
The Benefits and Costs of Writing a POSIX

Kernel in a High-Level Language MASSACHUSES INSTITUTE
.OF TECHNOLOGY

by JUN 13 2019
Cody Cutler

B.S., University of Utah (2012) LIBRARIES
M.S., Massachusetts Institute of Technology (2014) ARCHIVEg

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

Massachusetts Institute of Technology 2019. All rights reserved.

Signature redacted
Author..

Department of Electrical Engineering and Computer Science
May 23, 2019

Signature redacted
Certified by

Robert T. Morris
Professor of Electrical Engineeging an0 omputer Science

S,/ Thesis Supervisor

Signature redacted
C ertified by

I V V V j M. Frans Kaashoek

Charles Piper Professor of Elec rical Engineering and Computer Science
Thesis Supervisor

Signature redacted
A ccepted by

' IUCLeslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

The Benefits and Costs of Writing a POSIX
Kernel in a High-Level Language

by
Cody Cutler

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

This dissertation presents an evaluation of the use of a high-level language (HLL)
with garbage collection to implement a monolithic POSIX-style kernel. The goal is to
explore if it is reasonable to use an HLL instead of C for such kernels, by examining
performance costs, implementation challenges, and programmability and safety benefits.

This dissertation contributes Biscuit, a kernel written in Go that implements enough
of POSIX (virtual memory, mmap, TCP/IP sockets, a logging file system, poll, etc.) to
execute significant applications. Biscuit makes liberal use of Go's HLL features (closures,
channels, maps, interfaces, garbage collected heap allocation), which subjectively made
programming easier. The most challenging puzzle was handling the possibility of running
out of kernel heap memory; Biscuit benefited from the analyzability of Go source to
address this challenge.

On a set of kernel-intensive benchmarks (including NGINX and Redis) the fraction
of kernel CPU time Biscuit spends on HLL features (primarily garbage collection and
thread stack expansion checks) ranges up to 13%. The longest single GC-related pause
suffered by NGINX was 115 microseconds; the longest observed sum of GC delays to a
complete NGINX client request was 582 microseconds. In experiments comparing nearly
identical system call, page fault, and context switch code paths written in Go and C, the
Go version was 5% to 15% slower.

Thesis Supervisor: Robert T. Morris
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I want to thank many people for contributing, in one way or another, to the completion of
this dissertation. First and foremost, thank you Robert and Frans, for being my mentors
and friends these past seven years, during which you taught me how to think, inspired
me with your standards, and were constant catalysts for self-improvement.

Thank you Suzanne, my wife, partner, and best friend, for your inexhaustible support
and dedication to us.

Thank you Eric Eide, Robert Ricci, Grant Ayers, and the Flux research group, for
providing such a special environment and unique opportunity for me while I was an
undergraduate. My life is greatly improved in many important ways thanks to my
interaction with you during those years.

Thank you to my parents for starting me down this road by buying a copy of Running
MS-DOS QBasic for a curious kid and, of course, for everything else.

Finally, I thank the following individuals:

Austin T. Clements - Adam Belay - Julian Straub - Malte Schwarzkopf - Eddie Kohler
Nickolai Zeldovich - Jonathan Perry e Eugene Wu * Albert Kim * Neha Narula

David Lazar - Srivatsa Bhat - Xi Wang - Yandong Mao - Taesoo Kim - Haogang Chen
Ramesh Chandra - Keith Winstein- Emily Stark - Rasha Eqbal e Tej Chajed

Jon Gjengset e Jonathan Behrens - Atalay Mert Ileri - Akshay Narayan
Amy E. Ousterhout * Mike Hibler - Anton Burtsev - Ryan Jackson * Tarun Prabhu

Jonathan Duerig Matt Strum - Gary Wong - David Johnson e Matthew Flatt
Joe Zachary - Bob Kessler - Erik Brunvand - Christopher and Kathryn Porter

Irwin Mark and Joan Klein Jacobs - Lisa Zaelit - Phillip and Tricia Collins
Adam Zabriskie - Andrew Brown e Jordan Crook e Chris Edwards - Linda Mellor

Ryan Thompson - Matt Shelley- Mike Holly * Patrick Hagen - Stephen Fiskell
James Thayne - Chad Ostler - Nina - Ralph Cutler - Marty Reimschissel

* * *

This dissertation extends work previously published in the following paper:

Cody Cutler, M. Frans Kaashoek, and Robert T Morris. The benefits and costs
of writing a POSIX kernel in a high-level language. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
Carlsbad, California, October 2018.

5

6

Contents

1 Introduction 13

1.1 C, for better or worse 13

1.2 An opportunity. 14

1.3 B iscu it . 15

1.4 Results . 16

1.5 Contributions . 17

1.6 O utline . 18

2 Related work 19

2.1 Kernels in high-level languages . 19

2.2 High-level systems programming languages 19

2.3 Memory allocation . 20

2.4 Kernel heap exhaustion . 21

2.5 Computing memory allocation bounds 21

3 Overview 23

3.1 Boot and Go runtime 23

3.2 Processes and kernel goroutines . 23

3.3 Interrupts . 24

3.4 Multi-core and synchronization . 25

3.5 Virtual memory . 25

3.6 File system . 25

3.7 Network stack . 26

3.8 Lim itations . 26

4 Garbage collection 27

4.1 G o's collector . 27

4.2 Garbage collection cost model . 28

4.3 Biscuit's heap size . 29

7

5 Avoiding heap exhaustion 31

5.1 Approach: reservations 31

5.2 How Biscuit reserves 32

5.3 Static analysis to find s . 33

5.3.1 Not just any s will do . 34

5.3.2 Reasoning about maximum simultaneously live data 35

5.3.3 Approximating liveness via the call graph 36

5.3.4 MAXLIVE operation. 38

5.3.5 MAXLIVE example . 38

5.3.6 MAxLIVE correctness................................. 40

5.3.7 MAXLIVE implementation . 41

5.3.8 Special allocations . 41

5.3.9 Handling loops . 41

5.3.10 Kernel threads 42

5.3.11 Killer thread . 42

5.4 Lim itations . 42

5.5 Heap exhaustion summary . 43

6 Implementation 45

7 Evaluation 49

7.1 HLL benefits 49

7.1.1 Biscuit's use of HLL features 49

7.1.2 Potential to reduce bugs 51

7.2 HLL performance costs . 52

7.2.1 Experimental Setup . 52

7.2.2 H LL tax . 54

7.2.3 GC delays . 55

7.2.4 Sensitivity to heap size . 55

7.2.5 Go versus C . 56

7.2.6 Biscuit versus Linux . 57

7.2.7 Handling kernel heap exhaustion . 58

7.2.8 Lock-free lookups . 60

7.2.9 Scalability . 61

8 Discussion and future work 65

8.1 HLL kernel challenges . 65

8.1.1 GC CPU overhead . 66

8.1.2 GC pauses . 67

8

8.2 HLL kernel benefits 67

8.2.1 Increased productivity 67

8.2.2 Memory-safety 67

8.2.3 Simpler concurrency................................. 68

8.2.4 Simpler lock-free sharing............................... 68

8.3 Future work ... 69

9 Conclusions 71

9

10

Figures and tables

1-1 Biscuit's high-level design

3-1 Biscuit's overall structure

5-1

5-2

5-3

5-4

Pseudo code for heap reservations in Biscuit

Example call graph with allocations

Example call graph and state of MAXLIVE analysis .

Pseudo code for MAXLIVE

6-1 Approximate lines of code in Biscuit

6-2 Biscuit's 58 system calls

7-1 Use of Go HLL features in Biscuit

7-2 Linux kernel CVEs which Biscuit's GC would prevent

7-3 Measured costs of HLL features in Biscuit

7-4 CMailbench throughput on Biscuit with different ker

7-5 Application throughput of Biscuit and Linux

. 16

. 24

. 3 3

. 3 5

. 3 7

. 3 9

. 4 6

. 4 6

. 50

. 5 1

. 54

nel heap sizes 55

. 58

7-6 The amount of live heap data during execution of an abusive program . . 59

7-7 CMailbench performance with and without directory cache read-locks . . 60

7-8 The performance of CMailbench with increasing core counts on Biscuit . . 61

7-9 The performance of CMailbench with increasing core counts on Linux . . 62

7-10 The throughput of Pstat with increasing core counts 63

7-11 The fraction of all CPU cycles spent on GC during the Pstat experiment . . 64

8-1 A simple case where threads share data . 68

11

12

1 Introduction

This dissertation presents an evaluation of the use of a garbage-collected programming

language to build a monolithic POS[X operating system kernel by examining performance

costs, implementation challenges, and programmability and safety benefits.

The rest of this chapter explains the main reasons why widely-used kernels are written

in C, explains why the question of whether to use a garbage-collected language instead

of C for kernel implementation is worth investigating, and summarizes this dissertation's

contributions.

1.1 C, for better or worse

Efficient use of hardware resources is one of the main goals of widely-used operating

system kernels. Applications depend on the kernel to implement many fundamental

operations; if the kernel's implementation of one of those operations is slow (for example,

reading bytes from a file), all user programs using that operation will inherit that

inefficiency, potentially reducing performance below acceptable bounds.

The goal of good kernel performance is one of the main reasons why widely-used

operating system kernels are written in the C programming language. C gives the pro-

grammer a high degree of control over the generated program, providing opportunities to

optimize for performance. For example, in C the programmer is responsible for memory

allocation and deallocation. This allows the programmer to allocate an object on the

stack instead of the heap in some situations, improving performance. Furthermore, C has

few implicit, hidden costs: it is mostly obvious which instructions the compiler will emit

to implement a C program. This close correspondence between source and executable

can make finding performance problems more straightforward.

Another main goal of operating systems is to be robust. Bugs in the kernel are

particularly damaging since a kernel bug may crash any number of user applications,

corrupt user data, or provide a security hole for an unauthorized user to gain access to

system resources.

13

Unfortunately it is challenging to build robust software in C, even for experts. Unini-

tialized variables and out-of-bounds and use-after-free accesses are some of the well-

known sources of bugs that C programmers struggle with [15, 52, 65]. The result is

system failures, security vulnerabilities, and programmer effort spent debugging and

fixing software.

Memory-safety bugs (bugs where the kernel reads or writes the memory of an object

other than the one intended by the programmer) in particular are a serious problem for C

kernels and frequently result in security vulnerabilities. At least 40 Linux kernel security

vulnerabilities were reported in 2017 that enable an attacker to execute malicious code

in the kernel [47]; all 40 security vulnerabilities were caused by memory-safety bugs.

Furthermore, seven of the 22 publicly-disclosed Linux kernel security vulnerabilities

found by Google's Project Zero team from January 2018 to January 2019 are caused

by memory-safety bugs. Kernel memory-safety bugs are enough of a problem that the

Linux kernel includes a memory checker which detects some use-after-free and out-of-

bounds accesses at runtime [60]. Nevertheless, Linux developers routinely discover and

fix use-after-free bugs. For example, Linux has at least 36 commits from January to April

of 2018 for the specific purpose of fixing use-after-free bugs.

1.2 An opportunity

Garbage-collected programming languages (hereafter referred to as "HLLs" or "high-

level languages") automatically manage memory allocation and deallocation without any

cooperation from the programmer. Together with runtime bounds checks, HLLs eliminate

memory-safety bugs from software, preventing a class of common security vulnerabilities.

None of the previously mentioned Linux kernel memory-safety bugs would have been

able to execute malicious code had the kernel been written in a memory-safe language.

HLLs also have the potential to increase programmer productivity. Convenient lan-

guage features like automatic allocation and deallocation, abstraction, type-safety, native

complex data types, multi-value returns, closures, and language support for threads and

synchronization, reduce the cognitive burden on programmers. Programmers are able to

focus more on the important problems and less on minor details and debugging. Although

it is difficult to meaningfully measure an HLL's effect on programmer productivity, this

benefit is likely significant.

However, HLLs come with a price. Important mechanisms, like memory allocation,
are hidden from the programmer in the runtime and the enforced abstraction and safety

may forbid certain kinds of designs which are nevertheless safe and preferred by the

programmer. Garbage collection (GC) can have a significant performance cost, reducing

the amount of CPU cycles available to the kernel and user applications. This CPU overhead

14

is a result of the GC's periodic scanning of all allocated heap objects to identify heap

memory that is safe to free. Other language features also cost CPU cycles, like bounds

checks, nil pointer checks, and reflection. In addition to the CPU overhead, GC can

cause seemingly random pauses during execution. An unluckily-timed GC pause during

a latency-sensitive task, like redrawing a mouse pointer or processing an urgent client

request, could degrade the quality of service. Furthermore, GC requires more RAM than

does the manual allocation typically used in a kernel: in order to achieve competitive

performance, the GC must have enough free heap RAM to keep the frequency of GCs

low enough. All things considered, the net effect of an HLL on kernel performance is

complex. If the performance cost is large enough, the downsides of using an HLL to build

a kernel may outweigh the benefits.

Although there are programming languages which provide memory-safety without

the use and thus without the downsides of garbage collection (e.g., Rust [49]), this

dissertation focuses on the use of a language with garbage collection because of the

additional convenience that it provides: garbage collection provides memory-safety

without requiring any cooperation from the programmer. Furthermore, we wanted to

explore whether garbage collection simplifies concurrent programming and the imple-

mentation of lock-free data structures, which are common in optimized operating system

kernels [45].

The choice of whether to use an HLL to build an operating system kernel is therefore

a trade-off with programmer productivity and system robustness on one hand and

performance loss on the other. Since the potential benefits of using HLLs to build operating

system kernels could be significant, it is important for kernel developers to understand

this trade-off.

1.3 Biscuit

The goal of this dissertation is therefore to help kernel developers better understand

the trade-off of using an HLL to build operating system kernels that can run existing

applications with good performance. This dissertation does so by providing a detailed

evaluation of the performance costs, implementation challenges, and programmability

and safety benefits of the use of an HLL to build a monolithic POSIX operating system

kernel. This work is, to our knowledge, the first comprehensive performance evaluation

of an HLL kernel that is complete enough to run widely-used, kernel-intensive POSIX

applications with good performance.

We built Biscuit, a new kernel in Go [27] for x86-64 hardware. Go is a type-safe

language with garbage collection. Biscuit's design, shown in Figure 1-1, is similar to

that of traditional C kernels to make comparison easier. Biscuit runs significant existing

15

processes
(in C)

user threads threads
space

--------- PS ----------- APOSIX---

kernel Biscuit

space VM FS ... AHCI TCP

Go runtime

Figure 1-1: Biscuit's high-level design.

applications such as NGINX [36] and Redis [58] without source modification by exposing

a POSIX-subset system call interface. Supported features include multi-core, kernel-

supported user threads, futexes, IPC, mmap, copy-on-write fork, vnode and name caches,

a logging file system, and TCP/IP sockets. Biscuit implements two significant DMA device

drivers in Go: one for AHCI SATA disk controllers and one for Intel 82599-based Ethernet

controllers. Biscuit has nearly 30 thousand lines of Go, about 1500 lines of assembler,

and no C. We report lessons learned about use of Go in Biscuit, including ways in which

the language helped development, and situations in which it was less helpful.

