNs.

DNA (mtDNA) contamination in fresh (F) and

Sample mtDNA (%)

F1 32.14

F2 27.97

F3 31.44

C1 45.33

C2 49.61

C3 47.69
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Table 3-S3 Sequences of the primers used to amplify open-chromatin and gene

desert regions.

Primer ID Primer sequence

GAPDH gene promoter Fw CATCTCAGTCGTTCCCAAAGT

GAPDH gene promoter Rv TTCCCAGGACTGGACTGT

Gene desert region Fw AACTGGCTAGTAAGGAGTGAATG

Gene desert region Rv GGGAATGGAAAGAAGTCCACTAT

B2M gene promoter Fw GGAAAGTCCCTCTCTCTAACCT

B2M gene promoter Rv GCGACGCCTCCACTTATATT

Gene desert region #2 Fw CCCAAACTCTGAGAGGCTTATT

Gene desert region #2 Rv GAGCCATCATCTAGACACCTTC
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.4

chr9:25,830,824-29,315,823

ATAC-Seq: Fresh

ATAC-Seq: Cryopreserved

"- _ATAC-Seq: Flash-frozen

Tn5-treated naked DNA

H3K4me3 (ENCODE)

Figure 3-S1 ATAC-Seq tracks of a large genomic region (3.5 Mbp).

The tracks were visualized with the Gviz package: peaks from both fresh and

cryopreserved neurons were sharp and overlapped with H3K4me3 ChIP-Seq peaks

from ENCODE; the reads from flash-frozen neurons were distributed noisily across the

genome (F = fresh, FF = flash-frozen, C = cryopreserved).
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Fresh Flash Frozen

110628 195 225

Figure 3-S2 Venn diagram showing the overlap of the peaks between fresh and

flash-frozen iMNs.

The reads from the three technical replicates from the fresh iMNs were merged before

calling the peaks with MACS2 and calculating the overlap with the peaks from flash-

frozen iMNs. We observed that 236 out of 461 peaks detected in the flash-frozen iMNs

overlapped with the peaks obtained from the fresh cells. In some cases, multiple peaks

from a sample mapped to a single peak in the second sample. Such ties were counted

as a single overlap, resulting in the 195 overlapping peaks displayed on the Venn

diagram.
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Figure 3-S3 Two representative microscopic pictures of thawed cells stained with

Hoechst 33342 for the assessment of neuronal death based on chromatin

condensation.

The right panel shows the corresponding enlarged images from the left panel. The red

arrows indicate apoptotic cells with condensed and fragmented chromatin and bright

Hoechst signal, while the yellow arrows indicate viable cells with diffuse staining. Scale

bar = 40 pm.
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Human B2M gene promoter

ATAC-Seq (F)

ATAC-Seq (C)

ATAC-Seq (FF)

chr15: 45003590 - 45003704 (115 bp)

Human gene desert region #2

ATAC-Seq (F)

ATAC-Seq (C)

ATAC-Seq (FF)

A)

0-

d

chrl2: 60639376 - 60639469 (94 bp)

Figure 3-S4 Real-time qPCR for the assessment of the quality of ATAC-Seq

libraries.

(A) Genomic locations of the primers used to amplify positive (human B2M gene

promoter) and negative (human gene desert region) control sites. (B) Fold enrichment

of the open-chromatin site over the Tn5-insensitive site: while real-time qPCR

experiments showed high enrichment for fresh and cryopreserved samples, poor results

were obtained with flash-frozen cells (F = fresh, FF = flash-frozen, C = cryopreserved).
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Fresh Cryopreserved

25517 81529 25848

Figure 3-S5 Venn diagram showing the overlap of the peaks between fresh and

cryopreserved iMNs.

The reads from the three technical replicates from both fresh and cryopreserved iMNs

were merged before calling the peaks with MACS2 and calculating the overlap between

the two conditions.
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Chapter 4: Conclusion

4.1 Summary and implications

This thesis describes a multi-ornics approach to understanding the molecular

effects of perturbagens in models of neurodegenerative disorders. Elucidating the

systemic changes induced by compounds or genetic manipulations is a major challenge

in disease research, both in basic science and drug discovery. In Chapter 2, we

explored chemical perturbagens in a Huntington's Disease (HD) model and identified

novel modes of action (MoAs). In Appendix A, we discovered the effects of two methods

of huntingtin silencing in mouse liver tissue. In Chapter 3 and Appendix B, we turned

our attention to motor neuron diseases, particularly Spinal Muscular Atrophy (SMA) and

Amyotrophic Lateral Sclerosis (ALS), and identified the cellular processes affected by

particular genetic states. The projects presented in this thesis have implications for

academia and industry.

Chapter 2 represents the bulk of my graduate work. We developed a multi-omics,

machine learning approach for identifying the MoAs of chemical perturbagens without

the need for reference compounds or specific knowledge about regulatory interactions.

To demonstrate the utility of this approach, we sought to identify MoAs for compounds

identified in the search for drugs to treat HD, an invariably fatal neurodegenerative

disorder. More than a hundred such compounds have been identified, but so far, none

have succeeded to modify disease progression in clinical trials (Kumar et al., 2015;

Zuccato et al., 2010).

We gathered multi-omics data, including RNA-Seq, metabolomics, H3K4me3

ChIP-Seq and proteomics, from HD cells treated with a subset of these compounds.

Surprisingly, we show that previously unrelated compounds cluster together in some

omics data. Importantly, these unexpected groupings may occur using one type of

omics data, but not another. In the particular cases we examined, these groupings

suggest shared MoAs that would not be expected based on similarities in the

compounds' screening results, structures, Connectivity Map connectivity scores, or

known binding targets alone. For instance, two of the compounds are known

antagonists of the histamine H1 receptor, yet they belong to different clustering groups

in our metabolomic and proteomic data (Wishart et al., 2018a). To find the underlying
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MoAs for each group, we used a feature selection approach that leverages known

molecular interactions from public databases (Brunk et al., 2018; Hornbeck et al., 2015;

Pirhaji et al., 2016; Razick et al., 2008; Wishart et al., 2018b). A machine-learning

network optimization algorithm applied to this interactome reveals the altered cellular

processes (Tuncbag et al., 2016).

Crucially, we experimentally validated the most HD-relevant MoAs. We show, for

example, that one of the two antihistamines that ameliorates HD phenotypes has a

profound effect on autophagy. Based on the literature and its transcriptional profile, the

other antihistamine would have been assumed to have the same MoA. Surprisingly, our

data show that this second antihistamine actually has no effect on autophagy. Instead, it

targets bioenergetics. In this example, two compounds with potential benefit for the

same disease and with the same reported target actually functioned through completely

distinct MoAs. We also found an example where two compounds had the same MoA

despite having little similarity in chemical structure and no common binding target.

Specifically, we show that an inhibitor of diacylglycerol kinase (DKI) had previously

unknown effects on mitochondrial respiration, ATP production, and glycolysis in a

similar manner to the antihistamine meclizine. These novel MoAs can be used in the

context of other diseases where the specified effect is needed. The general machine

learning approach can also be used for compounds in other systems to identify their

MoAs. The results from this project can impact future drug repurposing and drug

development efforts.

We also profiled the effects of genetic perturbagens in the context of HD in

Appendix A. In collaboration with Dr. Jeff Carroll, we compared the effects of two

huntingtin gene silencing methods on the transcriptome and metabolome of mouse

liver. One silencing method involved the use of antisense oligonucleotides (ASOs) and

the other used gene knockouts with cell-type specificity for hepatocytes (Coffey et al.,

2017). We found that both silencing techniques had a significant influence on gene

expression, but little impact on metabolite abundance. They also affected similar cellular

pathways, such as immune response and fatty acid metabolism. It is imperative to

understand the peripheral effects of huntingtin silencing because there are ongoing

clinical trials that use ASOs to silence huntingtin in humans with HD.
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Genetic perturbagens were also explored in the contexts of SMA and ALS in

collaboration with the NeuroLINCS consortium. In Chapter 3, we developed a cell

freezing protocol suitable for ATAC-Seq on motor neurons derived from induced

pluripotent stem cells derived from patients with SMA. These cells have a deficiency in

the SMNI gene. We found that cryopreserved cells retained their chromatic structure,

unlike flash-frozen cells, and could be used for ATAC-Seq. This work informed the

community about the procedure to keep chromatin intact in precious samples for future

studies. In Appendix B, we characterized similar motor neurons, but these were derived

from patients with ALS and carry hexanucleotide expansions in C9orf72. Multi-omics

network analysis was performed to identify the changes induced by this genetic

perturbagen. Fly screen data from an ALS fly model was used to label affected cellular

pathways as causal or compensatory in ALS. These labels can inform future drug

targeting efforts.

4.2 Limitations and future perspectives

In this thesis, we used systems biology approaches to examine the multi-omics

effects of perturbagens. These approaches can be extended to understand the effects

of drugs or diseases in other contexts. However, it is important to note that the field is

constantly evolving and there are limitations in these studies.

One limitation is the use of model systems that do not fully capture the complex

pathophysiology of neurodegenerative disorders. The purpose of applying chemical and

genetic perturbagens to these models is to understand the disease response or the

behavior of the perturbagen itself, with the hopes that the responses will mimic those in

humans. In Chapter 2, we used the murine STHdh0 111 cell line model of HD, as well as

human SH-SY5Y and HEK293 cell lines. Though we were able to identify modes of

action, the results from immortalized cell lines might not recapitulate the effects the

compounds could have in humans (Trettel et al., 2000). Unknown or unmodeled

interactions between cell types and tissues could affect the response of the compounds.

In Appendix A, a mouse model was used to understand the complex effects of

peripheral huntingtin silencing. In this model, only the liver tissue was profiled. The

translatability of the results could be hampered due to the differences between humans
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and mice. Also, compensatory interactions could confound the results, as the liver

interacts with other organs within the mice and these effects were not profiled. In

Chapter 3 and Appendix B, motor neurons differentiated from induced pluripotent stem

cells from human SMA and ALS patients, respectively, were profiled. Though these

cells are derived from human patients, the homogeneity of the differentiated cultures

could confound the results. The dependencies between motor neurons and other cells

in the brain could lead to unexpected effects (Sances et al., 2016).

With developments and advances in biological data collection, it is likely that the

field will turn to single-cell omics data to understand the specific responses in distinct

cell types. Models of neurodegenerative disorders are also constantly being improved.

Protocols for developing isogenic neuronal cultures derived from humans will be

important for preclinical research. These cultures should mimic the neuronal cell death

phenotype present in the human diseases and could be used as the gold standard

model for disorders such as HD, SMA, and familial ALS.

Though all models of neurodegenerative disorders will introduce confounding

effects and will not comprehensively mimic actual human disease, they are necessary

to study in preclinical research before testing any perturbagens in actual humans. By

studying the effects of chemical perturbagens in multiple models, like we did for

autophagy in Chapter 2, we can better understand the consistency of MoAs. Future

work can also use the identified MoAs in other disease contexts for the purpose of drug

repurposing. If a compound has the same effect in multiple disease models spanning

different organisms, we can perhaps expect it to work in a similar manner in humans.

Along with testing the perturbagens in multiple models and examining additional

compounds, multiple treatments times and doses for compounds should be considered

to understand the systemic responses to the compounds.

As technology improves and the field progresses, omics assays will become

cheaper and more routine. Systems biology has already seen a dramatic increase in

omics data generation. Beyond the reduced-representation data in the Connectivity Map

and LINCS databases, libraries of detailed omics effects of compounds will likely be

developed, and these libraries could be used both in academia and industry initiatives.

Like compound libraries that are available for chemical testing, omics libraries could be
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created and downloaded as a standardized package for analysis. New tools that can

combine data across labs or batches will be important to standardize the data collected.

The field will turn to general-use methods that integrate different types of data in an

unbiased manner to determine the functional effects of compounds. The results of these

efforts would bring together more collaborations between basic scientists and industry

researchers. The increased knowledge of pathways and how they can be modulated

would be of interest in basic science, and the identification of compounds with similar

modes of action would be of interest in industry. Overall, the omics libraries could lead

to more efficient drug repurposing and fewer side effect surprises.

Another limitation to the studies in this thesis involves the systems biology

approaches we have administered. The multi-omics integrative network approaches

depended on high-quality omics data and a dependable interactome. As more

interactions or specificities of interactions are discovered, better interactomes can be

created to answer different biological questions. For example, interactions that occur in

specific cell types or tissues could be excluded when those cell types or tissues are not

under consideration. Also, as more information is learned about protein-metabolite

interactions, better confidence scores and edge costs can be given to those

interactions, which would improve the identification of functional pathways.

Once pathways were identified to be affected by the perturbagens, we had to

experimentally validate the changes. The machine learning methods used in this thesis

do not directly predict causal changes or the precise changes in pathways that lead to

the overall functional changes without further experimental testing. Future work to

incorporate causal modeling and prediction in our integrative multi-omics methods is

needed to reduce the amount of experimental testing required. Some methods,

including Bayesian network modeling and structural equations modeling, have been

proposed to predict causal relationships between molecules in a network (Auerbach et

al., 2018; Sachs, 2005). This would improve our understanding of the directionality of

the multiple changes induced by a perturbagen in a cellular pathway. Also, these

predictive methods could be used to examine the molecules within a pathway and rank

targets that would otherwise be overwhelming and confusing to choose from when

embarking on experiments.
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Advances in gene silencing has spurred the emergence of HD clinical trials

focused on silencing huntingtin using ASOs. The field has high hopes for these clinical

trials because they directly target the cause of HD instead of just treating downstream

symptoms. The two early-stage trials currently in progress include allele-specific and

non-allele-specific targeting of huntingtin. The allele-specific ASO targets single

nucleotide polymorphisms in the mutated huntingtin allele, while the non-allele-specific

ASO targets both the mutated and wild-type huntingtin alleles. The current approach for

ASO delivery to the brain involves intrathecal administration, which is a painful and

invasive technique. Future work studying the effects of huntingtin ASOs in humans will

be necessary to determine possible unwanted side effects. Omics profiling of cells

derived from humans treated with huntingtin ASOs will also be helpful to understand the

specific pathways that would need to be modulated to achieve a similar overall effect. If

the clinical trials succeed, the field will likely head in the direction of improving ASO drug

delivery or finding alternative drugs. By comparing the omics profiles of the silenced

cells to those treated with various chemical perturbagens, perhaps small molecules can

be found that affect the same pathways in the desired manner.

Because neurodegenerative disorders are so complex, a combination of multiple

perturbagens will likely be necessary to achieve an effective disease-modifying

response. The field will probably turn to synergy modeling and testing to understand

how multiple small molecules could be combined to specify and fine-tune responses in

multiple cellular pathways. Many small molecules have been proposed to treat HD, but

they have not had much success. Based on the relative success in the field of cancer

research, we may begin to see cocktails of various drugs in clinical trials for

neurodegenerative disorders.

Overall, this thesis has illustrated the power of using systems biology approaches

to understand the effects of perturbagens in neurodegenerative disease research. We

studied chemical perturbagens to identify MoAs that can be used in drug discovery

efforts. We also examined genetic perturbagens can be used to understand disease

mechanisms. The MoAs and cellular disease processes identified can be used to guide

future therapies.
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Appendix A: Molecular Effects of Huntingtin Silencing in Mouse Liver

This work is being prepared for publication.

This project is part of a collaboration with Professor Jeff Carroll at Western Washington

University, whose lab developed the mice models and collected the transcriptomic and

metabolomic data.

As part of this work, I downloaded DNAse-Seq data from ENCODE and would like to

acknowledge the ENCODE Consortium and the ENCODE production laboratory of

Professor John Stamatoyannopoulos.

My contributions:

I analyzed the transcriptomic and metabolomic data for the different mouse models of

huntingtin silencing.
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A.1 Introduction

Huntington's Disease (HD) is a fatal neurodegenerative disease caused by

abnormal expansion of a CAG repeat in the huntingtin gene (Tabrizi et al., 2019). The

resultant mutated protein is ubiquitously expressed and causes several loss of function

and toxic gain of function mechanisms (Zuccato et al., 2010). There is no cure for the

disease, but recent clinical development has focused on huntingtin lowering strategies

to reduce the pathogenic effects of the mutated protein.

There are currently two ongoing clinical trials for huntingtin-lowering therapies,

and both use RNA-targeting antisense oligonucleotide (ASO) approaches. The ASOs

are delivered intrathecally and have different allele selection criteria. The first trial,

sponsored by Ionic Pharmaceuticals, is currently in phase 3 enrollment and features

huntingtin gene silencing without allele specificity, targeting both the wild-type and

mutant alleles (Tabrizi et al., 2019). The second trial, sponsored by Wave Life Sciences,

is currently in phase 1 b/2a and features selective silencing of only the mutant allele by

using SNP targets around the mutated repeat region of the gene (Tabrizi et al., 2019).

