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Abstract

The first part of this thesis presents new definitions and constructions for three mod-
ern problems in cryptography: watermarking cryptographic circuits, updatable cryp-
tographic circuits, and proxy reencryption. The second part is dedicate to advancing
the understanding of data anonymization. We examine what it means for a data
anonymization mechanism to prevent singling out in a data release, a necessary con-
dition to be considered effectively anonymized under the European Union's General
Data Protection Regulation. We also demonstrate that heretofore theoretical pri-
vacy attacks against ad-hoc privacy preserving technologies are in fact realistic and
practical.
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Preface

This thesis reflects two intellectual trends that coincided with my time at MIT. The

first was the theory of cryptography community's discovery and exploration of Ob-

fustopia, which was jumpstarted by a pair papers made public a month before I moved

to Cambridge. One was a candidate construction of a form of program obfuscation

called indistinguishability obfuscation. The other demonstrated that this seemingly

weak form of obfuscation was in fact a powerful cryptographic primitive, adding a

new world to Impagliazzo's five. The community eagerly mapped out Obfustopia:

the cryptographic constructions it enabled, its complexity-theoretic implications, and

how obfusction itself might be realized. Indistinguishability obfuscation's conceptual

significance extends beyond Obfustopia: many ideas and techniques first developed

in the context of obfuscation have since been adapted to settings which do not require

obfuscation.

Part 1 of this thesis is best understood with this context in mind. Chapter 1

presents a breakthrough in the theoretical study of program watermarking. Prior

to our work, the study of watermarking consisted mostly of applied research. More

theoretical works were either negative, purely definitional, or heavily restricted the

adversary's space of watermark removal strategies. With obfuscation, we construct

the first watermarking scheme for a large class of circuits against adversaries em-

ploying general removal strategies, and also demonstrate new families of circuits that

cannot be watermarked. The core ideas of the construction presented in this thesis

have evolved in a sequence of subsequent works, culminating in watermarking without

obfuscation, albeit with weaker guarantees.

Is there some way to securely update an obfuscated program without reobfuscating

13



the whole thing? What about updating a garbled circuit without regarbling? What

about updating a randomized encoding? What about updating secret keys for func-

tional and attribute-based encryption? Chapter 2 unifies these seemingly disparate

problems into a single abstract framework, and shows that updatable randomized en-

codings suffice to solve them all. We construct updatable randomized encodings using

obfuscation-style ideas, but using only primitives not known (nor believed, generally)

to imply obfuscation. Chapter 2 also constructs updatable versions of multiparty

computation and non-interactive proofs, primitives which do not fit into the general

framework but for which updatable randomized encodings still suffice.

One tool used in that chapter is a new form of proxy reencryption. Proxy reen-

cryption allows a person to securely outsource the task of atomically decrypting-and-

reencrypting her ciphertexts, making them decryptable by a different person of her

choice. Our use of proxy reencryption for updatable cryptography led to a startling

discovery: the most well-established definition of security for proxy reencryption had

a basic, crippling flaw. Chapter 3 describes this flaw and the resulting vulnerability

in at least one implementation of proxy reencryption. We propose a new definition

of security which has been embraced in subsequent work on proxy reencryption.

The second trend was a general chilling of the public's perception of Silicon Val-

ley.' Until recently, technology companies were mostly unaffected by the skepticism

people often have of large corporations. But then the public trust afforded to large

technology companies seemed to give way to a feeling that they were failing to ad-

dress serious negative externalities, whether due to ignorance, inability, or apathy.

One driver of this shift was a growing appreciation of the enormity of the granular,

individualized data continuously being collected about us, and its sensitivity. This

shift has even affected computer scientists-both in industry and the academy-some

of whom are trying to engage with social sciences and law in a serious way. While this

was happening, I had been harboring an amateur's interest in law. In Cambridge,

I found opportunities to work on problems that were at once legal and technical.

Whether this was due to larger social trends or simply a happy accident, it is hard

14



for me to say.

Part II is the fruit of one of these opportunities. Data privacy laws govern the use

of sensitive personal information, delineating the boundaries of appropriate use. How-

ever, a significant conceptual gap between legal and mathematical thinking around

data privacy leaves practitioners uncertain as to which technical offerings adequately

match expectations expressed in legal standards. A core but ineffable concept in data

privacy is data anonymization, the transformation of data to sever the connection be-

tween data and subject. This definition begs the question of what it means to sever

this connection, and different answers underpin differing privacy concepts. While the

question remains far from settled, this thesis contributes to its study using two very

different approaches.

Chapter 4 examines what it means for a data anonymization mechanism to pre-

vent singling out in a data release, a necessary condition to be considered effectively

anonymized under the GDPR. With careful modelling-grounded in legal thinking on

the topic-we formulate a rigorous privacy notion: security against predicate singling

out attacks. We argue that any data anonymization system recognized as such by the

GDPR must be secure against predicate singling out attacks. We examine the prop-

erties of this security notion and its relationships with existing privacy concepts. It is

a case study in using mathematical formalism to model and analyze a legal concept,

ultimately drawing conclusions that diverge from the legal consensus.

Chapter 5 demonstrates that heretofore theoretical privacy attacks against ad-

hoc privacy preserving technologies are in fact realistic and practical, even when

these technologies are deployed by experts. We carry out the first linear program

reconstruction attack against a deployed real-world system designed specifically to

prevent such attacks. This illustrates the practical effectiveness of the Fundamental

Law of Information Recovery, a long-understood theoretical vulnerability of statis-

tical query systems that answer many accurate queries. We also describe privacy

attacks against a highly publicized k-anonymous dataset consisting of online educa-

'To be clear, this is an account of my understanding of the evolving zeitgeist. Whether my
interpretation accurately reflects trends in popular opinion is for somebody with very different
academic training than me to study, perhaps in a thesis of their own.
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tional student records. While it was known that in principle k-anonymity does not

compose, to the best of our knowledge ours is the first example of a real-world failure

of composition.

This thesis is based on the following work:

" "Watermarking cryptographic capabilities" with Justin Holmgren, Ryo Nishi-

maki, Vinod Vaikuntanathan, and Daniel Wichs [CHN+18]

" "Cryptography with updates" with Prabhanjan Ananth and Abhishek Jain [ACJ17]

* "What about Bob? The inadequacy of CPA security for proxy re-encryption" [Coh19]

* "Towards Formalizing the GDPR's Notion of Singling Out" with Kobbi Nis-

sim [CN19]

* "Linear Program Reconstruction in Practice" with Kobbi Nissim [CN18]
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Chapter 1

Watermarking Cryptographic

Circuits

1.1 Introduction

Digital watermarking enables us to embed some special information called a mark

into digital objects such as images, movies, music files, or programs. We often call

such objects marked. There are two basic requirements for watermarking. The first

is that a marked object should not be significantly different from the original object.

The second is that malicious entities should not be able to remove embedded marks

without somehow "destroying" the object (e.g., modify an image beyond recognition).

There are many works on watermarking perceptual objects such as images, movies,

music files, etc. Most of them do not give a rigorous theoretical treatment and their

constructions are heuristic and ad-hoc. (We briefly survey some of these works in Sec-

tion 1.2.7). Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang, in their

seminal work that laid the mathematical foundations of program obfuscation, also

proposed definitions for program watermarking [BGI+O1a, BGI+12]. Unfortunately,

their results were all negative, showing that certain definitions of watermarking are

impossible to achieve. The work of Hopper, Molnar and Wagner [HMW07] proposes

Based on "Watermarking cryptographic capabilities" with Justin Holmgren, Ryo Nishimaki,
Vinod Vaikuntanathan, and Daniel Wichs [CHN+18].
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general and rigorous definitions for watermarking schemes, and explores in depth

connections between the definitions, but does not provide any actual constructions.

Watermarking programs. Our first contribution is to define the notion of public-

key watermarking, building on the work of Hopper, Molnar and Wagner [HMW07]

who introduced a secret-key definition. We speak of a watermarking scheme for

a circuit class C = {CA}XEN where each CA is a set of circuits. A watermarking

scheme for C consists of procedures Mark(mk, -) and Extract(xk, -) with a secret marking

key mk and a public extraction key xk. Given a circuit C, the marking procedure

C <- Mark(mk, C) creates a marked circuit C that evaluates C. Although we will

see that we cannot achieve perfect correctness, in which 0(x)= C(x) for all inputs

x, we will be able to achieve statistical correctness where we allow a negligible error

probability. The extraction procedure Extract(xk, C*) outputs either that the circuit

is marked or unmarked. Note that a watermarking scheme should satisfy a property

called meaningfulness. This property means that for all circuits, we can not extract

a valid mark from them under a randomly generated extraction key except with

negligible probability. This property is for excluding trivial watermarking schemes.

For security, we consider a game where a challenger chooses a random circuit

C <- CA and gives the adversary the marked circuit C <- Mark(mk, C). Intuitively,

we require that the adversary cannot come up with any circuit that correctly evaluates

C but does not have the mark embedded in it. This property is called unremovabil-

ity. Following [HMW07] and adapting it to the public-key setting, we require that

unremovability holds against chosen circuit attackers, namely adversaries that have

oracle access to Mark(mk, .).

More precisely, the adversary produces a circuit C* and we insist that either:

(a) Extract correctly detects that the circuit is marked by outputting marked +-

Extract(xk, C*); or

(b) The circuit C* does not even approximately compute C, meaning that C*(x)

C(x) on at most an E fraction of the inputs x.

20



The parameter E is called the "approximation factor" and we can set it to some small

constant or even to any 1/ poly fraction. (The smaller the -, the better the security

guarantee). During the attack, the adversary is also given the public extraction key xk

and access to the marking oracle Mark(mk, -) that he can query on arbitrary circuits

of his choice (even ones that are not in Cx). At this point, it is prudent to note that

the very first idea that comes to mind, namely signing the circuit C using mk, is not

a particularly good watermarking strategy as the adversary can simply strip off the

signature leaving a perfectly functional circuit.

We call the above type of watermarking "messageless" to denote that it only

distinguishes between marked and unmarked circuits. We also consider a stronger

version called "message-embedding" watermarking where the marking procedure can

be used to embed an arbitrary message into the circuit and the extraction procedure

should recover the message. Similar to the above, the adversary's goal is to force

the extraction procedure to recover a different message. (We refer the reader to

Section 1.4 for formal definitions).

Why cryptographic programs? In this thesis, we focus on watermarking circuits

that are cryptographic in nature, such as circuits evaluating a pseudorandom function

(PRF) or implementing a signing or decryption procedure. One could reasonably ask:

why cryptographic programs?

First, we observe that in the security definition for watermarking, the challenge

circuit C has to be unknown to the adversary. For, if not, the adversary has a

trivial watermark removing strategy: given the marked circuit C, simply output C

as the mark-removed circuit. Since C is an arbitrary program, it is very likely to be

unmarked; on the other hand, C is (approximately) equivalent C in functionality.1

Thus, it is natural for the challenger to pick C from a distribution with high min-

entropy. (For simplicity, we consider picking circuits uniformly at random from CA.)

Secondly, we observe that circuit families that are exactly learnable are not wa-

One can attempt to get around this issue by requiring that the program output by the watermark
remover should be distinct from C and C. However, it is also easy to defeat these definitions by
asking the watermarked remover to output an indistinguishability obfuscation of C.
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termarkable. This is because the adversary can simply invoke C as a black box and

recover a description of the original circuit C (or an equivalent version thereof) which

is again very likely to be unmarked.

This naturally leads us to consider families of circuits where random circuits from

the family are not exactly learnable, canonical examples of which are cryptographic

programs: pseudo-random functions, signing algorithms and decryption algorithms.

Jumping ahead, we remark that unlearnability is a necessary but not sufficient con-

dition for being able to watermark a family of circuit. Indeed, we show families of

pseudo-random functions that, despite being strongly unlearnable, cannot be water-

marked even with approximate correctness.

That said, we regard the question of coming up with meaningful definitions and

constructions of watermarking for general circuits (and even families of evasive cir-

cuits) as a challenging open question arising from this work.

Watermarking cryptographic programs: an application. To further highlight

the usefulness of watermarking cryptographic functions, we describe an application

of watermarking pseudorandom functions. However, we emphasize that the concept

should have broader applicability beyond this example.

Consider an automobile manufacturer that wants to put electronic locks on its

cars; the car contains a PRF F and can only be opened by running an identification

protocol where it chooses a random input x and the user must respond with F(x).

When a car is sold to a new owner, the owner is given a software key (e.g., a smart-

phone application) consisting of marked program C that evaluates the PRF F(.) and

is used to open the car. The mark can embed some identifying information such as the

owner's name and address. Even if the software key is stolen, the thief cannot create a

new piece of software that would still open the car while removing information about

the original owner.

Impossibility of watermarking? The work of Barak et al. [BGI+O1a, BGI+12

initiated the first theoretical study of program watermarking. They propose a game-
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based definition which appears significantly weaker than the definitions we consider in

this thesis (it is in the symmetric-key setting with no marking/detection oracles given

to the adversary), but requires perfect correctness. Unfortunately, they show that this

definition is unachievable assuming the existence of indistinguishability obfuscation.

The main intuition behind the negative result is to consider an attacker that

takes a marked program and applies indistinguishability obfuscation (iO) to it. If the

marked program implements the original program with perfect correctness then the

result of applying iO to it should be indistinguishable from that of applying iO to the

original program. Since the latter is unlikely to be marked, the same should apply to

the former. Therefore, this presents a valid attack against watermarking in general.

Barak et al. note that the above attack crucially relies on the perfect (rather

than merely statistical) correctness of the marked program, meaning that it correctly

evaluates the original program on every input. They mention that otherwise "it seems

that obfuscators would be useful in constructing watermarking schemes, because a

watermark could be embedded by changing the value of the function at a random

input, after which an obfuscator is used to hide this change." This idea was not

explored further in [BGI+01a, BGI+12] and it is far from clear if a restricted notion

of obfuscation such as iO (or even extractability obfuscation or VGB) would be suf-

ficient and what type of watermarking security can be achieved with this approach.

Nevertheless, this idea serves as the starting point of our work.

1.1.1 Our Results

We start by giving new formal definitions of program watermarking, along the lines

of what we described earlier. To avoid the [BGI+01a, BGI+12 impossibility result

described above, our definition allows for statistical rather than perfect correctness.

That is, for every circuit C E CA and every input x,

Pr[C(x) # C(x) C 5 <- Mark(mk, C)] < negl(A)
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where the probability is over the choice of the keys and the coin tosses of the Mark

algorithm. We call this strong approximate correctness.

This seemingly small relaxation allows us to circumvent the impossibility results

and show algorithms to watermark large classes of pseudo-random functions (and

signature algorithms, decryption algorithms [CHN+16]). Our main technical contri-

bution is a method of watermarking any family of puncturable PRFs.2 Our scheme has

a public-key extraction procedure and achieves security in the presence of a marking

oracle. We get a messageless scheme that allows for any E = 1/ poly(A) approxima-

tion factor and a message-embedding scheme that allows for approximation factors

E = 1/2 + 1/ poly(A). In the case of message-embedding constructions, we show that

there is an inherent lower bound of E = 1/2. Both schemes rely on (polynomially

secure) indistinguishability obfuscation (iO).

Theorem 1.1.1 (Informal). Assuming indistinguishability obfuscation and injective

one-way functions, there is a watermarking scheme that is secure against chosen

circuit attacks for any family of puncturable PRFs.

Theorem 1.1.1 shows that relaxing the correctness requirement to strong approxi-

mate correctness allows us to watermark any family of puncturable PRFs. A natural

question is whether one can watermark arbitrary PRFs. We show impossibility re-

sults matching our constructions by demonstrating families of PRFs, signature and

decryption algorithms that cannot be watermarked. We call such schemes waterproof.

We start by observing that learnable functions are waterproof, simply because

an adversary can learn a canonical representation of the function given any program

(even any oracle) that computes the function. Indeed, it is sufficient for the func-

tion family to be non black-box learnable. That is, the adversary should be able to

use any program that computes the function to extract a canonical representation.

Such function families were defined in the work of Barak et al. [BGI+O1a] and are

2 Puncturable pseudo-random functions (pPRFs) [BW13, BGI13, KPTZ13] are PRFs where the
owner of the key K can produce a punctured key Kx that allows computation of the PRF on all
inputs y $ x. Moreover, given the punctured key, PRFK(X) is pseudorandom. Puncturable PRFs
can be constructed from one-way functions [BW13, BGI13, KPTZ13] or more efficiently, from several
number-theoretic assumptions. [BLMR13b, BV15b, BFP+15].
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called unobfuscatable functions. Indeed, 1BGI+01a, BGI+12] show PRFs, signature

and decryption algorithms that are strongly unobfuscatable-that is, an adversary

can extract the canonical representation even given a program that only computes a

function with strong approximate correctness. This immediately gives us waterproof

PRFs, signature and decryption algorithms. (See Section 1.8 for more details.)

Theorem 1.1.2 (Informal). Assuming the existence of one-way functions, there are

waterproof PRFs and signature and decryption algorithms, even if: (a) we only require

symmetric-key watermarking; and (b) we only require unremovability against stand-

alone adversaries that do not have access to Mark or Extract oracles.

We continue this line of thought and ask if we can further weaken the correctness

requirement and overcome this impossibility result. Namely, we consider a weak

approximate correctness requirement which states that the marked program C agrees

with the original program C on most inputs. (In contrast to strong approximate

correctness, here C can always make a mistake on some fixed set of inputs). We show

that even this relaxation does not help. Our proof of this result involves constructing

new types of robust unobfuscatable PRFs. (See Section 1.8.3 for more details).

Theorem 1.1.3 (Informal). Assuming the existence of one-way functions, there are

waterproof PRFs even under weak approximate correctness (and even with relaxations

(a) and (b) as in Theorem 1.1.2).

Organization

The next section summarizes our techniques. In Section 1.3, we provide preliminaries

and basic definitions used throughout the chapter of watermarking. In Section 1.5,

we define and construct a new cryptographic object called puncturable encryption.

In Section 1.6, we describe our main result, namely our PRF watermarking and its

security proof. In Section 1.7, we provide several extensions to our main construction.

In Section 1.8, we provide negative results on watermarking. Section 1.9 concludes.
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1.2 Overview of Our Techniques

1.2.1 Simplification: Token-Based Watermarking

Although our full watermarking scheme relies on indistinguishability obfuscation (io),

our main technical insights are largely unrelated to obfuscation. In order to elucidate

our techniques clearly without getting entangled in details of iO, for the purposes

of this introduction we consider a simplified model of watermarking that we call

token-based watermarking. We treat watermarked programs C +- Mark(mk, ---) as

tamper-proof hardware tokens which the adversary can only access as a black box. 3

The adversary can arbitrarily compose hardware tokens C1,..., 4 and create a new

token C* = C*[C,..., Cq] that has oracle access to the tokens 0i embedded inside

of it. More formally, we can think of C* as an oracle circuit with oracle-gates to

C1,..., Cq. The extraction procedure Extract(xk, C*) will also treat any such token C*

as a black box. The goal of the adversary is to create a token C* which functionally

approximates the challenge watermarked program C but on which the extraction

procedure fails to recover the correct embedded message. Most of the interesting

aspects of constructing watermarking schemes already come up in the token-based

setting.4 However, the constructions in the token-based setting become simpler and

do not rely on obfuscation. Therefore, we view it as a useful stepping stone to

building intuition for our full results where the adversary gets the complete code of

the watermarked programs.

1.2.2 A High Level Approach

At a high level, to watermark a PRF F :{0, 1} -+ {0, 1}m, we create a token

C that evaluates F correctly on almost all inputs x, except for some special set of

3Alternately, one can think of this setting as assuming that C is obfuscated with an "ideal
obfuscation" scheme. However, since software-only ideal obfuscation schemes don't exist, it's more
accurate to think of C as a physical hardware token.

4For example, it's immediately clear that exact watermarking, where the marked program C is
functionally equivalent to the original program C, is impossible in this setting since in that case the
extraction procedure cannot distinguish between black-box access to the original unmarked program
C and the marked program C.
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"'marked-points" X C {0, 1} which have negligible density in {0, 1}. On the marked

points, the watermarked program outputs specially constructed incorrect values that

allow the extraction procedure to recover the embedded message. We will ensure that

marked points are indistignuishable to the adversary from random inputs. Therefore,

the adversary cannot create a new token C* that agrees with C on a large fraction

of random inputs (i.e., approximates F) but disagrees with C on sufficiently many

marked points so as to cause the extraction procedure to fail.

1.2.3 A Simple Scheme with Weak Security

We start by considering a weak notion of token-based watermarking security, where

both the marking key mk and the extraction key xk are secret and the adversary

does not have access to either the marking oracle Mark(mk, -) or the extraction oracle

Extract(xk, -). We also consider a messageless scheme where programs can only be

marked or unmarked. In particular, in the security game the adversary gets a single

marked token C <- Mark(mk, F) as a challenge, where F : {O, 1}" n {0, 1}m is

chosen at random from a PRF family F +- T (and n, m are super-logarithmic). The

adversary's goal is to come up with some new token C* = C*[C] that approximately

evaluates F but on which the extraction procedure fails to detect that the program

is marked: Extract(xk, C*) = unmarked.

This can be easily achieved as follows. Choose a polynomial set of f "marked-

points" X = {X 1,..., X} C {01 }f uniformly at random with corresponding random

outputs y, .. ,y +- {0 ,1}m. Set mk = xk = (x,. .. ,xyl, ... y). To mark a

PRF F, the marking procedure C +- Mark(mk, F) outputs a token C that contains

x1, ... , xt, yi, ... ,ye hard-coded and, on input x, if x = xi for some i E [f] it outputs

yj else it outputs F(x). The extraction procedure Extract(xk, C*) tests if on at least

one of the f marked points xi E X the program evaluates to C*(xi) = yi. If so, it

outputs that the program is marked, and otherwise outputs unmarked.

To prove that the above scheme is secure, we notice that an adversary that gets

black-box access to a token C <- Mark(mk, F) for a random unknown F +- F cannot

distinguish between the marked points X = {Xi, ... ,Xe} and e uniformly random and
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independent inputs without breaking PRF security. This implies that the adversary

cannot come up with a new token C* = C*[0] such that C*(x) = 5(x) is "correct" on

a large fraction of inputs x E {, 1}, but C*(xi) # 0(xj) = yj for all marked points

xi E X, as this would imply distinguishing between random points and marked points.

More precisely, by setting f = Q(A/E) where A is the security parameter, we ensure

that if the adversary creates any token C* = C* [0] that agrees with the marked

token C on even an E-fraction of inputs x E {o, 1}fn, then C*(xi) = yj for at least

one marked point xi E X with overwhelming probability 1 - (1 - E)f and therefore

Extract(xk, C*) = marked as desired.

1.2.4 Challenges in Allowing Mark/Extract Oracles

Unfortunately, the above scheme becomes completely insecure if the adversary has

access to either a marking oracle Mark(mk, -) or the extraction oracle Extract(xk, -),

let alone if the extraction key xk is made public. Let us describe the attacks.

Attack using the extraction oracle. If the adversary gets the challenge marked

program C <- Mark(mk, F) as a token, he can create new tokens C' = C'[C] such

that C'(x) = C(x) only for x satisfying P(x) = 1 where P is some predicate. By

querying the extraction oracle Extract(xk, C') to see if such tokens are deemed marked

or unmarked, the adversary will learn whether there exists some marked point xi with

P(xi) = 1. By choosing such predicates carefully, these queries can completely reveal

the marked points. 5

5 For example, a concrete instantiation of the above attack uses predicates of the form P (x) = 1
iff x[l, ... , |w] = w for some w c {0, 1}* (i.e., the first jwI bits of x match w). By starting with w
being the empty string, the adversary can iteratively add a bit to learn if there exists some marked
point xi with PlI1b(Xi) =1 for b E {0, 1}. Whenever the above occurs for exactly one choice of
b E {0, 1}, the adversary extends w := wI lb and continues to the next iteration. If this happens
for both choices of b E {0, 1} then the adversary branches the above process and continues down
both paths for w := wh|0 and w := wIll. Since there are f marked points, this process will only
branch f times and the adversary will eventually recover all of the points X = {x1,..., X }. Once
the adversary learns X, he can create a circuit C*[C] such that C*(x) = C(x) for any x 0 X and
otherwise C*(x) outputs some incorrect value (e.g., an independent pseudorandom output). The
circuit C* closely approximates C (on all but a negligible fraction of inputs) yet the extraction
procedure fails to detect C* as marked.
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Attack using the marking oracle. Assume the adversary makes just one call to

the marking oracle with an arbitrary known PRF function F' C F and gets back a

token 0' +- Mark(mk, F'). In addition, the adversary gets a challenge token C -

Mark(mk, F) corresponding to a random unknown PRF F +- F. The adversary can

easily remove the mark by creating a new token C* [0', C] that gets oracle access to

C' and C and does the following: on input x, if '(x) = F'(x) then output 0(x)

else output some incorrect value (e.g., an independent pseudorandom output). The

circuit C* only differs from C on the marked points xi E X and therefore closely

approximates C on all but a negligible fraction of inputs. However, the extraction

procedure will fail to detect C* as marked.

1.2.5 Toward a Fully Secure Token-Based Scheme

We now outline the main ideas for how to thwart the above attacks and get a token-

based watermarking scheme with a public extraction key xk and with security in the

presence of a marking oracle Mark(mk, -).

Overview. Our first idea is to make the set of marked points X C {0, 1}' super-

polynomial, yet still of negligible density inside of {0, 1}'. This will allow us to thwart

the attack using an extraction oracle and even make the extraction key xk public. In

particular, we ensure that even given the extraction key xk, which can be used to

sample random marked points x +- X, the adversary still cannot distinguish such

points from uniformly random inputs. Thwarting the marking oracle attack is more

difficult. We need to ensure that the set of marked points XF is different for each

PRF F that we will mark so that, even if the adversary can test if a point belongs to

XF, for various PRFs Fi that were queried to the marking oracle, the marked points

XF for the challenge (unknown) PRF F will remain indistinguishable from uniform.

However, this creates a difficulty since the extraction procedure Extract(xk, C) must

test the marked program C on the correct set of marked points XF without knowing

the function F from which C was created. We solve this by ensuring that one can

find a marked point for the function F by querying F. In particular, the extraction
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procedure first queries 0(z) on some special (pseudo-random) "find point" z and then,

assuming 0(z) = F(z), uses the output 0(z) to sample a marked point x +- XF.

A concrete scheme. Let F be a PRF family consisting of functions F : {0, 1}" -+

{0, I} where A is the security parameter and n is sufficiently large. Let (Gen, Enc, Dec)

be a CCA secure public-key encryption scheme with pseudorandom ciphertexts having

message space {0, 1}3 and ciphertext space {0, 1}n.' Let G : {0, 1}A -+ {0, 1}" be

a PRG.

KEYS: We sample a key pair for the encryption scheme (pk, sk) +- Gen(1A) and de-

fine the marking/extraction key mk, xk to be the secret/public key respectively:

mk = sk, xk = pk.

MARKING: For a PRF F E F, we define the set of "marked points" as:

XF = {x c {0, 1}' : Decsk(X) = (alIbI1c) E {0, 1}", F(G(a)) = b}.

To mark a PRF F the procedure C +- Mark(mk, F) creates a token C defined

as follows:

Hard-Coded Constants: F, sk.

Input: x E {O, 1}n

1. Try to decrypt al bllc <- DecSk(X) with a, b, c E {0, 1}A.

2. If decryption succeeds and F(G(a)) = b output c. // x E XF is a

marked point

3. Otherwise output F(x).

EXTRACTION: The extraction procedure Extract(xk, C*) repeats the following f times:

6 For simplicity, we assume ciphertexts are pseudorandom in {0, 1}. For our full construction we
will construct such schemes with additional puncturability properties using PRFs and iG. However,
we can generalize this to other domains beside {0, 1} and, in the token-based setting, we could then
rely on standard constructions of CCA secure encryption such as e.g., Cramer-Shoup [CSO3].
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" Choose random a, c +- {0, 1}A and let z = G(a) and b = C*(z). z is

a find point

" Choose x +- Encpk(ajjbjjc) and if C*(x) = c then output marked. if

b= F(z) then x e XF.

If all f iterations fail, output unmarked.

Intuitively, the construction relies on the fact that the marked program C can rec-

ognize marked points by using the decryption key. On the other hand the extraction

procedure can find the marked points for a function F given a circuit C* that approx-

imates F by querying C*(z) where z = G(a) is a "find point". If the circuit answers

correctly on z so that F(z) = C*(z) b then the extraction procedure will be able

to correctly sample a marked point x <- Encpk(ajbjc).

Security analysis overview. For the security analysis, consider an adversary that

gets an extraction key xk pk and makes q queries to the marking oracle with

arbitrary PRF functions F E F and gets back marked tokens Ci +- Mark(mk, F).

The adversary then gets a challenge marked token C <- Mark(mk, F) for a random

unknown PRF F <- F. The adversary can only query the tokens as a black box.

Firstly, we claim that even given the above view, the adversary cannot distinguish

between getting random find/mark points z, x and completely random values z', x':

(view, z, x) ~ (view, z', x')sampled according to

a, c +- {0, 1}, z = G(a), b = F(z),x - Encpk(al|b||c), z', x' < {0, 1}.

To show this, we can first rely on CCA security to switch x to a uniformly random '.

This is because black-box access to the marked tokens Ci can be simulated by a CCA

oracle that never decrypts x (it's unlikely that F(z) = Fj(z) for some i, and therefore

x is not a marked point for the queried functions F with overwhelming probability)

while the challenge program C outputs 0(x) = c but this is indistinguishable from

C(x') = F(x') since both outcomes look random. We then rely on PRG security to
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switch z to uniform.

Secondly, we claim that the above "indistinguishability" property immediately

implies "unremovability". In particular, if the adversary manages to produce a token

C* that E-approximates the challenge program C then, for a random z', ' <- {0, 1 }

the probability that C*(z') = C(z') and C*(x') =C(x') is at least E2. Therefore, the

same must hold (up to a negligible difference) when x, z are a random find/marked

point. This means that each iteration of the extraction procedure outputs marked

with probability at least E2 and therefore the probability that none of the iterations

outputs marked is at most (1 - E2)e which is negligible as long as f= (A/E2).

This analysis only provides lunch-time security where the adversary can query

the marking oracle only prior to seeing the challenge program C. This is because we

relied on the fact that, with overwhelming probability, none of the queried functions

Fi will satisfy F(z) = F(z) where F is the challenge PRF. This may not hold in a

stronger security model where the adversary can adaptively query the marking oracle

with function F after seeing the watermarked version C of the challenge PRF F.

However, we can salvage the same analysis and make it hold in the stronger model

if we assume the PRF family satisfies an additional injective property, meaning that

when F $ F' then F(z) = F'(z) for all inputs z. We can construct such PRFs under

natural assumptions such as DDH or LWE.

Embedding a message. We can extend the above construction to embed a mes-

sage in the marked program. We do so by ensuring that the outputs of the marked

circuit on the marked points x encode information about the message m, which can

then be recovered by the extraction procedure. In particular, instead of simply having

the marked circuit output the value c encrypted in the marked point x, we make it

output c D m where m is message we wish to embed. The extraction procedure can

work as above but in each iteration i = 1,... , f it recovers a candidate message mi.

We simply test if there is a message which is recovered in a majority of the iterations.

If so we output it, and otherwise we output unmarked. A naive implementation of

this approach would only work for an approximation factor E > 1/V2 since only in
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that case could we expect that C* answers correctly on both the find point and the

marked point simultaneously with probability > 1/2 so as to get a correct majority.

We show how to tweak the above approach to make it work for optimal approximation

factor E > 1/2 by testing C* on many marked points for each find point and taking

a majority-of-majorities.

On approximation factors. One might claim that it is limiting to consider ad-

versaries that output a circuit satisfying 1/ poly(A) for messageless watermarking

schemes (resp. 1/2 for message-embedding schemes). As we see in Section 1.7.2,

approximation factor 1/2 for message-embedding schemes is optimal. Approximation

factor 1/ poly(A) for the messageless scheme is essential in our proof as we saw in

the technical overview in this section. However, we do not know such a lower bound

for messageless schemes. There might be a possibility to achieve messageless wa-

termarking scheme that satisfies negl(A) approximation factor. Therefore, whether

approximation factor negl(A) is possible or not is an interesting research problem.

1.2.6 Using Indistinguishability Obfuscation

Lastly, we briefly mention our techniques for moving beyond token-based watermark-

ing. On a high level, we can simply obfuscate the watermarked programs 0, instead

of thinking of them as hardware tokens. However, the fact that we only have iO rather

than ideal obfuscation makes this step non-trivial. Indeed, the token-based model can

give false intuition since it allows us to watermark any PRF family but we show that

in the standard model there are PRF families that cannot be watermarked. Never-

theless, it turns out that we can adapt the techniques from the token-based model to

also work in the standard model using iO. The main differences are that: (1) we need

the PRF family F that we are watermarking to be a puncturable PRF family,7 (2)

instead of a standard CCA secure encryption, we need a special type of puncturable

encryption scheme where we can create a punctured secret key which doesn't decrypt

a particular ciphertext. The latter primitive may be of independent interest and we

7 See Footnote 2, Definition 1.3.4
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show how to construct it using iO. We use a careful sequence on hybrids to show that

the above changes are sufficient to get a provably secure watermarking scheme in the

standard model.

1.2.7 Related Work

There has been a large body of work on watermarking in the applied research commu-

nity. Notable contributions of this line of research include the discovery of protocol

attacks such as the copy attack by Kutter, Voloshynovskiy and Herrigel [KVHOO]

and the ambiguity attack by Adelsback, Katzenbeisser and Veith [AKV03]. However,

these works do not formally define security guarantees, and have resulted in a cat-and-

mouse game of designing watermarking schemes that are broken fairly immediately.

We mention that there are several other works [NSS99, YF11, Nisl3 that propose

concrete schemes for watermarking cryptographic functions, under several different

definitions and assumptions. For example, the work of Nishimaki [Nisl3 gives formal

definitions and provably secure constructions for watermarking cryptographic func-

tions (such as trapdoor functions). The main aspect that sets our work apart from

these works is that they only consider restricted attacks which attempt to remove

a watermark by outputting a new program which has some specific format (rather

than an arbitrary program). In particular, for all of these schemes, the mark can be

removed via the attack described in [BGI+Ola, BGI+12] where an adversary uses iO

to obfuscate the marked program so as to preserve its functionality but completely

change its structure.

Barak et al. IBGI+O1a, BGI+12] proposed simulation-based and indistinguishability-

based definitions of watermarking security; their main contribution is a negative

result, described earlier in the introduction, which shows that indistinguishability

obfuscation rules out any meaningful form of watermarking that exactly preserves

functionality. Finally, Hopper, Molnar and Wagner [HMW07] formalized strong no-

tions of watermarking security with approximate functionality; our definitions are

inspired by their work. Their definition considers not just unremovability but also

the dual notion of unforgeability which requires that the only marked programs that
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an adversary can produce are functionally similar to circuits already marked by a

marking oracle. Cohen, Holmgren, and Vaikuntanathan [CHV15] also gave a defini-

tion of unforgeability for watermarking based on that of Hopper et al., and achieved a

watermarking scheme that satisfies unforgeability and unremovability simultaneously

under some parameter regime.

A subsequent sequence of works has sought to minimize the cryptographic as-

sumptions needed to watermark PRF families, albeit in a weaker security model

(see below). Starting from the general framework developed in this work, Boneh,

Lewi, and Wu showed that so-called private programmable PRFs [BLW17 suffice to

construct a family of watermarked PRFs, but they were unable to instantiate this

seemingly weaker primitive from any non-obfuscation assumption. Kim and Wu then

constructed a family of watermarked PRFs from private translucent PRFs [KW17]

and showed how to base the latter on the subexponential hardness of learning with

errors (LWE). Finally, Peikert and Shiehian [PS17] presented a construction of pri-

vately programmable PRFs, also from subexponential LWE. In addition to reducing

security to lattice-based assumptions, these constructions are able to achieve both

unremovability and unforgeability while also reducing the number of marked points

to a polynomial.

A major drawback of the lattice-based constructions is that they achieve a weaker

notion of security. Specifically, they use a different definition of security that hand-

icaps the adversary by restricting the oracles available to it. Most significantly, the

adversary gets no access to an Extract oracle (let alone a public extraction key).

Extract-oracle attacks contribute substantially to the challenge of constructing wa-

termarking schemes. Secondly, the adversary's Mark oracle cannot take circuits as

input. In the work of Kim and Wu, the Mark oracle receives a PRF key and gives the

adversary a marked PRF key. In the work of Boneh et al., the Mark oracle samples

and marks a random circuit from the family, giving the adversary both the marked

and unmarked versions. These restrictions to the class of attacks available to the

adversary are central to the results of the two works. Finally, the approximation

factors of their schemes are worse than ours, that is, their approximation factors are
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1 - negl(A).

Baldimtsi, Kiayias, and Samari [BKS17] presented a weaker model of watermark-

ing cryptographic functionalities and a concrete watermarking scheme for public-key

encryption in their model. Their watermarking scheme for public-key encryption is

based on one-way functions. In their model, a marking algorithm and a extraction

algorithm can share a state information. That is, their scheme is a stateful construc-

tion. This is a significant difference from ours.

1.3 Preliminaries

1.3.1 Notation

For any n E N, we write [n] to denote the set {1, ... , n}. For two strings x1 and x 2 ,

x 1 ||X2 denotes a concatenation of x, and X2 .

When D is a distribution, we write y +- D to denote that y is randomly sampled

from D. If S is a set, then we will also write S to denote the uniform distribution on

that set.

We say that a function f : N -+ R is negligible if for all constants c > 0, there

exists N E N such that for all n > N, f(n) < n-c.

We use abbreviation PPT to denote probabilistic polynomial time.

If X = {XA}xEN and Y = {Y}xEN are two ensembles of random variables indexed

by A E N, we say that X and Y are computationally indistinguishable if for all PPT

algorithms D, there exists a negligible function v such that for all A,

X - XA 1
Pr D(Xb) = b x+ Y + V(A).

2
b +- {0, 1}

We write X ~~ Y to denote that X and Y are computationally indistinguishable.

For two circuits C and D, we write C - D if C and D compute exactly the same

function. If C and D agree on an E fraction of their inputs, we write C ~ D.
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1.3.2 Definitions

In this section, we review basic notions and definitions used in this chapter.

Obfuscation. The notion of indistinguishability obfuscation (iG) was proposed by

Barak et. al. [BGI+01a, BGI+12] and the first candidate construction was proposed

by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13a].

Definition 1.3.1 (Indistinguishability Obfuscation [BGI+12, GGH+13a]). An indis-

tinguishability obfuscator is a PPT algorithm iO satisfying the following two condi-

tions.

FUNCTIONALITY: For every security parameter A C N and every circuit C, it holds

with probability 1 that

iO(lA, C) - C

INDISTINGUISHABILITY: For all circuit families C = {CA} and C = {C)"} such that

Co = C' are functionally equivalent and |CI| = CA|, it holds that

{io(11, CAO)} JA {'1'(1-1, CA)

For simplicity, we write iO(C) instead of iO(1A, C) when the security parameter

A is clear from context.

Pseudorandom generators and functions. We review pseudorandom generators

and several variants of pseudorandom functions (PRFs).

Definition 1.3.2 (Pseudorandom Generator). A pseudorandom generator (PRG)

G : {0, I}A -+ {, } +1() with stretch f(A) (f is some polynomial function) is a

polynomial-time computable function that satisfies G(U) - UA\+(A) where U denotes

the uniform distribution over {O, 1} .

Definition 1.3.3 (Pseudorandom Functions). A pseudorandom function family F

{ FA}AeN is a function family where each function F EE TA maps a domain D to a
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range R and satisfies the following condition. For all PPT adversary A and F +- T A,

it holds

Pr[AF(-) = 1] - Pr[A -_ 11 < negl(A)

where F(.) : D - R is a deterministic function and R is chosen uniformly at random

from the set of all functions with the same domain/range.

In this chapter, we basically set D {0, 1}n(A) and R {0, 1}m(A) for a pair of

polynomial-time computable functions n(.) and m(.).

The notion of puncturable pseudorandom function (pPRF) was proposed by Sahai

and Waters [SW14, BW13, KPTZ13, BGI13].

Definition 1.3.4 (Puncturable Pseudorandom Functions). A puncturable pseudo-

random function (pPRF) family F is a function family with a 'uncturing" algorithm

Puncture where each function F E FA maps a domain {O, i}n(.) to a range {o, i}m()

that satisfies the following two conditions.

FUNCTIONALITY PRESERVING UNDER PUNCTURING: For all polynomial size sets

S C {o, 1}(A) and for all x E {O, 1}(A) \ S, it holds that

Pr[F(x) = F{S}(x) I F +- FA, F{S} := Puncture(F, S)] = 1.

PSEUDORANDOM AT PUNCTURED POINTS: For poly-size set S= {x,..., Xk(A)} C

{0, 1}(A) it holds that for all PPT adversary A,

M(A) := |Pr[A(F{S}, {F(xj)}j[k]) = 1] - Pr[A(F{S}, Um(x).IsI) = 1]1 < negl(A)

where F <- F\, F{S} := Puncture(F, S) and Ue denotes the uniform distribu-

tion over f bits.

Theorem 1.3.5 ( [GGM86, BW13, BGJ13, KPTZ13]). If one-way functions exist,

then for all efficiently computable n(-) and m(.), there exists a pPRF family whose

input is an n(.) bit string and output is an mo bit string.
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Definition 1.3.6 (Injective pPRF). If a pPRF family F = {.F} satisfies the fol-

lowing, we call it an injective prefi pPRF family. For all F e F and x, x' G D, if

x $ x', then F(x) f F(x').

Sahai and Waters showed that we can convert any pPRF into a statistically in-

jective pPRF [SW14j. Here, "statistically" means with probability 1 - negl(A) over

the random choice of F <- TA, F(.) is injective.

Definition 1.3.7 (Injective Bit-Commitment). An injective bit-commitment function

is a PPT algorithm Com which takes as input a security parameter A and a bit b G

{0, 1}, and outputs a commitment c, satisfying the following properties.

COMPUTATIONALLY HIDING:

{Com(1A, 0)}A {Com(1A, 1)}

PERFECTLY BINDING: For every A, it holds that

co < Com(lA, 0)Pr co = ci(= 0
cL - Com(1A, 1)

INJECTIVE: For every security parameter A, there is a bound ?rand on the number

of random bits used by Com such that Com(1A,- ;-) is an injective function on

{O, 1} x {O, 1}.and

Definition 1.3.8 (Universal One-Way Hash Function). A universal one-way hash

function (UOWHF) family 1 {=tA}AEN is a function family where each function

H E Rx maps a domain D to a range R and satisfies the following condition. For all

PP T adversary A := (A1 , A 2 ), it holds

(x, s) <- A 1 (1A),
Pr x A x* / H(x) = H(x*) H<- Rx, <negl(A).

X* RA2 (1 fx, h Hes)

Theorem 1.3.9 ( [Rom90]). If one-way functions exist, then U0WHFs exists.
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Hoeffding's inequality. We will use the following well-known bound. If X1,. . . , XN

are independent Bernoulli variables with parameter p, then

Pr [ Xi>(P+E).N <e2E 2
N

In particular, if N > y, then this probability is exponentially small in A.

1.4 Definition of Watermarking

We begin by defining the notion of program watermarking. Our definition is similar

to the game-based definition of Barak et al. [BGI+12, Definition 8.41 (It is called occa-

sional watermarking) with the main difference that: (1) we allow "statistical" rather

than perfect correctness, (2) the challenge circuit to be marked is chosen uniformly

at random from the circuit family (for example, in the case of PRFs, this corresponds

to marking a random PRF key), (3) we strengthen the definition to the public-key

extraction setting and give the attacker access to the marking oracle.

Definition 1.4.1 (Watermarking Syntax). A message-embedding watermarking scheme

for a circuit class {CA}AeN and a message space M = {MA} consists of three proba-

bilistic polynomial-time algorithms (Gen, Mark, Extract).

KEY GENERATION: (xk, ink) - (Gen(1A) takes as input the security parameterin

unary and outputs a pair of keys an extraction key xk and mark key ink.

MARK: C <- Mark(mk, C, m) takes as input a mark key, an arbitrary circuit C (not

necessarily in C\) and a message in G M) and outputs a marked circuit C.

EXTRACT: in' +- Extract(xk, C') takes as input an extraction key and an arbitrary

circuit C', and outputs a message m' e M U {unmarked}.

Definition 1.4.2 (Watermarking Security). A watermarking scheme (Gen, Mark, Extract)

for circuit family {CA}AxE and with message space M {Mx} is required to satisfy

the following properties.
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STATISTICAL CORRECTNESS: There is a negligible function V(A) such that for any

circuit C e CA, any message m e MA and any input x in the domain of C, it

holds that

Pr [(x)= C(x)
(xk, mk) <- Gen(1A) ;> 1 - v(A).

C &- Mark(mk, C, m)

EXTRACTION CORRECTNESS: For every C E CA, m E MA and (xk, mk) <- Gen(1A):

Pr[m' : m I m' <- Extract(xk, Mark(mk, C, m))] < negl(A).

MEANINGFULNESS: For every circuit C (not necessarily in CA), it holds that

Pr [Extract(xk, C) z unmarked] < negl(A).
(xkmk)+--Gen(1A)

E-UNREMOVABILITY: For every PPT A we have

Pr[Expnr"'(A, E) - 1] < negl(A)

where E is a parameter of the scheme called the approximation factor and

Expnr,, (A, e) is the game defined next.

We say a watermarking scheme is E-secure if it satsifies these properties.

Definition 1.4.3 (E-Unremovability Security Game). The game Expr"'(A, c) is de-

fined as follows.

1. The challenger generates (xk, mk) +- Gen(1A) and gives xk to the adversary A.

2. The adversary has oracle access to the mark oracle MO. If MO is queried

a circuit Ci (not necessarily in CA) and message mi, then it answers with

Mark(mk, Ci, mi).

3. At some point, the adversary makes a query to the challenge oracle CO. If CO
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is queried with a message m E MA, it samples a circuit C +- CA uniformly at

random and answers C <- Mark(mk, C, in).

4. Again, A queries many pairs of a circuit and a message to MO.

5. Finally, the adversary outputs a circuit C*. If it holds that C* ~ C and

Extract(xk, C*) / m then the experiment outputs 1, otherwise 0. 8

Our main construction achieves what we call "lunch-time security", in which step 4

of the above game is omitted. This and other variations are discussed in Section 1.7.

1.5 Puncturable Encryption

One of our main abstractions is a puncturable encryption system. This is a public-

key encryption system in which the decryption key can be punctured on a set of

ciphertexts. We will rely on a strong ciphertext pseudorandomness property which

holds even given access to a punctured decryption key. We will additionally require

that valid ciphertexts are sparse, and that a decryption key punctured at two cipher-

texts {co, c 1} is functionally equivalent to the non-punctured decryption key, except

possibly on {co, c1I}.

In this section we define the puncturable encryption abstraction that we use in

Section 1.6. We instantiate this definition in Section 1.5.1 and prove its security

Section 1.5.2.

Definition 1.5.1 (Puncturable Encryption Syntax). Syntactically, a puncturable en-

cryption scheme PE for a message space M = {0, l} is a triple of probabilistic

algorithms (Gen, Puncture, Enc) and a deterministic algorithm Dec. The space of ci-

phertexts will be {0, 1}' where n = poly(t, A). For clarity and simplicity, we will

restrict our exposition to the case when A = f.

KEY GENERATION: (pk, sk) <- Gen(1A) takes the security parameter in unary, and

outputs an encryption key pk and a decryption key sk.
8 The definition would be equivalent if we had required C* '= C instead of C* =' C, up to a

negligible difference in E, since by statistical correctness we have C s C for some 3 = 1 - negl(A).
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PUNCTURING: sk{co, c1} +- Puncture(sk, co, ci) takes a decryption key sk, and a set

{co , c1} c {O, 1}.9 Puncture outputs a 'punctured" decryption key sk{co, c1}.

ENCRYPTION: c +- Enc(pk, m) takes an encryption key pk and a message m E {0, 1} ,

and outputs a ciphertext c in {O, 1}.

DECRYPTION: m or I <- Dec(sk, c) takes a possibly punctured decryption key sk and

a string c e {0, 1}'. It outputs a message m or the special symbol I.

Definition 1.5.2 (Puncturable Encryption Security). A puncturable encryption scheme

PE = (Gen, Puncture, Enc, Dec) with message space M is required to satisfy the fol-

lowing properties.

CORRECTNESS: We require that for all messages m,

Pr Dec(sk, c) = m (pk, sk) +- Gen(1A),

[ c - Enc(pk, m)

PUNCTURED CORRECTNESS: We also require the same to hold for keys which are

punctured. For all possible keys (pk, sk) +- Gen(1A), all strings co, ci E {0, 1},

all punctured keys sk' <- Puncture(sk, co , c1), and all potential ciphertexts c E

{0, 1} \ {co, c1}:

Dec(sk, c) = Dec(sk', c).

CIPHERTEXT PSEUDORANDOMNESS: We require that in the following game, all PPT

adversaries A have negligible advantage.

Game 1.5.3 (Ciphertext Pseudorandomness).

1. A sends a message m* to the challenger.

2. The challenger does the following:

" Samples (pk, sk) +- Gen(1A)

" Computes encryption c* +- Enc(pk, m*).

9 We can assume that the set {co, c 1} is represented as a list in sorted order.
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* Samples r* - {0, 1}.

" Generates the punctured key sk' <- Puncture(sk, {c*, r*})

" Samples b +- {O,1} and sends the following to A:

(c*, r*, pk, sk') if b = 0

(r*, c*, pk, sk') if b = 1

3. The adversary outputs b' and wins if b = b'.

SPARSENESS: We also require that most strings are not valid ciphertexts:

Pr [Dec(sk, c) -II (pk, sk) +- Gen(1A), c <-- {0, 1}} < negl(A).

Remark 1.5.4. The notion of puncturable encryption is similar to that of punc-

turable deterministic encryption (PDE) introduced by Waters [Wat15a]. However,

there are differences between them: (1) PDE is symmetric key encryption, that is,

an encryption key is equal to a decryption key. (2) A key is punctured at plaintexts

in PDE. (3) Ciphertexts are not required to be pseudorandom in PDE. Therefore,

puncturable encryption is a stronger tool than PDE.

One of our contributions is the following theorem.

Theorem 1.5.5. Assuming the existence of injective one-way functions, and an indis-

tinguishability obfuscator for all circuits, there exists a puncturable encryption system.

We provide a construction of the puncturable encryption in the next section.

1.5.1 Construction

We construct a puncturable encryption scheme in which the length n of ciphertexts is

12 times the length f of plaintexts. Our construction utilizes the following ingredients:

* A length-doubling P RG : {0, 1} - {0, 1}2t
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* A family of injective pPRFs (See Definition 1.3.6) {FA : {, 1}31 -+ {, }911 10

" A family of pPRFs {GA {0, 1}9 -+ {0, 1} }.

" An injective bit-commitment Com using randomness in {0, 1}9, which can in

fact be constructed by an injective one-way function. We only use this in our

security proof.

Construction 1.5.6 (Puncturable Encryption Scheme PE).

Gen(lA): Sample functions F +- FA and G <- !;, generates pk as the iO-obfuscation

of the program E in Figure 1-1, and returns (pk, sk) := (iO(E), D), where sk is

the (un-obfuscated) program D in Figure 1-2.

Puncture(sk, co , c1): Output sk', where sk' is the iO-obfuscation of the program D'

described in Figure 1-3, that is, sk' := iO(D').

Enc(pk, m): Take m C {0, 1}e, sample r +- {0, i}f, and outputs c +- pk(m, r).

Dec(sk, c): Take c c {0, 1}12 and returns m := sk(c).

The size of the programs is appropriately padded to be the maximum size of all modified

programs, which will appear in the security proof.

Remark 1.5.7. We note that in all of our obfuscated programs (including the hy-

brids), whenever ac or f3 or -yi for i E {0, 1} are treated symmetrically, then we can

and do store them in lexicographical order. A random ordering would also suffice for

security.

Correctness and punctured correctness. Correctness follows from the fact that

indistinguishability obfuscation exactly preserves functionality, and observing in the

punctured case that sk' is defined to be functionally equivalent to sk except on inputs

in {co, c1}.

10As in [SW14], any puncturable PRF family from {0, 1}k _ {0, 1}2k+w(logA) can be made statis-
tically injective (with no additional assumptions) by utilizing a family of pairwise-independent hash
functions.
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Constants: Injective pPRF F : {0, 1}3 -- {0, 1}9, pPRF G : {0, 1}9' -+ {0, 1}
Inputs: mE {0, i}er E {0, y

1. Compute a = PRG(r).

2. Compute # = F(allm).
3. Compute y = G(0) D m.
4. Output (C, 0, y).

Figure 1-1: Encryption Program E (pre-obfuscation)

Constants: Injective pPRF F : {0, 1}3 -+ {, l}19, pPRF G : {, }9 -+ {O, 1}
Inputs: c = (aH/|I||), where a E {0, 1}20, 3 E {O, 01}9, and y C {0, 1}e.

1. Compute m = G(0) e -y.
2. If /3 = F(allm), output m.
3. Else output I.

Figure 1-2: Decryption Program D

Constants: Set {co, c1} C {0, 1}n, injective pPRF F : {, 1}3 - {O, i}19, and
pPRF G : {0, 1}9 -+ {0, 1}
Inputs: c =(afl#3K), where a E {0, 1}2, f {0, 1}9, and '-y G {0, 1}'.

1. If c E {co, c1}, output I.
2. Compute m = G(#) e -y.
3. If / = F(allm), output m.
4. Else output I.

Figure 1-3: Punctured Decryption Program D' at {co, c1} (pre-obfuscation)

Sparseness. Sparseness follows from, for example, the length-doubling PRG; most

values of a are not in the image of PRG.

Therefore, what remains is proving ciphertext pseudorandomness. We provide the

proof in the next section.
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Table 1.1: An overview of hybrid distributions. The table is split in two to fit within
the margins. The differences between each hybrid distribution and the previous one
are underlined.

Hybrid] ao [I 'Yo
REALo
Hybl
Hyb2
Hyb3
Hyb4
Hyb5

RAND

PRG(t)
random
random
random
random
random
random

F(aollm*)
F(aolm*)
F(ollm*)
random
random
random
random

G(30) e m*
G(3) e m*
G(30) e m*
G(O) e m*
G(3o) E m*

random
random

1.5.2 Ciphertext Pseudorandomness

Theorem 1.5.8. If F is an injective pPRF family, G is a pPRF family, PRG is a

pseudorandom generator, Com is a injective bit-commitment function, and i0 is a

secure iO, then the PE scheme above satisfies the ciphertext pseudorandomness.