A challenge we faced while building Biscuit was handling kernel heap exhaustion.

Because Go, like many HLLs, implicitly allocates and does not expose failed allocations,

Biscuit can't use the traditional method of manually checking and handling failed alloca-

tions. Instead, we use static analysis of the Biscuit source to determine how much heap

memory each system call (and other kernel activity) might need, and each system call

waits (if needed) when it starts until it can reserve the heap memory it needs. Once a

system call is allowed to continue, all allocations made are guaranteed to succeed. This

obviates the need for complex allocation failure recovery or deadlock-prone waiting for

free memory in the allocator. The use of an HLL that is conducive to static analysis made

this approach possible.

1.4 Results

We ran several kernel-intensive applications on Biscuit and measured the effects of

Go's type safety and garbage collection on kernel performance. For our benchmarks,

GC costs up to 3% of CPU. For NGINX, the longest single GC-related pause was 115

16

- - - .- .1

microseconds, and the longest total delay of a single NGINX client request (by many

individual pauses) was 582 microseconds. Other identifiable HLL performance costs

amount to about 10% of CPU.

To shed light on the specific question of C versus Go performance in the kernel, we

modified Biscuit and a C kernel to have nearly identical source-level code paths for two

benchmarks that stress system calls, page faults, and context switches. The C versions

are about 5% and 15% faster than the Go versions.

Finally, we compared the performance of Biscuit and Linux on our kernel-intensive

application benchmarks, and found that Linux is up to 10% faster than Biscuit. This

result is not solely determined by choice of language, since performance is also affected

by differences in the features, design and implementation of Biscuit and Linux. However,

the results do provide an idea of whether the absolute performance of Biscuit is in the

same league as that of a C kernel.

1.5 Contributions

The main contributions of this dissertation are:

* Biscuit, a kernel written in Go with good performance.

- A novel scheme for coping with kernel heap exhaustion which is deadlock-free and

requires little recovery code, unlike the traditional method, at the cost of more

frequently delayed system calls when free memory is low.

- A discussion of qualitative ways in which use of an HLL for kernel development

was and was not helpful.

- Measurements of the performance tax imposed by use of an HLL when running

widely-used, kernel-intensive applications.

- A direct Go-vs-C performance comparison of equivalent code typical of that found

in a kernel.

The overall conclusion of this dissertation is that Go worked well for kernel develop-

ment and has a reasonable performance cost for our applications. Nevertheless, the choice

of whether to use Go or C to implement a kernel is a trade-off and the programmer should

consider the requirements of the project. If a primary goal is avoiding common security

pitfalls, then Go helps by avoiding some classes of security bugs (see section 7.1.2). If the

goal is to experiment with OS ideas, then Go's HLL features may help rapid exploration

of different designs (see section 7.1.1). If CPU performance is paramount, then C is the

right answer, since it is faster (see sections 7.2.2 and 7.2.3). If efficient memory use is

17

vital, then C is also the right answer: Go's garbage collector needs at least twice as much

RAM as there is live kernel heap data to run efficiently (see section 7.2.4). Finally, if

performance is merely important, consider paying the CPU and memory overhead of GC

for the safety and productivity benefits of Go.

1.6 Outline

The next chapter discusses how our work relates to prior research. Chapter 3 then

describes the design and main features of Biscuit. Next, chapter 4 details Go's garbage

collector and a cost model to explain its performance. Chapter 5 describes how Biscuit

avoids kernel heap exhaustion and chapter 6 explains details of Biscuit's implementation.

Chapter 7 presents measurements of some of the benefits and performance costs of the

HLL. Lastly, chapter 8 discusses the results in more depth and chapter 9 concludes.

Biscuit's source code is publicly available at:

https://pdos.csail.mit.edu/projects/biscuit.html

18

2 Related work

Biscuit builds on multiple areas of previous work: high-level languages in operating

systems, high-level systems programming languages, and memory allocation in the

kernel. As far as we know, the performance impact of language choice on a kernel with a

traditional architecture has not been explored.

2.1 Kernels in high-level languages

The Pilot [57] kernel and the Lisp machine [28] are early examples of use of a high-

level language (Mesa [25] and Lisp, respectively) in an operating system. Mesa lacked

garbage-collection, but it was a high-priority requirement for its successor language

Cedar [62]. The Lisp machine had a real-time garbage collector [8].

There are many research kernels written in a high-level language (e.g., Taos [63],

Spin [10], Singularity [34, 35], J-kernel [30], and KaffeOS [6, 7], House [29], the Mirage

unikernel [42], and Tock [40]). The main thrust of these projects was to explore new

ideas in operating system architecture, often enabled by the use of a type-safe high-level

language. While performance was often a concern, usually the performance in question

related to the new ideas, rather than to the choice of language. As a result, none of the

prior projects comprehensively measure the performance costs of an HLL kernel when

running widely-used, kernel-intensive POSIX applications as this dissertation does (see

section 7.2.2).

2.2 High-level systems programming languages

A number of systems-oriented high-level programming languages with type safety

and garbage collection seem suitable for kernels, including Ada [1], Go, Java, C#, and

Cyclone [38] (and, less recently, Cedar [62] and Modula-3 [50]). Other systems HLLs are

less compatible with existing kernel designs. For example, Erlang [5] is a "shared-nothing"

language with immutable objects, which would likely result in a kernel design that is

quite different from traditional C shared-memory kernels.

19

Frampton et al. introduce a framework for language extensions to support low-level

programming features in Java, applying it to a GC toolkit [24]. Biscuit's goal is efficiency

for kernels without modifying Go and must handle additional kernel challenges, such as

dealing with user and kernel space privilege levels, page tables, interrupts, and system

calls.

Several new languages have recently emerged for systems programming: D [20],
Nim(rod) [55], Go [27], and Rust [49]. There are a number of kernels in Rust [22, 23, 39-

41, 51], but none were written with the goal of comparing with C as an implementation

language. Go kernels exists but they don't target the questions that Biscuit answers. For

example, Clive [9] is a unikernel and doesn't run on the bare metal. Gopher OS doesn't

support garbage collection or goroutines [3]. The Ethos OS uses C for the kernel and Go

for user-space programs, with a design focused on security [53]. gVisor is a user-space

kernel, written in Go, that implements a substantial portion of the Linux system API to

sandbox containers [26].

2.3 Memory allocation

There is no consensus about whether a systems programming language should have

automatic garbage-collection. For example, Rust is partially motivated by the idea that

garbage collection cannot be made efficient; instead, the Rust compiler analyzes the

program to partially automate freeing of memory. This approach can make sharing data

among multiple threads or closures awkward [39].

Concurrent garbage collectors [8, 37, 43] reduce pause times by collecting while the

application runs. Go 1.10 has such a collector [33], which Biscuit uses.

Several papers have studied manual memory allocation versus automatic garbage

collection [31, 66], focusing on heap headroom memory's effect in reducing garbage col-

lection costs in user-level programs. Headroom is also important for Biscuit's performance

(sections 4.2 and 7.2.4).

Rafkind et al. added garbage collection to parts of Linux through automatic translation

of C source [56]. The authors observe that the kernel environment made this task difficult

and adapted a fraction of a uniprocessor Linux kernel to be compatible with garbage

collection. Biscuit required a fresh start in a new language, but as a result required less

programmer effort for GC compatibility and benefited from a concurrent and parallel

collector.

Linux's slab allocators [13] are specifically tuned for use in the kernel; they segregate

free objects by type to avoid re-initialization costs and fragmentation. A hypothesis in

the design of Biscuit is that Go's single general-purpose allocator and garbage collector

are suitable for a wide range of different kernel objects.

20

2.4 Kernel heap exhaustion

All kernels which dynamically allocate memory (i.e., all widely used kernels we know

of) have to cope with the possibility of running out of memory for the kernel heap. Linux

optimistically lets system calls proceed up until the point where an allocation fails. In

some cases code waits and re-tries the allocation a few times, to give an "out-of-memory"

killer thread time to find and destroy an abusive process to free memory. However, the

allocating thread cannot generally wait indefinitely: it may hold locks, so there is a

risk of deadlock if the victim of the killer thread is itself waiting for a lock [18]. As a

result Linux system calls must contain code to recover from allocation failures, undoing

any changes made so far, perhaps unwinding through many function calls. This undo

code has a history of bugs [19]. Worse, the final result will be an error return from a

system call. Once the heap is exhausted, any system call that allocates will likely fail;

few programs continue to operate correctly in the face of unexpected errors from system

calls, so the end effect may be application-level failure even if the kernel code handles

heap exhaustion correctly.

Biscuit's reservation approach yields simpler code than Linux's. Biscuit kernel heap

allocations do not fail (much as with Linux's contentious "too small to fail" rule [18, 19]),

eliminating a whole class of complex error recovery code. Instead, each Biscuit system

call reserves kernel heap memory when it starts (waiting if necessary), using a static

analysis system to decide how much to reserve. Further, Biscuit applications don't see

system call failures when the heap is exhausted; instead, they see delays.

2.5 Computing memory allocation bounds

Researchers have developed methods to calculate the amount of heap memory re-

quired by a particular program in many situations. Many approaches require a functional

language or type-system or language support [2, 16, 32, 54, 64] and so it is not obvious

how to use them in an existing language, like Go. The analysis most similar to this disser-

tation's is that of Braberman et al. [14]. Braberman's analysis, like this dissertation's, is

an inter-procedural analysis on an annotated program, which Braberman et al. evaluated

on several benchmarks that are hundreds of lines of code each. MAxLIVE demonstrates

that it is possible to quickly calculate the amount of heap memory required for execution

of system calls in an operating system kernel with 28 thousand lines of code.

21

22

3 Overview

Biscuit's main purpose is to help evaluate the practicality of writing a kernel in a high-

level language. Its design is similar to common practice in monolithic UNIX-like kernels,

to make comparison simpler. Biscuit runs on 64-bit x86 hardware and is written in

Go. It uses a modified version of the Go 1.10 runtime implementation; the runtime

is written in Go with some assembly. Biscuit adds more assembly to handle boot and

entry/exit for system calls and interrupts. There is no C. This section briefly describes

Biscuit's components, focusing on areas in which use of Go affected the design and

implementation.

3.1 Boot and Go runtime

The boot block loads Biscuit, the Go runtime, and a "shim" layer (written in Go and

shown in Figure 3-1). The Go runtime, which we use mostly unmodified, expects to be

able to call an underlying kernel for certain services, particularly memory allocation

and control of execution contexts (cores). The shim layer provides these functions, since

there is no underlying kernel. Most of the shim layer's activity occurs during initialization,

for example to pre-allocate memory for the Go kernel heap.

3.2 Processes and kernel goroutines

Biscuit provides user processes with a POSIX interface: fork, exec, and so on,

including kernel-supported threads and futexes. A user process has one address space

and one or more threads. Biscuit uses hardware page protection to isolate user processes.

A user program can be written in any language; we have implemented them only in

C and C++ (not Go). Biscuit maintains a kernel goroutine corresponding to each user

thread; that goroutine executes system calls and handlers for page faults and exceptions

for the user thread. A user thread starts a system call using the sysenter instruction

and, after executing the system call, the kernel returns using the sysexit instruction.

"goroutine" is Go's name for a thread, and in this dissertation refers only to threads

running inside the kernel.
23

user process process
space

kernel
space

L Biscuit

Go runtime

Shim

Figure 3-1: Biscuit's overall structure.

An unusual aspect of Biscuit is that it has two schedulers: one in the shim layer that

schedules runtime threads to CPUs and one in the Go runtime that schedules kernel

goroutines to runtime threads. In principle, the shim-layer scheduler is not necessary

and could be eliminated, perhaps by instead having each CPU execute only one runtime

thread. However, we specifically chose to use the shim-layer scheduler since it allows

Biscuit to use the Go runtime with few modifications. Since the runtime may create

helper threads (for instance, to manage timers), there may be more threads than there

are CPUs. Without the shim-layer scheduler, the functionality of these helper threads

would somehow have to be integrated into the main runtime threads. On the other hand,

with the shim-layer scheduler, no changes are necessary to the main threads, helper

threads, or any other threads that the Go developers later add.

Biscuit's Go runtime schedules the kernel goroutines of user processes, each executing

its own user thread in user-mode when necessary. Biscuit uses timer interrupts to switch

pre-emptively away from user threads. It relies on pre-emption checks generated by the

Go compiler to switch among kernel goroutines.

3.3 Interrupts

A Biscuit device interrupt handler marks an associated device-driver goroutine as

runnable and then returns, as previous kernels have done [48, 59]. Interrupt handlers

cannot do much more without risk of deadlock, because the Go runtime does not turn

off interrupts during sensitive operations such as goroutine context switch.

Handlers for system calls and faults from user space can execute any Go code. Biscuit

executes this code in the context of the goroutine that is associated with the current user

thread.

24

3.4 Multi-core and synchronization

Biscuit runs in parallel on multi-core hardware. It guards its data structures using

Go's mutexes, and synchronizes using Go's channels and condition variables. The locking

is fine-grained enough that system calls from threads on different cores can execute in

parallel in many common situations, for example when operating on different files, pipes,

sockets, or when forking or calling exec in different processes. Biscuit uses read-lock-free

lookups in some performance-critical code (see below).

Some kernels use lock-free per-CPU variables to avoid synchronization, but lock-free

per-CPU variables can be awkward to use in Biscuit. In C, the programmer synchronizes

access to per-CPU variables by explicitly disabling interrupts during critical sections that

access the per-CPU variables. This discipline prevents the scheduler from migrating the

thread to a different CPU during the critical section, which is important since allowing

such a migration could result in a data race where one CPU accesses a per-CPU variable

belonging to a different CPU. However, safely using lock-free per-CPU variables in Go

requires that the programmer both disable interrupts and avoid all Go code that may

include a preemption check (like a function call or type assertion). Avoiding preemption

checks in simple cases is straight-forward (by not calling any functions), but in code

that does much more than read or write a per-CPU variable, avoiding the checks can

be burdensome. For this reason, Biscuit does not use lock-free per-CPU variables, but

instead protects per-CPU variables with locks and leaves interrupts enabled. As a result,

critical sections can freely call code containing preemption checks, but they incur the

overhead of locks.