As the trials are still in the early stages, many questions regarding huntingtin lowering

remain unanswered.

Preclinical research in animal models is critical to better understand the effects of

huntingtin silencing. Most studies have focused on the tolerability of various huntingtin

lowering strategies in the brain (Kaemmerer and Grondin, 2019). However, few have

identified the effects of huntingtin silencing in peripheral tissues. ASOs delivered to the

brain may leak into peripheral circulation and it has been hypothesized that intact ASOs

could accumulate in peripheral organs (Jeff Carroll, unpublished work). After intrathecal

delivery of ASOs in human studies, silencing of huntingtin could occur in peripheral

tissues. Knowledge of the effects of huntingtin silencing outside the central nervous

system is crucial to understanding the safety and efficacy of huntingtin lowering

treatments.

One peripheral organ of interest is the liver. HD patients often have metabolic

symptoms, such as the inability to maintain body weight, and the liver is an important

regulator of metabolic homeostasis in the body (van der Burg et al., 2011; Coffey et al.,

2017; Stuwe et al., 2013). The goal of this study was to explore the molecular effects of
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two huntingtin gene silencing techniques, antisense oligonucleotide (ASO) or knockout

(KO), in mouse liver tissue. Using gene expression and metabolite profiling data, we

found several transcriptional changes induced by the huntingtin (Htt) gene silencing

techniques, but relatively few metabolite changes. Similar functional processes were

altered by the ASO and KO silencing methods.

A.2 Results and Discussion

A.2.1 Generation of mice cohorts

Two cohorts of mice were grown to understand the effects of huntingtin silencing.

Both cohorts were derived from female C57BI/6J mice and were grown for 10 months.

Liver tissue from both mice cohorts at 10 months of age was harvested for RNA-Seq

and untargeted polar metabolite profiling.

The first cohort, termed the ASO cohort, contains heterozygous HttQ 11
/ and

wild-type Htt*'/ mice. The heterozygous HttQ""+ mice have a mutated copy of the

huntingtin gene, with an expanded polyglutamine tract of 111 repeats. In contrast, the

wild-type Htt*/* mice have normal copies of the huntingtin gene. The case group of mice

within each genotype in this ASO cohort was treated with an Htt ASO and the control

group within each genotype was treated with either a control ASO or saline vehicle. The

Htt ASO in the case group leads to approximately 64% knockdown of Htt expression in

liver (Coffey et al., 2017). The complete ASO cohort contained samples from 36 mice,

with 6 samples representing each the following conditions: Htt*' mice with Htt ASO

treatment, Htt*' mice with control ASO treatment, Htt*/* mice with saline treatment,

HttQ""1 + mice with Htt ASO treatment, HttQ""+ mice with control ASO treatment,

HttQ" 11 + mice with saline treatment. The mice treated with control ASO or saline were

grouped as one large control group, as there were no differences between these mice

(Coffey et al., 2017).

The second cohort of mice, termed the KO cohort, contains only wild-type Htt*/*

mice. The case group of mice in this KO cohort had hepatocyte-specific Htt knockout,

generated using tissue-specific albumin-Cre drivers (Jeff Carroll, unpublished work).

These mice only lack Htt in the hepatocytes of the liver. Because Htt is an essential

gene, only tissue-specific knockouts are viable. These knockout mice have complete

119



knockdown of Htt in hepatocytes. The control group of mice in the KO cohort had no

alteration in Htt expression. The complete KO cohort contained samples from 12 mice,

with 6 samples representing each of the following conditions: Htt*/* mice with

hepatocyte-specific Htt KO, Htt*/* control mice.

A.2.2 Transcriptional effects of Htt ASO and KO conditions

The levels of 20,067 and 20,511 genes were measured in the liver tissue from

the ASO and KO cohorts, respectively. To reveal similarities between the samples, we

used dimensionality reduction techniques, such as PCA, on the RNA-Seq data for each

cohort (Figure A-1). We found that in the ASO cohort, the samples primarily clustered

by the case and control groups. The genotype of the samples did also influence the

distribution of the samples, but this effect is secondary to the treatment effect (Figure A-

1A). Similarly, the samples in the KO cohort clustered based on the case and control

groups (Figure A-1 B). Most of the variance between the samples is likely associated

with inter-mouse differences that are unrelated to genotype or treatment.

In both cohorts, Htt silencing lead to several transcriptional changes. In the ASO

cohort, there were 3,518 significantly differentially expressed genes (FDR-adjusted p-

value < 0.05) between the case and control wild-type Htt*' samples. Between the case

and control heterozygous Htt 11
/* samples, there were 3,671 significantly differentially

expressed genes. In the KO cohort, there were 2,147 significantly differentially

expressed genes between the case and control samples. When the differentially

expressed genes were compared, we found that the ASO cohort has a genotype-

specific transcriptional response (Figure A-2A). There is a strong overlap between the

differentially expressed genes in the KO cohort and the differentially expressed genes in

the wild-type Htt*/* samples of the ASO cohort. Similarly, there is a strong overlap

between the differentially expressed genes in the KO cohort and the differentially

expressed genes in the heterozygous Htt 1 "+ samples of the ASO cohort. However,

there is no overlap between the differentially expressed genes in the wild-type Htt*'

samples of the ASO cohort and the differentially expressed genes in the heterozygous

HttQ"1 + samples of the ASO cohort.
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Figure A-1 Htt Silencing Effects on Transcription

(A) PCA plot showing the gene expression data from the ASO cohort. WT and HET

refer to the wild-type or heterozygous genotype of the mice, respectively.

(B) PCA plot showing the gene expression data from the KO cohort. KO mice are those

with the hepatocyte-specific Htt knockout.

A.2.3 Metabolomic effects of Htt ASO and KO conditions

In the metabolite profiling data from the ASO cohort, 1,468 untargeted

metabolites were measured and passed quality control. In the metabolite profiling data

from the KO cohort, 4,471 untargeted metabolites were measured and passed quality

control. There were no common metabolites measured in both cohorts. The

metabolomic data from both cohorts had many missing values, which could be due to

mass spectrometer detection or ionization limitations. To overcome this issue of missing

data, only metabolites with at least three samples per condition in each cohort were

considered for further analysis. Due to presence of missing data, we performed
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hierarchical clustering instead of PCA to cluster the samples. Like the RNA-Seq data,

the metabolite data clusters primarily by the case and control groups in both cohorts

(Figure A-3A). In the ASO cohort, the genotype of the mice did not have a strong effect

on the clustering of the samples. However, there is still variance between the samples

that is likely explained by inter-mouse differences that are unrelated to genotype or

treatment.

In both cohorts, Htt silencing lead to few metabolomic changes. In the ASO

cohort, there were 201 and 56 significantly differential metabolites (FDR-adjusted p-

value < 0.1) between the case and control samples from wild-type Htt*/* and

heterozygous HttQ1 "+ mice, respectively. Unlike the transcriptomic data, the metabolite

changes are not genotype-specific, as 32 metabolites were changed in both the wild-

type and heterozygous samples (Figure A-2B). In the KO cohort, there were 88

significantly different metabolites in the comparison of the case and control samples.
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Figure A-2 Genotype-Specific Effects on Gene Expression

(A) Venn diagram showing the overlaps between the lists of significantly differentially

expressed genes between cases and controls for each group of mice. ASO WT = wild-

type Htt*'/ mice from the ASO cohort; ASO HET = heterozygous HttQ 11/ mice from the

ASO cohort; KO = mice from the KO cohort.

(B) Venn diagram showing the overlaps between the lists of significantly differentially

expressed metabolites for each ASO genotype. ASO WT = wild-type Htt*/* mice from

the ASO cohort; ASO HET = heterozygous Htt" 11/ mice from the ASO cohort.
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Figure A-3 Htt Silencing Effects on Metabolites

(A) Heatmap showing the hierarchical clustering of the metabolite data from the ASO

cohort. ASO = Htt ASO treatment; CTRL = control treatment; WT = wild-type Htt*'

genotype; HET = heterozygous Htt" 111+ genotype.

(B) Heatmap showing the hierarchical clustering of the metabolite data from the KO

cohort. KO = hepatocyte-specific Htt knockout, WT = control.
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A.2.4 Similar cellular processes are affected by Htt ASO and KO silencing

Pathway enrichment analysis for the differentially expressed genes and

metabolites implicated similar cellular processes altered by each Htt silencing condition

(Figure A-4). Most of the shared processes were related to immune system and fatty

acid oxidation pathways. There were some condition-specific alterations in pathways

such as the electron transport chain, steroid metabolism, endocytosis, localization, and

autophagy. Though these processes have been implicated in Huntington's Disease, the

mechanisms by which Htt silencing affects these processes remains to be discovered

(Martin et al., 2015; Schulte and Littleton, 2011; Zuccato et al., 2010).

To understand the connections between the transcriptomic and the metabolomic

data, we performed network analysis using three different inputs. First, we generated

networks with only differential metabolites as input. Because the metabolite identities

are ambiguous, they were first mapped to known metabolites. However, there were very

few metabolites that matched those in the PIUMet database. As a result, the networks

with metabolites alone had very few nodes with associated data. Next, we leveraged

publicly available DNAse-Seq data to predict transcription factors that could be

regulating the observed differentially expressed genes. In these networks, the

transcription factors cluster separately from the metabolites and do not provide

additional useful information. The third type of network we generated was using the

metabolites and differentially expressed genes as inputs. Here, the genes dominate the

network and give similar pathway enrichment to the RNA-Seq pathway enrichment

alone. The network analysis of this data is limited by the few differentially expressed

metabolites with known interactions.
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Figure A-4 Htt Silencing Methods Affect Similar Functional Processes

Venn diagram showing the overlap between the enriched pathways for each group of

mice. The pathways were determined for each group of mice by using the differentially

expressed genes and metabolites between cases and controls. ASO WT = wild-type

Htt'* mice from the ASO cohort; ASO HET = heterozygous Htt 111+ mice from the ASO

cohort; KO = mice from the KO cohort.

The lack of a strong metabolomic effect could be due to many reasons. First,

previous studies report a modest phenotype difference between Htt ASO-treated mice

and control mice. For example, the Htt silenced mice from this study had only a 5%
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decrease in body mass compared to the control mice (Coffey et al., 2017). Perhaps the

differences at the metabolite level are too small to detect with the cohort size and the

type of data collected. Also, it is known that peripheral silencing does not change the

severity of HD-relevant phenotypes in the striatum of Htt 111" mice (Coffey et al., 2017).

It is reasonable that the silencing effects in the liver or hepatocytes specifically could be

masked by unknown interactions and compensatory effects with other organs or cell

types in the mice. Overall, there are few functional differences between the Htt silencing

approaches in the liver. Though there were several transcriptomic changes, many of

which were genotype-specific, the cellular processes associated with those changes

implicated the same biological pathways of immune system and fatty acid oxidation

processes. Future studies could investigate the role of Htt in these processes and

compare the effects of silencing in other peripheral tissues.

A.3 Methods

Mouse Models of Huntingtin Silencing

Female C57Bl/6J heterozygous HttQ"11 + and wild-type Htt*/* mice were acquired

from the Jackson Laboratories (Bar Harbor, ME) and grown and treated with Htt and

control ASOs as previously described (Coffey et al., 2017). Using tissue-specific

albumin-Cre drivers in Htt*/* mice, hepatocyte-specific Htt knockout mice were

generated (Jeff Carroll, unpublished). Liver tissue was harvested at 10 months of age

from both mice cohorts for RNA-Seq and untargeted polar metabolite profiling.

Differentially Expressed Genes

Adapter sequences were trimmed from sequencing reads using Trim Galore

vO.4.2 (https://github.com/FelixKrueger/TrimGalore). Paired-end reads were aligned to

the mm10 UCSC reference genome (http://genome.ucsc.edu/) and quantified using

TopHat2 (Kim et al., 2013). For differential expression analysis, one wild-type control

sample was removed from both cohorts due to technical sample issues. DESeq2 was

used to find differentially expressed genes for each Htt silencing condition compared to

its relevant control (Love et al., 2014). The differentially expressed genes were filtered

using a Benjamini-Hochberg corrected p-value threshold of 0.05.
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Differentially Expressed Metabolites

Metabolite quantification in positive and negative ionization mode was filtered

using the following quality control checks: removed any values with metabolite intensity

less than 100; removed any metabolites where the 10 quality control injections had a

CV greater than or equal to 0.25. The data was then normalized by protein level per

sample. Metabolites with abundance measurements for at least three replicates per

condition were then log2 normalized and analyzed using limma (Ritchie et al., 2015).

Differentially expressed metabolites were filtered using a Benjamini-Hochberg corrected

p-value threshold of 0.1. Untargeted metabolite m/z peaks were matched to known

metabolites using PIUMet, with a metabolite database compiled using HMDBv4.0 and

Recon3D (Brunk et al., 2018; Pirhaji et al., 2016; Wishart et al., 2018).

Dimensionality Reduction and Clustering

We displayed the gene expression data as PCA plots using the stats package in

R (R Core Team, 2017). We hierarchically clustered the metabolite profiling data using

the Spearman rank correlation and created heatmaps using Morpheus

(https://software.broadinstitute.org/morpheus).

Pathway Enrichment

Enrichment analyses of the differential genes and network proteins were

performed using GOrilla with a background set of all genes measured or all proteins

present in the interactome, respectively (Eden et al., 2009). Enrichment analyses of the

differential metabolites were performed using IMPaLA with a background set of all

metabolites measured (Kamburov et al., 2011). A Benjamin i-Hochberg correct p-value

threshold of 0.05 was applied to assign significant to the pathway enrichment terms.

Transcription Factor Prediction

DNAse-Seq data for three male wild-type 8-week adult C57BI/6J mice were

downloaded from ENCODE (https://www.encodeproject.org/) with the following

identifiers: ENCFF001PRR, ENCFF001PRT, ENCFF001PRS (Davis et al., 2018;

Dunham et al., 2012). Adapter sequences were trimmed from sequencing reads using
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Trim Galore v0.4.2 (https://github.com/FelixKrueger/TrimGalore). Bowtie2 and samtools

v1.3 were used to sort and index the reads, as well as remove mitochondrial DNA

(Langmead and Salzberg, 2012; Li et al., 2009). Peaks were called using MACS2

(Zhang et al., 2008). Motif analysis was used to predict transcription factors that could

be regulating the differentially expressed genes. Motifs were annotated to the mml0

UCSC reference genome (http://genome.ucsc.edu/) using the CIS-BP database

(Waterston et al., 2002; Weirauch et al., 2014). A hypergeometric test was used for

each transcription factor to find those with motifs in regions intersecting DNAse-Seq

peaks and within 2kb of differentially expression genes for a given condition. A

Benjamini-Hochberg corrected p-value threshold of 1E-5 was applied to assign

significance to transcription factor predictions.

Network Analysis

Differential m/z metabolite peaks, predicted transcription factors, and

differentially expressed genes for each Htt silencing condition compared to control were

mapped onto the interactome, comprised of physical interactions between proteins

(iRefindex v14), proteins and metabolites (HMDBv4.0, Recon3D), and m/z peaks and

matched metabolites (PIUMet) (Brunk et al., 2018; Pirhaji et al., 2016; Razick et al.,

2008; Wishart et al., 2018). The Prize-Collecting Steiner Forest (PCSF) algorithm was

applied using Omics Integrator 2 to find the set of highly relevant pathways associated

with each compound treatment (Tuncbag et al., 2016). PCSF was run 100 times with

random noise on the edges for robustness measurements and random input sets for

specificity measurements. The optimal network solution was filtered by those nodes with

at least 20% robustness and specificity.

Networks were visualized in Cytoscape (Shannon et al., 2003). In each network,

the nodes are a combination of proteins, transcription factors, or metabolites. The

integration of the RNA-Seq and DNAse-Seq data provided transcription factor

predictions. Some networks were created with RNA-Seq data as input, but these were

treated cautiously as the interactome is based on protein interactions, not gene

interactions.
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Appendix B: An integrated multi-omic analysis in iPSC-derived motor

neurons from C90RF72 ALS patients

This work is being prepared for publication.

The NeuroLINCS Consortium*. An integrated multi-omic analysis in iPSC-derived motor

neurons from C90RF72 ALS patients.

*Relevant groups in the NeuroLINCS Consortium:

Epigenomics: Pamela Milani, Miriam Adam, Brook T Wassie, Ernest Fraenkel.

Integrative Analysis and Computational Modeling: Jonathan Li, Renan Escalante-

Chong, Alex Lenail, Karen Sachs, Ryan Lim, Julia Kaye, Natasha L Patel-Murray, Divya

Ramamoorthy, Steven Finkbeiner, Leslie M Thompson, Ernest Fraenkel.

As part of this work, I would like to acknowledge ALS patients and their families for their

essential contributions to this research.