Proof. We give a sequence of main hybrid distributions Hybl through Hyb5 . The goal

of the hybrids to reach a game in which the challenge encryption co and the random

ciphertext ci are treated symmetrically in pk and sk', and in which both are sampled

uniformly at random by the challenger. We proceed by iteratively replacing pieces

of co by uniformly random values, puncturing F and G as necessary. We give an

overview of the hybrids in Table 1.1.

REALb: The real distribution is defined by the real security game:

1. A sends a message m* E M to the challenger.

2. The challenger does the following:
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Hybrid pk := iO of below sk' := iO of below

REALo E D'
Hybl E D'
Hyb2  E{co llm*, a1m*} D'{ao lm*, ce1|m*}
Hyb3  E{aollm*, al|im*} D'{ao lm*, a1|lm*}
H y b4  E{ozom*,ai lm*,o,/3i} D'{aojm*, Ilm*, #3,/1}
Hyb5  E{ao m*,a1|mn*,o,3i} D'{aolm*,aljm*,30o,/3l}

RAND E D'



(a) Samples an injective pPRF F : {0, 11}3 -+ {0, 1}9 and pPRF G

{o, 1}9 -+ {o, 1}.

Samples t <- {0, 1}

Ceo = PRG(t) C {, 1}2 ,

O = F(aoJlm*),

7yo = G(#o) @ m*.

Let co = aolloollLyo-

(b) Samples ci +- {0, 1}12.

Parse ci = a, 1#1||1By.

(c) Generates pk as the iO-obfuscation of Figure 1-1 and sk' as the iO-

obfuscation of Figure 1-3.

(d) Samples b +- {0, 1} and sends the following to A:

(co, ci, pk, sk') if b =0

(ci, co, pk, sk') if b= 1

3. The adversary outputs b' and wins if b = b'.

That is, REALO is (co, ci, pk, sk') and REAL 1 is (ci, co, pk, sk').

RAND: Before we define several hybrid distributions, we define an intermediate hybrid

between REALO and REAL1 . We define RAND as (r', c1 , pk, sk') where r' is a

uniformly random element in {o, 1}12.

Hybl: We sample uniformly random ao <- {0, 1} 2E for cO.

Hyb2 : We puncture programs E and D' at {aoJm*, a|m*} by puncturing F at

{aoJlm*, a1|m*}. The new programs E{aollm*, aiflm*} and Df{aeoIJm*, aJIm*}

are described in Figure 1-4 and 1-5, respectively where # = F'(cei|m*) and

S= G(3) e m*. The modifications are underlined.

Hyb3 : We sample uniformly random #o, 3 +- {0, 1}9 for co and slightly modify pro-

gram D23{ao'm*, a1 ||m*} defined in in Figure 1-6. The modifications are un-

derlined.
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Encryption Program E{aojm*, aillm*}
Constants: Punctured F' = F{aoIIm*, aIIm*} and (not-punctured) G.
Inputs: m E {0, 1} , r E {o, 1}

1. Compute a PRG(r).
2. Compute / = F'(ailm).

3. Compute -y G(0) e m.

4. Output (a,,_Y).

Figure 1-4: Program E{aoljm*, ai|m*} (pre-obfuscation)

Constants: Set {co, ci} c {O, 1}fn, punctured F' = F{ao||m*, a|ifm*}, G, and
the values ao, a1 , 3, ', m*.
Inputs: c = (afl#I-y), where a E {0, 1}21, 3 E {, 1}9, and -y c {0, 1} .

1. If a = a1 and / = # and - = , output m*.

2. If c G {co, ci}, output I.
3. Compute m = G(/) G -y.
4. If (a, m) c {(&o, m*), (ai, m*)}, output I.

5. If 0 = F'(a||m), output m.

6. Else output I.

Figure 1-5: Punctured Program D {ao m*, aflm*} in Hyb2 (pre-obfuscation)

Constants: Set {co, c1} c {O,1}f, punctured F' F{aollm*, a|ifm*}, G, and
the values ao, a1 .
Inputs: c =(aH/3H'), where a E {O, 1}21, / E {0, 1}9, and 0 E {O, 1}f.

1. Removed branch.

2. If c E {co, c 1}, output I.

3. Compute m = G(/) @ 'y.

4. If (a, m) E {(ao, m*), (ai, m*)}, output I.
5. If / = F'(ajm), output m.

6. Else output I.

Figure 1-6: Punctured Program Df{aollm*, a1 m*} in Hyb3 (pre-obfuscation)

Hyb4 : We puncture programs E and D' at {aolm*, a,1|m*, #o, Oi} by puncturing G

at {o, /1}. These modified programs are described in Figure 1-7 and 1-8.
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Constants: Punctured F'= F{ao|fm*,ai||m*} and punctured G' = G{ 0 1, 31}.

Inputs: m E {O, 1}j, r E {O, i}

1. Compute a= PRG(r).
2. Compute # F'(a Mm).

3. Compute -y = G'(#) e m.

4. Output (a,3,y7).

Figure 1-7: Encryption Program E{aojjm*, a1 |m*,0o, il (pre-obfuscation)

Constants:
punctured G'

Set {co,c1} C {O,1}, punctured F' = F{aoIjm*,a1jm*},
- G{#30 ,#3 1 }, and the values ao, a1, #30,/31, m*.

Inputs: c = (a||#H|y), where a c {0, 1}2f and f {0, 1}9.

1. Removed branch.

2. If # E { 0 , 3 1 }, output I.

3. Compute m = G'(#) E D.

4. If (a, m) E {(ao, m*), (ai, m*)}, output I.

5. If / = F'(alMm), output m.

6. Else output I.

Figure 1-8: Punctured Program Df{aollm*, a1 m*} in Hyb4 (pre-obfuscation)

Hyb,: We sample uniformly random -yo +- {0, 1if for co.

Our goal is to prove REALO & Hyb1 5 Hyb2 rb Hyb Hyb4  Hyb RAND since we

can prove RAND c REAL1 in the reverse manner and it means REALO c REAL1 .

Lemma 1.5.9. If PRG is a pseudorandom generator, then Hybo c Hybl.

Proof of Lemma 1.5.9.

randomness of PRG.

These distributions are indistinguishable due to the pseudo-

l

Lemma 1.5.10. If .F is an injective pPRF family and iO is a secure iO, then Hybl c

Hyb 2 -

Proof of Lemma 1.5.10. To prove this lemma, we define auxiliary hybrids.
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Hybl: We alter the generation of pk. We puncture F at ozol m* and ailrm* and use

it for pk. That is, we use F' = F{aoIlm*, a,||m*} to generate the encryption

program E.

Hybl: We modify the generation of sk'. The constants 3 F(al|m*) and '5=
G(O) e m* are hard-coded. We add the following line in the beginning of sk': "If

c E ail3li', output m*." . For reference, we describe the modified decryption

program from Hybrid Hyb2 in Figure 1-9.

Constants: Set {co, c1 } c {0, }", punctured F', and G, and the values ao, ai,
/3, ', m*.
Inputs: c = (all#||-y), where a E {0, 1}2, 3 E {0, 1}9, and E E {0, 1}y.

1. If a = a1 and # = and -y = , output m*.

2. If c E {cO, c 1}, output I.

3. Compute m = G(O) ( D.

4. If / = F'(alm), output m.

5. Else output I.

Figure 1-9: Modified Program of D' in Hyb2 (pre-obfuscation)

Hyb3: We again modify the generation of sk'. We add the following check: "If

(a, m) E {(ao, m*), (a1 , m*)}, output -. " For reference, we describe the modi-

fied decryption for sk' from Hybrid Hyb3 in Figure 1-10.

Claim: If F is an injective pPRF family and iO is a secure iO, then Hybl & Hybl.

Proof. A modified program that uses F' is functionally equivalent to E because

F' is never evaluated on strings of these forms due to the uniform randomness

of ao, a1 . Values ao and a1 are with high probability not in the image of PRG.

Thus, the claim holds due to the functional equivalence explained above and

the security of iO. L

Claim: If 1O is a secure iO, then Hybl 5 Hybl.
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Constants: Set {co, c1} c {0, 1}n, punctured F', and G, and the values ao, ai,
/3, 'i, m*.
Inputs: c = (ac4/3Ky), where a {0, 1}", 3 c {0, 1}', and 0 E {O, 1}?.

1. If a = a 1 and 0 = z and -y= , output m*.

2. If c E {c0 , c1}, output I.

3. Compute m = G(O) ( -y.

4. If (a, m) c {(aO, m*), (a,, m*)}, output I.

5. If # = F'(alm), output m.

6. Else output I.

Figure 1-10: Modified Program of D' in Hyb3 (pre-obfuscation)

Proof. The decryption programs in these hybrids are functionally equivalent,

as a1 ||l || is already a valid encryption of m*. Notice, that these / do not

correspond to either the 0o or #1 (and similarly for I). The claim holds due

to the functional equivalence explained above and the security of iO. E

Claim: If iO is a secure iO, then Hybl c Hybl.

Proof. The decryption programs in these hybrids are functionally equivalent by

two cases:

1. When (a, m) = (ao, m*), then either c = co, in which case sk' already would

output 1, or c $ co, in which case sk' rejects c as an invalid ciphertext

(because every pair (a, m) together define a unique valid ciphertext due to

the injective property of F).

2. When (a, m) = (ai, m*), we only reach this line if c :z a,1H/3IK (by the

check introduced in Hybrid Hyb2). In this case, sk' already rejects c as an

invalid ciphertext.

Thus, the claim holds due to the functional equivalence explained above and

the security of iO. E

Claim: If iO is a secure iO, then Hybl 5 Hyb2.
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Proof. In Hyb2, instead of using the un-punctured key for F in sk', we puncture

F at the points aol|m* and al|m*. For sk', the modified program is functionally

equivalent to that in the previous hybrid because-by the checks added in the

previous hybrid- -F will never be evaluated on such inputs. D

EDThus, the lemma holds.

Lemma 1.5.11. If F is an injective pPRF family, Com is secure injective commit-

ment, and iO is a secure iO, then Hyb 2 c Hyb3

Proof of Lemma 1.5.11. To prove the lemma, we define auxiliary hybrids.

Hybl: We alter the generation of the the key sk' in the security game. Instead of

using # F(a1|Jm*), we sample 3 uniformly at random from {O, 1}9.

Hyb2: We change Line 1 of Figure 1-5. Value 2 Com(O; 3) is hard-coded, and we

replace the check "# = /" with the check "Com(O; /) 2".

Hyb : We change the hard-coded value 2 into "Com(1; 3)".

Hyb : We replace the expression "Com(O; /) = 2" with FALSE.

For reference, we describe sk' from Hybrid Hyb4 in Figure 1-11.

Constants: Set {co, cI} c {O, 0}f, punctured F', G, and the values co, a,, m*,

Inputs: c (a|l/II'), where a E {0, 1}21, /3 E {O, }f, and o {O, 1}f.

1. For some i, if a a1 and FALSE and - =iy , output m*.
happens)

2. If c c C, output _.

3. Compute m = G(O) G ).

4. If (a, m) c {(ao, m*), (ai, m*)}, output _.

5. If /3 = F'(al|m), output m.

6. Else output I.

(i.e., this never

Figure 1-11: Modified Program of D' in Hyb4 (pre-obfuscation)
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Claim: If F is an injective pPRF family, then Hyb2 2 Hybi

Proof. This holds due to the pseudorandomness of F at punctured points. El

Claim: If Com is a secure injective commitment and iO is a secure iG, then Hybl .

Hyb .

Proof. The modified decryption programs are functionally equivalent by the

injective property of Com. Thus, the holds due to the injective property of Com

and the security of iO. El

Claim: If Com is a secure injective commitment, then Hybi 2 Hyb .

Proof. This holds due to the computational hiding property of Com. El

Claim: If Com is a secure injective commitment and iO is a secure iO, then Hybi e

Hyb .

Proof. The modified decryption programs are functionally equivalent with high

probability because of the perfect binding property of Com (which follows from

injectivity). In fact, we remove the entire line 1 as in Hyb3, which also preserves

functionality. Thus, the claim holds due to the functional equivalence explained

above and the security of iO, E3

Claim: If F is an injective pPRF family, then Hybi 4 Hyb3 -

Proof. This holds due the pseudorandomness of F at the punctured points. El

Thus, the lemma holds.

Lemma 1.5.12. If g is a pPRF family and iO is a secure iO, then Hyb3 5 Hyb 4.

Proof of Lemma 1.5.12. To prove this lemma, we define auxiliary hybrids.
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Hyb': We alter the generation of pk (see Line 2(d) 1-4). We puncture G in pk at Oo

and 3 1.

Hybi: We alter the generation of sk', changing Line 2 of Figure 1-6. Instead of "If

c E {co, ci}: output IL", we replace it with "If # E {/o, Oi}: output 1".

Claim: If g is a pPRF family and i0 is a secure iG, then Hyb3 5 Hyb'.

Proof. The encryption programs in these hybrids are functionally equivalent

by the sparsity of F since #o and #1 are now chosen at random, with high

probability they are not in the image of F. Thus, the claim holds due the

functional equivalence explained above and the security of iO. E

Claim: If i is a secure iG, then Hybl 5 Hyb .

Proof. To see that the modified decryption programs in these hybrids are func-

tionally equivalent, we observe that with high probability, neither of these lines

has any effect.

Since with high probability, none of the /o and 01 are in the image of F, if

0 E { o, 11}-which is the case when c E {co, c1 } -then sk'(c) = L with high

probability, even without the extra check.

We do not remove the check because checking if 0 E {/o, /I} will allow us to

puncture G on this set in the following hybrid. This holds due the functional

equivalence explained above and the security of iO. E

Claim: If 9 is a pPRF family and iO is a secure iO, then Hybi 2 Hyb4 .

Proof. In Hyb4 , we alter the generation of sk'. We puncture G at {o 1, 1} in sk'.

This change is functionally equivalent because of the ostensibly useless checks

in the previous hybrid. Thus, the claim holds due the functional equivalence

explained above and the security of iO. E
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Thus, the lemma holds.

Lemma 1.5.13. If g is a pPRF family, then Hyb 4 . Hyb5

Proof of Lemma 1.5.13. In Hyb5, we sample -yo uniformly at random from {0, 1}.

This change is indistinguishable by the pseudorandomness of G at the punctured

set.

Lemma 1.5.14. Under the same assumptions as in Theorem 1.5.8, Hyb5 & RAND

Proof of Lemma 1.5.14. This is proved in the same way as Lemma 1.5.9, 1.5.10,

1.5.11, 1.5.12, and 1.5.13. F1

Therefore, the construction satisfies the ciphertext pseudorandomness. El

Therefore, we complete the proof of Theorem 1.5.5.

1.6 Watermarking PRFs

In this section, we construct schemes for watermarking any puncturable PRF family.

One is secure against lunch-time attacks and the other is fully secure. Both of them

are in the public-key extraction setting. As we explain in Section 1.2.3, the simple

scheme is not secure in these settings (the attacker has access to the marking or

extraction oracles).

For all of the schemes, let C be some puncturable PRF (pPRF) family where, for

C +- CA we have C(.) : DA -+ R, with DA= {0, }n(A), and RA {0, l}m(A) for some

n(A), m(A) = Q(A). We often drop A from DA and RA. We construct a watermarking

scheme for PRF evaluation of C. We identify the PRF evaluation circuits computing

the function C(.) and assume (without loss of generality) that the marking procedure

just takes C as an input.

Theorem 1.6.1. Assuming the existence of injective one-way functions, and an in-

distinguishability obfuscator for all circuits, for all E(A) = + 1/ poly(A), all mes-

sage spaces .M = {0, 1}w (for w = poly(A)), all integer functions n(A) = Q(A) and
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m(A) = Q(A) there exists a watermarking scheme with message space M which is

E-secure against lunch-time attacks for every pPRF ensemble {CA}AEN such that func-

tions C in CA map {0, 1}n(A) _ {0, 1}m(A).

If we assume pPRF family C - {CA}EN satisfies a "nice" property, that is, the

injective property in Definition 1.7.1, and the mark oracle accepts only pPRF keys

as input, then we can show the full security in Definition 1.4.3 where the adversary

has access to the mark oracle even after the challenge program is given. See Section

1.7.1 for the details.

1.6.1 Scheme Outline

Assume we want to mark a PRF family C with domain D = {0, 1} and range R

{0, i}m, where both n and m are sufficiently large. In this overview, suppose for

simplicity that the space of marks is {0, 1}m. Our construction relies on a puncturable

encryption scheme PE with ciphertext space C ={0, }l and message space M =

{0, 1}' for sufficiently large f. We follow the watermarking framework described in

the introduction, in which a marked program is changed on a small set of "marked

points", determined by a set of "find points" which are not changed.

Roughly speaking, a marked point in our scheme is a valid ciphertext of PE.

A valid ciphertext when marking a program C is defined as any encryption of any

plaintext al|b||c such that b = H(C(PRG(a))), where H is a UOWHF. On such inputs,

the marked program's output is changed to G'(c) @ m where G' is a publicly known

pseudorandom generator and m is the desired mark. Note that there are super-

polynomially many marked-points, but yet they are only a negligible fraction of the

total domain.

Given the above marking scheme, there is a natural procedure to extract the

mark m. We first pick random values a, c - {0, 1} /3 and compute the corresponding

find-point a := PRG(a). Then we compute b := H(C'(a)) and use this to find the

corresponding marked-point x <- PE.Enc(pk, a||bjc). Finally, we compute y = C'(x)

and record m' := yE)G'(c) as a candidate for the embedded message. If C' = Mark(C),
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correctness is obvious. The bulk of our work is making extraction work for arbitrary

efficiently computable C' ~~e Mark(C).

In order to guarantee that the correct message is extracted with high probability,

we amplify our procedure in two steps. First, we fix allb and sample multiple indepen-

dent c's, extract as above, and take the majority result. We then repeat this process

with independently sampled a's, and again taking the majority result. Compared to

earlier versions of this work fCHV15, NW151, this "majority of majorities" approach

allows us to attain optimal thresholds for unremovability (any 1 + ).

1.6.2 A Message-Embedding Construction

In this section, we formally construct our main message-embedding watermarking

scheme. We show it satisfies unremovability in the public-key extraction setting and

in the presence of a marking oracle. We obtain a scheme in which unremovability

holds for any approximation factor E(A) = 1 + 1/ poly(A).

Setup. Our goal is to construct a watermarking scheme for a pPRF family C with

domain {0, 1}' and range {0, 1}'. For any positive integer w, let M = {0, 1}"

denote the message space. We will think of messages m E M as consisting of w/m

chunks in {O,1}m, so we will write m = m1f ... |mW. Let PE be a puncturable

encryption scheme with ciphertext length n and plaintext length f + log w. Let G

{-, / {O, 1}" and G' : {0, 1}e/3 -+ {o, 1}m be PRGs, and let H {Oi}m  -

{0, 1}/3 be a UOWHF.

Construction. For any approximation factor E(A) = j + p(A) where p(A) is some

inverse polynomial, we set Q = Q(A) = A/p(A) 2 and R = R(A) = A/p(A) 2 and define

our construction as follows.

Gen(1A): Sample a key pair (pk, sk) <- PE.Gen(1A). Output (xk, mk) where xk = pk

and mk = sk.

Mark(mk, C, m): Outputs the iO-obfuscation of circuit M constructed from C in

Fig. 1-12, i.e., iO(M).

58



Constants: PE decryption key sk, pPRF F, circuit C, and message m = mil ... Jim,
Inputs: x E {, 1}"

1. Try to parse aflbllclli <- PE.Dec(sk, x), where al = lbl = Ic = f/3 and i E [w].

2. If a||bllclji z I and H(C(G(a))) = b, output G'(c) e mi .

3. Otherwise, output C(x).

Figure 1-12: The program M, which is a modification of C (pre-obfuscated program)

Extract(xk, C'): For each i E [w], let mi = Extracti(xk, C'), where Extracti is defined

in Fig. 1-13. Extracti makes use of a subroutine WeakExtracti, which is defined

in Fig. 1-14. Output mill... imW.

Extracti(xk, C'):

1. For j=1, ... ,Q,

(a) Sample uniformly random aj +- {o, }2/3.

(b) Compute bj = H(C'(G(aj)))

(c) Run m( +- WeakExtracti(xk, C', aj, bj)

2. If there exists a "majority-of-majorities message" mi _L such that M{j :m

mi} > Q/2, then output mi; else output unmarked.

Figure 1-13: The sub-routine algorithm Extracti(xk, C')

WeakExtracti(xk, C', a, b):

1. For k= 1,...,R

(a) Sample ck +- {0, 1}/3 and Xk +- PE.Enc(pk,a||blclk di).

(b) Compute m k) = G'(ck) G C'(Xk).

2. Define the "majority message" mi such that i{k : m k) = mi} > R/2 if such a
mi exists; otherwise, define mi 1.

Figure 1-14: The sub-routine algorithm WeakExtracti(xk, C', a, b)

It is easy to check that this construction satisfies statistical and extraction correctness,

and meaningfulness.

Proposition 1.6.2. The above construction satisfies Theorem 1.6.1.
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1.6.3 Security Proofs

To prove the proposition, we must prove E-unremovability against lunch-time attacks.

Overview. Recall that in our scheme, there are two sparse sets of points: "find

points", which are unchanged between a marked and unmarked program, and "mark

points", which are changed. To extract from a circuit C', one repeatedly performs the

following 4 steps, which we will refer to as weak extraction:

1. Sample a find point x, and queries C(x)

2. Use the resulting value to sample many mark points x 1,... , 34, where k = A/p 2

3. For each xi, query C(xi) to compute a guess mi

4. If some mi occurs more than k/2 times, return it. Otherwise, return 1.

If this procedure returns some message m many times (more than half), then m is

the extracted value.

Weak extraction can fail if C(x) has been changed by the remover, or if most

of C(xI),... , C(Xk) have been changed. The first happens with probability at most

1 - E, by the pseudorandomness of find points. The second happens with negligible

probability by a Chernoff bound. By repeating this process with many find points,

the error probability is reduced to negligible.

Proof of E-unremovability. First, we define two security experiments to state a

useful lemma that is used to prove Proposition 1.6.2. These two experiments are

similar to the unremovability security game, but the goal of the adversary is now

to distinguish a mark-point of a marked program from a uniformly random string

of the same length, while first given access to a marking oracle and also given the

corresponding find point.

For any PPT adversary D, we define the following two experiments, Exp'EAL

and Exp AND( '
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ExpREAL (

1. (xk, mk) -- Gen(1A)

2. (s, m) <- DMark(mk,.,.) (Xk)

3. C- C and C - Mark(mk, C, m)

4. a +- {0, 1}/3, b = H(C(G(a)))

5. c - {O, 1 }e/3

6. XREAL +- PE.Enc(pk, a||bjjcjji)

7. Finally, output D(s, C, a, XREAL)

ExpRAND(A):

1. (xk, mk) - Gen(1A)

2. (s, M) <-DMark(mk,-,-) (Xk)

3. C- C and < +- Mark(mk, C, m)

4. a +- {O, I}e/3

5. XRAND +- {0, 1}'

6. Finally, output D(s, C, a, XRAND)

Lemma 1.6.3. Under the same conditions as in Theorem 1.6.1, for all PPT distin-

guishers D and for all i E [w], it holds that

Pr[ExPf'EAL(A, i) = 1] - Pr[ExpRAND(A) 1] < negl(A)

We also define a "many-message" version of these two experiments:

Exp EAL ( i):

1. (xk, mk) +- Gen(1A)

2. (s, m) +-- DMark(mk,.,.)(Xk)

3. C +- C and 5 -- Mark(mk, C, m)
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4. a +- {0, 1 }e/3, b = H(C(G(a))).

5. C +- {0, 1}/3

6. For j=1, ... , R:

sample XREAL,j +- PE.Enc(pk,ajjbjjcjli)

7. Finally, output D(s, C, a, XREAL), where XREAL (XREAL,1,-- , XREAL,R)-

ExpRANDR

1. (xk, mk) +- Gen(1A)

2. (s, m) +- DMark(mk,-,-) (xk)

3. C- C and +-- Mark(mk, C, m)

4. a +- {O, i}f/3

5. For j = 1,..., R:

sample XRANDJ +- {0, 1}n

6. Finally, output D(s, C, a, XRAND), where XRAND = (XRAND,1, - S, IXRANDR)-

Corollary 1.6.4. For all PPT D and for all i e [w], it holds that

Pr[Exp 'EALR(A,i) = 1] - Pr[ExpRANDR(A) - 1] < negl(A)

Proof. This follows from a simple hybrid argument.

Before proving Lemma 1.6.3, we first show that it would imply Proposition 1.6.2.

Proof of Proposition 1.6.2.

(A1 , A 2 ),

We show that for every i and every PPT adversary

Extract2(xk, C*) = m( A C* 6 C

(xk, mk) +- Gen(1A)

(m, s) +- AMark(mk,-,.) XA, mk)

C - M ,

( < Mark(mk, C, m)

C* +-A2(S, ( )
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Suppose for the sake of contradiction that a PPT adversary (A,, A2) wins this

game with non-negligible probability. That is, with non-negligible probability, A2

outputs a program C* C such that Extracti(C*) # m(') with non-negligible prob-

ability. For convenience of notation, let A denote the point-wise xor of C and C*.

That is, let A(x) = C*(x) e (). Recall that e(A) = + p(A). Because Extracti

takes the majority answer after running WeakExtracti many (A/p(A) 2) times, it must

be (by a Chernoff bound) that for any such C*,

Pc. := Pr [WeakExtracti(C*) # M(W] > 1 - p(A) +
2 poly(A)

for some polynomial poly. Since WeakExtracti only accesses C* in a black-box way,

and since we know that WeakExtracti(C) - m() with high probability, it must be the

case that C* differs from C at some of the points queried by WeakExtracti. Further-

more WeakExtracti is robust against differences at mark points (since it suffices for

C* to agree with C at a majority of the queried mark points). Thus we have (by a

union bound) that

PC- < Pr [A(G(a)) # 0] + Pr J{k :A(xk) 4 0 A k c [R]}| > -- + negl(A)
a a<--{1}eIl/ 2_

Xk+-PE.Enc(alblli)

The first term corresponds to the probability of A changing the find point queried

by WeakExtracti, and the second corresponds to the probability of A changing many

mark points. The third term is the probability that WeakExtracti(C) $ mi.

For the first term, we note that by the pseudorandomness of G(a), it must hold

that for all polynomials poly, there is a negligible negl such that

Pr C A Pr [A(G(a)) # 0] 1 - E(A) + < negl(A).
PIc' C a poly(A)_

Indeed, otherwise we can break the security of G by running A, and empirically testing

whether the A output by A 2 exhibits a 1 advantage in distinguishing G(a) points

from random points. If it does, we evaluate A on our challenge to try to distinguish;
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otherwise we guess randomly.

For the other term, Corollary 1.6.4 states that the xi's are jointly indistinguishable

from i.i.d. random xi's sampled from {0, 1}', even though A, has oracle access to

Mark(mk, -, .). Combined with a Chernoff bound, which states that

Pr C* a C A Pr | :n # 0}| > - > 1 = 0,
L X1,...,XR+-{O,1}" [ 2 poly(A)_

this implies that for every polynomial poly,

Pr C* a C A Pr ]{k : xk) # 0}I > - o> 1  < negI(A).
a.<-{0,1}f2 I k:AX) 01>2 poly(A)

x1 ,...,XR+-PE.Enc(a|bli)

Combining these four inequalities yields a contradiction.

Now we turn to proving Lemma 1.6.3.

Proof of Lemma 1.6.3. We define a sequence of hybrid experiments to prove this

lemma. We call all variables that D sees in the experiment Exp a view of D and

denote it by view(Exp).

Hyb : This experiment is exactly the same as Exp'EAL(, '

Hybl: In this hybrid experiment, we change the marking oracle. For the adver-

sary's queries (C), m(1)),... , (C(q), m(q)), instead of generating marked pro-

gram 5( ) +- iO(M(O)), we set i(t) +- iO(M(){xo,xi}) where M(t){xo,xi} is

defined in Figure 1-15, having hard-coded 0(), sk' <- PE.Puncture(sk,xo,xi),

XO := XREAL, X1 <- {0, 1}fn, and m W.

Hyb 2: In this hybrid experiment, we change the marked challenge program C. We use

the punctured decryption key sk' and hard-code the output values corresponding

to xo and x1 as yo = G'(c) and y, +- {0, 1}' respectively. That is, we set

C <- iO(M{xo, x,}) where M{xo, x,} is defined in Figure 1-16.
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Constants: punctured PE decryption key sk' := sk{xo, xi}, py
values x 0 ,xi, message m(') = mi)1 - - -flm$)

Inputs: x E {0, 1}

1. If X E {xo, Xi}, then output C()(X).

2. Compute allbllclli <- PE.Dec(sk',x), where jal = b cl e/3, and i E [w].

3. If aflbflcjii -L and H(C(')(G(a))) = b, output G'(c) e m".
4. Otherwise, output C(G)(X).

Figure 1-15: Program M('){xo, xi} in Hybl

Constants: punctured PE decryption key sk' sk{xo, x1}, pPRF key F, pPRF key
C, values xo0 ,x, I yo, yi, message m = m *1 .

Inputs: x E {0, 1}

1. If x = x, for or E {0, 1}, then output y,.

2. Compute albjjcjji +- PE.Dec(sk',x), where jal = Jb= = f/3 and i E [w].

3. If ailblIcfli 5 - and H(C(G(a))) = b, output G'(c) e mi.

4. Otherwise, output C(x).

Figure 1-16: Program M{xo, x,} in Hyb 2

Hyb 3 In this experiment, x0 is changed to be uniformly sampled from {0, 1}.

Hyb 4 In this experiment, yo is changed to be uniformly sampled from {0, 1}1

Exp AND: The only changes from Hyb3 are that the challenge program C and marked

keys 0(L) for all t E [q] are changed back to the original programs but the values

x0 remain random.

We describe an overview of the main hybrid experiments in Table 1.2.

Lemma 1.6.5. If F is a pPRF family, H is a UOWHF, PE satisfies the punctured

correctness and sparseness, and iO is a secure indistinguishability obfuscator, then

view(Hybo) e view(Hybi).

Proof of Lemma 1.6.5. To prove the lemma, we define auxiliary hybrid experiments

Hyb' for t E [q] where the mark oracle gives i((M(C){xo, xi}) for the first t queries

C(), ... , C(t) of D.

65

pPRF key C('),



Table 1.2: An overview of hybrid experiment

Hybrid Challenge: iO(.) Answers of MO: iO(.) Xo x,

ExREAL MM() XREAL none
Hybl M M(){xo, x1I} XREAL random
Hyb2  M{xo,xi} M(W){xoxi} XREAL random
Hyb3  M{xo,x1} M("){xox1i} XRAND random

ExpRAND _M M() XRAND none

Claim: In Hyb', the probability that H(C(t+l)(PRG(a)))

b := H(C(PRG(a))).

= b is negligible, where

Proof. If for some PPT D, this event happens with non-negligible probability,

we show how to invert H at a random input with nearly the same non-negligible

probability, thus contradicting the one-wayness of H.

We use the fact that C(PRG(a)), and therefore C(PRG(a)), is pseudorandom,

because up until this point in the game, the only information D has about C

comes from the marking oracle hard-coding xO = Enc(al|b|c) in its answers.

So if b is replaced by a random challenge H(r), C(+ 1)(PRG(a)) must still be a

pre-image of b with non-negligible probability.

0

Claim: view(Hyb') e view(Hyb"+1 ) for all t E [q].

Proof. The only difference between Hyb" and Hyb'+1 is the (t + 1)-th answer

by the mark oracle. We show that the mark oracle's answers are functionally

equivalent in the two games, so indistinguishability follows from the security of

iO.

There are only two possible inputs on which M(t+1) may differ in Hyb' and

Hyb'+1: namely, xO and x1 due to the punctured correctness at non-punctured
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points of PE. We show that (with high probability) they respectively mapped to

C('+')(xo) and C(+l)(x1) without our changes, just as they do with our changes.

It holds that PE.Dec(sk, xi) I _L with high probability since x, is uniformly

random and PE satisfies sparseness. Thus, M(t"+)(x1) - C(+l)(xi) in Hyb".

This is also true in Hyb+1 since M(L+){xo, x1 }(xi) goes to the punctured-points

branch.

On the other hand, x0 decrypts as allbllc|li, but by our previous claim, it cannot

be the case that H(C(L+i)(PRG(a))) = b. Thus, M(t+)(X0) - C(t+(l)o) in

Hyb'.

We completed the proof of the lemma by the two claims.

Lemma 1.6.6. If C is a pPRF, PE satisfies the punctured correctness, and iC is a

secure indistinguishability obfuscator, then view(Hybl) e view(Hyb2).

Proof of Lemma 1.6.6. We define auxiliary hybrid experiments as follows.

Hybl: Instead of choosing challenge program C +- iO(M) where the program M

is described in Figure 1-12, we now use punctured keys sk' and C{xi} and set

C - iO(Mi{xo, xi}) where MI{xo, xi} is defined in Figure 1-17, yo G'(c)eM

and yi := C(xi).

Constants: punctured PE decryption key sk' := sk{xo, xi}, punctured pPRF key
C' = C{x1}, values x 0 , x1, y o, y1 , message m = mill - JIm,

Inputs: x E {O, 1}

1. If x = x, for o- {0, 1}, then output y.

2. Compute allbllclli <- PE.Dec(sk',x), where lal = lbI = Icl = f/3, and i E [w].
3. If a||bljc||i / I and H(C'(G(a))) = b, output G'(c) Ei mi.
4. Otherwise, output C'(x).

Figure 1-17: Program Mi{xo, xi} in Hybl
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Hyb 2: We choose uniformly random yi +- {0, 1}' and hard-code it in the program

M{Xo, xi}.

Claim: view(Hyb,) f view(Hyb')

Proof. Program M1{xo, x,} is functionally equivalent to Program M in Hybl,

because we just hard-coded the values for yo and yi which would be output

anyways. Also, replacing C by C{x1} does not change functionality because,

by line 1, C is never evaluated at xi.Thus, the claim holds due to the security

of iO.

Claim: view(Hybl) r view(Hyb,)

Proof. This follows from the pseudorandomness of C{x, } at xi. E

Claim: view(Hybl) - view(Hyb2)

Proof. In Hyb2 , C is un-punctured in the challenge program iO(M{xo, x1 }),

but M{xo, Xi} is still functionally equivalent to the program in Hyb2 due to line

1. Therefore, the claim holds due to the security of iO.

The proof of the lemma follows from these three claims.

Lemma 1.6.7. If PE satisfies ciphertext randomness, then view(Hyb 2) c view(Hyb 3)-

Proof of Lemma 1.6.7. This reduces to the ciphertext randomness property of PE.

If some PPT distinguisher D distinguishes Hyb2 from Hyb 3, we construct a PPT A

with non-negligible advantage in the ciphertext pseudorandomness game.

First, A chooses a +- {0, 1}f/3, c +- {o, i}/3, C <- CA, and a UOWHF H,

computes b:= H(C(PRG(a))), and sends mo := albl|c|i and uniformly random ml -

{ 0, 1}f+1I as a challenge. Then, the challenger of PE returns (c,, cp_,, pk, sk') where

- E {0, 1}, co <- PE.Enc(pk, mo), c1 +- {0, 1}', and sk' = PE.Puncture(sk, co, ci).

Now, A can perfectly simulate Hyb 2 and Hyb3 to D, using c, as xo. If o- 0, then

A perfectly simulates Hyb2. If - = 1, then A perfectly simulates Hyb3. Thus, A can

break the ciphertext pseudo-randomness by outputting whatever D outputs. E
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Lemma 1.6.8. If PE satisfies ciphertext randomness, then view(Hyb3) - view(Hyb4).

Proof. In Hyb4 , we change yo from G(a) to a truly random point. The indistinguisha-

bility of this change follows from the PRG security of G, since the adversary receives

no other information about a. E

Lemma 1.6.9. Under the assumptions of Thm 1.6.1, view(Hyb 4) e view(ExpRAND).

Proof of Lemma 1.6.9. This proof mirrors the proof of Lemma 1.6.5 and 1.6.6 (in

reverse manner). l

Finally, Lemma 1.6.3 follows from Lemma 1.6.5, 1.6.6, 1.6.7, 1.6.8, and 1.6.9. El

1.7 Extensions and Variants of Watermarking

1.7.1 Stronger Unremovability in a Different Model

In this section, we show that if pPRF family C satisifies a special injective property,

then the watermarking scheme for C in the previous section satisfies the strongest

security (Definition 1.4.3).

There is only one part of the above security proof which does not transfer to a

"CCA2" version of the unremovability game. This is the claim in the proof of Lemma

1.6.5, which states that the adversary cannot query the marking oracle on a program

C(') such that H o CC() agrees with the H o C on a given point PRG(a), where C is

the marked challenge program, H is a UOWHF, and a is a random string.

This clearly does not hold for queries made after seeing C. Indeed, D could then

query C itself. We show that if:

" The inputs to the mark oracle are pPRF keys instead of arbitrary circuits and

" The pPRF family satisfies a strong "key injectivity" property

then unremovability still holds.
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In order to achieve the strongest notion of watermarking unremovability, we need

to restrict ourselves to marking a pPRF family that satisfies the following key-

injectivity condition. We further change the syntax of Mark, so that its input is

no longer an arbitrary circuit, but is actually restricted to functions in the family C.

Definition 1.7.1 (Key-Injective pPRFs).

Pr []a, F' s. t. F' -4 F A F(a) = F'(a)] < neg(A)

In other words this says that with high probability over the choice of F, no other

F' E F agrees with F anywhere. See below for concrete instantiations. If we assume

C satisfies the injective property in Definition 1.7.1, then there are only negligible

fraction of inputs causes the collision C(a) = C(1(c+(a), that is, Lemma 1.6.5 still

holds.

Corollary 1.7.2. Assuming the existence of injective one-way functions, and an

indistinguishability obfuscator for all circuits, for all E(A) = 1+1/ poly(A), all message

spaces M = {0, 1}', all integer functions n(A) = Q(A) and m(A) = Q(A) there exists a

watermarking scheme with message space M which is e-secure for every key-injective

pPRF ensemble {Cx}EN such that functions C in CA map {, 1 }n(A) -+ {0, 1}"().

Proposition 1.7.3. (Informal) Assuming the DDH assumption or LWE assumption,

there exist key-injective families of pPRFs.

1.7.1.1 Key-Injective pPRF from LWE and DDH

A key-injective puncturable PRF can be constructed with a modification of the GGM

pPRF by using an ensemble of left- and right-injective PRGs PRG l),... , PRGC.

When we say that PRG(2) is left- and right-injective, we mean that if PRG(2) is writen

as PRG'IHPRG(a, then both PRG(' and PRG(h are injective.

We also require the PRG(Z)'s to have additive stretch. That is, there exists a

polynomial p such that for each i, PRG(z) maps {, i}X+(i-P(A) -- {, } A+ip(X). This

ensures that, in the GGM construction, the size of the PRF output is bounded by
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n -poly(A). Such PRGs can be constructed from standard assumptions such as DDH

or LWE.

Key-injective pPRFs from LWE. For example, using the learning with errors

(LWE) assumption, we define PRGA : Z' -+ Zm as PRGA(x) := [AT . X] where

operator H1P returns the nearest integer (for each coordinate) modulo p. We can set

q := p2 = 2 2k for some k = O(A) and m := 4n + O(A). Let A = A0 1lA 1 where

Ao, A 1 E Zxm/2, then PRGb(x) LATx]. In this case, each PRGb(x) is injective

w.o.p. over the choice of A and it maps 2nk bits to 2nk+0(kA) bits. See [BPR12] for

details about the LWE assumption and proof of security of the above construction.

Key-injective pPRFs from DDH. Alternatively, it may seem that using DDH,

we can set PRGg ,92 (x) = gx, gx where gi,g2 are generators of some group G of

prime order p. Unfortunately, the outputs cannot be directly used as PRG in-

puts in the next level of the tree since they are group elements rather than expo-

nents and we do not know how to extract out two uniform values in Z from them.

Nevertheless, this approach can be made to work by defining PRGgi,g 2,g3 ,ho,hi() =

ho(gx, gx, gx), h1 (gx, gx, gx) where ho, h1 are universal hash functions that map G3 -+

ZP, for some p' such that log(p') = log(p) + O(A) and log(p') < (3/2) log(p) - Q(A).

This ensures injectivity (we are hashing p balls into p' bins and therefore for any fixed

ball there is unlikely to be another ball colliding with it). It also ensures pseudoran-

domness security by thinking of ho, h, as extractors via the leftover-hash lemma. In

the context of the GGM construction we need a hierarchy of DDH groups of order

Pi, P2, ... (one for each level) where log(pi+1 ) = log(pi) + O(A). Therefore the output

does not get "too large".

1.7.2 Optimality of (I + )-Unremovability

We now show that g-unremovable message-embedding watermarking is impossible

when E < }. This is because an adversary can obtain two independent uniformly

sampled circuits 0 and 01, each marked with different messages (respectively mo and
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mi). The adversary then outputs a program C* such that C* =1/2 O and C* =1/2 C1.

Since C* can be generated in a way which treats Oo and 01 symmetrically, we must

have
1

Pr [Extract(C*) = mo] = Pr [Extract(C*) = mi <
2

This impossibility clearly holds even in a setting where the adversary is extremely

limited in e.g. the number and type of oracle queries he may make.

1.7.3 Variants

List decoding. We note that our construction could also be modified to satisfy

E-unremovability for any E = 1/ poly(A) by relaxing the correctness requirement on

Extract, allowing it to output a (small) list of possible messages rather than a single

message. For unremovability, we only require that the correct message appear in the

list. For example, in our construction, instead of outputting the "majority value"

m such that j{i :m = mi} is sufficiently large, we could just output all O(1/E2 )

values of mi. By signing the messages with a standard signature scheme, we can in

a black-box way ensure that the list of messages output by the detection procedure

only contain (in addition to the correct message) the messages that were embedded

in some watermarked circuit by some previous call to the marking oracle.

Messageless watermarking. In the case of messageless watermarking, there is no

challenge message. Instead, the message space is the singleton set M := {marked}.

As a corollary of list-decodable watermarking scheme, we can achieve messageless

watermarking with security against any E > 1/ poly(A).

Marking PRFs With single-bit outputs. In our construction, we assumed we

were marking a pPRF whose outputs was {0, 1}m for m = Q(A). This assumption on

m was not necessary. Indeed, any pPRF family mapping {0, 1} -+ {0, 1} can equally

be construed as a pPRF family mapping {o, 1 }-1 o --+ {o, 1}m, and can be marked

as such. In doing so, we incur a loss in parameters. If the watermarking scheme for

72



m-bit outputs satisfied (1- E)-unremovability, the watermarking scheme for single bit

outputs will only satisfy (1 - ()-unremovability.

Unforgeability. The classic Irish folk tale of "Clever Tom and the Leprechaun"

[Kei70] tells of a farmer's son who one day captures a Leprechaun. The Leprechaun

guides Tom through a field of bolyawn trees to the site of buried treasure. Before Tom

goes to fetch a spade, he ties his red garter round the nearest bolyawn and forbids the

Leprechaun from removing it. When Tom returns with the spade, "lo an' behould, not

a bolyawn in the field, but had a red garther, the very idintical model o' his own, tied

about it." Though the Leprechaun could not remove the garter, Tom had not forbade

him from tying identical garters around the neighboring trees, making it impossible

for Tom to discover the gold.

In their treatment of watermarking definitions, Hopper et al. fHMW07] define a

notion of unforgeability that is dual to unremovability. Intended to prevent attacks

like the Leprechaun's, unforgeability requires that the only marked programs circuits

that an adversary can produce are functionally similar to circuits marked by a marking

oracle. Whereas unremovability requires that a circuit is marked if it is E-similar to

some honestly-marked circuit, unforgeability requires that a circuit is marked only if

it is 6-similar to an honestly-marked circuit, for some parameter 5 < E.

Achieving unforgeability and unremovability simultaneously has proved challeng-

ing. Cohen et al. [CHV15] construct a watermarking scheme for puncturable PRFs

which achieves weak notions of unforgeability and unremovability in a security model

similar to ours: namely, against an adversary with a public extraction key and

who can query the Mark oracle with arbitrary circuits as input. Subsequent works

[BLW17, KW17, BKS17] have constructed watermarked PRF families that are both

unforgeable and unremovable, albeit in much weaker security models (see Section 1.2.7

for futher discussion).
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1.8 The Limits of Watermarking

A natural question is whether there are families of functions that for which there does

not exist any watermarking scheme. Barak et al. [BGI+Ola observed that general-

purpose indistinguishability obfuscation rules out a notion of watermarking that ex-

actly preserves functionality, but not watermarking schemes that change functionality

on even a negligible fraction of the domain (as in section 1.6). In this section, we

demonstrate that some notion of non-black-box learnability implies that a family of

functions is unwatermarkable. We demonstrate that there exist PRF families that

cannot be watermarked (assuming only the existence of one-way functions), and that

any family that is learnable with membership queries [KL931 is not watermarkable.

1.8.1 Impossibilities for Statistical Correctness

In this section, we discuss a number of conditions sufficient to prove that a family of

circuits cannot even be watermarked-even for a significantly weakened form of unre-

movability. We modify the unremovability game (Definition 1.4.3): the adversary has

no marking oracle, has neither a public extraction key nor an extraction oracle, and is

not allowed to choose the message to be embedded in the challenge.We leave the syn-

tax, statistical correctness, extraction correctness, and meaningfulness requirements

of the watermarking definition (Definitions 1.4.1 and 1.4.2) are unchanged. In Section

1.8.2, we relax the statistical correctness condition.

Definition 1.8.1 (Weak E-Unremovability Game). The game Exp"""'(A, E) is defined

as follows.

1. The challenger generates (xk, mk) +- Gen(1A)

2. The challenger chooses a message m G MX arbitrarily, samples a circuit C <- CA

uniformly at random and gives to the adversary C +- Mark(mk, C, m).

3. Finally, the adversary outputs a circuit C*. If it holds C* C A Extract(xk, C*) #
m then the experiment outputs 1, otherwise 0.
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Definition 1.8.2 (E-Waterproof). Let F = {FA}AEN be a circuit ensemble. We say

that F is E-waterproof if there does not exist an weak E-unremovable watermarking

scheme for F.

Informally, if a function family is non-black-box learnable given an approximate

circuit implementation (corresponding the the challenge watermarked circuit), then

the family is waterproof. More formally, consider a family of circuits F, and some

parameter p = p(A) C [0, 1]. The learning algorithm will be given an (arbitrary)

circuit g that p-approximates F, for a uniformly sampled circuit F +- F from the

family. The (randomized) learner will then output some "hypothesis" circuit h. If h

is sufficiently close to F, then the learner can be used to reconstruct an unmarked

circuit given a watermarking challenge. We conclude that the family F is waterproof.

We emphasize that we are interested in non-black-box learning in which the learn-

ing algorithm gets an (approximate) implementation of the function being learned.

This is in contrast to the typical computational learning setting.

For the sake of clarity, we now define all the variants of learning we will consider.

It may be best to read the definitions individually when required by the discussion

that follows.

Definition 1.8.3 (Non-black-box Learnable Families). Let F = {FA}xEN be a circuit

ensemble where each family FT = {F}. Let p = p(A) E [0,1]. We say a distribution

over circuits CF p-strongly approximates F E FA if for all x,

Pr [C(x) -# F(x)] < p.
C<-CF

Let {CF}FETA be any collection of p-strongly approximating distributions for the cir-

cuits F C FA.

ROBUSTLY LEARNABLE: 1 We say that F is p-robustly learnable if there exists an

10The strong-approximation assumption on the distribution of the approximate implementation C
arises from the statistical correctness requirement of Definition 1.4.2. Note that statistical correctness
guarantees that for F E F,, the distribution (F +- Mark(mk, F) : mk +- Setup(1A)) strongly-
approximates F for some negligible function p(A).
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efficient algorithm L outputting a circuit h, such that for all large enough A G N,

random F +- F, and random circuit C +- CF (where CF p-strongly approxi-

mates F):

Pr[h = F | h <- L(C, 1A)] is non-negligible.

We say that F is robustly learnable if it is p-robustly learnable for any negligible

function p(A).

PROPERLY LEARNABLE:12 Additionally, we say that F is properly learnable if for

every function F E F, and random C <- CF:

Pr[L(C, lA) = F] is non-negligble.

IMPLEMENTATION INDEPENDENTLY LEARNABLE: Let C' and C' be two distribu-

tions that p-strongly approximate F. We say that L is implementation indepen-

dent if for all F E TA and for any two distributions C' and C' that p-strongly

approximate F, the distributions (L(C1 , 1A) : C1 +- C') and (L(C2 , A) : C2 +-

C2) are computationally indistinguishable.

E-APPROXIMATELY LEARNABLE: A weaker condition than the above, we say that F

is E-approximately learnable if instead, for all F and for random C +- CF:

Pr[h c F | h +- L(C, A)] is non-negligible.

As a warm up, we begin with a very strong notion of learnability, in which the

learning algorithm can not only output a hypothesis h which agrees with F on all

inputs, but output the circuit F itself.

"This is somewhat analogous to the notion of error-tolerance in computational learning [KL93],
but in the non-black-box setting.

1 2This is stronger than simply requiring that h E FA. In particular, it implies that for every
F C T\, there are only polynomially-many F' e Tx such that F' =p/2 F.
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Proposition 1.8.4. If F is robustly, properly learnable, then F is E-waterproof for

every E E [0, 1].

Proof. Given a watermarking scheme for F, let CF ={Mark(mk, F) : (xk, mk) +-

Gen(1A)}. There exists some negligible function p(A) such that CF p-strongly approx-

imates F for all circuits F E F, by the statistical correctness property. Suppose F is

p-robustly, properly learnable with learning algorithm L. Given a challenge marked

program F +- Mark(mk, F), evaluate h +- L(F, A). With noticeable probability,

h = F. If Extract(xk, F) = unmarked with any noticeable probability, unremovability

is violated. On the other hand, if Extract(xk, F) $ unmarked with any noticeable

probability, then meaningfulness is violated. l

Surprisingly, this proposition is also enough to construct a PRF family that is

waterproof.

Proposition 1.8.5 ( [BGI+12]). Assuming one-way functions exist, there exists a

pseudorandom function family F that is robustly, properly (non-black-box) learnable.

Proof. In [BGI+12], the authors extend the impossibility of virtual-black box obfusca-

tion to a notion of approximate obfuscation, where for every input x, the obfuscated

circuit O(C) is required to agree with C on x with high probability over 0. They con-

struct a "strongly unobfuscatable circuit ensemble" [BGI+ 12, Theorem 4.3], which has

precisely we need: there exists an algorithm L which given any strongly approximate

implementation of F E F, efficiently outputs F with high probability. Addition-

ally, their techniques can be extended to yield a family of strongly unobfuscatable

PRFs [BGI+12, Section 4.2]. l

Corollary 1.8.6. Assuming one-way functions, there exists a pseudorandom function

family F which for every E E [0,1] is E-waterproof.

Improper versus proper learning. What if the family is not properly learnable:

instead of outputting F itself, the learning algorithm L(C) can only output a circuit h

that was functionally equivalent to F? One might think that this is indeed sufficient

to prove Proposition 1.8.4, but the proof encounters a difficulty.
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In the proper-learning setting, it was possible to sample a circuit which for which

Extract(xk, C) # unmarked independently of mk, simply by picking F - F. In the

improper-learning setting, we only know how to sample from this distribution by

evaluating L(P) on the marked program F. To violate meaningfulness, we need to

construct C such that Extract(xk, C) # unmarked with noticeable probability over

both Gen and Extract, suggesting that we should find such a C independently of mk.

To get around this issue, we consider families that are learnable with implemen-

tation independence; that is, for any strong approximate implementations C' and C'

of F, the distributions (L(C1 , 1A) C1 +- Cl) and (L(C2 , 1A) C2 +- C2) are

computationally indistinguishable.1

Approximate versus exact learning. In the preceding, we required that an algo-

rithm learning a family F is able to exactly recover the functionality F. What can we

prove if h = L(C, 1A) is only required to E-approximate the original function F? For

this case, the proof generalizes quite naturally to show that a family is E-waterproof.

Proposition 1.8.7. If F is robustly, E-approximately learnable with implementation

independence, then F is E-waterproof.

Proof. As before, we run the learner on the challenge program to get h = L(F, IA).

The circuit h is an E-approximation of F with non-negligible probability. If Extract(xk, h) =

unmarked with noticeable probability, then unremovability is violated. Therefore, it

must be the case that Extract(xk, h) # unmarked with high probability (even condi-

tioning on the case when h is an E-approximation).

Observe that for any F E F, the singleton distribution {F} is a strongly approx-

imate implementation of F. To complete the above proof, consider h' -- L(F, 1A) for

random (unmarked) F (rather than on the marked F). Implementation independence

of L guarantees that the distributions of h and h' are indistinguishable and thus for

general xk, Extract(xk, h') # unmarked with high probability. II
13Weaker notions likely suffice because meaningfulness only requires noticeable probability of

falsely extracting, whereas this argument gives us a high probability. We consider this input inde-
pendence notion because it is a simple, natural and, as we will see, powerful case.
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Corollary 1.8.8. Any family that is (improperly, approximately) learnable with mem-

bership queries [KL93] is E-waterproof for any non-negligible E.

Proof. An MQ learning algorithm L can be simulated with any approximate imple-

mentation C of F. Because C +- CF for CF a strongly approximating implementation

of F, both C and F will agree on all the queries made by the MQ learner L with high

probability. The views of L are statistically close for every approximating distribution

C, implying implementation independence. E

Additionally, this proposition captures the impossibility of exact watermarking

originally presented in [BGI+12.

Corollary 1.8.9. Assuming the existence of indistinguishability obfuscation, exact

watermarking schemes are impossible.

Proof. Indistinguishability obfuscation implies a 0-robust, exact, implementation in-

dependent learning algorithm for all polynomial-sized circuits, where L simply obfus-

cates its input.'14

1.8.2 Impossibilities for Weak Statistical Correctness

It is possible to prove similar impossibility results even if we weaken the statistical

correctness property of the watermarking scheme to only require that Mark(mk, C, m)

changes functionality at few points, but make no restrictions as to the distributions of

these errors. We prove that for this weak setting (1) there exist waterproof PRFs and

(2) PAC-learnable families are waterproof. The main difficulty in this setting is that

Mark may now change the functionality on adversarially-chosen points, preventing a

straightforward adaptation of Proposition 1.8.5 and Corollary 1.8.8.