3.5 Virtual memory

Biscuit uses page-table hardware to implement zero-fill-on-demand memory alloca-

tion, copy-on-write fork, shared anonymous and file mappings, and lazy mapping of files

(e.g., for exec) in which the PTEs are populated only when the process page-faults, and

mmap.

Biscuit records distinct, contiguous memory mappings compactly in a red-black tree,

so in the common case large numbers of mapping objects aren't needed. Physical pages

can have multiple references; Biscuit tracks these using reference counts.

3.6 File system

Biscuit implements a file system supporting the core POSIX file system calls. The file

system has a file name lookup cache, a vnode cache, and a block cache. Biscuit guards

each vnode with a mutex and resolves pathnames by first attempting each lookup in a

25

read-lock-free directory cache before falling back to locking each directory named in the

path, one after the other. Biscuit runs each file system call as a transaction and has a

journal to commit updates to disk atomically. The journal batches transactions through

deferred group commit, and allows file content writes to bypass the journal. Biscuit has

an AHCI disk driver that uses DMA, command coalescing, native command queuing, and

MSI interrupts.

3.7 Network stack

Biscuit implements a TCP/IP stack, ARP, and a driver for Intel PCI-Express Ethernet

NICs in Go. The driver uses DMA, MSI interrupts, TCP segmentation and checksum

offloading, interrupt coalescing, and per-CPU transmit queues. The system-call API

provides POSIX sockets.

3.8 Limitations

Although Biscuit can run many Linux C programs without source modification, it is a

research prototype and lacks many features. Biscuit does not support scheduling priority

because it relies on the Go runtime scheduler. Biscuit is optimized for a small number of

cores, but not for large multicore machines or NUMA. Biscuit does not swap or page out

to disk, and does not implement the reverse mapping that would be required to steal

mapped physical pages. Biscuit lacks many security features like users, access control

lists, or address space randomization.

26

4 Garbage collection

Biscuit's use of garbage collection is a clear threat to its performance. This section

outlines the Go collector's design, describes a model of garbage collector performance,

and explains how Biscuit configures the collector. Chapter 7 evaluates performance costs.

4.1 Go's collector

Go 1.10 has a concurrent parallel mark-and-sweep garbage collector [33]. The

concurrent aspect is critical for Biscuit, since it minimizes the collector's "stop-the-world"

pauses.

When the Go collector is idle, the runtime allocates from the free lists built by the last

collection. When the free space falls below a threshold, the runtime enables concurrent

collection. When collection is enabled, the work of following ("tracing") pointers to

find and mark reachable ("live") objects is interleaved with execution: each allocator

call does a small amount of tracing and marking. Writes to already-traced objects are

detected with compiler-generated "write barriers" so that any newly installed pointers

will be traced. Once all pointers have been traced, the collector turns off write barriers

and resumes ordinary execution. The collector suspends ordinary execution on all CPUs

(a "stop-the-world" pause) twice during a collection: at the beginning to enable the

write barrier on all CPUs and at the end to check that all objects have been marked.

These stop-the-world pauses typically last dozens of microseconds. The collector rebuilds

the free lists from the unmarked parts of memory ("sweeps"), again interleaved with

Biscuit execution, and then becomes idle when all free heap memory has been swept.

The collector does not move objects, so it does not reduce fragmentation.

The Go collector does most of its work during calls to the heap allocator, spreading

out this work roughly evenly among calls; each thread must complete an amount of

GC work that is proportional to the amount that it allocates. Thus the frequency of GC

delays during a goroutine's execution is proportional to the amount that it allocates;

section 7.2.3 presents measurements of these delays for Biscuit.

27

Concurrent garbage collection typically begins collecting before the free lists are

exhausted in order to satisfy concurrent allocations; if there is not enough free memory

to satisfy concurrent allocations, the collector effectively becomes stop-the-world since

any thread that allocates must block and wait until the collection completes.

4.2 Garbage collection cost model

This section describes a model for garbage collector performance. The observations

of this section are not novel, but we nevertheless found the model helpful for two reasons.

First, the model clearly explains why GC performance is mainly determined by a single

ratio (h, described below) and not an absolute amount of memory. Second, the model

makes obvious the two main opportunities available to the programmer for reducing the

performance cost of GC.

The fraction of CPU time used by garbage collection is largely determined by the

CPU time required for each collection and the interval between collections [31, 66].

The former is proportional to the number of live objects. The latter is a function of the

amount of free heap space ("headroom") available after each collection and the rate

at which the program (Biscuit in this case) allocates memory. The following analysis

models these relationships.

First, define h to be the heap headroom ratio, the ratio of the memory used by live

objects to the total heap memory. h turns out to largely determine the fraction of time

spent in collection, independently of the absolute amount of live data. To simplify this

presentation we'll define h in terms of numbers of objects, effectively assuming that all

objects are the same size.

h = nlive - nIive

total heap size nlive + nfree

The time consumed by a single collection is roughly the number of live objects times

the time to read and write a cache line in RAM (to mark the object), plus the number of

free objects in the heap times the time to add an object to a free list:

tgc = nlive*km +nfree *ks

The rate of collections per second is determined by the rate at which the program

allocates per second and the amount of free space per collection. Note nfree = (-1) * nlive
by the definition of h.

r = ralloc _ ralloc

rgc nfree (- 1) * nie

28

The fraction of time spent collecting is the collection rate times the time per collection:

fgc rgc * ttc

Expanding both factors:

fg= ralloc (nive * k*m + n *ee * ks)(n 1) * niek

Re-arranging and canceling niive:

fgc = km * ralloc + ks * railoc (4.1)

km is much larger than ks, because the random memory references during marking

aren't very cacheable, while sweeping is sequential and thus benefits from the hardware

prefetcher. Thus for larger values of h (i.e., the live data increases) the mark time

dominates; for smaller values of h, the sweep time dominates.

The key implication of Equation 4.1 is that a kernel implementer can reduce the

fraction of time spent in GC in two ways: by changing the kernel code to allocate less

(reducing raiioc), and by decreasing the ratio of live data size to total heap size (h). In

particular, by dedicating enough memory to the kernel heap the overhead of collection

can be kept low, even if there are millions of live objects. In practice, we expect Biscuit

to be configured so that the heap RAM is at least twice the expected peak kernel heap

live data size; see section 8.1.1 for further discussion.

4.3 Biscuit's heap size

At boot time, Biscuit allocates a fixed amount of RAM for its Go heap, defaulting

to 1/32nd of total RAM. Go's collector ordinarily expands the heap memory when live

data exceeds half the existing heap memory; Biscuit disables this expansion. Chapter 5

explains how Biscuit copes with situations where the heap space is nearly filled with live

data.

29

30

5 Avoiding heap exhaustion

Biscuit must address the possibility of live kernel data completely filling the RAM allocated

for the heap ("heap exhaustion"). For example, the kernel heap could become exhausted

by a network server which rapidly processes requests where each request leaves metadata

for a TCP socket that must remain live for some time (i.e., the socket is in the TIME-WAIT

state).

Avoiding heap exhaustion is a difficult problem that existing kernels struggle with

(see section 2.4). Widely-used C kernels avoid heap exhaustion by designing the heap

memory allocator to return failure when memory is low and writing code to handle

the potential failure of nearly all heap allocations. Writing code to handle nearly all

allocation failures is challenging and error prone [18, 19].

The rest of this chapter describes how Biscuit handles heap exhaustion.

5.1 Approach: reservations

Biscuit is designed to tolerate heap exhaustion without kernel failure. In addition

(and like widely-used C kernels), it can take corrective action when there are identifiable

"bad citizen" processes that allocate excessive kernel resources implemented with heap

objects, such as the structures describing open files and pipes. Biscuit tries to identify

bad citizens and kill them, in order to free kernel heap space and allow good citizens to

make progress.

Biscuit's approach to kernel heap exhaustion has three elements. First, it purges caches

and soft state as the heap nears exhaustion. Second, code at the start of each system

call waits until it can reserve enough heap space to complete the call; the reservation

ensures that the heap allocations made in the call will succeed once the wait (if any)

is over. Third, a kernel "killer" thread watches for processes that are consuming lots of

kernel heap when the heap is near exhaustion, and kills them.

This approach has some good properties. Applications do not have to cope with system

call failures due to kernel heap exhaustion. Kernel code does not see heap allocation

31

failure (with a few exceptions), and need not include logic to recover from such failures

midway through a system call. System calls may have to wait for reservations, but they

wait at their entry points without locks held, and thus cannot deadlock.

The killer thread must distinguish between good and bad citizens, since killing a

critical process (e.g., init) can make the system unusable. An example of a situation

with an obvious bad citizen is a buggy program that continuously creates non-contiguous

anonymous memory mappings, resulting in many virtual memory objects in the kernel

heap. If there is no obvious bad citizen, this approach may block and/or kill valuable

processes. Lack of a way within POSIX for the kernel to gracefully revoke resources

causes there to be no good solution in some out-of-memory situations; for instance, when

nearly all memory is used by a critical database server.

The mechanisms in this section do not apply to non-heap allocations. In particular,
Biscuit allocates physical memory pages (for user memory, file cache pages, or socket

buffers) from a separate allocator, not from the Go heap; page allocations can fail, and

kernel code must check for failure and recover (typically by returning an error to a

system call).

5.2 How Biscuit reserves

Biscuit dedicates a fixed amount of RAM M for the kernel heap. A system call starts

only if it can reserve enough heap memory for the maximum amount of simultaneously

live data (MSLD) that it uses. s is the amount heap memory to reserve and is at least

as large as the MSLD (precise calculation of the MSLD is difficult, see section 5.3.1). A

system call may allocate more than s from the heap, but the amount over s must be dead

(by the definition of MSLD and s) and can be freed by the collector. This means that,
even in the extreme case in which all but s of the heap RAM is used by live data or is

already reserved, the system call can execute (with collections as needed) to recover the

call's own dead data in excess of s.

Ideally, a reservation should check that M minus the amount of live and reserved

data in the heap is greater than or equal to s. However, except immediately after a

collection, the amount of live heap data is unknown. Biscuit maintains a conservative

over-estimate of live heap data using three counters: lastgc, used, and current. lastgc is

the amount of live data marked by the previous garbage collection. used is the total

amount of reservations made by system calls that have completed. current is the total

outstanding reservations of system calls that are executing but not finished. Let L be the

sum of lastgc, used, and current.

Figure 5-1 presents pseudo code for reserving and releasing the reservation of heap

RAM in Biscuit. Before starting a system call, a thread checks that L +s < M. If L +s < M,

32

reserve(s):
L := lastgc used current
M := heap RAY bytes
if L + s < M:

current - s
else:

// wake and send s to killer thread
// wait for OK from killer thread

release(s):
if alloc < s:

used += alloc

else:
used += s

current -= s

Figure 5-1: Pseudo code for heap reservations in Biscuit.

the thread reserves by adding s to current, otherwise the thread wakes up the killer

thread and sleeps. When finished, a system call calculates alloc, the total amount actually

allocated, and uses alloc to (partially) release any over-reservation: if alloc < s, the

system call adds alloc to used and subtracts s from current. Otherwise, alloc s and the

system call adds s to used and subtracts s from current.

The reason for separate used and current is to carry over reservations of system calls

that span a garbage collection; a collection sets used to zero but leaves current unchanged.

If heap memory is plentiful (live data < M), the amount of live+dead data in the

heap usually grows faster than L (since most allocations become dead quickly), so

collections are triggered by heap free list exhaustion rather than by L + s M. Thus

system calls do not wait for memory, and do not trigger the killer thread. As live heap

data increases, and lastgc +current gets close to M, L +s may reach M before a collection

would ordinarily be triggered. For this reason the killer thread performs a collection

before deciding whether to kill processes.

5.3 Static analysis to find s

We have developed a tool, MAxLIVE, that inter-procedurally analyzes the Biscuit

source code and the Go packages Biscuit uses to find s, a bound on the MSLD, for each

system call. The core challenge is detecting statically when allocated memory must be

dead and thus is unnecessary to include in s, resulting in a bound that is small enough to

be useful (see section 5.3.1). Other challenges include analyzing loops whose maximum

number of iterations (and thus amount of allocation) are not obvious and determining

reservations for background kernel activities that are not associated with a specific system

call.

33

We address these challenges by exploiting the characteristic event-handler-style

structure of most kernel code, which does a modest amount of work and then returns

(or goes idle); system call implementations, for example, work this way. Furthermore,

we are willing to change the kernel code to make it easier for MAXLIVE to analyze, for

example to avoid recursion or cycles in the call graph. Avoiding recursion and making

the call graph acyclic was a minor inconvenience in Biscuit: it required us to change

a few functions. Two modifications were also required to standard Go packages that

Biscuit uses (packages time and fmt).
The discussion in the rest of this chapter refers to call graphs. The "call graph of

function x" is the directed, acyclic graph where the nodes are the functions x and those

that may be directly or transitively called by x. There is an edge from node a to node b

if and only if function a contains a function call that may call function b.

This method requires that the programmer supply source code annotations for allo-

cations whose size cannot be easily determined statically (see section 5.3.8) and for the

maximum number of iterations of loops (see section 5.3.9).

5.3.1 Not just any s will do

We don't know of a way to quickly and precisely compute the MSLD of a system

call. Instead of precisely computing the MSLD, MAXLIVE computes an upper bound on

the MSLD, s. MAXLIVE takes annotated Go source code for a system call as input and

outputs a number, which is a bound on the MSLD during execution of the given system

call. MAXLIVE is conservative in that the computed s is at least as large as the MSLD

during execution of the system call.

However, MAxLIVE cannot be too conservative. An s that is much larger than the

MSLD could reduce the maximum number of in-progress system calls. In the worst case,

at most M/sm, system calls can be in progress at any time, where sm is the largest s of

all system calls. Therefore MAXLIVE likely causes no significant problem if it overestimates

s by a small factor, but overestimating by a factor of 100 could severely limit system

concurrency.

An earlier version of MAXLIVE used the maximum total allocations (MTA, which is

also a bound on the MSLD) instead of the method described in this section to find s for a

system call. Calculating the MTA is significantly simpler, but unfortunately the MTA is far

larger than the MSLD bound found by this method for many system calls since many

allocations are short-lived and quickly become dead. Thus the MTA is not useful to use

as s since it is hundreds of terabytes for some system calls.

As a demonstration of why the MTA can be much larger than the MSLD, consider

the example call graph shown in Figure 5-2. The call graph in Figure 5-2 shows three

functions, foo, bar, and sue, and all of them allocate heap memory. The MTA for the

34

foo0
x := newlistO
for i := 0; i < 100; i++ {

bar(x)
sueO

}

bar(x) sueO

x.append(new(node)) y: = new array(4096)
// use y...