My contributions:

I performed preliminary data analysis and network modeling in the early stages of this

collaborative project. I also worked on project management tasks, such as website

design, metadata, and data releases.

To conserve space, I have left out the supplemental figures and tables. The final

supplementary information can be found in the publication.
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B.1 Abstract

Systematically mapping molecular changes occurring early in neurodegenerative

diseases prior to symptom onset could dramatically accelerate and broaden therapeutic

strategies. The NeuroLINCS consortium produced a detailed molecular characterization

of motor neurons from induced pluripotent stem cells (iPSCs) derived from patients with

amyotrophic lateral sclerosis (ALS) who carried hexanucleotide expansions in

C90RF72 - the most common known cause of ALS. There were no significant

differences in IPSC or motor neuron generation between ALS and control subject lines.

Searching for early molecular differences, we characterized cellular states through

whole genome sequencing, ATAC-seq, RNA-seq, and data-independent acquisition

mass-spectrometry (DIA-MS) proteomics. Several pathways, including biological

adhesion and extracellular matrix organization, were altered across epigenomic,

transcriptomic, and proteomic data, although few individual genes showed consistent

changes. Using novel computational methods, we discovered molecular networks

linking alterations across the data modalities, uncovering key transcriptional regulators.

To distinguish between causal versus compensatory pathway changes induced by

C90RF72 expansions, we tested network genes modifying ALS in a C90RF72

Drosophila model. This revealed causal pathways including RNA processing, transport

and translation, and compensatory pathways such as DNA repair and transcriptional

regulation. This new integrated NeuroLINCS data set has been posted on a data portal

that allows scientists worldwide to explore, challenge, and generate new disease-

related hypotheses.

B.2 Introduction

Modeling neurological diseases using induced pluripotent stem cell (iPSC)

technology offers a unique platform to study the process of pathogenesis. Rather than

using artificially expressed human disease genes in mice or end stage post mortem

tissues from patients, the generation of new neurons and astrocytes from patient-

specific cells allows for discovery of the earliest genesis of disease signatures. One

neurodegenerative disease group that has been modeled extensively using iPSCs are

the motor neuron disorders. Adult onset motor neuron diseases include amyotrophic
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lateral sclerosis (ALS), where motor neurons degenerate late in life, inevitably leading to

paralysis and asphyxiation. Genetic underpinnings have been identified in -15% of ALS

cases (Paez-Colasante et al., 2015). Of these, the most common mutation is a

hexanucleotide repeat expansion in the first intronic region of C90RF72 which accounts

for over 30% of all known genetic forms of the disease. While much is known about the

mutation and the abnormal proteins that are produced by its transcripts, it is still unclear

how repeats in C90RF72 ultimately lead to cellular dysfunction and death (Brown and

Al-Chalabi, 2017).

Some of the first disease modeling studies showed that iPSCs could be

generated from early onset motor neuron diseases, such as spinal muscular atrophy,

and that these motor neurons exhibited disease-specific cell death in the petri dish

(Ebert et al., 2009; Fuller et al., 2016; Ng et al., 2015; Nizzardo et al., 2015; Sareen et

al., 2012; Vazquez-Arango et al., 2016). Interestingly, for later onset motor neuron

diseases, such as ALS, iPSC models did not initially show any overt death in motor

neurons (Dimos et al., 2008). However, for inherited forms of ALS, such as C90RF72

repeat expansions (C9), there were specific changes in neuron activity, gene

expression, and cellular processes (Devlin et al., 2015; Donnelly et al., 2013; Sareen et

al., 2013; Selvaraj et al., 2018; Shi et al., 2018; Wainger et al., 2014). More recently,

stressors such as trophic factor withdrawal have led to ALS-specific cell death

phenotypes, although it is not clear how these stressors relate to human disease onset

and progression (Shi et al., 2018). In a very recent study, subsets of sporadic ALS

patients also showed phenotypic changes including reduced fiber outgrowth at later

time points in culture, although a comprehensive omics analysis was not performed

(Fujimori et al., 2018).

These IPSC models provide a unique opportunity to examine the molecular

changes that occur due to ALS causing genes in motor neurons. While post-mortem

studies have provided important insights into these processes, patient samples

represent a late stage of the disease, which may not exhibit molecular or cellular

signatures directly associated with events that cause the disease (Delic et al., 2018;

Emde et al., 2015; Pare et al., 2018; Prudencio et al., 2015; Sanfilippo et al., 2017). By

contrast, cells derived from iPSCs can provide insights into the earliest stages of
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neurodegeneration, opening a window into the period when therapeutics might have the

greatest benefit.

The goal of the current study was to test whether using a multi-omic approach

and network-based analysis would facilitate identification of pathogenic events that

define C9 ALS. This more complete description of the pathogenic process would enable

the discovery of new disease pathways and subsequently new drug targets. We

developed an integrative approach that combined multi-omic data with functional

experiments in a Drosophila model to distinguish causal and compensatory pathways

involving the extracellular matrix, microtubules, and the nuclear pore complex. As part

of the NIH-funded NeuroLINCS consortium, all of the data sets along with the data

integration have been posted to a portal for data sharing and crowd sourcing of this

unique resource http://neurolincs.org.

B.3 Results

B.3.1 Generation and characterization of iPSC lines

The control and C9-ALS iPSC lines used in this study were generated using

episomal plasmid-based reprogramming methods, and all lines retained their repeat

expansion mutation following reprogramming as described previously (Sareen et al.,

2013). All IPSC lines maintained normal karyotypes as determined by G-band

karyotyping and the identity of iPSCs and differentiated iMNs were confirmed to match

the parent fibroblasts by DNA fingerprinting.

B.3.2 Whole genome sequencing shows no overt abnormalities

Whole genome sequencing (WGS) was performed on all of IPSC lines from three

healthy controls and four with ALS-associated hexanucleotide repeat expansions (HRE)

in C90RF72 previously described in detail (Sareen et al., 2013). A novel computational

pipeline was used to annotate the variants in the genomes of the control and C9-ALS

lines relative to reference human genomes. The number of single nucleotide

polymorphisms (SNPs) was within the expected range, and there were no overt genetic

abnormalities. Across all lines, we found 11,260,464 variants with 9,197,462 variants in

the control lines and 8,818,235 variants in the C9-ALS lines. Thus, there was an
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average of 5.4 million variants per line, which is consistent with the variation that has

been previously observed in human genomes (Auton et al., 2015).

After applying annotation, we filtered for exonic functional variation (Table B-1).

There were 57,910 exonic functional variants in the controls, and 12,898 were rare (less

than 1 %) or novel (no frequency information). There were 55,815 exonic functional

variants in the C9-ALS lines, and 8,225 were rare or novel. Next, we investigated if any

of the lines had genetic variants previously associated with ALS and found 3 variants in

OPTN, ALS2 and DIAPH3. Other variants in ALS-associated genes were observed, but

none that were known previously to be disease-associated or causing. However, of

interest, the 52i ALS line contains the APOE-E4 allele (rs429358) (Cl 30R) which is

associated with an increased risk of Alzheimer's disease (Farrer et al., 1997). We next

applied the American College of Medical Genetics gene criteria to identify likely

pathogenic (LP) or Pathogenic (P) variants. Although a subset of these variants is in

ALS genes that are listed in the ASLoD database, to our knowledge none of these

variants are expected to confer risk of developing ALS (Wroe et al., 2008). Overall,

WGS analysis of the patient cell lines revealed no pathogenic or likely pathogenic

variants that to our knowledge are not expected to interfere with disease progression of

ALS per se.

B.3.3 C9 phenotypic signatures in iPSC-derived motor neuron cultures

The iPSC lines were first patterned into motor neuron precursor spheres (iMPS),

expanded as suspension aggregate cultures for -5 weeks using a chopping method,

and subsequently seeded to differentiate into motor neuron cultures (iMNs) for another

21 days (Figure B-1A) (Shelley et al., 2014). These iMN cultures were harvested,

equally distributed in three replicate cell pellets and analyzed using the multi-omics

(transcriptomics, proteomics, and ATAC-seq) assays. Both control and C9-iPSC lines

gave rise to similar numbers of neurons and glia based on immunocytochemical

staining for SM132, TuJ1 (P3-tubulin), Map2a/b, GFAP, and nestin (Figure B-1B,C).

To establish if there were differences in survival between C9-ALS and control

motor neurons, cells were transfected with the motor neuron morphology marker HB9-

GFP and given approximately 3-4 days of recovery time (Wilson, 2005). Neurons were
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then subjected to automated longitudinal imaging for 7 days twice a day. Images were

collected and montaged for analysis. Fluorescent cells displaying the typical neuronal

morphology, including soma along with thin axon-like processes tipped with growth

cones, were tracked to determine the cumulative risk of death (Figure B-2A). We

evaluated the survival for each fluorescent neuron and this revealed that there was no

increased risk of death in C9-ALS lines compared to controls. In fact, we were surprised

to see the contrary in that C9-ALS lines survived significantly better than control lines

(Figure B-2B). Collectively, this suggests that there are no overt signs of changes to

neuronal maturation or degeneration in C9-ALS lines.

B.3.4 Transcriptomic analysis reveals known and novel pathways related to C9

RNA sequencing revealed specific transcriptomic signatures associated with the

C9 lines. Total RNASeq (Ribo-Zero rRNA depletion) was carried out on the distributed

iMN pellets as described in methods. Statistical analysis of differential expression was

analyzed using DESeq2. We found 828 differentially expressed transcripts (271

downregulated and 557 upregulated) between C9-ALS and control iMNs (FDR < 0.1), of

which 704 were annotated as protein-coding in Uniprot. Exploratory analysis of gene

expression levels was performed using hierarchical clustering (Figure B-3A). To begin

to understand the effect of the C9 mutation on a multicellular culture, genes that were

significantly different between C9 and control samples were used for Cell Type-Specific

Expression Analysis (CSEA) (Bossis et al., 2005).

CSEA revealed an enrichment of cortical and motor neuron specific gene

expression. Next, gene ontology (GO) analysis was conducted to determine the

functional role of these genes, using GOrilla on the 704 DEGs, revealing an enrichment

in extracellular matrix (ECM) and cell adhesion terms which included: ECM

disassembly, ECM organization, collagen binding, and focal adhesion (Figure B-3C). A

previous study of C9 iPSC-derived motor neurons showed dysregulation of 66 genes

between 4 ALS and 4 control samples with a fold change of > 2 and p-value < 0.05

(Sareen et al., 2013). Of those 66 genes, 8 genes overlapped with the 828 DEGs from

our study, although in different directions. Even with this small number of overlapping
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genes, GO enrichment analysis revealed an enrichment for extracellular regions in the

66 genes, similar to our analysis.
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Figure B-I (A) Schematic of protocol for iPSC differentiation into motor neuron cultures

used by NeuroLINCS for transcriptomics, proteomics and ATAC-seq assays. The iPSC-

derived motor neuron precursor spheres (iMPS) were dissociated into single cells from

C9-ALS and healthy patient IPSC lines and plated on laminin substrate to differentiate

further into motor neuron (iMN) cultures over 21 days. (B) Representative images of

iMNs from control (25iCTR) and C9-ALS (52iALS) IMPS shows consistent distribution of

neural cell populations marked by 5M132, TuJ1, Map2a/b, GFAP and nestin. Scale bars

are 5Opm. (C) Box plots quantifying levels of SM 132, TujI, GFAP, nestin and Map2a/b in

control and C9-ALS iMN cultures.
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Figure B-2 (A) Representative images of iMNs over time, differentiated from control

and C9-ALS lines. These cells were imaged every 12 hours over 7 days from

differentiation day 25 to day 31 with a fully automated robotic microscopy system. iMNs

expressed the fluorescent reporter HB9-GFP70. Motor neurons (cell bodies are

indicated by hollow arrows, top and bottom rows) are seen exhibiting 1-3 processes

tipped by structures resembling growth cones (indicated by golden arrow) from day 25

onwards followed by degeneration and cell death at later time points for both OOiCTR

and 29iALS lines. Scale bars are 100pm.

To identify potential regulators controlling the differential expression of these

ECM related genes, Ingenuity pathway analysis (IPA) upstream regulator analysis was

conducted. Some of the top predicted regulators identified include SMADs (transforming

growth factor beta (TGFP) signaling), mitogen-activated protein kinase 1 (ERK), and

nuclear factor kappa B (NFKB). Network-based analysis of upstream regulators and

gene targets showed a TGFP, AP-1 transcription factor subunit (AP1), erb-b2 receptor

tyrosine kinase 2 (ERBB2), plasminogen activator, urokinase receptor (PLAUR), and

neuregulin 1 (NRG1) network that were again predicted to regulate many of the ECM

and cell adhesion related DEGs. Notably, NRG1 was identified as a major hub gene

that could regulate other upstream regulators and directly regulate ACT/N and

INTEGRIN expression, each of which was upregulated in the ALS iMNs. Matrix

metalloproteinases (MMPs) were significantly dysregulated, in all cases showing
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increased expression, and were downstream of the NRG1 hub (Figure B-4C). We

further investigated dysregulation of these MMPs and found that their corresponding

substrates (e.g. LAMININs, COLLAGENs) were also upregulated. These data indicate a

potential role for NRG1 in the dysregulation of ECM and cell adhesion-related genes in

ALS iMNs, as suggested previously in mouse models of ALS (Song et al., 2012).

Further analysis of the transcriptomic data focused on differential exon usage

and alternative splicing. These analyses were conducted using DEXSeq and MATS,

respectively (Anders et al., 2015; Shen et al., 2014). Analysis of the alternative splicing

events found in the ALS iMNs compared to controls shows a high percentage of exon

skipping (ES, 57%) and intron retention (RI, 26%). This same pattern was previously

identified as enriched in studies using human familial ALS and sporadic ALS patient

tissue (Prudencio et al., 2015).

B.3.5 Proteomics shows ECM and mRNA processing dominate protein changes

A sample specific library using DDA based acquisition files was compiled and

DIA-MS samples were run against the peptide library. Data quality was assessed by

MS1 and MS2 total ion current, normalized protein intensity distribution, number of

unique and shared hits identified, and correlation between ALS and control lines. Using

this method, we were able to identify 3,844 unambiguous proteins based on 23,436

unique peptides. MAP DIA software was then used to determine relative peptide and

protein amounts within the samples, as well as log2FC between C9 ALS and control

using transition level data. Using a 1 % FDR, 95% confidence interval and 0.6

abs(log2FC) cutoff, a final list of 924 differentially expressed proteins was obtained.

Hierarchical clustering of differential protein intensity values showed similar groupings

between biological replicates for ALS and control samples, as seen for RNA-seq and

ATAC-seq (Figure B-3A). Interestingly, unbiased analysis of all measured proteins

resulted in separation between control and ALS groups.

A small subset of the differentially expressed proteins (6.8%) had overlap with

both the ATAC-seq and RNA-Seq differentially expressed genes (Figure B-3B),

specifically 68 common differentially expressed genes/proteins (45 between RNA and

protein and 23 between all omics data sets) (Figure B-3C). The fold change values of

141



these overlapping terms have a correlation R 2 = 0.76, suggesting that most of the

differentially expressed terms that are common have concordant fold change values

and directionality. Of these common proteins, downregulated proteins (13) did not yield

any GO enrichment terms. Common upregulated proteins/genes (55) show enrichment

in extracellular matrix terms.

The role of the extracellular matrix is further supported by the analysis of the 856

differentially expressed proteins that did not overlap with differentially expressed genes.

Of these, 183 proteins were upregulated and enriched for extracellular matrix proteins,

similar to the transcriptomic analysis. In addition, network-based analysis of all

differentially expressed proteins (924) by IPA revealed predicted upstream regulators,

including TGF3 and SMAD4, which in turn regulate many of the extracellular matrix

proteins identified in the differential protein analysis and integrated omics.

The remaining unique subset of proteins (674 differentially expressed proteins)

were downregulated and showed enrichment for poly(A) RNA binding, RNA binding,

RNA and mRNA splicing. Additionally, IPA analysis of the differential proteins (924)

shows predicted inhibition of RNA/mRNA splicing based on downregulation of proteins

associated with this pathway. Lastly, proteins associated with alternative splicing of

mRNA are dysregulated, with most of these proteins decreasing in ALS. Taken

together, this could imply that these downregulated proteins are associated with altered

exon usage and alternative splicing in ALS found in the transcriptomic analysis.

B.3.6 Epigenetic changes due to C9 expression seen with ATAC-Seq

We sought to study the accessible chromatin landscape in C9 patients and

controls. The density of transposase Tn5 cleavage fragments provides a continuous

measurement of chromatin accessibility via ATAC-seq. Analysis of the open chromatin

data identified 128,299 peaks that were active in 2 or more ALS or control samples.

Approximately 14% (18,407) of accessible regions localize to gene promoters as

defined by GENCODE (Harrow et al., 2012); 27% (34,543) lie within 2.5 kb of a TSS.