We now consider watermarking schemes that satisfy only weak statistical correct-

ness:

14Observed by Nir Bitansky.
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Definition 1.8.10 (Weak Statistical Correctness:). There is a negligible function

v(A) such that for any circuit C E Cx, and any message m G MA:

Mark(mk, C, m) 2 C

We can adapt the learning definitions of the prequel to this weaker notion of

statistical correctness. The main change in the definitions is that we no longer require

strongly-approximating distributions of circuits CF for a function F; an arbitrary

circuit C ,, F that is close to F suffices. This is a strictly more general setting.

Definition 1.8.11 (Learning from arbitrary approximate implementation). For each

of the learning definitions in Definition 1.8.3, we say that the learning algorithm

works with arbitrary approximate implementation if instead of requiring a p-strongly

approximate distribution CF for F, the learning algorithm will work for arbitrary

C C_ F.

Modifying the definition of waterproof to require that the watermarking scheme

only satisfies weak statistical correctness, both Proposition 1.8.7 and 1.8.4 still hold in

this setting. Though membership query-learnability no longer suffices for waterproof-

ness, PAC learnability [Val84] does.

Corollary 1.8.12. Any family that is (improperly) PAC learnable is E-waterproof

(with weak statistical correctness) for any non-negligible E.

Proof. An PAC learning algorithm L can be simulated with random queries to ar-

bitrary approximate implementation C of F. Because C 2- F, both C and F will

agree on all the random queries seen by L with high probability. The views of L are

statistically close for every C, implying implementation independence. l

The main technical contribution of this section is the following PRF construction.

Theorem 1.8.13. Assuming one-way functions, there exists a pseudorandom func-

tion family T that is robustly, E-approximately learnable with implementation inde-

pendence from arbitrary approximate implementations.
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Corollary 1.8.14. Assuming one-way functions, there exists a pseudorandom func-

tion family F which is E-waterproof (with weak statistical correctness) for any non-

negliglbe E.

We provide the proof of Theorem 1.8.13 in the next section.

1.8.3 Waterproof PRFs

The difficulty in this construction is dealing with arbitrary approximate implemen-

tations. If we try to use the PRF from [BGI+12, changing the functionality on 1

specific point can destroy the learnability. This problem only arises in the case of

weak statistical correctness.

We construct a PRF family that has an even stronger form of learnability: from

arbitrary approximate implementation C of fk E F that may disagree on p(A) =

negl(A) fraction of the domain, we efficiently construct an approximation C' that

disagrees with fk on E(A) = poly(A) fraction of the domain. It seems that we could

have done better by simply outputting C! But C' (in particular, the erring inputs) are

completely independent of C-guaranteeing implementation independence as required

to prove that F is waterproof.

Our starting point is the constructions of unobfuscatable function families in

[BGI+12] and [BP13], and an understanding of those constructions will prove helpful

towards understanding ours.

The former work was discussed in Proposition 1.8.5. The latter work handles

a very strong form of approximation: the approximate implementation must only

agree on some constant fraction of the domain. They achieve this, but sacrifice the

total learnability of the earlier construction, instead learning only a single predicate

of the PRF key. We require a notion of approximation stronger than [BGI+12] but

weaker than [BP13], and a notion of learnability weaker than [BGI+121 but stronger

than [BP13], and achieve this by adapting techniques from both works.
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1.8.3.1 Preliminaries

The construction requires an invoker randomizable pseudorandom function [BGI+12]

and a decomposable encryption schemes [BP13. The following definitions and dis-

cussion are taken almost verbatim from those works.

Definition 1.8.15 (Invoker-Randomizable Pseudorandom Functions, [BGI+12j). A

function ensemble {fk}kefO,1* such that fk { 0, }-+m {0, 1}m, where n and m are

polynomially related to 1k!, is called an invoker-randomizable pseudorandom function

ensemble if the following holds:

1. {fk~kf,1j- is a PRF family.

2. For every k and x E {0, 1}, the mapping r -+ fk(x, r) is a permutation over

{o, i}" .

Property 2 implies that, for every fixed k and x E {0, 1}n, if r is chosen uniformly in

{0,1}" , then the value fk(x, r) is distributed uniformly (and independently of x) in

{o, i}"*.

Lemma 1.8.16 ( [BGI+12]). If pseudorandom functions exist, then there exist invoker-

randomizable pseudorandom functions.

Definition 1.8.17 (Decomposable Encryption [BP131). An encryption scheme (Gen,

Enc, Dec) is decomposable if there exists an efficient algorithm pub that operates on

ciphertexts and satisfies the following conditions:

1. For a ciphertext c, pub(c) is independent of the plaintext and samplable; that

is, there exists an efficient sampler PubSamp such that, for any secret key sk E

{0, 1}:

PubSamp(1) = pub(EncSk(O))) - pub(Encsk(1))

2. A ciphertext c is deterministeically defined by pub(c) and the plaintext; that is,

for every secret key sk and two distinct ciphertexts c and c', if pub(c) = pub(c'),

then DecSk(c) # Decsk(c').
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We use as our decomposable encryption scheme a specific symmetric-key encryp-

tion scheme which enjoys a number of other necessary properties. Given a PRF

{fkk}fo,1}- with one-bit output and for security parameter A, the secret key is a

random sk E {0, 1}A, and the encryption of a bit b is computed by sampling a ran-

dom r <- {0, 1}A and outputting (r, Fek(r) e b). This function satisfies a number of

necessary properties [BP13]:

* It is CCA-1 secure.

" It is decomposable.

" The support of (EncSk(O)) and (EncSk(1)) are each a non-negligible fraction (in

reality, at least 1 - negi) of the cipher-text space.2

" For a fixed secret key sk, random samples from (b, Encak(b))b,_{o,1 are indistin-

guishable from uniformly random strings.

1.8.3.2 Construction

The key k for the PRF is given by a tuple k = (i,/ 3, ski Ss2, SeiSh, SbS*). For

security parameter A, a and # are uniformly random A-bit strings, sk is a secret key

for the decomposable encryption scheme described above, sh is a key for an invoker-

randomizable pseudorandom function, and Si, S2, se, sb, and s* are independent keys

for a family of PRFs. We denote by F, a PRF with key s.

The domain of the PRF will be of the form (i, q) for i E {1,. . . , 9}, and q E

{0, 1}4), for some polynomial f. The range is similarly bit strings of length polyno-

mial in f. The function will be defined in terms of 9 auxiliary functions, and the index

i will select among them. We use a combination of ideas from [BGI+12 and [BP13]

to construct a PRF family for which s* can be recovered from any (negligibly-close)

approximation to fk, which will enable us to compute fk restricted to i = 9. This

allows us to recover a 1/9-close approximation of fk that is implementation indepen-

dent (simply by returning 0 whenever i 7 9). To achieve a E-close approximation for

any E = 1 - po1,(A)' we simply augment the index i with an additional log(1/(1 - E))
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bits: if all these bits are 0, then we index as before; otherwise, use index i = 9.

Instead of recovering 1/9th of the function, we now recover e of the function. This

establishes the theorem.15

We now define the auxiliary functionalities we will use in the construction.

" R,: The function R, is parameterized by a PRF key s. It takes as input q and

returns R,(q) = F,(q), the PRF evaluated at q. That is, R, simply evaluates

a PRF.

* Ca,b,s: The function Ca,b,s is parameterized by two bit strings a and b, and a

PRF key s. It takes as input q and returns Ca,b,s(q) = b ( F,(q D a), where

F, is the PRF given by key s. That is, C evaluates a PRF on a point related

to the queried point, then uses the value to mask the bitstring b.

" Esk,a,se: The function Esk,,,,, is parameterized by a secret key sk for the en-

cryption scheme, a bitstring a, and a PRF key SE- It takes as input q and

returns Esk,a,s,(q) = Encsk(a; r) with randomness r = Fs,(q). That is, E

returns an encryption of a using randomness derived by evaluating the PRF

on the query.

* HSk,sh: The function Hsk,sh is parameterized by a secret key sk for the encryp-

tion scheme, and a invoker-randomizable PRF key Sh. It takes as input two

cipher-texts of bits c and d, the description of a two-bit gate 0, and some ad-

ditional input q, and returns Hsk,sh (cA d, , ,) = Encak(Decsk(c)O Decek(d); r)

with randomness r = Fs,(c, d, G, q). That is, H implements a homomorphic

evaluation of 0 on the ciphertexts c and d by decrypting and reencrypting,

with randomness derived by applying a PRF to the whole input.

" Bsk,,3,Sb: The function BskApSb is parameterized by a secret key sk for the

symmetric-key encryption scheme, bitstrings a and 3, and a PRF key Sb. It

1 5 Note that the result is a PRF family that depends on the choice of E. The argument would fail if
E was a negligible function, because an approximation for could "erase" all the structure of the PRF
family, thwarting learnability. Removing this dependence (ie: constructing a family that works for
all inverse polynomial E simultaneously) would be interesting.
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takes as input n ciphertexts c,... , cA and additional input q, and returns

Bsk,a,3,sb (cI,. . . , cA, ) = aEFS(m #1, ... , mAe/3O, pub(ci),.. . , pub(cx), g)

where mi = Decsk(ci).

Having defined the auxiliary functions, our pseudorandom function fk for k

(Cv, 3, sk, s1, s2, Se, sh, Sb, s*) is a combination of these functions. The argument (i, q)

selects which function is evaluated, and q is parsed appropriately by each of the

functionalities. For example, B parses q as A ciphertexts cl, . . . , CA, and all remaining

bits as g.

C,(q) Cc:= C ,s,,(q) if i = 1

C2(q) := Ca,S*,82 (q) if i 2

E(q) :Edsk,,,,se (q) if i = 3

H(q) := Hs,s(q) i = 4

fk(i, q) - B(q) := BSka,,,S(q) if = 5

R, : Rs (q) if i = 6

R2 :=Rs2 (q) if i = 7

Rb R:= RS (q) if i = 8

R* := Rs.(q) if i = 9

While this construction may appear daunting, each subfunction serves a very

concrete purpose in the argument; understanding the proof ideas will help clarify the

construction. We must now argue two properties of this family: learnability as in

Theorem 1.8.13, and pseudorandomness.

1.8.3.3 Learnability

We must show that FA = {fk} is robustly, j-approximately learnable by an imple-

mentation independent algorithm, L from arbitrary approximate implementation.16
6As discussed earlier, it suffices to prove learnability for e = 1/9. We may then change the how

the subfunctions are indexed to achieve any inverse polynomial.
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It suffices to show that, given any p-implementation g of fk for random key k, s* can

be recovered, because R* = R,. comprises 1/9th of the functionality.

To begin, consider the case the when the implementation is perfect: g - fk. In

this case, recovery of s* is straightforward. Given a, C1, and R, it is easy to find #:
for any q, / = C1 (q) e R,(q Do a). That is, it is easy to construct a circuit that, on

input oz, outputs # (by fixing some uniformly random q in the above). 1 But we

don't know a, only encryptions of a (coming from E), so how might we recover 0?

Using H, it is easy to homomorphically evaluate the circuit on such an encryption,

yielding an encryption c = (c,. . . , c) of = (01, ... , On ). For any q, evaluating

B(c, q) will yield aEDF,(O, c, q). Evaluating Rb(O, pub(ci),... , pub(cn), q) immediately

yields a in the clear. Now we can directly recover s* = C(q) ( R2 (q D a), for any q.

How does this argument change when g and fk may disagree on an (arbitrary)

p-fraction of the domain for some negligible function p(n)? The first observation

is that in the above algorithm, each of C 1, C 2 , E, R1, and R2 , can each evaluated

(homomorphically in the case of C1) at a single point that is distributed uniformly

at random. With high probability, g will agree with fk on these inputs.

It remains to consider robustness to error in H, B, and Rb. The same idea does

not immediately work, because the queries to these circuits are not uniform.

For H, we leverage the invoker-randomizability of the PRF Fs, using the argument

presented in [BGI+12, Proof of Theorem 4.3]. In every query to H(c, d, 0, q), the

input q only effects the randomness used in the final encrypted output. For each such

query, pick q uniformly and independently at random. Now H returns a uniformly

random encryption of Decek(c) D Decek(d). This is because the randomness used for

the encryption is now uniformly sampled by Fs,. The distribution over the output

induced by the random choice of q depends only on (Decek(c), Decek(d), 0) E {0, 1}2 x

{0, 1}2 x {, i}4. As in [BGI+12j, the probability of returning an incorrect answer on

such a query is at most 64p, which is still negligible.

For B and Rb, we leverage the properties of the decomposable symmetric-key

1 7This ability is what enables the learnability; the black-box learner cannot construct such a circuit
and thus cannot continue with the homomorphic evaluation in the next step.
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encryption scheme, using the argument presented in [BP13, Proof of Claim 3.81. We

modify the procedure of using B and Rb to recover a given an encryption c of 3.

Instead of querying B on (c, q), sample a fresh random m, and using H, compute an

encryption c' of # B m. Note that c' is a uniformly random encryption (by invoker-

pseudorandomness) of the uniformly random string # D m, and is thus a uniformly-

distributed string of the appropriate length. Independently sample a random q and

query a' := B(c', q). This query to B is now distributed uniformly, and will therefore

be answered correctly with high probability.

To recover a, we evaluate a = a' E Rb(m, pub(ci),..., pub(c\), q). This query

to Rb is also distributed uniformly at random (for random q), and will therefore be

answered correctly with high probability.

1.8.3.4 Pseudorandomness

Our proof that the family {fk} is pseudorandom follows that of [BP13]; the main

technical change comes from the fact that B depends on a. We consider a polynomial-

time adversary A with oracle access to fk. For simplicity, we ignore the indexing of

the subfunctions of fk and assume that A has direct oracle access to each of the

constituent functions, showing that they are simultaneously pseudorandom.

Let E1 be the the event that A produces distinct queries q = (c, ), q' =(c', ')

such that:

(m E #, pub(c 1),. . . , pub(c\), () (m' 0 /, pub(c'),... , pub(c'), g')

where m, M' {0, 1} are the decryptions under sk of c and c' respectively.

Claim 1.8.18. Prk,A[E1] = 0

Proof. Recall that for any ciphertext c, pub(c) and the plaintext m uniquely determine

the ciphertext. If m e / = m' D /, and pub(ci) = pub(cj)' for all i, then c = c'.

Therefore q = q'. El

We consider two "bad" events, and argue that if A is to distinguish fk from a random
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function, (at least) one of the events must occur.

" Let E, be the event that A produces queries q and q' such that q e a = q'.

" Let E8 be the event that A produces queries q (c, q) and q' such that q'

(m (D 0, pub(ci),... , pub(cA), q), where m E {,1}^ is the decryption under sk

of c.

Claim 1.8.19. If Prk,A[E] < negl(A) and Prk,A[E8] < negl(n), then A cannot dis-

tinguish between fk and a random function.

Proof. Because fk depends on the PRF keys si, S2, Se, sh, and sb (but not s*) only

by black-box application of the respective PRFs, we can indistinguishably replace all

applications of these PRFs by (independent) truly random functions. If E, never

occurs, than the responses from C1 and R1 (respectively C2 and R 2) are uncorrelated;

thus we can indistinguishably replace C1 (respectively, C 2 ) by a independent random

function. At this point, A's oracle only depends on s* through calls to the PRF F,*;

we can now replace R* with a independent random function. By similar reasoning,

if Ea never occurs, then the responses from B and Rb are uncorrelated; thus we can

indistinguishably replace B with another independent random function. The above

holds with high probability, conditioning on -,E, and -,E3.

Now A is left with oracles of E and H in which the PRFs Fe and F,, have been

replaced by random (along with 7 additional independent random functions). The

ciphertexts of the encyption scheme we use are pseudorandom. Thus, access to these

two oracles may be replaced with random without noticeably affecting the output

distribution of A. E

All that remains is to bound the probabilities of E, and E8. We consider two cases

separately: when E, occurs before E, and vice-versa, arguing that the probability

of either event occurring first is negligible. Let E,i (respectively, Ep,,) be the event

that E, (respectively E,3 ) occurs in the first i queries.

Claim 1.8.20. For all i, Prk,A[E8,i1,1Ea,i_1] 5 negl(A)
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Proof. It suffices to show that for all i:

Pr[EOjE,,-i ,,-_] < negl(A).
k,A

Furthermore, because the events are efficiently testable given only a, 0, and sk, it is

enough to prove the claim when all the underlying PRFs (corresponding to si, s2, Se,

Shi sb, and s* are replaced by (independent) truly random functions.

As in Claim 1.8.19, if E0 doesn't occur in the first i-I queries, than the responses

from C1 and R1 (respectively C2 and R2) are uncorrelated on these queries; thus we

can indistinguishably replace C1 (respectively, C2) by a independent random function.

By similar reasoning, if E, doesn't occur in the first i - 1 queries, then the responses

from B and Rb are uncorrelated on these queries; thus we can indistinguishably replace

B with another independent random function. The above holds with high probability,

conditioning on -E,ji and EE,i_1.

The view of A after the first i - 1 queries is now independent of /. Now E8

amounts to outputting a ciphertext c and string q such that Deck(c) @ q =3 , for

3 +- {0, 1} ' drawn independently of the view of the adversary. This occurs with

vanishingly small probability.

Claim 1.8.21. PrkA[E.,jj-EO,j_1] < negl(A)

Proof. It suffices to show that for all i:

Pr[E.,jj-,EOg -,-i_ ,, j-i_] < negl(A).
k,A

Again, because the events are efficiently testable given only a, /, and sk, it is enough

to prove the claim when all the underlying PRFs (corresponding to Si, s2, Se, Sh,

sb, and s* are replaced by (independent) truly random functions. As in the previous

claim, we may indistinguishably replace the first i- responses of C1, C2, B, Rb, R1,

and R2 by independent random functions. The above holds with high probability,

conditioning on -E 0, 1 and -EO,j 1 .

The view of the adversary is depends on a only by way of E, the circuit that
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outputs random encryptions of a. Furthermore, besides the oracles E and H, all of

the oracle responses A receives are uniformly random (and independent of a). But

just as in [BGI+12, Claim 3.6.1] and [BP13, Claim 3.3], with only these two oracles,

any CCA-1 encryption scheme is semantically secure. Thus we can indistinguishably

replace Esk,a,, with Esk,a,se-returning only encryptions of 0. Finally, the view of A

is information theoretically independent of a; as before, we conclude that E,,i occurs

with vanishingly small probability. E

1.9 Conclusions

We showed how to watermark various cryptographic capabilities: PRF evaluation,

ciphertext decryption, and message signing. For all of these, there is a natural and

secret "true functionality" fk that we would like to mark. Given a message m, we

can distribute a "marked" circuit C which closely approximates fk. Given C, any

efficiently findable circuit C* which even loosely approximates fk must also contain

m. Furthermore, in our scheme, the procedure for extracting m is entirely public-key.

We show that unmarked circuits cannot approximate the marked capability to within

an approximation factor of E = 1 + 1/ poly for any poly. If we allow list decoding,

namely allow the extraction procedure to output a polynomial-sized list of messages

containing m, then E can be lowered to 1/ poly.

There are several directions for further research. First, one could explore the con-

nection between obfuscation and watermarking to see whether some form of obfusca-

tion is necessary to achieve watermarking or if one can come up with constructions

that avoid obfuscation. This was partially answered by Kim and Wu [KW17] since

they presented a watermarking scheme with secret-key extraction from lattice-based

assumptions. However, a watermarking scheme with public-key extraction without

obfuscation remains open. Secondly, it would be interesting to achieve a fully public-

key watermarking construction where both the marking and the detection procedure

only use public keys. In the setting where the marking oracle takes keys as input,

this kind of watermarking appears plausible. As usual with obfuscation, there is a
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heuristic construction which obfuscates the secret-key marking procedure to generate

a public marking key. Proving such a scheme secure by only relying on iG (as opposed

to VBB) appears to require significantly new techniques. Third, it would be inter-

esting to explore weaker but meanigful models for watermarking such as the work

by Baldmtsi et al. [BKS17] since there is a possibility to achieve watermarking based

on standard cryptographic tools such as one-way functions. Finally, watermarking

schemes for richer classes of programs seem to be beyond the reach of our techniques,

but would be of obvious interest.
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Chapter 2

Updatable Cryptography

2.1 Introduction

The last decade has seen the advent of a vast array of advanced cryptographic prim-

itives such as attribute-based encryption [SW05, GPSW06], predicate encryption

[BW07, SBC+07, KSW08, GVW15a], fully homomorphic encryption [Gen09b], fully

homomorphic signatures [ABC+07, BF11, GVW15b], functional encryption [SW05,

BSW11, O'N10, GGG+14], constrained pseudorandom functions [BW13, BGI13, KPTZ13],

witness encryption [GGSW13, GLW14], witness PRFs [Zhal6], indistinguishability

obfuscation [BGI+01b, GGH+13b], and many more. Most of these primitives can be

viewed as "cryptographic circuit compilers" where a circuit C can be compiled into an

encoding (C) and an input x can be encoded as (x) such that they can be evaluated

together to compute C(x). For example, in a functional encryption scheme, circuit

compilation corresponds to the key generation process whereas input encoding cor-

responds to encryption. Over the recent years, cryptographic circuit compilers have

revolutionized cryptography by providing non-interactive means of computing over

inputs/data.

A fundamental limitation of these circuit compilers is that they only support

static compilation. That is, once a circuit is compiled, it can no longer be modified.

In reality, however, compiled circuits may need to undergo several updates over a

Based on "Cryptography with updates" with Prabhanjan Ananth and Abhishek Jain [ACJ17].
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period of time. For example, consider an organization where each employee is issued

a decryption key SKp of an attribute-based encryption scheme where the predicate

P corresponds to her access level determined by her employment status. However, if

her employment status later changes, then we would want to update the predicate P

associated with her decryption key. Known schemes, unfortunately, do not support

this ability.

Motivated by the necessity of supporting updates in applications, we study and

build dynamic circuit compilers. In a dynamic circuit compiler, it is possible to

update a compiled circuit (C) into another compiled circuit (C') by using an encoded

update string whose size only depends on the difference between the plaintext circuits

C and C'. For example, if the difference between C and C' is simply a single gate

change, then this should be reflected in the size of the encoded update. Note that

this rules out the trivial solution of simply releasing a new compiled circuit at the

time of update.

Background: incremental cryptography. The study of cryptography with up-

dates was initiated by Bellare, Goldreich and Goldwasser [BGG94] under the umbrella

of incremental cryptography. They studied the problem of incremental digital signa-

tures, where given a signature of a message m, it should be possible to efficiently

compute a signature of a related message m', without having to recompute the signa-

ture of m' from scratch. Following their work, the study of incremental cryptography

was extended to other basic cryptographic primitives such as encryption and hash

functions [BGG94, BGG95, Mic97, Fis97, BM97, BKY01, MPRS], and more recently,

indistinguishability obfuscation [GP15, AJS15b].

Our goal. In this chapter, we continue this line of research, and perform a system-

atic study of updatable cryptographic primitives. We take a unified approach towards

adding updatability features to recently studied primitives such as attribute-based en-

cryption, functional encryption and more generally, cryptographic circuit compilers.

We, in fact, go further and also study updatability for classical protocols such as
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zero-knowledge proofs and secure multiparty computation.

To accomplish this goal, we introduce a new notion of updatable randomized encod-

ings that extends the standard notion of randomized encoding fIKOO] to incorporate

updatability features. We show that updatable randomized encodings can be used to

generically transform cryptographic primitives (discussed above) to their updatable

counterparts.

2.1.0.1 Updatable Randomized Encodings

The notion of randomized encoding [IKOO] allows one to encode a "complex" compu-

tation C(x) into a "simple" randomized function Encode(C, x; r) such that given the

output (C(x)) of the latter, it is possible to recover the value C(x) (by running a

public Decode algorithm) but it is impossible to learn anything else about C or x.

The typical measure of complexity studied in the literature is parallel-time complexity

or circuit depth. Such randomized encodings are known to exist for general circuits

based on only the existence of one-way functions [AIK07] (also referred to as Yao's

garbled circuits [Yao86], where Encode(C, x; r) is in NC1 ).

We study updatable randomized encodings (URE): given a randomized encoding

(C(x)) of C(x), we want the ability to update it to an encoding (C'(x')) of C'(x'),

where C' and x' are derived from C and x by applying some "update" u. For now,

we may think of this update as some small modification to the circuit or input (e.g.,

change the output gate of C to AND and the second bit of x to 1). We require that

the update u can be encoded as (u) which can then be used to transform (C(x))

into (C'(x')), a randomized encoding of C'(x'). A bit more precisely, a URE scheme

consists of the following algorithms:

Encode(C, x): takes as input a circuit C and an input x, and outputs an encoding

(C(x)) and a secret state st.

GenUpd(st, u): takes as input an update u, and outputs an encoded update (u) and

a possibly updated state st'.
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ApplyUpd ((C(x)), (u)): takes as input a randomized encoding (C(x)) and an update

encoding (u), and outputs an (updated) encoding (C'(x')).

Decode ((C(x))): takes as input a (possibly updated) randomized encoding (0(x)),

and outputs the value y = (x).

If we make no additional requirements, the above could be easily achieved. For

instance, let Encode output the state st = (C, x), and let GenUpd-which now has

access to C and x from st in addition to the update u-compute the updated C' and

x' directly and output as the encoded update (u) the standard randomized encoding

of (C'(x')). ApplyUpd would correspondingly output (u) = (C'(x')). The drawback of

this approach is that a fresh randomized encoding is computed during every evaluation

of GenUpd, irrespective of whether u constitutes a minute or significant change to the

underlying C and x.

Our key efficiency requirement is that the running time of the GenUpd algorithm

must be a fixed polynomial size of the update (and a security parameter), and in-

dependent of the size of the circuit and input being updated. This, in particular,

implies that the size of an update encoding (u) is also a fixed polynomial in the size

of u (and the security parameter).

The above discussion immediately generalizes to the setting of multiple sequential

updates.1 Let (Co(xo)) denote an initial randomized encoding. Let U1, -. . , Uq denote

a sequence of updates and let (uj) denote an encoding of uj. In a URE scheme for

multiple updates, (Co(xo)) can be updated to (Ci(xi)) using (ui); the result can then

be updated into (C2 (x 2 )) using (u2 ), and so on, until we obtain (Cq(xq)). We allow

the number of updates q to be an arbitrary polynomial in the security parameter.

Within this framework, two distinct notions naturally arise.

URE with multiple evaluations: Every intermediate encoding (Ci(xi) can be de-

coded to obtain Ci(xi). For security, we require that given an initial randomized

'One may also consider an alternative notion of parallel updates, where every update (uj) is
applied to the original encoding (Co(xo)). It turns out that URE with parallel updates is closely
connected to the notion of reusable garbled circuits [GKP+13] (see Section 2.4.2).
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encoding (Co(xo)) and a sequence of encoded updates {(ui)}>_1, an adversary

can learn only the outputs {Ci(xi)} , and nothing else.

URE with single evaluation: Only the final encoding (Cq(xq)) can be decoded.

To enable this, we will consider an augmented decoding algorithm that addi-

tionally requires an "unlocking key." 2 This unlocking key is provided after all

the updates are completed, allowing the user to decode the final encoding, but

preventing her from decoding any intermediate values. For security, we require

that given an initial randomized encoding (Co(xo)) and a sequence of encoded

updates {(ui)}_ 1 ), an adversary can only learn the final output Cq(Xq), and

nothing else.

Except where otherwise specified, we use U RE to mean the multiple-evaluation vari-

ant. For both conceptual reasons and to minimize confusion, we in fact consider an

alternative but equivalent formulation of single-evaluation URE which we call updat-

able garbled circuits (UGC). A garbled circuit [Yao86 is a "decomposable" randomized

encoding, where a circuit C and an input x can be encoded separately. In an updat-

able garbled circuit scheme, given an encoding (Co) of a circuit Co and a sequence of

update encodings (u1),..., (uq), it is possible to compute updated circuit encodings

(C1),..., (Cq), where Ci is derived from C_1 using uj. Once all the updates are

completed, an encoding (x) for an input x is released. This input encoding can then

be used to decode the final circuit encoding (Cq) and learn Cq(xq). Intuitively, the

input encoding can be viewed as the unlocking key in single-evaluation URE.

It is easy to see that UGC is a weaker notion than multi-evaluation URE. In

particular, since UGC only allows for decoding "at the end," it remains single-use,

while multi-evaluation URE captures reusability.

We find the notions of URE and UGC to be of interest from a purely complexity-

theoretic perspective. Further, as we discuss later, they have powerful applications

to updatable cryptography.

2In the setting of bounded updates, this modification is unnecessary. We focus primarily on the
unbounded setting.
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2.1.1 Our Results

We initiate the study of updatable randomized encodings. We study both simulation

and indistinguishability-based security definitions and obtain general positive results

in a selective-security setting. We showcase URE as a central object for the study

of updatable cryptography by demonstrating applications to other updatable cryp-

tographic primitives. The technical ideas we develop for our constructions are quite

general, and may be applicable to future works on updatable cryptography.

2.1.1.1 Multi-evaluation URE for General Updates

Before stating our positive results for multi-evaluation URE, we first informally de-

scribe which classes of updates we can support. An update u E U represents some

way to modify any circuit C and an input x to some modified circuit C' and input

x'. We denote by Update the procedure (C', x') +- Update(C, x, u) which applies the

update to C and x. We consider all U and u subject to two restrictions: (1) u is

computed by a (family) of circuits, one for every circuit size JCJ, and (2) u preserves

circuit size (i.e., ICI = JC'J). We refer to this very broad class of updates as general

circuit updates.

For general circuit updates, we construct URE from compact functional encryption.

The summary below focuses on indistinguishability-based security, and concludes with

a remark on achieving simulation-based security.

Theorem 2.1.1 (Informal). Assuming the existence of secret-key, compact functional

encryption supporting a single key query and B ciphertexts, there exists a multi-

evaluation URE scheme supporting B sequential general circuit updates.

A compact functional encryption is one where the running time of the encryption

algorithm for a message m is a fixed polynomial in the size of m and the security

parameter, and independent of the complexity of the function family supported by

the FE scheme.

For the case of unbounded updates, a recent work of Bitansky et al. [BNPW161

shows that secret-key compact functional encryption with unbounded-many cipher-
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texts implies exponentially-efficient indistinguishability obfuscation (XIO) ILPST16a].

Put together with the results of [LPST16a] and [AJ15, BV15a], it shows that sub-

exponentially secure secret-key compact FE that supports a single function key query

together with the learning with errors (LWE) assumption implies indistinguishability

obfuscation.

In contrast, in Theorem 2.1.1, we require secret-key compact FE with only polyno-

mial security. Such an FE scheme can be based on polynomial-hardness assumptions

on multilinear maps using the results of [GGHZ14 and [BV15a, AJS15a].

For the case of polynomially-bounded updates, we can, in fact, relax our as-

sumption to only one-way functions. We obtain this result by using a stateful single-

key compact secret-key FE scheme for an a priori bounded number B of ciphertexts.

A stateful single-key compact secret-key FE scheme can be constructed from garbled

circuits: a functional key consists of B garbled circuits, ith ciphertext consists of gar-

bled wire keys corresponding to the ith garbled circuit. This FE scheme is stateful

since the encryption algorithm needs to store how many messages it has encrypted

so far.

Plugging in such an FE scheme in Theorem 2.1.1 yields the following corollary.

Corollary 2.1.2 (Informal). Assuming one-way functions, for any fixed polynomial

B, there exists a multi-evaluation URE scheme supporting B sequential general circuit

updates.

On the necessity of functional encryption. It is natural to ask whether secret-

key compact FE is necessary for building multi-evaluation U RE with unbounded up-

dates. We show that if a (multi-evaluation) URE scheme is output compact, then it

implies XIO. Put together with the result of [LPST16a], we have that a URE scheme

with output compactness together with LWE implies a public-key compact FE scheme

that supports a single key query.

Theorem 2.1.3 (Informal). Assuming LWE, a multi-evaluation URE scheme with

unbounded output-compact updates implies a public-key compact FE scheme that sup-

ports a single key query.
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In an output-compact URE scheme, the running time of the GenUpd algorithm is

independent of the output length of the updated circuit. We remark that the URE

scheme obtained from Theorem 2.1.1 is, in fact, output compact. Our construction

in Theorem 2.1.1 is in this sense tight.

On output compactness. We study both indistinguishability and simulation-

based security notions for URE. In the context of FE, it is known from [AGVW13,

CIJ+13 that simulation-secure FE with output compactness is impossible for general

functions. We observe that the same ideas as in [AGVW13, CIJ+13] can be used to

establish impossibility of simulation-secure URE with output compact updates.

However, when we consider indistinguishability-based security, URE with out-

put compact updates is indeed possible. The results in Theorem 2.1.1 and Corol-

lary 2.1.2 are stated for this case. Furthermore, using the trapdoor circuits technique

of ICIJ+13], one can generically transform output-compact URE with indistinguisha-

bility security to non-output-compact URE with simulation-based security.

2.1.1.2 Updatable Garbled Circuits with Gate-wise Updates

We now turn to updatable garbled circuits, an alternate formulation of single-evaluation

URE. We consider the family of gate-wise updates, where an update u can modify

a single gate of a circuit or add or delete a gate. Below, we consider the case of

unbounded updates and bounded updates separately.

UGC with unbounded updates from lattice assumptions. Our first result is

a construction of UGC for general circuits that supports an unbounded number of

sequential updates from the family of gate-wise updates. We build such a scheme

from worst-case lattice assumptions.

Theorem 2.1.4 (Informal). Let C be a family of general circuits. Assuming the

hardness of approximating either GapSVP or SIVP to within sub-exponential factors,

there exists a UGC scheme for C that supports an unbounded polynomial number of

sequential gate-wise updates.
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At the heart of this result is a new notion of puncturable symmetric proxy reen-

cryption scheme that extends the well-studied notion of proxy reencryption [BBS98a].

In a symmetric proxy reencryption scheme, for any pair of secret keys SK 1, SK2 , it is

possible to construct a reencryption key rki, 2 that can be used to publicly transform

a ciphertext w.r.t. SK1 into a ciphertext w.r.t. SK2. In our new notion of punc-

turable proxy reencryption, reencryption keys can be "disabled" on ciphertexts CT*

(w.r.t. SK1 ) s.t. the semantic security of CT* holds even if the adversary is given

the punctured key rk CT* and SK 2. We give a construction of such a scheme based

on the hardness of approximating either GapSVP or SIVP to within sub-exponential

factors.

Given the wide applications of proxy reencryption (see, e.g., [AFGH05] for a dis-

cussion), we believe that our notion of puncturable proxy reencryption is of indepen-

dent interest and likely to find new applications in the future.

UGC with bounded updates from one-way functions. For the case of a

polynomially-bounded number of updates, we can relax our assumption to only one-

way functions. We obtain this result by using a puncturable PRF scheme that can

be based on one-way functions IGGM84, SW14].

Theorem 2.1.5 (Informal). Let C be a family of general circuits, and A be a security

parameter. Assuming one-way functions, for any fixed polynomial q, there exists a

UGC scheme for C that supports q(A) sequential gate-wise updates. The size of the

initial garbled circuit as well as each update encoding is independent of q. However,

the initial circuit garbling time and update generation time grows with q.

The construction of this scheme is quite simple and does not require a puncturable

proxy reencryption scheme. We provide an informal description of this scheme in the

technical overview section 2.2.1.

2.1.1.3 Applications

We next discuss applications of our results.
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Updatable primitives with IND security. We start by discussing application

of multi-evaluation URE to dynamic circuit compilers. Here, we demonstrate our

main idea by a concrete example, namely, by showing how to use URE to transform

any (key-policy) attribute-based encryption (ABE) scheme into updatable ABE. The

same idea can be used in a generic way to build dynamic circuit compilers and obtain

updatable functional encryption, updatable indistinguishability obfuscation, and so

on. We refer the reader to Section 2.8.1 for the general case.

We briefly describe a generic transformation from any ABE scheme to one where

the policies associated with secret keys can be updated. The setup and encryption

algorithms for the updatable ABE scheme are the same as in the underlying ABE

scheme. The key generation algorithm in the updatable ABE scheme works as follows:

to compute an attribute key for a function f, we compute a URE (C) of a circuit

Cf where C runs the key generation algorithm of the underlying ABE scheme using

function f and outputs a key SKf. To decrypt a ciphertext, a user can first decode

(C) to compute SKf and then use it to decrypt the ciphertext.

In order to update an attribute key for a function f to another key for function f',
we can simply issue an update encoding (u) for (C) where u captures the modification

from f to f'. To compute the updated attribute key, a user can first update (C)

using (u) to obtain (Cf), and then decode it to obtain an attribute key SKf, for f'.

Let us inspect the efficiency of updates in the above updatable ABE scheme. As

in URE, we would like the size (as well as the generation time) of an update encoding

here to be independent of the size of the updated function. Note, however, that the

output of the updated function Cf is very large-an entire attribute key SKff! Thus,

in order to achieve the aforementioned efficiency, we require that the URE scheme has

updates with output compactness.

Recall that U RE with output compact updates is only possible with indistinguisha-

bility based security. As such, the above idea is only applicable to cryptographic

primitives with indistinguishability-based security.
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Updatable primitives with SIM security. Next, we discuss applications of URE

to cryptographic primitives with simulation-based security. In the main body of the

chapter, we describe two concrete applications, namely, updatable non-interactive

zero-knowledge proofs (UNIZK) and updatable multiparty computation (UMPC). A

notable feature of these constructions is that they only require a URE scheme with

non-output-compact updates and simulation-based security. Below, we briefly describe

our main idea for constructing UNIZKs.

Let (x, w) denote an instance and witness pair for an NP language L. Let u

denote an update that transforms (x, w) to another valid instance and witness pair

(X', w'). In a UNIZK proof system for L, it should be possible for a prover to efficiently

compute an encoding (u) of u that allows a verifier to transform a valid proof 7r for

x into a proof 7r' for x' and verify its correctness.

A proof 7T for (x, w) in the UNIZK scheme is computed as follows. We first

compute a URE (Cx,m) for a circuit Cx,, that checks whether (x, w) satisfies the NP

relation associated with L and outputs 1 or 0 accordingly. We also compute a regular

NIZK proof # to prove that (C,,) is computed "honestly." To verify 7 = ((Cx,2), q),

a verifier first verifies # and if the check succeeds, it decodes (Cx,,) and outputs its

answer.

In order to update a proof 7r, we can simply issue an update encoding (u) for

the randomized encoding (Cxm), along with a regular NIZK proof #' that (u) was

computed honestly. Upon receiving the update ((u), '), a verifier can first verify

#' and then update (C2,,) using (u) to obtain (CxlW,). Finally, it can decode the

updated URE (Cx',') to learn whether x' is in the language L or not.

It should be easy to see that the above idea can, in fact, be also used to make

interactive zero-knowledge proofs updatable. Finally, we note that the above is a

slightly oversimplified description and we refer the reader to Sections 2.8.4 and 2.8.5

for further details on UNIZK and UMPC, respectively.
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2.1.2 Related Work

Incremental cryptography. The area of incremental cryptography was pioneered

by Bellare, Goldreich and Goldwasser [BGG94. While their work dealt with signature

schemes, the concept of incremental updates has been subsequently studied for other

basic cryptographic primitives such as hash functions, semantically-secure encryption

and deterministic encryption [BGG95, Mic97, Fis97, BKY01, MPRS]. To the best of

our knowledge, all of these works only consider bit-wise updates, in which a single bit

of the message is modified.

While our work shares much in spirit with these works, we highlight one important

difference. In incremental cryptography, update operation is performed "in house,"

e.g., in the case of signatures, the entity who produces the original signature also per-

forms the update. In contrast, we consider a client-server scenario where the client

simply produces an update encoding, and the actual updating process is performed by

the server. This difference stipulates different efficiency and security requirements.

On the one hand, incremental cryptography necessarily requires efficient updating

time for the notion to be non-trivial, while we consider the weaker property of effi-

cient update encoding generation time. On the other hand, our security definition

is necessarily stronger since we allow the adversary to view the update encodings-a

property not necessary when the updating is done "in house."

Incremental and patchable obfuscation. Recently, [GP15] and [AJS15b] study

the notion of updatability in the context of indistinguishability obfuscation. The

work of [GP15 considers incremental (i.e., bit-wise) updates, while [AJS15b] allow

for arbitrary updates, including those that may increase the size of the program

(modeled as a Turing machine).

We note that one of our results, namely, URE with unbounded updates can be de-

rived from [AJS15b] at the cost of requiring sub-exponentially secure iO. In contrast,

we obtain our result by using polynomially secure secret-key compact FE. On the other

hand, our work only allows updates to single obfuscated circuits, whereas [AJS15b]

considers the problem of updating many obfuscated Turing machines simultaneously.
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Malleable NIZKs. Our notion of updatable NIZKs should be contrasted with the

notion of malleable NIZKs proposed by Chase et al. [CKLM12]. In a malleable NIZK,

it is possible to publicly "maul" a proof string 7r for a statement x into a a proof string

ir' for a related statement x'. In contrast, our notion of UNIZK only allows for privately

generated updates. To the best of our knowledge, malleable NIZKs are only known

either for a limited class of update relations from standard assumptions [CKLM12],

or for general class of update relations based on non-falsifiable assumptions such as

succinct non-interactive arguments [CKLM13. In contrast, we show how to build

UNIZK for unbounded number of general updates from compact secret-key FE and

regular NIZKs, and for a bounded number of general updates from regular NIZKs.

Updatable codes. The concept of updating was also studied in the context of error

correcting codes by [CK014]. In this context, it is difficult to model the problem

of updating-we should be able to change few bits of the code to correspond to a

codeword of a different message and at the same time we want the distance between

codewords of different messages to be far apart. We refer the reader to their work

for discussion on this seemingly contradictory requirement. In a subsequent work,

[DSLSZ15] studied this problem in the context of non-malleable codes.

2.2 Our Techniques

We start with the construction of UGC and present the main ideas underlying the

construction. We then build upon the intuition developed in the construction of

UGC, to construct (multi-evaluation) URE.

2.2.1 Construction of UGC

2.2.1.1 A Lock-and-Release Mechanism for Single Update

To begin, we construct a UGC scheme supporting a single gate update. Let C be a

circuit comprised of s-many gates C1 , ... , Cs. To garble C, we simply compute a

garbling of C using a standard gate-by-gate garbling scheme such as [Yao86]. 3 We
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denote by (C)gc the garbled circuit for C, and by (C)*, the garbled gate correspond-

ing to gate C'. Encrypt each garbled gate, and output the resulting ciphertexts

CT, ... , CTs.

Now, suppose we wish to update C to C' by modifying the first gate. Suppose

it was possible to generate a special decryption key that decrypts the ciphertexts

CT2 ,... , CT, but not CT1 . The encoding of the update consists of this special de-

cryption key, along with a garbled version of the new gate (C') c. The receiver can

use this to decrypt and recover the garbled gates (C)2, ... , (C)"c. Together with

(C')', this forms a complete garbled circuit for C'.

How can we implement the special decryption key? A naive approach is to encrypt

each ciphertext with an independent encryption key, and then release the decryption

key for every position i -/ 1. However, the size of the resulting update encoding is

proportional to s = JCJ, no better than garbling C' from scratch.

We could instead use a (secret key) puncturable encryption scheme. In a punc-

turable encryption scheme, it is possible to generate a punctured decryption key that

can decrypt all ciphertexts but one. Punctured encryption schemes can be built

from puncturable pseudorandom functions [SW14, BGI13, BW13, KPTZ13 (c.f. Wa-

ters [Wat15b]) which in turn can be based on any one-way function. Given such an

encryption scheme, the above construction of single-update UGC achieves our effi-

ciency goals.

Abstractly, the above construction can be though of as a lock-and-release mecha-

nism. The encryption of the wire keys corresponding to C constitutes the locking step,

while the dissemination of the punctured decryption key constitutes the (conditional)

release step. We find this abstraction useful going forward.

2.2.1.2 A Layered Lock-and-Release Mechanism for Bounded Updates

The previous solution does not offer any security for even two sequential updates.

Updates for two different gates would allow an adversary to recover a garbling of the

3In gate-by-gate garbling schemes such as [Yao86], each boolean gate can be garbled knowing
only the circuit topology and the gate's functionality, independently of the remainder of the circuit.
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original circuit. To support an a priori bounded number of updates q, we use a layered

punctured encryption-abstractly, a layered lock-and-release mechanism.

When garbling the circuit C, instead of encrypting the garbled gates a single

time, we use q onion layers of encryption scheme, each using a punctured encryption

scheme. Let ui, ... , uq be a sequence of gate updates, each consisting of a gate g E [s]
to change and a new gate type. To generate an updatable garbled circuit for C, first

garble C using a traditional gate-by-gate scheme. Sample q keys SK 1, ... , SKq for a

puncturable encryption scheme. Encrypt each garbled gate (C)Q of the garbled circuit

in q layers, yielding a ciphertext CTj = Enc(SK1, Enc(SK2 ,. .. Enc(SKq, (C)'))).

The encoding of the first update ul = (gi, gateTypel) is a decryption key for the

outermost encryption layer that is punctured at CTgi, along with a layer (q - 1)

encryption CT' = Enc(SK 2 , Enc(SK 3 ,... Enc(SKq, (C')"))), where (C')g is the new

garbled gate. Likewise, an encoding of the i-th update ui is a punctured decryption

key for SKI, and an (i - 1)-layered encryption of the new garbled gate.

The use of layered punctured encryption ensures that the receiver cannot skip

any update, and instead must apply all the updates one-by-one to peel off all the

encryption layers from the garbled gates. Furthermore, since the encryption layers

can only be removed in a prescribed order, the receiver must apply the updates in

order. After applying all the updates the receiver only obtains a single garbled gate

at every location in the circuit.

Theorem 2.1.5 claims that the garbled circuit and of each update encoding is

independent of q. But a generic instantiation of the layered encryption described

above would yield ciphertexts (and garbled circuits and updates) that grow with

q. To achieve the promised efficiency, we use a punctured encryption scheme that

supports layered encryption without ciphertext blowup.

2.2.1.3 A Relock-and-Eventual-Release Mechanism for Unbounded Up-

dates

The previous construction inherently requires the number of updates to be bounded

a priori. To support unbounded updates we develop a relock-and-eventual-release.
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Instead of removing a lock at every step, our idea is to change the lock at every

step by replacing That is, we replace the encryption with reencryption [BBS98a].

In a symmetric reencryption scheme, given two encryption keys SK1 and SK2 , it is

possible to generate a reencryption key rki- 2 that transforms any ciphertext under

SK1 into a ciphertext under SK 2.

As in the earlier constructions, we need the reencryption scheme to be punc-

turable. We define and construct a puncturable symmetric reencryption scheme. A

punctured reencryption key rk CT* allows one to transform any ciphertext under SK1

into a ciphertext under SK 2, except the ciphertext CT*. The semantic security of CT*

should hold against an adversary given a chain of reencryption keys rki, 2 , ... rkq-iq,

and the terminal secret key SKq, so long as at least one of the reencryption keys is

punctured at CT*.

We can now modify the previous solution template to support unbounded updates.

The garbling of a circuit C consists of C as before. The garbled gates (C)(c are now

encrypted using a puncturable reencryption scheme. Let SKO denote the secret key

used to encrypt the garbled gates. In order to issue an update encoding for an update
CT 9

ui for gate g, we release (a) a reencryption key rk 4_Q punctured at ciphertext CT ,

the encryption of (C)g under SKj_1 , and (b) an encryption of (C') g under SKI. For

the final update q, we release the qth secret key SKq.

This construction does not hide the location of the updates. Indeed, the evaluator

needs to know the location being updated in order to correctly apply the updates. To

address this, we provide a generic transformation from any UGC scheme (or in fact,

any URE scheme) that does not achieve hide the location of updates into one that

does. Our transformation uses non-interactive oblivious RAM in the same manner

as in [GP15]. Finally, we note that while the above only discusses single-bit updates,

our construction handles multi-bit updates as well.
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2.2.1.4 Puncturable Symmetric Reencryption from Worst-case Lattice

Assumptions

Boneh, Lewi, Montgomery, and Raghunathan construct symmetric reencryption schemes

from key homomorphic PRFs [BLMR13b]. Key homomorphic PRFs have the prop-

erty that for all x, K1 , and K2, PRF(K1 , x) + PRF(K2, x) = PRF(K1 + K2, x), where

the keys and outputs of the PRF lie in appropriate groups. A secret key for the

reencryption scheme is a PRF key. The encryption of a message m with secret key

Ki and randomness r is CT = (r, m + PRF(K1 , r)).

A reencryption key for secret keys K1 and K2 is their difference: rki, 2 = K2 -K 1 .

The key-homomorphism provides a natural way to reencrypt ciphertexts: (r, m +

PRF(KI, r) + PRF(rk 1, 2, r)) = (r, m + (K2 , r)) is a ciphertext under K2. Observe

that successful reencryption of a ciphertext with randomness r relies on the ability

to compute PRF(rki, 2 , r).

We construct puncturable proxy reencryption scheme following the above ap-

proach, but instantiated with constrained key-homomorphic PRFs [BV15b]. A punc-

tured reencryption key rk L* for a ciphertext CT* with randomness r* is the PRF

key K2 - K1 punctured at the input r*. This key, which can be used to evaluate

PRF(K2 - K1 , r) for all r : r*, enables the reencryption of all ciphertexts except for

the ciphertext CT* with high probability.

We need semantic security of CT* even given both rk L2 and K2. We reduce to

the security of the constrained PRF, which guarantees that y* := PRF(K2 - K1 , r*) is

pseudorandom. The key idea is that (partial information about) y* can be computed

given CT*, K2, and (partial information about) the message m.

2.2.2 Construction of URE: Relock-and-Release

The main difference between UGC and URE is that UGC only allows for a single evalu-

ation after a sequence of updates, while URE allows for evaluation after every update.

As such, the relock-and-eventual-release mechanism discussed above is inadequate for

URE. We develop a relock-and-release mechanism that performs both relocking and
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release at every step. Intuitively, relocking allows us to repeatedly apply updates,

while the release mechanism allows us to evaluate the updated randomized encoding

at every step.

2.2.2.1 Starting Idea: Garbled RAM with Persistent Memory

We implement the relock-and-release mechanism using garbled RAMs with persistent

memory [LO13, GHL+14]. In a garbled RAM scheme, it is possible to encode a

database Do and later issue encodings for RAM programs M1,. . . , Mq. Each RAM

program encoding Mi updates the database encoding from Di 1 to Di, and outputs

the result of some computation on Di.

Starting from a garbled RAM scheme and a standard randomized encodings

scheme without updates [Yao86], we can construct URE as follows:

- Set the initial garbled RAM database Do to the circuit and input pair (CO, x0).

The initial updatable randomized encoding of (CO, x0 ) is the garbled RAM en-

coding of Do along with an encoding of (Co, xo) computed under the standard

randomized encoding scheme.

- To compute an encoding (uj) for an update ui, compute an garbled RAM en-

coding Mi of a machine Mi that has ui hardcoded in it. The machine Mi on

input Di_ 1 = (C_1 , xj_1 ) first updates the database to Di = (Ci, xi), where

(Ci, xi) <- Update(Ci_ 1 , xi 1 ; us), and outputs a fresh standard randomized en-

coding of (Ci, xi).

Observe that Mi computes a fresh (standard) randomized encoding when the

update is applied. To achieve the necessary efficiency guarantee for URE, we need

the garbled RAM encoding time of Mi to be independent of its running time. Fur-

thermore, since the output of Mi consists of a fresh randomized encoding, we also

need that the time of encode Mi is independent of its output length. Such gar-

bled RAM schemes are called, respectively, succinct [BGL+15, CHJV15] and output-

compressing [AJ15, LPST16b].
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2.2.2.2 Garbled RAM meets Delegation of Computation

Our goal is to base U RE on polynomial hardness assumptions. Unfortunately, the only

known constructions for output-compressing succinct garbled RAM are based on in-

distinguishability obfuscation (iO), which is often believed to require sub-exponential

hardness assumptions. In contrast, non-succinct garbled RAM schemes are known to

exist based only on one-way functions. But if we use non-succinct garbled RAM, we

need a new idea to achieve our efficiency goals.

We use secret-key functional encryption [SW05, BSW11, O'N10] to introduce an

additional level of indirection. Roughly speaking, the initial encoding of Co(xo) now

corresponds to a non-succinct garbled RAM encoding of Do = (CO, x0 ) along with

FE functional key for a circuit P. P takes as input an update string ui and outputs

an encoding Mi of the machine Mi described before. Encoding the update u now

corresponds to an FE encryption of uj.

For efficiency, we need the secret-key FE scheme to be compact: the running time

of encrypting a message m is independent of the complexity of the FE function family.

If this were not the case, then the encoding time for an update ui in the above solution

would depend on the size of the circuit C, which in turn depends on the running time

and output length of Mi. Secret-key compact FE schemes with polynomial hardness

can be built from polynomial hardness assumptions on multilinear maps using results

of [GGHZ14 and [BV15a, AJS15a].

2.2.2.3 Challenges in Proving Security

While the above construction approach achieves correctness, it is not clear how to

argue security. Note that the circuit P computed by an FE key in the above con-

struction contains the garbling key of the garbled RAM scheme hardwired inside it.

This is necessary for it to compute the encodings of Mi.

In order to leverage security of garbled RAM, one might remove the garbling

key from the FE function key. However, maintaining functionality would require

hardwiring the output of P, either in the FE key, or in the FE ciphertext. We cannot
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afford to hardwire the output in the ciphertext since that would violate the efficiency

requirements of URE. Thus, our only option is to hardwire the output in the FE key.

But to support multiple updates, would have to hardwire all the outputs in the FE

key (one for each update). Doing so all at once in the proof would require putting a

bound on the number of updates.

A better option is to hardwire the outputs one at a time, analogous to many

proofs in the iO literature (see, e.g., [GLSW14, AJ15, BV15b]). Implementing this

approach, however, would require puncturing the RAM garbling key, something we

do not know how to do.

2.2.2.4 Using Cascaded Garbled Circuits

The key property of garbled RAM we are using is its ability to maintain the updated

state in persistent memory. We do not need efficient random access to memory. We

can implement the persistent memory more directly using cascaded garbled circuits,

which will also help address the security issues discussed above.

Consider a circuit Qj that has an update string ui hardwired in its description.

It takes as input (Ci_ 1, xi_ 1) and outputs two values. The first value is a fresh

randomized encoding of Ci(xi) where (Ci, xi) +- Update(Ci_1, xi- 1 ; uj), and the second

value is a set of wire keys for the string (Ci, xi) corresponding to a garbling of the

circuit Q i+ (that is defined analogously to Qj). The initial encoding of Co(xo) now

corresponds to the input wire keys for the string (CO, x0 ) corresponding to a garbling

of circuit Q, as defined above, as well as an FE key for a function f that takes as

input u and outputs a garbling a circuit Qj. The encoding of an update u is an FE

encryption of u as before.