Figure 5-2: Example call graph with allocations.

call graph in Figure 5-2 is the sum of the sizes of the list head, 100 list nodes, and 100

of the 4096-byte arrays (due to the loop), even though at most one array can be live at

any time. Thus the MTA includes the size of 99 superfluous arrays because it ignores

deallocation, unlike the MSLD.

5.3.2 Reasoning about maximum simultaneously live data

MAxLIvE therefore reasons about deallocation to find bounds smaller than the MTA

and closer to the MSLD. Since static, precise detection of the moment a particular

allocation becomes dead is difficult or impossible in general, our efforts to improve the

bound focus on a particularly common case of an object becoming dead. Specifically, the

case where some function in a subtree of the call graph allocates an object, no function in

the subtree stores a reference to that object in a global variable or any object reachable

from a global variable, and no function outside the subtree could possibly have a pointer

to that object. Such an allocation must be dead once the function in the subtree closest

to the root returns.

In other words, such objects are only reachable from stack frames and never from

global variables (similar to escape analysis [12, 17]). Objects reachable only from stack

frames must become dead when a particular function returns and thus don't count against

s once that particular function returns. Therefore the high-level approach to compute the

MSLD is to find the moment during execution of the system call where the peak amount

of heap memory is reachable from all live stack frames.

The following two simplifications make it easier to reason about the MSLD of a

function during execution. First, the rest of this chapter reasons about object liveness

35

by whether or not an object is reachable only from stack frames. In reality, an object

reachable from a stack frame or a global variable is live. But, for simplicity, the rest of

this chapter makes no further mention of global variables and treats any allocation that

may be reachable from a global variable as live at all times. This method is conservative

since such allocations always count against s, even though they may become dead during

execution.

The second simplification is that objects only become dead once the function that

destroyed the final pointer to them returns. A function could overwrite the only remaining

pointer to a heap object with a different pointer or nil during execution, causing the

object to become dead. But the rest of this chapter pretends that any objects that would

normally become dead during the execution of a function don't become dead at that

time, but instead only become dead once that function returns. This simplification makes

reasoning about the MSLD slightly easier and doesn't affect correctness since it can only

increase the amount of heap memory used and thus is strictly conservative.

5.3.3 Approximating liveness via the call graph

During execution of a function, only ancestors in the call graph of the currently-

executing function can have live stack frames 1. Thus only allocations that are reachable

from the stack frames of the currently-executing and ancestors functions can be live. An

executing function can store a pointer to an allocation in objects or data structures passed

as function arguments, potentially making the allocation live from the stack frames of

any number of ancestor functions. This allocation will become dead once some ancestor

function returns, specifically that ancestor which is closest to the root and from whose

stack frame the allocation is reachable.

Consider the following abstract function, P, which helps calculate the MSLD. Let

P(x) map the set of functions x to the set of all allocator calls whose allocations may be

transitively reachable from any of the stack frames of the functions in x. (Note that an

allocator call in P(x) may be made by a function that is not in x.) For instance, P({foo})

for the call graph shown in Figure 5-2 is the set containing the list node allocation in

bar and the list head allocation in foo (the array allocation in sue is not reachable from

bar). P can be implemented through pointer analysis [4, 61].

The set of live allocations at any point during execution of a system call are those

made by P(L) where L is the path (a set of nodes) from the root (the system call entry

point) to the function executing at that point in the call graph. The reason is that only

the ancestors of the currently-executing function can also have live stack frames at any

'Allocations reachable from a closure are also reachable from the stack frame of any function which has
a pointer to the closure.

36

fo0
x :=new-list()
for i := 0; i < 100; i++ {

barWx
sue()

P(foo) = { new_ listo, new(node) }
Afoo = sizeof(newlistO) + 100 * sizeof(new(node))

bar(x) sueO

Len(ne(noe))[y := new array(4096)

P(bar) = { new(node), new_list() } P(sue) = { newarray(4096) }
Abar = sizeof(new(node)) Asue = sizeof(new-array(4096))

Figure 5-3: Example call graph and state of MAXLIVE analysis. The blue and red allocations
are reachable from the stack frames of the blue and red functions, respectively

point during the execution of the system call. Thus all allocations that are unreachable

from all live stack frames must be dead.

Figure 5-3 shows an example call graph with allocations (the same call graph shown

in Figure 5-2). Reachability of allocations is indicated by matching colors of the line of

code containing the allocation and the border of the function's node in the call graph.

Function foo allocates a new list, which is reachable from foo's stack frame. bar allocates

new list nodes and appends them to the same list, thus the allocation in bar is reachable

from foo. sue allocates an array of 4096 bytes, but that allocation is not reachable from

foo so it becomes dead once sue returns.

Consider the MSLD of foo in Figure 5-3. The maximum amount of heap memory

used during the execution of foo occurs during the last iteration of foo's for loop, after

sue has allocated the array but not yet returned. At that point, the list head allocation,

bar's 100 linked list nodes, and sue's 4096 byte array are all still live. Thus the MSLD is

the number of bytes used by the linked list head, 100 linked list nodes, and one 4096-byte

array.

One way to calculate a bound on the MSLD is to brute force search all possible

executions of the system call. Unfortunately the runtime of a brute force search is roughly

0(2 ") in the total number of branches in all functions in the call graph, making such a

search likely too slow to be useful. For this reason, MAXLIVE uses a different approach to

keep the runtime short enough to be practical.

37

5.3.4 MAXLIVE operation

The purpose of MAXLIVE is to compute a low-enough bound on the MSLD of a system

call in a reasonable amount of time, i.e. faster than a brute force search of all executions

of the system call. MAXLiVE finds a bound on the MSLD much faster than a brute force

search (MAXLIVE calculates s for all the system calls in Biscuit in about five minutes), but

MAxLIVE's bound is typically larger than that found by a brute force search. Nevertheless,
MAxLIVE's bounds are small enough to be useful in practice.

MAXLIVE computes the MSLD bound in the following way First, for each function

i in the call graph rooted at the system call entry point, MAXLIVE computes A1 , which

is the maximum amount of allocations that can ever be reachable from i's stack frame.

MAXLIVE computes Ai by searching all reachable functions in the call graph rooted at

i in post order. Each visit finds the path through the function's basic blocks (including

descendants, but ignoring back edges) that allocates the maximum number of bytes

using only the allocator calls in P({i}). Each function call counts as an allocation of

size maxxEX(A_) where X is the set of all possible callees of the function call (e.g., an

interface method call may have multiple potential callees). For each basic block that is in

a loop, the maximum amount of allocation of that block is multiplied by the maximum

amount of iterations of the containing (and possibly nested) loop. Post-order ensures that

the maximum amount of allocations for a function has been computed before visiting

any callers (the call graph is acyclic). Once the search terminates, Ai is the amount of

allocation calculated by the visit to function i.

After calculating each Ai, MAXLIVE finds the moment during execution of the system

call where the stack frames that potentially have the largest amount of simultaneously

live data occur, i.e. the path L from root of the call graph (the system call entry point)

to all leaves where iEL Ai is largest. The result for the largest path is a bound on the

MSLD.
Pseudo code for MAXLIVE is shown in Figure 5-4. Each call to max1 computes one

of the A7 terms. maxl(x) finds the path through function x and all descendants that

allocates most using only allocations reachable from x. maxpath then finds the path L

where the most simultaneous live data may occur during execution of the system call.

5.3.5 MAxLIVE example

Let's examine how MAXLIVE would compute an MSLD bound for foo in Figure 5-3.

MAXLIVE would first calculate Af00 via max1. max1(foo) would find the list node allocations

in bar since that allocation is in P({foo}). Because the call to bar is in a loop with 100

iterations, MAxLIVE multiplies the total allocations made by bar by 100. MAxLIVE also

observes that no allocations in sue are in P({foo}), so none of sue's allocations are

38

/7 takes a system call entry point and returns s, a bound on the MSLD of the

// system call

maxlive(root):
maxes := empty map
// compute A-i terms
for each function in call graph:

maxes[f] = maxl(f)
77 find path of live stack frames with most simultaneously live data
return maxpath(root, maxes)

77 takes a function, returns A-cur, the maximum amount of allocation that can be

77 reachable from cur's stack frame
maxl(cur):

visited := empty map

/7 "P" is the function described in section 5.3.3.

// "live" is the set of all allocation calls whose allocations
77 may be reachable from globals or the stack frame of cur

live := P(cur)

search(cur, live, visited)

return visited[cur]

// takes a function, a set of allocation calls, and a map of functions to

77 maximum amount of allocation, returns nothing
search(f, live, visited):

for c in f.callees:
search(c, live, visited)

visit(f, live, visited)

/ same parameters as search, returns nothing

visit(f, live, visited):

max-path := 0
for each distinct path p in f:

path-total := 0
for each basic block b in p:

block-total := 0
for each instruction ins in b:

if ins is allocation and in live:
block-total += alloc.size(ins)

else if ins is function call:

allocs := [visited[c] for c in ins.callees]

block-total += max(allocs)

if b is in loop:
block-total *= loop product

path-total += block-total

if path-total max-path:

max-path path-total

visited[f] = max-path
/ takes a function and a map of functions to maximum amount of allocation,

77 returns the maximum amount of bytes allocated by any path from f to a leaf

77 in the call graph
maxpath(f, maxes):

callees := [maxpath(c, maxes) for c in f.callees]

return maxes[f] + max(callees)

Figure 5-4: Pseudo code for MAxLIVE.

39

. I

reachable from foo's stack frame. Thus Af00 is the number of bytes used by the allocations

of the list head and 100 list nodes, but not the array in sue.

MAXLIVE would then compute Abar and As, which are the number of bytes used by

a single list node and the array, respectively. maxpath would then compare AfOO +Abar

and Afo, +A,,, and find that the latter is larger and thus is a bound on the MSLD. This is

correct: Afo +Ase is the number of bytes used on the list head, 100 linked list nodes,

and the 4096 byte array.

Although MAxLIVE's bound was minimal in this example, it is unlikely to be minimal

in practice. The reason is that the paths that allocate the most for the Ai values are not

necessarily the same path. For example, suppose alpha calls bravo and both alpha and

bravo are in L. The execution of alpha which allocates the most memory reachable

from alpha's stack frame may not include a call to bravo. Thus ZEL Ai may include

multiple distinct paths, even though it may be that only some subset of those paths can

occur at runtime. This further increases the bound beyond the actual MSLD, but reduces

MAxLIVE's runtime to roughly O(m2) in the number of functions, improving over the

brute force search's 0(2 ") in the total number of branches.

The bound computed by MAXLIVE could be reduced by a more sophisticated analysis.

MAxLIVE assumes all paths through a function's basic blocks are possible, regardless of

conditional control flow. Thus the execution through a function or the call graph found

by MAXLIVE to exhibit the maximum amount of allocation may actually be impossible.

5.3.6 MAXLIVE correctness

The following is an argument for why the bound computed by MAXLIVE is at least

as large as the actual MSLD. Let Lm be the call graph path of live stack frames during

execution of the system call at the moment where MSLD bytes were in use. Let Si be the

number of bytes of allocations that are reachable from the stack frame of function i at

that same moment.

Suppose that MAxLIVE is incorrect and produced a bound that is less than the MSLD.

In other words,

Ai < ESi
iELM iELm

and thus there is at least one b where Ab < Sb. So there is some path through the basic

blocks of a function, reachable in the call graph rooted at b, that 1) differs from the

path found by MAXLIVE and 2) allocates more than the path found by MAXLIVE. But this

cannot be because MAXLIVE examined all paths from b and must have found this larger

path.

40

5.3.7 MAXLIVE implementation

Our implementation of MAXLIVE analyzes the call graph and each function's basic

blocks using Go's callgraph and ssa packages. MAXLIVE implements P(x) using Go's

pointer package, which provides pointer analysis [4, 61]; the pointer package takes as

input a particular pointer in a stack frame or an object and outputs the set of all allocation

calls which may have allocated the memory referenced by that pointer.

5.3.8 Special allocations

MAXLIVE handles a few kinds of allocation specially: go, defer, maps, and slices. go

(which creates a goroutine) is treated as an escaping allocation of the maximum kernel

stack size (the new goroutine itself must reserve memory when it starts, much as if it

were itself a system call). defer is a non-escaping allocation, but is not represented by

an allocator call instruction so MAXLIVE specifically considers it an allocation. Every

insertion into a map or slice could double its allocated size; MAxLIVE generally doesn't

know the old size, so it cannot predict how much memory would be allocated. To avoid

this problem, we annotate the Biscuit source to declare the maximum size of slices and

maps, which required 70 annotations.

5.3.9 Handling loops

For loops where MAxLIVE cannot determine a useful bound on the number of itera-

tions, we supply a bound with an annotation; there were 78 such loops. Biscuit contains

about 20 loops whose bounds cannot easily be expressed with an annotation, or for

which the worst case is too large to be useful. Examples include retries to handle wakeup

races in poll, iterating over a directory's data blocks during a path component lookup,
and iterating over the pages of a user buffer in write.

We handle such loops with deep reservations. Each loop iteration tries to reserve

enough heap for just the one iteration. If there is insufficient free heap, the loop aborts

and waits for free memory at the beginning of the system call, retrying when memory

is available. Two loops (in exec and rename) needed code to undo changes after an

allocation failure; the others did not.

Three system calls have particularly challenging loops: exit, fork, and exec. These

calls can close many file descriptors, either directly or on error paths, and each close

may end up updating the file system (e.g., on last close of a deleted file). The file system

writes allocate memory, and may create entries in file system caches. Thus, for example,
an exiting process that has many file descriptors may need a large amount of heap

memory for the one exit system call. However, in fact exit's memory requirements are

41

much smaller than this: the cache entries will be deleted if heap memory is tight, so

only enough memory is required to execute a single close. We bound the memory use of

close by using MAXLIVE to find all allocations that may be live once close returns. We

then manually ensure that all such allocations are either dead once close returns or are

evictable cache entries. That way exit, fork, and exec only need to reserve enough

kernel heap for one call to close. This results in heap bounds of less than 500kB for all

system calls but rename and fork (1MB and 641kB, respectively). The close system

call is the only one we manually analyze with the assistance of MAXLIVE.

5.3.10 Kernel threads

A final area of special treatment applies to long-running kernel threads. An example is

the file system logging thread, which acts on behalf of many processes. Each long-running

kernel thread has its own kernel heap reservation. Since exit must always be able to

proceed when the killer thread kills a process, kernel threads upon which exit depends

must never release their heap reservation. For example, exit may need to free the blocks

of unlinked files when closing file descriptors and thus depends on the file system logging

thread. Other kernel threads, like the ICMP packet processing thread, block and wait for

heap reservations when needed and release them when idle.