Nearly half of the peaks lie in intronic regions, while about a third lie between genes.

To study alterations in chromatin accessibility in the disease state, we identified

and characterized peaks with significantly changed accessibility between C9 and control
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samples. Roughly 12% (15,814 peaks; FDR < 0.1) of all peaks were found to be

differentially open, of which approximately one half (7,937) were less accessible in C9

samples. Hierarchical clustering of differentially open regions revealed similar groupings

of patient samples as in RNA-Seq and proteomics (Figure B-3A). Correlation

coefficients were 0.46 for RNA and ATAC and 0.13 for protein and ATAC, with both

comparisons indicating same direction. Differentially accessible peaks were biased

away from regions near TSSs, with only 5.0% (783) annotated to promoters. Examples

of changing chromatin accessibility in ALS versus control lines can be seen in data files.

Next, we sought to answer whether chromatin changes are influencing broad categories

of genes by assigning each peak to its nearest RefSeq gene TSS within 50kb. 2,345

genes were associated with more ALS peaks than control and were enriched for

signaling and calcium ion binding GO terms. Conversely, 2,617 genes were associated

with more control peaks than ALS and were enriched for terms such as neuron

development and axon guidance. Overall, ATAC-Seq identified many regulatory

changes that were consistently different across ALS and control lines. In the data

integration section, we analyzed how these changes correspond to changes in RNA-seq

to understand differences in gene regulation between disease and control states.

B.3.7 Comparison of RNA-Seq, proteomics, and ATAC-Seq experiments

We sought to characterize the similarities and differences between the genomics,

RNA-Seq, proteomics, and ATAC-seq experiments. We first examined the overlap of

the RNA, protein, and epigenomics assays. Each differentially open region was

assigned the nearest protein coding gene (up to a limit of 50kb from the TSS). The sets

of genes and proteins detected by each assay all showed a modest increase in overlap

compared to what would have been expected by chance. For example, approximately

7% of the proteins that differed between ALS and control samples were also

differentially expressed in the RNA-Seq data (p-value = 1.92E-14). A higher fraction of

genes that differed in RNA expression also showed changes in ATAC-seq (38%; p-

value = 1.86E-14) and 14% of the proteins that differed between ALS and control

samples were also differential ATAC-seq genes (p-value = 0.056). All three assays were

enriched for similar biological processes. For instance, when we compared the top GO
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terms from each experiment, we found that all were enriched for adhesion and

extracellular matrix processes (Figure B-3C).
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Figure B-3 (A) Hierarchical clustering of RNA-Seq, Proteomics, and ATAC-seq signals

normalized by z-score. (B) Venn diagram of differential genes or proteins from each

assay. Each differential ATAC-seq peak was assigned the nearest protein coding gene

(up to a limit of 50kb from the TSS). (C) Top GO term enrichments for each assay

reveal common biological processes.
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B.3.8 WGA and RNA-Seq data integration mitigate eQTL effects on C9

dysregulation

Our analysis of the control and ALS lines revealed genomic variants in loci other

than the C90RF72 locus that could potentially contribute to the line-specific differences

in the RNA-Seq and proteomic data. Therefore, we evaluated whether any of the

genetic coding variants outside the C90RF72 locus were disproportionately present in

C9-ALS lines compared with controls to better identify differences specifically

attributable to ALS-associated HRE in C90RF72. For example, we observed that a

missense mutation in exon 17 of the poly(ADP-ribose) polymerase 1 (PARPi) gene

(V762A) that was present in all 4 C9-ALS lines, but present in only one of the controls.

As this was one of the genes found in the nodes of the integrated network, it is possible

that the significant changes observed in the RNA-Seq data may be more likely due to

this genomic variant rather than a consequence of the HRE in C90RF72. Further, we

have no reason to believe that this variant is a haplotype that is associated with the

C90RF72 expansion. Therefore, we sought to relate the WGA to the omics results to

better determine which genes were differentially expressed due to the HRE in

C90RF72 and which might be due to line-specific genetic variation at other loci. We

focused on exonic variants and found 7,235 nonsynonymous variants that were

enriched in either the controls or ALS cases. Then, we compared the genes in which

these variants were found to the genes that were found to be differentially expressed

(FDR < 0.1, which corresponds to p-value < 0.015) in C9-ALS or control samples by

RNA-Seq. We observed 801 variants (including missense, stop gain, start loss, splicing,

frameshift) in genes that were differentially expressed. To examine if these subset of

differentially expressed genes were significantly correlated to the presence of the

variant, we performed linear regression. After voom normalization of the gene

expression counts, using the limma package, a linear model was fit to each normalized

gene expression-variant comparison. Adjusted R 2 and Benjamini-Hochberg adjusted p-

values were calculated for each linear fit. This linear regression analysis revealed 69

variants that could be influencing the expression of 56 genes and confounding the

identification of C90RF72 ALS-specific gene expression differences. Seven of these

genes were found in the final network analysis, but some discordance can be seen in
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the genotype-expression comparisons, which could be due to the limited number of

samples for the regression analysis. To further try and determine whether genetic

variants in our samples were confounding the identification of an ALS signature, we

compared the variants that were enriched in either the controls or cases to known brain-

specific eQTLs from the xQTL database (Ng et al., 2017). There were 73,142 variants in

our samples that overlapped with significant known brain eQTLs that represented 5,292

genes; of these genes, 114 overlap genes were found to be significantly differentially

expressed in the ALS versus control cases. 19 of these variants were found in all cases

of one group only versus the other group, e.g. all ALS cases and no controls or no ALS

case and all controls. These 19 variants are known eQTLs for 7 genes that were also

found in our RNA-Seq analysis to be differentially expressed between ALS and control

groups; one of which, integrin subunit alpha V (ITGA V), was identified as dysregulated

in each primary assay, WGA, network and as a fly modifier gene. These analyses

demonstrate that the known brain eQTLs are likely to have at most a modest effect on

the expression differences between C90RF72 and control lines in our study.

B.3.9 An "omics integrator" reveals novel C9-specific pathogenic pathways

We next investigated potential functional links between the data, using a strategy

implemented in Omics Integrator (Tuncbag et al., 2016). This approach begins by jointly

analyzing the epigenomic and gene expression data to identify transcriptional

regulators, which tend to be difficult to detect using mass-spectrometry. Omics

Integrator then uses network optimization to search a vast database of protein-protein

interactions to discovery, de novo, pathways linking the experimentally determined

proteomic data and the inferred transcription factors.

B.3.10 Identification of transcriptional regulators

Potential transcriptional regulators were identified using de novo DNA motif

analysis. To capture regulators mediating changes in chromatin accessibility, we

searched for motifs that are enriched in differentially accessible peaks. We also

searched within peaks that changed in accessibility and were near differentially

expressed genes to identify transcriptional regulators that drive changes in gene
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expression. Peaks that were less accessible in C9-ALS samples were enriched for

several TFs including Nuclear Factor I (NF1) family that controls the onset of

gliogenesis in the developing spinal cord and LIM Homeobox (LHX) TFs that regulate

expression of axon guidance receptors (Figure B-4A) (Deneen et al., 2006; Palmesino

et al., 2010). Conversely, peaks that were more accessible in C9-ALS samples were

enriched for AP-1, RUNX2, and TEAD4. Altered AP-1 activity, which was independently

predicted by IPA of the transcriptomics data, has previously been described in SODI

mouse models (Bhinge et al., 2017). Notably, we found that RNA transcripts

corresponding to motifs enriched in C9-ALS peaks are upregulated in C9-ALS samples,

while transcripts corresponding to motifs enriched in control peaks are downregulated in

C9-ALS samples (Figure B-4B). These results suggest that epigenetic changes could

be driven by differences in expression of transcription factor transcripts.

B.3.11 A network of C90RF72-induced changes

In the next phase of the integration, we combined the transcriptional regulators

inferred from RNA-Seq and ATAC-seq with the proteins detected in mass spectrometry.

Our approach sought to discover, de novo, the cellular pathways that are differentially

active between C9 and control lines. The challenge is to go beyond the limited

information available in annotated pathways while still avoiding an uninterpretable

network containing thousands of interactions. Our approach searches for previously

reported protein-protein interactions that connect, directly or indirectly, our proteomics

and transcriptional regulatory data. The method considers the strength of experimental

evidence supporting each reported protein-protein interaction from the database and the

strength of evidence supporting our own data.

Omics Integrator was used to search for connections among 376 predicted TFs

and differentially expressed proteins. After optimization and filtering for robustness, the

network retained 291 of these proteins and added 83 other proteins that were closely

connected by physical interactions. The resulting 374 node network is shown in Figure

B-5A, with nodes organized by cellular compartment.

To evaluate the performance of our algorithm, we assessed the network for

enrichment of genes previously associated with ALS. We found strong enrichment for
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ALS-associated proteins (Figure B-5A bolded borders; p-value = 4.0E-1 3). We also

found that the 83 proteins added by Omics Integrator were also enriched for ALS

associated genes (p-value = 2.4E-3), providing confidence that our method is predicting

disease-relevant proteins and pathways.

In order to understand the function of the identified network we scored it using

categories from Gene Ontology. Enrichment analysis revealed significant dysregulation

of ECM, in line with our transcriptomic, proteomic, and epigenomic results. Furthermore,

our network was enriched for proteins belonging to cytoskeletal organization and RNA

metabolism pathways (Figure B-5A,B), both previously implicated in ALS. For instance,

the nuclear-cytoskeletal compartment contains cofilin (CFL1), a known interaction

partner of C90RF72 that modulates actin dynamics in motor neurons (Sivadasan et al.,

2016). LIMK1, a kinase that phosphorylates CFL1 also appears in the network and is

known to also phosphorylate MMP14 (found in the cytoskeletal-plasma membrane

compartment in Figure B-5A,C), an endopeptidase that degrades ECM components

(Lagoutte et al., 2016). Proteins involved in microtubule organization (PPP2CA, MAP1B,

tubulin) are also represented in the cytoskeletal component of the network. PPP2CA, a

major phosphatase for microtubule-associated proteins and a known binding partner of

C90RF72, has been shown to activate MAP1B which in turn tyrosinates tubulin (Coyne

et al., 2014). Our network also features mitochondrial proteins that are involved in

responses to oxidative stress. Mutations in PARK7 have been linked to ALS, and its

knockdown has been shown to increase disease severity in SOD1 mouse models

(Hanagasi et al., 2016; Lev et al., 2015). Furthermore PINK1, a PARK7 mitochondrial

cofactor, plays a role in axonal transport of mitochondria (Moller et al., 2017).

Lysosomal dysfunction has also been implicated in ALS (Hardiman et al., 2017). Small

GTPase RAB39B plays an important role in the initiation of autophagy via C90RG72's

GDP-GTP exchange factor activity (Corbier and Sellier, 2017). UBQLN4, linked to ALS

and found in the cytoplasmic component of the network, may assist in maturation of

autophagosomes (Edens et al., 2017).

The network also reveals potentially pathological interactions between differential

proteins and predicted transcriptional regulators. SUMOylation via SUMO2 is a post-

translational modification process that can affect structure, localization, activity, and
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stability of substrates. Specifically, SUMOylation of POU5F1 (Oct4) and PAX7

enhances their stability and transactivity, while SUMOylation of JUN (AP1 family),

ETS1, and RUNX2 reduces their stability and transactivity (Bossis et al., 2005; Ji et al.,

2007; Luan et al., 2013; Wei et al., 2007). Notably, SUMO2 protein is downregulated in

ALS samples, and the activity of these transcriptional regulators following SUMOylation

is concordant with their predicted activity. SUMOylation's role in affecting the stability of

hnRNPs and localization of actin components to the nucleus has previously been

reported (Hofmann et al., 2009; Lee et al., 2012). Our analysis provides evidence that

SUMOylation may have substantial influence on transcriptional regulation in C9-ALS

motor neurons.

A B RNA abundance of predicted TFs

(omil P-Value Target% Back- Motif
Motifground%

AP-1/ATF (bZIP) le-1213 62.9% 21.3% T'APTCA4f
RUNX (Runt) le-424 40.6% 18.3% YCCPCA 0 R

TEAD (TEA) le-149 38.7% 24.9% M2%G$ACMy
NF1 (CTF) le-317 63.6% 41.6% 4'3CCAA Q F06L2

0 S 0b
L HX (LIM) le-152 56.1% 40.9% QIATTAA 1 0 4 0 0 q ALS peaks

RFX (HTH) le-107 69.8% 57.4% IC IAGCAACT * *CTR peaks
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Figure B-4 (A) Transcription factor families that are predicted to be differentially active

between ALS and control samples. Orange motifs are predicted to be more active in

ALS and blue motifs are predicted to be more active in controls. (B) A volcano plot of

RNA abundance for each predicted TF shows that TFs that are predicted to be active in

ALS are also more highly expressed in ALS samples, while TFs that are predicted to be

active in controls are less expressed in ALS samples.
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Figure B-5 (A) Integrative analysis reveals a network of 374 proteins organized by

subcellular location, of which 264 are experimentally determined from proteomics

(circles), 27 are predicted transcription factors, and 83 are other proteins that were

closely connected by physical interactions. Borders indicate ALS-associated genes from

experiments or screens (purple) and text mining (green). (B) A zoomed in view of the

nucleus compartment displaying genes with RNA metabolism functions. (C) A zoomed

in view of the extracellular matrix compartment.
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B.3.12 Validation of key pathways from the literature and using a fly screen

Many of the pathways identified using the Omics Integrator could also be found

by searching the current ALS literature as described above. In addition, there were

novel pathways that had not previously been reported as disrupted in C9-ALS including

the extracellular matrix and cytoskeleton. In order to validate our "integrated omics" list

generated from control and C9-ALS iMNs in vivo, we conducted an RNAi-based screen

in a Drosophila model of G4C2-mediated neurodegeneration (Xu et al., 2013). In this

model, over-expression of 30 G4C2 repeats in the eye leads to age-dependent

photoreceptor neurodegeneration, and genetic pathways identified as modifiers of fly

eye degeneration have proven to be relevant to C90RF72-associated

neurodegeneration in mouse and human iPSC-derived neuron models (Xu et al., 2013;

Zhang et al., 2015). A total of 293 fly genes corresponding to 284 human genes were

knocked down in the G4C2 fly model and their ability to modify (suppress or enhance)

the rough eye phenotype was scored (Figure B-5B). When available, multiple RNAi

lines were tested. Of those, about 20% enhanced and 15% suppressed C9 toxicity with

a score of at least +/-1 respectively. The remainder showed little or no effect on eye

degeneration and approximately 2% resulted in lethality. There was no particular

relationship between the proteomic changes in iMNs and the phenotypic effect of

knocking-down the gene in the fly. The results from the fly screen confirm that a subset

of genes/proteins, identified through our integrated omics approach, are modifiers of

C90RF72 G4C2-repeat-mediated toxicity. Furthermore, the altered expression of

modifier genes/proteins is likely to contribute, at least in part, to C90RF72-mediated

toxicity.
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Right: A schematic showing the interplay between causal and compensatory pathways

that eventually result in the disease. (B) The effect of genetic manipulations on external

eye morphology and depigmentation in G4C2 expressing flies. (C) Causal and

compensatory genes from A were connected via intermediate genes and the resulting

network was organized by cellular process. Proteins from the same families were

consolidated into a single node for readability. The borders indicate whether the gene is

a G4C2 suppressor (purple) or enhancer (green). Bolded names indicate ALS-

associated genes.
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B.3.13 Characterization of putatively causal and compensatory pathways

We leveraged the fly results to explore the potential causal roles of proteins that

changed in the iMN data. Based on ornic data alone, where specific genes, proteins and

pathways are identified as up- or down-regulated, it is not possible to determine whether

a difference in ALS versus control motor neurons is part of the toxic effects of the

C90RF72 expansion or whether it represents a compensatory process. However, we

can begin to resolve this ambiguity using the results of the RNAi screens carried out in

the fly model of the repeat expansion above. For example, in the simplest case, if a

protein is upregulated in C9-ALS motor neuron cultures and knocking it down

suppresses eye degeneration in the fly, the ALS-induced change(s) were likely

deleterious. We refer to such C9-induced changes as "causal." By contrast, if knock-

down of the same protein resulted in enhanced eye degeneration, the ALS-induced

change(s) are more likely to be part of a compensatory adaptation. In total, we found 39

causal and 27 compensatory genes (Figure B-6A,B).

We developed an integrative approach to discover the functional interactions

among these genes and their underlying roles in ALS pathology. Specifically, we built

networks connecting these proteins using directed interactions gathered from two public

pathway databases, KEGG and Reactome, and grouped the resulting proteins by

functional categories (Figure B-6A).