We outline the indistinguishability security proof. Simulation-based security can

be argued via a generic transformation following [CIJ+13]. Let Co, Co, and x be the

initial circuits and input, and let (uO, u'),. . . , (u8, u') be the updates. There are two

chains of updating processes: the 0 th chain starts from COO and 1 St chain starting from

Cf. The ith bead on the 0 th (resp., Ist) chain corresponds to update u? (resp., ut).

The security proof begins with the real experiment with challenge bit 0. Only the
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0 th chain is active. In the next step, we introduce the 1 " chain while keeping the

0 th chain active. Namely, the randomized encoding at every step is generated using

the 0 th chain. The next. sequence of hybrids slowly switch the active chain from 0

to 1, one by one. In the ith hybrid in the sequence, the first i randomized encodings

are generated using the 1 " chain, the remainder using the 0 th chain. At the end, we

remove the now inactive 0 th chain and altogether, recovering the real experiment with

challenge bit 1.

The two chains described above are implemented in a sequence of garbled circuits,

that we call cascaded garbled circuits. Every ith garbled circuit in this sequence

produces wire keys for the next garbled circuit. Every garbled circuit in this sequence

is a result of ApplyUpd procedure and encapsulates, for some i, the ith beads on both

the chains. In order to move from the ith intermediate step to (i + 1)th intermediate

step, we use the security of garbled circuits. But since these garbled circuits are not

given directly, but instead produced by a FE key, we need to make use of security of

FE to make this switch work.

2.3 Preliminaries

2.3.1 Circuits, Hardwired Circuits, and Updatable Circuits

A boolean circuit C is a directed acyclic graph of in-degree at most 2. Source vertices

are called inputs, sink vertices are called outputs, and all other vertices are called

gates. Each gate is associated with a type gateType E {V, A, -}. The size of a circuit

s = JCJ is the number of vertices in the graph, and each vertex is labeled by a unique

index between 1 and s. A circuit with n inputs and m outputs represents a function

C : {0, 1}" -+ {0, 1}m. Evaluation of C on an input x E {0, 1} is performed by

assigning to each input vertex one bit of x (in index order), evaluating the circuit

gate by gate, and returning the value C(x) E {0, 1}m assigned to the output gates

(again, in index order). The depth of a circuit is the length of the longest path from

an input to an output.
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We associate with a pair (C, x) a corresponding hardwired circuit C[x] which is

identical to C except with its input vertices fixed to x. C[x] takes no input and

and always evaluates to C(x). While not strictly necessary for our results, hardwired

circuits are a very useful syntactic sugar. We occasionally abuse notation and use

C[x] to refer to both the hardwired circuit and output. Two hardwired circuits Co[xo]

and Ci[xi] are equivalent, denoted Co[o] = C1[xi] if and only if Co(xo) = C1(xi) and

|C0| = |C1|.

A family of circuits is a collection C = {CA}AEN, where CA is a set of circuits

C : {0, }n(A) - {0, 1}"dN) of size s(A), for polynomially-bounded functions n, m,

and s.4 We define the corresponding family of hardwired circuits C[X] ={C[XIA}AEN

in the natural way. Throughout this chapter, we will make computational indistin-

guishability statements of the form V{CA G CA}AeN, {F(CA)}AEN .c {G(CA)}AEN7

where F, G : C -+ {0, 1}* are some concrete randomized algorithms (possibly with ad-

ditional arguments). We abuse notation and instead write: VC E CA, {F(C)}EAN c

{G(C)}AEN; or even more succinctly, VC E Cx, F(C) ac G(C).5

A family of circuits is updatable if there is some procedure for transforming a

circuit C into another circuit C' as described by an update u c {0,1 I}PY(A). The size

of u may be much smaller than s(A). For example, if u is "change all V gates to A

and vice-versa," its size is a constant independent of A. An update for a hardwired

circuit C[x] may modify both the underlying circuit C or the input x.

We consider families of circuits that are closed under specific families of updates

U. A family of updates is a collection U = {UA}AEN where UA C {0, 1}PIy (n) for some

polynomial poly. The family C is closed under U if applying an update u E U- to

C E C results in another circuit in C.

Definition 2.3.1 (Updatable Circuits). We say C is (Upd,LU)-updatable if for all

C G CA and all u E UA, Upd(C,u) E CA. Likewise, we say that C[X] is (Upd,U)-

updatable if for all C[x] G C[X]A and all u c UA, U pd(C[x], u) G CA.

5For instance, see Footnote 6.
5We assume that the class of all boolean circuits for every fixed size s and n inputs has an efficient

binary representation binary(C) c {0, 1}0(s). That is, there is an efficient algorithm that computes
C -+ (n, s, binary(C)), and its inverse.
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This closure property enables us to consider chaining updates in sequence: C2[x 2] +-

Upd(Upd(C[x], u1), u2 ).

2.3.2 Randomized Encodings

Randomized encodings, introduced by Ishai and Kushilevitz [IK00], are a way to

represent relatively complex computations using simpler functions. We measure the

complexity of a function by the depth of a circuit that computes it. A randomized

encoding scheme RE consists of a pair of algorithms.

ENCODE: Cx) <- RE.Encode(1A, C, X) takes as input a circuit C and an input x; it

outputs the randomized encoding C(x).

DECODE: C(x) <- RE.Decode (CT)) is a deterministic algorithm. On

domized encoding C(x), it outputs the value C(x).

input a ran-

A randomized encoding scheme must be correct, efficient, and secure.

CORRECTNESS: RE.Decode(RE.Encode(1A, C, X) = C(x)) for all C, x.

EFFICIENCY: RE.Encode is computable by a circuit in NC1 .

SECURITY: There exists a simulator Sim such that for all C C CA, X E {o, i}n(A),

RE.Encode(1A, C, X) ~c Sim(1A, q(C), C(x)). 6

2.3.2.1 Garbled Circuits

Garbled circuits are a type of randomized encoding where C and x may be encoded

separately using some shared state. We present a modified formalization of garbled

circuits from [BHR12]. A garbled circuit scheme C is a tuple of algorithms GC

(GrbCkt, Grbinp, EvalGC) with the following syntax.

6 Without the abuse of notation discussed on the previous page, we would instead write:
There exists a simulator Sim such that for all {Cx E CA}x and {xA E {O, 1}EA)}x,
{RE.Encode(1A, C,\, x\)}A ~c {Sim(1A, O(CA), CA(X,))}\.
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CIRCUIT GARBLING, ((C)gc, St +- GrbCkt(1A, C): On input security parameter 1A

and a circuit C E C,\, outputs a garbled circuit (C)gc and state st.

INPUT GARBLING, (x)gc +- Grblnp(st, x): On input state st, input x E {o, i}(A),

outputs an input encoding (x)gc.

EVALUATION, a +- EvalGC ((C)gc, (x)gc): On input garbled circuit (C)gc and an

input encoding (x)gc, outputs the decoded value a.

As before, a garbled circuit scheme is correct if C(x) = EvalGC ((C)gc, (x)gc) for

all (C)gc and (x)gc generated as above. We also require efficiency: that the algorithms

GrbCkt and EvalGC be polynomial time in the input length and the security parameter

A, and that the time to generate (and the size of) the garbled input (x)gc is poly(A, jx)

for some fixed poly. In particular, it must be independent of JCJ.

Gate-by-gate schemes. In many schemes (including [Yao86]), the garbled circuit

(C)gc consists of a collection of garbled gates (C)'c, one for every gate g E [ICl] of

the original circuit. More formally, there exists an algorithm GrbGate(st, g, gateType)

which outputs the gth garbled gate (C)"c.

Security. Security is defined with respect to deterministic side-information function

q, which captures what information is leaked by the garbled circuit. For example,

the side-information function in the original garbling scheme of Yao is 0,opo, the func-

tion that outputs the circuit topology, including size, number of inputs, and number

of outputs. 7 One may consider both simulation-based and indistinguishability-based

notions of security, but we restrict our attention to the latter. Yao [Yao86, LP09]

constructed garbled circuits based on one-way functions satisfying the PriviND, secu-

rity.

7 Using universal circuits, the circuit topology can be hidden at the cost of a quadratic loss in
efficiency. For further discussion on side-information, see [BHR12].
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Definition 2.3.2 (PrivIND4 ). A garbling scheme GC is PrivINDO-secure with leakage

q if for every pair of circuits C', C' G CA, and inputs x0 , x 1 G {0, } n(A):

Exptoc rc, Cxx 1 Epc(V, IC, X)

where Expt GC is defined below.

ExptbG

* If #(C 0 ) 4 0(C) or C0(x0 ) 4 C1 (x1 ), abort and return 1.

" Compute the garbled circuit (Cb)gc +- GrbCkt(1A, Cb), and the garbled

input (Xb)gc <- Grblnp(st, Xb).

* Output ((Cb)c, (xb)gc )

2.3.3 Private-Key Functional Encryption

A private-key functional encryption (FE) scheme FE over a message space M=

{MA}AEN and a function space F = {fA}AEN is a tuple (FE.Setup, FE.KeyGen, FE.Enc,

FE.Dec) of PPT algorithms with the following properties:

SETUP, FE.Setup(1A): On input the security parameter in unary, outputs a secret

key FE.MSK.

KEY GENERATION, FE.KeyGen(FE.MSK, f): On input the secret key FE.MSK and a

function f E F, outputs a functional key FE.SKf.

ENCRYPTION, FE.Enc(FE.MSK, m): On input the secret key FE.MSK and a message

m E MA, outputs a ciphertext CT.

DECRYPTION, FE.Dec(FE.SKf, CT): On input a functional key FE.SKf and a cipher-

text CT, outputs m E MA U {I}.

FE must be correct, compact, and function private. For correctness, we require

that there exists a negligible function negl(.) such that for all sufficiently large A E N,
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for every message m E MA, and for every function f E Fx it holds that

FE.Dec(FE.KeyGen(FE.MSK, f), FE.Enc(FE.MSK, m)) = f(m)

with probability at least 1 - negl(A), where FE.MSK +- FE.Setup(1A), and the proba-

bility is taken over the random choices of all algorithms.

The FE scheme is compact if the complexity of FE.Enc is independent of the com-

plexity of the function family. More formally, the running time of FE.Enc(FE.MSK, m)

must be bounded above by some polynomial poly(A, ml) for all m. In particular, a

compact FE scheme allows for generating functional keys for circuits whose size and

output-length are not a priori fixed.

The notion of function privacy is modeled as a game between a challenger and

an adversary. In this game, the adversary may query pairs of functions, receiving

in response a functional key corresponding to one of the functions. As long as the

queried functions agree on a set of challenge message pairs, the functional keys must

be indistinguishable. We focus on the selective-security setting, where the challenge

messages are fixed in advance.

ExptE (A, b E {0, 1}):

" The challenger first executes FE.Setup(1A) to obtain FE.MSK.

" Message queries: The adversary submits message pairs ((m, , ... , mq), (

m),..., Im))) to the challenger, where q is a polynomial in the security

parameter A. The challenger then sends (c*,... , c*) to A, where c* +-

FE.Enc(FE.MSK, m(b)

" Function queries: The adversary then submits polynomially many pairs

of functions (fo, fi). If li such that fo(m 0 )) / f, (m( 1 ), then the experi-

ment aborts and outputs _L. Otherwise the challenger returns FE.skf <-

FE.KeyGen(FE.MSK, fb)

" A's output is returned by the experiment.
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Definition 2.3.3 (Function-private selectively-secure FE). A private-key functional

encryption scheme FE is a function-private selectively-secure if for any PPT adver-

sary A there exists a negligible function negl(XA) such that for all sufficiently large

A E N,

AdvFE _ Pr[ExptE (I, 0) = 1] - Pr[ExptFE 1 negl(A)

We require a single-key secret key compact FE scheme in order to construct updat-

able randomized encodings. Currently, we know how to build this either from concrete

assumptions on multilinear maps [GGHZ14] or based on iO [GGH+13b, Watl5b]. Al-

though sub-exponentially secure, compact public-key FE is known to imply iO IAJ15,

BV15a], the current approaches don't extend to the secret key setting (see [BV15a]).

We emphasize that we only require polynomially-secure, secret key, selectively-secure,

single-key compact FE for our constructions.

2.4 Defining Updatable Randomized Encodings

2.4.1 Sequential Updating

The semantics of URE depends on whether and how multiple updates interact. Can

multiple updates be chained in sequence, or do we only allow a single update to

be applied? We call the former option sequential updating and the latter parallel

updating. We focus on the sequential setting and discuss parallel updates only briefly

in Section 2.4.2. More complex updating semantics are not considered in this work.

Let C be an (Upd, U)-updatable family of circuits, and C[X] be the corresponding

updatable hardwired family. An updatable randomized encoding (URE) scheme for C

is a tuple of algorithms URE = (Encode, GenUpd, ApplyU pd, Decode) with the following

syntax, and associated efficiency, correctness, and security properties discussed below.

ENCODE, ((C[xI)ure, st) <- Encode (1, C, x): On input security parameter A, circuit

C E CA, input x E {0, 1}( , it outputs an randomized encoding (C[x])ur and

state st.
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GENERATING SECURE UPDATE, ((U)ure,st') +- GenUpd (st,u): On input state st,

update u E U4, output the secure update (u)u, along with the new state st'.

APPLY SECURE UPDATE, (C'[x')u, +- ApplyUpd ((C[x])., (u).ue): On input ran-

domized encoding (C[X]).,e, secure update (u), output the updated random-

ized encoding (C'[x']).e.

EVALUATION, ce +- Decode ((Cx)ure): On input randomized encoding (CIXI).re, out-

put the decoded value a.

2.4.1.1 Correctness

For a hardwired circuit Co[xo] from an (Upd,U)-updatable family C[X] and a sequence

of updates ui, ... , uq, let Ci[xi] be recursively defined as the result of evaluating

Upd(Ci-I[xi 1 ], ui).' Each Ci[xi] may be evaluated, outputting Ci(xi).

Informally, a URE scheme is correct if it allows the Ci(xi) to be recovered from

encodings. For Co[xo] and ul, . . . , Uq as above, let ((C[x]).,, sto) +- Encode (1A, C, x)

and ((ui),stj) +- GenUpd (sti_1,uj). Finally, for every i E [q] let (Ci[Xi),u +

A pply Upd ((Cj_1[xj_j])ur, (ui)ur) .

Definition 2.4.1 (URE Correctness). URE is correct if for all A E N, Co[xo] E C,[X],

all sequences u 1 , ... , uq in U, and all i E [q]:

Decode ((Ci [xi@]r) = Ci(xi).

2.4.1.2 Efficiency .

We consider a range of efficiency goals.

ENCODING TIME: Computing the encoding Encode(1A, C, x) should be significantly

simpler than evaluating CQx). We require that the depth of the circuit comput-

ing Encode be smaller than the depth of C.

8By the closure property of Definition 2.3.1, each Ci[xi] is in the same updatable family, enabling
this repeated use of Upd.
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SECURE UPDATE GENERATION TIME: Computing the encoding GenUpd (st, u) of

an update should take time poly(A, Jul) independent of JCJ. We call such URE

schemes output compact.

SECURE UPDATE SIZE: The size of an encoded update I(u),,, should be poly(A, Jul),

independent of JCl. Note that any output compact URE satisfies this property.

STATE SIZE: The size of the state st maintained by the authority should be poly(A),

independent of JCJ and Jul.

RUNTIME OF UPDATE: The time required to apply encoded updates to a random-

ized encoding should be polynomially related to the time required to apply the

unencoded update to the unencoded circuit. Namely, ApplyUpd(KC[x])u,, (U)ur)

should take poly(A, t, ul) time, where t is the time taken to execute Upd(C[x], u).

Our constructions achieve most of these efficiency goals. On the negative side, our

constructions do not satisfy the 'Runtime of Update' property. On the positive side,

our main (indistinguishability-based) construction in Section 2.6 is output compact

and achieves the 'Encoding Time' property. In Appendix 2.5.3, we provide a trans-

formation from any output compact URE scheme to one that additionally satisfies

the 'State Size' property. This transformation uses non-succinct garbled RAMs, and

assumes only one-way functions. Our construction for simulation-based security does

not achieve output compactness, but this is inherent [AGVW13, CIJ+13].

2.4.1.3 Security

Our security notions attempt to capture the intuition that an updateable randomized

encoding (Co[o]) , and a sequence of updates (ui)ure,. .. , (Uq)u, should reveal only

the outputs Co(Xo), C1(XI),. . . Cq (Xq) where Ci, xi are as in Definition 2.4.1. In addi-

tion to hiding the circuits and inputs as in traditional randomized encodings, a URE

additionally hides the sequence of updates. We study two different formalizations of

this intuition: simulation-based and indistinguishability-based.
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While our URE construction is update hiding, we could instead consider a relaxed

notion in which updates are partially or wholly revealed. Indeed, this is what we will

do in the context of updatable garbled circuits (Section 2.7). In Appendix 2.7.5,

we provide a generic transformation from an update-revealing URE scheme to an

update-hiding URE scheme, assuming only the existence of one-way functions.

Simulation-based security. We adopt the real world / ideal world paradigm in

formalizing simulation-based security. In the real world, the adversary receives en-

codings of the circuit and update generated honestly as per the description of the

scheme. In the ideal world, the adversary is provided simulated encodings and encod-

ings of updates created by a PPT simulator Sim. A sequential updatable RE scheme

is secure if no efficient adversary can distinguish real world from the ideal world.

Our definitions and constructions offer only selective security, wherein the circuit,

input, and updates must be chosen in advance, before any encodings are generated.

Even so, the simulator generates the encodings one at a time, using only limited

knowledge of the circuits and updates. To begin, Sim gets as input the output of

circuit Co(xo) and |Col (but neither Co nor x0 ) and produces a simulated randomized

encoding. Next, Sim simulates the update encodings in order. On input luil and the

output Ci(x,), it generates a simulated encoding of the update.

Definition 2.4.2 (SIM-secure Sequential URE). A sequential URE scheme URE for

(Upd,U)-updatable class of circuits C is SIM secure if there exists a PPT simulator

Sim such that for every circuit C C C\, input x E {0, }n(A), and every sequence of

updates ut,... , uq E 1A,

IdealExpt (, C X, {Ui}E[q]) c Real Expt (1/, C, x, {ui}iE[q])

IdealExpt(1A, C, x, {ui}ie[q]):

* ((C[xI)., sto) +- Sim(1), 11C1, C(x))

" Co[xo] := hardwired circuit of (C, x)

" Vi E [q], Ci[xi] +- Upd(Ci-I[xi-1 ], uj)
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* Vi c [q], ((ui)ure, sti) +- Sim(sti_1, i|ud , Ci(Xi)).

* Output ((C[X])ure (Ui)ure, , (uq)ure

RealExpt(lA, C, X, {ui}E[q]):

S((C[XI)ure, StO) <- Encode (I", C, x)

* Vi E [q] , ((U)uresti) +- GenUpd (sti_1,uj)

* Output ((C[X)ure, (Ui)ur, . (Uq)ure

Indistinguishability-based security. Our definition of IND security intends to

capture the intuition that a updatable randomized encoding of (C, x) and a sequence

of encoded updates {uj} should be indistinguishable from a encodings of a differ-

ent circuit, input, and sequence of updates as long as all the intermediate circuit

evaluations agree.

Definition 2.4.3 only considers a selectively-secure version of this intuition where

the circuits, inputs, and updates are fixed in advanced. For 3 E {0, 1}, consider

circuits C 3 , inputs x, and update sequences {Uf}iE[q]. As long as all intermediate

circuit evaluations are equal for # = 0 and # = 1, it should be impossible to distin-

guish between the corresponding sequences of encodings. Adaptive security, where

an adversary may adaptively choose the updates introduces additional challenges not

addressed in this work.

Definition 2.4.3 (IND-secure Sequential URE). A sequential URE scheme URE

for (Upd, U)-updatable class of circuits C is IND secure if for every pair of circuits

Co, C1 E CA, inputs X0,x E {0, 1}n(A), and update sequences {U.}iE[,] and {uj}iE[q]:

ExptSURElA, input) . ExptsURE A, input),

where ExptSURE is defined below and input = (C0 , C1 , X 0 , X, {Uioie[q], {U}jiE[q])

ExptSURE(,A 0 C 1 0  , E[q, ICIE[q]X
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* For # E {0, 1}, let C3 - C 3 and xo= x 3 . For i E [q], recursively evaluate

CP [x ] <-- Upd(Cla [xf_], u ).

" Check that C0 (x) = C'(x) and that Vi G [q], C2O(x9) C(jx!). If not,

abort and output I.

S((Cb[xb]),,,, st') <- Encode (1, C',xb)

* Vi E [q], ((ub)ure, st) <- GenUpd (st 1 , u ).

" Output (KCb[Xbl)ur, (U)r,.. ., (

2.4.2 Parallel Updating

Given a randomized encoding (C[X])ure and multiple patches, parallel updating allows

for separately updating the original encoding using each of these patches. That

is, given secure updates (ui)ure, ... , (Up)ure, we can update (C[X]).re to obtain the

respective updated encodings (C 1 [X1)ur,, ... , (Cp[XP])ure where for each i, (Ci[Xi])ure =

AppIyUpd((C[X])ure, (u)ure) We emphasize that this process does not immediately

allow for updating the already updated randomized encoding (C[xi])ure again. This

is in contrast with the sequential updating process where an updated randomized

encoding can indeed be updated again.

2.4.2.1 Connection between Parallel URE and Reusable Garbled Circuits

The notions of parallel URE and reusable garbled circuits are closely connected.

Specifically, consider an input-updatable family of hardwired circuits (defined formally

below), in which an update is simply an input x', and Upd(C[x], x') = C[x']. By a

simple transformation, the existence of a parallel URE scheme for the hardwired

circuit family {C[X]x}AEN is equivalent to the existence of a reusable garbled circuit

scheme for C. We present the transformation from a parallel URE scheme to a reusable

garbling scheme; the reverse transformation is as straightforward.

Let C = {CA}XEN be a family of circuits, and {C[X]x}xEN be the corresponding

family of hardwired circuits. We {C[X]A}AEN is input-updatable if it is (U ip, Updip)-

updatable where Uig = {0, 1}*, and Updip is as follows.
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o Updi., (C[x], x') takes as input a hardwired circuit C[x] E C[X] and a update

x' E Uip indicating the new input to hardwired. If jxj > A, then Updj"P outputs

I. Otherwise, output the hardwired circuit C[x'].

Observe that in the sequential URE setting, the ability to compose updates implies

that to update the input of a hardwired circuit, it suffices to support only bitwise

updates, in which only a single bit is changed. In the setting of parallel updating,

this is no longer the case.

Suppose URE = (Encode, GenUpd, ApplyUpd, Decode) is a secure parallel URE

scheme for the input-updatable class of hardwired circuits {C[X]x}AEN. We construct

a reusable garbled circuit scheme for C as follows:

" GrbCkt(1A, C) = Encode(lX, C, 0\). This outputs a state stgc = Sture and a

garbled circuit (C)gc =C[OX)r.

" Grblnp(st, x) = GenUpd(st, x). This outputs a garbled input (X)gc = )ure.

" EvaIGC((C)gc, (X)gc) = Decode (ApplyUpd(C[0A])re , (W)ure))

The security of the URE scheme transfers directly to the security of the resulting

reusable garbling scheme.

2.5 Observations on the Defintion

2.5.1 IND to SIM-Security

We show how to transform IND-secure URE into SIM-secure URE generically. In the

resulting SIM-secure scheme, the size of the updates depends on the output length

m(A) of the circuit being encoded, even if we start with a IND-secure URE scheme

where the size of the updates is independent m.

Let UREIND be an IND-secure URE scheme. We construct a SIM-secure URE

scheme URESIM following the template of de Caro et. al. [CIJ+13 for functional en-

cryption.

125



UREsIM.Encode (1A, C, x): On input security parameter A, circuit C E CA, input x E

{0, 1}A, it computes the encoding of circuit-input pair (C*, x*) with respect to

UREIND. That is, it computes the joint encoding w.r.t IND-secure scheme as

follows,

(C* [x*])IND, StIND s- U REIND.Encode (1A, C*, x*)

Here, x* = (x, 0, 0) and C* is a circuit that takes input (y, out, b) and outputs

C(y) if b = 0, else if b = 1 it outputs out, else if b = 2 it outputs 1.

Output the encoding (C[X])ure (C*[x*I)N and state St= (StIND, 1m), where

m is the output length of C.

URESIM.GenUpd (st, u): On input state st stIND, update u E UA, compute the secure

updates for j E [0, m + 1], where m is the output length of C. In the following,

we assign v3 = u for every j E [m]. We set v0 as the update that changes the

mode b to value 2 and vm+1 as the update that changes the mode b to value 0.

Looking ahead, in the proof, v would correspond to the J'h output bit of the

(updated version of) C. For j E [0, m + 1];

((vj) I stIND) +- UREIND.GenUpd (stij, vJ)

In the above, StIJD StIND and denote st'ND D. Output the secure update

(u = {(vj) IND }jE[o,m+1] and new state st' = st'IND

URESIM.AppIyUpd (C[XI)ure, u)): On input randomized encoding (C[XI)ure, secure

update (U),ure {(VjeD jE[m], compute the following for every j E [0, m + 1],

where m denotes the output length of C.

(CX ix])e +- UREIND.AppyUpd ((C I[xi-1])ure (V) e

In the above, (C_[X-)ure = (C[x]).re. Denote (C'[X'])re = (Cm+1[Xmi+])ure.

UREsM.Decode ((C[x])ure): Return UREIND.Decode((C[x])ure).
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The correctness of the above scheme follows from the correctness of UREIND. Suppose

we have computed an updatable randomized encoding of (C, x). Applying the update

vo makes the randomized encoding to output 1. Applying the updates vi,... ,v

in sequence is equivalent to just applying the update u, where v, = -- - = v, = u.

Finally applying vm+1 results in a randomized encoding of (C', x'), where (C', x') is

the circuit-input pair obtained by updating (C, x) with u.

To see why the above scheme is secure, let's take a simple scenario where the

adversary only requests for one update. The adversary receives (C[f])u,, = (C*[X*l)ure

and update encoding (u), = ((v)ND, .. , (Vm+)IND) ure is computed honestly

then v3 is set to be u for all j E [m]. Now, the IND-security of UR EIND guarantees the

following changes to the initial randomized encoding and the secure update encodings

are computationally indistinguishable:

" We modify x* to be (1, out, 0), where out = C(x). Recall that x* was originally

(x, 0, 0).

* Let (C', X') be the hardwired circuit obtained by updating (C, x) using u. Let

out' = C'(x'). We modify vj, for j E [m] to now update the input x* from

(I, out'l I - -|out>_ 1 ||*, 2) to the new input (I, out'| ... -out'J|*, 2). The

update vo is left intact (i.e., it changes the mode b to 2), while the update vm+1

now changes the mode b to value 1.

Note that the circuit C, x and u are "erased" from the system and hence, the above

(modified) encodings can be simulated. The security thus follows.

2.5.2 On the Necessity of 1-Key Secret Key Compact FE

We show that any output-compact updatable randomized encoding scheme tolerating

unbounded number of updates implies 1-key compact functional encryption scheme.

We build upon a recent beautiful work of Bitansky et al. [BNPW16] to obtain this

result.

We first show how to obtain E-XiO [LPST16b] starting from any output-compact
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updatable randomized encodings scheme. Once we get XiO, we can apply the transfor-

mation of [LPST16b] to obtain 1-key compact public key compact FE. This addition-

ally requires the learning with errors (LWE) assumption. Thus, overall, we conclude

that assuming LWE, output-compact updatable randomized encodings imply 1-key

public-key compact FE, which also implies 1-key secret-key compact FE.

XiO is an variant of indistinguishability obfuscation with the weaker efficiency

requirement that dictates that the size of the obfuscated circuit should be sublinear

in the size of the truth table associated with the circuit.

Definition 2.5.1. (Exponentially-Efficient iO (XiO)) For a constant y < 1, a ma-

chine XiO is a -y-compressing exponentially-efficient indistinguishability obfuscator

(XiO) for a circuit class {CA}AGN if it satisfies the functionality and indistinguisha-

bility in Definition 1.3.1 and additionally:

NON-TRIVIAL EFFICIENCY: For every A E N, every C E CA, we have that JiO(A, C)I <

2"? -poly(A, C), where n is the input length of C.

2.5.2.1 Output-Compact URE implies XiO

Our transformation from output-compact updatable randomized encodings to XiO

builds upon the recent work of [BNPW16]. Let URE be an output-compact URE

scheme. Let c be a constant be such that the size of encoding of (C, x) with respect

to URE scheme is IC~c -poly(A). We construct XiO scheme using URE.

XiO.Obf(1A, C): To obfuscate C, compute a randomized encoding ((G[y]).e, sti) <-

URE.Encode(1A, G, y), where y is a string of length [n(1 - -L)] and initially set

y = 0. Here, G is defined as follows: G on input y outputs {C(illy)} .

Then for every i 2Fn(1 , compute ((Ui+<)-esti+ 1 +- GenUpd(sti, uj),

where ui sets y = i in the hardwired circuit G[y]. Output the following:

C' = ((G[y])e, {(Ui).e}iG[2?I)
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XiO.Eval(C', x): On input x, first compute the truth table of the circuit obfuscated

in C' as follows:

" Set (Go[yo]),, = (G[y])u,.

* For every i C 2Fn(1-n)1 - 2i, compute

(Gj+1[Yi+1]),r, <- A pplyUpd((Gilyd])., (uj)ue).

" For every i C 2 c I , evaluate (Gi[yi)ure to obtain the truth table of

C.

" Let the output of the truth table on input x be oz.

Output a.

The correctness of the underlying URE scheme implies the correctness of the above

XiO scheme. Given any two functionally equivalent circuits Co and C1, we can use the

security of the updatable randomized encodings scheme to argue that the obfuscations

of Co and C1 are computationally indistinguishable.

We remark about the efficiency of the XiO scheme.

Size of obfuscated circuit C'. We first calculate the number of updates issued

as part of the obfuscated circuit-there are 2Fn(1-12)] ciphertexts with each one of

them of size a fixed polynomial in the security parameter. The size of the randomized

encoding of (G, y) is (2L2i)c - poly(A) = (2L!1) - poly(A). Thus, total size of the

obfuscated circuit is max{2Fn(1-)- poly(A), (2Li) poly(A)} < 2"# - poly(A) for

some / < 1.

2.5.3 Reducing the State of Authority

There is a generic approach to reduce the state size of the authority (i.e., the encoder

in the definitions of URE and UGC) using garbled RAMs with persistent memory

[GHL*14, GLOS15]. Interestingly, our approach works even if the garbled RAM

scheme is non-succinct, i.e., if the size of the program encoding is dependent on the

computation time. Since the existence of such garbled RAM schemes can be based
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on one-way functions, we only need to assume the existence of one-way functions for

our transformation.

We remark that the idea of using garbled RAMs to reduce the state size of the

encoder was observed in IAJS15b]. However, their work crucially use a strong notion

of succinct garbled RAMs whose existence is known only from indistinguishability

obfuscation. In contrast, here, we only rely on non-succinct garbled RAM.

Theorem 2.5.2. Assuming that one-way functions exist, there exists an efficient

transformation that transforms any URE (resp., UGC) scheme URE with efficient

update generation into a new URE (resp., UGC) scheme with small states.

The main idea behind proving the above theorem is that the authority delegates the

job of computing the secure update to the client. This delegation process is carried

out by initially garbling the circuit and input pair using the garbled database encoding

algorithm. This will be shipped as part of the initial randomized encoding. That is the

randomized encoding of (C, x) w.r.t U RE* comprises of the garbled database encoding

of (C, x) and randomized encoding of (C, x) w.r.t URE. During the update phase,

the update generation algorithm of URE* essentially encodes the update generation

algorithm of URE using the garbled program encoding algorithm. On the client's

end, the evaluation of the program encoding is done on the database to obtain the

secure update computed w.r.t the old scheme URE. Using this secure update, the

randomized encoding of (C, x) w.r.t U RE is updated. The database encoding is also

correspondingly updated (this is done as part of garbled evaluation algorithm) to

correspond to the updated circuit and input pair.

We refer the reader to [AJS15b] for further details.

2.6 Constructing URE

In this section, we present our main constructions of updatable randomized encod-

ings. -
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2.6.1 Output compact, IND secure URE from FE

Our goal is to construct an updatable randomized encoding scheme, URE = (Encode,

GenUpd, ApplyUpd, Decode) for C. The main tools we use in our construction are

the following. We refer the reader to the preliminaries for the definitions of these

primitives.

" Randomized encoding scheme, RE = (RE.Enc, RE.Dec) for the same class of

circuits C.

" Functional encryption (FE) FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) that

is compact, function private, 1-collusion resistant, secret key, and selectively

secure.

" Garbling Scheme for circuits GC = (GrbCkt, Grblnp, EvaIGC).

We assume, without loss of generality, that all randomized algorithms require only

A-many random bits. We use the above tools to design the algorithms of URE as given

below.

The updatable randomized encoding of C[x] will consist of a (standard) random-

ized encoding C[x] and some additional information necessary to carry out the up-

dating process. This additional information consists of (i) a garbled input encoding of

(C, x) with respect to GC, and (ii) a FE secret key for a special function. The special

function takes as input an update u and outputs a garbled circuit mapping C[x] to

(a) a randomized encoding C'[x'] and (b) a new garbled circuit input encodings of

C', x'), where C'[x'] <- Upd(C[x], u). Henceforth, we denote by s = C[x]I the size of

the hardwired circuit C[x].

Encode (l\, C, x):

1. Execute the setup of FE, FE.MSK <- FE.Setup(1A).

2. Compute a functional key FE.SKRRGarbler +- FE.KeyGen(FE.MSK, RRGarbler),

where RRGarbler is as defined in Figure 2-2.
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RelockReleasei+l

Figure 2-1

Figure 2-2

3. Generate a randomized encoding of input (C, x). That is, evaluate (CI])re

RE.Enc(1A, C, x).

4. Let s = IC[x]1. Generate a garbled circuit input encoding of (C [x], _L) using

randomness rgc. That is, evaluate (C[x], I)g +- Grblnp(C[x], I; rgc). Here

we view (C[x], _) as an input to the circuit RelockRelease.
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Input: C9[x9], C[xfl
Hard-coded values: uo+i, u J, rgc,i+1, rre,i+1, and mode

" Update both the hardwired circuits C[xj using u + 1 :

Cf/+1[xi+1] -U pd(C [x ], +1

* Encode the updated hardwired circuit C mode rmode](i+1 rei +

(C-moder [mode]\ 0 
EEn mode mrode];

k-/il i+1 REE c(/re 1i1 rr~~

* Compute the randomized

(029+1[14+1], C1 ZZ+1)

rgc,i+1)(C9+1[Ime+1], C 1 +10)gC + C+1 i 1 ], C1[j+) ;

Output ((Cmidermode]) ( +1[ +1, C i+1[i+1 gc)

RRGarbler

Input: (ui+1, ui+1 , rgci, rgc,i+1, rre,i+1, mode)

Compute the garbled circuit encoding of ReiockRelease i+, which is de-
fined in Figure 2-1:

(RelockReleasei+i)gc <- G rbCkt (RelockReleasei+i; rgci)

Output (RelockRelease~i+)gc-

encoding of the input



5. Output the state st (FE.MSK, rgc) and the updatable randomized en-

coding

(C[)ure FE.SKRRGarbler, (C{Xfre7 (C[XI)gc )

GenUpd (sti, ui 1 ):

1. Let stj = (FE. MSK, rgc,z).

2. Let mode = 0.

3. Sample random coins rre,i+1 and rgc,i+1-

4. Generate the FE ciphertext,

CTj+1 +- FE.Enc (FE.MSK, (ui+1, I, rgc,i, Tgc,i+1, rre,i+1, mode))

5. Set the new state stj+1 = (FE.MSK, rgc,i+1).

6. Output (Ui+i)ure =CTi+1 and sti+i.

ApplyUpd ((Ci[Xi])ure (ui+i)ure): On input circuit encoding (C[Xi)ure

1. Let (Ui+)ure= CTi+1 . Parse the circuit encoding as:

(C [Xilure ( FE.SKRRGarbler, KCi[Xilre7 (Ci[XiOgc )

2. Execute the FE decryption, FE.Dec(FE.SKRRGarbIer, CT+ 1) to obtain:

(RelockReleasej+1)gc-

3. Execute the decode algorithm of the garbling scheme,

((Ci+[ti+])e, Ci+a[i+1th m)gc) +- EvaGC(ReockReiease+)g, (C[x]),)

That is, the decode algorithm outputs the randomized encoding of updated
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hardwired circuit C+ 1 [xi+,1 and also wire keys of (Ci+1 [xi+1], I) that will

be input to the next level garbled circuit.

4. Output (Ci+i[xi+1)r = (FE.SKRRGarbler, (Ci+1[Xi+])r,1 (C+Xi+1+1 )gc).

Decode ((Ci [i]).r): Parse the input as (FE.SKRRGarbler, (CiXi)rel (Ci[Xi], I g) . De-

code the term KCi[Xil)re by executing RE.Dec((Ci[xi])re) to obtain oz. Output

O'.

2.6.1.1 Correctness

Following the notation of Definition 2.4.1, we need to show that for all i E [q]

Decode ((Ci[Xi)re) = Ci(Xi). We first define the following notation: We say that

(G)gc is a valid garbled circuit of G if there exists randomness r such that (G),c <-

GrbCkt(G; r). Further, we say that (z)gc is a valid garbled input encoding of z if

there is randomness r' such that (z)gc - Grblnp(z; r').

By the correctness of FE, (RelockReleasej+1)gc +- FE.Dec(FE.SKRRGarbler, CTj+1) is a

valid garbled circuit of RelockReleasei+1 for every i E [q]. The following claim implies

that the output of Decode ((Ci[Xi])ure) is Ci(xi), completing the proof of correctness.

Claim 2.6.1. The output of evaluation of garbling scheme,

((Ci+1 [Xi+il)re, (Wi+1 [xi+1], I)gc) <- EvalGC ((RelockRelease~i+)gc, (C[xji])gc)

yields a randomized encoding of Cji+ [xi+1] and a valid garbled input encoding (Ci+i [xi+1] I)gc

of Ci+1 [xi+11.

Proof. We prove this by induction. Initially, the user is given a valid input encoding of

(Co[xo], I), i.e., (Co[xo], I)gc. As observed above, the output of FE.Dec(FE.SKRRGarbler, CT 1)

is a valid garbled circuit (RelockReleasei)gc of RelockReleasei (this circuit corresponds

to the first update). From the correctness of garbling schemes, it follows that the

evaluation of (RelockReleasei)gc on the input encoding (Co[xo], I)gc is a valid garbled

input encoding (C1 [xi], I)gc and a randomized encoding of C1 [xi]. This proves the

base case.
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Suppose the statement is true for some i E [q]. FE.Dec(FE.SKRRGarbler, CTi+1) is a

valid garbled circuit (RelockReleaseij+)gc of RelockReleasei+1. From the correctness of

garbling schemes, it follows that the output of evaluation of (RelockReleasei+i)gc on

the input encoding (Ci[xi], I)gc) is a valid garbled input encoding (Cj+1 [xi+ 1], I)gc

and a randomized encoding of Ci+1Lxi+1]. This proves the claim. l

2.6.1.2 Efficiency

The above scheme has state size that is a fixed polynomial in A. It is also output

compact. That is, the time to generate a secure update u is polynomial in (A, ul).

This follows from the compactness of the underlying FE scheme, which guarantees

that the running time of an encryption of m is a fixed polynomial in (Im, A). rThis

also implies that the size of the secure update is a fixed polynomial in (A, Jul).

The algorithm Encode can be implemented in NC if we additionally assume: (i)

the FE scheme we employ has key generation in NC and, (ii) RE has an encode

algorithm in NC and, (iii) GC has garbled input encoding algorithm in NC'. We can

instantiate (ii) and (iii) under standard cryptographic assumptions such as decisional

Diffie-Helman and learning with errors. We can base (i) on the existence of a function-

private collusion-resistant secret key FE fAJ15, BV15a, AJS15a].

2.6.2 IND Security

We prove the security of U RE with respect to indistinguishability-based security def-

inition. There are two "chains" of update. The 0 th chain starts with circuit COO and

input x8, and iteratively updates according to {u9 }. The 1 " chain is analogous.

The security proof proceeds by switching from one chain to the other, step by

step. In each hybrid and at every step, there will only be one "active" chain. We start

with the real experiment where challenge bit 0 is used, where only the 0 th chain is

present in the experiment. In the next step, we introduce the 1 " chain, along with the

already present Oth, into the experiment. However even in this step, 0 th chain is still

active-that is, generating the randomized encoding at every step is performed using
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the 0th chain. In the next q hybrids, we slowly switch from 0 th chain being activated

to 1" chain being activated. In the ith intermediate step, the first i beads on 1" chain

are active and on the Oth chain, all except the first i beads are active-this means that

the first i updated randomized encodings are computed using the 1" chain and the

rest of them are computed using 0 th chain. At the end of this sequence of hybrids, we

have the Pt chain to be active and 0 th chain to be completely inactive, but present.

Finally, we can remove the 0 th chain altogether, completing the proof.

The two chains described above are implemented in a sequence of garbled circuits,

that we call cascaded garbled circuits. That is, every Zth garbled circuit in this sequence

produces wire keys for the next garbled circuit. Every garbled circuit in this sequence

is a result of ApplyUpd procedure and encapsulates, for some i, the ith beads on both

the chains. In order to move from the ith intermediate step to (i + 1)th intermediate

step, we use the security of garbled circuits. But since these garbled circuits are not

given directly, but instead produced by a FE key, we need to make use of security

of FE to make this switch work. With this high level proof overview, we present the

formal proof below.

Before we present the hybrids, we first introduce two lemmas relevant to the

security of FE and garbled circuits that will be useful later.

2.6.2.1 FE Distributional Lemma

In the security proof, we will make frequent use of the following lemma (which is

implicit in many previous works). In the context of secret key, function private,

semantically secure functional encryption, the lemma gives us a way to switch from

a secret key of some function fo and an encryption of a randomized message M(O)

to a secret key of a different function fi and encryption of a different randomized

message MM, even when fo(M(0)) may not equal fi(M(1 )). Whereas the security

definition of (function private) functional encryption only makes explicit guarantees,

we leverage the indistinguishability of the distributions fo(M 0)) and fi(MCM), where

the randomness is taken over the choice of the message, to switch from one to the

other. Indistinguishability holds even in the presence of auxiliary information about
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M 0 ) and MM1 and additional FE-ciphertexts for (randomized) messages M2 , ... , Mq.

Definition 2.6.2 (Programmable Functions). A function family F is said to be pro-

grammable if for all f E TA and for all y in the co-domain of f, fY C TA where

f"(m) ={fm
f Y (Tnm Y

Lemma 2.6.3 (FE Distributional Lemma).

FE.Dec) be a 1-collusion, function-private,

scheme over a programmable function space

{MA}xEN. For each A C N:

if m I

otherwise.

Let FE = (FE.Setup, FE.KeyGen, FE.Enc,

selectively secure functional encryption

F = {Fx}AN and a message space M =

* Let M('), M , and M2,. .. , Mq be random variables over MA and auxo and

aux1 be random variables over {0, 1}*, all efficiently sampleable. These random

variables need not be independent.

e Let (fo, f1) E TA be such that Prm, fo (Mi) = f1(Mi)] = 1 for all i > 2.

Suppose that MA contains a special message I that is not in the support of any

of the random variables M 9 . Then it holds that: If

(fo(MM00), aux UX (fi(M(')), a ux1

then:

(FE.SKo, FE.CT(0 ), FE.CT 2,.. . ,FE.CTq, auxo)

c (FE.SKI, FE.CTil), FE.CT 2,... , FE.CTq, auxi)

9 This requirement along with requirement that the scheme be defined for programmable functions
will be used in the proof of the lemma. Existing work in functional encryption (and obfuscation) that
use similar arguments often make explicit use of "padding"-arbitrarily increasing the description
size of the underlying function to allow for hardcoding. Exactly this type of padding construction
can be used to imbue FE with this "closure under hardcoding" property, but we find it conceptually
simpler to state the requirement explicitly.
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where the probabilities are taken over the choice of M(), M(, M2,..., M, and the

following probability experiment:

FE.MSK <- FE.Setup(1A)

FE.SKb <- FE.KeyGen(FE.MSK, fb) Vb C {0, 1}

FE.CT(b) +- FE.Enc(FE.MSK, Mlb)) Vb C {0, 1}

FE.CTj <- FE.Enc(FE.MSK, Mj) Vi C [2, q]

Proof. The proof of the lemma proceeds by first hardwiring the output of the function

fo(M(")) in the functional key FE.SKO. Once this is done, the message in FE.CTO

can be switched to I since this does not change the output of the function. After

this, the hardwiring can be switched from fo(M(")) to fi(M(1 )) (along with auxiliary

information). An analogous sequence of hybrids recovers the real distribution for

b = 1. The hybrids below describe these intermediate distributions.

HYBRID HO: (FE.SKo, FE.CT(0 ), FE.CT2 ,. . . ,FE.CTq, auxo), the real distribution with

HYBRID H1 : (FE.SK O, FE.CT 0 ), FE.CT2 , ... , FE.CTq, auxo) where Yo = fo(M(0 )) and

FE.SK -- FE.KeyGen(FE.MSK, foro). Indistinguishability from Ho follows from

the function-privacy of FE, because the functionalities agree on all encrypted

inputs.

HYBRID H2 : (FE.SK O, FE.CT ', FE.CT2 ,. . . ,FE.CTq, auxo) where FE.CT('L <- FE.Enc(

FE.MSK, I). Indistinguishability follows from the selective security of FE, as

A ' agrees on M(0 ) and I.

HYBRID H3: (FE.SKY , FE.CT(', FE.CT2,. .. , FE.CTq,auxi) where Y1 = fi(M(')

and FE.SKY' +- FE.KeyGen(FE.MSK, for). This follows from the indistinguisha-

bility of (Yo, auxo) and (Y, aux1).

HYBRID H4 : (FE.SKY1, FE.CT('), FE.CT2 ,... , FE.CTq, aux1) where

FE.SKY' +- FE.KeyGen(FE.MSK, fli). Indistinguishability from H3 follows from
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the function-privacy of FE, because the functionalities agree on all encrypted

inputs.

HYBRID H5 : (FE.SK 1 , FE.CT('), FE.CT 2 , ... , FE.CT, auxi) by an argument mirror-

ing the indistinguishability of HO and H2 , the real distribution with b =1. 

2.6.2.2 Cascaded Garbled Circuits

We start by explaining the notion of cascaded circuits. It is a sequence of circuits,

initialized with an input, where the ith circuit in the sequence produces input to the

(i + )th circuit. Every circuit also produces additional output that will not be part of

the input to the next circuit in the sequence. We define this notion formally below.

Definition 2.6.4 (Cascaded Circuits). Let C1, ... , C9 be circuits mapping {0, 1}' to

{ 0, 1}1 for some rn > n. We parse the output as Ci(xi) = xj+1|iY where xj+1 E {0, 1}

and y2 E {0, }" . We say that (xi, C1,... , Cq) are cascaded circuits if they are

evaluated as follows:

X21|1 <-C1(X1)

X 3 ||Y2 +-C2 (x2 )

Xq+1||Yq -Cq(Xq)

The output of cascaded circuits is defined to be (y1,. . . , yq).

We can generalize this concept to the setting of garbled circuits, where the ith

garbled circuit in the sequence produces wire keys to the (i + l)th garbled circuit.

As before, every garbled circuit also produces additional output. We associate with

each Ci a circuit G that outputs a garbled input for the next garbled circuit (Gi+i),,,

along with the additional output yi. Namely, the cascaded garbled circuit is evaluated
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analogously to the cascaded circuits:

(X2)gcH Yi +-EvaIGC((G)gc, (xi)gc)

(X3)gc I Y2 +-EvaIGC((G2)gc, (X2)gc)

(Xq+i)gcI Yq +-EvaIGC((Cq)g, (Xq)gc)

and the output is defined to be (y1,... , Yq).

Definition 2.6.5 (Cascaded Garbled Circuits). Let GC = (GrbCkt, Grblnp, EvalGC)

be a circuit garbling scheme. For a circuit Ci and a garbling key r +- Gen(1A), define

the circuit G[Ci, r] on input xi to be:

G[Ci, r](xi) = GrbInp(r, xi+1)lyi,

with xi and y2 as above. For the cascaded circuits (x 1, C1,... , Cq), the corresponding

cascaded garbled circuits are

( X1)gc, (G1)gc, . .. , (Gqg) +- (Gr bln p(ri, x1), Gr bCkthr, G1), ... , Gr bCkt(rq, Gq))

where ri +- Gen(1A) and Gi = G[Ci, ri+1]. The output of cascaded garbled circuits is

(yi, ... , y).

The following lemma about the security of cascaded garbled circuits has been im-

plicitly used in several different contexts such as secure computation on the web [HLP11,

GHV10], garbled RAM [LO13, GHL+14, GLOS15, GLO15J, indistinguishability ob-

fuscation for Turing machines [BGL+15] and adaptive garbled circuits [HJO+15].

Lemma 2.6.6 (SIM-security of Cascaded Garbled Circuits). For every A C N, let

(x 1, C,... , Cq) be a cascaded circuit with output (y1, - . , Yq) . Suppose that GC is a

SIM-secure garbled circuits scheme. There exists a PPT simulator Sim such that,
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the distribution over the cascaded garbled circuit

((xi) , (G1)gc, (G2)gc, ) (Gq-1)gc, (Gq)gc r_ Sim (1", #(C1), . .. , O(CQ), y, . .. , yq)A

where /(Ci) = #bpt 0(Ci) denotes the topology of C.

Proof. We define the simulator Sim using the PPT simulator of garbled circuits, Simgc.

Sim uses Simgc to simulate the garbled circuits in reverse order as follows. Let m be

the output length of Gq and let #j be the topology of an arbitrary circuit with m-bit

outputs (e.g., #L = #(Gq)).

* Let (xzm, G+? 1) <- Simgc(#1,0"m).

" For i from q to 1, let (z", G 'r") <- Simgc(#(G), xs42i y).

* Output ( ", G . G* m).

The proof of computational indistinguishability proceeds by a sequence of hybrids.

The initial hybrid is the real cascaded garbled circuit, and the final hybrid is the

simulated cascaded garbled circuit. The intermediate hybrids are defined by simu-

lating the garbling of xi, along with the first i circuits G1, . .. , Gi, while using GC to

garble the remaining circuits Gi+1, ... , Gq. The final reduction uses the SIM security

of GC to establish that each adjacent pair of hybrids are indistinguishable. We briefly

describe the hybrids below.

HYBRID H1 : ((xi)gc, (Gi)gc, (G2)gc, . . . , (G_) (Gq)gc). All the garbled circuits

are computed according to GC.

HYBRID H2 .i: (xim, Gi", G , .. . , G_", (Gi+i)gc, . .. , (G_1) , (Gq)gc). The first i

garbled circuits are simulated and the rest are computed according to GC. H2 .0

is identical to H 1. The indistinguishability of H2.i and H2 .i+ 1 follows from the

security of garbled circuits.

HYBRID H3 : (4m", Gm,..., Gj'"). All the garbled circuits are simulated. The hy-

brid H2.q+1 is identical to H3. E
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2.6.2.3 Proof of IND Security

We prove that the above is a IND-secure sequential URE scheme. We first the se-

quence of hybrids, and then demonstrate their indistinguishability. Let q be the

number of update queries (uO, uI) the adversary makes in the IND security game in

Definition 2.4.3.

The first hybrid corresponds to the IND-experiment ExptSURE(lA, 0) given in Defi-

nition 2.4.3. Then we move to a hybrid in which the security experiment is run using

modified versions of Encode and GenUpd, with outputs corresponding to updatable

randomized encoding of circuit C0, input x0 , and updates u9.

We then proceed to change the encodings one-by-one until all all the encodings

correspond to circuit C1, input x1, and updates u. Finally we revert to the unmod-

ified versions of Encode and GenUpd, yielding an experiment corresponding to the

IND-experiment ExptSURE(, 1).

Hreai: Run the indistinguishability experiment ExptUREA

HOroAr:As above, except replacing Encode(1A, CO, x0) with Encode0oorW(1A, 0C x 0, C1, Xl)

(Figure 2-3), and replacing all executions of GenUpd(sti, u+ ) with

GenUpdo(sti, ui+, ui+1 ) (Figure 2-4).

HO: As above, except replacing Encoderoor(1A, C0 x0 , C1 , x1 ) with

Encode' oo(1A, C0, x 0 , C1, x1 ) (Figure 2-3). This hybrid still uses GenUpdo.

Hh FOR 1 < h < q: As above, except using GenUpdh (Figure 2-4).

H1eai: Run the indistinguishability experiment ExptiURElA, 1). That is, replace

Encode'oor(1, C0, x0 , C1, x1) with Encode(1A, C1, x') and all executions of

GenUpdq(sti, u+ 1, ul1) with GenUpd(sti, u+ 1 )-

2.6.2.4 Indistinguishability of Hybrids

Moving from Heai to H0roof involves two changes which we address in turn. First,

when generating the initial updatable randomized encoding, we switch from using
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Encode of (1A, Co, 0, Cl,x 1 ):

1. Execute the setup of FE, FE.MSK +- FE.Setup(lA).

2. Compute a functional key FE.SK +- FE.KeyGen(FE.MSK, RRGarbler), where RRGarbler
is as defined in Figure 2-2.

3. Generate a randomized encoding of input (Cb, X). That is, evaluate

(Cb[Xb]) <- RE.Enc(1A, Cb xb).C

4. Generate a garbled circuit input encoding of (Co[xO]
That is, evaluate (C 0 [x0],C1 [x1 ])gc +- Grblnp(C 0 [x 0],

5. Output as the randomized encoding the tuple

(FE.MS, = ( FE.SK, (Ch[b])re, C0[z0],C'1X']),c
(FE. M SK, rgc).-

Figure 2-3

Figure 2-4

Encode(l', CO, 0) to using Encode(1A, CO, x0, Clx ).

, C' [xl]) using randomness rgc.

Cl [9]; rgc)

and set the state to be St

The resulting change in the

actual URE encoding is that initial garbled input is changed from w = (C0 [x0 ], I)gc to

W' = (C0 [x0 ], C[xl])gc. This causes cascading changes to the garbled inputs as each

update is generated and applied, but everything else remains unchanged (namely, the

garbled RelockReleasej circuits, the FE secret key, and all the RE encodings of the

updated Co[x?]). We first observe that

((CO[XO)r, W, (RelockReleasei)g, . . , (RelockReleaseq)gc)
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GenUpdh (sti, u+ 1, u1+1):

1. Let stj = (FE.MSK,rgCi).

2. If i + 1 < h, let mode = 1. Otherwise, let mode = 0.

3. Sample random coins rre,i+1 and rgc,i+1.

4. Generate the FE ciphertext CTi+ 1 as
FE.Enc (FE.MSK, (u?+ 1 , ul+1, rgci, rgc,i+1, rre,i+1, mode)).

5. Set the new state stHi+ = (FE.MSK, rgc,i+i).

6. Output (Ui+1)ure CT i+ and sti+1.



d ((CO [X0)re, w', (RelockRelease,)c,..., (RelockReleaseq)gc) (2.1)

by a direct application of Lemma 2.6.6, because the outputs of the cascaded garbled

circuits are unchanged. Now Lemma 2.6.3 establishes indistinguishability, taking auxo

and aux1 to be the two tuples above, respectively. The function f is RRGarbler and

the messages M are those corresponding to the ciphertexts (Ui)ure = FE.CTi.