5.3.11 Killer thread

The killer thread is woken up when a system call's reservation fails. The thread first

starts a garbage collection and waits for it to complete. If the collection doesn't free

enough memory, the killer thread asks each cache to free as many entries as possible,

and collects again. If that doesn't yield enough free memory, the killer thread finds the

process with the largest total number of mapped memory regions, file descriptors, and

threads, in the assumption that it is a genuine bad citizen, kills it, and again collects. As

soon as the killer thread sees that enough memory has been freed to satisfy the waiting

reservation, it wakes up the waiting thread and goes back to sleep.

5.4 Limitations

Biscuit's approach for handling heap exhaustion requires that the garbage collector

run successfully when there is little or no free memory available. However, Go's garbage

collector may need to allocate memory during a collection in order to make progress,

particularly for the work stack of outstanding pointers to scan. We haven't implemented

it, but Biscuit could recover from this situation by detecting when the work stack is

full and falling back to using the mark bitmap as the work stack, scanning for objects

42

which are marked but contain unmarked pointers. This strategy will allow the garbage

collection to complete, but will likely be slow. We expect this situation to be rare since

the work stack buffers can be preallocated for little cost: in our experiments, the garbage

collector allocates at most 0.8% of the heap RAM for work stacks.

Because the Go collector doesn't move objects, it doesn't reduce fragmentation.

Hence, there might be enough free memory but in fragments too small to satisfy a large

allocation. To eliminate this risk, MAxLIVE should compute s for each size class of objects

allocated during a system call. Our implementation doesn't do this.

5.5 Heap exhaustion summary

Biscuit borrows ideas for heap exhaustion from Linux: the killer thread, and the

idea of waiting and retrying after the killer thread has produced free memory. Biscuit

simplifies the situation by using reservation checks at the start of each system call, rather

than Linux's failure checks at each allocation point; this means that Biscuit has less

recovery code to back out of partial system calls, and can wait indefinitely for memory

without fear of deadlock. Go's static analyzability helped automate Biscuit's simpler

approach.

43

44

6 Implementation

The Biscuit kernel is written almost entirely in Go: Figure 6-1 shows that it has about

27,500 lines of Go, 1,500 lines of assembly, and no C.

Biscuit provides 58 system calls, listed in Figure 6-2. It has enough POSIX compatibility

to run some existing server programs (for example, NGINX and Redis).

Biscuit includes device drivers for AHCI SATA disk controllers and for Intel 82599-

based Ethernet controllers such as the X540 10-gigabit NIC. Both drivers use DMA. The

drivers use Go's unsafe Pointer to access device registers and in-memory structures

(such as DMA descriptors) defined by device hardware, and Go's atomic package to

control the order of these accesses. The code would be more concise if Go supported

some kind of memory fence.

Biscuit contains 90 uses of Go's "unsafe" routines (excluding uses in the Go runtime).

These unsafe accesses parse and format packets, convert between physical page numbers

and pointers, read and write user memory, and access hardware registers.

We modified the Go runtime to record the number of bytes allocated by each goroutine

(for heap reservations), to check for runnable device handler goroutines (woken up by

interrupt handlers), and to increase the default stack size from 2kB to 8kB to avoid stack

expansion for a few common system calls.

Biscuit lives with some properties of the Go runtime and compiler in order to avoid

significantly modifying them. The runtime does not turn interrupts off when holding

locks or when manipulating a goroutine's own private state. Therefore, in order to avoid

deadlock, Biscuit interrupt handlers just set a flag indicating that a device handler gor-

outine should wake up. Biscuit's timer interrupt handler cannot directly force goroutine

context switches because the runtime might itself be in the middle of a context switch.

Instead, Biscuit relies on Go's pre-emption mechanism for kernel goroutines (the Go

compiler inserts pre-emption checks in the generated code). Timer interrupts do force

context switches when they arrive from user space.

45

Component Lang

Biscuit kernel (mostly boot) asm
Biscuit kernel Go

Core
Device drivers
File system
Network
Other
Processes
Reservations
System calls
Virtual memory
Total

MaxLive
Runtime modifications
Runtime modifications

Go
asm
Go

500

1,700
4,100
7,300
4,500
1,100

900
700

5,300
1,900

27,500
3,100
1,000
3,200

Figure 6-1: Approximate lines of code in Biscuit. Not shown are about 50,000 lines of

Go runtime and 32,000 lines of standard Go packages that Biscuit uses.

getrlimit
getrusage
getsockopt
gettid
gettimeofday
info
kill
link

listen
iseek
mkdir
mknod
mmap
munmap,
nanosleep
open

pipe2
poll
pread
prof
pwrite
read
ready
reboot

recvfrom
recvmsg
rename
sendmsg
sendto
setrlimit
setsockopt
shutdown

socket
socketpair
stat
sync
threxit
truncate
unlink
wait4

write
writev

Figure 6-2: Biscuit's 58 system calls.

46

accept
bind
chdir
close
connect
dup2
execv
exit

fcntl
fork
fstat
ftruncate
futex
getcwd
getpid
getppid

LOC

Goroutine scheduling decisions and the context switch implementation live in the

runtime, not in Biscuit. One consequence is that Biscuit does not control scheduling

policy; it inherits the runtime's policy Another consequence is that per-process page tables

are not switched when switching goroutines, so Biscuit system call code cannot safely

dereference user addresses directly. Instead, Biscuit explicitly translates user virtual

addresses to physical addresses, and also explicitly checks page permissions. Biscuit

switches page tables if necessary before switching to user space.

We modified the runtime in three ways to reduce delays due to garbage collection.

First, we disabled the dedicated garbage collector worker threads so that application

threads don't compete with garbage collector threads for CPU cycles. Second, we made

root marking provide allocation credit so that an unlucky allocating thread wouldn't

mark many roots all at once (during GC, each thread completes GC work proportional to

the number of bytes which it allocates). Third, we reduced the size of the pieces that

large objects are broken into for marking from 128kB to 10kB.

Biscuit implements many standard kernel performance optimizations. For example,
Biscuit maps the kernel text using large pages to reduce iTLB misses, uses per-CPU NIC

transmit queues, and uses read-lock-free data structures in some performance critical

code such as the directory cache and TCP polling. In general, we found that Go did not

hinder optimizations.

47

48

7 Evaluation

This chapter analyzes the costs and benefits of writing a kernel in an HLL. Section 7.1

explores some of the benefits of using an HLL and section 7.2 measures the main

performance costs of using an HLL.

7.1 HLL benefits

This section explores some of the ways that using an HLL was helpful for building an

operating system kernel. The evaluation questions are:

* To what degree does Biscuit benefit from Go's high-level language features? To

answer, we count and explain Biscuit's use of these features (section 7.1.1).

* Do C kernels have safety bugs that a high-level language might mitigate? We

evaluate whether bugs reported in Linux kernel CVEs would likely apply to Biscuit

(section 7.1.2).

7.1.1 Biscuit's use of HLL features

Our subjective feeling is that Go has helped us produce clear code and helped reduce

programming difficulty, primarily by abstracting and automating low-level tasks.

Figure 7-1 shows how often Biscuit uses Go's HLL features, and compares with two

other major Go systems: the Go repository (containing Go's compiler, runtime, and

standard packages), and Mobyl, which contains Docker's container software and is the

most starred Go repository on Github at the time of writing. Figure 7-1 shows the number

of times each feature is used per 1,000 lines of code. Biscuit uses Go's HLL features about

as much as other Go systems software.

To give a sense how these HLL features can benefit a kernel, the rest of this section

provides examples of successful uses, as well as situations where we didn't use them.

1https://github.com/moby/moby

49

18

16 - Biscuit
16 Golang

14 Moby

I 12 -C

10

S 8
o 6
U 4

2

0

Figure 7-1: Uses of Go HLL features in the Git repositories for Biscuit, Go (1,140,318
lines), and Moby (1,004,300 lines) per 1,000 lines. For data types (such as slices), the
numbers indicate the number of declarations of a variable, argument, or structure field
of that type.

Biscuit relies on the Go allocator and garbage collector for nearly all kernel objects.
Biscuit has 302 statements that allocate an object from the GC-managed heap. Some
of the objects are compound (composed of multiple Go objects). For example, Biscuit's
Vmregiont, which describes a mapped region of virtual memory, has a red-black tree
of Vinfo-t, which itself is compound (e.g., when it is backed by a file). The garbage
collector eliminates the need for explicit code to free the parts of such compound data
types.

Biscuit's only special-purpose allocator is its physical page allocator. It is used for
process memory pages, file cache pages, socket and pipe buffers, and page table pages.

Biscuit uses many goroutines. For example, device drivers create long-running gorou-
tines to handle events such as packet arrival. Biscuit avoids goroutine creation, however,
in frequently executed code. The reason is that the garbage collector produces pauses pro-
portional to the number of goroutines; these are insignificant for thousands of goroutines
but a problem with hundreds of thousands.

The combination of threads and garbage collection is particularly pleasing, since it
avoids forcing the programmer to worry about delaying frees for shared objects until the
last sharing thread has finished. For example, Biscuit's poll system call installs a pointer

50

Type CVE Identifier

2016-10290 2016-8480 2016-8436 2016-8391
Use-after-free or double-free 2016-10288 2016-8449 2016-8392 2016-6791

2017-1000251 2017-0612 2017-0453 2016-10289
2017-6264 2017-0611 2017-0443 2016-10285
2017-0622 2017-0608 2017-0442 2016-10283
2017-0621 2017-0607 2017-0441 2016-8476

Out-of-bounds access 2017-0620 2017-0521 2017-0440 2016-8421
2017-0619 2017-0520 2017-0439 2016-8420
2017-0614 2017-0465 2017-0438 2016-8419
2017-0613 2017-0458 2017-0437 2016-6755

Figure 7-2: Linux kernel CVEs from 2017 that would not cause memory corruption, code
execution, or information disclosure in Biscuit.

to a helper object in each file descriptor being polled. When input arrives on a descriptor,

the goroutine delivering the input uses the helper object to wake up the polling thread.

Garbage collection eliminates races between arriving input and freeing the helper object.

Some Biscuit objects, when the last reference to them disappears, need to take clean-

up actions before their memory can be collected; for example, TCP connections must

run the TCP shutdown protocol. Go's finalizers were not convenient in these situations

because of the prohibition against cycles among objects with finalizers. Biscuit maintains

reference counts in objects that require clean-up actions.

Biscuit uses many standard Go packages. For example, Biscuit imports sync in 28

files and atomic in 18 files. These packages provide mutexes, condition variables, and

low-level atomic memory primitives. Biscuit's MAXLIVE tool depends on Go's code analysis

packages (ssa, callgraph, and pointer).

Biscuit itself is split into 31 Go packages. Packages allowed some code to be developed

and tested in user space. For example, we tested the file system package for races and

crash-safety in user space. The package system also made it easy to use the file system

code to create boot disks.

7.1.2 Potential to reduce bugs

An HLL might help avoid problems such as memory corruption from buffer overflows.

To see how this applies to kernels, we looked at Linux execute-code bugs in the CVE

database published in 2017 [47]. There are 65 bugs where the patch is publicly available.

For 11 bugs of the 65, we aren't sure whether Go would have improved the outcome. 14

of the 65 are logic bugs that could arise as easily in Go as they do in C. Use of Go would

have improved the outcome of the remaining 40 bugs (listed in Figure 7-2), based on

manual inspection of the patch that fixed the bug. The impact of some of these 40 bugs

51

is severe: several allow remote code execution or information disclosure. Many of the

bugs in the out-of-bounds category would have resulted in runtime errors in Go, and

caused a panic. This is not ideal, but better than allowing a code execution or information

disclosure exploit. The bugs in the use-after-free category would not have occurred in

Go, because garbage collection would obviate them.

The Go runtime and packages that Biscuit relies on also have bugs. There are 14

CVEs in Go published from 2016 to 2018. Two of them allow code execution (all in go

get) and two allow information gain (due to bugs in Go's smtp and math/big packages).

7.2 HLL performance costs

This section measures the main performance costs of the HLL when running complex,

demanding applications. The evaluation questions are:

* How much performance does Biscuit pay for Go's HLL features? We measured the

time Biscuit spends in garbage collection, bounds checking, etc., and the delays

that GC introduces (sections 7.2.2 to 7.2.4).

- What is the performance impact of using Go instead of C? We compared nearly-

identical pipe and page-fault handler implementations in Go and C (section 7.2.5).

- Is Biscuit's performance in the same ballpark as Linux, a C kernel (section 7.2.6)?

- Is Biscuit's reservation scheme effective at handling kernel heap exhaustion (sec-

tion 7.2.7)?

- Can Biscuit benefit from RCU-like lock-free lookups (section 7.2.8)?

- Does Biscuit scale with a larger number of cores (section 7.2.9)?

7.2.1 Experimental Setup

With the exception of the scalability experiments, all performance experiments were

run on a four-core 2.8 GHz Xeon X3460 with hyper-threading disabled and 16 GB of

memory. Biscuit uses Go version 1.10. Except where noted, the benchmarks use an

in-memory file system, rather than a disk, in order to stress the CPU efficiency of the

kernel. The in-memory file system is the same as the disk file system, except that it

doesn't append disk blocks to the in-memory log or call the disk driver. The disk file

system uses a Samsung 850 SSD.

The network server benchmarks have a dedicated ten-gigabit Ethernet switch between

a client and a server machine, with no other traffic. The machines use Intel X540 ten-

gigabit network interfaces. The network interfaces use an interrupt coalescing period of

128 As. The client runs Linux.

52

Except when noted, Biscuit allocates 512MB of RAM to the kernel heap. The reported

fraction of CPU time spent in the garbage collector is calculated as ge 4Tlbgc, where Tgc is

the time to execute a benchmark with garbage collection and Tnogc is the time without

garbage collection. To measure Tnogc, we reserve enough RAM for the kernel heap that

the kernel doesn't run out of free memory and thus never collects. This method does not

remove the cost to check, for each write, whether write barriers are enabled.

We report the average of three runs for all figures except maximums. Except when

noted, each run lasts for one minute, and variation in repeated runs for all measurements

is less than 3%.

Many of the performance experiments use three applications, all of which are kernel-

intensive:

CMailbench CMailbench is a mail-server-like benchmark which stresses the virtual

memory system via fork and exec. The benchmark runs four server processes and

four associated clients, all on the same machine. For each message delivery, the client

forks and execs a helper; the helper sends a 1660-byte message to its server over a

UNIX-domain socket; the server forks and execs a delivery agent; the delivery agent

writes the message to a new file in a separate directory for each server. Each message

delivery involves two calls to each of fork, exec, and rename as well as one or two calls

to read, write, open, close, fstat, unlink, and stat.