This approach revealed several causal pathways (Figure B-6C) that were

previously known to be dysregulated by the mutated form of C90RF72, such as RNA

splicing and nuclear transport (Robberecht and Philips, 2013; Zhang et al., 2015). The

altered proteins in these pathways include ALS and associated genes such as

hnRNPA1, FUS (located in the Spliceosome Assembly node), and RanGAP1. Other

pathways emerged as causal that have been less thoroughly examined in the context of

C90RF72. These pathways include signaling pathways such as EGF signaling and

SMAD signaling (eg: EZR and CRK), with a hub centered around phosphatase PP2A.

The approaches used here also highlighted a novel, causal set of ECM-related

pathways and genes including integrins, collagens, and serpins. Within these networks

based on the fly data, a number of pathways are likely to represent compensatory

changes. For instance, the observed increases in the cytoskeletal proteins like actin,
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myosin and tropomyosin, increases in heat shock proteins and decreases in RAC

proteins and other proteins relating to GTP/GDP exchange are compensatory. Our

approach also begins to reveal interactions between different processes. For example,

the putatively causal toxic changes in the nucleocytoplasmic transport or oxidative

stress are connected to potentially compensatory changes in DNA repair pathways.

Finally, regulation of causal and compensatory processes can be elucidated using this

approach (Figure B-6C). For instance, while ECM/secreted proteins fall into causal

pathways, cell adhesion protein changes are largely compensatory, as is dysregulation

of Laminin C1, which is a component of the basal lamina and is secreted and

incorporated into ECM matrices as an integral part of the structural scaffolding in

tissues.

B.4 Discussion

iPSC models finally offer a way to map the initiation and execution of pathology

in specific diseases of the central nervous system (CNS). This is clearly required given

the lack of neurologically active drugs despite years of investment from both industry

and academia. Many groups have now been able to generate iPSCs from patients with

neurological disease-causing mutations and have shown specific phenotypes in the dish

(Huntington's Disease consortium, Parkinson's Disease genetic cases) and there have

been two recent studies showing a stress-induced phenotype in C9 iPSC-derived motor

neurons and an overall cell death and reduced fiber outgrowth phenotype in a range of

ALS cases not including C90RF72 (Fujimori et al., 2018; Shi et al., 2018). In another

report, increased activity in motor neurons from ALS patients in the dish led to a drug

trial with retigabine that is currently still underway (McNeish et al., 2015). Interestingly,

all of these studies were focused on discovering physical in vitro phenotypes such as

cell death or reduced fiber outgrowth, which may or may not be relevant to drug

intervention in patients. One of the key difficulties in these studies has been an

incomplete picture of the earliest and most significant changes that occur during

pathogenesis.

With the premise that dysfunction of molecular pathways in specific cell

populations in the brain leads to neurodegeneration, we have established a
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comprehensive, quantitative molecular phenotyping approach using a human iPSC

technology platform to study molecular signatures of CNS cell types focusing on iPSCs

from patients with C90RF72, given its prevalence as a genetic cause of ALS and its

dominant phenotype (Brown and Al-Chalabi, 2017). We have used genomics,

transcriptomics, epigenomics, high-content quantitative proteomics, and single-cell

imaging technologies to characterize human motor neuron cultures from C90RF72 ALS

patients, under strict quality control including the use of parallel cultures for each assay,

metadata standards, and analytical pipelines. A computational pipeline was used to

integrate the diverse molecular data sets and identify the most significant regulated

pathways in patient cells. This "Omics Integrator" software uses network approaches to

integrate diverse data types into coherent biological pathways that can avoid some of

the pitfalls associated with analyzing single data types and uncover novel pathways that

are not annotated in existing databases (Tuncbag et al., 2016). This approach is

validated by the strong statistical enrichment and the comprehensive number of hits it

recovered that are consistent with published literature for C90RF72 ALS. At the same

time, the approach revealed functional links among the disparate data, including

identifying many transcriptional regulators.

A challenge in using multi-omic data sets is understanding how the direction of a

change impacts disease pathogenesis. This is perhaps one of the greatest difficulties -

e.g. understanding if the observed changes are conducive to the course of the disease

or a cellular attempt at a homeostatic response to physiological insults. Using

Drosophila genetics guided by the outcome of the integrated networks, it has been

possible to not only validate the specific genes and proteins involved, but also to discern

probable effect and whether altered expression or activity would be predicted to

promote disease pathogenesis or serve as a compensatory response. The results of

these studies provide a unique data source and methods that can be utilized in the

study of ALS and other neurodegenerative diseases.

Our analysis reveals a complex system of interweaving relationships among

causal and compensatory pathways. In some cases, such as the ECM, causal and

compensatory roles were found to exist even within the same pathway. Though the

literature on the ECM's role in neuronal function and disease progression is limited,
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several studies have described neuroprotective properties of the ECM (Suttkus et al.,

2016). Our analysis suggests that, while ECM components are broadly upregulated in

ALS, individual components of the ECM may have very different downstream

consequences. For example, knocking down some genes like LAMCI and DMD

enhances toxicity in fly eyes while knocking down other ECM components like serpins,

collagens and integrins suppresses toxicity. One mechanism through which extracellular

signals within the ECM may be internalized is through integrin signaling. Integrin

activation mediates molecular coupling of CAS and Crk, and the resulting complex has

been shown to regulate the actin cytoskeleton (Chodniewicz and Klemke, 2004).

Interestingly, integrins and CRK were both found to be pathogenic, while actin

cytoskeletal components were compensatory, which suggests ECM pathogenicity is

transmitted via some non-cytoskeletal pathway.

It is also important to recognize that the classification of changes as "causal" or

"compensatory" is far from definitive. Not all results from the fly necessarily translate to

human cells and tissue. Furthermore, our simple binary classification does not capture

complicated situations in which there may be non-linear effects of gene expression on

phenotypes. However, these first attempts at relating many different aspects of cell

functioning are the starting blocks for further studies and enable for the first time the

development of a holistic view of cell functioning in the face of a pathogenic repeat that

causes ALS.

This integrative approach is well suited for the task of hypothesis generation. For

instance, our results suggest that DNA repair pathways are a compensatory response

to either nucleocytoplasmic transport or oxidative stress. In addition to providing insight

into how these pathways interact, our analysis also identifies proteins that are attractive

targets such as MAPRE1. While we acknowledge there are some limitations of

integrating data across human in vitro and fly in vivo models, this approach provides a

much-needed basis for establishing causality and generating testable hypotheses.

An additional benefit in having transcriptomic and proteomic data together with

WGS is the ability to integrate these data sets and identify whether a given DNA

sequence change causes altered expression of the gene or altered levels of the protein.

Using the data set here, we have integrated WGS with RNA-Seq data to begin to
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evaluate eQTLs that may be meaningful to disease as a causal modifier versus altering

gene expression as a consequence of ALS. Future studies will expand this analysis

across each of assays and extend to larger data sets from additional ALS subjects.

Based on the hypotheses generated through the generation of integrated

networks and potential causality suggested by the fly data, next steps will include

testing whether modulation of these pathways in the iPSC neurons can impact key

pathogenic features of C90RF72 such as the nuclear pore deficit and formation of

dipeptide repeats. Using robotic imaging, there is now the potential to use reporters to

query specific networks or processes (e.g. ECM) in future studies (Finkbeiner et al.,

2015). Finally, validation in human brain tissue can provide insights as to the relevance

of specific pathways identified here to represent very early changes to later stage

disease pathology. The current study gathered a wide range of critical information, but

was underpowered with regard to numbers of patients and made no connection to the

complex clinical course of the disease. Currently we are producing 1000 IPSC lines

from patients with all types of ALS (including C90RF72 mutation carriers) and

performing a similar analysis. In addition, the clinical history of each patient will be

combined with the Omics Integrator to give more resolution on how molecular changes

may impact the clinical course of the disease. However, the core techniques and

integrated approach of the current report along with the first set of data suggesting a

molecular signature for C9 ALS provide a strong framework for this new "big data"

approach to learning more about the causes and treatments of diseases such as ALS.

B.5 Methods

Generation and Characterization of iPSC Lines

The 3 control lines (termed 25iCTR, 83iCTR, OOiCTR) and 4 IPSC lines (termed

29iALS, 52iALS, 30iALS, 28iALS) were generated using episomal plasmids and

characterized as previously described (Sareen et al., 2013). Human control fibroblast

cell lines were obtained from the Coriell Institute for Medical Research. The Coriell Cell

Repository maintains the consent and privacy of the donor of fibroblast samples.

Fibroblasts from C90RF72 ALS patients (28iALS-n2, 29iALS-n1, 30-iALS-nl, and

52iALS-n6) were derived at Washington University of St. Louis. Healthy control
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fibroblasts (OOiCTR: GM05400; 83iCTR: GM02183) were obtained from the Coriell

Institute for Medical Research. All the cell lines and protocols in the present study were

carried out in accordance with the guidelines approved by institutional review boards at

the Cedars-Sinai Medical Center and Washington University at St. Louis. Studies were

performed under the auspices of the Cedars-Sinai Medical Center Institutional Review

Board (IRB) approved protocol Pro00028662 and Pro00028515. The reprogramming

and characterization of iPSC cell lines and differentiation protocols in the present study

were carried out in accordance with the guidelines approved by Stem Cell Research

Oversight committee (SCRO) and IRB, under the auspices of IRB-SCRO Protocols

Pro00032834 (iPSC Core Repository and Stem Cell Program), Pro00024839 (Using iPS

cells to develop novel tools for the treatment of SMA) and Pro00027006 (Cell and

Tissue Analysis for Neurologic Diseases; Robert Baloh). Appropriate informed consents

were obtained from all the donors. To protect donor privacy and confidentiality, all

samples were coded and de-identified in this study.

Extensive quality control processes were implemented, including testing iPSC

precursors and final neuronal samples (motor neuron cultures) for purity and their

identity by short-tandem repeat (STR) analysis performed by a third-party company

before the samples were distributed. G-band karyotyping was performed to ensure that

iPSCs maintained normal karyotypes. The parental tissue (fibroblasts), reprogrammed

iPSCs and the differentiated iMNs prior to performing assays were submitted to IDEXX

BioResearch for DNA fingerprinting and STR analysis to confirm donor identity. Each of

the iPSC lines used in this study had unique genetic profiles and the genic profiles of

the samples and their source tissues were identical. Additionally, the test confirmed the

samples to be of human origin and detected no mammalian interspecies contamination.

The Cedars-Sinai iPSC Core Facility created a working cell bank of iPSC-derived motor

neuron precursor spheres (iMPS) for C9-ALS and control subjects.

Whole Genome Sequencing and Analysis

DNA was extracted from iPSC lines made in the laboratory of Clive Svendsen

and Dhruv Sareen using the QlAamp DNA Blood mini Kit (Qiagen; 51104) as per the

manufacturer's instructions. A minimum of 1 pg of unamplified, high molecular weight,
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RNase treated DNA with absorbance values of OD260/280 1.7- 2.0 and OD260/230 >

2.0, was sent to The New York Genome Center for sequencing on the Illumnia X1 0.

Sequence data was processed on NYGC automated pipeline. Paired-end 150 bp reads

were aligned to the GRCh37 human reference using the Burrows-Wheeler Aligner

(BWA-MEMvO.7.8) and processed using the GATK best-practices workflow that

includes marking of duplicate reads by the use of Picard tools (v1.83,

http://picard.sourceforge.net), local realignment around indels, and base quality score

recalibration (BQSR) via Genome Analysis Toolkit (GATK v3.4.0) (New York Genome

Center) (DePristo et al., 2011; McKenna et al., 2010).

The variant calls from NYGC were assessed by examining the actual reads for

alignment issues and spot-checking the BAM files for specific variants in IGV and

assessed they were of good quality. The VCFs were converted into GVCFs and

performed custom annotation and intersected a subset of the omics data (RNA-Seq,

ATAC Cluster) with the WGS data.

The annotation pipeline was customized to incorporated elements from

ANNOVAR and KGGseq from which a report was generated, including genotypes for all

samples (Li et al., 2012; Wang et al., 2010). These reports are available upon request.

The following annotation was used: For genes and exonic variants that have clinical

significance, we incorporated the Clinical Genomic Database (CGD), the Online

Mendelian Inheritance in Man (OMIM), ClinVar, and genes listed in the American

College of Medical Genetics and Genomics (ACMG) as well (Amberger et al., 2015;

Green et al., 2013; Landrum et al., 2016; Solomon et al., 2013). Intervar, which is based

upon the ACMG and AMP standards and guidelines for interpretation of variants was

also incorporated. This tool uses 18 criteria to prescribe the clinical significance and

classifies based on a five- tiered system (Farrer et al., 1997). To flag ALS genes, we

incorporated ALS gene lists and variants from ASLoD (http://alsod.iop.kcl.ac.uk/), a

highly curated list from Dr. John Landers and ALS associations from the DisGeNet

database (Abel et al., 2013; Pihero et al., 2017). We also incorporated functional

prediction by using in silico prediction from nine programs, including the databases,

such as SIFT, PolyPhen2, and MutationTaster and as in Li et al., 2013 for each variant

(Chun and Fay, 2009; Li et al., 2013; Schwarz et al., 2010; Sim et al., 2012). As well,
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additional databases were included that assess the variant tolerance of each gene

using the RVIS and the Gene Damage Index (GDI) and are adding LoFTool (Fadista et

al., 2017; Itan et al., 2015; Petrovski et al., 2013). Gene expression: For variants in

genes that are highly expressed in the brain, we provided these data from the Human

Protein Atlas (http://www.proteinatlas.org) and expression data from GTex portal (2013,

2015; https://gtexportal.org/home/) for the cortex and spinal cord (Uhlen et al., 2015).

Frequency information from three databases on all known variants from ExAC, the

NHLBI Exome Sequencing Project (ESP), and the 1000 Genomes Project (Auton et al.,

2015; Lek et al., 2016; Tennessen et al., 2012).

A separate annotation pipeline was developed for variants that are in intergenic

and regulatory regions. We report the variant as found next to the closest gene, these

are either intronic, upstream and downstream (up to 4 KBs from the start and stop of a

gene) and 5' and 3' UTRs. The annotation used came from: RegulomeDB which

annotates variants with known or predicted regulatory elements such as transcription

factor binding sites (TFBS), eQTLs, validated functional SNPs and DNase sensitivity

(Boyle et al., 2012). The source data comes from ENCODE (2004; 2012) and GEO

(Barrett et al., 2009). We also included other regulatory databases such as Target Scan

is an algorithm that uses 14 features to predict and identify microRNA target sites within

mRNAs and miRBase (Agarwal et al., 2015; Griffiths-Jones, 2004, 2005; Griffiths-Jones

et al., 2008).

Differentiation of iPSCs into Motor Neurons

Control and ALS iPSCs were differentiated into motor neurons based on a

combination of previous models established for rapid neural differentiation (Figure B-1A)

(Sances et al., 2016). Briefly, iPSCs were grown to near confluence devoid of

spontaneous differentiation under normal maintenance conditions prior to the start of

differentiation. Neuroectoderm specification of iPSCs was induced by removal of

mTeSR1 media and addition of defined neural differentiation media (NDM) +LS

composed of IMDM supplemented with B27 + vitamin A (2%), N2 (1%), Non-Essential

Amino Acids (NEAA, 1%) and penicillin-streptomycin-amphotericin (PSA, 1%) along

with LDN193189 and SB431542 [LS] - as a combination of small molecule inhibitors of
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SMAD pathway, BMP type 1 receptors (ALK2/3) TGF-beta superfamily type 1 activin

receptor-like kinase (ALK) receptors (ALK4/5/7)]. Colonies were dissociated into single

cells with Accutase and uniform aggregates were formed in sterilized V-bottom 384-well

PCR plates with 20,000 cells/well. Uniform neural aggregates were formed by seeding

in NDM+LS in presence of Matrigel and centrifuging for 5 minutes at 200g. The

aggregates were maintained in this media for 5 days. The culture medium was

replenished every 2 days. On day 5, the aggregates were gently isolated from the plates

using Accutase, and the uniform sized neural aggregates were then plated on laminin-

coated 6-well plates. After 7 days (day 12), media were changed to a motor neuron

specification medium (MNSM) generating caudo-ventralized MN precursors by addition

of all-trans retinoic acid (ATRA) and the sonic hedgehog agonist, purmorphamine

(PMN), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic

factor (GDNF), ascorbic acid (AA) and dibutyryl cyclic adenosine monophosphate (db-

cAMP). Over the next 4 to 8 days, neural rosettes formed and were lifted at day 16 to

20 and subsequently cultured in suspension low-attachment flasks for a further 8 days.