The second step in switching from HaiO to HOroo is to switch GenUpd to GenUpd0 ,

ultimately changing each of the URE encoded updates from (Ui)re = FE.CTj to

(U')u = FE.CT' containing both u? and u4. While the FE key for RRGarbler is

unchanged, the new ciphertexts result in output garbled circuits (RelockRelease')gc,

each of which now has both uO and ul hard-coded. This results in changes to the

garbled input after each update is applied, but all of the RE encodings (O[X])re

output by RelockReleasej are exactly the same. Therefore, by Lemma 2.6.6, for each

j E [q]:

((COX1rel WI, I(RelockReleasei)c,..., (RelockReleasej)g, ,

(RelockRelease'+)gc,..., (RelockRelease')

C e, (RelockReleasel)gc,. . . , (RelockReleasej-_)gc,

(RelockRelease)g,..., (RelockRelease')

For each j, we apply Lemma 2.6.3 to switch (ur to (U), thereby establishing

the indistinguishability of HOeai and H0roof.

Showing H roof ~c Ho is much simpler. Changing Encode0 to Encode' switches

the initial URE encoding from (F E.SK, (C0[ 0 ],re, (CO[x01, C1[x1])gc) to

(FE.SK, (C' [X'])re, (CO[x0],C1[x1)c), and all URE encoded updates (Ui)ure are un-

changed. Notice that the randomness used to generate (Cb[Xb])re is independent of

everything in the adversary's view except for (Cob [Xb] ) re itself. Given (CbXb])re along

with C0 , C 1, X0 , and x1 , the view of the adversary can be exactly simulated. There-

fore, the security of RE enables the switch from (C0[ 01)re to (Cl[X])Tre that we require.

We now show that Hh c Hh+1 for all h E [q -1]. In the latter hybrid, GenUpdh+l
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is used, while GenUpdh is used in the former. The only change in the view of the

adversary is therefore the mode bit's setting in (Uh+1)ure = FE.CTh+l, which is set

to 0 in the former and 1 in the latter. When evaluated using the FE functional

key FE.SK for RRGarbler, this results in the garbled RelockReleaseh+l outputting a

randomized encoding (C1+i[ i])r of C4+1[xi+1] instead of Ch+1[xO+,]; all other

URE-encoded updates (FE ciphertexts) are unchanged. Recall in Defintion 2.4.3 we

require that CS+1(xS+1) = Cl+1 (xl+1 ). This requirement, along with the security of

RE, guarantees that

(C ze],, .. ,(C rei), (Ch+1[1X+1Dr), (Ch+2[Xh+21)re, . .. , (C [Xz ])

(CO, [Xe), . C0i),(i1z+] C+2[XO+21)re, . .. , (C [X ])r

Applying Lemma 2.6.6 followed by Lemma 2.6.3 establishes indistinguishability of Hh

and Hh+1-

The indistinguishability of Hq and H' follows essentially the same argument

as Hproof and HOea but with the bit b swapped in ExptsURE(1A, b), Encodeb, and the

setting of mode used by GenUpd.

2.7 Updatable Garbled Circuits

In this section, we present definitions and a construction of updatable garbled circuits

for the family of "gate-wise updates" which allow for changing the functionality of any

single circuit gate. These gate-wise updates can be composed in sequence to perform

general circuit modifications. The main tool in our construction is a puncturable

proxy reencryption scheme, a notion that we define and construct in this section.

We start by giving a formal definition the class of gate-wise updates and of up-

datable garbled circuits in Section 2.7.1. Next, in Section 2.7.2 we define and a

construct a puncturable proxy reencryption scheme based on puncturable (almost)

key-homomorphic PRFs of [BV15b]. Finally, in Section 2.7.3, we give our construc-

tion of updatable garbled circuits for gate-wise updates from a puncturable proxy
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reencryption scheme.

2.7.1 Definition of Sequential Updatable Garbled Circuits

2.7.1.1 Gate-wise Updates

We consider updates which change the description of the gates of the circuit, which

we term "gate-wise" updating. Changing the output gate from V to -I is one such

example. Composing many such updates suffices for many interesting applications.

One could also consider more general updates such as adding gates, deleting gates

and so on which we leave as a direction to future exploration.

Definition 2.7.1 (Gate-wise updatable circuits). A family of circuits C is gate-wise

updatable if it is (UpdgateUgate)-updatable, where:

* Ugate ={(g, gateType) E Z x {V, A, -,}} is the set of updates consisting of a gate

index g and a new gate type gateType. 0

e U pdgate(C c C, u) takes as input a circuit C and an update u = (g, gateType). If

g > |C|, or if g corresponds to a source node in the circuit, then Updgate outputs

I. Otherwise, output the circuit that results from changing gate g of C to gate

type gateType.

2.7.1.2 Syntax

A scheme UGC = (GrbCkt, Grblnp, GenUpd, ApplyUpd, EvalGC) for a (Upd,U)-updatable

class of circuits C = {CA}AEN is defined below.

CIRCUIT GARBLING, (C)gc, st +- GrbCkt(C): On input circuit C E CA, output the

garbled circuit (gc

GENERATE SECURE UPDATE, (u)gc, st' +- GenUpd (st, u): On input state st, update

u E UA, output the secure update (u),c.

10Any universal gate set would do, and any could be supported.
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APPLY SECURE UPDATE, (C')gc - ApplyUpd (KC)g , (u)gc): On input the (old)

garbled circuit (C)gc, secure update (u)gc, output the updated garbled circuit

(C')gc.

INPUT GARBLING, (x)gc & Grblnp(st,x E {0, l}A): On input state st, input x E

{0, 1} KA), output the garbled input (x)gc.

EVALUATION, a - EvaIGC(KC)gc, (x)gc): On input garbled circuit (C)gc, garbled

input (X)gc, output the result a.

2.7.1.3 Efficiency

We desire the same efficiency properties as in the definition of URE, except with

the requirement on garbling (encoding) time modified appropriately to the setting of

garbled circuits.

" Garbling Time: We require that the time to generate (and thus the size of) the

garbled input (x)gc should be polynomial in jxj and A, and independent of the

size of C and the number of updates. The time to generate the garbled circuit

(C)gc should be polynomial in JCJ and A.

" Secure Update Generation Time, Secure Update Size, Runtime of Update, and

State Size: Same efficiency goals as URE.

While we would like to achieve all the efficiency goals simultaneously, in our construc-

tion of UGC presented in Section 2.7.3, the 'Runtime of Update' and the secret 'State

Size' will both depend on JCJ. Using the transformation described in Appendix 2.5.3,

it is possible to remove the dependence on JCJ for the state size.

2.7.1.4 Correctness

The notion of sequential updating for updatable garbled circuits closely mirrors the

URE notion. The key difference is that in the UGC setting, the encoded input is

released only after all the encoded updates. Below, we define correctness and security

of sequential updating.
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Let Co C C\,x E {E0,1}. Let (ui,...,u,) E (U\)', where q(A) is a polynomial

in A. We require that EvaIGC((C) Cq, (x) 9c) = C(x), where q(x) is generated by

recursively evaluating Ci = Upd(Ci_1, us), and EvalGC((C)gc q , (x)gc) is generated as:

" Let (C)gco,sto +- GrbCkt(C).

" For i e [q], let (u)g,, sti <- GenUpd(ui, sti_ 1)

* For i C [q], let (C)gc +- AppyUpd((C)gC,_,, (u)gc,).

* Let (x)g +- GrbInp(stq, X).

2.7.1.5 IND-Security of Sequential Updating

As in the case of URE, we can consider indistinguishability-based and simulation-

based security definitions. We focus on the former. We denote the challenger by Ch

and the PPT adversary by A.

As for traditional garbled circuits, security is defined with respect to deterministic

side-information functions #, which capture what information is leaked by the encoded

updates. Ideally, a UGC scheme would be update hiding, meaning that #(u) = 1.

In our main construction of updatable garbled circuits for gatewise updates u =

(g, gateType), the side-information function #gate(g, gateType) = g will leak the index

of the gate being updated. In particular, to execute ApplyUpd, the evaluator will

have to know which gate of the circuit representation is being modified (though the

old and new types of this gate will remain secret). In Appendix 2.7.5, we describe a

generic transformation from a non-update-hiding UGC scheme into one that achieves

update hiding using a (non-interactive) oblivious RAM.

Definition 2.7.2 (IND-secure Sequential UGC). A sequential UGC scheme UGC for

(Upd, l )-updatable class of circuits C is IND secure with leakage # if for every pair

of circuits C0, C' C C,, inputs ?0, x' E {O, }n0A), and update sequences {Uf}iE[q] and

fU'}iE[q].

ExptoGC(A, input) 5 ExptUGC(1A, input),

where Expt UGC is defined below and input = (Co,1 1 { E[], C11E[1]) -
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ExptUGC(A, 0 C 0  1 iE[q, {}iE[q]

* Check that #(CO) = 0(C) and that for all i E [q], O(u9) = O(u'). If not,

abort and output I.

* For # E {O, 1}, let C - C'0. For i E [q], recursively evaluate Cf +-

Upd(C_ 1, u').

* Check that CqO(x0 ) = Cl(x). If not, abort and output I.

" Compute the garbled circuit. ((Cb)ugc, stugc) +- GrbCkt(1A, Cb). Compute

the garbled updates (ub)ugc, StigC <- GenUpd(ub, sti-1). Compute the gar-

bled input (Xb)ugc +- GrbInp(stqgc, Kxb)ugc)

* Output ((COb) g, (U)g, . . , (ub) ( b)Ugc).

2.7.2 Puncturable Proxy Reencryption Scheme

En route to constructing updatable garbled circuits, we introduce a tool called punc-

turable symmetric proxy reencryption scheme. As in a standard proxy reencryption

scheme, our notion allows for generation of reencryption keys. However, unlike a

standard proxy reencryption scheme, our notion allows for puncturing of reencryp-

tion keys on ciphertexts such that the reencryption mechanism fails on the punctured

ciphertexts.

We will augment the symmetric proxy reencryption scheme of [BLMR13b]. By

using key-homomorphic puncturable PRFs [BFP+15, BV15b], a strengthening of the

key-homomorphic PRFs used in [BLMR13b], we are able to imbue the reencryption

scheme with additional properties." The most significant change is that we introduce

an additional algorithm to the scheme to generate "punctured" reencryption keys.

We begin by defining puncturable symmetric proxy reencryption, along with iden-

tifying a number of additional properties our construction will satisfy that are useful

in the construction of updatable garbled circuits. Our definition is tailored to our

"The definition and constructions are both related to, though incomparable with to the "proxy
reencryption with fine-grained access control" of [BFP+15]. Neither our work nor theirs provides a
satisfactory general definition for a (ciphertext-) constrained proxy reencryption scheme.
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needs, and is not intended to be the most general definition of puncturable proxy

reencryption schemes. In Section 2.7.4, we prove:

Theorem 2.7.3. Assuming the hardness of approximating either GapSVP or SIVP

to within sub-exponential factors, there exists a symmetric puncturable reencryption

scheme satisfying all the properties described next.

Remark 2.7.4. Chapter 3 discusses proxy reencryption in greater depth, focusing

on a shortcoming of the most well-studied security notion. The use of proxy reen-

cryption for updatable garbled circuits inspired that chapter. It is worth remarking

on the differences between our use of proxy reencryption in the two chapters. In

this chapter, we use bidirectional, symmetric, puncturable proxy reencryption. In

Chapter 3, we consider unidirectional, asymmetric, non-puncturable proxy reencryp-

tion. Unidirectionaly is the most relevant distinction-the observations of the next

chapter do not apply in the bidirectional setting. However, notice the resemblance

between fresh-stale indistinguishability and reencryption simulatability. Though in-

comparable, both are used to prove security with respect to a recipient who knows

the ultimate secret key for decryption.

2.7.2.1 Syntax

A puncturable, symmetric proxy reencryption scheme is a tuple of algorithms ReEnc =

(Setup, KeyGen, ReKeyGen, Enc, ReEnc, Dec) with the following syntax.

SETUP: PP +- Setup(1A): On input a security parameter A in unary, output the

public parameters PP of the ReEnc.

KEY GENERATION: SK -- KeyGen(PP): On input the public parameters PP, sample

a ReEnc secret key SK.

ENCRYPTION: CT +- Enc(SK, m): On input a secret key SK and a message m E M,

output a ciphertext CT.

DECRYPTION: m +- Dec(SK, CT): On input a secret key SK and a ciphertext CT,

output a message m E M.
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PUNCTURED RE-ENCRYPTION KEY GENERATION: rk ,2 <- ReKeyGen(SK 1, SK 2 ,7r):

On input two secret keys SK1 and SK 2 and a boolean-valued circuit wr whose

input is the space of ciphertexts, output a reencryption key rkI 2. Informally,

rk, 2 should only allow the reencryption of ciphertexts CT for which r(CT) = 1

to be reencrypted from SK1 to SK 2. We overload the notation ReKeyGen, and

will simply let ReKeyGen(SK1 , SK 2 ) := ReKeyGen(SK 1, SK 2 , 1) where 1 is the

constant 1 circuit.

REENCRYPTION: CT2 ÷- ReEnc(rki, 2 , CT1 ): On input a reencryption key rki,2 <-

ReKeyGen(SK1 , SK2) and a ciphertext CT1 +- Enc(SKI, m), output a ciphertext

SK 2.

Informally, rk, 2 should only allow the reencryption of ciphertexts CT for which

7r(CT) = 1 to be reencrypted from SK1 to SK2 .

For our application, we will consider only a restricted class of constraint circuits

7r, and ciphertexts of a particular form. First, ciphertexts in ReEnc are of the form

CT = (r, pl), where r is the randomness used in the encryption algorithm, and pl is

the "payload." The randomness comes from a finite set X with description length

polynomial in the security parameter.12 Second, reencryption preserves the random-

ness of the ciphertext. That is, for any reencryption key rk and ciphertext (r, pI),

ReEnc(rk, (r, pl)) = (r, pl') for some pl'. Third, we restrict our attention to constraints:

0 if r =r*
rr*(r, pI) =

I if r fr

We abuse notation and identify r* with the constraint wr(r*), and additionally primi-

tives with such constraints "punctured at r*."

2.7.2.2 Correctness

The reencryption scheme ReEnc satisfies a modified correctness property that reflects

the informal goal that reencryption keys punctured at r* should enable reencryption
12Instantiating the PRF as we do, X will be the set of binary strings of appropriate length.
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only of ciphertexts with randomness r # r*.

Definition 2.7.5 (Ciphertext Punctured Reencryption: Correctness). We will say

the ciphertext constrained reencryption scheme ReEnc is correct if, under public pa-

rameters PP +- Setup(lA), secret key SK <- KeyGen(1A), and for all m E M, two

conditions hold:

* Dec(SK, Enc(SK, m)) = m

" For all T = poly(A), and for any sequence of secret keys SK 1,... ,SKr +

KeyGen(1A), and reencryption keys rk ,k1 <- ReKeyGen(SKj, SKj+1 , rj) for all

i E [1, T - 1], for all messages m E M, and all sequences of ciphertexts CT1 +-

Enc(SK 1 , m), CT 2 +- ReEnc(rk 2 , CT1 ), ... , CTT <- ReEnc(rkT_~1', CTm_) it

holds that either:

1. Dec(SKT, CTT) = m, or

2. 3i G [1, T - 1] such that r = ri, where r is the randomness of the ciphertext

CT1 (and thus of all ciphertexts CTj).

2.7.2.3 Security

The semantic security definition of [BLMR13b] does not suffice for our needs. We

require a different, incomparable security definition that captures the power of the

constrained reencryption keys. In formalizing our security requirement, we diverge

significantly from [BLMR13b]. A security definition that both suffices for the appli-

cation to updatable garbled circuits and generalizes the [BLMR13b] definition would

unnecessarily complicate our discussion and is outside the scope of this chapter. Be-

low, we present a security definition that is tailored to our requirements.

Informally, we wish to guarantee security when the adversary gets constrained

reencryption keys and a terminal secret key, if the constraint prevents "honest reen-

cryption" of the challenge ciphertext.1 3 In a very simplified form, this setting can be

seen in the following game between an adversary A and a challenger Ch:
1 3Corresponding to the last condition in the correctness properties above.
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e A chooses messages m0 and mi.

" Ch chooses a random bit b +- {O,1}, two random secret keys SK1 ,SK 2 +-

KeyGen(lA), and sends c* = (r*, pl*) +- Enc(SK1 , mb).

* Ch generates rk2, and sends both rk*2 and SK2 to A.

* A attempts to guess b with probability significantly better than 1/2.

Our actual security definition is somewhat more complex. The adversary will receive

encryptions of many messages, a chain of punctured reencryption keys, and a single

secret key. We also introduce the additional complexity that the messages may origi-

nally be encrypted with any of the secret keys SK 0,. . . , SKq. Lastly, we must impose

a non-triviality condition-which we term "validity"-described in the definition and

further discussed below.

ExptReEnc (A, b E {0, 1}):

" The challenger samples and sends PP +- Setup(1A) to A.

* The adversary selects two sequences of messages (m, ... , mO) and (m,, ml)

for some f = poly(A), along with a sequence of q "punctured reencryption

key requests:" (PI, ... ,Pq) E [f], where each pj is distinct. Additionally,

the adversary specifies a tuple of key-indices (ki,. .. , ke) C [q].

" The challenger checks the validity condition. If it is violated, the experi-

ment aborts.

- For all i E [f], if Vj : (p3 #i) V (j < ki), then mo = ml.

" The challenger samples secret keys SK +- KeyGen(1A) for i C [q + 1], and

sends the following to the adversary:

- Ciphertexts CT +- Enc(SKki, mt), for all i E [f]. Let ri be the ran-

domness used in CTj.

- Punctured reencryption keys rk I+1 *-- ReKeyGen(SKj, SKj+ 1 , rpj), for

each j c [q], punctured to not work on CTPi.
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- The final secret key SKq+i.

The adversary outputs b'. The output of the experiment is 1 if b' = b, and

0 if b' # b.

Definition 2.7.6. A scheme ReEnc is secure if for any PPT adversary A there exists

a negligible function negi

Pr [1 +- ExPtReEnc(lA, 0)] - Pr [1 - ExPtieEnc(lA, 1)] < negl(A).

Notice that the definition would be trivially unsatisfiable without the validity check.

Unless a reencryption key after ki is punctured at the ciphertext, then given the

reencryption keys along with SKq, the adversary can recover ml. Therefore, we require

the additional condition that for any such i, m = mi.

2.7.2.4 Fresh-Stale Indistinguishability

Our scheme will enjoy one more security property: that for secret keys SK1 and

SK 2 with reencryption key rki,2 , "fresh" ciphertexts produced with SK 2 are indis-

tinguishable from ciphertexts (of the same message) encrypted under SKI and then

reencrypted using rki,2, even given SK1 and SK 2.

Definition 2.7.7 (Fresh-stale indistinguishability). ReEnc is said to satisfy fresh-

stale indistinguishability if, for all messages m and randomness r*:

Enc(SK 2, M), SK1 , SK2, PP, m, r* 5 ReEnc(rki*2 , Enc(SKI, m)), SK 1, SK2, PP, m, r*

where the probabilities are taken over PP +- Setup(1A), SK1 , SK 2 +- KeyGen, rkr*2 -

ReKeyGen(SK1, SK 2,r*), along with Enc and ReEnc.

Note that by a hybrid argument, fresh-stale indistinguishability as we defined

for SK1 and SK 2 can be extended for any polynomial-length chain of secret keys.

That is, a fresh encryption under SKq is indistinguishable from q-many reencryp-

tions of a ciphertext through the keys SK1 , ... , SKq+i, even when given all the keys

SK 1 , . . ,SKq+i-
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Looking ahead, fresh-stale indistinguishability will be useful in proving security

(Definition 2.7.6). In Section 2.7.4.1, we construct a puncturable proxy reencryption

scheme as described in this section from almost key-homomorphic puncturable PRFs.

If we instead instantiated our construction with (perfectly) key homomorphic PRFs,

then our scheme would immediately satisfy fresh-stale indistinguishability (in fact,

the distributions would be equivalent).

2.7.3 Construction of UGC

Our construction of UGC for general circuits and gate-wise updates proceeds in two

steps:

1. First, we present a construction of UGC for general circuits and gate-wise up-

dates that does not achieve update hiding. See Section 2.2.1 for a high-level

overview of our techniques.

2. In Section 2.7.5, we present a generic transformation from a non-update-hiding

UGC scheme into one that achieves update hiding. Applying this transforma-

tion on our UGC scheme constructed in the first step, we obtain an update-

hiding UGC scheme for general circuits and gate-wise updates.

We prove the following theorem in this Section:

Theorem 2.7.8. Suppose ReEnc is a puncturable symmetric proxy reencryption scheme

and GC is an efficient PrivINDO-secure gate-by-gate garbling scheme for all circuits.

Then there exists an IND-secure, sequentially updatable garbled circuits scheme UGC

for the class C of updatable circuits with gate-wise updates (Updgate, ,gate), which is

not update-hiding.

Applying the transformation in Appendix 2.7.5, we obtain our main result of UGC:

Corollary 2.7.9. Under the same assumptions as Theorem 2.7.8, there is an update-

hiding, IND-secure, sequentially updatable garbled circuits scheme UGC for the same

class of circuits and updates.
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Remark 2.7.10. Our techniques can be easily adapted to realize updatable garbled

circuits for the class of "bit-wise" updates, in which updating a circuit C modifies

some subset of the bits of the underlying binary representation binary(C) of the cir-

cuit. To achieve this, the updatable garbling of C consists of a garbled universal

circuit, along with puncturable proxy reencryption ciphertexts of the garbled input

labels corresponding to binary(C). The remainder of the construction is modified

appropriately.

The rest of this Section is devoted to the proof of Theorem 2.7.8.

2.7.3.1 Proof of Theorem 2.7.8

Let ReEnc be a puncturable symmetric proxy reencryption scheme with the proper-

ties outlined in Section 2.7.2, and let GC be an efficient, PrivINDO-secure projective

garbling scheme for all circuits (Definition 2.3.2). We construct a non-update-hiding

updatable garbling scheme UGC = (GrbCkt, Grblnp, GenUpd, ApplyUpd, EvalGC) as fol-

lows.

GrbCkt(1A, C): On input a circuit C, do the following.

1. Generate the garbled circuit and state ((C)gc, stgc) +- GC.GrbCkt(C).

2. Sample randomness rreEnc = (ri, . .. , rs) for ReEnc encryption. Sample pub-

lic parameters PP +- ReEnc.Setup(1X) and secret key SK +- ReEnc.KeyGen(PP)

for the reencryption scheme.

3. Let s = CI be the number of gates in C. For each gate g E [s], let (C)"g be

the gth garbled gate. For each g E [s], encrypt CTg = Enc(SK, (C)"g; rg),

using rg as the encryption randomness.

4. Output (C)ugc := (PP, CT 1, . . , CTs) and stugc (stgc, PP, SK, rreEnc)-

GenUpd(stgc, u): On input a state st (stgc, SK, rreEnc) and update u = (g, gateType),

do the following.

1. Sample a fresh secret key SK' <- KeyGen(1A). Generate the reencryption

key rk +- ReKeyGen(SK, SK', rg), punctured at rg, the gth element of rreEnc-
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2. Sample new randomness r' for ReEnc.Enc. Let r'eEnc be rreEnc with r,

replaced by r'

3. Compute the new garbled gate (C')"g =- GC.GrbGate(st, g, gateType), and

encrypt the new garbled gate CT' Enc(SK, (C')g ; r').

4. Output the garbled update (u).gc := (g, CT', rkr9) and the updated state

st,' g= (stg, SK' r'UgC gC) reEnc)

AppIyUpd((C)ugc, (u).gc) : On input a UGC-garbled circuit ()ugc = (CT 1,. .. , CT8)

and a garbled update (u)ugc = (g, CT', rk):

1. For each j # g, let CT' ReEnc(rk, CTj).

2. Output (C)'gc := (CT',.. ., CT')

Grbinp(stugc, x): On input UGC state stugc = (stgc, SK, rreEnc) and an input x E {o, 1}A:

1. Using Stgc, generate the garbled input (x)gc - GC.GrbInp(stgc, x).

2. Return ()ugc = ((x)gc, SK).

GC.EvaIGC((C).g, (x)gc): On input input (C),gc = (CT1,..., CTS) and (x)ugc

((x)gc, SK), do as follows.

1. Decrypt the garbled circuit: (C)gc = (Dec(SK, CT 1),.. . , Dec(SK, CT,)).

2. Return EvaIGC((C)gc, (x)gc).

Correctness. Consider a circuit C E C,, input x C {0, 1}A, and a sequence of

updates u, . . ., uq. We need to show that EvalGC ((cugC, (x)ugc) = Cq(x).

Proof. We define notation used in the secure updating process. The state for each

[q], st = (st', SKj, rn For each i, the ith garbled update consists of

(ui)ugc = (g, CT , rk% 1), where gi E [s] is the gate of C updated in ui, and r'

is the randomness r, from r eEnc on which rki2, i is punctured, and CT' is an encryp-

tion of the new garbled gate for the input gi encrypted under the key SK2 .

157



By the correctness of the circuit garbling scheme GC, it suffices to show that

(Cqg= (Dec(SKq, CTq),..., Dec(SKq, CTq)) computed during EvaIGC are indeed the

correct garbled gates. We will show correctness for CTq; the argument extends natu-

rally to the remaining ciphertexts.

CTq is computed by a series of reencryptions using the various punctured reen-

cryption keys starting from a "source" encryption under some earlier "source" key.

This source encryption may have been computed using SKO, or using SKj if u mod-

ified the first gate C. By construction, this source ciphertext encrypted the correct

garbled gate (Cy),1 := GC.GrbGate(st, g, gateType). Therefore we must show that the

various reencryptions, and the final decryption with key SKq, do not introduce any

errors.

Let r* be the randomness used to encrypt the source ciphertext under the source

key. By the correctness of the proxy reencryption scheme ReEnc and because q is

polynomially bounded, Dec(SKq, CTq) correctly outputs (Cq)1 as long as none of the

reencryption keys were punctured at r*.

With probability at least 1 - (s + q)/(2A) - 1 - negl(A), all choices of randomness

r ever sampled for ReEnc.Enc are unique, where s + q is the total number of fresh

encryptions computed. Conditioning on uniqueness (i.e., with high probability), none

of the reencryption keys are punctured at r*, completing the proof. 0

Efficiency. We lay out different efficiency properties associated with the above

scheme.

9 Garbling Time: The parallel-time (depth) to compute UGC.GrbCkt(1A, C) is

equal to TGrbCkt(1A, C)+poly(A), where TGrbCkt(1A, C) is the time needed to garble

the universal circuit for C. The second term captures the overhead of encrypting

each garbled gate (which may be done in parallel).

Using an underlying garbling scheme with GrbCkt in NC' (for example, Yao's

garbling scheme [Yao86]), the parallel-time (depth) for computing UGC.GrbCkt(1A, C)

is poly(A, log IC).
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The parallel-time to compute UGC.Grblnp(stgc, X) is TGrblnp(Stgc, X) + poly(A),

where TGrbinp(Stgc, X) is the time needed to garble the input x. Using Yao's gar-

bling scheme, the time to compute the garbled input is poly(A, xl), independent

of ICI and the number of updates.

" Secure Update Generation Time: The time to generate an update is poly(A),

independent of the size of the circuit C.

" Secure Update Size: The size of a garbled update is I(u)gc I = poly(A), indepen-

dent of JCl and the history of updates.

" State Size: The size of garbler's state is IC- poly(A). Though it grows with JCJ,

it is independent of the history of updates. Using the transformation described

in Appendix 2.5.3, it is possible to remove the dependence on JCJ.

" Runtime of Update: The runtime of ApplyUpd is poly(ICI, A). It depends on

JCJ, but is independent of the number of updates performed.

IND-security. The security of UGC follows directly from the security of the proxy

reencryption scheme ReEnc.

In the security game, the adversary sends circuits C0 and C1 , inputs x0 and x',

and sequences of updates {(uQ, u!)}1 such that the gates being updated match (i.e.,

0(uq) = #(u ) for all j). In response, the adversary receives a sequence of ciphertexts,

punctured reencryption keys, the secret key SKq, and a garbled input.

For each gateType E {V, \,--}, and gate g E [s], let (gateType)"g

GC.GrbGate(st, g, gateType) be the gth garbled gate for type gateType. Then for each

g E [s], the adversary receives a series of encryptions of (gateType)"g: one ciphertext

from the initial garbling GrbCkt, and subsequent ciphertexts generated by GenUpd

whenever an update u alters the gth gate of C.

By construction, each update for the gth gate of C consists of a new encryption

of (gateType)g, for some gateType, along with a reencryption key that is punctured at

the previous ciphertext corresponding to gate g. For every g, there is a single "most
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up-to-date" encryption CT* of (gateTypeb) , where gateType b is the gth gate of the

final circuit Cb.

It suffices to show that the adversary's view in the real security game is indistin-

guishable from the view in a modified security game in which all other ciphertexts CT'

(those that are not the most up-to-date) are in fact generated as CT' +- Enc(SK, 0),

encryptions of 0.

That this is sufficient follows directly from the PrivIND, security of the garbling

scheme GC. The adversary's view in the modified game can be generated given

(Cb) +- GrbCkt(1A, C ) and (xb)gc - Grblnp(1\, Xb), where C' is Cb with all updates

ub applied. Because C0 (xo) = Cl(x'), the PrivIND4 security of GC implies that the

bit b is computationally hidden.

Indistinguishability of these two games follows from the security of ReEnc. Observe

that for any CT' that is not the most up-to-date, there exists a later update that

modifies the gate g. By construction, when that update is issued, the corresponding

reencryption key will be punctured at the ciphertext CT'. Indistinguishability maps

directly to the security of ReEnc. One sequence of messages are the real sequence of

garbled gates used to generate the encryptions of CT* and CT' for each g, while the

second is the sequence of labels where all but the most up-to-date are replaced with

0. Similarly, the sequence of punctured key requests (PI,... ,Pq) and the key-indices

(ki, . , ke) (where f = s + q) as defined in Definition 2.7.6 correspond to the sequence

reencryption keys and fresh encryptions generated by GenUpd.

2.7.4 Construction of Puncturable PRE

We use puncturable almost key-homomorphic PRFs IBLMR13b, BV15b] to build

updatable garbled circuits. In [BLMR13b], the authors construct a symmetric proxy

reencryption scheme from any almost key-homomorphic PRF. We similarly construct

a puncturable, symmetric proxy reencryption scheme given a puncturable almost key-

homomorphic PRF, which can be based on worst-case lattice assumptions as shown in

the recent work of [BV15b]. Our definition of puncturable, almost key-homomorphic

PRFs adapted from [BLMR13b] and recall the main theorem of [BV15b]. We restrict
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our attention to PRFs with the particular co-domain Z for some integer and p.

Definition 2.7.11 (Puncturable, '-Almost Key Homomorphic PRF). Let PRF

(PRF.Setup, PRF.KeyGen, PRF.Punct, F) be point-puncturable PRF family," with key

space IC,, domain X,\, and co-domain Z, for A e N, and some integer p. Suppose

that (ICA, +) and (Y, +) are groups. The puncturable PRF family is -- almost key

homomorphic if for all points x*, and x* , and all keys K1 and K2 , and all inputs

x $ X*, x*, 2, there exists an e E [0, -y] such that

F(PRF.Punct(K1 , xi), x) + F(PRF.Punct(K2 , x*), x) =F(K1 + K2, x) i e (mod p).

The security requirements of punctured PRFs vary from construction to construc-

tion (e.g. the number of punctured keys, the selectivity / adaptivity of punctured

points). We consider a weak security notion: selective security with respect to only

a single punctured key. Such PRFs were constructed in [BV15b].

Theorem 2.7.12 ( [BV15b], Theorem 5.1). For c > 0, a single-key, selectively se-

cure point-puncturable, 2-almost key homomorphic PRF with domain {0, 1}' and co-

domain Z7 can be constructed based on the hardness of approximating either GapSVP

or SIVP to within a factor of 2 (nl/c), where n = (A log A)c, p = 20(n1/c)

Proof. We observe that the family of circuits that check whether an input r E {0, I}

is equal to a specific r* can be uniformly generated, and each such circuit has depth

O(log A) and a description of size A (the description being r* itself).

Applying the choice of parameters in Section 5.2 of [BV15b], along with the ob-

servations in Section 5.5 of that work yields the corollary. El

Finally, we remark that this construction has a property that will be important

for us in the proof of security for ReEnc. Namely, for all PP +- PRF.Setup(A), the

following two distributions over the keyspace C, are identical:

PRF.KeyGen(PP) = Uniform(2x) (2.2)
14 A puncturable PRF family is a constrained PRF family (see [BW13, BV15b]) for the family of

constraints which are equal to 1 except at a single "punctured" point.
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2.7.4.1 Construction of Puncturable Symmetric Proxy Reencryption

We now present a puncturable reencryption scheme that satisfies all the properties

discussed in Section 2.7.2, closely modeled on [BLMR13b]." The main ingredient in

the construction is a puncturable almost key-homomorphic PRF scheme that addi-

tionally satisfies the property stated in equation 2.2.

Let PRF be the family of puncturable, 2-almost key homomorphic PRFs from

Corollary 2.7.12. The domain and range of PRF are {0, 1}' and Z, respectively,

where n = poly(A). Let B - A109A and let u be an integer such that [p/uj > 6B

(recall that p - 20(nl/c)).

Construction. We define ReEnc = (Setup, KeyGen, ReKeyGen, Enc, ReEnc, Dec) to

be an encryption scheme with message space Z, as follows:

* Setup(1A): Sample and output the public parameters of the PRF PP +- PRF.Setup(1A).

* KeyGen(lA): Output a secret key SK <- PRF.KeyGen(1A).

" Enc(SK, m): Sample r <- {0, 1}' and noise i +- [-B, B], and output (r, pl)

where pl = m - [p/uj + F(SK, r) + 7.

" Dec(SK, (r, pl)): Output [pl - F(SK, r) (mod p)], where H-Ju denotes rounding

to the nearest multiple of [p/uj.

* ReKeyGen(SKI, SK2 , r*): Output rk'* <- PRF.Punct(SK 2 - SK1 , r*).

" ReEnc(rk, (r, pl)): Output (r, pl + F(rk, r)).

Correctness. Correctness follows in a straightforward manner from the -y-almost

key-homomorphic guarantee of PRF and the choice of u. This is because the mag-

nitude of the total accumulated error (from T = poly(A) reencryptions and the en-

cryption noise q) cannot exceed (2T + B) < 3B and thus the error does not affect

decryption correctness.

1 5As in that work, the scheme would be simplified by using key homomorphic PRFs, rather than
almost key homomorphic PRFs. Because only the latter are known to exist from lattice assumptions,
we present only that construction.
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Fresh-stale indistinguishability. We wish to show that for any m, SK1 , SK 2 ,

and r* it is infeasible to determine whether a given ciphertext CT = (r, pl) was

generated according to CT = CT2 <- Enc(SK 2, M), or according to CT = CT1

ReEnc(ReKeyGen(SK 1, SK 2 , r*), Enc(SKI, m)). Note that in our scheme, both ReKeyGen

and ReEnc are deterministic algorithms. Intuitively, the error from reencrypting the

ciphertext instead of computing it fresh is drowned out by the noise 'q added to the

ciphertext during encryption.

Let c, B, A E Z such that B < p/4 and c < p/4. Let D2 be the uniform

distribution over [c - B, +B], and let D1 be uniform over [c - B + A, c + B + A]. The

statistical distance of these distributions is SD(D 1 , D2)= A/(2B + 1).

Fix any choice of randomness r for Enc, and any choice of SK1 , SK2 , r* and m. Let

c = m.p/uj+F(SK2 ,r) and A = JF(SK 2 , r) - (F(SK 1 , r) + F(PRF.Punct(SK 2 - SK 1, r*), r))

< 2-y. Consider the distribution (induced by the choice of noise q E [-B, B]) over

ciphertexts CT1 = (r, p1j) and CT2 = (r, P12) defined as above. CT1 is distributed

according to D1 and CT2 is distributed according to D 2. Therefore, the distributions

over CT1 and CT2 induced by the choice of noise r7 by Enc have statistical distance

bounded by 2-y/(2B + 1). Because B is chosen to be superpolynomial, this statistical

distance is negligible.

Security. Suppose for contradiction that there existed an adversary A for which

ExptReEnc(1A, 0) and ExptReEnc(1A, 1) were distinguishable. First, we observe that fresh-

stale indistinguishability implies that, without loss of generality we may assume that

for all i c [f], ki = 0 (i.e. all the messages mi are originally encrypted under SK1

instead of SKk). This follows directly from the observation that fresh-stale indis-

tinguishability extends to chains of secret keys of polynomial length (see note after

Definition 2.7.7), along with the requirement that if p2 = i, then j > i. If some ki > 0,

then the view of that adversary can be indistinguishably simulated by using k' = 1,

getting the encryption of mi, then using the reencryption keys to compute a cipher-

text with respect to key SKk2 . Because the reencryption keys rk, 2 ,... , rki_,j are not

punctured at the ciphertext CTj (by the restriction on pj previously mentioned), this
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simulation will succeed.

Second, by a simple hybrid argument, we may also assume without loss of gener-

ality that the sequences of messages (mo, ... , m) and (m ,..., m ) differ at exactly

1 index i*. For all i # i*, let mi = mo = m. We may also assume that there exists

j* C [q] such that p. = i*; otherwise A's challenge is invalid and the challenger

aborts.

We use A to violate the single-key, selective security of the punctured PRF, yield-

ing a contradiction. Given the public parameters PP of PRF, sample a uniform PRF

input r*, and receive in turn the punctured PRF challenge: a punctured key Kr* and

y*, which is either F(K, r*) or a uniformly random value in the co-domain Zp.

Pass along the public parameters to A and receive in return (Mi,. . . , mi* 1, mi, mi,

mi*+1,.. me), and (P,... ,Pq) with pj* =*-

For j 4 j*, sample PRF keys rkj,j+1 +- PRF.KeyGen(PP) (which we identify with

reencryption keys), and a final PRF key SKq+1 *- PRF.KeyGen(PP) (interpreted as

the terminal secret key in the ReEnc security game). Lastly, set rkr*,+ = Kr*, the

challenge punctured PRF key.

For each i # i*, sample encryption randomness ri uniformly and compute the

ciphertext CT9+ 1 = Enc(SKq+1, mj; r2 ). Then, compute

CT = CT9+ 1 - F(rki **+1, r) - F(rkss+1, ri) (2.3)

For i*, pick b +- {0, 1} uniformly, and compute the ciphertext CT9+1= Enc(SKq+i, m ; ri).

Then compute

CTj* - CT* 1  y* - E F(rkj,j+l, ri*)
jAj*1

Finally, compute the punctured reencryption keys rk + I <- PRF.Punct(rkj+1 , rp).

As in the security definition for punctured proxy reencryption, return to A the

CT for all i, rk +p1 for all j, and SKq+i. By Equation 2.2, the reencryption keys rk ]j+

and the secret key SKq+i are distributed exactly as in the actual ReEnc security game.

On the other hand, the ciphertexts CTj are not distributed like honest ciphertexts,
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even for i # i*. This is because the PRF is only almost key-homomorphic-there's

no guarantee that F(E rkjj+I, ri) is indistinguishable from E F(rkj,j+1, ri) when also

given the (punctured) reencryption keys.

We again use fresh-stale indistinguishability. If instead of generating the CT'+1

as we did by encrypting directly using SKq+i, the CT?+ 1 had been generated as reen-

cryptions of ciphertexts CTj -- Enc(SKI, mi) using the punctured reencryption keys

(i.e. if the CTq+1 were "stale"), then the transformation we compute in (2.3) would

exactly recover the fresh ciphertexts CTj. On the other hand, the reduction used

in the proof uses "fresh" ciphertexts CT9+1. Therefore an adversary A who could

distinguish its view in the proof, where the CT are generated as in (2.3) from fresh

encryptions CT9+1 <- Enc(SKq+1, mi) could be used to violate fresh-stale indistin-

guishability. Given a fresh-or-stale ciphertext CTq+ 1 and all the secret keys SKj, it is

easy to generate the reencryption keys in the view of the adversary.

Therefore, we are able to conclude that the view of the adversary in this proof of

ReEnc security is indistinguishable from the real-world view, and the adversary (by

assumption) must succeed with non-negliglbe probability. Now, if punctured PRF

challenge value y* = F(K, r*), then the view of the adversary is indistinguishable

from its view in Expt ReEnc (1A, b) with random b. On the other hand, if y* is random,

then CT- is distributed uniformly, and hides the value of the bit b. Therefore, if

Pr[1 +- ExPtieEnc(1A, 0)] - Pr[1 <- ExPtieEnc (1A, 1)] is non-negliglbe, we are able to

distinguish the case when y* = F(K, r*) or is random, violating the security of PRF

and completing the proof.

2.7.5 Achieving Update Hiding Generically

We describe how to achieve update hiding generically. We give this transformation

for the general case of updatable randomized encodings but the same transformation

works even for updatable garbled circuits. The main idea is to use a non-interactive

write-only oblivious RAM scheme to achieve this. We define this notion below.
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Non-interactive write-only ORAM. A scheme wNIORAM consists of the follow-

ing algorithms.

DATABASE ENCODING, EncDB(1A, D): On input security parameter A, database D,

it produces an encoded D and secret key osk. The database encoding is given

to the server by the client. The client hides osk from the server.

QUERY ENCODING, EncQ(osk, q): On input secret key osk and write query q, it pro-

duces program encoding q. The client sends the query encoding to the server.

Here, we only consider write queries of the form (index, b).

UPDATING, Upd(q, b): On input query encoding q and database encoding D, it

produces an updated database encoding D'. Note that the server can execute

this procedure non-interactively and in particular, this does not involve any

communication with the client.

Correctness is as in an oblivious RAM scheme-updating an encoding of the database

using an encoded query is equivalent to updating the underlying database and then

encoding it. The security guarantee (as in any ORAM scheme) is that the access

pattern does not leak any information about the underlying query.

We are interested in wNIORAM schemes satisfying two properties:

1. The query encoding q is a tuple of pairs of the form (index, b) and the updating

algorithm substitutes b in index'h position of D for every (index, b) in q. We

call such schemes bitwise wNIORAM schemes.

2. Another property we are interested is decodability: given a valid database D

and secret key osk, there is a public algorithm to recover D correctly.

The garbled RAM scheme of [GLOS15] yields a bitwise wNIORAM schemes that is

decodable. Furthermore, their scheme is based on one-way functions. We thus have

the following theorem.

Theorem 2.7.13. There exists decodable bitwise wNIORAM schemes assuming one-

way functions.
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2.7.5.1 Update-Hiding Transformation

Suppose we have an updatable randomized encoding scheme that is not update hiding,

denoted UREnuh. We show how to construct update hiding updatable RE URE

Encode (1A, C, x): First, it computes ((C, x), osk) <- EncDB(1X, (C, x)). It executes

(UREnuh.(C*[I]) ureSt) <- UREnuh.Encode(lA, C*, 1), where C* (with (C,x) and

osk hardwired into it) is defined as follows. C* first decodes (C, x) using osk to

recover (C, x) (using decodability) and then it outputs 0(x). Finally, it outputs

UREnuh.(C*[I)ure as the randomized encoding and it sets the state st osk.

GenUpd (st, u): It first encodes u using the query encode algorithm EncQ to obtain

ii. It then compiles ii into an encoding UREnUh-(i)ure by executing (ure <

UREnuh.GenUpd(stj). The encoding of update is set to be UREnuh.()ure. The

new state is the same as the old state.

ApplyUpd ((C*[XI)ure, ()ure): This procedure essentially executes ApplyUpd of the

scheme UREnuh. It executes UREnuh.ApplyUpd(UREnuh.(C*[I1)ure, UREn. (@f)ure)

to obtain UREnuh-(C*'[1])ure. It outputs the updated randomized encoding

UREnuh.(C*/[1)ure. Here, C*' contains the updated ORAM and similar to circuit

C*-it first decrypts the ORAM to get (C', x') and performs the computation

C/ (X').

Decode ((C[x])ure): This procedure executes the decoding procedure of UREnuh-

The correctness of UREnuh as well as the decodibility of wNIORAM implies the correct-

ness of the above URE scheme. Furthermore, we can invoke the security of UREnuh

and the access pattern hiding of wNIORAM to show the security of the above scheme.

2.8 Updatable Cryptography

We define the notion of updatability in the context of several cryptographic prim-

itives. In Section 2.8.1, we present a generic indistinguishability-based approach
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through the lens of circuit compilers and dynamic circuit compilers. This framework

captures updatable versions of attribute based encryption, non-interactive witness in-

distinguishable proofs, and indistinguishability obfuscation. We then move on to two

example applications with simulation-based security: updatable non interactive zero

knowledge in Section 2.8.4 and updatable multiparty computation in Section 2.8.5.

2.8.1 Circuit Compilers

We introduce the notion of circuit compilers below. It consists of the algorithms

CC = (Gen, Compile, Encode, Decode). Its associated with a class of circuits C.

GENERATION OF PARAMETERS, Gen(1A): On input security parameter A, outputs

parameters (cktSK, inpSK) and public parameters pp.

CIRCUIT COMPILATION, Compile(cktSK, C): On input secret parameters cktSK and

circuit C, it outputs an encoding of circuit (C) and state st.

INPUT ENCODING, Encode(inpSK, x): On input parameters inpSK and input x, it

outputs an encoding of input (x).

EVALUATION, Eval((C), (x)): On input encodings (C) and (x), it outputs the de-

coded value a'.

There are two properties associated with a circuit compiler-correctness and security.

Correctness. Consider a circuit C and an input x. We require that the evaluation

of encoding (C) on (x) yields C(x).

p-IND security. We define a generic indistinguishability-based selective security

notion associated with a p-admissibility property. For example, in Yao's garbled

circuits, indistinguishability is only guaranteed for circuits that agree on the input

and have the same topology. p is some boolean function with input auxcc consisting

of: (i) a pair of circuits CO, C1 , (ii) additional circuits C1, ... , Ce,, and (iii) a pair of

input sequences (x8,..., x.), (x, ... , ,).
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Definition 2.8.1 (p-IND Security). A circuit compiler scheme CC is p-IND secure

(selectively) for all A E N and all auxcc as above, Exptcc(1A, auxcc) ac Exptcc(1A, auxcc).

EXPtcc(1A, a uxcc):

1. If p(auxcc) = 0, abort and output I.

2. Let pp, (cktSK, inpSK) +- Gen(1A).

3. Generate the circuit encodings ((Cb) , sto) <-- Compile(cktSK, Cb) and

(i) , sti,o) +- Compile(cktSK, C) for i E [<t]. (The states sti,o are never

used.)

4. Generate the input encodings Kx') <- Encode(inpSK, A) for k c [einp].

5. Output

( fo , (C)}ic[ f, , (X'k)}kEtein,) .

2.8.1.1 Instantiations

Several advanced cryptographic primitives can be seen in the form of circuit compilers.

We give a couple of examples.

Attribute Based Encryption (ABE): We take Gen = Setup (setup), Compile =

KeyGen (key generation), Encode = Enc (encryption), Eval = Dec (decryption).

Every circuit C E C associated with an ABE scheme is of the form: C(x =

(attr, m)) := m if and only if C'(attr) = 1 for some circuit C' hardwired in

C. Depending on whether the ABE scheme we are considering is a public key

scheme or not, we can assign inpSK to be either public parameters or secret key

parameters.

For security, p interprets ?! as (attrb, Mb) and checks if attr9 = attr. It also

checks if C' - C1. If either of the checks fail, p outputs 0.

Non Interactive Witness Indistinguishable Proof Systems (WI): Consider a

non interactive witness indistinguishable system WI = (P, V) associated with
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a NP relation R. We denote by P the circuit representing the prover. Sup-

pose x is the NP instance and w is the witness associated with x. We take

Compile = P(x, w; r) (prover circuit with instance, witness, randomness hard-

wired), Eval = V (verifier circuit), and Gen and Encode are undefined,

Indistinguishability Obfuscation (iO): We take Compile = Obf (obfuscate), Eval

iOEval (evaluation of obfuscation), while Gen and Encode are undefined. For se-

curity, p checks if C' = C1 and Ci = 1 for i E [ef], Xk = 1 for k C [efp]. If the

check fails it outputs 0, else it outputs 1.

2.8.2 Dynamic Circuit Compilers

The notion of dynamic circuit compilers additionally have the algorithms GenUpd

(generation of secure update) and ApplyUpd (apply secure update) associated with

it. It consists of the algorithms DCC = (Gen, Compile, Encode, GenUpd, ApplyUpd,

Decode). Its associated with a class of circuits C.

GENERATION OF UPDATES, GenUpd(cktSK, st, u): On input secret parameters cktSK,

state st, update u, it outputs an encoding of update (u) and an updated state

st'.

APPLY UPDATE, ApplyUpd(pp, (C) , (u)): On input public parameters pp, circuit en-

coding (C), secure update (u), it outputs an updated circuit encoding (C').

Correctness. Consider a circuit C = Co, input x and a sequence of updates

U 1 , ... , uq. Let Ci be the circuit by updating Ci-1 using update ui. We require

that the evaluation of encoding (Ci) on (x) yields Ci(x), where (C) is obtained by

updating (Ci_ 1) using (uj) (encoding of uj) and is associated with a new secret key

CC.cktSKi. The encoding (x) is computed using the new secret key CC.cktSKi.

We emphasize that once the circuit is updated, the secret key associated with the

compiled circuit could potentially change. Hence, we require that correctness to be

satisfied only for input encodings created using the new secret key.
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p-IND Security. We define a generic indistinguishability-based selective security

notion associated with a p-admissibility property. p is some boolean function with

input auxdc consisting of: (i) a pair of circuits C0 , C', (ii) additional circuits C1,

... , Cif, (iii) a pair of input sequences (x8, .. . x), (1o, ... , Xi), and (iv) a pair of

update sequences (uO,... , uo), (u,. . . , uq).

Definition 2.8.2 (p-IND Security). A dynamic circuit compiler scheme DCC is p-

IND secure (selectively) for all A E N and all auxdcc as above, ExptoCC (1A, auXdcc) Mc

Expt CC (1A, auxdcc).

ExptDCC(1A, auxdcc):

1. If p(auxdcc)= 0, abort and output I.

2. Let pp, (cktSK, inpSK) +- Gen(1X).

3. Generate the circuit encodings ((Cob), sto) - Compile(cktSK, Cb) and

((Ci) , sti,o) <- Compile(cktSK, Cj) for i E [fl]. (The states sti,o are never

used.)

4. Generate the update encodings (us) <- GenUpd(cktSK, st_ 1, uj) for j C

[q].

5. Generate the input encodings (xt) <- Encode(inpSK, x) for k E

6. Output

((Cb) , {(Cq),(tE,3,] {( U )}%Etq, {(zXb)}kE i,1,).

2.8.2.1 Instantiations

We can consider the updatability versions of several cryptographic primitives via

the lens of dynamic circuit compilers. For example, we can consider the notion of

updatable ABE: In updatable ABE, an attribute key associated with a function, say

sk0 , can sequentially updated.

Remark 2.8.3. Since we consider dynamic circuit compilers, where only one circuit

can be updated in the security game, this correspondingly leads to defining updatable
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ABE scheme where only one attribute key is updated in the security game. However,

for other primitives such as updatable indistinguishability obfuscation and updatable

non interactive witness indistinguishable systems, it suffices to just consider dynamic

circuit compilers where only a single circuit is updated.

One can also consider the more general setting where multiple circuits are updated

simultaneously using the same sequence of updates. Such a setting was studied in

the context of indistinguishability obfuscation [AJS15b]. We do not deal with this

setting in this thesis.

2.8.3 Construction of Dynamic Circuit Compilers

We sketch a construction of dynamic circuit compilers using output-compact updat-

able randomized encodings. We start with a circuit compiler, not necessarily sup-

porting updatability, and show how to transform it into a dynamic circuit compilers

scheme. Let the circuit compiler scheme be denoted by CC = (CC.Gen, CC.Compile, CC.Encode, CC.Eval

We construct DCC = (Gen, Compile, Encode, GenUpd, ApplyUpd, Eval) as follows.

Gen(1P): Execute CC.Gen(1A) and also the setup of updatable randomized encoding

scheme. The parameters output by Gen is the joint parameters output by both

CC.Gen and the setup of URE.

Compile: On input secret parameters and circuit C, execute an (updatable) random-

ized encoding of Compile(., .; -) and input (CC.cktSK, C, r), where CC.cktSK is

the secret parameters output by CC and r is the randomness used in the circuit

compilation process.

GenUpd: On input secret parameters and update u, generate a secure update

((u, CC.cktSK', r')), where CC.cktSK' is the new secret key and r' is a new ran-

domness to be used in the circuit compilation algorithm, computed with respect

to updatable randomized encodings scheme.

ApplyUpd: Update the randomized encoding (part of the compiled circuit) using the

secure update. Output the updated randomized encoding.
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Encode: Identical to CC.Encode.

Eval: Decodes the randomized encoding to get a compiled circuit, computed with

respect to CC. Then executes the evaluation algorithm CC.Eval.

We omit the proof of correctness argument since it follows directly from the proof

of correctness of the underlying circuit compilers and updatable randomized encodings

scheme. We sketch the proof of security below.

In terms of efficiency, the output-compactness of the underlying URE scheme

guarantees that the size of the updates are small. Note that if not for the output-

compactness, the size of the updates could be proportional to the output length of

the circuit which is proportional to the size of the circuit being compiled.

2.8.3.1 Security

The main steps in the security argument are as follows: Let (CO, C1 ) be the circuit

pair, (Xi, x), .... , (xO., X1) be the input pairs and update pairs (uO, uI) ... , (uO, ul).

1. In the first step, instead of computing the randomized encoding of circuit com-

pile algorithm Compile on just CO, it does the following: consider the circuit G

which is computed as follows:

G(temp = 0, CC.cktSK, C0 , r, C', r') outputs Compile(CC.cktSK, C0 ; r).