NGINX NGINX [36] (version 1.11.5) is a high-performance web server. The server is

configured with four processes, all of which listen on the same socket for TCP connections

from clients. The server processes use poll to wait for input on multiple connections.

NGINX's request log is disabled. A separate client machine keeps 64 requests in flight;

each request involves a fresh TCP connection to the server. For each incoming connection,
a server process parses the request, opens and reads a 612-byte file, sends the 612 bytes

plus headers to the client, and closes the connection. All requests fetch the same file.

Redis Redis [58] (version 3.0.5) is an in-memory key/value database. We modified it to

use poll instead of select (since Biscuit doesn't support select). The benchmark runs

four single-threaded Redis server processes. A client machine generates load over the

network using two instances of Redis's "redis-benchmark" per Redis server process, each

of which opens 100 connections to the Redis process and keeps a single GET outstanding

on each connection. Each GET requests one of 10,000 keys at random. The values are

two bytes.

53

Tput Kernel Live GCs CPU cycles
time data GC Prologue WB Safe Alloc

CMailbench 15,862 92% 34 MB 42 3% 6% <1% 3% 8%
NGINX 88,592 80% 48 MB 32 2% 6% <1% 2% 9%
Redis 711,792 79% 18 MB 30- 1% 4% <1% 2% 7%

Figure 7-3: Measured costs of HLL features in Biscuit for three kernel-intensive bench-

marks. GC, Prologue, WB, Safe, and Alloc show the proportion of total CPU cycles used on
garbage collection, function prologues, write barriers, safety checks, and allocation, re-
spectively Alloc cycles are not an HLL-specific cost, since C code has significant allocation
costs as well.

7.2.2 HLL tax

This section investigates the performance costs of Go's HLL features for the three

applications. Figure 7-3 shows the results.

The "Tput" column shows throughput in application requests per second.

The "Kernel time" column shows the fraction of time spent in the kernel (rather than

in user space) and that the results are dominated by kernel activity. All of the benchmarks

keep all four cores 100% busy

The applications cause Biscuit to average between 18 and 48 MB of live data in the

kernel heap. They allocate transient objects fast enough to trigger dozens of collections

during each benchmark run ("GCs"). These collections use between 1% and 3% of the

total CPU time.

"Prologue" cycles are the fraction of total CPU cycles used by compiler-generated

code at the start of each function that checks whether the stack must be expanded,

and whether the garbage collector needs a stop-the-world pause. "WB" cycles reflect

compiler-generated write barriers that take special action when an object is modified

during a concurrent garbage collection.

"Safe" cycles reports the cost of runtime checks for nil pointers, array and slice bounds,

divide by zero, and incorrect dynamic casts. These checks occur throughout the compiler

output; we wrote a tool that finds them in the Biscuit binary and cross-references them

with CPU time profiles.

'Alloc" cycles measures the CPU cycles spent in the Go allocator, examining free lists

to satisfy allocation requests (but not including concurrent collection work). Allocation

is not an HLL-specific task, but it is one that some C kernels streamline with custom

allocators [13].

Figure 7-3 shows that the function prologues are the most expensive HLL feature.

Garbage collection costs are noticeable but not the largest of the costs. On the other

hand, section 7.2.4 shows that collection cost grows with the amount of live data, and it

seems likely that prologue costs could be reduced.

54

Live Total Headroom Tput GC% GCs
(MB) (MB) ratio (msg/s)

640 960 0.66 10,448 34% 43
640 1280 0.50 12,848 19% 25
640 1920 0.33 14,430 9% 13

1280 2560 0.50 13,041 18% 12

Figure 7-4: CMailbench throughput on Biscuit with different kernel heap sizes. The
columns indicate live heap memory; RAM allocated to the heap; the ratio of live heap
memory to heap RAM; the benchmark's throughput on Biscuit; the fraction of CPU cycles
(over all four cores) spent garbage collecting; and the number of collections.

7.2.3 GC delays

We measured the delays caused by garbage collection (including interleaved concur-

rent work) during the execution of NGINX, aggregated by allocator call, system call, and

NGINX request.

0.7% of heap allocator calls are delayed by collection work. Of the delayed allocator

calls, the average delay is 0.9 microseconds, and the worst case is 115 microseconds,

due to marking a large portion of the TCP connection hash table.

2% of system calls are delayed by collection work; of the delayed system calls, the

average delay is 1.5 microseconds, and the worst case is 574 microseconds, incurred by

a poll system call that involved 25 allocator calls that performed collection work.

22% of NGINX web requests are delayed by collection work. Of the delayed requests,

the average total collection delay is 1.8 microseconds (out of an average request pro-

cessing time of 45 microseconds). Less than 0.3% of requests spend more than 100

microseconds garbage collecting. The worst case is 582 microseconds, which includes

the worst-case system call described above.

7.2.4 Sensitivity to heap size

A potential problem with garbage collection is that it consumes a fraction of CPU

time proportional to the "headroom ratio" between the amount of live data and the

amount of RAM allocated to the heap. This section explores the effect of headroom on

collection cost.

This experiment uses the CMailbench benchmark. We artificially increased the live

data by inserting two or four million vnodes (640 or 1280 MB of live data) into Biscuit's

vnode cache. We varied the amount of RAM allocated to the kernel heap.

Figure 7-4 shows the results. The two most significant columns are "Headroom

ratio" and "GC%;" together they show roughly the expected relationship. For example,

55

comparing the second and last table rows shows that increasing both live data and total

heap RAM, so that the ratio remains the same, does not change the fraction of CPU time

spent collecting; the reason is that the increased absolute amount of headroom decreases

collection frequency, but that is offset by the fact that doubling the live data doubles the

cost of each individual collection.

In summary, while the benchmarks in section 7.2.2 and Figure 7-3 incur modest

collection costs, a kernel heap with millions of live objects but limited heap RAM might

spend a significant fraction of its time collecting. We expect that decisions about how

much RAM to buy for busy machines would include a small multiple (2 or 3) of the

expected peak kernel heap live data size; see section 8.1.1 for further discussion.

7.2.5 Go versus C

This section compares the performance of code paths in C and Go that are nearly

identical except for language. The goal is to focus on the impact of language choice on

performance for kernel code. The benchmarks involve a small amount of code because

of the need to ensure that the C and Go versions are very similar.

The code paths are embedded in Biscuit (for Go) and Linux (for C). We modified both

to ensure that the kernel code paths exercised by the benchmarks are nearly identical.

We disabled Linux's kernel page-table isolation, retpoline, address space randomization,

transparent hugepages, hardened usercopy, cgroup, fair group, and bandwidth scheduling,

scheduling statistics, ftrace, kprobes, and paravirtualization to make its code paths similar

to Biscuit. We also disabled Linux's FS notifications, atime and mtime updates to pipes,

and replaced Linux's scheduler and page allocator with simple versions, like Biscuit's.

The benchmarks allocate no heap memory in steady-state, so Biscuit's garbage collector

is not invoked.

Ping-pong

The first benchmark is "ping-pong" over a pair of pipes between two user processes.

Each process takes turns performing five-byte reads and writes to the other process. Both

processes are pinned to the same CPU in order to require the kernel to context switch

between them. The benchmark exercises core kernel tasks: system calls, sleep/wakeup,

and context switch.

We manually verified the similarity of the steady-state kernel code paths (1,200

lines for Go, 1,786 lines for C, including many comments and macros which compile to

nothing). The CPU-time profiles for the two showed that time was spent in near-identical

ways. The ten most expensive instructions match: saving and restoring SSE registers on

context switch, entering and exiting the kernel, wrmsr to restore the thread-local-storage

register, the copy to/from user memory, atomic instructions for locks, and swapgs.

56

The results are 465,811 round-trips/second for Go and 536,193/second for C; thus

C is 15% faster than Go on this benchmark. The benchmark spends 91% and 93% of

its time in the kernel (as opposed to user space) for Go and C, respectively A round

trip takes 5,259 instructions for Go and 4,540 for C. Most of the difference is due to

HLL features: 250, 200, 144, and 112 instructions per round-trip for stack expansion

prologues, write barrier, bounds, and nil pointer/type checks, respectively

Page-faults

The second Go-versus-C benchmark is a user-space program that repeatedly calls

mmap() to map 4MB of zero-fill-on-demand 4096-byte pages, writes a byte on each page,
and then unmaps the memory. Both kernels initially map the pages lazily, so that each

write generates a page fault, in which the kernel allocates a physical page, zeroes it,
adds it to the process page table, and returns. We ran the benchmark on a single CPU on

Biscuit and Linux and recorded the average number of page-faults per second.

We manually verified the similarity of the steady-state kernel code: there are about

480 and 650 lines of code for Biscuit and Linux, respectively. The benchmark spends

nearly the same amount of time in the kernel on both kernels (85% on Biscuit and

84% on Linux). We verified with CPU-time profiles that the top five most expensive

instructions match: entering the kernel on the page-fault, zeroing the newly allocated

page, the user-space store after handling the fault, saving registers, and atomics for locks.

The results are 731 nanoseconds per page-fault for Go and 695 nanoseconds for C;
C is 5% faster on this benchmark. The two implementations spend much of their time in

three ways: entering the kernel's page-fault handler, zeroing the newly allocated page,
and returning to user space. These operations use 21%, 22%, and 15% of CPU cycles for

Biscuit and 21%, 20%, and 16% of CPU cycles for Linux, respectively.

These results give a feel for performance differences due just to choice of language.

They don't involve garbage collection; for that, see sections 7.2.2 and 7.2.4.

7.2.6 Biscuit versus Linux

To get a sense of whether Biscuit's performance is in the same ballpark as a high-

performance C kernel, we report the performance of Linux on the three applications

described in section 7.2.1. The applications make the same system calls on Linux and on

Biscuit. These results cannot be used to conclude much about performance differences

due to Biscuit's use of Go, since Linux includes many features that Biscuit omits, and Linux

may sacrifice some performance on these benchmarks in return for better performance

in other situations (e.g., large core counts or NUMA).

We use Debian 9.4 with Linux kernel 4.9.82. We increased Linux's performance

by disabling some costly features: kernel page-table isolation, retpoline, address space

57

Biscuit Linux Ratio

CMailbench (mem) 15,862 17,034 1.07
CMailbench (SSD) 254 252 0.99
NGINX 88,592 94,492 1.07
Redis 711,792 775,317 1.09

Figure 7-5: Application throughput of Biscuit and Linux. "Ratio" is the Linux to Biscuit
throughput ratio.

randomization, transparent hugepages, TCP selective ACKs, and SYN cookies. We replaced

glibc with musl (nearly doubling the performance of CMailbench on Linux) and pinned

the application threads to CPUs when it improves the benchmark's performance. We ran

CMailbench in two configurations: one using an in-memory file system and the other

using an SSD file system (tmpfs and ext-4 on Linux, respectively). The benchmarks use

100% of all cores on both Biscuit and Linux, except for CMailbench (SSD), which is

bottlenecked by the SSD. The proportion of time each benchmark spends in the kernel

on Linux is nearly the same as on Biscuit (differing by at most two percentage points).

Figure 7-5 presents the results: Linux achieves up to 10% better performance than

Biscuit. The "HLL taxes" identified in section 7.2.2 contribute to the results, but the

difference in performance is most likely due to the fact that the two kernels have different

designs and amounts of functionality. It took effort to make Biscuit achieve this level of

performance. Most of the work was in understanding why Linux was more efficient than

Biscuit, and then implementing similar optimizations in Biscuit. These optimizations

had little to do with the choice of language, but were for the most part standard kernel

optimizations (e.g., avoiding lock contention, avoiding TLB flushes, using better data

structures, adding caches).

7.2.7 Handling kernel heap exhaustion

This experiment demonstrates two things. First, that the system calls of a good citizen

process do not fail when executing concurrently with an application that tries to exhaust

the kernel heap. Second, that Biscuit's heap RAM reservations aren't too conservative:

that the reservations allow most of the heap RAM to be used before forcing system calls

to wait.

The experiment involves two programs. An abusive program repeatedly forks a

child and waits for it. The child creates many non-contiguous memory mappings, which

cause the kernel to allocate many heap objects describing the mappings. These objects

eventually cause the kernel heap to approach fullness, at which point the out-of-memory

killer kills the child. Meanwhile, a well-behaved program behaves like a UNIX mail

58

I I I I I

500

400

Ne
(A 300 - S

M
200

-J

100

0 1 ' 1 1
0 5 10 15 20 25 30 35

Time (s)

Figure 7-6: The amount of live data (in red) in the kernel heap during the first 35 seconds
of the heap exhaustion experiment. The blue line indicates the RAM allocated to the
kernel heap (512MB). The four vertical black lines indicate the points at which the killer
thread killed the abusive child process.

daemon: it repeatedly delivers dozens of messages and then sleeps for a few seconds.

This process complains and exits if any of its system calls returns an unexpected error.

The kernel has 512MB of RAM allocated to its heap. The programs run for 25 minutes,

and we record the amount of live data in the kernel heap at the end of every garbage

collection.

Figure 7-6 shows the first 35 seconds of the experiment. Each red cross indicates

the amount of live kernel heap data after a GC. The blue line at the top corresponds to

512MB. The four vertical lines show the times at which the out-of-memory killer killed

the abusive program's child process.

Biscuit allows the live data in its heap to grow to about 500MB, or 97% of the heap

RAM. The main reason that live data does not reach 512MB is that the reservation for

the file system logger thread is 6MB, more than the thread actually uses. When the

child is killed, it takes a couple seconds to release the kernel heap objects describing its

many virtual memory mappings. The system calls of the good citizen process wait for

reservations hundreds of thousands of times, but none return an error.

59

Directory cache Tput

Lock-free lookups 15,862 msg/s
Read-locked lookups 14,259 msg/s

Figure 7-7: The performance of CMailbench with two versions of Biscuit's directory cache,
one read-lock-free and one using read locks.

7.2.8 Lock-free lookups

This section explores whether read-lock-free data structures in Go increase parallel

performance.

C kernels often use read-lock-free data structures to increase performance when

multiple cores read the data. The goal is to allow reads without locking or dirtying cache

lines, both of which are expensive when there is contention. However, safely deleting

objects from a data structure with lock-free readers requires the deleter to defer freeing

memory that a thread might still be reading. Linux uses read-copy update (RCU) to delay

such frees, typically until all cores have performed a thread context switch; coupled with

a rule that readers not hold references across context switch, this ensures safety [45, 46].