Selected rosettes were switched to a motor neuron precursor expansion media

(MNPEM) containing ATRA, PMN, and the mitogens epidermal growth factor (EGF) and

fibroblast growth factor (FGF2). After an initial 8 days in the expansion medium the

generated induced motor neuron precursor spheres (iMPS) were further expanded by

weekly chopping for 5 weeks (passages) and cryopreserved prior to initiation of terminal

differentiation stage. These iMPS were cryopreserved into lots for later generation of

iMPS-derived motor neurons (iMNs) for omic analysis or to send to imaging centers for

cell death assays and live-cell imaging. In order to induce terminal motor neuron

differentiation, the iMPS were fully dissociated with Accutate and seeded on laminin-

coated 6-well plates, and matured in Stage 1 motor neuron maturation medium (MNMM

Stage 1) consisting of NDM supplemented with ATRA (0.1 pM), PMN (1 pM), db-cAMP

(1pM), ascorbic acid (AA; 200ng/ml), Notch signaling y-Secretase Inhibitor, DAPT

(2.5pM), BDNF; 1Ong/ml and GDNF; 1Ong/ml for 7 days. Then cultures were switched

to maturation medium stage 2 (MNMM Stage 2) containing Neurobasal, 1% NEAA, 1%

N2, 0.5% GlutaMax, db-cAMP (1pM), ascorbic acid (AA; 200ng/ml), BDNF; 1Ong/mI and

GDNF; 1Ong/ml for another 14 days. Mature iMN cultures were harvested and screened
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at 21-days post plating. These conditions allowed for motor neuron differentiation under

serum-free conditions. All differentiating cultures were maintained in humidified

incubators at 370C (5% CO2 in air).

Immunocytochemistry

Human iPSC-derived motor neuron cultures were plated on optical-bottom 96-

well plates (Thermo, #165305) and subsequently fixed in 4% paraformaldehyde for 15

minutes. Cells were blocked in 5% normal donkey serum with 0.1% Triton X-100 in

phosphate buffered saline (PBS) and incubated with primary antibodies either for either

1 hour at room temperature or overnight at 40C. Cells were then rinsed and incubated in

species-specific AF488, AF594, or AF647-conjugated secondary antibodies followed by

Hoechst 33258 (0.5pg/mL; Sigma) to counterstain nuclei. Cells were imaged using

Molecular Devices ImageExpress Micro high-content imaging system or using Leica

microscopes (Fuller, Mandefro et al. 2015). Primary antibodies used were as follows:

mouse anti-SM132 (Covance, 1:1,000); mouse anti-TuJ1 (p3-tubulin) (Sigma; 1:1,000-

1:2,000); rabbit anti-glial fibrillary acidic protein (GFAP, Dako; 1:1,000); mouse anti-

Map2a/b (Sigma; 1:1,000); rabbit anti-nestin (Millipore; 1:2,000).

Longitudinal Single Cell Analysis

To generate iMNs for automated robotic imaging, frozen vials of iMPS were

obtained from Cedars-Sinai. iMPS were quickly thawed at 370C and then dissociated

into single cells with Accutase at room temperature. To ensure single-cell dissociation,

Accutase-treated IMPS were gently pipetted up and down and passed through a 30mm

Cell Strainer and washed with PBS. The Accutase was removed with centrifugation

(200g for 5 minutes at room temperature) and cells were gently resuspended in MNMM

Stage 1 media [NDM supplemented with 0.1mm all-trans RA (ATRA; Sigma), 1mM

PMN; Stemgent, 10ng/ml of BDNF; R&D Systems, 10ng/ml GDNF; R&D systems,

200ng/ml AA, 1mM db-cAMP, and 1% Antibiotic-Antimycotic; LifeTech. Matrigel was

added to the cell suspension (1:100 by volume) and cells were seeded on a Matrigel-

coated 96-well plate at 50,000 cells/well. After 4 hours, the media was replaced. The

following day, cells were fed with MNMM Stage 1 media supplemented with 2.5mM
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DAPT (Tocris) every other day. On Day 8, cells were switched into MNMM Stage 2

media [Neurobasal media supplemented by 1% NEAA, 0.5% Glutamax, 1% N2, 10

ng/ml BDNF, 10 ng/ml GDNF, 200ng/ml AA, 1mM db-cAMP, and low-dose Cytarabine

(AraC) at 0.1mM (used to block residual glial cell proliferation) and fed every other day.

On Day 20, cells were transfected with 500ng/well of motor neuron morphology marker

HB9-green fluorescent protein (GFP) plasmid using Lipofectamine 3000 (Thermo Fisher

Scientific) according to manufacturer's instructions. A half media change was performed

every other day until the cell culture plate was imaged and fixed. At Day 25, the cells

were imaged every 12 hours for 7 days.

In a subset of experiments, nucleofection was used to introduce plasmids into

iMNs during suspension stage. In the beginning, iMPS were maintained in T75 flasks

and allowed to expand in MNPEM media followed by MNMM Stage 1 media change at

Day 0. The iMPS spheres were then subjected to MNMM Stage 2 media at Day 7 and

transfected on Day 12 using Human Stem Cell Nucleofector Kit 2 (Lonza Amaxa; Cat #

VPH-5022) per manufacturer's guidelines. Briefly, IMPS spheres were washed 4 times

in PBS solution and suspended in 100pl of nucleofector solution mixed with 5pg of HB9-

GFP and human synapsin promoter driven Syn-mApple plasmid. The suspension mix

was transferred to a provided cuvette from the kit and nucleofected with a Nucleofector

apparatus (Amaxa). Cells were transfected using A-033 pulsing parameter and were

immediately transferred into the original T75 flasks containing MNMM Stage 2 media.

The IMPS spheres were allowed to recover for two days and were then dissociated into

single cells with Accutase. A similar cell dissociation procedure was performed as

mentioned previously and the cells were plated at 75,000 cells/well in 96-well plate. A

half media change was performed every other day until the cell culture was imaged and

fixed. At Day 25, the cells were imaged every 12 hours for 7 days.

Plates of transfected cells were maintained at 370C and 5% C02 in a robotic

incubator until imaged. Within a 370C environmental chamber, a robotic arm transferred

each plate to the stage of the microscope for automated image acquisition. The protocol

uses a fiduciary mark on the plate for alignment, performs automated focusing, and then

collects a series of fluorescence images of adjacent fields from each well. Images from

a single well were stitched together into montages. A custom cell identification algorithm
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generates a single cell mask for each montage. The program then aligns montages

from the same well at sequential time points and assigns unique numbers to individual

cells that are tracked during the experiment. The survival time for each cell of each well

is determined and quantified from the images using methods described previously

(Skibinski et al., 2014). Kaplan-Meier curves are constructed from individual survival

times of cells from each well and survival of cohorts of cells from each well is compared

to each other with survival or time-to-event analysis.

RNA-Seq

Total RNA was isolated from each sample using the Qiagen RNeasy mini kit.

RNA samples for each subject (control or disease) were entered into an electronic

tracking system and processed at the University of California, Irvine GHTF. RNA QC

was conducted using an Agilent Bioanalyzer and Nanodrop. Our primary QC metric for

RNA quality is based on RIN values (RNA Integrity Number) ranging from 0-10, 10

being the highest quality RNA. Additionally, we collected QC data on total RNA

concentration and 260/280 and 260/230 ratios to evaluate any potential contamination.

Only samples with RIN > 8 were used for library prep and sequencing. Library prep

processing was initiated with total RNA of lug using a Ribo-Zero Gold rRNA depletion

and Truseq Stranded total RNA kit. Additionally, ERCC exFold spiked-in controls were

used for further QC and downstream data analysis. Briefly, RNA was chemically

fragmented and subjected to reverse transcription, end repair, phosphorylation, A-

tailing, ligation of barcoded sequencing adapters, and enrichment of adapter-ligated

cDNAs. RNA-Seq libraries were titrated by qPCR (Kapa), normalized according to size

(Agilent Bioanalyzer 2100 High Sensitivity chip). Each cDNA library was then subjected

to Illumina (HiSeq 2500) paired end (PE), 100 cycle sequencing to obtain approximately

50-65M PE reads. After sequencing fastq were subject to QC measures and reads with

quality scores (>Q20) collected and analyzed using the pipeline described at

http://neurolincs.org/tools/. Briefly, reads were mapped to the GRCh73 reference

genome, QCed, and gene expression and differential expression were quantified using

the pipeline outlined here: http://galaxy.neurolincs.org/u/terri/p/neurolincs-data-analysis-

workflows, using tools HTseq and DESeq2 (Anders et al., 2015; Love et al., 2014).
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Normalized and transformed count data were then used for exploratory analysis and DE

genes (FDR < 0.1) were used for pathway, network, and gene ontology analysis. These

primary data were subject to additional statistical and network-based data analyses

using commercial and open-source pathway and network analysis tools, including

Ingenuity Pathway Analysis (IPA), GOrilla, Cytoscape, and other tools to identify

transcriptional regulators, predict epigenomic changes, and determine potential

downstream pathway and cellular functional effects. Significant DEGs (FDR < 0.1) were

then analyzed against genes that were found to contain exonic enriched genetic

variants from the WGS. The gene expression (voom normalized and transformed

values) and genotype variant pairs were analyzed by fitting a linear regression model.

Adjusted R 2 and Benjamini-Hochberg adjusted p-values were calculated, significant

genes were reported at FDR < 0.1.

Proteomics

Frozen cell pellets were lysed using a combination of lysis buffer containing SDS

and sonication. BCA assay was used to determine protein concentration and 125ug of

each sample was used in downstream sample processing. Samples were processed

following Expedeon FASP protocol. Samples were digested in Trypsin/LysC (Promega)

at a ratio of 40:1 to protein concentration at 370C for 12 hrs. Samples were desalted

using MCX micro-elution column (Waters) and samples were dried in speedvac and

stored in -200C until resuspension with Biognosys iRT mixture for acquisition on the

SCIEX 6600 over a 45-minute gradient. Samples were acquired in data-dependent

acquisition (DDA) mode for library building and in data-independent acquisition (DIA)

mode over 100 variable windows similar to acquisition protocols in Kirk et al. and

Holewinski et al. (Holewinski et al., 2016; Kirk et al., 2015). DDA files were run through

Trans Proteome Pipeline (TPP) using a human canonical FASTA file (Uniprot). A

consensus peptide library with decoys was generated. DDA library build principals as

described in Parker et al. were utilized to generate a cell specific library, which allowed

for more accuracy in matching DIA data to the DDA library during OpenSWATH, as

indicated by higher d-scores in PyProphet (Parker et al., 2016). DIA files were mapped

onto this library using OpenSWATH and transition level data was compiled with a 1 %
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FDR cutoff. Downstream summing of transition level data to peptide and protein level

data was performed by MAP DIA (Teo et al., 2015). Log2FC data was calculated by

MAP DIA and filtered using a 1 % FDR, 95% confidence interval and 0.6 abs(log2FC)

cutoff to obtain a final list of differentially expressed proteins. For protein quantification,

transitions and peptides common to more than one protein were excluded. These data

have been further analyzed using commercial and open-source pathway and network

analysis tools, including Ingenuity Pathway Analysis and Gorilla, to identify upstream

regulators and determine affected cellular pathways.

ATAC-Seq

We used the assay for transposase-accessible chromatin using sequencing

(ATAC-Seq) to assess chromatin accessibility and identify functional regulatory sites

involved in driving transcriptional changes associated with C90RF72. ATAC-Seq

detects open chromatin sites and maps transcription factor binding events in regulatory

elements genome-wide, without needing any prior information about which proteins are

bound. By correlating ATAC-Seq patterns with other features, such as gene expression,

we are able to delineate the fine-scale architecture of the regulatory framework.

Chromatin accessibility signatures were generated for each sample individually with

detection of differential peaks between disease and control states to generate an initial

disease-state signature.

ATAC-seq was carried out as described (Milani et al., 2016). Briefly, cells were

lysed in cell lysis buffer (10mM Tris-HCI, pH7.4, 10mM NaCl, 3mM MgCl2, 0.1%

IGEPAL CA-630, protease inhibitors) on ice for 5 minutes and centrifuged at 230 rcf for

5 minutes at 40C. The pellet, containing the nuclei, was re-suspended in 25ul of 1X

Tagment DNA Buffer (Illumina). 50K nuclei were subjected to transposase reaction

(Nextera - Illumina) followed by DNA purification. The tagmented DNA was PCR

amplified using Nextera indexing primers (Illumina) and loaded on 2% agarose gel.

Nucleosome-free fragment (175-250 bp) were size selected from the gel and further

amplified by PCR to obtain the final libraries. The libraries were sequenced using the

Illumina HiSeq 2000 platform (single end, 50 bp). All samples passed quality control

checks that included morphological evaluation of nuclei, agarose gel electrophoresis of
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libraries, and real-time qPCR to assess the enrichment of open-chromatin sites. The

quality of the sequencing was assessed using FastQC and the reads were aligned to

GRCh37 genome build using BWA. We identified open chromatin regions separately for

each sample using the peak-calling software MACS2 and determined differentially open

sites using DESeq2 (FDR < 0.1). Peaks were assigned to unique genes using the

default HOMER parameters, and gene ontology analysis was performed using GOrilla

(Eden et al., 2009; Heinz et al., 2010; Zhang et al., 2008).

Data Integration

We used a hierarchical strategy for data integration. We inferred transcriptional

regulators from the combination of ATAC-seq and RNA-Seq data, and then searched

for connections among these transcriptional regulators and those detected directly by

the proteomics.

Inferring transcriptional regulators: Accessible chromatin regions, identified by

ATAC-seq, were combined with differential gene expression data to predict transcription

factors (TFs) that contribute to differences in transcriptomics profiles between C9 and

controls. Specifically, we used the union of peaks detected in ALS and control samples

to identify peaks proximal (+/-2.5kb) and distal (+/-50kb) to gene transcription start sites

(TSS), which were further divided into those with high and low CpG content. A

normalized CpG metric was used. We determined the enrichment of known motifs using

HOMER. The analysis was performed separately for high and low CpG content peaks

near (+/-10kb or 50kb) differentially expressed genes as the foreground and

corresponding regions near all known genes as the background.

Network Analysis

We used Omics Integrator to search for previously reported protein-protein

interactions that link proteins detected by mass-spectrometry and the inferred

transcription factors (Soltis et al., 2017; Tuncbag et al., 2016). Taking a network

approach, we represented proteins and TFs as nodes and assigned prizes to them

based on their experimental significance. Specifically, protein prizes were assigned

according to the fold change between C9 and control samples and prizes for TFs were
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assigned according to false discovery rate (see above). We mapped these proteins on a

network of physical interactions in which each edge was scored for reliability based on

the underlying experimental data. Our algorithm searches for disease-associated

subnetworks that retain the maximum prizes while avoiding unreliable interactions which

are formalized as the Prize-Collecting Steiner Forest problem. We aim to find a forest

solution F(VF,EF) that maximizes the objective function:

f(F) =f - p(v) - c'(e) + a - K

VeVF eEEF

The first term is the sum of prizes included in F, scaled by a model parameter P. The

second term is a cost function which serves the purpose of only including a node in F if

the objective function is minimized. The last term allows for the inclusion of K trees by

introducing a root node vo that is connected to every other node with a weight w. This

method not only performs feature selection by filtering out protein prizes that are

expensive to connect, but also identifies "Steiner" proteins that were not detected as

changing in the experiments, but are strongly implicated by the structure of the

interactome. A Steiner node is typically included when its interaction neighbors are

significant proteins identified from biological experiments. To avoid a bias toward

proteins that have many known interactions (high-degree nodes), we impose a

regularization term on edges such thAt the rmst of an edge hetween nodes a and b

monotonically increases with da and db, the node degrees of a and b:

da * db

c'(e) = c(e)+ a (N - da - 1)(N - db - 1) + da - db'

This regularization term corresponds to the probability that an edge exists between a

and b given the number of nodes in the interactome, N, and the degrees of a and b. c(e)

is the cost of the edge which is inversely related to the amount of experimental evidence

supporting the physical interaction between a and b given by iReflndex (Razick et al.,

2008). Finally, we acknowledge that the algorithm is susceptible to noise in the

interactome, so we ran the experiment 100 times with randomly added noise to the

interactome and chose the top 400 nodes that appeared most frequently and removed

any disconnected nodes. Additionally, we assessed the specificity of the network by

assigning the input prize values to random nodes in the interactome and measuring the
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frequency that each node appears. We repeated these experiments for a parameter grid

and selected a network that 1) performed feature selection (i.e., did not include the

entire input prize list), 2) was specific (as determined by the calculations using randomly

assigned prizes), and 3) had a degree distribution that matched that of the input prize

file. As C90RF72 was not detected in the proteomics measurements, we forced

C90RF72 inclusion in the network by artificially assigning it a large prize. Network

nodes were then sorted by subcellular location based on the Compartments database

and plotted in Cytoscape (Binder et al., 2014).