Furthermore, the secure updates are computed as an encoding of (i, u, r?, u , r ,

CC.cktSKi), where (u , r?) (resp., (u', r')) will be used to update C_, to CF

(resp., Cfi_1 to Ci). The value i, as part of update encoding, is used to update

the value temp from 0 to i. Finally, CC.cktSKi is the new secret key.

2. In a sequence of steps, the code of G is switched from computing a compiled

circuit of CO to computing a compiled circuit of C'. This is done in a sequence
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of steps: in the jth step, for j c [q + 1], G is of the following form:

G(temp 0, CC.cktSK, C 0,,r, C',r) :{Compile(CC.cktSK, CO; r) if temp > j,
Com pile(CC.cktSK, C1 ; r) otherwise

The jth step is switched to (j + l)th step is done in the following steps: a

third branch is introduced in G, for the case when temp = j, a hardwired

value V is output. For all values of temp, G remains unchanged as in jth

step. The value V is set to be Compile(CC.cktSKj, C9; rQ), where C9 is the jth

updated circuit. Furthermore, in the jth update, the secret key CC.cktSKj and

randomness (rQ, rj) is removed from the description of updates. Now, we invoke

the security of underlying dynamic circuit compiler scheme (since CC.cktSKj

is "removed" from the system) to switch from Compile(CC.cktSKj, C9; r9) to

Compile(CC.cktSKj, CJ; ri). Once this is done, we can switch the description of

G from having the instruction "temp > j" to "temp > j + 1". We invoke the

security of URE to make this change.

3. In the (q + )th step, G outputs a compiled circuit of C1 for every value of temp.

Thus, C' and updates {u?} can now be removed from the system.

2.8.4 Updatable Non-Interactive Zero Knowledge

2.8.4.1 Definition

Syntax. Let R be an efficiently computable relation that consists of pairs (x, w),

where x is called the statement and w is the witness. Let L denote the language

consisting of statements in R. We say that the relation R is (Upd, H)-updatable if for

any (X, w) E R and any update string u E U, Upd(x, w, u) = (x', w') s.t. (x', w') E R.

An updatable non-interactive zero-knowledge (U N IZK) proof system for a language

L with a (Upd, U)-updatable relation R consists of a setup algorithm CRSGen, a prover

algorithm Prove and a verifier algorithm Verify similar to a standard NIZK proof

system. However, it also comes equipped with two additional algorithms, namely,
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GenUpd and ApplyUpd. We formally describe the algorithms below:

SETUP, crs <- CRSGen(1A): On input a security parameter A, it outputs a common

reference string crs.

PROVE, (7r, st) +-- Prove(crs, x, w): On input a common reference string crs and a

statement x along with a witness w, it first checks whether (x, w) E R; if so, it

produces a proof string 7r along with a state st, else it outputs f ail.

GENERATE UPDATE, (u) <- GenUpd(u, st): On input an update u E U and state st,

it outputs an update encoding (u) and a new state st'.

APPLY UPDATE, 7r' <- ApplyUpd(crs, r, (u)): On input a common reference string

crs, a proof string 7r and an update encoding (u), it outputs an updated proof

string 7r'.

VERIFY, b +- Verify(crs, x, 7r): On input a common reference string crs, a statement x

and a proof string 7r, it outputs b = 1 if the proof is valid, and b = 0 otherwise.

Definition 2.8.4 (Updatable NIZKs). An updatable non-interactive zero-knowledge

(U N I Z K) proof system for a language L with a PPT relation R and update family UA

with updating algorithm Upd is a tuple of PPT algorithms (CRSGen, Prove, GenUpd,

ApplyUpd, Verify) such that the following properties hold:

EFFICIENCY: For any update u E U, the running time of GenUpd(u, st) is p(A, Jul),

where p is an a priori fixed polynomial. This implies that the size of the resultant

update encoding (u) <- GenUpd(u, st) is also a fixed polynomial in A and |u|.

COMPLETENESS: For every (xo, wo) E R and every sequence of updates U 1 . . .c, Uq

LI, it holds that for every 0 < i < q:

Pr[Verify(crs, xi, 7ri) = 1] = 1

where crs <- CRSGen(1A), (7ro, sto) +- Prove(crs, xo, wo), ((uj), sti) - GenUpd(uj, sti_ 1),

7i +- ApplyUpd(wri-1, (uj)) and the probability is taken over the coins of CRSGen,

Prove, GenUpd, ApplyUpd and Verify.
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SOUNDNESS AGAINST SEQUENTIAL UPDATES: For every adversary A, there exists

a negligible function negl(A) s.t.

Pr[1 +-- ExptPso"nd(1)] negl(A)

where Exptusound(A) is defined as follows:

1. Ch computes crs +- CRSGen(1A) and sends crs to A.

2. A outputs (xo, 7ro, {xi, (u)}_i) to Ch.

3. The output of the experiment is 1 if: either Verify (crs, x0 , 7ro) = l A x0 L,

or there exists 1 < i < q s.t. Verify (crs, xi, ?rj) = 1 A xi L where 7i <-

ApplyUpd (7ri_ 1 , (ui)). Otherwise, the output is 0.

If the soundness only holds against PPT adversaries, then we call it an argu-

ment system.

ZERO KNOWLEDGE AGAINST SEQUENTIAL UPDATES: There exists a PPT simula-

tor S = (Si, S 2 , 83) s.t. for every (xo, wo) E R, every auxiliary input z E {0, 1}*

and every sequence of updates u1 , ... , uq E U, it holds that

IDEAL (1\, Xo, wo, z,{ui}) R EAL(lxowoz, { }= )

where
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IDEAL (1,xo,wo,z, {ui}_1: REAL (1AX, o, z, {ui}l):

1. (crs, sti) <- 1(1,\) 1. crs <- CRSGen(1A)

2. (ro, st 2) <- S2 (Xo, sti) 2. (7ro, sto) +- Prove(crs, xO, wo)

3. Vi E [q], (xi, wi) <- Upd(xo, wo, uj) 3. Vi c [q], (us) <- GenUpd (uj, sti_1)

4. Vi E [q], (ui) <- S 3 (st2 , 1IuiIXi).

Output (Xo,z,0ro,{(u)}1_ ) Output (Xo, z, ro, {(ui)}2 1 )

2.8.4.2 Construction of UNIZK

In this section, we construct a UNIZK proof system for NP. Let L be any language in

NP with a (Upd,U)-updatable PPT relation R. We construct a UNIZK proof system

(CRSGen, Prove, GenUpd, ApplyUpd, Verify) for L.

Let R[x, w] denote a hardwired circuit corresponding to R with inputs (x, w). Let

R[X, W] denote the corresponding hardwired circuit family. We will use the following

ingredients in our construction:

1. A stateless" URE scheme (URE.Encode, URE.GenUpd, URE.ApplyUpd, URE.Decode)

for an (Updre,, Uue)-updatable class of hardwired circuits R[X, W] where Ure =

U and Updure is s.t. for any u E bUwe, Updure(R[x,wI,u) = R[x',w'] where

(X', w') <- U pd(x, w, u).

2. A non-interactive perfectly binding commitment scheme Corn. Such a scheme

can be based on the existence of injective one-way functions. 17

3. A NIZK proof of knowledge (NIZKPOK) system (NIZK.CRSGen, NIZK.Prove,

NIZK.Verify) for NP.
16 Our construction also works if we start with a stateful U RE scheme. For simplicity of exposition,

however, we present our construction using a stateless U RE scheme. As a result, we actually construct
a stateless UNIZK scheme.

17 We can, in fact, use a two round statistically binding commitment scheme that can be based
on standard one-way functions. For simplicity of exposition, however, we present our construction
using non-interactive commitments.
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CRSGen(1A): Sample a common reference string crSnizk <- NIZK.CRSGen(1A) for the

NIZKPOK system. Output crs = crSnizk.

Prove(x, w): Perform the following sequence of steps:

* Compute (R[x, w])ue <- URE.Encode (iA, R, (x, w) ; rure) using randomness

a random string rure.

" Sample a random string rcom and compute a commitment C +- Com(rure; rcom)

to rure using randomness rcom.

" Compute a proof 7Fnizk <- NIZK.Prove(Xnizk, Wnizk) for the statement Xnizk

(x, (R[x, W])ure, C) using witness Wnizk = (w, rure, rcom) where (w', r're, r'om)

is a valid witness for Xnizk iff all of the following hold:

- (R[x, W)ure <- URE.Encode (iA, R, (x, w') ; r're)

- C +- Com(r';re'om)

Finally, set st = (rure, C, rcom) and output 7r = ((R[x, W])re, C, 7nizk).

GenUpd(u, st): Perform the following sequence of steps:

e Parse st = (ure, C, rcom).

* Sample a random string ropd and compute (U).re <- URE.GenUpd(u, rure; rupd)

using randomness rupd.

* Compute a proof 7Tnizk +- NIZK.Prove(nizk, Wnizk) for the statement Xnizk

((U).re, C) using witness Wnizk = (u, rupd, 7ure, rcom) where (u', ?r'pd, rre, om)

is a valid witness for Xnizk iff all of the following hold:

- (U)ure - URE.GenUpd (u', r'/,; r'Pd)

- C +- Com(r're; r'om)

Output (u) = ((U)ure, C, wrnizk). 18

18 Note that it is not really necessary for the update encoding to include C since the verifier,
who runs the ApplyUpd and Verify algorithms, can remember C. We have added C to the update
encoding for clarity.
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ApplyUpd(crs, 7r, (u)): Perform the following steps:

* Parse Ku) ((U)u, , ) and crs= crsnizk. Let k ((u),u,' C). If

N1ZK.Verfy(crsnizk, nizk, Wnizk) = 0, then output 1.

" If 7r is a level-0 proof, then parse r = ((R[x, W)ur, C, Fnizk). Else, parse

7r = (R[x, W])ur.

" Compute (R[x', W'])ure - URE.ApplyUpd((R[x, W])ure, (u).

" Output (R[x', W')ur.

Verify(crs, x, 7r): Perform the following steps:

* Parse crs = crsnizk.

" If 7r is a level-0 proof, then parse 7r = ((R[x, W)ure, C,7 nizk). Let Xnizk

(X, (R[x, W])u, C). Output 1 if both NIZK.Verfy(crsnizk, Xnizk , 7rizk) and

URE.Decode((R[x,w]).re) return 1.

" Else, parse 7r= (R[x, W])ure. Output U RE.Decode((R[x,wl)ure).

2.8.4.3 Proof Sketch

We begin with efficiency. Recall that the computation of an update encoding for

UNIZK involves two main steps. First, we compute an update encoding for the un-

derlying URE scheme. Next, we compute a fresh proof string for the underlying

NIZKPOK system to prove that the URE update encoding was computed honestly.

From the efficiency of the URE, it follows that the first step only requires time poly-

nomial in the update size and the security parameter. Further, it follows from the

standard efficiency of NIZKPOKs that the second step also only requires time polyno-

mial in the size of the update and the security parameter. Putting the above together,

we have that GenUpd satisfies the efficiency requirement.

Correctness of the above construction is easy to verify. In order to argue soundness,

we leverage the proof of knowledge of the underlying NIZKPOK. Let us assume that

the construction is not sound, i.e., there exists an efficient adversary for the soundness

security game that outputs (X 0 , 7r1 {xi, (uj)} _1) for some q s.t. all the (updated)
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proof strings are accepted by the honest verification algorithm, yet at least one of

the (updated) statements is false. We obtain a contradiction as follows: for every i,

let (ui) = ((ui)., 7Fiizk) and let xizk be the statement corresponding to 7izk Thenn nizk nizk* he

starting with i = q and proceeding backwards, we apply the NIZKPOK extractor

on each 7rizk to extract a valid witness w izk for xiz. From the description of the

scheme, it follows that W consists of an update ui as well as randomness that can

be used to verify that ui was indeed used to compute the update encoding honestly.

For i = 0, the extractor also returns the witness wo for the original statement xo.

Putting all of this together, we can recover a witness wi for every updated statement

Xi, which leads to a contradiction.

Zero-knowledge follows from a simple hybrid argument. The first hybrid HO cor-

responds to the real world experiment. In the next hybrid H1, we first simulate crsnizk

and all the proof strings 7rnizk that are part of the original proof 7ro and the update

encodings u.. Next, in hybrid H2, we switch the commitment C to be commitment of

all zeros. Finally, in H3 , we use the simulator of URE to simulate the URE encoding

(R[x, W])r, in 7ro as well as the URE update encodings (U)ir in every update (us).

Note that this experiment corresponds to the ideal world.

The indistinguishability of HO and H1 follows from the zero-knowledge of the

underlying NIZKPOK. The indistinguishability of H1 and H2 follows from the hid-

ing of the commitment scheme Com. Finally, the indistinguishability of H2 and H3

follows from the security of the URE scheme. This finishes the proof sketch of our

construction.

2.8.5 Updatable Multiparty Computation

We consider the setting of n parties P = {P1 , ... , P} who wish to jointly compute any

PPT function over their private inputs. We are interested in the scenario where after

performing a computation of any function f over an input vector x = i,... , n

the parties wish to perform another computation over an updated function f' and

input vector x'. Note that if the parties were to simply use a standard MPC protocol

to perform a fresh computation over the updated function and input vector, then
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the communication complexity of this computation will depend on If'I and Ix'j. We

instead consider the scenario where after performing the initial computation of f over

x, the parties can run a less-expensive update phase whose communication complexity

only depends on the description size of the update and not on the size of the updated

function and input vector. We refer to a protocol with this efficiency as updatable

MPC (UMPC).

We consider the setting of multiple updates where the parties can perform multiple

updated computations in a sequential manner. We now proceed to formally define

UMPC with sequential updating using the real/ideal paradigm.

2.8.5.1 Additional Notation

We study the notion of UMPC with respect to a class of updatable hardwired circuits.

Below, we first extend the notation for updatable hardwired circuits (as described in

Section 2.4) to meet our requirements for UMPC. We consider two changes: (a) First,

we consider computation over n different inputs, as opposed to a single input. (b) Sec-

ond, we consider updates u of the form u u1,... , u, where each ui is contributed

by party P. For simplicity of exposition, we restrict our discussion to the case where

all the parties receive the same output.

Let C : {0, I}A x ... x {, 1}I -+ {, 1}) be any n-input circuit that the parties

are interested in computing. Then, for any input vector x = x 1,..., x,, where xi E

{0, 1}, the corresponding hardwired circuit is denoted as C[x]. The corresponding

hardwired circuit family is denoted as {C[Xx}AEN where X = {O, 1}A.

For any set system of strings U {UAIA}EN, we say that C[X] is (Upd, U)-updatable

if C'[x' <- Upd (C[x], u), where C[x] E C[X]A, u = (U1, ... , u,), ui C UA, is such that

C'[x'] is also a hardwired circuit.

2.8.5.2 Security

We consider polynomial-time adversaries who can statically corrupt up to n-I parties,

and with abort.

We say that a protocol II is a UMPC protocol if any adversary, who corrupts a
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subset of parties and runs the protocol with honest parties, gains no information

about the inputs of the honest parties beyond the protocol outputs that correspond

to sequential evaluations of C[x], C[x]i,... , C[x]q where C[x]e = Upd(C[x], uf), u=

(ui,, . . . , )

Definition 2.8.5 (Updatable MPC). A protocol H (Hlinj, 1Iupd) is a secure n-party

U M PC protocol for a (U pd, U)-updatable circuit family C if for every PPT adversary

A in the real world, there exists a PPT adversary S corrupting the same parties in

the ideal world such that for every initial input vector x, every auxiliary input z, and

every sequence of updates {ue}a where uf = (u1,... Un,u) and ue U 1,, it holds

that

IDEALs,M (, x, z, 1u4'=) c REALrM (X, x, z,

where IDEALs,M and REALAM are defined next.

Ideal world. We start by describing the ideal world for UMPC. Let C E C be the

initial circuit that the parties wish to compute.

INPUTS: Each party P obtains an initial input xi. The adversary S is given auxiliary

input z. S selects a subset of the parties M C 'P to corrupt, and is given the

inputs xe of each party Pt C M.

SENDING INPUTS TO TRUSTED PARTY: Each honest party P sends its input xi to

the trusted party. For each corrupted party Pi E M, the adversary may select

any value x* and send it to the ideal functionality.

TRUSTED PARTY COMPUTES OUTPUT: Let xT,..., x be the inputs that were sent

to the trusted party. Let C[x*]o be the hardwired circuit corresponding to

the circuit C and input vector x* = x*,..., x*. The trusted party sends the

evaluation of C[x*]o to the adversary who replies with either continue or abort.

If the adversary's message is abort, then the trusted party sends I to all honest

parties. Otherwise, it sends the evaluation of C[x*]o to all honest parties.
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fTH UPDATE PHASE: For every f E [q], where q is chosen by the adversary, the

following is repeated sequentially:

" Each party P sends an update string uj, E bA to the trusted party.

" The trusted party computes C[x*] <- Upd(C[x*]f_1, u) where u =

(Uiie... , Un,f). It sends the evaluation of C[x*]e to the adversary who

replies with either continue or abort. If the adversary's message is abort,

then the trusted party sends I to all honest parties. Otherwise, it sends

the evaluation of C[x*]e to all honest parties.

OUTPUTS: Honest parties output all the messages they obtained from the ideal func-

tionality. Malicious parties may output an arbitrary PPT function of the ad-

versary's view.

The overall output of the ideal-world experiment consists of the outputs of all

parties. For any ideal-world adversary S with auxiliary input z E {o, 1} *, input

vector x, any arbitrary polynomial set of updates {u} _1 , and security parameter A,

we denote the output of the corresponding ideal-world experiment by

IDEALs,M (A, x, z, .

Real world. The real world execution begins by an adversary A selecting any

arbitrary subset of parties M C P to corrupt. The parties then engage in an execution

of a real n-party updatable MPC protocol I = (Hinit, Hupd) for initial circuit C C C

that consists of two stages, namely, (a) an initial computation phase, (b) an update

phase, where the latter can be repeated polynomially many times. Throughout the

execution of I, the adversary A sends all messages on behalf of the corrupted parties,

and may follow an arbitrary polynomial-time strategy. In contrast, the honest parties

follow the instructions of I.

INITIAL COMPUTATION PHASE: Let xi be the initial input of party P. In this phase,

all the parties execute protocol , where each honest party Pi E P \ M acts
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in accordance with its input xi. At the end of the protocol, each honest party

computes an initial output as well as state sti,o in accordance with the protocol.

If the protocol computation ends in an abort, then each honest party sets its

output and state to I.

fTH UPDATE PHASE: Whenever the parties wish to perform a computation over an

updated circuit and input vector, they run an execution of Flu pd, where each

honest party acts in accordance with its input (sti,_1, ui,e). At the end of the

protocol, each honest party computes an output and an updated state ste, both

of which may be set to I if the protocol ends in an abort.

At the conclusion of all the update phases, each honest party P outputs all the

outputs it obtained in the computations. Malicious parties may output an arbitrary

PPT function of the view of A.

For any adversary A with auxiliary input z E {O, 1}*, input vector x, any arbitrary

polynomial set of updates {ui}q 1 , and security parameter A, we denote the output

of the multi-function MPC protocol H = (Hinit, flupd) by

REAL 1A, x, z,{u})

Efficiency. We require that the total communication complexity of any update

phase e is a fixed polynomial in the size of the update length Iuf and the security

parameter.

2.8.5.3 Construction of UMPC

In this section, we construct a UMPC protocol for general circuits.

Let C be a n-input (Upd, U)-updatable circuit family and let C[X denote the

corresponding updatable hardwired circuit family. In order to construct a UMPC

protocol for C, we will use the following ingredients in our construction:

1. A stateless19 URE scheme (URE.Encode, URE.GenUpd, URE.ApplyUpd, URE.Decode)

for an (Updue, Ure)-updatable class of hardwired circuits C[X] where Uure = U'
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and Upde is the same as Upd: for any C[x] E C[X] and any u E blure where

u = (Uli,.. . , un), Updure(C[XI, u)= Upd(C[x, u).

2. A standard n-party MPC protocol Umpc for general circuits that is secure against

arbitrary, static corruptions.

PROTOCOL Hinit: Let Co E C be the level-0 circuit that the parties wish to compute

and xj,o denote the level-0 input of party P. Protocol Hif1it consists of the

following two steps:

1. First, each party P privately samples a random string ri.

2. Next, the parties engage in an execution of Hmpc for computing the follow-

ing function fo: it takes as input (C, Xi,0 , r2 ) from party P and computes

(CO[XO)ure + UR E.Encode(Co[xo]; r) using randomness r = r1 @ - ED r,,,

where x0 = (x1 ,0,... , x,,o). The output of f is (CO[xO])ure.

3. At the end of Hmpc, each party computes yo <- URE.Decode((CoIxo])ue)

and outputs yo. Each party P stores sti,0 (KC[X])u.e, ri).

PROTOCOL Hupd: Let uqe denote the fth update string corresponding to party P.

Let sti,f = ((C_1i[xI_1])., r) be the state of party P at the start of the fth

update phase. Then, the fth execution of protocol H upd consists of the following

two steps:

1. First, the parties engage in an execution of Hmpc for computing the fol-

lowing (randomized) function fe: it takes as input (uie, r) from party Pi

and computes (u )ue <- URE.GenUpd(uf, r) where u = (U1,f,..., unf) and

r = r1 @ ... e rn. The output of fe is (Ue)ur.

2. At the end of Hmpc, each party computes

(C[Xll)ure +- URE.ApplyUpd((C_ 1[x_1]),ure (u).ure).

19Our construction also works if we start with a stateful URE scheme. For simplicity of exposition,
however, we present our construction using a stateless URE scheme.
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3. Next, each party computes ye +- URE.Decode((Ct[xe]),,) and outputs y.

Finally, Pi updates its state to stj = ((C[xel),e,, ri).

2.8.5.4 Proof Sketch

It is easy to see that the above construction satisfies our desired efficiency. Specifically,

since the fth update phase involves the execution of a standard MPC protocol 7rmpc

to compute an update encoding (u)ur,,, it follows from the efficiency of URE that the

the size of the function fe computed by the MPC protocol is a fixed polynomial in

the size of jurj and the security parameter. It follows then from the efficiency of a

standard MPC that the total communication complexity of the Eth update phase is a

fixed polynomial in the size of juil and the security parameter.

Next, we argue security of our construction. We start with hybrid HO that cor-

responds to the real world experiment. In hybrid H1 we all the executions in 7mpc.

Note that here we still use the inputs and the updates of the honest parties. Finally,

in H 2 we simulate the output of each execution of 7rmpc, i.e., we simulate the URE

encoding (C[XO)ure and the update encodings (uf)u,, using the URE simulator who

is provided the outputs using the trusted party in the ideal world. This experiment

corresponds to the simulator's algorithm.

The indistinguishability of HO and H1 follows easily from the security of the MPC

protocol 7rmpc. The indistinguishability of H1 and H2 follows from the security of

URE. This completes our proof sketch.
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Chapter 3

The Inadequacy of CPA Security for

Proxy Reencryption

3.1 Introduction

Consider three parties: Alice, Bob, and Polly Proxy. Alice keeps encrypted data

(created with a public key) that she can decrypt with a secret key known only to her.

She wants to communicate some of the data to Bob, but not to Polly (nor anybody

else). Assuming Alice and Polly know Bob's public key, how can she communicate

the data to him?

If she is willing to entrust Bob with all her secrets, past and future, Alice might

try to tell Bob her secret decryption key by encrypting it using Bob's public key. We

call this the Trivial Scheme. A less trusting Alice can instead decrypt the data and

reencrypt it using Bob's public key. But what if Alice does not want to do the work

of decrypting and reencrypting large amounts of data?

Proxy reencryption (PRE) provides an elegant solution: Alice creates and gives

to Polly a reencryption key that will enable Polly to reencrypt her data under Bob's

public key for his use, but that will not reveal the data to Polly. Proxy reencryption

guarantees that Bob can recover the data uncorrupted (correctness) and that Polly

cannot learn anything about Alice's data (security). The most widely-studied model

Based on "What about Bob? The inadequacy of CPA security for proxy re-encryption" [Coh19].
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of security for proxy reencryption is called CPA security, named after the correspond-

ing notion from standard encryption on which it is based.

But what about Bob? As already observed, if we do not require any security

against Bob, proxy reencryption is trivial: Alice uses the Trivial Scheme, simply

sending Bob her encrypted secret key. This is undesirable, unsatisfying, and insuffi-

cient for a number of supposed applications of proxy reencryption (Section 3.2).

Surprisingly, the Trivial Scheme is a CPA secure proxy reencryption scheme when

the public key encryption scheme used is circularly secure [BHHO081! Bob completely

learns Alice's secret key, and circular security is used only to prove security against

a malicious Polly. Furthermore, the CPA-security of any proxy reencryption scheme

remains uncompromised if Polly attaches the reencryption key to every reencrypted

ciphertext sent to Bob, even though this would enable Bob to decrypt messages

encrypted under Alice's public key (Section 3.3.1).

These "constructions" of CPA-secure proxy reencryption demonstrate the inade-

quacy of CPA security for proxy reencryption. If they had been observed previously,

perhaps CPA security would not have gained the traction that it has.

Throughout this chapter, we use CPA (respectively, CCA and HRA) to refer to

the security notion for proxy reencryption, and Enc-CPA (resp., Enc-CCA) to refer

to the security notion for standard encryption. We restrict our attention to unidirec-

tional proxy reencryption, where the reencryption key allows Alice's ciphertexts to

be reencrypted to Bob's key, but not the reverse. In a bidirectional scheme, Bob

using his own secret key and Alice's public key- is able compute the Alice-to-Bob

reencryption key himself; thus a lack of security against Bob is inherent.

3.1.1 CPA and CCA Security of Proxy Reencryption

First considered by Blaze, Bleumer, and Strauss [BBS98b], proxy reencryption has

received significant and continuous attention in the last decade, including defini-

tions [ID03, AFGH06, CH07, NAL15b], number-theoretical constructions [ABHO9,

LV08, CWYD1O], lattice-based constructions [Gen09a, ABW+13, PWA+16, FL17,

implementations [LPK10, HHY11, PRSV17, BPR+171, and early success in program
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obfuscation [HRSV07, CCL+14.

Adapting notions from standard encryption, this literature considers two main

indistinguishability-based security notions for proxy reencryption: security under cho-

sen plaintext attacks (CPA) [ABH091 and chosen ciphertext attacks (CCA) [CH07].

While CCA security is considered the gold-standard, CPA security has received sig-

nificant attention [AFGH06, ABH09, HRSV07], especially in latticed-based construc-

tions [GenO9a, ABW+13, PWA+16, PRSV17]. CPA security has been used as a test-

ing ground for new techniques for proxy reencryption and in settings where efficiency

concerns make the added security of CCA undesirable.

We now briefly describe the definitions of CPA and CCA security for proxy reen-

cryption, with the goal of communicating the underlying intuition. For this informal

description, we restrict our attention to the limited three party setting of Alice, Bob,

and Polly and strip away many of the complexities of the full definition. For a full

definitions of CPA and CCA security, see Definitions 3.3.3 and 3.6.1 respectively.

Both notions are typically defined using a security game between an adversary

and a challenger in which the adversary's task is to distinguish between encryptions

of two messages. Both notions allow the adversary to corrupt either Bob (learning

skbob) or Polly (learning the reencryption key rk). CCA and CPA security differ in

the additional power granted to the adversary.

CCA security grants the adversary access to two oracles:

" ODec: The decryption oracle takes as input a ciphertext along with the public

key of either Alice or Bob, and outputs the decryption of the ciphertext using

the corresponding secret key.

" OReEnc: The reencryption oracle takes as input a ciphertext Ctalice and outputs

a reencrypted ciphertext Ctbb.

These oracles come with restrictions to prevent the adversary from simply reencrypt-

ing or decrypting the challenge ciphertext, adapting replayable chosen-ciphertext se-

curity of standard encryption (Enc-CCA) in the natural way.

189



CPA security of proxy reencryption, however, removes both oracles.1 Why? First,

to adapt chosen-plaintext security from standard encryption (Enc-CPA) to proxy

reencryption, we must of course do away with ODec. Secondly, it seems we must also

remove OReEnc: otherwise, by corrupting Bob it seems that the adversary can use the

combination of OReEnc and skbeb to simulate ODec. Removing both decryption and

reencryption oracles, according to lABH09], naturally extends the Enc-CPA security

to proxy reencryption, yielding CPA security.

As we observe in this thesis, a natural definition is not always a good definition.

Not only is the above intuition for removing OReEnc false (Theorem 3.6.4), but CPA

security as defined above guarantees little against a honest-but-curious Bob, even

under normal operation. The definition only requires that the adversary will not win

the game as long as it never sees any reencrypted ciphertexts. It guarantees nothing

if Bob sees even a single reencrypted ciphertext. This vulnerability is not purely

theoretical: in the CPA secure scheme of [PRSV17I, Bob can recover Alice's secret

key with significant probability from a single reencrypted ciphertext (Theorem 3.5.1).

This makes CPA security ill-suited for the most commonly cited applications of

proxy reencryption, including forwarding of encrypted email and single-writer, many-

reader encrypted storage (Section 3.2). CPA security is inadequate for proxy reen-

cryption and must be replaced.

3.1.2 Security Against Honest Reencryption Attacks

What minimal guarantees should proxy reencryption provide? First, it should offer

security against a dishonest proxy Polly when Alice and Bob are honest and using

the proxy reencryption as intended. Polly's knowledge of a reencryption key from

Alice to Bob (or vice versa) should not help her learn anything about the messages

underlying ciphertexts encrypted under pkaice or pkbO. Such security against the

corrupted proxy is guaranteed by CPA.

'This description is an oversimplification. In the many party setting, the adversary has access to
a reencryption oracle which will reencrypt ciphertexts between two uncorrupted parties or between
two corrupted parties, but not from an honest party to a corrupted party.
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Second, proxy reencryption should offer security against a dishonest receiver Bob

when Alice and Polly are honest and using the proxy reencryption as intended. Bob's

knowledge of honestly reencrypted ciphertexts (that were honestly generated to begin

with) should not help him learn anything about the messages underlying other ci-

phertexts encrypted under pkaiice that have not been reencrypted. As we show, such

security against the corrupted receiver is not guaranteed by CPA.

Generalizing these dual guarantees to many possibly colluding parties, we want

security as long as the adversary only sees honestly reencrypted ciphertexts. In Sec-

tion 3.4, we formalize this notion as proxy reencryption security against honest reen-

cryption attacks (HRA). Recall that CCA security provides the adversary with both

ODec and OReEnc while CPA provides neither oracle. In contrast, HRA security pro-

vides the adversary with a restricted reencryption oracle which will only reencrypt

honestly generated ciphertexts.

By guaranteeing security of both kinds described above, HRA is a strengthening

of CPA security that better captures our intuitions for security of proxy reencryp-

tion. Furthermore, HRA guarantees more meaningful security in the most common

applications of proxy reencryption (Section 3.4.1). HRA security is an appropriate

goal when developing new techniques for proxy reencryption and in settings where

full CCA security is undesirable or out of reach.

Security of existing schemes. Can we construct a proxy reencryption scheme

that is HRA secure? HRA security is a strict strengthening of CPA security,so it is

not immediately clear that any existing constructions are HRA secure without redoing

the proofs from scratch. Indeed, the CPA secure scheme of [PRSV17] is not HRA

secure (Theorem 3.5.1).

In Section 3.5, we identify a property- reencryption simulatablity -which is suf-

ficient to boost CPA security to HRA security. Very roughly, reencryption simulata-

bility means that ciphertexts resulting from computing ReEnc(rkaice'bob, Ctalice) can

be simulated without knowledge of the secret key skaiice (but with knowledge of the

plaintext message m). Reencryption simulatability allows a reduction with access
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to the CPA oracles to efficiently implement the honest reencryption oracle, thereby

reducing HRA security to CPA security.

We the examine the simple construction of proxy reencryption from any fully-

homomorphic encryption [Gen09a], and the pairing-based construction of [AFGH06].

In the first case, if the fully-homomorphic encryption secure is circuit private, then

the resulting proxy reencryption scheme is reencryption simulatable. In the second

case, rerandomizing reencrypted ciphertexts suffices for reencryption simulation. 2

3.1.3 Related Work

The below mentioned works are just the most directly relevant. There is by now an

extensive research literature on proxy reencryption, presenting a zoo of definitions.

There have been three main approaches to defining security: CPA, CCA, and (to a

much lesser extent) obfuscation-based. The CPA notion, in one form or another, is

by far the most well studied. We make the deliberate choice to address the core CPA

definition, not to present an ultimate definition of security for proxy reencryption nor

to address the vast array of different criticisms or strengthenings of CPA security that

have been or may be considered. We hope that doing so will make these ideas more

understandable and adaptable.

3.1.3.1 RIND-CPA Security

In concurrent and independent work defining and constructing forward-secure proxy

reencryption, Derler, Krenn, Lorinser, Ramacher, Slamanig, and Striecks identify the

same problem with CPA security as discussed in this chapter [DKL+18, Definition

14]. As in our work, they address the problem with CPA security by defining a new

security notion-RIND-CPA security-which expands the power of the adversary.

They additionally separate RIND-CPA and CPA security with a construction that is

essentially our Concatenation Scheme.

However, this is where the resemblance between [DKL+18] and our work ends.

2While we don't examine every pairing-based construction of proxy reencryption, we suspect that
rerandomizing reencryption will suffice for reencryption simulation in many, if not all.
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In the RIND-CPA game offered by [DKL+18I, the adversary gets access to an reen-

cryption oracle that works on all inputs (not just honestly generated ones), but only

before the challenge ciphertext is generated. 3 In contrast, HRA allows reencryption

both before and after the challenge, but only for honestly generated ciphertexts.

RIND-IND is inadequate as a replacement for CPA security in the research liter-

ature: its usefulness in applications is unclear, and it appears too strong to provide

a useful testing ground for the development of new techniques for constructing proxy

reencryption.

In the course of normal operation of a proxy reencryption in applications, an

adversarial party will typically see many reencrypted ciphertexts. These ciphertexts

may come at any time-both before and after other ciphertexts whose contents should

remain secret. HRA is meaningful in many such applications-many more than CPA

security. But because RIND-CPA restricts the reencryption oracle to the period

before the challenge ciphertext, its usefulness in applications is not clear.

The challenge of proving CCA security for encryption (proxy or otherwise) is

demonstrating that an adversary cannot use dishonestly generated, malformed ci-

phertexts to win in the security game. In this respect, RIND-CPA security is much

more akin to CCA security than to CPA security. HRA, on the other hand, makes

minimal assumptions about the distribution of plaintext messages by allowing the

adversary to choose messages itself, just as in Enc-CPA for standard encryption.

Appendix 3.7 discusses RIND-CPA security in more depth, expanding on the

arguments above and proving that RIND-CPA and HRA security are incomparable.

3.1.3.2 Subsequent Work

Two subsequent works continue the study of HRA secure proxy reencryption. Fuchs-

bauer, Kamath, Klein, and Pietrzak study CPA and HRA secure proxy reencryption

in an adaptive corruption model [FKKP18]. As in our work, they prove the HRA

security of their construction by first proving CPA security and then lifting it to full

HRA security using a version of reencryption simulatability.

3 Appendix 3.6 discusses the related definition of ind-ccao, security from [NAL15b]
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More recently, Dottling and Nishimaki study the problem of converting cipher-

texts between different public-key encryption schemes, a problem they call universal

proxy reencryption [DN18]. They define security by extending HRA security to the

universal setting. [DN18] extends Theorem 3.5.3 to show that a computational version

of reencryption simulatability suffices to lift CPA to HRA security. However, they

prove HRA security directly rather, finding that proving computational reencryption

simulatability is not much more simple than proving HRA security itself.

3.1.3.3 Other Related Work

Our dual-guarantee conception of proxy reencryption security mirrors the security

requirements of what Ivan and Dodis call CPA security [ID03J. Their notion differs

substantially from what is now referred to by that name. The [ID03] conception of

CPA security is only defined in a proof in the appendix of that work and seems to

have been completely overlooked by the later works proposing the modern notion of

CPA security (beginning with [AFGH06] and then in its present form in [ABH09]). If,

however, Ivan and Dodis had undertaken to revisit proxy reencryption after [ABH09],

they might have proposed a security definition similar to HRA.

In [NAL15b], Nufiez, Agudo, and Lopez provide a parameterized family of CCA-

type attack models for proxy reencryption. Their weakest model corresponds to CPA

security and their strongest to full CCA security. That work is partially a response to

a claimed construction of CCA-1 secure proxy reencryption in a security model that

does not allow reencryption queries. [NAL15b] provide an attack on the construction

in the presence of a reencryption oracle consisting of carefully constructed, dishonestly

generated queries which leak the reencryption key. They do not consider restricting

the reencryption oracle in the security game to honestly generated ciphertexts. We

discuss [NAL15b] further in Appendix 3.6.3.

In an independent work [LPZ19], Liu, Pan, and Zhang discover an HRA-style

vulnerability in an NTRU based proxy reencryption scheme proposed in [NAL15a].

They show that a recipient of many honestly reencrypted ciphertexts can recover the

sender's secret key.
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A parallel line of work initiated by Hohenberger, Rothblum, shelat, Vaikun-

tanathan which studies proxy reencryption using an obfuscation-based definition that

is incomparable to CPA security [HRSV07]. Their definition requires that the func-

tionality of the obfuscated reencryption circuit be statistically close to that of the ideal

reencryption functionality: namely, that ReEnc(rkiaj, Enc(pki, m)) ~, Enc(pk,, m).

Thus the definition of [HRSV07] (and even the relaxed correctness found in [CCL +141)

imply reencryption simulatability defined in Section 3.5.

OBF CPA HRA CCA

Reenc Sim + {
RIND-CPA

Figure 3-1: Summary of relationships between various security notions. Plain ar-
rows denote implications and slashed arrows denote separations. OBF refers to the
obfuscation-based notion of [HRSV07] and Reenc Sim refers to Definition 3.5.2. The
separation between RIND-CPA and HRA assumes the existence of a special FHE
scheme. CPA and Reenc Sim together imply HRA. Whether CCA implies HRA is
unknown.

Organization

We begin by discussing applications of proxy reencryption and identifying the weak-

nesses of CPA security in those applications (Section 3.2). Then we present the

existing CPA security definition and further demonstrate its weaknesses with two

new schemes: the Trivial Scheme and Concatentation Scheme (Section 3.3). We pro-

pose a new security notion to overcome those weaknesses: security against honest

reenecryption attacks (HRA) (Section 3.4). We examine the relationship between

CPA and HRA security and the HRA security (or insecurity) of existing reencryp-

tion schemes (Section 3.5). Finally, discuss HRA security's relation to CCA security

(Section 3.6) and RIND-CPA security (Section 3.7).
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3.2 Insufficiency of CPA Security for Applications

In Section 3.3, we recall the definition of CPA security of proxy reencryption from

[ABH09] and formalize the Trivial Scheme from the introduction satisfying the notion.

In the Trivial Scheme, Bob learns Alice's secret key after receiving a single reencrypted

ciphertext.

We are faced with a choice: accept the existing definition of CPA security, or

reject it and seek a definition that better captures our intuitions. In support of the

latter, we describe a number of applications of proxy reencryption proposed in the lit-

erature for which CPA security (as implemented by the Trivial Scheme) is potentially

unsatisfactory, but for which full CCA security may not always be necessary. 4 We

revisit these applications in Section 3.4.1 after proposing our new security notion.

Encrypted Email Forwarding [BBS98b, Jak99, AFGH06]. Forwarding of en-

crypted email without requiring the sender's participation might be desirable for

temporary delegation during a vacation [Jak99 or for spam filtering [AFGH06].

Does the Trivial Scheme suffice? The Trivial Scheme enables Bob, the receiver

of Alice's forwarded (and reencrypted) email, to recover Alice's secret key. If

Alice trusts Bob enough to use the Trivial Scheme, she could instead reveal

her secret key. The Trivial Scheme might be preferable in very specific trust

or interaction models, but it does not offer meaningful security against Bob if

Alice only wishes to forward a subset of emails (for example, from particular

senders or during a specific time period).

Key Escrow [ID03J. Similar to email forwarding, Ivan and Dodis describe the ap-

plication of key escrow as follows: "The problem is to allow the law enforcement

agency to read messages encrypted for a set of users, for a limited period of

time, without knowing the users' secrets. The solution is to locate a key escrow

4We might also appeal for support to [ID031, the only paper in the proxy reencryption literature
of which we are aware adopting a security definition providing a reencryption oracle without a
decryption oracle. One could look to the originators of proxy reencryption for guidance, but the
shortcoming we identify does not manifest in the original setting of [BBS98b] (there is only Alice
and Bob; there is no Proxy). It is therefore of little help.
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agent between the users and the law enforcement agency, such that it controls

which messages are read by the law enforcement agencies." As in email for-

warding, the "for a limited period of time" requirement suggests that Ivan and

Dodis would not have been satisfied with the Trivial Scheme. 5

Single-Writer, Many-Reader Encrypted Storage [AFGH06, KHP06, LPK10,

PRSV17]. Under different monikers (including DRM and publish/subscribe

systems), these works describe systems in which a single privileged writer en-

crypts data and determines an access control policy for readers. A semi-honest

proxy server is entrusted with reencryption keys and is tasked with enforcing

the access control policy. Whether the Trivial Scheme suffices for these appli-

cations depends on what sort of access control policies are envisioned. If the

access is all or nothing (i.e., all readers may access all data), the Trivial Scheme

suffices; if the access is fine grained (i.e., each reader may access only a specific

subset of the data), then it does not. Existing works are often unclear on which

is envisioned.

For completeness, we mention that CPA security does suffice for two important ap-

plications of proxy reencryption: namely, key rotation for encrypted cloud storage

[BLMR13a, EPRS171 and bootstrapping fully homomorphic encryption [GenO9a].

3.3 Security Against Chosen Plaintext Attacks

In this section, we recall the definition of CPA security for proxy reencryption and

illustrate its shortcomings. We begin with the definitions of syntax, correctness,

and CPA security from [ABHO9, Definition 2.2] (with minor changes in notation and

5 Note that Ivan and Dodis do not adopt the CPA definition used elsewhere, but a definition much
closer to our own. There is no gap between their security guarantees and the requirements of their
briefly-described application.

Though primarily focused on the setting where the key escrow agent enforces the limited time
requirement by eventually refusing to reencrypt, [ID03] considers the possibility of dividing time into
epochs and enforcing the time limitation technically. Such a proxy reencryption is called temporary
in [AFGH06]. We do not discuss temporary proxy reencryption further.
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presentation, and the change noted in Remark 3.3.5 at the end of this subsection). The

syntax and correctness requirements are common to CPA, HRA, and CCA security.

For the sake of concreteness, simplicity, and brevity, we restrict the discussion to

unidirectional, single-hop schemes. In multi-hop schemes, reencryption keys rkA1B

and rkBc can be used to reencrypt a ciphertext CtA from pkA to pk0 . In single-hop

schemes, they cannot. Single-hop or multi-hop schemes each have their benefits and

drawbacks, and works typically focus on one or the other notion.6 To the best of our

knowledge, our observations and results can all be adapted to the multi-hop setting.

Definition 3.3.1 (Proxy Reencryption: Syntax [ABH09]). A proxy reencryption

scheme for a message space M is a tuple of algorithms PRE = (Setup, KeyGen,

ReKeyGen, Enc, ReEnc, Dec):

SETUP: pp <- Setup(1A) takes as input the security parameter in unary; it outputs

the public parameters pp.

KEY GENERATION: (pk,sk) +- KeyGen(pp) takes as input the public parameters; it

outputs a public key pk and a secret key sk. For ease of notation, we assume

that both pk and sk include pp and refrain from including pp as input to other

algorithms.

REENCRYPTION KEY GENERATION: rki_,g -+ ReKeyGen(ski, pkj) takes as input a

secret key ski and a public key pkj, where i :L j, the reencryption key generation

algorithm; it outputs a reencryption key rki_,.

6 The literature is divided about whether "single-hop" is merely a correctness property (i.e., able
to reencrypt at least once, but agnostic about whether reencrypting more than once is possible) or
if it is also a security property (i.e., a ciphertext can be reencrypted once, but never twice). This
distinction manifests in the security definition. In works that consider only single-hop correctness
[AFGH06, ABH09, HRSV07, NAL15b], the oracle OReKeyGen in the security game will not accept
queries from honest users to corrupted users (i.e., (i, j) such that i E Hon and j E Cor). We adopt
this formalism in Definitions 3.3.3 and 3.4.1 for simplicity of presentation only.

In works that consider single-hop security [LV08, CWYD10, FL17], the oracle will answer such
queries, but the challenge ciphertext must be encrypted under the key of an honest user i* for which
no such reencryption key was generated (which can be formalized in a number of ways).

We adopt the simplest model, requiring only one hope of correctness, but neither requiring nor
forbidding additional functionality.
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ENCRYPTION: cti <- Enc(pki, m) takes as input a public key pki and a message m E

M; it outputs a ciphertext cti.

REENCRYPTION: ctj <- ReEnc(rkisj, cti) takes as input an i-to-j reencryption key

rkinj and a ciphertext cti; it outputs a ciphertext ctj or the error symbol I.

DECRYPTION: m <- Dec(skj, ctj) takes as input a secret key skj and a ciphertext ctj;

it outputs a message m E M or the error symbol I.

Definition 3.3.2 (Proxy Reencryption: Correctness [ABH09]). A proxy reencryption

scheme PRE is correct with respect to message space M if for all A c N, pp <-

Setup(1A), and m E M:

o For all (pk, sk) <- KeyGen(pp):

Dec(sk, Enc(pk, m)) = m.

o For all (pki, ski), (pkj, skj) ÷- KeyGen(pp), rkiej *- ReKeyGen(ski, pkj):

Dec(skj, ReEnc(rkisj, Enc(pki, m))) = m.

Security is modeled by a game played by an adversary A. A has the power to

corrupt a set of users Cor (learning their secret keys) while learning only the public

keys for a set of honest users Hon. Additionally, A may reencrypt ciphertexts (either

by getting a reencryption key or calling a reencryption oracle) between pairs of users

in Hon or in Cor, or from Cor to Hon, but not from Hon to Cor. This is in contrast

to the simplified three-party setting discussed in the introduction, where the A could

not reencrypt whatsoever.

Definition 3.3.3 (Proxy Reencryption: Security Game for Chosen Plaintext Attacks

(CPA) [ABH09]). Let A be the security parameter and A be an oracle Turing machine.

The CPA game consists of an execution of A with the following oracles. The game

consists of three phases, which are executed in order. Within each phase, each oracle

can be executed in any order, poly(A) times, unless otherwise specified.
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Phase 1:

SETUP: The public parameters are generated and given to A. A counter numKeys is

initialized to 0, and the sets Hon (of honest, uncorrupted indices) and Cor (of

corrupted indices) are initialized to be empty. This oracle is executed first and

only once.

UNCORRUPTED KEY GENERATION: Obtain a new key pair (pknumKeys, sknumKeys) *~

KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added to

Hon and numKeys is incremented.

CORRUPTED KEY GENERATION: Obtain a new key pair (pknumKeys, sknumKeys) +- KeyGen(pp)

and given to A. The current value of numKeys is added to Cor and numKeys is

incremented.

Phase 2: For each pair ij < numKeys, compute the reencryption key rkij <-

ReKeyGen(ski, pkj).

REENCRYPTION KEY GENERATION OReKeyGen: On input (i, j) where i, j < numKeys,

if i = j or if i E Hon and j C Cor, output I. Otherwise return the reencryption

key rkisj.

REENCRYPTION OReEnc: On input (ij, cti) where i,j < numKeys, if i = j or if

i E Hon and j E Cor, output I. Otherwise return the reencrypted ciphertext

ReEnc(rkiej, cti).

CHALLENGE ORACLE: On input (i, mo, mi) where i E Hon and m, mi E M, sample

a bit b - {0, 1} uniformly at random, and return the challenge ciphertext ct* <

Enc(pk, Mnb). This oracle can only be queried once.

Phase 3:

DECISION: On input a bit b' 0 {, 1}, return win if b = b'.
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The CPA advantage of A is defined as

Adva(A) Pr[win],

where the probability is over the randomness of A and the oracles in the CPA game.

Definition 3.3.4 (Proxy Reencryption: CPA Security [ABH091). Given a secu-

rity parameter 1A , a proxy reencryption scheme is CPA secure if for all probabilistic

polynomial-time adversaries A, there exists a negligible function negl such that

1
Adv (A) < 2 + negi (A)

Remark 3.3.5. Another definitional subtlety of proxy reencryption worth discussing

affects not just CPA security, but HRA and CCA security as well. Consider the spec-

ification of OReKeyGen and OReEnc in Definition 3.3.3. As defined, the reencryption keys

rkij are persistent: the same key is used each time a pair (i, J) is queried. This fol-

lows fABH09, Definition 2.51 and [ABW+13, FL171, though we find our formalization

somewhat simpler.

Contrast this with [ABH09, Definition 2.2] in which reencryption keys are ephemeral:

they are generated afresh each time either oracle is invoked on the same pair (i,j).

[BLMR13a, PWA+16, CH071 similarly use ephemeral keys in their definitions. In

the remaining papers we examined, it was less clear whether reencryption keys were

ephemeral or persistent.

Neither definition implies the other; any scheme secure with persistent keys can

be modified into one that is insecure with ephemeral keys, and vice-versa. The def-

initions, however, are not in serious tension; any scheme secure with persistent keys

and having deterministic ReKeyGen is also secure with ephemeral keys, and ReKeyGen

can in general be derandomized using pseudorandom functions. Of course, one can

easily define a hybrid notion stronger than both by allowing the adversary to specify

for each query whether it wants to use reencryption keys that are new or old.

We adopt the persistent formalization as it better captures 'typical' use. To the
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best of our knowledge, all our claims can be adapted to the ephemeral setting.

Remark 3.3.6. The power of the adversary above can be strengthened by allowing

adaptive corruptions instead of dividing the game into phases. Our definitions of

CPA and HRA security follow the convention of [ABH09] primarily because it is most

common in the research literature. For an examination of CPA and HRA security

in the adaptive setting, see the subsequent work of Fuchsbauer, Kamath, Klein, and

Pietrzak [FKKP18]. Adaptive-secure, bidirectional, CCA secure proxy reencryption

has been studied in ICH07, NAL15b].

3.3.1 Concatenation Scheme and Trivial Scheme

The weakness of CPA security lies in the specification of OReEnc, which does not

reencrypt any ciphertexts from honest to corrupt users. Said another way, OReEnc

reencrypts between only those pairs keys for which OReKeyGen outputs a reencryption

key (rather than returning _). We now describe two schemes that are CPA secure,

but are insecure against a dishonest receiver of reencrypted ciphertexts. In both

schemes, a single ciphertext reencrypted from an honest index to a corrupted index

enables the decryption of messages encrypted under the honest index's public key.

3.3.1.1 Concatenation Scheme

Let PRE = (Setup, KeyGen, Enc, Dec, ReKeyGen, ReEnc) be a CPA-secure proxy reen-

cryption scheme. Define a new scheme by modifying only reencryption and decryp-

tion:

ReEnc'(rk,ct) := ReEnc(rk,ct)lHrk

Dec'(sk, ct) := Dec(sk, ct') if ct = ct' |ct 2

Dec(sk, ct) otherwise

Theorem 3.3.7. Let PRE = (Setup, KeyGen, Enc, Dec, ReKeyGen, ReEnc) be a CPA-

secure proxy reencryption scheme. The corresponding Concatenation Scheme PRE' =

(Setup, KeyGen, Enc, Dec', ReKeyGen, ReEnc') is a CPA-secure proxy reencryption scheme.
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Proof. For any probabilistic, polynomial-time algorithm A' (the CPA adversary against

PRE'), we construct an efficient algorithm A such that Adv A - Adv a. By the CPA

security of PRE, this advantage is negligible, completing the proof.

A runs A' and simulates the CPA security game for PRE' (if A' does not follow

the specification of the game, A simply aborts). Except for calls to OReEnc, all oracle

calls by A' are passed along unaltered by A, along with their responses.

A begins Phase 2 by requesting all admissible reencryption keys rkisj from its

own reencryption key generation oracle. To answer oracle calls from A' to OReEnc,

A first queries its own reencryption oracle, which returns ct'. If ct' = I, then A'

returns _L. Otherwise, A' concatenates the appropriate reencryption key rk to form

the new ciphertext ct - ct'llrk. This is possible because if ct 1  1 , then A is able to

get the corresponding reencryption key at the beginning of Phase 2.

A perfectly implements the CPA security game for PRE', and A' wins that game

if and only if A wins the corresponding game for PRE. Therefore, AdvA = Adv A.
cpa cpa.

Finally, the running time of A is polynomially related to that of A'. El

3.3.1.2 The Trivial Scheme

While the Concatenation Scheme builds upon any CPA-secure proxy reencryption

scheme, the Trivial Scheme presented next makes use of public-key encryption en-

joying circular security. Informally, circular security guarantees that encryptions of

messages that are a function of the secret key(s) are as secure as encryptions of mes-

sages that are independent of the secret key(s), a security property that does not

follow from standard semantic security.

In the Trivial Scheme, the reencryption key from party i to j is simply rki =

Enc(pkj, ski). CPA security of the resulting proxy reencryption scheme requires se-

curity against an adversary who has both rkiej and rkj÷i. This requires that the

underlying encryption scheme is circular secure.

Because existing definitions and constructions of circular secure encryption schemes

based on standard assumptions (e.g., [BHHO08] from DDH) require a bound on the

total number of public keys n, the corresponding Trivial Scheme will only satisfy a
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bounded-key variant of CPA security. Any circular secure encryption scheme without

this limitation would yield a Trivial Scheme secure according to Definition 3.3.4.

This section establishes the security of the Trivial Scheme for proxy reencryption.

We present the construction, state the theorem, define circular security, and finally

prove the theorem.

Let (KeyGencirc, Encirc, Deccirc) be an public key encryption scheme. Let Setup I _,

KeyGen _ KeyGencic; Enc _ Enccirc;

ReKeyGen(ski, pk3 ) := Enccirc(pkj, ski)

ReEnc(rkisj, cti) := ctjllrki-+

Dec(sk, ct) Deccirc(Deccirc(sk, ct2 ), ct1 ) if ct - Ct lct2

Deccirc(sk, ct) otherwise

Theorem 3.3.8. If (KeyGencirc, Enccirc, Deccirc) is n-way circularly secure, then the

corresponding Trivial Scheme PRE is an n-way CPA secure proxy reencryption scheme.7

The following description and definition of circular security is adapted with slight

modification from [BH-1008]. Let (KeyGen, Enc, Dec) be a public-key encryption

scheme with key space IC and message space M such that IC C M. Let n > 0

be an integer and let C be the set of functions C ={f : /C -+ M} consisting of

" all IM I constant functions fm(z) = m for all z E KIn, and

" all n selector functions fi(X 1, ... , X,) = xi for 1 < i < n.