Linux's full set of RCU rules is complex; see "Review Checklist for RCU patches" [44].

Garbage collection automates the freeing decision, simplifying use of read-lock-free

data structures and increasing the set of situations in which they can safely be used

(e.g., across context switches). However, HLLs and garbage collection add their own

overheads, so it is worth exploring whether read-lock-free data structures nevertheless

increase performance.

In order to explore this question, we wrote two variants of a directory cache for

Biscuit, one that is read-lock-free and one with read-locks. Both versions use an array of

buckets as a hash table, each bucket containing a singly-linked list of elements. Insert

and delete lock the relevant bucket, create new versions of list elements to be inserted

or updated, and modify next pointers to refer to the new elements. The read-lock-free

version of lookup simply traverses the linked list. 2 The read-locked version first read-locks

the bucket (forbidding writers but allowing other readers) and then traverses the list.

We use CMailbench for the benchmark since it stresses creation and deletion of entries

in the directory cache. The file system is in-memory, so there is no disk I/O.

Figure 7-7 shows the throughput of CMailbench using the read-lock-free directory

cache and the read-locked directory cache. The read-lock-free version provides an 11%

throughput increase: use of Go does not eliminate the performance advantage of read-

lock-free data in this example.

2We used Go's atomic package to prevent re-ordering of memory reads and writes; it is not clear that
this approach is portable.

60

80 Perfect
Perfect

70 - Biscuit+CMailbench -'--

60 -

50 -

cL 40

0 30

20

10

0
0 5 10 15 20

Cores

Figure 7-8: The performance of CMailbench with increasing core counts on Biscuit. The
throughput units are thousands of messages per second.

7.2.9 Scalability

This section explores the scalability of the HLL through two experiments. The per-

formance experiments in this section were run on a machine with two 2.4 GHz Xeon

E5-2640 packages (two sockets with ten cores each) with hyper-threading disabled and

64 GB of memory. In these experiments, the cores used in each run of the benchmark

were evenly spread between both NUMA nodes in order to keep the worst-case cost of

memory access independent of the number of cores.

CMailbench scalability

The purpose of this experiment is to determine whether the HLL becomes a scalability

bottleneck when running a complex and demanding application, CMailbench, with up

to 20 cores. Each CMailbench server/client pair has its own copy of the binaries so that

each server/client pair can exec them without contending on a file's reference count

with other cores. Each run of CMailbench ran long enough to GC dozens of times, used

either 2, 4, 8, 10, 16, or 20 cores, and we recorded throughput.

Figure 7-8 shows the results. The x-axis is the number of cores available to Biscuit

and the y-axis shows the throughput of CMailbench in thousands of messages per second.

The blue line shows the throughput of a perfectly scalable kernel and the green line

shows the throughput of CMailbench. Figure 7-8 shows that CMailbench throughput

scales with cores, achieving 92% and 81% of perfect scalability with 10 and 20 cores,

respectively.

61

80

70 - Linux+CMailbench

60 -

50
4-0

2 30

20

10

0
0 5 10 15 20

Cores

Figure 7-9: The performance of CMailbench with increasing core counts on Linux. The

throughput units are thousands of messages per second.

The main reason why per-core throughput of 20 cores is less than with 10 cores is

that CMailbench is not a perfectly-parallel benchmark: CMailbench causes all cores to

contend on the locks protecting a few directories. The performance cost of this contention

is small when using 10 cores, but becomes significant when using 16 or 20 cores.

We had to fix four serious scalability bottlenecks in Biscuit to achieve this performance.

First, we modified Biscuit to, instead of broadcasting TLB shootdowns to all CPUs, send

TLB shootdowns to only those CPUs which are using the updated page tables at the

moment of invalidation. CMailbench causes Biscuit to frequently send TLB shootdowns

because of the frequent calls to fork, which require modifying the permissions of user

pages to convert them to or from copy-on-write pages. Second, we modified the page

allocator to use per-CPU free lists before checking the global list under a lock. Third, we

changed the data structure used for the process table from a native map protected by a

lock to a hash table with per-bucket locks so that inserts and deletes on different PIDs can

likely be done in parallel. Finally, we modified Biscuit to acquire the global rename lock

(whose purpose is to prevent "orphaned loop" directories) only when moving directories,

similar to ScaleFS [11]. Since CMailbench calls rename only on files, this modification

prevents all cores from contending on this lock. Altogether, these modifications increased

CMailbench throughput when using 20 CPUs by about a factor of 6.

As additional evidence that the HLL is not the main scalability bottleneck of CMail-

bench on Biscuit, Figure 7-9 shows the results of the same experiment when run on Linux

(and the same machine). Figure 7-9 shows that CMailbench scales similarly whether

62

Perfect

10
Perfect

9 Pstat X--
8

4-' 6 -

0~ 5

D 4

3

2

1

0
0 5 10 15 20

Cores

Figure 7-10: The throughput of Pstat with increasing core counts. The throughput units
are millions of stat system calls per second.

running on Biscuit or Linux, though Linux does achieve higher throughput. Thus the

main bottleneck when scaling CMailbench up to 20 cores was not due to the HLL.

GC scalability

The purpose of the next experiment is to determine whether the GC scales up to 20

cores for a GC-intensive application. The benchmark is Pstat, which scales perfectly to 20

cores when the GC is disabled. Pstat creates one process per core which calls stat on its

own per-core file repeatedly in a loop. We artificially increased the live kernel heap data

by inserting two million vnodes (resulting in 600MB of live data) into Biscuit's vnode

cache and we set the amount of RAM allocated to the kernel heap to 900MB (i.e., so

the ratio of live data to kernel heap RAM was was 0.66) in order to stress the garbage

collector. Each run of Pstat uses either 2, 4, 8, 10, 16, or 20 cores and runs long enough

so that dozens of GCs occur. With 20 CPUs, the total allocation rate is about 650MB per

second.

Figure 7-10 shows the results. The x-axis is the number of cores available to Biscuit

and the y-axis shows the throughput of Pstat in millions of stat system calls per second.

The blue line shows the throughput of a perfectly scalable kernel and the red line shows

Pstat throughput. Figure 7-10 shows that Pstat achieves 84% of perfect scalability with

20 cores.

63

2 4 8 10 16 20

24% 30% 31% 32% 35% 36%

Figure 7-11: The fraction of all CPU cycles spent on GC during execution of Pstat with

different numbers or cores.

Figure 7-11 shows the fraction of total CPU cycles spent on GC during each run of

Pstat with different numbers of cores. Figure 7-11 shows that the fraction of CPU cycles

spent on GC increases with the number of cores, using between 24% and 36% with two

and 20 cores, respectively.

The main reason why the proportion of CPU cycles spent on GC increases with

more cores is that the GC progressively overloads the memory subsystem: with 20 cores,

the GC spends an additional 8% of total CPU cycles stalled on RAM accesses than it

does with two cores. As the number of cores increases, more cores execute the GC in

parallel and the frequency of RAM accesses increases. Eventually, the frequency of RAM

accesses becomes higher than what the memory subsystem can service. As a result, RAM

accesses are stalled proportionally to the number of outstanding RAM accesses, which

is proportional to the number of cores. Optimizing the GC for NUMA so that each core

scans mostly NUMA-local live data may reduce the rate at which the CPU cycles used on

the GC increases.

This experiment demonstrates that Go's GC does not scale perfectly, but nevertheless

scales reasonably well, achieving 84% of perfect scalability with 20 cores.

64

8 Discussion and future work

Should one write a kernel in Go or in C? We have no simple answer since the choice

is a trade-off, but we can make a few observations. For existing large kernels in C, the

programming cost of conversion to Go would likely outweigh the benefits, particularly

considering investment in expertise, ecosystem, and development process. The question

makes more sense for new kernels and similar projects such as VMMs.

If a primary goal is avoiding common security pitfalls, then Go helps by avoiding some

classes of security bugs (see section 7.1.2). If the goal is to experiment with OS ideas, then

Go's HLL features may help rapid exploration of different designs (see section 7.1.1).

If CPU performance is paramount, then C is the right answer, since it is faster (see

sections 7.2.2 and 7.2.3). If efficient memory use is vital, then C is also the right answer:

Go's garbage collector needs at least twice as much RAM as there is live kernel heap

data to run efficiently (see section 7.2.4). Finally, if performance is merely important,
consider paying the CPU and memory overhead of GC for the safety and productivity of

the HLL.

An HLL other than Go might change the considerations. A language without a compiler

as good as Go's, or whose design was more removed from the underlying machine, might

perform less well. On the other hand, a language such as Rust [49] that avoids garbage

collection might provide higher performance as well as safety, though perhaps at some

cost in programmability for threaded code.

The rest of this chapter explains what we think are the main challenges and main

benefits of building practical kernels in an HLL and a few possibilities for future work.

8.1 HLL kernel challenges

This section explains what we expect to be the main challenges with building practical

kernels in an HLL and why.

65

8.1.1 GC CPU overhead

Perhaps the main downside of Biscuit is that system performance depends on an

unusual and poorly-understood side-effect of application behavior: the size of live kernel

heap data. The CPU overhead of GC will be significant if a single user application causes

much of the kernel heap to be live most of the time. However, there are a couple reasons

why the proportion of CPU cycles used by the GC is likely to be acceptably low in practice.

Kernel heaps are typically small. Kernel heap objects are usually small meta-data

describing resources like files, sockets, virtual memory mappings, routing table entries,

etc. The kernel heap does not contain large data items, such as user memory pages or

file-cache pages. Few programs cause the kernel to accumulate millions of files, sockets,

or non-contiguous virtual memory mappings. Thus the kernel heap typically uses a

relatively small fraction of RAM even if user applications use many gigabytes of user

memory.

To understand kernel heap sizes, we inspected four of MIT's big time-sharing ma-

chines. All four run Ubuntu Linux, had at least 79 users logged in, and had at least 800

processes with between 9 to 16 GB of total resident memory. The total kernel heap RAM

(the sum of allocated and free kernel heap RAM) was less than 2GB on each machine.

On the OpenBSD desktop machine on which the author wrote this dissertation, the total

resident user memory is 1.8GB, but the total kernel heap RAM is less than 170MB.

One potential source of large kernel heaps is the vnode cache. Careful eviction of

the vnodes may keep the number of kernel heap objects low without hurting application

performance, depending on the access pattern.

If a large kernel heap is necessary, one can provision extra RAM to reduce the fraction

of CPU time spent in GC. The collector only has to run when the kernel heap has no free

space. Thus the amount of free heap RAM (and allocation rate) determines the frequency

of GCs: doubling the amount of free heap RAM halves the frequency of GCs. So long as

a machine has enough extra RAM that can be donated to the kernel heap, the GCs can

be made rare enough that total CPU cycles used by GC will be low.

We suspect that dedicating extra memory to kernel heaps will often be an acceptable

cost: many applications probably wouldn't be affected if the RAM available to them or

the buffer cache was decreased by a few hundred megabytes.

Finally, it may be possible to further reduce the CPU overhead even when there is

little free heap RAM by modifying Go's GC to be generational. Generational collection

is effective at reducing GC overhead for most programs and we suspect Biscuit would

benefit from it similarly.

66

8.1.2 GC pauses

Even if the interval between collections can be made long, the collector must even-

tually execute. If the collector causes kernel execution to pause for substantial periods,
it could delay latency-sensitive tasks such as redrawing a moved mouse pointer or

processing an urgent client request.

The largest sum of GC delays while processing a request in the NGINX experiment was

582 microseconds (see section 7.2.3). Such pauses are rare: less than 0.3% of requests

spent more than 100 microseconds executing GC work.

Some applications can't tolerate even rare pauses of hundreds of microseconds, but we

suspect that many can. For example, servers in one Google service had a 99th-percentile

latency of 10 milliseconds [21].

8.2 HLL kernel benefits

This section summarizes some of the main benefits of using an HLL to build an

operating system kernel.

8.2.1 Increased productivity

One of the main benefits of writing Biscuit in Go is the increased productivity over C.

Unfortunately, we don't know a direct way of measuring productivity. Nevertheless, we

believe Go significantly reduced the effort required to build Biscuit. Some of our favorite

language features are GC'ed allocation, slices, defer, multi-value returns, closures,
strings, and maps. Individually, none of these features are transformative, but together

they result in significantly simpler code.

HLL features can increase productivity, but initially we weren't sure whether a kernel

would be able to make good use of them. We compared the rate of use of several HLL

features in Biscuit to two other large Go projects and found that Biscuit's use of most of

the HLL features is in line with the other projects (see section 7.1.1).

8.2.2 Memory-safety

Manual memory management in C is error-prone and the consequences of bugs can

be severe: 40 out of the 65 publicly-available, execute-code CVEs found in Linux during

2017 were due to manual memory management bugs and all of them allow an attacker

to execute malicious code in the kernel (see section 7.1.2). Had this buggy code been

written in Biscuit, the GC and runtime safety checks would have prevented malicious

code execution in all 40 cases.

67

func serve ({
buf := new(request-t)
read-next-request (buf)
go func() {

// log-requesto occasionally blocks on 10
log-request (buf)

} (
process-request(buf)

}

Figure 8-1: A simple case where threads share data.

8.2.3 Simpler concurrency

Garbage collection makes threaded sharing of transient heap objects particularly

convenient. For example, consider the request processing code in Figure 8-1. A network

server calls the serve function to receive and process the next request. The code calls

log-request in a separate thread in order to prevent file writes from delaying the

processing of the request. Each thread accesses buf while logging or processing. The GC

automatically ensures that buf will be freed only after both threads have finished using

it.

In contrast, this style of threaded programming can be awkward in C, because of the

need for code that decides when the last thread has finished using the object. Consider

writing Figure 8-1 in C. The C programmer would allocate buf via malloc. Neither thread

could simply free buf before returning since the other thread may still be accessing buf.

The programmer must delay the call to free until both threads have finished accessing

buf. One solution would be to embed a reference count in buf, manipulated with atomic

instructions. This is eminently possible in C, but requires more programmer thought

than in Go, and thus more chance of error.

8.2.4 Simpler lock-free sharing

GC is convenient in the example described in the previous section, but GC is more

than convenient when threads share data without locks (which is common in optimized

kernels [45]) because the resulting code is significantly simpler than in C. In C, each

thread must increase and decrease the corresponding reference count before and after

accessing an object. Forgetting to increase or decrease a reference count will result in

corrupted or leaked memory. Since threads may concurrently modify the same reference

counter, all modifications must be atomic with respect to other counter accesses. Fur-

thermore, the reference counters themselves cannot be stored in the same memory of

the object which they protect, since then a thread may modify freed memory. Thus the

programmer needs to find the counter belonging to each object.