Drosophila Screen

Drosophila orthologs of human DEGs were identified using DIOPT, and

transgenic fly lines knocking-down or overexpressing these genes downstream of UAS

sites for GAL4-specific modulation were obtained from the Bloomington Drosophila

Stock Center (Hu et al., 2011). These modifiers were crossed to flies overexpressing

the hexanucleotide repeat expansion (HRE) in the eye [GMR Gal4; UAS-

(G4C2)30/CyO]. Progeny co-expressing both the HRE and putative modifier were

collected within 24 hours of eclosion and aged at 250C and compared to control flies of

the same genetic background. A relative modification index, ranging from -4 to +4, was

used to assess eye degeneration where -4 represented complete rescue and +4

represented no eye (Zhang et al., 2015). A score of 0 represents no effect of the tested

modifier. Ommatidial structure, interommatidial bristles, necrosis, loss of pigmentation,

and overall morphology of the eye were assessed during scoring. Only female flies were

scored due to male flies displaying a higher degree of variability. All experimental

modifiers were tested with 3 biological replicates with their eye degeneration scores

averaged. If a fly cross failed to eclose, the subsequent score was marked 'lethal'.

Selected strong enhancers and suppressors were retested with GMR Gal4; UAS-

(G4C2)30/CyO as well as GMR Gal4 alone, at both 250C and 290C. At 15 days,

representative female eyes were imaged using a Nikon SMZ1 500 stereomicroscope

and Lumenera INFINITY3-6UR 3.0 Megapixel camera and analyzed with Image-Pro

Insight v9.
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In some cases, a human candidate gene had multiple fly orthologs. For each

human gene, a "weighted eye score" was calculated by taking the average of all

corresponding fly orthologs, weighted by the ortholog scores as determined by the

DRSC Integrative Ortholog Prediction Tool (https://www.flyrnai.org/cgi-

bin/DRSCorthologs.pl). Note that only moderate and high ranking orthologs were

considered.

Drosophila Network Analysis

We categorized the genes that were tested in the Drosophila model into three

groups: causal, compensatory, and non-contributory. For example, we reasoned that

genes that were significantly upregulated in ALS and whose knockdown in fly

suppressed or enhanced eye degeneration were likely causal or compensatory genes,

respectively. Similarly, those that were significantly downregulated in ALS and were

enhancers or suppressors of eye degenerations were likely causal or compensatory,

respectively. Genes whose knockdown in the fly model showed little to no effect on eye

degeneration were categorized as non-contributory.

Next, we used previously annotated directed interactions that were pulled from

the ReactomeFiViz and KEGG databases (Kanehisa et al., 2017; Wu et al., 2014). The

resulting directed network was composed of X nodes connected by Y directed edges.

For any two proteins that were labeled as either causal or compensatory, we identified

all directed paths of length at most 2. Next, we only considered paths that were

concordant with our data by not allowing paths:

1) to contain genes that are not expressed in iMNs. This was defined by taking the top

70% of expressed gene transcripts across all 7 iMNs lines.

2) whose predicted effect on protein activity is discordant with measured protein

expression. For instance, if A->B, but A is up in ALS and B is down in ALS, this edge is

excluded from further analysis.

The resulting network was visualized by contracting proteins from the same

complexes or protein families into single nodes (i.e. all ribosomal subunits are

represented as one node), and the nodes were manually sorted by function and

causal/compensatory role.
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Statistical Analysis

Immunostaining: The boxplots shown in Figure B-1C are average results from

quantified images of the respective immunostains in Figure B-1 B. The healthy control

donors (CTR) comprised of n = 3 independent IPSC lines, while the C9-ALS comprised

of n = 4 C90RF72 repeat expansion donor IPSC lines. Total cells were quantified by

nuclear staining with Hoechst 33258 in n = 9 sites across a well and percent positive

cells for respective marker were calculated for each site. Average positive marker

expression was then calculated for each well. Each marker immunostain was performed

across independent well 3 times and respective average percent positive cells were

obtained for each iPSC lines. All statistical analyses for percent SM132, TuJ1, Map2a/b,

GFAP and Nestin levels were performed using unpaired t test and the differences

between CTR and C9-ALS groups were insignificant. Error bars represent SEM.

RM: Kaplan-Meier curves are constructed from individual survival times of cells

from each well and survival of cohorts of cells from each well is compared to each other

with survival or time-to-event analysis. Scripts written in R's survival package were used

to generate cumulative risk of death curves and to perform cox proportional hazard

analysis to assess the relative risk of death between the ALS and control motor

neurons. For the supplementary table, Kaplan-Meier analysis revealed that the risk of

death was not significantly high for C9-ALS lines as compared to CTR lines. In fact,

control 00iCTR (n = 318 cells) line survived less well than 28iALS (hazard ratio (HR) is

0.6, p-value < 0.001, n = 264 cells), 30iALS (HR = 0.3, p-value < 0.001, n = 413 cells)

and 52iALS (HR = is 0.54, p-value = 0.008, n = 75 cells). Similarly, control 25iCTR (n =

69 cells) line survived less well than 28iALS (HR = 0.47, p-value < 0.001, n = 264 cells),

30iALS (HR = 0.24, p-value < 0.001, n = 413 cells) and 52iALS (HR = 0.42, p-value =

0.001, n = 75 cells). Total n = 1188 cells; four experiments for OOiCTR and 25iCTR,

three experiments for 28iALS, 30iALS and 52iALS.

RNA-Seq: Generalized linear models were used with negative binomial

distribution to estimate fold change between ALS and controls samples for each gene.

Wald test was performed for hypothesis testing, which is a one-sided test. Sample size

n was 3 and 4 respectively for control and ALS.
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Proteomics: Throughout Trans Proteome Pipeline (TPP) and OpenSWATH, a 1 %

FDR cutoff was employed in identification of transitions/peptides and in OpenSWATH

matching to the peptide library. MAP DIA55 was used on MS2 normalized transition

level data obtained from OpenSWATH. Transitions falling outside of 2 standard

deviations were filtered out. Additional correlation filter of 0.2 was used to filter out any

residual outliers. Intensities of the remaining transitions were summed for peptide, and

then protein level quantification. Differential expression analysis of designated groups

was performed by MAP DIA using analysis based on a Bayesian latent variable model

with Markov random field prior. Output for differential expression included log2FC,

confidence score, FDR and log(OddsofDifferentialExpression). Log2 fold changes were

deemed significant if they had FDR at 1 % or lower, a confidence score of .95 or above,

a positive log(oddsDE) and an abs(log2FC) of .6 or above. For IPA analysis, the 924

differentially expressed proteins and their corresponding log2FC values were used, with

analysis settings for reference set: Ingenuity Knowledge Bases, direct relationships,

using all data sources, experimentally observed interactions and filtered for human

genes in primary tissues and human cell lines. For pathway enrichment analysis,

GOrilla was used (Eden et al., 2009). The DIA filtered list of 3,742 proteins was used as

the background list for analysis of target sets. A p-value threshold of 1 A-3 was used to

determine enriched GO Biological Process terms.

ATAC-Seq: Differentially open sites were called using the DESeq2 pipeline with

FDR <= 0.1.

Data integration: All GO enrichments were performed using a one-sided

hypergeometric test implemented by GOrilla. Figure B-4A - Motif enrichments were

calculated via HOMER which searches for de novo motif matches that are enriched in a

set of foreground sequences relative to a given set of background sequences using a

one-sided hypergeometric test. Figure B-5 - Enrichment of ALS-associated genes was

calculated using a one-sided hypergeometric implemented using the hypergeometric

module in Scipy vO.14. Enrichments of genes between omic assays were also

calculated using a one-sided hypergeometric test implemented using the

hypergeometric module in Scipy vO.14. For each pair of assays, the background was

the set of genes that was detected in both assays.
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Drosophila eye screen: flies were aged to 15 days after eclosion. 3 biological

replicates were carried out per cross. 15 females flies were scored per cross. The

average score of these 15 flies was taken as the average for one biological replicate.

The average of all 3 biological replicates rounded to the nearest 0.5 of a point was used

for the final rounded rough eye score.

B.6 References

Abel, 0., Shatunov, A., Jones, A.R., Andersen, P.M., Powell, J.F., and Al-Chalabi, A.
(2013). Development of a smartphone app for a genetics website: The amyotrophic
lateral sclerosis online genetics database (ALSoD). J. Med. Internet Res. 1, e18.

Agarwal, V., Bell, G.W., Nam, J.-W., and Bartel, D.P. (2015). Predicting effective
microRNA target sites in mammalian mRNAs. Elife 4.

Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., and Hamosh, A. (2015).
OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an Online catalog of
human genes and genetic disorders. Nucleic Acids Res. 43, D789-98.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-A Python framework to work with
high-throughput sequencing data. Bioinformatics 31, 166-169.

Auton, A., Abecasis, G.R., Altshuler, D.M., Durbin, R.M., Bentley, D.R., Chakravarti, A.,
Clark, A.G., Donnelly, P., Eichler, E.E., Flicek, P., et al. (2015). A global reference
for human genetic variation. Nature 526, 68-74.

Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F.,
Soboleva, A., Tomashevsky, M., Marshall, K.A., et al. (2009). NCBI GEO: Archive
for high-throughput functional genomic data. Nucleic Acids Res. 41, D991-5.

Bhinge, A., Namboori, S.C., Zhang, X., VanDongen, A.M.J., and Stanton, L.W. (2017).
Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as
a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis. Stem Cell Reports
8, 856-869.

Binder, J.X., Pletscher-Frankild, S., Tsafou, K., Stolte, C., O'Donoghue, S.l., Schneider,
R., and Jensen, L.J. (2014). COMPARTMENTS: Unification and visualization of
protein subcellular localization evidence. Database bau012.

Bossis, G., Malnou, C.E., Farras, R., Andermarcher, E., Hipskind, R., Rodriguez, M.,
Schmidt, D., Muller, S., Jariel-Encontre, I., and Piechaczyk, M. (2005). Down-
Regulation of c-Fos/c-Jun AP-1 Dimer Activity by Sumoylation. Mol. Cell. Biol. 25,
6964-6979.

Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M.,
Karczewski, K.J., Park, J., Hitz, B.C., Weng, S., et al. (2012). Annotation of
functional variation in personal genomes using RegulomeDB. Genome Res. 22,
1790-1797.

Brown, R., and Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. N. Engl. J. Med.
377, 162-172.

Chodniewicz, D., and Klemke, R.L. (2004). Regulation of integrin-mediated cellular
responses through assembly of a CAS/Crk scaffold. Biochim. Biophys. Acta - Mol.
Cell Res. 1692, 63-76.

173



Chun, S., and Fay, J.C. (2009). Identification of deleterious mutations within three
human genomes. Genome Res. 19, 1553-1561.

Corbier, C., and Sellier, C. (2017). C90RF72 is a GDP/GTP exchange factor for Rab8
and Rab39 and regulates autophagy. Small GTPases 8, 181-186.

Coyne, A.N., Siddegowda, B.B., Estes, P.S., Johannesmeyer, J., Kovalik, T., Daniel,
S.G., Pearson, A., Bowser, R., and Zarnescu, D.C. (2014). Futsch/MAP1B mRNA Is
a Translational Target of TDP-43 and Is Neuroprotective in a Drosophila Model of
Amyotrophic Lateral Sclerosis. J. Neurosci. 34, 15962-15974.

Delic, V., Kurien, C., Cruz, J., Zivkovic, S., Barretta, J., Thomson, A., Hennessey, D.,
Joseph, J., Ehrhart, J., Willing, A.E., et al. (2018). Discrete mitochondrial aberrations
in the spinal cord of sporadic ALS patients. J. Neurosci. Res. 96, 1353-1366.

Deneen, B., Ho, R., Lukaszewicz, A., Hochstim, C.J., Gronostajski, R.M., and
Anderson, D.J. (2006). The Transcription Factor NFIA Controls the Onset of
Gliogenesis in the Developing Spinal Cord. Neuron 52, 953-968.

DePristo, M.A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J.R., Hartl, C.,
Philippakis, A.A., Del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework
for variation discovery and genotyping using next-generation DNA sequencing data.
Nat. Genet. 43, 491-498.

Devlin, A.C., Burr, K., Borooah, S., Foster, J.D., Cleary, E.M., Geti, I., Vallier, L., Shaw,
C.E., Chandran, S., and Miles, G.B. (2015). Human iPSC-derived motoneurons
harbouring TARDBP or C90RF72 ALS mutations are dysfunctional despite
maintaining viability. Nat. Commun. 6, 5999.

Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W.,
Croft, G.F., Saphier, G., Leibel, R., Goland, R., et al. (2008). Induced pluripotent
stem cells generated from patients with ALS can be differentiated into motor
neurons. Science (80-. ). 321, 1218-1221.

Donnelly, C.J., Zhang, P.W., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S.,
Daley, E.L., Poth, E.M., Hoover, B., Fines, D.M., et al. (2013). RNA Toxicity from the
ALS/FTD C9ORF72 Expansion Is Mitigated by AntisnsP Intprvpntinn Neuron 80,
415-428.

Ebert, A.D., Yu, J., Rose, F.F., Mattis, V.B., Lorson, C.L., Thomson, J.A., and
Svendsen, C.N. (2009). Induced pluripotent stem cells from a spinal muscular
atrophy patient. Nature 457, 277-280.

Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: A tool for
discovery and visualization of enriched GO terms in ranked gene lists. BMC
Bioinformatics 10, 48.

Edens, B.M., Yan, J., Miller, N., Deng, H.-X., Siddique, T., and Ma, Y.C. (2017). A novel
ALS-associated variant in UBQLN4 regulates motor axon morphogenesis. Elife 6,
e25453.

Emde, A., Eitan, C., Liou, L.-L., Libby, R.T., Rivkin, N., Magen, I., Reichenstein, I.,
Oppenheim, H., Eilam, R., Silvestroni, A., et al. (2015). Dysregulated miRNA
biogenesis downstream of cellular stress and ALS-causing mutations: a new
mechanism for ALS. EMBO J. 34, 2633-2651.

Fadista, J., Oskolkov, N., Hansson, 0., and Groop, L. (2017). LoFtool: A gene
intolerance score based on loss-of-function variants in 60 706 individuals.
Bioinformatics 33, 471-474.

174



Farrer, L.A., Cupples, A.L., Kukull, W. a, Mayeux, R., Myers, R.H., Pericak-vance, M. a,
Farrer, L. a, Cupples, L.A., Haines, J.L., Hyman, B., et al. (1997). Effects of Age ,
Sex , and Ethnicity on the Association Between Apolipoprotein E Genotype and
Alzheimer Disease. JAMA J. Am. Med. Assoc. 278, 1349-1356.

Finkbeiner, S., Frumkin, M., and Kassner, P.D. (2015). Cell-based screening: Extracting
meaning from complex data. Neuron 86, 160-174.

Freibaum, B.D., Lu, Y., Lopez-Gonzalez, R., Kim, N.C., Almeida, S., Lee, K.H.,
Badders, N., Valentine, M., Miller, B.L., Wong, P.C., et al. (2015). GGGGCC repeat
expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129-
133.

Fujimori, K., Ishikawa, M., Otomo, A., Atsuta, N., Nakamura, R., Akiyama, T., Hadano,
S., Aoki, M., Saya, H., Sobue, G., et al. (2018). Modeling sporadic ALS in iPSC-
derived motor neurons identifies a potential therapeutic agent. Nat. Med. 24, 1579-
1589.

Fuller, H.R., Mandefro, B., Shirran, S.L., Gross, A.R., Kaus, A.S., Botting, C.H., Morris,
G.E., and Sareen, D. (2016). Spinal Muscular Atrophy Patient iPSC-Derived Motor
Neurons Have Reduced Expression of Proteins Important in Neuronal Development.
Front. Cell. Neurosci. 9, 506.

Green, R.C., Berg, J.S., Grody, W.W., Kalia, S.S., Korf, B.R., Martin, C.L., McGuire,
A.L., Nussbaum, R.L., Daniel, J.M.O., Ormond, K.E., et al. (2013). American College
of Medical Genetics and Genomics ACMG Recommendations for Reporting of
Incidental Findings in Clinical Exome and Genome Sequencing. Genet. Med. 15,
565-574.

Griffiths-Jones, S. (2004). The microRNA Registry. Nucleic Acids Res. 32, D1 09-11.
Griffiths-Jones, S. (2005). miRBase: microRNA sequences, targets and gene

nomenclature. Nucleic Acids Res. 34, D140-4.
Griffiths-Jones, S., Saini, H.K., Van Dongen, S., and Enright, A.J. (2008). miRBase:

Tools for microRNA genomics. Nucleic Acids Res. 36, D1 54-8.
Hanagasi, H.A., Giri, A., Kartal, E., Guven, G., Bilgig, B., Hauser, A.K., Emre, M.,

Heutink, P., Basak, N., Gasser, T., et al. (2016). A novel homozygous DJ1 mutation
causes parkinsonism and ALS in a Turkish family. Park. Relat. Disord. 29, 117-120.