We define circular security using the following game between a challenger and an

adversary A. For an integer n > 0 and a security parameter A, the game proceeds as

follows:

INITIALIZATION: The challenger chooses a random bit b +- {0, 1}. It generates

(pk1 , ski),.. . , (pk, skn) by running KeyGen(1A) n times, and sends (pkj,...,

pkn) to A.

'In fact, the proof extends the case when there are n uncorrupted keys and any number of
corrupted keys.
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QUERIES: The adversary repeatedly issues queries where each query is of the form

(i, f) with 1 < i < n and f E C. The challenger responds by setting y =

f (ski,. .. , sk,) and sends ct to A, where

Enc(pki, y) if b = 0
ct <-

Enc(pki,01II) if b= 1

FINISH: Finally, the adversary outputs a bit b' E {0, 1}.

We say that A wins the game if b = b'. Let win be the event that A wins the game

and define A's advantage as

Advrc,n(A) = Pr[win].

Definition 3.3.9 (n-Circular Security). We say that a public-key encryption scheme

(KeyGen, Enc, Dec) is n-way circular secure if for all probabilistic polynomial time

adversaries A, there exists a negligible function negi such that

1
Advircn(A) < + negl(A).

Because existing constructions of circularly secure encryption schemes based on

standard assumptions require a bound on the total number of public keys n, the

corresponding Trivial Scheme will only satisfy a bounded-key variant of CPA security,

defined next.

Definition 3.3.10 (Proxy Reencryption: n-CPA Security ). For n E N, the n-CPA

security game is identical to the CPA security game in Definition 3.3.3 except for

the following underlined modifications. Recall that numKeys is initialized to 0 and is

incremented after every key generation call in the security game.

UNCORRUPTED KEY GENERATION: If numKeys = n, return I. Otherwise, obtain a

new key pair (pki,ski) <- KeyGen(pp). A is given pki. The current value of

numKeys is added to Hon and numKeys is incremented.
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CORRUPTED KEY GENERATION: If numKeys = n, return _. Otherwise, obtain a new

key pair (pki, ski) -- KeyGen(pp). A is given (pki, ski). The current value of

numKeys is added to Cor and numKeys is incremented.

The corresponding n-CPA advantage of A is denoted Adva,(A). A proxy reencryp-

tion scheme is n-CPA secure if for all probabilistic polynomial-time adversaries A,

there exists a negligible function negl such that

AdvA (A) < 2 + negl(A)

of Theorem 3.3.8. For all n c N and any probabilistic, polynomial-time algorithm A

(the adversary against the trivial scheme), we construct an efficient algorithm Acirc

such that AdvA r - AdvA By the hypothesis, this advantage is negligible,circ,ri 2 cpa,n

completing the proof.

At the beginning of the game, the circular security challenger picks a random bit

b. If b = 0, then the Queries oracle encrypts all messages correctly; if b = 1, then

the Queries oracle encrypts only the message 0. Acirc runs A and simulates the CPA

security game for PRE (if A does not follow the specification of the game, Acirc simply

aborts).

At the start of Phase 1, Acirc calls its Initialization oracle in the circular security

game. In return it receives the public keys (pkrc, . pk' ) To answer an Uncor-

rupted Key Generation query, Acirc gives to A the first unused public key pkirc from

this list. To answer a Corrupted Key Generation query, Acirc generates a new key

pair (pk, sk) +- KeyGen and gives (pk, sk) to the adversary.

A begins Phase 2 by using its Queries oracle to learn the reencryption keys for

all pairs of uncorrupted keys generated. Using its knowledge of the corrupted secret

keys, it also computes reencryption keys for all the pairs of corrupted keys generated.

Oracle calls from A to OReKeyGen are answered with the corresponding reencryption

key (or with 1). To answer oracle calls from A to OReEnc, computes the appropriate

response; namely, it concatenates the reencryption key to the ciphertext (or returns

I ).
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At some point, A queries the Challenge oracle with an honest key index i and a

pair of messages (mo, mi). Acirc chooses a random one of the messages m and queries

its own Queries oracle with the pair (i, m), returning the resulting ciphertext to A.

Finally, A guesses whether m = mo or m1 . If A guesses correctly, Acirc guesses

the bit b' = 0. Otherwise, Acirc guesses a random b' <- {0, 1}. Conditioned on b = 0,

Acirc perfectly simulates the PRE security game, and guesses b' = 0 with probability

Advin. It follows that Adv = 1 - Adv .
pancirc,n 2 cpa,n

3.4 Security Against Honest Reencryption Attacks

We seek a definition of security which holds as long as the adversary only sees honestly

reencrypted ciphertexts, unless the set of corrupt parties can trivially violate security

(by some chain of reencryption keys from an uncorrupted public key to a corrupted

public key).

We term this notion security against honest reencryption attacks (HRA). To for-

malize it, we model the ability of an adversary to see honest reencryptions by granting

it access to a modified reencryption oracle OReEnc. Instead of taking a ciphertext as

input, the modified OReEnc takes as input a reference to a previously generated ci-

phertext (either as the output of 0 Enc or OReEnc itself).

To implement such an oracle, we introduce to the security game a key-value store

C as additional state: the values are ciphertexts ct which are keyed by a pair of

integers (i, k), where i denotes the index of the key pair (pki, ski) under which ct was

(re)encrypted, and k is a unique index assigned to ct.

As described, this new OReEnc admits a trivial attack: simply reencrypt the chal-

lenge ciphertext to a corrupted key and decrypt. To address this issue, we adapt

an idea from [CH07]'s definition of CCA security: we rule out the trivial attack by

storing a set Deriv of ciphertexts derived from the challenge by reencrypting, and

rejecting queries to OReEnc for ciphertexts in Deriv and a corrupted target key. We

might have instead chosen to forbid any reencryptions of the challenge ciphertext,

even between uncorrupted keys. Though this would have simplified the definition, it
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would have been unsatisfactory. For example, in the single-writer, many-reader en-

crypted storage application the contents of a message m that gets reencrypted from

Alice to Charlie should be hidden from Bob.

We now present the honest reencryption attacks security game. The game is

similar to the CPA security game with some modifications to Setup, Challenge, and

OReEnc, and the addition of an Enc oracle OEnc to Phase 2. OEnc may be executed

poly(A) times and in any order relative to the other oracles in Phase 2. For the sake

of clarity we reproduce the full game below and mark the modified oracles with a * .

Definition 3.4.1 (Proxy Reencryption: Security Game for Honest Reencryption

Attacks (HRA)). Let A be the security parameter and A be an oracle Turing machine.

The HRA game consists of an execution of A with the following oracles.

Phase 1:

* SETUP: The public parameters are generated and given to A. A counter numKeys

is initialized to 0, and the sets Hon (of honest, uncorrupted indices) and Cor (of

corrupted indices) are initialized to be empty.

Additionally the following are initialized: a counter numCt to 0, a key-value

store C to empty, and a set Deriv to be empty. This oracle is executed first and

only once.

UNCORRUPTED KEY GENERATION: Generate key (pknumKeys, SknumKeys) +- KeyGen(pp)

and give pknumKey, to A. The current value of numKeys is added to Hon and

numKeys is incremented.

CORRUPTED KEY GENERATION: Generate keys (pknumKeys, sknumKeys) <- KeyGen(pp)

and give it to A. The current value of numKeys is added to Cor and numKeys

is incremented.

Phase 2: For each pair ij < numKeys, compute the reencryption key rk&j +-

ReKeyGen(ski, pk ).
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REENCRYPTION KEY GENERATION OReKeyGen: On input (i, j) where i, j < numKeys,

if i = j or if i E Hon and j E Cor, output I. Otherwise return the reencryption

key rkisj.

* ENCRYPTION CEnc: On input (i, m), where i < numKeys, compute ct +- Enc(pki, m)

and increment numCt. Store, the value ct in C with key (i, numCt). Return

(num Ct, ct).

* CHALLENGE ORACLE: On input (i, m, mi) where i E Hon and m, m, E M, sam-

ple a bit b <- {O, 1} uniformly at random, compute the challenge ciphertext

ct* +- Enc(pki, mb), and increment numCt. Add numCt to the set Deriv. Store

the value ct* in C with key (i, numCt). Return (numCt, ct*). This oracle can

only be queried once.

* REENCRYPTION OReEnc: On input (i, j, k) where i, j < numKeys and k < numCt, if

j E Cor and k E Deriv return I. If there is no value in C with key (i, k), return

I .

Otherwise, let cti be that value in C, let ctj +- ReEnc(rk og, cti), and increment

numCt. Store the value ctj in C with key (j, numCt). If k E Deriv, add numCt

to the set Deriv.

Return (numCt, ctj).

Phase 3:

DECISION: On input a bit b' E {0, 1}, return win if b = b'.

The HRA advantage of A is defined as

Adva(A) Pr[win],

where the probability is over the randomness of A and the oracles in HRA game.
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Definition 3.4.2 (Proxy Reencryption: HRA Security ). Given a security parameter

V , a proxy reencryption scheme is HRA secure if for all probabilistic polynomial-time

adversaries A, there exists a negligible function negi such that

A 1
AdVha (A) < - + negi (A)

The Concatenation Scheme demonstrates that CPA security does not necessarily

imply HRA security. Together with following theorem, we see that HRA security is

a strict strengthening of CPA security.

Theorem 3.4.3. Let PRE be an HRA secure proxy reencryption scheme. Then PRE

is CPA secure.

Proof. From any probabilistic, polynomial-time algorithm A (the CPA adversary),

we construct an efficient algorithm A' such that AdvA' = AdvdPA. By the HRA

security of PRE this advantage is negligible, completing the proof.

A' runs A and simulates the CPA security game (if A does not follow the speci-

fication of the CPA security game, A' simply aborts). Except for calls to OReEnc, all

oracle calls by A' are passed along unaltered by A to the corresponding HRA oracles,

along with their responses.

A' begins Phase 2 by requesting all (admissible) reencryption keys rkey from

OReKeyGen- racle calls from A to OReEnc are answered by A' by computing the reencryp-

tion using the appropriate reencryption key; this is possible because OReEnc returns

I if and only if A' is unable to get the corresponding reencryption key.

A' prefectly implements the CPA security game, and A wins that game if and

only if A' wins the HRA security game. Therefore AdvA' = AdvdPA. Finally, the

running time of A' is polynomially related to the that of A. E

3.4.1 Sufficiency of HRA Security for Applications

Returning to the applications of proxy reencryption described in Section 3.2, we

observe that HRA security provides substantially stronger security guarantees.
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Encrypted email forwarding Using proxy reencryption with HRA security, Alice

can forward encrypted email to Bob for a short period of time (during a vacation,

say) and be sure that Bob cannot read her email after she returns.

Key escrow Similar to encrypted email forwarding, proxy reencryption with HRA

can be used to enable law enforcement to read certain encrypted messages with-

out compromising the secrecy of documents outside the scope of a search warrant

or subpoena, for example.

Single-writer, many-reader encrypted storage Whereas proxy reencryption with

CPA security can only support all or nothing access (i.e., all readers may access

all data), HRA security can support fine grained access control (i.e., each reader

may access only a specific subset of the data).

There is no question that HRA does not provide as much security as CCA, and that

CCA-secure proxy reencryption would yield more robust applications. HRA security,

however, can provide meaningful guarantees in the above applications.

Encrypted email forwarding If Alice is forwarding all emails to Bob, then Bob

could certainly mount an attack outside the honest reencryption model. On the

other hand, if Alice is forwarding only those emails from a third-party sender

Charlie, then such an attack is impossible without the involvement of Charlie

(supposing of course that the sender of an email can be authenticated).

Key escrow The hypothetical legal regime that establishes the government's power

of exceptional access by way of key escrow could additionally prohibit the gov-

ernment from mounting chosen-ciphertext attacks. In the United States, a

Constitutional argument could perhaps be made that law-enforcement use of

chosen-ciphertext attacks must be limited.

Single-writer, many-reader encrypted storage The only ciphertexts being reen-

crypted are those uploaded by the single-writer to the proxy server (hence the

name). It is by no means a stretch to require that the proxy server does not
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allow writes by unauthorized parties (i.e., the readers). If the honest writer only

uploads honestly generated ciphertexts, HRA is appropriate.

3.5 Security of Existing CPA Secure Schemes

Can we construct HRA-secure proxy reencryption? The most natural place to begin

is with existing CPA secure schemes.

We begin by demonstrating that the construction of [PRSV17] is not HRA secure.

Although CPA security is strictly weaker than HRA security, we might hope that the

existing CPA secure schemes already satisfy the more stringent definition. To this

end, we identify a natural property- reencryption simulatability -sufficient to boost

CPA security to HRA security.8

We examine the simple construction of CPA secure proxy reencryption from any

fully-homomorphic encryption (FHE) presented in [Gen09a]. While the resulting

proxy reencryption may not be HRA secure in general, if the FHE is circuit private-

a property Gentry imbues into his FHE by rerandomization-the same construction

will be HRA secure. We then examine pairing-based schemes, finding there too that

rerandomization provides a direct path to HRA security. 9

3.5.1 HRA Insecurity of [PRSV17]

Though it is easy to construct CPA secure encryption schemes that are not HRA

secure, the question remains whether any previously proposed schemes fail to sat-

isfy HRA security. In this section, we show that the construction of Polyakov,

Rohloff, Sahu, and Vaikuntanathan [PRSV17, Section 5] is one such scheme. Their

construction is based on a public key encryption scheme of Brakerski and Vaikun-

tanathan [BV11] and is CPA secure assuming the hardness of Ring Learning With

8Some existing notions in the proxy reencryption literature seem powerful enough to elevate
CPA security to HRA security, including proxy invisibility [AFGH06], unlinkability [FL17], and
punctured security [ACJ17]. However, these notions are not sufficiently well defined to draw any
concrete conclusions. The notion of key-privacy [ABH09] does not in general suffice for HRA security.

9While we do not examine every pairing-based construction of proxy reencryption, we suspect
that rerandomizing reencryption will suffice for reencryption simulation in many, if not all.
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Errors (RLWE).

As with the Trivial and Concatenation schemes, the HRA attack is simple yet

severe: any single honestly generated ciphertext enables the recipient Bob to recover

the sender Alice's secret key with significant probability.

Theorem 3.5.1. The proxy reencryption scheme of /PRSVi 7, Section 5] is not HRA

secure.

Proof. Except where noted, the notation used below is consistent with [PRSV171; we

restrict our description to those facts necessary to describe the HRA attack.

For n a power of 2 and prime q =1 mod 2n, let Rq = Zq[x]/(xn+1) be a ring of

degree (n - 1) polynomials with coefficients in Zq. The sender Alice's secret key is s,

and the recipient Bob's secret key is s*. Bob's public key includes O(log q) = poly(n)

RLWE samples 0*' = # - s* + pei, where p is a public prime and the /J and ej are

ring elements sampled by Bob.10 Ciphertexts are pairs of ring elements (co, c1) E R 2

By fBV11, Lemma 4], the distribution of ci is statistically close to uniform over Rq.

By [LPR13, Lemma 2.25], ci is invertible with probability at least e- 1 - negl(n). The

result of reencrypting (co, ci) is a pair (c', c') such that c' - s* -c' = co - s -c1 + pE1 ,

where Ej is computable given ci and the ej. This fact is used by [PRSV17] to prove

the correctness of their scheme. Rearranging the above, we see that

s-ci = co +pE 1 - c' + s* - c.

Given any ciphertext (co, c1 ) and its reencryption (c',, c'), Bob can evaluate the

above and compute s -c1 . With probability at least e- 1 - negl(n), ci is invertible and

Bob can recover the secret s.

3.5.2 Reencryption Simulatability

While HRA is a strictly stronger security notion than CPA, we now show that if a

CPA secure proxy reencryption scheme has an additional property we call reencryp-

10 [PRSV17 separate the computation of 0* from Bob's public key, but this is only a matter of
presentation.
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tion simulatability, then it must also be HRA secure. Very roughly, reencryption

simulatability means that ciphertexts resulting from computing ReEnc(rki-4, cti) can

be simulated without knowledge of the sender's secret key ski (but with knowledge

of the plaintext message m and the recipient's secret key skj). Note that ReEnc uses

rkisj which is a function of ski.

Reencryption simulatability allows an algorithm with access to the CPA oracles

to efficiently implement the honest reencryption oracle. For intuition, consider the

following approach to reducing HRA security to CPA security. Suppose there existed

an adversary Ahra violating the HRA security of a scheme; the reduction plays the

roles of both the CPA adversary and the challenger in the HRA security game, and

attempts to violate CPA security. To succeed, the reduction must be able to answer

honest reencryption queries from uncorrupted keys to corrupted keys. Though the

reduction knows the messages being reencrypted, it does not know the appropriate

reencryption key. However, if it could indistinguishably simulate these reencryptions

then it could indeed leverage Aha to violate CPA security.

We emphasize that the goal of Definition 3.5.2 is to capture a large swath of possi-

ble schemes while still enabling very simple proofs of simulatability (and thus of HRA

security for existing CPA secure schemes). It is not intended to be the only avenue for

proving HRA security of new or existing constructions. Reencryption simulatability

is not necessary for HRA security of proxy reencryption. In particular, analogous

versions of Theorem 3.5.3 hold with computational simulatability guarantees, but are

more complicated [DN18, Foonote 7 and Appendix A].

Definition 3.5.2 (Reencryption Simulatability). A proxy reencryption scheme PRE

is reencryption simulatable if there exists a probabilistic, polynomial-time algorithm

ReEncSim such that with high probability over aux, for all m - M:

(ReEncSim(aux), aux) e; (ReEnc(rkab, cta), aux),

where 1, denotes statistical indistinguishability, and Cta and aux are sampled accord-
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mg to

pp <- Setup(1A),

(pka, ska) +- KeyGen(pp),

(pkb, skb) +- KeyGen(pp),

rkab *- ReKeyGen(ska, pkb),

Cta <- Enc(pka, m),

aux = (pp, pka, pkb, skb, Cta, M).

A special case of the above is when ReEncSim(aux) - Enc(pkb, m) simply computes

a fresh encryption of the message. That is, if reencrypted ciphertexts are distributed

like fresh ciphertexts, then the scheme is reencryption simulatable.

Theorem 3.5.3. Let PRE be an CPA secure, reencryption simulatable, proxy reen-

cryption scheme. Then PRE is HRA secure.

Outline. The proof proceeds according to the intuition above. From any probabilistic,

polynomial-time algorithm A = Aha (the HRA adversary), we construct an algorithm

A' Acpa such that Adpa(A) > Adv a(A) - negl(A); by the CPA security of PRE

this advantage is negligible, completing the proof.

Acpa runs Ahra and simulates the HRA security game (if Ahra does not follow the

specification of the HRA security game, Acpa simply aborts). To answer oracle calls

by Ahra to any oracle other than OReEnc, Apa Simply passes the calls and answers

unaltered to the corresponding CPA oracles.

To answer oracle calls to OReEnc between two uncorrupted keys or two corrupted

keys, Acpa uses the corresponding reencryption key. On the other hand, for calls to

OReEnc from an uncorrupted key to a corrupted key, Acpa simulates the reencryption

using ReEncSim. This is possible because Acpa knows the underlying m (along with

the other information in aux).

Reencryption simulatability implies that the views of Ahra in the real security

game (using the real OReEnc) and the simulated security game (using ReEncSim) are
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statistically close. Acpa wins the CPA security game if and only if Ahra wins in the

simulated HRA game described above. L

3.5.3 Fully Homomorphic Encryption and Proxy Reencryp-

tion

There is an intimate connection between FHE and proxy reencryption: a sufficiently

powerful somewhat homomorphic encryption scheme implies CPA secure proxy reen-

cryption, which can be used to "bootstrap" the scheme to achieve fully homomorphic

encryption [GenO9a]. For the relevant FHE definitions, see [Gen09a, Section 2].

Let FHE = (SetupFHE,KeyGenFHE, EnCFHE, DeCFHE, EvalFHE) be an FHE scheme.

Proxy reencryption can be constructed as follows (compare to the Trivial Scheme):

KeyGenPRE, EnCPRE AND DeCPRE: Identical to their FHE counterparts.

ReKeyGenPRE(ski, pkj): Output rkiej = EnCFHE(pkj, ski)11pkj. The reencryption key is

an encryption of ski under pkj, along with the target public key pk3 .

ReEnCPRE(rkigj, cti): Let ctiej +- EnCFHE(pkj, Cti). Homomorphically compute the

FHE decryption function DeCFHE(Ski, cti) using the corresponding ciphertexts

rkij and cti-÷ (under pkj). Namely, ctj = EvalFHE(pkj, DeCFHE, rkij , Ctigg).

The correctness of the FHE implies the correctness of the resulting proxy reencryption:

DecPRE(skj, ctj) = DeCFHE(Skj, Ctj) = DeCFHE(Ski, cti) = DecPRE(ski, cti).

Furthermore, the proxy reencryption scheme is CPA secure.

To demonstrate that the construction might not be HRA secure, consider the

following fully homomorphic encryption scheme FH E' constructed from any existing

scheme FHE. The only modification made in FHE' is to EvalFHE':

EvalFHE'(pkj, C, Ctl, Ct 2) := Eva1FHE(pkj, C,Ct, Ct2)11cti.
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Note that FHE' does not violate FHE compactness if ct, (in the proxy reencryption

construction, rki-*) is always of some size bounded by a polynomial in the security

parameter of the FHE scheme; this suffices for our purpose. Instantiating the proxy

reencryption construction with FHE' essentially results in the Concatenation Scheme,

which is not HRA secure.

3.5.3.1 Circuit Privacy

An FHE scheme is circuit private if ciphertexts resulting from FHE evaluations are

statistically indistinguishable from fresh ciphertexts [Gen09a]. Namely, if for any

circuit C and any ciphertexts ct 1, ... , ctt:

EnCFHE(p k, G (Ct1, . . .,Ctt)) ~s-4 EvalFH E(pk, C, cti, ... , ctt).

In [Gen09a], an FHE scheme without circuit privacy is modified to be circuit private

by rerandomizing the ciphertexts resulting from EvalFHE-

While our proxy reencryption construction above is not in general HRA secure, it

is easy to see that if the underlying FHE is circuit private, then the proxy reencryption

is reencryption simulatable (Definition 3.5.2). By Theorem 3.5.3, the resulting scheme

is therefore HRA secure.

3.5.4 Pairing-Based Proxy Reencryption

Many constructions of proxy reencryption are based on the hardness of Diffie-Hellman-

type problems over certain bilinear groups, including [AFGH06, CH07, LV08, ABH09,

HRSV07].

A prototypical construction is that of [AFGH06I, which itself is based on the

original scheme of [BBS98b]. For every A, let G1 and G 2 be groups of prime order

q = E(2A), and let g be a generator of G 1. Let e be a non-degenerate bilinear map

c : G1 x G1 -+ G2 (i.e., for all h E G1 and a, b E Zq, e(ha, h') = e(h, h)ab, and for all

generators g of G 1, e(g, g) #4 1). Let Z = e(g, g). The message-space of the scheme is

G 2.
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Setup(1A): Output pp = (q, g, G1, G2 , e).

KeyGen(pp): Sample a +- Z uniformly at random. Output sk = a and pk = ga.

Enc(pk, m): Sample k +- Zq uniformly at random. Output ct = (pkk, mZk)

(gak, mZk).

ReKeyGen(skA = a, pkB gb): Output rkAB - gb/a.

ReEnc(rkA+B, CtA): Let CtA = (a1 , a2 ). Output

CtB - (e(al , rkA-4B), ae2 ) = (e (gak, g b/a)7 mZk) = (Zbk, mZk).

Dec(sk, ct): Let ct = (a1 , a2 ). If a, E G2 (i.e., if it is the result of ReEnc), then output

/a = mZk/Zk = M. Otherwise a, E G1 (i.e., it is a fresh ciphertext);

output a 2/e(ai, g)1/a = mZk/e(gak, l/a = mZk/Zk - M.

Is this scheme HRA secure? It is tempting to say that the scheme is reen-

cryption simulatable; after all, given a message m it is indeed straightforward to

sample (Zbk, mZk) for random k +- Z. However CtA = (gak, mZk) and CtB -

ReEnc(rkA-+B, CtA) - (Zbk, mZk) share the randomness k. Given CtA = (gak, mZk)

and m, it is not clear how to output (gbk, ImZk).

3.5.4.1 Rerandomization

A minor modification to the scheme above guarantees reencryption simulatability and

therefore HRA security. Replace ReEnc above with ReEnc':

ReEnc'(rkAB, ctA): Compute (Zbk, mZk) = ReEnc(rkAB, CtA). Sample k' +- Z uni-

formly at random, and output (Zbk.e(gb, gk'), mZke(g, gk')) = (Zb(k+k'), mZ~k')

The resulting proxy reencryption scheme maintains the CPA security of the original,

as the only modification is the rerandomization of reencrypted ciphertexts (which can

be done by anyone with knowledge of the public parameters).
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Furthermore, the scheme is now reencryption simulatable. To see why, observe

that the resulting reencrypted ciphertexts are uniformly distributed in {(cti, Ct2 ) E

G 2 x G2 : ct2/ct lb = m}, independent of all other keys and ciphertexts. Such

ciphertexts are easily sampled with knowledge of pp, pkB = 9 b and m as follows.

ReEncSim(pp, pkB, M): Sample k' -- Zq uniformly at random, and output

(e(pkB,gk'), M (ggk')) (Zbk' , mZbk').

Thus, by Theorem 3.5.3, the modified scheme is HRA secure. Observe that reran-

domization was the key to achieving circuit privacy (and thereby HRA security) in

the FHE-based proxy reencryption construction as well.

The pairing-based schemes of [ABH09] and [HRSV071 already incorporate reran-

domization during reencryption. In the former case, it is used to achieve "key pri-

vacy;" in the latter, to achieve obfuscation of the reencryption functionality. In each,

it is straightforward to show that the schemes are also reencryption simulatable and

therefore HRA secure.

3.6 CCA Security

It may seem that CCA security for proxy reencryption should imply HRA security,

but the situation is not so simple. While the relationship between CCA and HRA

security is still open, CCA security does imply CPA security. By Theorem 3.5.3, any

CCA secure proxy reencryption scheme satisfying reencryption simulatability is also

HRA secure. CCA security is discussed in Section 3.6. In this section, we define

CCA security for proxy reencryption and describe the challenge in proving that CCA

security implies HRA security. Finally, we construct a proxy reencryption scheme

that illustrates the problem with the intuition which motivated the original CPA

definition which also separates the security models ind-ccao,1 and ind-cca 2,0 defined

in [NAL15b], proving a converse to their Theorem 4.6.
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3.6.1 Definition

The definition below is adapted from [CH07, Definition 2.4], but modified to simplify

comparison to the other definitions presented in this chapter. First, while ICH071

focuses on bidirectional PRE, we consider unidirectional PRE. Secondly, we modify

the definition to use persistent, rather than ephemeral, reencryption keys (see Re-

mark 3.3.5). Finally, we add an intialization stage Setup and generally adapt the

syntax to coincide with the notation used throughout this chapter."

The core concept in the definition is that of derivatives of the challenge. In-

formally, a pair (i, ct) is a derivative of the challenge if the decryption Dec(skj, ct)

or the reencryption ReEnc(rkiaj, ct) to some corrupted key index j would give the

adversary "illegitimate information" about the challenge ciphertext. The precise for-

malization (Definition 3.6.2) is reminiscent of replayable CCA security for standard

encryption [CKN031.

Definition 3.6.1 (Proxy Reencryption: Security Game for Chosen Ciphertext At-

tacks (CCA) [CH07I). Let A be the security parameter and A be an oracle Turing

machine. The HRA game consists of an execution of A with the following oracles,

which can be invoked multiple times in any order, subject to the constraints below:

SETUP: The public parameters are generated and given to A. A counter numKeys is

initialized to 0, and the sets Hon (of honest / uncorrupted indices) and Cor (of

corrupted indices) are initialized to be empty. This oracle is executed first and

only once.

CHALLENGE ORACLE: On input (i*, mo, i) where i* E Hon and m, mi G M, sam-

ple a bit b +- {0, 1} uniformly at random, compute the challenge ciphertext

ct* *- Enc(pki , mb). Return ct*. This oracle can only be queried once.

UNCORRUPTED KEY GENERATION: Generate keys (pknumKeys, sknumKeys) <- KeyGen(pp)

and give pknumKeys to A. The current value of numKeys is added to Hon and

"Unlike the CPA definition of [ABH09], the CCA definition in [CH07] does not divide the security
game into three distinct phases. Rather, it allows calls Corrupted / Uncorrupted Key Generation
calls to be made at any time.
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numKeys is incremented.

CORRUPTED KEY GENERATION Generate keys (pknumKeys, sknumKeys) <- KeyGen(pp)

and given to A. The current value of num Keys is added to Cor and num Keys is

incremented.

REENCRYPTION KEY GENERATION OReKeyGen: On input (i, j) where i, j < numKeys,

if i = j or if i E Hon and j E Cor, output I. If OReEnc has not been executed on

input (i, j), compute and store rkisj <- ReKeyGen(ski, pkj). Output the reen-

cryption key rkiej

REENCRYPTION OReEnc: On input (i,j, ctj) where i,j < numKeys, if j E Cor and

(i, cti) is a derivative of (i*, ct*), return I. Otherwise, let ctj +- ReEnc(rki-4, cti),

and return ct3 .

DECRYPTION ORACLE: On input (i, ct) where i < numKeys, if the pair (i, ct) is a

derivative of (i*, ct*), then return I. Otherwise, return Dec(ski, ct).

DECISION: On input a bit b' c {0, 1}, return win if b - b'.

The CCA advantage of A is defined as

Adv,4c(A) = Pr[win],

where the probability is over the randomness of A and the oracles in CCA game.

Definition 3.6.2 (Derivative). Derivatives of (i*, ct*) are defined inductively as fol-

lows.

* (i*, ct*) is a derivative of itself.

* If OReEnc has been queried on input (i, ctj), returning output ctj, then (j,ctj)

is a derivative of (i, cti).

* If (i, ct) is a derivative of (1*, ct*), and (i', ct') is a derivative of (i, ct), then

(i', ct') is also a derivative of (i*, ct*).
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* If OReKeyGen has been queried on (i, j) and Dec(j, ctj) E {mo, m 1}, then (j, ctj)

is a derivative of (i, cti) for all cti.

The first three conditions prevent an adversary from learning the bit b' by a

chain of reencryption queries resulting ending to a corrupted key or ending with a

decryption query. The purpose of the fourth condition is the same: it applies the

same protections to ciphertexts that the adversary reencrypts locally.

Definition 3.6.3 (Proxy Reencryption: CCA Security). Given a security parameter

IA, a proxy reencryption scheme is CCA secure if for all probabilistic polynomial-time

adversaries A, there exists a negligible function negi such that

Adv'Aa(A) < - + negl(A)
cc 2

3.6.2 CCA and HRA Security

We do not resolve the question of whether CCA security implies HRA security. It

may seem that CCA security should imply HRA security. Intuitively, CCA security

allows the adversary to make relatively unrestricted queries to both OReEnc and oDec,

whereas HRA restricts the adversary to making only honest reencryption queries to

OReEnc. However the fourth type of derivative in the CCA definition restricts the

CCA adversary in a way that stymies a naive attempt at a reduction.

The CCA definition of derivative is over-inclusive: it includes all ciphertexts that

could in principle be derived from the challenge. On the other hand, the HRA security

game restricts reencryption queries only when the ciphertext is actually a derivative

of the challenge. The adversary may reencrypt other encryptions of the challenge

messages, so long as those encryptions were honestly generated independently from

the challenge ciphertext.

3.6.3 Separating ind-ccao,1 and ind-cca2,0

The definition of CCA security presented above grants the adversary access to ODec

and OReEnc both before and after receiving the challenge ciphertext. Just as in the
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case of Enc-CCA-1 and Enc-CCA-2 security for standard encryption, it is natural to

consider how the definition is altered by restricting the adversary's access to one or

both oracles to the period before the challenge.

The work of [NAL15b] formalize this problem by considering a family of security

definitions ind-ccad,r parameterized by a pair of numbers d, r E {0, 1, 2}. The param-

eter d = 2 means ODec is unrestricted, d = 1 means that ODec is restricted to before

the challenge, and d = 0 means that ODec is unavailable. Similarly, the parameter r

defines the availability of OReEnc. ind-cca 2,2 corresponds to CCA security as defined

above, whereas ind-ccao,o corresponds to CPA security.

In Theorems 4.6, [NAL15b] show that ind-cca 2,0 -7> ind-ccao,1 . That is, even if

a PRE scheme is secure with unrestricted access to ODec, it may be insecure with

restricted access to OReEnc. We now prove a (stronger) converse. Our construction

also demonstrates the failure of the intuition-described in the Introduction and

motivating the original definition of CPA security-that access to OReEnc is as powerful

as Dec-

Theorem 3.6.4 (ind-ccao, 2 =/ ind-cca 1 ,o). If there exists a PRE scheme that is

ind-ccaO,2 secure, then there exists a PRE scheme that is ind-ccaO, 2 secure but not

ind-cca1 ,o secure.

Proof. Suppose PRE is ind-ccaO,2 secure, and let T be a special symbol that is not a

valid ciphertext. Define a new scheme PRE' by modifying decryption as follows:

Dec' (sk, ct) [Dec(sk, ct) if ct $ T
sk if ct = T

PRE' is ind-cca0,2 secure: without access to ODec, the view of the adversary is inde-

pendent of whether the challenger uses PRE or PRE'.

PRE' is not ind-cca1,o secure: observe that a single call to ODec(i*, T) allows the

adversary to learn the challenge secret key ski. and thereby distinguish encryptions

of mo and m 1. 1:1
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3.7 Comparison to RIND-CPA

The concurrent work of Derler, Krenn, Loriinser, Ramacher, Slamanig, and Striecks

identify the same problem with CPA security as discussed [DKL+18]. They define

a new security notion-RIND-CPA security-as an additional property that proxy

reencryptions schemes should guarantee.

In this section, we compare the approach of [DKL+18 with ours. We begin by de-

scribing RIND-CPA security as defined by [DKL+181. Next, we compare RIND-CPA

with HRA security informally, arguing that HRA provides the better generalization

of Enc-CPA security to the PRE setting. Finally, we show that HRA and RIND-CPA

security are incomparable notions.

The key feature of RIND-CPA security is that the adversary gets access to an

unrestricted ReEnc oracle, but only before seeing the challenge ciphertext. The defi-

nition is similar to ind-ccao,1 of [NAL15b]. The definition of the RIND-CPA security

experiment is from [DKL+18, Experiment 81.

Definition 3.7.1 (RIND-CPA Security Experiment).

pp <- Setup(1A), (pk, sk) +- KeyGen(pp), b <- {0, 1}

(pk*, st) +- A(pp, pk)

rk +-- ReKeyGen(sk, pk*)

(mo, mi1 , st) <- A{ReEnc(rk)}(St)

b* +- A(st, Enc(pk, mb))

if b = b* return 1, else return 0.

RIND-CPA security requires that for all efficient adversaries, the probability of out-

putting 1 in the experiment is t negl(A).

We make two brief remarks about the definition. First, the definition only consid-

ers the two party setting. Much like the informal description of proxy reencryption
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in Section 3.1, there is only a single uncorrupted key and a single corrupted key. Sec-

ond, not only are inputs to ReEnc allowed to be malformed, but the corrupted public

key pk* can be malformed as well. The adversary outputs pk* itself and it needs

not be honestly generated. This makes RIND-CPA security as defined in [DKL+181

formally incomparable to all other definitions of proxy reencryption security we know

of, including the very similar ind-ccao,1 of [NAL15b]. ind-ccao,1 can be viewed as a

version of RIND-CPA for the multi-party setting where malformed public keys are

not allowed.

Neither of these properties of the RIND-CPA definition are relevant to our proof

of Theorem 3.7.3; the theorem holds replacing RIND-CPA with ind-ccao,1 .

3.7.1 Informal comparison

RIND-CPA is less suitable than HRA as a replacement for CPA security of proxy

reencryption. First and most importantly, HRA better captures the intuitive guar-

antees of Enc-CPA security for standard encryption. Second, HRA is more useful as

an intermediate notion of security.

Capturing Enc-CPA security. In Enc-CPA security for standard encryption, the

adversary is able to arbitrarily affect the distribution of plaintext messages. One way

of viewing this aspect of the definition is that Enc-CPA requires security while being

agnostic as to the true distribution over messages (except that it is efficiently sam-

pleable). Other than choosing the distribution over messages, the adversary is only

allowed to see publicly-available information (i.e. public keys and parameters) and

honestly encrypted ciphertexts. Informally, the Enc-CPA guarantee is that security

should hold under normal operating conditions against eavesdropping parties without

making distributional assumptions on plaintext messages. However, Enc-CPA makes

no guarantees about dishonestly generated or malformed ciphertexts.

HRA security captures this intuitive guarantee better than RIND-CPA. In the

course of normal operation of a proxy reencryption, an adversarial party will see

reencrypted ciphertexts. These ciphertexts may come at any time-both before and

225



after other ciphertexts whose contents should remain secret. While HRA allows reen-

cryption both before and after the challenge, RIND-CPA restricts the reencryption

oracle to the period before the challenge.

HRA makes minimal assumptions about the distribution of plaintext messages

by allowing the adversary to choose messages itself, just as in Enc-CPA. RIND-CPA

goes further by making requirements in the face of malformed or dishonestly generated

ciphertexts.

Usefulness as an intermediate notion. For classical encryption, Enc-CCA se-

curity is strictly stronger than Enc-CPA security. In fact, there are many settings

where Enc-CPA security is demonstrably insufficient. Why then does the cryptog-

raphy community continue to study it? There are many answers to this question,

but we mention only two. First, although insufficient for some applications, Enc-

CPA is useful in others. Second, it is useful as an intermediate goal because it seems

to capture a sort of hard core of the general problem of encryption and spurs the

development of new techniques.

HRA security enjoys these same features; RIND-CPA does not. As for useful-

ness for applications, HRA is meaningful in many of the envisioned applications of

proxy reencryption-many more than CPA security. Because RIND-CPA restricts

the reencryption oracle to the period before the challenge ciphertext, its usefulness

in applications is less clear.

The challenge of constructing CCA secure proxy reencryption is the same as the

challenge of Enc-CCA secure encryption: namely, dealing with dishonestly gener-

ated, possibly malformed ciphertexts. RIND-CPA, by allowing malformed cipher-

texts, presents similar challenges as full CCA security.

As for the usefulness of HRA as an intermediate goal towards CCA security, the

historical development of proxy reencryption is proof itself. This sounds paradoxical:

how can this be true if the notion has only just been introduced? Many of cryp-

tographers that were targeting CPA security developed schemes that achieve HRA

security with only minimal modification. The techniques developed in these construe-
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tions were later adapted to achieve CCA security. This suggests that cryptographers'

intuitions for the hard core of reencryption were not flawed, only the formalization

of these intuitions as CPA security. HRA security is a better formalization for these

intuitions and thus an appropriate intermediate goal for reencryption research.

3.7.2 Separating RIND-CPA and HRA security

The following pair of theorems support the conclusion that HRA security and RIND-

CPA security are incomparable. The theorems and proofs apply to both RIND-CPA

and ind-ccao,1 security notions. For simplicity, we use RIND-CPA throughout.

Theorem 3.7.2. If there exists an HRA secure PRE scheme, then there exists a PRE

scheme that is HRA secure but not RIND-CPA (nor ind-ccao, 1) secure.

Proof. Suppose PRE is HRA secure, and let T be a special symbol that is not a valid

ciphertext. Define a new scheme PRE' by modifying reencryption as follows:

Re'iEnc'(rk, ct) ReEnc(rk, ct) if ct # T

L rk if ct -T

PRE' is still HRA secure: OReEnc' is functionally equivalent to OReEnc when restricted

to honestly generated ciphertexts..

PRE' is not RIND-CPA secure: a single call to OReEnc'(i, j, T) (made before the

challenge) allows the adversary to learn the reencryption key rki÷j and thereby de-

crypt the challenge ciphertext. L

Theorem 3.7.3. Under the assumptions stated below, there exists a PRE scheme

that is RIND-CPA secure but not HRA (nor ind-ccao,1) secure.

The claim assumes the existence of pair of encryption schemes, PRE and FHE

with the following properties. PRE is a RIND-CPA secure proxy reencryption scheme

with a ciphertext space Cinner. FHE is a circuit private fully homomorphic encryp-

tion scheme with message space Mfhe = Cinner. The message spaces and ciphertext
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spaces of the two schemes are all disjoint and efficiently decidable. Finally, the ad-

ditional proxy reencryption scheme PREFHE corresponding to the FHE scheme (see

Section 3.5.3) is RIND-CPA secure.' 2 For simplicity, we also assume perfect correct-

ness of reencryption (for both schemes) and of homomorphic evaluation.

The remainder of this appendix is devoted to the proof of Theorem 3.7.3.

3.7.2.1 Proof Intuition for Theorem 3.7.3

Recall that RIND-CPA security allows the adversary access to an unrestricted ReEnc

oracle, but only before the challenge ciphertext is generated. The main difficulty in

separating RIND-CPA and HRA security is the restriction in the HRA reencryption

oracle to honestly generated ciphertexts.

The first idea in our construction is the observation that separating RIND-CPA

and HRA security would be easy if it were possible to use Enc oracle to generate

a fresh, honest encryption of the challenge plaintext. This fresh encryption could

be reencrypted by the HRA reencryption oracle to a corrupted key, revealing the

challenge plaintext.

The second idea is to have two layers of encryption, where the message space of

the outer layer is equal to the ciphertext space of the inner layer. If the challenge

ciphertext comes from the inner layer, then it can be used as input to the Enc or-

acle to generate a new outer ciphertext containing information about the challenge

plaintext-namely, an encryption of the challenge ciphertext. The outer ciphertext is

honestly generated and can be reencrypted to a corrupt party and decrypted. But it

seems we are no better off; decrypting the outer ciphertext only returns the challenge

ciphertext still encrypted under the key of an honest party.

The third idea is to modify ReEnc-using fully homomorphic encryption-to reen-

crypt both the outer ciphertext and the inner challenge ciphertext. In addition to

the usual reencrypted ciphertext, we augment ReEnc to output an additional, doubly

"The proof requires that an encryption scheme be both fully homomorphic and support proxy
reencryption with RIND-CPA security. For concreteness, we have chosen to assume that there exists
an FHE scheme whose corresponding PRE is RIND-CPA secure, but a different construction would
suffice. We do not further explore the underlying cryptographic assumptions needed to instantiate
this encryption scheme.
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reencrypted ciphertext, where both the outer and inner ciphertexts have been reen-

crypted. If the recipient of the resulting ciphertext is corrupt, the adversary can

decrypt both layers and recover the challenge plaintext, violating HRA security.

We now describe the intuition for how to perform double reencryption. Suppose

the proxy reencryption scheme used for the outer layer of encryption is also fully

homomorphic. Such a scheme can be constructed from any FHE scheme (see Sec-

tion 3.5.3). Given input an outer layer ciphertext ctoute, Enc(Ctinner), ReEnc will

homomorphically evaluate Evalfhe(ReEnc, Ctouter). The result is an (non-reencrypted)

outer ciphertext containing a reencrypted inner ciphertext. Then, ReEnc reencrypts

that outer ciphertext. This produces a reencrypted outer ciphertext containing a

reencrypted inner ciphertext.

Violating HRA security is simple: the adversary encrypts the challenge cipher-

texts, reencrypts it to a corrupted key, then decrypts the doubly-reencrypted compo-

nent twice to recover the challenge message.

It remains to prove that the constructed PRE scheme is RIND-CPA secure. Dou-

ble reencryption can be simulated by a sequence of calls to Enc, Dec and OReEnc,

allowing us to analyze the two-layered scheme without the double-reencryption mod-

ification to ReEnc. The RIND-CPA security of that scheme follows directly from the

RIND-CPA security of the PRE scheme underlying the two layers.

The remainder of the section is organized as follows. First, we formalize Dual PRE,

a conceptually simpler generalization of the layered encryption described above. We

then present the PRE scheme used to separate RIND-CPA and HRA security. Finally,

we show that the scheme is indeed HRA insecure and RIND-CPA secure.

3.7.2.2 Dual PRE

Let PRE, = (Setup,, KeyGenQ, Enc,, Dec,, ReKeyGene,, ReEnc,) be a proxy reencryp-

tion scheme with message space M, and ciphertext space C,. Similarly, let PRE3 be a

proxy reencryption scheme with message space MO and ciphertext space Cf. Suppose

that MA, and M are disjoint and that C, and C8 are disjoint. Suppose also that

membership is efficiently decidable for all four sets. We define the Dual PRE scheme
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PREdual = (Setupdual, KeyGendual, Encdal,, Decdual, ReKeyGend, I, ReEncdual) for message

space Md~aI M, U M8 and ciphertext space Cdua = C, U CO as follows.

Setupdual) : (pp', PP'3 ),

where pp' +- Setup,(1A)

pp3 +- Setup3(1A)

KeyGend.aI(pp', pp/3 ) :=((pka, pk1'), (ske, skO)),

where (pk', skc) +- KeyGenc,(pp')

(pk'3, skO) +- KeyGeno(pp'3))

ReKeyGendeaI(sk', sky, pk9, pk) = (rk_ j, rki ),

where rk - ReKeyGenc,(skj, pkj)

rk ReKeyGeno(sky, pk6)

Encc,(pk 0, m) if m E MA,
EnCd,,,I(pk", pk'3, m) :=

Enc'8(pkV, m) if m E M,3

Dec,(sk", ct) if ct c Ca
DecdalI(sk", sk'3, ct)

Dec3(sk3, ct) if ct C C,3

ReEnc,(rk', ct) if ct E Cc,
ReEncdaI(rk", rk'3, ct) :

ReEnc3(rk, ct) if ct E C ,8

Claim 3.7.4. If PREc, and PRE3 are RIND-CPA secure, then PREdual is RIND- CPA

secure.

Outline. For any efficient adversary Adual, there exist efficient adversaries A, and

AO such that AdvAduaI < max{AdVEA' PREp . The adversary A, simulates the

PREdual security game by calling its own oracles or simulating an instance of PRE'3,

as appropriate. advo is analogous. By the assumption that PRE, and PRE3 are both

RIND-CPA secure, Adv Adua is negligible.
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3.7.2.3 The Counterexample

For the relevant background on fully homomorphic encryption and its connection to

proxy reencryption, see Section 3.5.3 and [GenO9a, Section 21.

Let PREi,,,e, be a RIND-CPA secure proxy reencryption scheme with ciphertext

space Cin ner. Let FH E be a circuit private fully homomorphic encryption scheme with

message space Mfhe = Cinne, and let PREfhe be the corresponding proxy reencryption

scheme. Suppose that PREfhe is RIND-CPA secure. Note that FHE and PREfhe are

two different views of the same encryption scheme, with identical KeyGen, Enc, and

Dec algorithms. Specifically, the homomorphic evaluation algorithm Evalfhe works on

ciphertexts of PREfhe.

We construct a proxy reencryption scheme PRE by modifying the Dual PRE

scheme. Let PREdual be the Dual PRE of PRE, = PREinne, and PREg = PREfhe.

We augment ReEncdual to perform double reencryption as described in the proof in-

tuition above in addition to the normal ciphertext reencryption. Enc and Dec are

modified accordingly. The modified lines are marked with a *.

f Enc r~pkinner m
inner fhe EnCinner(pk m if m E Minner

(EnCfhe(pk fh, M), ) if m E Mfhe (*)

ReEncinner(rkinner, Ct) if Ct E Cinner

ReEnc(rk"ner, rkfhe, Ct) (ReEncfhe(rkfhe, Ct1 ), Ci) if Ct = (Ct', Ct2 ) and ct' E Che (*)

I otherwise (*)

where ct = ReEnche (rkfhe, Evalfhe(ReEncinner(rkinner, .), Ctl)

snner Sfhe
Dec(sk "*, sk *, ct) :

Decinner(sk'"* , ct)

Decfhe(skfhe, Ct')

if Ct E Cinner

if ct = (Ct', Ct 2 ) and ct' E Cfh e

Observe that for honestly generated ciphertexts, ct = (ct', ct2 ) if and only if ct' C Cfhe,

and both hold whenever ct 0 Cinner.
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3.7.2.4 HRA Insecurity

The attack on the HRA security game uses only the correctness of the PRE and FHE

schemes. It requires only two parties; to help disambiguate the various subscripts

and superscripts, we will index these parties by alice and bob. Let m, m, E Minner

be distinct messages. The HRA adversary proceeds as follows.

" Receive pp from challenger. Call the Uncorrupted Key Generation oracle once

to obtain pkaiice. Call the Corrupted Key Generation oracle once to obtain

(pkbob, skbob).

" Query the Challenge oracle on input (alice, M, mi) to obtain the challenge

(1, Ct*lice,inner), an encryption of mb for random b <- {0, 1}. Recall that 1 is

the index of this ciphertext which may be used as input to OReEnc-

* Query OEn(alice, Ctaliceinner) to obtain the ciphertext (2, Ctalice), where Ctalce =

(Ct*1ice,fhe).)

" Query OReEnc(alice, bob, 2) to obtain (3, Ctbob), where Ctbob = (Ctobfhe, Ct*ob,fhe)

If OReEnc Outputs 1, abort.

* Let ctsob inner Decb(skb, (Ctbobfhe, I)). Let m' = Dec(skbob, Ct*oinne,).

" Finally, call the Decision oracle with b' such that Mb' = m'.

The call to OReEnc never causes the adversary to abort, because no ciphertext out-

put by OEnc can be in the set Deriv (see the specification of OReEnc in Definition 3.4.1).

It remains to show only that b' b. By the correctness of reencryption and

homomorphic evaluation for PREfle:

c(I* fhe
ctbob,inner = Decfhe(sbob, Ct*bob,fhe\

= Decfe skfhb, ReEncfhe rk a e-bob, Evalfhe (ReEncinner (rk iZ*_ob, i),n ct*ifh)

= ReEncinner (rk ;Z*_,b, Ctinice inner)
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By the correctness of PREinner:

mb Decinne,(sk""', ct* )

= Decinner (sk i""eb , ReEncinner (rkIC*,beb, aniceinner,)

i,.nner Rnc (,inner En ~~ inner
= Decinne, (sk"bob , ReEnCinner (rkic*_sob, Encinner (pkalice , Mb))

= Mb

3.7.2.5 RIND-CPA Security

We assumed that both PREinner and PREfhe were RIND-CPA secure. By Claim 3.7.4,

the Dual PRE scheme PREdual is also RIND-CPA secure. It remains to show that the

counterexample PRE (constructed by modifying PREdual) is RIND-CPA secure.

We reduce the RIND-CPA security of PRE to the RIND-CPA security of PREduaI.

Recall that the RIND-CPA security game is like the CPA security game, but with

access to an unrestricted reencryption oracle OReEnc up until the Challenge Oracle is

called.

From any probabilistic, polynomial-time algorithm A (the PRE adversary), we

construct an algorithm A' = Adual such that Adv 'dcpa(A) ;> A -- ng()

by the RIND-CPA security of PREdual this advantage is negligible, completing the

proof.

Auai runs A and simulates the RIND-CPA security game (if A does not follow

the specification of the HRA security game, Acuai simply aborts). At the outset,

Adual makes one additional Corrupted Key Generation query, obtaining the key pair

(pk,, sk*). This key pair is not passed to A, and will only be used to answer calls

to OReEnc. To answer oracle calls by A to any oracle other than OReEnc and OEnc,

Adual simply passes the calls and answers unaltered to the corresponding RIND-CPA

oracles. These oracles are perfectly simulated.

To answer oracle calls to OEnc: Adual calls its own encryption oracle to obtain

the response (k, ct). It then returns (k, (ct, I)) to A. This perfectly simulates the

encryption oracle for PRE.
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To answer oracle calls to OReEnc(i, J, Ct): Adual uses a series of calls to its own

reencryption oracle to construct the necessary ciphertext, as follows. For intuition,

recall that the unrestricted reencryption oracle allows Adual to reencrypt any outer

layer ciphertext to corrupted party * and thereby decrypt and learn the inner layer

ciphertext. Then it can reencrypt the inner ciphertext, encrypt the result using the

outer scheme using pki, and finally reencrypt the result to the recipient party j.

" If ct E Cinner, call own OReEnc(i, j, ct), and return response to A. If ct / (ct', ct2 )

or ct1 ' Cfhe, return I to A.

" Let ct = (ct', ct2 ). Call own OReEnc(i, j, ct1 ) and let ct be the response.

" Call own OREnc(i, *, ct') and let ct' be the response. Note that ct' is the

encryption under pk, of a ciphertext. Let ct' = Dec(sks, ct').

* Call own OReEnc(z, J, ct'), and let ct be the response.

" Call own OReEnc(Z, j, Enc(pki, ct')), and let ct be the response.

" Return (ct, d) to A.

This whole sequence of reencryptions, decryptions, evaluations, and encryptions

produces a ciphertext whose output distribution is statistically close to the output

distribution of OReEnc in the real PRE game. This follows from the circuit privacy

of the FHE scheme (along with the correctness of both the reencryption and FHE

evaluation).

The views of A in the real game (using the real OReEnc) and the simulated security

game (using the simulation described above) are statistically close. Adua, wins the

security game for PREdual if and only if A wins the simulated security game for PRE.
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Part II

Data Anonymization
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Chapter 4

Towards Formalizing the GDPR

Notion of Singling Out

4.1 Introduction

Data privacy laws-like HIPAA, FERPA, and Title 13 in the US, and the GDPR

in the EU-govern the use of sensitive personal information. These laws delineate

the boundaries of appropriate use of personal information and impose steep penalties

upon rule breakers. To adhere to these laws, practitioners need to apply suitable con-

trols and statistical disclosure limitation techniques. Many commonly used techniques

including k-anonymity, bucketing, rounding, pseudonymization, and swapping offer

privacy protections that are seemingly intuitive but only poorly understood. And

while there is a vast literature of best practices, a litany of successful privacy attacks

demonstrates that these techniques often fall short of the sort of privacy envisioned

by legal standards [Ohm10.

A more disciplined approach is needed. However, there is a significant conceptual

gap between legal and mathematical thinking around data privacy. Privacy regula-

tions are grounded in legal concepts such as personally-identifiable information (PII),

linkage, distinguishability, anonymization, risk, and inference. In contrast, much of

the recent progress in data privacy technology is rooted in mathematical privacy

Based on "Towards Formalizing the GDPR's Notion of Singling Out" with Kobbi Nissim [CN19].
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models such as differential privacy [DMNS06] that offer a foundational treatment

of privacy, with formal privacy guarantees. And while such techniques are being

actively developed in the academy, industry, and government, there is a basic discon-

nect between the legal and mathematical conceptions. The effect is uncertainty as

to which technical offerings adequately match expectations expressed in legal stan-

dards [NW18I.