68

The atomic operations to maintain reference counts can reduce performance. This

is the main reason why Linux uses RCU [45, 46] to safely free memory that is shared

among threads. RCU requires significantly fewer atomic operations and thus achieves good

performance, but it is not simple to use: code which accesses memory managed by RCU

must follow a list of rules [44] and be surrounded by a special prologue and epilogue. All

such code cannot sleep, schedule, or block in any way, in addition to a few other rules.

For example, Linux uses RCU to safely free the objects storing per-thread metadata

(taskstruct). RCU enables readers to lookup the object corresponding to a particular

PID without acquiring locks or accessing a reference counter, which increases performance.

However, Linux still uses a reference counter in addition to RCU to safely free these objects.

The reason is that there are two operations that may cause the object to become free (the

deletion of the object from the PID map during exit and the last context switch away

from the thread) which may occur in either order. But the object must only be freed after

both operations have completed, therefore both operations decrement a reference counter

to determine when the object can be safely freed. As a result, all code that accesses or

wakes up a runnable thread must be careful to lookup and increase the reference counter

of the per-thread object in the same RCU critical section (and eventually decrement the

reference counter) to ensure the scheduler doesn't unsafely free the object out from under

them.

GC makes these programming difficulties disappear. Biscuit code can freely share all

heap objects among threads without worrying about when to free the objects. The reduction

of programmer effort is especially evident in the case of read-lock-free data structures,

which Biscuit uses in its directory cache, routing table, and network interface table. The

result is high performance with less programmer effort, particularly in the directory cache.

8.3 Future work

The following are some potential areas of future work with Biscuit:

- Modify Biscuit to expand and contract the RAM used for the heap dynamically. Biscuit

will have to page out user memory and cooperate with the kernel heap reservation

mechanism.

- Modify the Go runtime to allow Biscuit to control scheduling policies.

- Scale Biscuit to larger numbers of cores, which likely requires that Biscuit be made

NUMA aware.

- Investigate whether Biscuit's GC pauses cause problems when running demanding,

latency-sensitive applications, like video games.

- Explore whether Biscuit's heap reservation scheme could simplify the implementation

of C kernels.

69

70

9 Conclusions

Our subjective experience using Go to implement the Biscuit kernel has been positive.

Go's high-level language features are helpful in the context of a kernel. Examination of

historical Linux kernel bugs due to C suggests that a type- and memory-safe language

such as Go might avoid real-world bugs, or handle them more cleanly than C. The ability

to statically analyze Go helped us implement defenses against kernel heap exhaustion, a

traditionally difficult task.

The dissertation presents measurements of some of the performance costs of Biscuit's

use of Go's HLL features, on a set of kernel-intensive benchmarks. The fraction of CPU

time consumed by garbage collection and safety checks is less than 15%. The dissertation

compares the performance of equivalent kernel code paths written in C and Go, finding

that the C version is about 15% faster.

We hope this dissertation helps readers to choose between C and an HLL when

building operating system kernels.

71

72

9 Bibliography

[1] AdaCore. Homepage - Adacore. https://www.adacore.com/.

[2] Elvira Albert, Samir Genaim, and Miguel G6mez-Zamalloa Gil. Live heap space
analysis for languages with garbage collection. In Proceedings of the 2009 Interna-

tional Symposium on Memory Management (ISMM), pages 129-138, Dublin, Ireland,
June 2009.

[3] Achilleas Anagnostopoulos. gopher-os, 2019. https://github.com/achilleasa/
gopher-os.

[4] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, University of Copenhagen, May 1994.

[5] Joe Armstrong. Erlang. Communications of the ACM, 53(9):68-75, September
2010.

[6] Godmar Back and Wilson C. Hsieh. The KaffeOS Java runtime system. ACM
Transactions on Programming Languages and Systems, 27(4):583-630, July 2005.

[7] Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hsieh, and Jay Lepreau.

Techniques for the design of Java operating systems. In Proceedings of the 2000

USENIX Annual Technical Conference (ATC), pages 197-210, San Diego, California,
June 2000.

[8] Henry G. Baker, Jr. List processing in real time on a serial computer. Communications

of the ACM, 21(4):280-294, April 1978.

[9] Francisco J. Ballesteros. The Clive operating system, 2014. http://sub.org/Is/clive.
html.

[10] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. Extensibility safety

and performance in the spin operating system. In Proceedings of the 15th ACM Sym-

posium on Operating Systems Principles (SOSP), pages 267-284, Copper Mountain,
Colorado, December 1995.

73

[11] Srivatsa S. Bhat, Rasha Eqbal, Austin T Clements, M. Frans Kaashoek, and Nickolai

Zeldovich. Scaling a file system to many cores using an operation log. In Proceedings

of the 26th ACM Symposium on Operating Systems Principles (SOSP), pages 69-86,
Shanghai, China, October 2017.

[12] Bruno Blanchet. Escape analysis for JavaTM: Theory and practice. ACM Transactions

on Programming Languages and Systems, 25(6):713-775, November 2003.

[13] Jeff Bonwick. The Slab Allocator: An object-caching kernel memory allocator. In

Proceedings of the USENIX Summer 1994 Technical Conference (USTC), pages 87-89,
Berkeley, California, 1994.

[14] Victor Braberman, Federico Fernandez, Diego Garbervetsky, and Sergio Yovine.

Parametric prediction of heap memory requirements. In Proceedings of the 7th

International Symposium on Memory Management (ISMM), pages 141-150, Tucson,
Arizona, June 2008.

[15] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and

M. Frans Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses and

open problems. In Proceedings of the 2nd Asia-Pacific Workshop on Systems (APSYS),
Shanghai, China, July 2011.

[16] Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Martin C. Rinard. Memory

usage verification for 00 programs. In Proceedings of the 12th Annual Interna-

tional Static Analysis Symposium (SAS), pages 70-86, London, United Kingdom,
September 2005.

[17] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and

Samuel P Midkiff. Stack allocation and synchronization optimizations for Java

using escape analysis. ACM Transactions on Programming Languages and Systems,
25(6):876-910, November 2003.

[18] Jonathan Corbet. The too small to fail memory-allocation rule. from https://wn.

net/Articles/627419/, Dec 2014.

[19] Jonathan Corbet. Revisiting too small to fail. from https://Iwn.net/Articles/723317/,
May 2017.

[20] D Language Foundation. D programming language, 2019. https://dlang.org/.

[21] Jeffrey Dean and Luiz Andre Barroso. The tail at scale. Communications of the

ACM, 56(2):74-80, February 2013.

[22] Redox developers. Overview - the Redox operating system, 2019. https://doc.

redox-os.org/book/.

[23] David Evans. cs4414: Operating Systems, 2014. http://www.rust-class.org/.

74

[24] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner, David
Grove, J. Eliot B. Moss, and Sergey I. Salishev. Demystifying magic: High-level
low-level programming. In Proceedings of the ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (VEE), pages 81-90, Washington, DC,
2009.

[25] Charles M. Geschke, James H. Morris, Jr., and Edwin H. Satterthwaite. Early
experience with Mesa. ACM SIGOPS Operating Systems Review, April 1977.

[26] Google. gVisor, 2019. https://github.com/google/gvisor.

[27] Google. The Go Programming Language, 2019. https://golang.org/.

[28] Richard D. Greenblatt, Thomas E Knight, John T Holloway, and David A. Moon. A
LISP machine. In Proceedings of the Fifth Workshop on Computer Architecture for
Non-numeric Processing (CAW), pages 137-138, Pacific Grove, California, 1980.

[29] Thomas Hallgren, Mark P Jones, Rebekah Leslie, and Andrew Tolmach. A principled
approach to operating system construction in Haskell. In Proceedings of the 10th

ACM SIGPLAN International Conference on Functional Programming (ICFP), pages
116-128, Tallinn, Estonia, September 2005.

[30] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu, and Thorsten
von Eicken. Implementing multiple protection domains in Java. In Proceedings of

the 1998 USENIX Annual Technical Conference (ATC), pages 259-270, New Orleans,
Louisiana, June 1998.

[31] Matthew Hertz and Emery Berger. Quantifying the performance of garbage collec-
tion vs. explicit memory management. In Proceedings of the 20th Annual ACM Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 313-326, San Diego, California, October 2005.

[32] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource
bound analysis for OCaml. In Proceedings of the 44nd ACM Symposium on Principles
of Programming Languages (POPL), pages 359-373, Paris, France, January 2017.

[33] Richard Hudson. Go GC: Prioritizing low latency and simplicity from https:
//blog.golang.org/gol5gc, Aug 2015.

[34] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack. In
Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP),
pages 37-49, Stevenson, Washington, October 2007.

[35] Galen C. Hunt, James R. Larus, Martin Abadi, Mark Aiken, Paul Barham, Manuel
Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne
Steensgaard, David Tarditi, Ted Wobber, and Brian Zill. An overview of the Singular-
ity project. Technical Report MSR-TR-2005-135, Microsoft, Redmond, Washington,
October 2005.

75

[36] NGINX inc. NGINX: High performance load balancer, web server, & reverse proxy,
2019. https://www.nginx.com/.

[37] Balaji Iyengar, Gil Tene, Michael Wolf, and Edward Gehringer. The Collie: A wait-

free compacting collector. In Proceedings of the 2012 International Symposium on

Memory Management (ISMM), pages 85-96, Beijing, China, June 2012.

[38] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of the 2002 USENIX

Annual Technical Conference (ATC), pages 275-288, Berkeley, California, June 2002.

[39] Amit Levy, Michael P Andersen, Bradford Campbell, David Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. Ownership is theft: Experiences

building an embedded OS in Rust. In Proceedings of the 8th Workshop on Program-

ming Languages and Operating Systems (PLOS), pages 21-26, Monterey, California,
2015.

[40] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto, Prabal

Dutta, and Philip Levis. Multiprogramming a 64kb computer safely and efficiently

In Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP),

pages 234-251, Shanghai, China, October 2017.

[41] Alex Light. Reenix: implementing a Unix-like operating system in Rust, April 2015.

https://cs.brown.edu/research/pubs/theses/ugrad/2015/light.alex.pdf.

[42] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj

Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-

nels: Library operating systems for the cloud. In Proceedings of the 18th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), pages 461-472, Houston, Texas, March 2013.

[43] Bill McCloskey, David F. Bacon, Perry Cheng, and David Grove. Staccato: A par-

allel and concurrent real-time compacting garbage collector for multiprocessors.

Technical report, IBM, 2008.

[44] Paul McKenney. Review list for RCU patches. https://www.kernel.org/doc/

Documentation/RCU/checklist.txt.

[45] Paul E. McKenney, Silas Boyd-Wickizer, and Jonathan Walpole. RCU usage in the

Linux kernel: One decade later. Technical report, 2012.

[46] Paul E. McKenney and John D. Slingwine. Read-copy update: Using execution

history to solve concurrency problems. In Parallel and Distributed Computing and

Systems, pages 509-518, Las Vegas, Nevada, October 1998.

[47] MITRE Corporation. CVE Linux Kernel Vulnerability Statistics, 2018. http://www.

cvedetails.com/prod uct/47/Linux- Linux- Kernel. html?vendor id=33.

76

[48] Jeffrey Mogul. Eliminating receive livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems, 15(3):217-252, August 1997.

[49] Mozilla research. The Rust Programming Language, 2019. https://doc.rust-lang.
org/book/.

[50] Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1991.

[51] Philipp Oppermann. Writing an OS in Rust (second edition), 2019. http://os.
phil-opp.com/.

[52] Nicolas Palix, Ga l Thomas, Suman Saha, Christophe Calves, Julia Lawall, and Gilles
Muller. Faults in Linux: Ten years later. In Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 305-318, Newport Beach, California, March 2011.

[53] W Michael Petullo, Wenyuan Fei, Jon A. Solworth, and Patrick Gavlin. Ethos' deeply
integrated distributed types. In Proceedings of the 35th IEEE Symposium on Security
and Privacy, pages 167-180, San Jose, California, May 2014.

[54] Tuan-Hung Pham, Anh-Hoang Truong, Ninh-Thuan Truong, and Wei-Ngan Chin. A
fast algorithm to compute heap memory bounds of Java card applets. In Proceedings
of the 2008 Sixth IEEE International Conference on Software Engineering and Formal
Methods (SEFM), pages 259-267, Cape Town, South Africa, 2008.

[55] Dominik Picheta. Nim Programming Language, 2019. https://nim-lang.org/.

[56] Jon Rafkind, Adam Wick, John Regeh, and Matthew Flatt. Precise garbage col-
lection for C. In Proceedings of the 2009 International Symposium on Memory
Management (ISMM), pages 39-48, Dublin, Ireland, June 2009.

[57] David Redell, Yogen Dalal, Thomas Horsley, Hugh Lauer, William Lynch, Paul
McJones, Hal Murray, and Stephen Purcell. Pilot: An operating system for a
personal computer. In Proceedings of the 7th ACM Symposium on Operating Systems
Principles (SOSP), pages 81-92, Pacific Grove, California, 1979.

[58] Redis Labs. Redis, 2019. http://redis.io/.

[59] M. Schroeder and M. Burrows. Performance of Firefly RPC. In Proceedings of
the 12th ACM Symposium on Operating Systems Principles (SOSP), pages 83-90,
Litchfield Park, Arizona, 1989.

[60] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
AddressSanitizer: A fast address sanity checker. In Proceedings of the 2012 USENIX
Annual Technical Conference (ATC), pages 28-38, Boston, Massachusetts, June
2012.

77

[61] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of
the 23th ACM Symposium on Principles of Programming Languages (POPL), pages
32-41, St. Petersburg Beach, Florida, January 1996.

[62] Warren Teitelman. The Cedar programming environment: A midterm report and
examination. Technical Report CSL-83-1 1, Xerox PARC, 1984.

[63] Charles P Thacker and Lawrence C. Stewart. Firefly: a multiprocessor workstation.
In Proceedings of the 2nd International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 164-172, Palo
Alto, California, April 1987.

[64] Leena Unnikrishnan, Scott D. Stoller, and Yanhong A. Liu. Optimized live heap
bound analysis. In Proceedings of the 4th International Conference of Verification,
Model Checking, and Abstract Interpretation (VMCAI), pages 70-85, London, United
Kingdom, January 2003.

[65] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
Towards optimization-safe systems: Analyzing the impact of undefined behavior.
In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP),
pages 260-275, Farmington, Pennsylvania, November 2013.

[66] T. Yang, M. Hertz, E. Berger, S. Kaplan, and J. Eliot B. Moss. Automatic heap sizing:
Taking real memory into account. In Proceedings of the 4th International Symposium

on Memory Management (ISMM), pages 61-72, Vancouver, BC, Canada, June 2004.

78