Hardiman, 0., Al-Chalabi, A., Chio, A., Corr, E., Logroscino, G., Robberecht, W., Shaw,
P., Simmons, Z., and van den Berg, L. (2017). Amyotrophic lateral sclerosis. Nat.
Rev. Dis. Prim. 3, 17071.

Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F.,
Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al. (2012). GENCODE: The
reference human genome annotation for the ENCODE project. Genome Res. 22,
1760-1774.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre,
C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining
transcription factors prime cis-regulatory elements required for macrophage and B
cell identities. Mol. Cell 38, 576-589.

Hofmann, W.A., Arduini, A., Nicol, S.M., Camacho, C.J., Lessard, J.L., Fuller-Pace, F.
V., and De Lanerolle, P. (2009). SUMOylation of nuclear actin. J. Cell Biol. 186,
193-200.

Holewinski, R.J., Parker, S.J., Matlock, A.D., Venkatraman, V., and Van Eyk, J.E.

175



(2016). Methods for SWATHTM: Data Independent Acquisition on TripleTOF Mass
Spectrometers. Methods Mol. Biol. 1410, 265-279.

Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon, N., and Mohr,
S.E. (2011). An integrative approach to ortholog prediction for disease-focused and
other functional studies. BMC Bioinformatics 12, 357.

Itan, Y., Shang, L., Boisson, B., Patin, E., Bolze, A., Moncada-V6Iez, M., Scott, E.,
Ciancanelli, M.J., Lafaille, F.G., Markle, J.G., et al. (2015). The human gene damage
index as a gene-level approach to prioritizing exome variants. Proc. NatI. Acad. Sci.
112, 13615-13620.

Ji, Z., Degerny, C., Vintonenko, N., Deheuninck, J., Foveau, B., Leroy, C., Coll, J.,
Tulasne, D., Baert, J.L., and Fafeur, V. (2007). Regulation of the Ets-1 transcription
factor by sumoylation and ubiquitinylation. Oncogene 26, 395-406.

Jovi66, A., Mertens, J., Boeynaems, S., Bogaert, E., Chai, N., Yamada, S.B., Paul,
J.W., Sun, S., Herdy, J.R., Bieri, G., et al. (2015). Modifiers of C9orf72 dipeptide
repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat.
Neurosci. 18, 1226-1229.

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG:
New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.
45, D353-D361.

Kirk, J.A., Chakir, K., Lee, K.H., Karst, E., Holewinski, R.J., Pironti, G., Tunin, R.S.,
Pozios, I., Abraham, T.P., De Tombe, P., et al. (2015). Pacemaker-induced transient
asynchrony suppresses heart failure progression. Sci. Transl. Med. 7, 319ra207.

Koscielny, G., An, P., Carvalho-Silva, D., Cham, J.A., Fumis, L., Gasparyan, R., Hasan,
S., Karamanis, N., Maguire, M., Papa, E., et al. (2017). Open Targets: A platform for
therapeutic target identification and Validation. Nucleic Acids Res. 45, D985-94.

Lagoutte, E., Villeneuve, C., Lafanechbre, L., Wells, C.M., Jones, G.E., Chavrier, P.,
and Ross6, C. (2016). LIMK Regulates Tumor-Cell Invasion and Matrix Degradation
Through Tyrosine Phosphorylation of MT1-MMP. Sci. Rep. 6, 24925.

Landrum, M.J., Lee, J.M., Benson, M., Brown, G., Chao, C., Chitipiralla, S. Gu, B..
Hart, J., Hoffman, D., Hoover, J., et al. (2016). ClinVar: Public archive of
interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862-8.

Lee, S.W., Lee, M.H., Park, J.H., Kang, S.H., Yoo, H.M., Ka, S.H., Oh, Y.M., Jeon, Y.J.,
and Chung, C.H. (2012). SUMOylation of hnRNP-K is required for p53-mediated
cell-cycle arrest in response to DNA damage. EMBO J. 31, 4441-4452.

Lek, M., Karczewski, K.J., Minikel, E. V, Samocha, K.E., Banks, E., Fennell, T.,
O'Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis
of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291.

Lev, N., Barhum, Y., Lotan, I., Steiner, I., and Offen, D. (2015). DJ-1 Knockout
augments disease severity and shortens survival in a mouse model of ALS. PLoS
One 10, e0117190.

Li, M.X., Gui, H.S., Kwan, J.S.H., Bao, S.Y., and Sham, P.C. (2012). A comprehensive
framework for prioritizing variants in exome sequencing studies of Mendelian
diseases. Nucleic Acids Res. 40, e53.

Li, M.X., Kwan, J.S.H., Bao, S.Y., Yang, W., Ho, S.L., Song, Y.Q., and Sham, P.C.
(2013). Predicting Mendelian Disease-Causing Non-Synonymous Single Nucleotide
Variants in Exome Sequencing Studies. PLoS Genet. 9, e1003143.

176



Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Luan, Z., Liu, Y., Stuhlmiller, T.J., Marquez, J., and Garcia-Castro, M.I. (2013).
SUMOylation of Pax7 is essential for neural crest and muscle development. Cell.
Mol. Life Sci. 70, 1793-1806.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 20, 1297-1303.

McNeish, J., Gardner, J.P., Wainger, B.J., Woolf, C.J., and Eggan, K. (2015). From Dish
to Bedside: Lessons Learned while Translating Findings from a Stem Cell Model of
Disease to a Clinical Trial. Cell Stem Cell 17, 8-10.

Milani, P., Escalante-Chong, R., Shelley, B.C., Patel-Murray, N.L., Xin, X., Adam, M.,
Mandefro, B., Sareen, D., Svendsen, C.N., and Fraenkel, E. (2016). Cell freezing
protocol suitable for ATAC-Seq on motor neurons derived from human induced
pluripotent stem cells. Sci. Rep. 6, 25474.

Moller, A., Bauer, C.S., Cohen, R.N., Webster, C.P., and De Vos, K.J. (2017).
Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal
transport of mitochondria by reducing Mirol levels. Hum. Mol. Genet. 26, 4668-
4679.

Ng, B., White, C.C., Klein, H.U., Sieberts, S.K., McCabe, C., Patrick, E., Xu, J., Yu, L.,
Gaiteri, C., Bennett, D.A., et al. (2017). An xQTL map integrates the genetic
architecture of the human brain's transcriptome and epigenome. Nat. Neurosci. 20,
1418-1426.

Ng, S.Y., Soh, B.S., Rodriguez-Muela, N., Hendrickson, D.G., Price, F., Rinn, J.L., and
Rubin, L.L. (2015). Genome-wide RNA-Seq of Human Motor Neurons Implicates
Selective ER Stress Activation in Spinal Muscular Atrophy. Cell Stem Cell 17, 569-
584.

Nizzardo, M., Simone, C., Dametti, S., Salani, S., Ulzi, G., Pagliarani, S., Rizzo, F.,
Frattini, E., Pagani, F., Bresolin, N., et al. (2015). Spinal muscular atrophy
phenotype is ameliorated in human motor neurons by SMN increase via different
novel RNA therapeutic approaches. Sci. Rep. 5, 11746.

Paez-Colasante, X., Figueroa-Romero, C., Sakowski, S., Goutman, S., and Feldman, E.
(2015). Amyotrophic lateral sclerosis: Mechanisms and therapeutics in the
epigenomic era. Nat. Rev. Neurol. 11, 266-279.

Palmesino, E., Rousso, D.L., Kao, T.J., Klar, A., Laufer, E., Uemura, 0., Okamoto, H.,
Novitch, B.G., and Kania, A. (2010). Foxp1 and Lhxl coordinate motor neuron
migration with axon trajectory choice by gating reelin signalling. PLoS Biol. 8,
e1000446.

Pare, B., Lehmann, M., Beaudin, M., Nordstrom, U., Saikali, S., Julien, J.P., Gilthorpe,
J.D., Marklund, S.L., Cashman, N.R., Andersen, P.M., et al. (2018). Misfolded SOD1
pathology in sporadic Amyotrophic Lateral Sclerosis. Sci. Rep. 8, 14223.

Parker, S.J., Venkatraman, V., and Van Eyk, J.E. (2016). Effect of peptide assay library
size and composition in targeted data-independent acquisition-MS analyses.
Proteomics 16, 2221-2237.

Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S., and Goldstein, D.B. (2013). Genic

177



Intolerance to Functional Variation and the Interpretation of Personal Genomes.
PLoS Genet. 9, e1003709.

Pifero, J., Bravo, A., Queralt-Rosinach, N., Guti6rrez-Sacristen, A., Deu-Pons, J.,
Centeno, E., Garcia-Garcia, J., Sanz, F., and Furlong, L.I. (2017). DisGeNET: A
comprehensive platform integrating information on human disease-associated genes
and variants. Nucleic Acids Res. 45, D833-9.

Prudencio, M., Belzil, V. V., Batra, R., Ross, C.A., Gendron, T.F., Pregent, L.J., Murray,
M.E., Overstreet, K.K., Piazza-Johnston, A.E., Desaro, P., et al. (2015). Distinct
brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci.
18,1175-1182.

Razick, S., Magklaras, G., and Donaldson, I.M. (2008). iReflndex: A consolidated
protein interaction database with provenance. BMC Bioinformatics 9, 405.

Robberecht, W., and Philips, T. (2013). The changing scene of amyotrophic lateral
sclerosis. Nat. Rev. Neurosci. 14, 248-264.

Sances, S., Bruijn, L.l., Chandran, S., Eggan, K., Ho, R., Klim, J.R., Livesey, M.R.,
Lowry, E., Macklis, J.D., Rushton, D., et al. (2016). Modeling ALS with motor
neurons derived from human induced pluripotent stem cells. Nat. Neurosci. 19, 542-
553.

Sanfilippo, C., Longo, A., Lazzara, F., Cambria, D., Distefano, G., Palumbo, M.,
Cantarella, A., Malaguarnera, L., and Di Rosa, M. (2017). CH13L1 and CH13L2
overexpression in motor cortex and spinal cord of sALS patients. Mol. Cell.
Neurosci. 85, 162-169.

Sareen, D., Ebert, A.D., Heins, B.M., McGivern, J. V., Ornelas, L., and Svendsen, C.N.
(2012). Inhibition of apoptosis blocks human motor neuron cell death in a stem cell
model of spinal muscular atrophy. PLoS One 7, e39113.

Sareen, D., O'Rourke, J.G., Meera, P., Muhammad, A.K.M.G., Grant, S., Simpkinson,
M., Bell, S., Carmona, S., Ornelas, L., Sahabian, A., et al. (2013). Targeting RNA
foci in iPSC-derived motor neurons from ALS patients with a C90RF72 repeat
expansion. Sci. Transl. Med. 5, 208ra149.

Schwarz, J.M., Rbdelsperger, C., Schuelke, M., and Seelow, D. (2010). MutationTaster
evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575-
576.

Selvaraj, B.T., Livesey, M.R., Zhao, C., Gregory, J.M., James, O.T., Cleary, E.M.,
Chouhan, A.K., Gane, A.B., Perkins, E.M., Dando, 0., et al. (2018). C90RF72
repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA
receptor-mediated excitotoxicity. Nat. Commun. 9, 347.

Shelley, B.C., Gowing, G., and Svendsen, C.N. (2014). A cGMP-applicable Expansion
Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From
Pluripotent Stem Cells or Fetal Brain Tissue. J. Vis. Exp.

Shen, S., Park, J.W., Lu, Z., Lin, L., Henry, M.D., Wu, Y.N., Zhou, Q., and Xing, Y.
(2014). rMATS: robust and flexible detection of differential alternative splicing from
replicate RNA-Seq data. Proc. Nati. Acad. Sci. U. S. A. 111, E5593-601.

Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.H., Hung, S.T., Hendricks, E., Linares,
G.R., Wang, Y., Son, E.Y., et al. (2018). Haploinsufficiency leads to
neurodegeneration in C90RF72 ALS/FTD human induced motor neurons. Nat. Med.
24, 313-325.

178



Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., and Ng, P.C. (2012). SIFT web
server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res.
40, W452-7.

Sivadasan, R., Homburg, D., Drepper, C., Frank, N., Jablonka, S., Hansel, A., Lojewski,
X., Sterneckert, J., Hermann, A., Shaw, P.J., et al. (2016). C90RF72 interaction with
cofilin modulates actin dynamics in motor neurons. Nat. Neurosci. 19, 1610-1618.

Skibinski, G., Nakamura, K., Cookson, M.R., and Finkbeiner, S. (2014). Mutant LRRK2
Toxicity in Neurons Depends on LRRK2 Levels and Synuclein But Not Kinase
Activity or Inclusion Bodies. J. Neurosci. 34, 418-433.

Solomon, B.D., Nguyen, A.-D., Bear, K.A., and Wolfsberg, T.G. (2013). Clinical
Genomic Database. Proc. Nati. Acad. Sci. 110, 9851-9855.

Soltis, A.R., Motola, S., Vernia, S., Ng, C.W., Kennedy, N.J., Dalin, S., Matthews, B.J.,
Davis, R.J., and Fraenkel, E. (2017). Hyper- and hypo- nutrition studies of the
hepatic transcriptome and epigenome suggest that PPARa regulates anaerobic
glycolysis. Sci. Rep. 7, 174.

Song, F., Chiang, P., Wang, J., Ravits, J., and Loeb, J.A. (2012). Aberrant neuregulin 1
signaling in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 71, 104-115.

Suttkus, A., Morawski, M., and Arendt, T. (2016). Protective Properties of Neural
Extracellular Matrix. Mol. Neurobiol. 53, 73-82.

Tennessen, J.A., Bigham, A.W., O'Connor, T.D., Fu, W., Kenny, E.E., Gravel, S.,
McGee, S., Do, R., Liu, X., Jun, G., et al. (2012). Evolution and functional impact of
rare coding variation from deep sequencing of human exomes. Science (80-. ). 337,
64-69.

Teo, G., Kim, S., Tsou, C.C., Collins, B., Gingras, A.C., Nesvizhskii, A.I., and Choi, H.
(2015). MapDIA: Preprocessing and statistical analysis of quantitative proteomics
data from data independent acquisition mass spectrometry. J. Proteomics 129, 108-
120.

Tuncbag, N., Gosline, S.J.C., Kedaigle, A., Soltis, A.R., Gitter, A., and Fraenkel, E.
(2016). Network-Based Interpretation of Diverse High-Throughput Datasets through
the Omics Integrator Software Package. PLoS Comput. Biol. 12, e1004879.

Uhlen, M., Fagerberg, L., Hallstr6m, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A.,
Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., et al. (2015). Proteomics.
Tissue-based map of the human proteome. Science (80-. ). 347, 1260419.

Vazquez-Arango, P., Vowles, J., Browne, C., Hartfield, E., Fernandes, H.J.R.,
Mandefro, B., Sareen, D., James, W., Wade-Martins, R., Cowley, S.A., et al. (2016).
Variant Ul snRNAs are implicated in human pluripotent stem cell maintenance and
neuromuscular disease. Nucleic Acids Res. 44, 10960-10973.

Wainger, B.J., Kiskinis, E., Mellin, C., Wiskow, 0., Han, S.S.W., Sandoe, J., Perez,
N.P., Williams, L.A., Lee, S., Boulting, G., et al. (2014). Intrinsic membrane
hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell
Rep. 7, 1-11.

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: Functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38,
e164.

Wei, F., Sch6ler, H.R., and Atchison, M.L. (2007). Sumoylation of Oct4 enhances its
stability, DNA binding, and transactivation. J. Biol. Chem. 282, 21551-21560.

179



Wilson, J.M. (2005). Conditional Rhythmicity of Ventral Spinal Interneurons Defined by
Expression of the Hb9 Homeodomain Protein. J. Neurosci. 25, 5710-5719.

Wroe, R., Wai-Ling Butler, A., Andersen, P.M., Powell, J.F., and Al-Chalabi, A. (2008).
ALSOD: The amyotrophic lateral sclerosis online database. Amyotroph. Lateral
Scler. 9, 249-250.

Wu, G., Dawson, E., Duong, A., Haw, R., and Stein, L. (2014). ReactomeFlViz: a
Cytoscape app for pathway and network-based data analysis. F1000Research 3,
146.

Xu, Z., Poidevin, M., Li, X., Li, Y., Shu, L., Nelson, D.L., Li, H., Hales, C.M., Gearing, M.,
Wingo, T.S., et al. (2013). Expanded GGGGCC repeat RNA associated with
amyotrophic lateral sclerosis and frontotemporal dementia causes
neurodegeneration. Proc. Natl. Acad. Sci. 110, 7778-7783.

Zhang, K., Donnelly, C.J., Haeusler, A.R., Grima, J.C., Machamer, J.B., Steinwald, P.,
Daley, E.L., Miller, S.J., Cunningham, K.M., Vidensky, S., et al. (2015). The C9orf72
repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56-61.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E.,
Nussbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis
of ChIP-Seq (MACS). Genome Biol. 9, R137.

180