Bridging between legal and technical concepts of privacy. We aim to address

this uncertainty by translating between the legal and the technical. To do so, we begin

with a concept appearing in the law, then model some aspect of it mathematically.

With the mathematical formalism in hand, we can better understand the requirements

of the law, their implications, and the techniques that might satisfy them.

This is part of a larger effort to bridge between legal and technical conceptions of

privacy. An earlier work analyzed the privacy requirements of FERPA and modeled

them in a game-based definition, as is common in cryptography. The definition was

used to argue that the use of differentially private analyses suffices for satisfying a

wide range of interpretation of FERPA [NBW+18]. An important feature of FERPA

that enabled this analysis is that FERPA and its accompanying documents contain

a rather detailed description of a privacy attacker and the attacker's goals.

This chapter focuses on the concept of singling out from the GDPR. More specif-

ically, we examine what it means for a data anonymization mechanism to ensure

security against singling out in a data release. Preventing singling out attacks in a

dataset is a necessary (but maybe not sufficient) precondition for a dataset to be

considered effectively anonymized and thereby free from regulatory restrictions under

the GDPR. Ultimately, our goal is to better understand a concept foundational to

the GDPR, enabling a rigorous mathematical examination of whether certain classes

of techniques (e.g., k-anonymity, differential privacy, pseudonymization) provide an

important legal protection.

We are not the first to study this issue. "Opinion on Anonymisation Tech-

niques" [A29b] provides guidance about the use of various privacy technologies
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including k-anonymity and differential privacy-as anonymization techniques. It's

analysis is centered on asking whether each technology effectively mitigates three

risks: "singling out, linkability, and inference." For instance, 1A29b] concludes that

with k-anonymity singling is no longer a risk whereas with differential privacy it

"may not" be a risk. Though similar in purpose to our work, its technical analyses

are informal and coarse. Reconsidering these questions with mathematical rigor, we

encourage revisiting the conclusions in [A29b].

4.1.1 Singling Out in the GDPR

We begin with the text of the GDPR. It consists of articles detailing the obligations

placed on processors of personal data as well as recitals containing explanatory re-

marks. Article 1 of the regulation delineates its scope as "lay[ing] down rules relating

to the protection of natural persons with regard to the processing of personal data

and rules relating to the free movement of personal data." The GDPR places no

restrictions on the processing of non-personal data, even if this data is the result

of anonymizing personal data.1 Personal data is defined in Article 4 to mean "any

information relating to an identified or identifiable natural person; an identifiable

natural person is one who can be identified, directly or indirectly." What it means

for a person to be "identified, directly or indirectly" is not elaborated in the articles

of the GDPR. Recital 26 sheds a little more light: "To determine whether a natural

person is identifiable account should be taken of all the means reasonably likely to be

used, such as singling out, either by the controller or by another person to identify

the natural person directly or indirectly." Singling out is one way to identify a person

in data, and only data that does not allow singling out may be excepted from the

regulation. 2

For insight as to the regulation's meaning, we refer to two documents prepared

'Recital 26 emphasizes this point: "The principles of data protection should therefore not apply
to anonymous information, namely information which does not relate to an identified or identifiable
natural person or to personal data rendered anonymous in such a manner that the data subject is
not or no longer identifiable."

2 Interestingly, singling out is the only criterion for identifiability explicitly mentioned in the
GDPR, the only occurrence the term being the quoted passage from Recital 26.
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by the Article 29 Data Protection Working Party, an advisory body set out by the

EU Data Protection Directive. 3 "Opinion on the Concept of Personal Data" [A29aj

elaborates on the meaning of "identifiable, directly or indirectly." A person is identified

"within a group of persons [when] he or she is distinguished from all other members of

the group." One way of distinguishing a person from a group is by specifying "criteria

which allows him to be recognized by narrowing down the group to which he belongs."

If the group is narrowed down to an individual, that individual has been singled out.4

Looking ahead, we will call this isolating an individual in the dataset and argue that

not every instance of isolation should be considered a singling out attack.

We highlight three additional insights that inform our work. First, identification

does not require a name or any other traditional identifier. For instance, singling

out can be done with a "small or large" collection of seemingly innocuous traits (e.g.,

"the man wearing a black suit"). Indeed, this is what is meant by "indirectly iden-

tifiable." An example of singling out in practice cited by [A29b] showed that four

locations sufficed to uniquely identify 95% of people in a pseudonymized dataset of

time-stamped locations. This is considered singling out even though no method of

linking such location traces to individuals' names was identified.

Second, identifiable data may come in many forms, including microdata, aggre-

gate statistics, news articles, encrypted data, video footage, and server logs. What's

important is not the form of the data, its whether the data permits an individual to

be singled out. We apply this same principle to the manner in which an individual

is singled out within a dataset. Most examples focus on specifying a collection of

attributes (e.g., four time-stamped locations) that match a single person in the data.

The collection of attributes corresponds to a predicate: a function that assigns to

each person in the dataset a value 0 or 1 (interpreted as false or true respectively).

We interpret the regulation as considering data to be personal if an individual can be

3Formally, Directive on the protection of individuals with regard to the processing of personal
data and on the free movement of such data. 95/46/EC.

4The notion of "singling out" is not defined in the Opinion on the Concept of Personal Data [A29a].
It is used in [A29a] four times, each consistent with the above interpretation. Our interpretation
coincides with and was initially inspired by that of [FEO+18], defining "singling out as occurring
when an analyst correctly makes a statement of the form 'There is exactly one user that has these
attributes.'
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distinguished within a dataset using any predicate, not only those that correspond to

specifying collections of attributes. Just as "small or large" collections of attributes

may be used to single out, we allow these predicates to be simple or complex.

Third, whether or not a collection of attributes identifies a person is context-

dependent. "A very common family name will not be sufficient to identify someone

- i.e. to single someone out - from the whole of a country's population, while it is

likely to achieve identification of a pupil in a classroom." Both the prevalence of the

name and the size of the group are important in the example, and will be important

in our formalization.

4.1.2 Our Contributions

4.1.2.1 Defining Security Against Predicate Singling Out

We formalize and analyze predicate singling out, a notion which is intended to par-

tially model the GDPR's notion of singling out. Following the discussion above, we

begin with the idea that singling out an individual from a group involves specifying

a predicate that uniquely distinguishes the individual, which we call isolation. Using

this terminology, an intuitive interpretation of the GDPR's requirement is that to be

considered secure against singling out, a function of the data must prevent isolation.

Trying to make this idea formal, we will see that it requires some refinement.

We restrict our attention to datasets x = (XI, ... Xn) of size n, where each row xi

is sampled according to some underlying probability distribution D over a universe

X. The dataset x is assumed to contain personal data corresponding to individuals,

with at most one row per individual. For example, x might consist of home listings,

hospital records, internet browsing history, or any other personal information. A

mechanism M takes x as input and outputs some data release M(x), be it a map of

approximate addresses, aggregate statistics about disease, or pseudonymized internet

histories. We call M an anonymization mechanism because it purportedly anonymizes

the personal data x.

An adversary A attempts to output a predicate p : X -+ {0, 1} that isolates a row
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in x, i.e., there exists i such that p(xi) = 1 and p(xj) = 0 for all j # i. We emphasize

that it is rows in the original dataset x on which the predicate acts, not the output

y. In part, this is a byproduct of our desire to make no assumptions on the form

of M's output. While it might make sense to apply a predicate to pseudonymized

microdata, it is far from clear what it would mean for a synthetic dataset or for

aggregate statistics. Observe that this choice also rules out predicates p that "isolate"

rows by referring to their position in x (i.e., "the seventh row").

M prevents isolation if there doesn't exist an adversary A that isolates a row in

x except with very small probability over the randomness of sampling x <- Dn, the

mechanism y <- M(x), and the adversary A(y). Unfortunately, this is impossible

to achieve by any mechanism M. To wit, there is a trivial adversary-one that

that doesn't look at y and denoted by T(I)-that isolates a row with probability

approximately 0.37. The adversary simply outputs p that matches a 1/n fraction

of the distribution D. For example, for a dataset of size n = 365 random people

selected at random from the United States population, T(L) may simply output

p = (born on March 15th). This predicate will isolate a row with probability (1 -

1/365)364 ~ 37%. Isolation is hence not necessarily indicative of a failure to protect

against singling out, as T(L) would succeed with ~ 37% probability (for any n) even

if M does not output anything at all.5

A trivial adversary can give us a baseline against which to measure isolation

success. But the baseline should not simply be 37% chance of success. Consider the

earlier example of a dataset of 365 random Americans. What if an adversary output

predicates like p = (born on March 15th A vegan A speaks Dutch A concert pianist),

and managed to isolate 10% of the time? Though 10% is much less than 37%, the

predicate is extremely specific and unlikely to isolate a person by chance. We formalize

this intuition by considering the baseline risk of isolation as a function of the weight

of p, i.e., the chance that p matches a random row sampled from the distribution D.

The baseline for predicates of weight 1/n is 37%, but the baseline for an extremely

51n Section 4.3.2 we show that T(L) need not know the distribution D to isolate with probability
37% if D has sufficient min-entropy.
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specific predicate may be much lower. The more specific the predicate, the closer the

baseline gets to zero. Our primary focus in this chapter is on the regime of predicate

weights where the baseline is negligible, corresponding to predicates with negligible

weight.6 We get:

Definition 4.3.6 (informal) An adversary predicate singles out a row in x if it outputs

a predicate that isolates a row with probability significantly higher than the baseline

risk. A mechanism M is secure against predicate singling out (PSO secure) if no

adversary can use its output to predicate single out.

4.1.2.2 Analyzing Security Against Predicate Singling Out

Having formulated security against singling out, our next goal is to understand the

guarantee it offers, what mechanisms satisfy it, and how this concept relates to ex-

isting privacy concepts, including differential privacy and k-anonymity.

Two desirable properties of a privacy concept are robustness to post-processing

and to composition. The former requires that if a mechanism M is deemed secure,

then anything that can be computed using the outcome of M should also be deemed

secure. Hence, the outcome may be reused without creating additional privacy risk.

For instance, if a PSO secure mechanism M outputs microdata, then any statistics

that can be computed from that microdata should also be PSO secure. It follows

directly from the definition of PSO security that it is robust to post-processing.

We would like that the privacy risk of multiple data releases is not significantly

greater than the accumulated risks of the individual releases. In this case, we say that

the privacy concept composes. We prove that PSO security does not compose, and

give two examples of this failure. First, we show that releasing aggregate statistics is

PSO secure but fails to compose super-logarithmically many times. A collection of

w(log(n)) counts may allow an adversary to isolate a row with probability arbitrarily

close to one using a predicate with negligible weight (and negligible baseline). Second,

we construct less natural pair of mechanisms that individually are PSO secure but

6For completeness, we also consider in Section 4.3 predicates of weight w(log n/n), where the
baseline is also negligible.
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together allow the recovery of a row in the dataset. The first mechanism extracts and

outputs a secret encryption key from one part of x. The second extracts the same key

and uses it to encrypt the last row x, c x, outputting the corresponding ciphertext.

The mechanisms individually prevent predicate singling out, but together completely

fail.

Next, we ask whether existing privacy concepts guarantee PSO security. We

already know that differential privacy is not necessary for PSO security as exact

counts are PSO secure but not differentially private. However, differential privacy

does provide PSO security. The proof relies on the connection between differential

privacy and statistical generalization guarantees [DFH+15, BNS+16]. We show that

predicate singling out implies a form of overfitting to the underlying dataset. If M is

differentially private it prevents this form of overfitting, and hence protects against

predicate singling out.

Finally, we examine k-anonymity [SS981 and show that it does not prevent pred-

icate singling out attacks. Instead, it enables an adversary to predicate single out

with probability approximately 37% using extremely low-weight predicates for which

the baseline risk is negligible. Briefly, the attack begins by observing that typical k-

anonymous algorithms "almost" predicate single out. They reveal predicates-usually,

collections of attributes-that are satisfied by only k rows in the dataset. In an effort

to make the k-anonymized data as useful as possible, these predicates are as descrip-

tive and specific as possible. To predicate single out a row from the dataset of size n

using the k-anonymous output, it roughly suffices to predicate single out a row from

any grouping of k rows in the output.

4.1.3 Implications for the GDPR

Precisely formalizing predicate singling out attacks allows us to examine with math-

ematical rigor the extent to which specific algorithms and paradigms protect against

them. In particular, we show that k-anonymity fails to prevent predicate singling

out, but that differential privacy prevents predicate singling out. Our conclusions

contrast with those of the Article 29 Working Party: they conclude that k-anonymity
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eliminates the risk of singling out while differential privacy "may not" [A29b]. These

disagreements may raise a doubt about whether our modeling indeed matches the

regulators' intent.

Our goal in interpreting the text of the GDPR and related documents, and in

defining predicate singling out, is to provide a precise mathematical formalism to

capture some aspect of the concept of personal data (as elucidated in the regulation

and in [A29a]) and the associated concept of anonymization. We want to render

mathematically falsifiable a legal claim that a given algorithmic technique anonymizes

personal data by providing a necessary condition for such anonymizers.

We argue that predicate singling out succeeds. A number of modeling choices

limit the scope of our definition, but limiting the scope poses no issue. Specifically,

(i) we only consider randomly sampled datasets; (ii) we only consider an attacker

who has no additional knowledge of the dataset besides the output of a mechanism;

(iii) we do not require that isolation be impossible, instead comparing to a baseline

risk of isolation. A technique that purports to anonymize all personal data against

all attackers must at least do so against randomly sampled data and against limited

attackers. And unless the idea of anonymization mechanisms is completely vacuous,

one must compare against a baseline risk.

We must be careful not when narrowing our definition's scope, but when expanding

it. The most significant expansion7 is our choice to parameterize the baseline risk by

the weight of a predicate. But this is a minimal expansion and only done to prevent

a severe weakness. Not doing so would mean that a mechanism that published the

first row of the dataset 20% of the time could be said to "prevent singling out." Any

meaningful instantiation of "preventing singling out" should rule out such mechanisms.

Ours is a natural way of doing so.

This does not mean that our modeling is the only one possible. As the starting

point for the analysis is a description which does not use mathematical formalism,

but is rather a (somewhat incomplete) description using natural language. It is cer-

tainly plausible that alternative mathematical formalizations of singling out could be

7We discuss additional subtleties in Section 4.3.3.
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extracted from the very same text. We are looking forward to seeing such formaliza-

tions emerge.

Finally, one may still claim that the assessments made in [A29b] should be taken

as ground truth and that the Article 29 WP meant for any interpretation of singling

out to be consistent with these assessments. That is, the protection provided by

k-anonymity implicitly defines the meaning of singling out (partially or in full). We

believe, however, that such a position would be hard to justify. To the best of our

knowledge, the assessments made by the Article 29 WP were not substantiated by a

mathematical analysis. Furthermore, we caution against defining privacy implicitly

as the guarantee provided by particular techniques; this approach is doomed to fail.

In particular, the choice of defining privacy as the result of applying practices such as

suppression of directly identifying information has proved a problematic choice that

unfortunately pervades current legal privacy standards.

Is predicate singling out a good privacy concept? A predicate singling out

attack can be a stepping stone towards a greater harm, even in settings where isolation

alone may not. It may enable linking a person's record in the dataset to some external

source of information [NS08I, or targeting of individuals for differential treatment. As

such, it is meaningful as a mode of privacy failure, both in the GDPR context and

otherwise.

And, while we believe that PSO security is relevant for the GDPR as a neces-

sary property of techniques that anonymize personal data, we do not consider it a

sufficiently protective privacy concept by itself. First, singling out is a specific mode

of privacy failure. It is not clear that ruling out this failure mode is sufficient for

privacy (in particular, two other failure modes are mentioned in [A29b]: linkage and

inference). Second, our definition considers a setting where the underlying data is

chosen i.i.d. from some (unknown) underlying distribution, an assumption that is

not true in many real-life contexts. PSO security may not prevent singling out in

such contexts. Lastly, we believe that self-composition is an essential property of any

reasonable privacy definition. However, as we show in Section 4.4.3, security against
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singling out does not self compose.

4.2 Preliminaries

Notation. Let X ={0, 1}d be the data universe. A database x =(x1 ,... , Xn)

consists of n elements taken from X. We often consider databases where each entry

xi is chosen i.i.d. from a probability distribution D C A(X) over X.

For the purposes of asymptotic analyses, we will use the number of rows n C N

in a dataset as the complexity parameter. Furthermore, the parameter d = d(n) is a

function of n, but we typically omit the dependence.8

For a predicate p : X -+ {O, 1} we define weightD(p) Ex~D[p(x)] and for a

database x (E X we define p(x) E ,> p(xi). A mechanism M is a Turing Machine

that takes as input a database x E Xn. A mechanism M may be randomized and/or

interactive.

We use U for a random variable sampled from the uniform distribution over

{0, 1}d. A function f(n) is negligible in n if f(n) = n-'' ; this is denoted f(n)

negl(n).

4.2.1 Preliminaries from Randomness Extraction

Definition 4.2.1 (Min-entropy, average min entropy [DORS081). Let Y1, Y2 be two

random variables. The min-entropy of a Y is

H,(Y1 ) = -log maxPr[Yi )y].

The average min-entropy9 of Y1 given Y2 is

Nc (Y 1 Y2 ) = -log (E [max Pr[Y = y Y2]]

8More formally, we can consider an ensemble of data domains X {X, = {, }d() }nCN and an
ensemble of distributions D = {Dn}ncN, where D, E A(X,).

'In [Smi09] this same quantity is called conditional min-entropy and denoted HO.
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Fact 4.2.2. For all Y and Y2 : H,(Y) > H (Y I Y2) > Ho(Y) - log(jsupp(Y2)j),

where supp(Y2) is the support of Y2 .

Definition 4.2.3 (2-universal hash functions). H = {h : {O, I}d -4 {O, 1}",} is a 2-

universal family of hash functions if Prh~H[h(x) - h(x')] = 2-' for all x, x' E {O, i}d

where the probability is over the selection of h uniformly at random from H.

As an example, for a, b E {O, I}d let ha,b(x) be the function that returns the first

m bits of ax + b where the arithmetic is in the field GF(2d). Then H = {ha,b : a, b E

{O, 1}d} is 2-universal.

Definition 4.2.4 (Statistical distance). The statistical distance of random variables

Y1, Y2 with support {, }d is SD(Y,Y 2) = Z oml Pr[Y1 = y] - Pr[Y2 = y]|. If

SD(Y1 , Y2) < a we say that Y and Y2 are a-close.

Lemma 4.2.5 (Generalized Leftover Hash Lemma [DORS08]). Let A E N, a > 0, Y

a random variable over {0, I}d, and Y2 a random variable. Let H ={h : {0,1}d -+

{0, 1}"} be a 2-universal family of hash functions where m < A - 2log(1/a 2 ) + 2.

For every Y and Y2 with H((Y I Y2) ;> /, (h, h(Y), Y2) is a2-close to (h, U, Y2) in

total variation distance, where h ER H is a uniformly random function from the hash

family and Urn is uniform over {0, 1}m.

Corollary 4.2.6. h(Y) is a-close to uniform with probability at least 1 - a over

h ER H.

Proof. Let H>,= {h E H : h(Y) is not a close to uniform}. We have a2 >

A((h, h(Y)), unif) > Pr[h C H>,] - a. Hence Pr[h C H>,] < a.

4.3 Security Against Predicate Singling Out (PSO

security)

We consider a setting in which a data controller has in its possession a dataset

x = (X 1 , ... , Xn) consisting of n rows sampled i.i.d. from a distribution D E A(X).
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The data controller publishes the output of an anonymization mechanism M ap-

plied to the dataset x. A predicate singling out (PSO) adversary A is a non-

uniform Turing machine with access to the mechanism M(x) and produces a predicate

p : X -+ {O, 1}.1 We abuse notation and write A(M(x)), regardless whether M is

an interactive or non-interactive mechanism. For now, we assume all adversaries have

complete knowledge of D and are computationally unbounded; we reexamine these

choices in Section 4.3.3 below.

Intuitively, the adversary's goal is to output predicate p that isolates a row in x,

where we associate the Article 29 WP Opinion on Anonymisation Techniques notion

of "isolat[ing] some or all records which identify an individual in [a] dataset" with the

production of a description that matches exactly one row in the dataset. Mathemati-

cally, the description would be in form of a predicate mapping data universe elements

into {0, 1}.

Definition 4.3.1 (Row isolation). A predicate p isolates a row in x if there exists a

unique x E x such that p(x) = 1. Le., if p(x) = 1/n. We denote this event iso(p,x).

It is tempting to require that a mechanism M only allow a negligible probability

of isolating a row, but this intuition is problematic. An adversary that does not have

access to M-a trivial adversary-can output a predicate p with weightD(p) = 1/n

and hence isolate a row in x with probability (') -weightD(p) - (1 - weightD(p))nl -

e-' ~ 37%. In Section 4.3.2 we will see that in many cases the trivial adversary need

not know the distribution to produce such a predicate.

Instead of considering the absolute probability that an adversary outputs a pred-

icate that isolates a row, we consider the increase in probability relative to a baseline

risk: the probability of isolation by a trivial adversary.

Definition 4.3.2 (Trivial Adversary). A predicate singling out adversary T is trivial

if the distribution over outputs of T is independent of M(x). That is T(M(x)) =

T(_I).

"As is typical in cryptography, strengthening the adversary to be non-uniform (including possibly

having full knowledge of the distribution D) yields stronger security definition. See Section 4.3.3 for
further discussion.
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An unrestricted trivial adversary can isolate a row with probability about 1/e.

Towards a more expressive notion of the baseline risk, we restrict adversaries to output

a predicate from a particular class of admissible predicates P C {p : X -+ {0, 1}},

i.e., a subset of predicates on X."

Definition 4.3.3 (Adversarial success probability). Let D be a distribution over X.

For mechanism M, an adversary A, a set of admissible predicates P, and n E N, let

Succ AM(nD) A Pr [iso(p, x) A p E P].P ~ x+-D"n
p<-A(M(x))

Definition 4.3.4 (Baseline). For n G N and set of admissible predicates P,

baseD(n, P) A sup Succp (n, D)
Trivial T

We typically omit the parameter D when the distribution is clear from context.

In this chapter, we focus on two classes of admissible predicates parameterized by the

weight of the predicate p.

Definition 4.3.5 (Predicate families low and high). For 0 < wi0s(n) < 1/n <

Whigh(n) < 1 we define the predicate families

low = {p: weightD(p) < wiw(n)} and high = {p : weightD(p) whigh(n)}

We will consider the success probability of adversaries restricted to these admissi-

ble predicates and will denote them Succ AM and Succ A> as shown in Figure 4-1.

Dn - M --- A iso(p, x) A weightD( W W1ow --- b e {true, false}

Figure 4-1: Succ~f (n, D) = PrD,M,A[b = true].

"More formally, we restrict the adversary to an ensemble of admissible predicates P ={P}nEN,
where P, C {p: X, -+ {0, 1}}, a subset of predicates on X,.
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4.3.1 Security Against Predicate Singling Out

We now have the tools for presenting our definition of security against singling out.

We require that no adversary should have significantly higher probability of isolating

a row than that of a trivial adversary, conditioned on both outputting predicates from

the same class of admissible predicates.

Definition 4.3.6 (Security against predicate singling out). For E(n) > 0, 6(n) > 0,

0 < wi 0w(n) < 1/n Whigh(n) < 1, we say a mechanism M is (E, 6, Wlow, Whigh) secure

against predicate singling out ((e, 6, Wow, Whigh)-PSO secure) if for all adversaries A

and distributions D:

SuccA ' M(n, D) < ee(n) baseD(n, low) + 6(n),

Succ jW (n, D) < eE(n) baseD(n, high) + 6(n). (4.1)

We often omit explicit reference to the parameter n for E, 6, wi, and Whigh.

We say a mechanism is secure against predicate singling out (PSO secure) if

for all wi0o = negl(n), Whigh = w('29n) there exists 6 = negl(n) such that M is

(0, 6, Wo, Whigh)-PSO secure.

The definition is strengthened as E and 6 get smaller, and as wi0o and Whigh get

closer to 1/n. As shown below, when wl,, = negl(n) the baseline is negligible. This is

probably the most important regime of Definition 4.3.6 as such predicates are likely to

not only isolate a row in the database but also an individual in the entire population.

The baseline is also negligible when Whigh= w(log n/n). It is not clear to the authors

how beneficial finding a predicate in this regime may be to an attacker. The reader

may decide to ignore Equation 4.1 in Definition 4.3.6 (as is depicted in Figure 4-1).

We include the high weight regime in our analysis so as not to overlook potential

singling out risks which rely on high weight predicates.

We also define a strong notion of predicate singling out, where an adversary can

simultaneously isolate all rows of a dataset.
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Definition 4.3.7 (Fully Predicate Singling Out). An adversary A fully singles out

against a mechanism M and distribution D if (with high probability) it outputs a

collection of n negligible-weight predicates pi, each of which isolates a different row of

the input dataset x. More formally, if

Pr [Vpipj : iso(pi,x) A weightD(Pi) negl(n) A (pi A pj)(x) = 0] > 1-negl(n)
x+-D"

(P1.p--,pn>)-A(M(x))

(4.2)

Examples. On input (x 1 ,. . . , X,) the mechanism Mf outputs (f (x1),... , f (x,)) for

some possibly randomized function f. Whether Mf prevents predicate singling out

depends on f. On one extreme, if f(x) = x and XJ > n, then Mf provides no

protection. On the other extreme, if f(x) is completely random, Mf(x) contains no

information about x and provides no benefit to the adversary. More formally, for all

x the output of Mf (x) is uniform; this allows us to construct a trivial adversary T

that perfectly simulates any adversary A. 12

If f is invertible, then it offers no more protection than the identity function.

However, f being many-to-one does not give an assurance. For instance, suppose the

data is uniform over {0, 1} and f : {0, 1}, --+ {0, 1}n/2 outputs the last n/2 bits of

an input x. Mf is not secure. Indeed, it allows fully predicate singling out. For any

yj = f(xi) in the output, the adversary can output the predicate pi : (x) F-+ lI(f(x)

yi). Pr[iso(pi, x)] =1 - negl(n) and weight. (pi) = 2-n/2 - negl(n).

4.3.2 Bounding the Baseline

In this section, we characterize the baseline over intervals in terms of a simple function

B(n, w). For n > 2 and a predicate p of weight w, the probability over x ~ Dn that

p isolates a row in x is

B(n, w) n - w - 1-w)'-'

1
2 Uniformity without conditioning on x may not be enough. For example, if the data itself is

uniform, then the output of the identity function is also uniform. See also footnote 16.

252



B(n, w) is maximized at w = 1/n and strictly decreases moving away from the max-

imum. It is helpful to recall that (1 - 1/n) ~ even for relatively small values of

n. (1 - 1/n)n--1 also approaches e-1 as n -+ oc, and does so from above.

As made formal in Claim 4.3.8, a trivial adversary maximizes its success of iso-

lating a row by outputting a predicate p with weightD(p) as close as possible to 1/n

(the weight that maximizes B(n, w)). The set of possible values for weightD(p) de-

pends not only on wio0 and whigh, but also on the distribution. We say that a weight

w E [0, 1] is realizable under distribution D if there exists p such that weightD(p) =W

The baseline is characterized by B(n, w).

Claim 4.3.8. For every n > 0, wiow, Whigh and D,

baseD(n, Iow) =B(n,w*w (n)) and baseD(n,highn) = B(n,whigh()),

where

w* (n) = sup{w wi0o(n): realizable} and whigh ri= info whgh ri: reaizabe.

Because B (n, w) increases as w approaches 1/n, the baseline has a simple upper-

bound.

Corollary 4.3.9. For every wi0 , Whigh, n G N and distribution D,

baseD (n, low,) < B (n, wiow(n)) and baseD (n, highn) B (n, Whigh ( -)).

Proof of Claim 4.3.8. For w E [0, 1], let P,, {p : weightD(p) = w}. First, we show

that for all w, base(n, P) < B(n, w). For any fixed predicate p,

Pr [iso(p, x)] = ( -weight(p) -(- weightD(p)n1 = B(n, weightD(p).

For a trivial adversary T, let aw(T) = PrT(L)[weightD(p) = W.

base(n,P.) = B(n,w)- sup cew(T) (4.3)
Trivial T
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If w is realizable under D, then there exists a deterministic trivial adversary T with

all1 (T) = 1; otherwise a.(T) = 0 for all T.

For W C [0, 1], let Pw = {p : weightD(p) E W}. By definition, base(n, Pw) >

supw base(n, P). Next, we show that in fact base(n, Pw) = sup Cw base(n, P).

Suppose, towards contradiction, that base(n, Pw) > supwew base(n, P). Then there

exists trivial T with Succ T,(n) > supwew base(n, Pw). There must also exist an deter-

ministic trivial adversary T' with Succ-'-(n) > Succi7(n) but which always outputs

predicates of a single weight w' E W, a contradiction.

Combining with (4.3): for any W,

base(n, Pw)= sup B(n, w).
wEW

realizable

Because B(n, w) monotonically increases as w -+ 1/n,

sup B(n,w) =B(n,w*)
<wjlow

realizable

sup B(n, w) = B(n,W*igh)
W>Whigh
realizable

The dependence on the realizability of weights under D makes the exact baseline

unwieldy. For example, the difference between the true baseline and the upper bound

can be as large as 1/e. Thankfully, the B(n, w) upper bound is nearly tight when

the underlying distribution has moderate min-entropy. Moreover, the corresponding

lower bound is achievable by an efficient uniform trivial adversary who is oblivious of

the distribution (see Section 4.3.3).

Claim 4.3.10 (Baseline Lower Bound). Let c > 0 and 0 < wio(n) < 1/n <

Whigh(n) < 1. If D has min-entropy at least A > 5(c+logn+2), then baseD(n, IOWa) >

B(n, wio(n)) - 2-c and baseD(n, high) > B(n, Whigh(n)) - 2c.

Proof of Claim 4.3.10. We prove the claim for wi0,(n); the proof for Whigha(n) is anal-

ogous. Let m > c + log n + 2. Either wi0 (n) < 2 -(c+logn) or wiow(n) > 2(m-1). If

wi 0W(n) < 2 -(c+logn), then B(n, wi 0.) nwiw < 2 -c, making the claim trivial. It
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remains to consider wio,(n) ;> 2-(-')

Let PH be the family of predicates from Lemma 4.3.11 and TH be a trivial adver-

sary that outputs a random Ph CR PH. Recall that for any predicate p, PrX~Dl [iso(p, x)]

B(n, weightD(p)). By Lemma 4.3.11

SuccTHI (n) > Pr [iso(ph,x) A weightD(ph) C Wlow]ow - x~D-,hERH

= Pr [weightD(ph) E Wlow]- Pr [iso(ph, x) I weightD(ph) E Wow]
hERH x~DnhERH

> (1 -2-m) .B(n,3.2 m )

Observing that 4' (w)I < 4 (0) = n, Succi T" (n) > B(nwi(n))-3-2-rn--2->

B(r, wiow(n)) - 2 -(m-log n-2) > B(n, wiow(n)) - 2--c.

Informally, the assumption that D has min-entropy A implies two useful facts.

First, the set of realizable weights is dense: for any w, there exists a realizable w'

such that |w - w'J is small. Second, the Leftover Hash Lemma allows us to construct

an efficient uniform adversary who can find a predicate with weight w' without any

knowledge of the distribution. The following lemma captures these properties:

Lemma 4.3.11. For m C N and a set X, let H = {h : X -+ {0, 1} m} be 2-universal

family of hash functions. For any w > 2(-1) (respectively, w < 1 - 2-(m-1)), there

exists a collection of predicates PH ={Ph}hEH such that for all distributions D over

X with min-entropy at least A = 5m, weightD(ph) C [w - 3. 2M, w] with probability

at least 1 - 2-- over h ER H. (respectively, weightD(ph) C [ww + 3 - 2rn]).

Proof of Lemma 4.3.11. We prove the lemma for w > 2-(m-); the proof for w <

1 - 2-("-) is analogous. Identify the set {0, 1}m with the set {0, 1,..., 2" - 1} in

the natural way. For y E {0, 1}M, define the function r(y) A 2 m_ 1 , the projection of

y onto the interval [0, 1]. Let 0 < A < w be some constant to be chosen later, and

let wn be the greatest multiple of 2- less or equal to w - A.

Pr [r(y) < w - A] = Pr [r(y) < wm]
yGR{0,1}m yER{0,1}m
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= wm + 2 -m

E [w - A, w - A + 2-m] (4.4)

Let H = {h : X -+ {0, 1}} be 2-universal family of hash functions. For each h E H

we define the predicate ph:

Ph X)- 1 r(h(x)) <w- A

0 r(h()) > w - A

By the Leftover Hash Lemma, for every a > 0 to be chosen later and every A >

m + 2 log(1/a 2 ), if D has min-entropy at least A then

(h, h(x))hERH
x~D

is a2-close to the uniform distribution over H x X, in total variation distance. By

Corollary 4.2.6 h(D) is a-close to uniform over X with probability at least 1 - a over

h ER H. For such h, by (4.4),

weightD(ph) = Pr h(x) w -A] E [w -A-a, w - A + 2-m a].
x+-D

Set a = 2-7 and A = 2a. Then weightD(Ph) E [w - 3 -2-M, w] with probability at

least 1 - a = I- 2- whenever A > m +2 log(1/a 2 ) = 5m, completing the proof. El

Remark 4.3.12. The proof of Claim 4.3.10 requires only that is possible to sample

a predicate such that weightD(Ph) E Wow. If we switch the order of quantifiers in

the claim by allowing the trivial adversary to depend on the distribution D, then the

proof (and thus the trivial adversary) can be derandomized. Indeed, for any D with

sufficient min-entropy, there are many Ph that can be used. This observation is used

in the proof of Theorem 4.4.6.
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4.3.3 Reflections on Modelling Assumptions

In many ways, Definition 4.3.6 requires a very high level of protection, similar to what

is standard in the foundations of cryptography. The definition requires a mechanism

to provide security for all distributions D and against non-uniform, computationally

unbounded adversaries.' 3 The main weakness in the required protection is that it

considers only data that is i.i.d., whereas real-life data cannot generally be modeled

as i.i.d.

Any mechanism that purports to be a universal anonymizer of data under the

GDPR-by transforming personal data into non-personal data-must prevent sin-

gling out. Our definition is intended to capture a necessary condition for a mecha-

nism to be considered as rendering data sufficiently anonymized under the GDPR.

Any mechanism that prevents singling out in all cases must prevent it in the special

case that the data is i.i.d. from a distribution D. We view a failure to provide se-

curity against predicate singling out (Definition 4.3.6) or is fully predicate singling

out (Definition 4.3.7) as strong evidence that a mechanism does not provide security

against singling out; hence, it does not protect from identification, as per the analysis

in Section 4.1.1.

On the other hand, satisfying Definition 4.3.6 is not sufficient for arguing that

a mechanism renders data sufficiently anonymized under the GDPR. Singling out is

only one of the many "means reasonably likely to be used" to identify a person in

a data release." Furthermore, the definition considers only i.i.d. data; satisfying it

may not even be sufficient to conclude that a mechanism prevents singling out in all

relevant circumstances.

" It is reasonable to limit the adversary in Definition 4.3.6 to polynomial time. If we restricted
our attention to distributions with moderate min-entropy, our results would remain qualitatively the
same: our trivial adversaries and lower bounds are all based on efficient and uniform algorithms; our
upper bounds are against unbounded adversaries. Relatedly, restricting to min-entropy distributions
would allow us to switch the order of quantifiers of D and T in the definition of the baseline without
affecting our qualitative results.

"Article 29 Working Party Opinion on Anonymisation techniques [A29b] enumerates three crite-
rions for identification: singling out, linkage, and inference.
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4.4 Properties of PSO security

Two desirable properties of privacy concepts are that (i) immunity to post-processing,

i.e., further processing of the outcome of a mechanism, without access to the data,

should not increase privacy risks, and (ii) closure under composition, i.e., a com-

bination of two or more mechanisms which satisfy the requirements of the privacy

concept is a mechanism that also satisfies the requirements (potentially, with worse

parameters). Differential privacy is an example of a privacy concept that is immune

to post-processing and is closed under composition.

In this section we prove that PSO security withstands post-processing but not

composition. We give two demonstrations for the latter. In the first we consider

mechanisms which count the number of dataset rows satisfying a property. We show

that releasing a count satisfies Definifion 4.3.6. However, there exists a collection of

w(log(n)) counts which allows an adversary to isolate a row with probability arbi-

trarily close to one using a predicate with negligible weight. For the second demon-

stration, we construct a (less natural) pair of mechanisms that individually satisfy

Definifion 4.3.6 but together allow the recovery of a row in the dataset. This latter

construction borrows ideas from [NSS+18]. An immediate conclusion is that PSO se-

curity is distinct from differential privacy. More importantly, not being closed under

composition is a significant weakness of the notion of PSO security. Our constructions

rely on very simple mechanisms that would likely be deemed secure against singling

out under other formulations of the concept. It may well be that non-closure under

composition is inherent for singling out.

From a legal or policy point of view, we believe that a privacy concept which is not

closed under composition (or not immune to post-processing) should not be accepted

as sufficient. Pragmatically, the fact that PSO security is not closed under compo-

sition suggests that this concept can be used for disqualifying privacy technology (if

they are not PSO secure) but also that this concept must be combined with other

requirements if it used for approving technology.
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4.4.1 Post-processing

For any non-interactive mechanism M, let F be a (possibly non-uniform) algorithm

taking inputs of the form M(x). Let F o M be the mechanism that on input x returns

F(M(x)).

Lemma 4.4.1 (Post-processing). If M is (E, 6, wio, Whigh)-PS0 secure, then F o M

is too.

Proof. We show something stronger: for all M, F, A there exists AF such that for

all n, P, D: SuccAF,M ,Succ FoM(n). On input M(x), AF simulates A on input

F(M(x)) and returns the resulting predicate p. The distribution of AF's output with

mechanism M is identical to that of A with mechanism FoM, proving the lemma. El

The definition and proof above extend to the case where the mechanism M is inter-

active.

4.4.2 Example PSO-secure mechanisms

This section presents two PSO-secure mechanisms. These examples are useful for de-

veloping intuition for the PSO security notion. Additionally, they are the foundation

for the examples of self-composition failures in the next section.

4.4.2.1 Counting Mechanism

For any predicate q : X -+ {0, 1}, we define the corresponding Counting Mechanism:

For example, consider the least-significant bit predicate Isb, that takes as input a

string x E {0, 1}* and outputs x[1]. The corresponding Counting Mechanism M#Isb

returns the sum of the first column of x.

The security of the Counting Mechanism is a corollary of the following proposition.
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Mechanism: Counting Mechanism Mgq
input: x

return I{1 i n : q(xi)



Proposition 4.4.2. For all A, P, M : X' - Y: SuccA,"(n) <; Y - base(n, P),

where Y is the codomain of M.

Proof. We define a trivial adversary T such that for all A, Succ~p (n) -Succ ().

The proposition follows by definition of base(n, P). T samples a random y ER Y and

returns p +- A(y).

Succ ,"(n) = Pr [iso(p, x) A
x<-D"
YERY

p<-A(y)

PE P SuccA,M
Y

The inequality follows from the fact that for all databases x, there exists y* = y*(x) C

Y such that

Pr [iso(p, x)
p+-A(y*)

A pEP] > Pr [iso(p, x) A p E P],
p+-A(M(x))

and that for all x, PryEY y1 > 1.

Corollary 4.4.3. Mgq PSO secure.

As exact counts are not differentially private, this corollary demonstrates that

differential privacy is not necessary for PSO security.

4.4.2.2 Predicate Mechanism

For any predicate q : X -+ {0, 1}, we define the corresponding Predicate Mechanism:

Mechanism: Predicate Mechanism Mq
input: x

return (q(xi), q( 2 ),.-. ,q(xn))

Theorem 4.4.4. Mq is PSO secure.

We prove the security of Mq by showing that its output is "no more helpful" to

the PSO adversary than the counts returned by Mgq.
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Proposition 4.4.5 (Permutation Proposition). For a permutation - : [n] - [n] of

n elements and a dataset x = (X 1 ,... , X), define a-(x) = (x,(), Xa(2 ), ... , x,(n)). For

any mechanism M, let M o o be the mechanism that on input x returns M(u-(x)).

For all A, P, D, and -: Succ 'M(n) = Succ'Moao(n).

Proof. For all -, the distributions D" and a-(Dn) are identical. For all p and x,

iso(p, x) if and only if iso(p, -(x)). Using these two observations:

SUcCA'M(n) = Pr [iso(p, x) A p E P]
P ~x<-Dn

p+-A(M(x))

= Pr [iso(p, -(x)) A p E P]
p+-A(Moc-(x))

= Pr [iso(p, x) A p E P]
x+-Dn

p -A(Moo-(x))

- Succ 'Moo (n) E

Proof of Theorem 4.4.4. Consider M1 that on input x samples a random permutation

a and returns Mqoo-(x). By the Permutation Proposition, Succ 'M 1(n) = Succ '(n

Next, consider the randomized algorithm F that on input m c [n] outputs a uniformly

random bitstring y E {o, 1} of Hamming weight m. By post-processing and the

security of Meq, the mechanism M2 = F o Mgq is PSO secure.

M1 and M2 are the same mechanism: on every input x, the output distributions

are identical. Therefore Mq is PSO secure.

4.4.3 Failure to Compose

4.4.3.1 Failure to Compose w(logn) Times

The security of a single count (Corollary 4.4.3) easily extends to O(log n)-many counts

(even adaptively chosen), as the size of the codomain grows polynomially. However,

our next theorem states that a fixed set of w(log(n)) counts suffices to predicate single

out with probability close to e- (which can be amplified to 1 - negl(n)).
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Theorem 4.4.6. For a collection of predicates Q (qo,...., qm), let M#Q(x)

(Mgqo(x),. , Mq.q(x)). Let X = {o,1} and D Um the uniform distribution

over X. There exists Q and an adversary A such that

Succ AM#(n) > B(n, 1/n) - negl(n).

Choosing m = w(log(n)) yields 2-m = negl(n).

Proof. Let q0 be any predicate such that weightun(qo) < 1/n and Prx,um [iso(qo, x)] >

B(n, 1/n) - negl(n). For instance, qo(x) = 1 iff x < 2r/n (where in the last inequality

we treat x as a number written in binary) .15

For i {1,... , m}, define the predicate qj(x) (qo(x) A x [i]), and let yj =

Mgqj(x). Consider the deterministic adversary A that on input M#Q(x) = . . . , Ym)

outputs the predicate

p(x) = qo(x) A
i=(x1i

Observe that iso(qo, x) ==* iso(p, x) and that by construction weightUjp) = 2-

Thus

SuccA " (n) Pr [iso(p, x)]
p+-A(M#Q (x))

> Pr [iso(qo, x)]
x+-Un

p+-A(M#Q (x))

B(n, 1/n) - negl(n)

Remark 4.4.7. When the attack succeeds, all the predicates qj match 0 or 1 rows in

x. It may seem that an easy way to counter the attack is by masking low counts, a

common measure taken e.g., in contingency tables. However, it is easy to modify the

attack to only use predicates matching 8(n) rows using one extra query. This means

that restricting the mechanism to suppress low counts cannot prevent this type of

"5Or use Claim 4.3.10 with wij(n) = 1/n, and Remark 4.3.12.
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attack. Let q* be a predicate with weightu,(q*) = 1/2 (e.g., parity of the bits), and

let q= qi V q*. The attack succeeds whenever q*(x) = q*(x) + 1. If q*(x) and qo(x)

are independent, then this occurs with probability at least j-B(n, 1/n) - negl(n). As

before, the probability can be amplified to 1 - negl(n).

While a single count is PSO secure for any data distribution, the above attack

against w(log(n)) counts applies only to the uniform distribution Urn. Using the

Leftover Hash Lemma, we can generically extend the attack to general distributions

D with moderate min-entropy, at the cost of randomizing the attacked mechanism

(i.e., set of counts). Informally, we hash the data to a smaller domain where its image

will be almost uniformly distributed, and adapt the attack appropriately.

Given a 2-universal family of functions H = {h : X --+ {0, 1}}, a mechanism M

and adversary A, we construct a new randomized mechanism MH and new adversary

AH. The following lemma relates the success probability of the modified AH with

respect to D to that of A with respect to U.

Mechanism: MH: X -> Y

fixed: H = {h : X -+ {0, 1}m}, and

M: {o, 1}m  Y

input: x C X

sample h ER H;

return (h, M(h(x)))

Lemma 4.4.8. For any A there exists AH such that for all M, wlo,, Whigh, a > 0

and D C A(X) with min-entropy A > m + 2 log(1/a 2 ):

Succ A M
H H(nD) - SuccA' (n, Ur) < na

where Succ(n, D) (respectively, Succ(n, Ur)) denotes the PSO success probability with

respect to the distribution D (respectively, Urn) as in Definition 4.3.3.
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Proof. For a predicate p on {0, 1} m we define a corresponding predicate on X: Ph(x) A

p(h(x)). On input (h, y) <- MH(x), AH simulates p <- A(y) and outputs Ph.

We call h E H good if h(D) is a-close to U,. By Corollary 4.2.6, (1-a)-fraction of

h are good. By the goodness of h, if weightu (p) < w 0,,, then weightD (Ph) < wio, + a-

Succ AIMH (n, D) - Succ A (n,Um) < SD(Um,h(Dn)) < na l

Corollary 4.4.9. Let a = negl(n) and A = m+2log(1/a 2 ). For any m = w(log(n)),

there exists a distribution over 0(m)-many predicates Qh, a negligible function wi0 w(n),

and an adversary A such that for all D with min-entropy at least A:

SUCC AMQh (n) > 1 - negl(n).

Proof. The success probability in Theorem 4.4.6 is easily amplified from 1/e to 1 -

negl(n) by repetition. Applying Lemma 4.4.8 to the result almost completes the proof;

it remains to verify that the resulting mechanism MH can be written as M#Q, for

some Qh = (q I... , qM). To do so, take qih(x) = q(h(x)), where qi is from the proof

of Theorem 4.4.6. l

Remark 4.4.10. Corollary 4.4.9 is only meaningful as an example of a failure of

composition if each Mgqh taken in isolation is PSO secure, something that is not

provided by Lemma 4.4.8. However, M#qh is an instance of the counting mechanism

and thus secure.

Theorem 4.4.6 can be extended to the predicate mechanism MQ; this follows from

the observation that M#Q can be implemented by post-processing MQ. But in fact a

much stronger attack is possible.

Claim 4.4.11. For a collection of predicates Q = (qi, ... ,qm), let MQ(x) A (Mqj(x),

... , Mq,(x)). Let X = {O, i}m and D = Um the uniform distribution over X. For

m = w(log(n)), there exists Q and an adversary A such that A fully predicate singles

out against MQ and D.
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Proof Outline. For i C [m], define the predicate qi(x) x[ij, the ith bit of x. Let

Qbits = (q, . ... , qm). For each row j E [n] and column i E tM], MQbs (x) outputs the

bit xi[j]. The adversary outputs the collection of predicates {pj}E[n,] where

Pj () = (x[i] = xji]).
i=1

4.4.3.2 Failure to Compose Twice

Borrowing ideas from [NSS+18], we construct two mechanisms Mext and Menc which

are individually secure against singling out (for arbitrary distributions), but which

together allow an adversary to single out with high probability when the data is uni-

formly distributed over the universe X = {0, 1}m. With more work, the composition

attack can be extended to more general universes and to distributions with sufficient

min-entropy.

We divide the input dataset into three parts: a source of randomness xext

(x 1 ,. . . , xe), a message x7, and a holdout set XhoId = (X!+ 1 ,- , Xn-1) used in the

proof. Mext(x) outputs an encryption secret key sk based on the rows in xext, using

the von Neumann extractor.

Mechanism: Mext

input: x

sk <- 0, the empty string;

for i +- 1 to a by 2 do

if Isb(xi) = 0 A Isb(xi+1) =1 then
I sk +- sl0

if Isb(xi) = 1 A Isb(xi+1 ) = 0 then

I sk +- sll
end

if Iskj > m then

I return sk[1 : m], the first m bits of sk

else
I return I

Menc(X) runs sk +- Mext. If sk $ _, it outputs sk e DX (using sk as a one-time
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pad to encrypt Xn); otherwise, it outputs 1. Alone, neither sk nor sk

the adversary to single out, but using both an adversary can recover Xn

single it out.

Theorem 4.4.12. Mext and Menc are secure against predicate singling

tion 4.3.6). For m = w(log(n)) and m < n/8, X ={0, 1}m, and D = Un

distribution over X, there exists an adversary A such that

( Xz allows

and thereby

out (Defini-

the uniform

Succ AMExtEnc (n) > 1 - negl(n),

where MExtEnc (Mext, Menc).

Proof. Let x = (xext, Xh.id, Xn) as described above.

Security of Mext. This is a special case of the security of the predicate mechanism M.

(Theorem 4.4.4) and post-processing, with q = Isb. 16

In fact, Mxt is even (ln(2), 0, 1/n, 1/n)-PSO secure. We provide a brief outline

of the proof. Consider a related mechanism MeT that outputs T if Iskj > m and _

otherwise. By Proposition 4.4.2, Mxt is (ln(2), 0, 1/n, 1/n)-PSO secure. The security

of Mext can be reduced to that of Met using a generalization of Proposition 4.4.5 to

distributions of permutations.

Security of Menc. For A, wi 0w(n) < negl(n), and Whigh(n) = w(log(n)/n), let

71OW = Succ ""c(n) and Nigh =SUCC " (n).

We must show that m1ow, 7high < negl(n). It is easy to bound Nhigh using the holdout

set Xhold, which is independent of the output Menc:

high Pr [p(Xhoid) I 1 weightD(P) whigh (-whigh )n-m- 2  o(-log(n)/n)(n)
X,Menc,A

16 The security of Mext does not follow from the mere fact that its output is nearly uniform.
For example, the mechanism that outputs x, may be uniform, but it trivially allows singling out.
Security would follow if the output was nearly uniform conditioned on x.
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To bound hiow, we consider the two possible values of p(x"). Write yow = yo + 'Yiow

where

7lo Pr [iso(p, x) A weightD(p) < wlow A p(xn) b]

If A singles out and p(Xn) = 1, then the it must have gleaned information about x"

from the ciphertext sk@)xa, which should be impossible. The von Neumann extractor

guarantees that either sk = I or sk is uniformly distributed in {0, 1} . Either way,

the output of Menc(x) is information-theoretically independent of x,. Therefore

7 K. < Pr [p(xn) 1 weightD(p) < wow] < w10o = negl(n).
x,Menc ,A

If A singles out and p(Xn) 0, then it is effectively singling out against the

sub-dataset x_, = (X,. ... , Xn-1) That is

lhow = Mr [iso(p, x) A weightD(p) < wlow A p(x,) = 0]
xMencA

Pr [iso(p, x-,) A weightD(p) < w 10o A p(xv 7 ) = 0]
XMenc ,A

We construct B that tries to single out against mechanism Mext using A. We assume

that B can sample from D." On input sk, B samples x' ~ D and runs p +- A(ske4').

SuccB t (n) > Pr [Iso(p, x-,) A weightD(p) < wliw A p(x') 0 A p(Xn) 0]

Pr [iso(p, x-n) A weightD(p) < WIow A p(x') 0]

- Pr[p(xn) = 0 1 weightD(p) Wlow]

how- (1 - Wlow)

> ow- (1 - negl(n))

Therefore 'ylw is negligible.

17 It is tempting to try to remove this assumption by picking x' arbitrarily, say x' = 0'. Be-

cause sk is uniform, the ciphertexts sk e x, and sk E x' are identically distributed and perfectly
indistinguishable. This intuition is misleading (see also footnote 16).
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D-

Insecurity of MExtEnc for D = U. The output of MExtEnc(X) is a pair (sk, Ct). If

(sk, ct) = (1, 1), A aborts. The for-loop in Mext extracts n/4 uniform bits in ex-

pectation. By a Chernoff Bound, for m < n/8, Prx[sk = L] 5 e-n/16 - negl(n).

If (sk, ct) 4 (1,I), A recovers Xn = ct ( sk and outputs the predicate

p(X) = (X= Xn).

By the choice of m w(log(n)), weightu,(p) = 2-" < negl(n). Pr[iso(p,x) I sk #

I] = 1 - Pr[3j / n : xj = Xn] = I - n- 2- > 1 - negl(n). The bound on SuccAMEx tEnc

follows, completing the proof of the claim and the theorem.

4.4.3.3 Singling Out and Failure to Compose

The failure to compose demonstrated in Section 4.4.3.1 capitalizes on the use of

multiple counting queries. Such queries underlie a large variety of statistical analyses

and machine learning algorithms. We expect that other attempts to formalize security

against singling out would also allow counting queries. If so, our negative composition

results may generalize beyond the notion of PSOsecurity.

The failure to compose demonstrated in Section 4.4.3.2 is more contrived. We

expect that other attempts to formalize security against singling out would allow

mechanisms like Mext, where the output is uniform even conditioned on the input.

It is less clear to us whether a mechanism like MEnc would be allowed under other

possible formalizations of security against singling out. If an alternate formalization

is to compose, it likely must forbid MEnlc.
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4.5 Differential Privacy, Generalization and PSO Se-

curity

4.5.1 Preliminaries from Differential Privacy

For x, x' C Xn, we write x - x' if the two datasets differ on exactly one element xi.

Definition 4.5.1 (Differential Privacy IDMNS06, DKM+06I). A randomized mech-

anism M : Xn -+ T is (E, 6)-differentially private if for all x ~ x' Xn and for all

events S C T,

Pr[M(x) E S] < e' Pr[M(x') c S] + 6,

where the probability is taken over the randomness of the mechanism M.

Lemma 4.5.2 (Basic and Parallel Composition [DKM+06, McS09]). Let M (E, 6)-

differentially private and M' (E', 6')-differentially private. The mechanism M' o M

x -+ M'(M(x), x) is (E+E', 6+6')-differentially private. Let (x1 ,.. . , xe) be a partition

of x into disjoint datasets. The mechanism M : (x1,... , xf) F-+ (M(xi),..., M(xe))

is (E, 6)- differentially private.

Theorem 4.5.3 (Exponential Mechanism [MT07]). For domain X' and outcome

space R, let u : X' x R - R be a utility function. The sensitivity of u is Au =

maxrER maxx~xt Ju(x, r) - u(x', r)j. For a dataset x, let opt(x) = maxre U(x, r)

and let R.pt= {r c R : u(x, r) = optu(x)}. For any E > 0, there exists a mechanism

MEX X' x R x u -+ R that is (E, 0)-differentially private such that for all x and all

t > 0:

Pr -2Au (In ) e t .
[u(M[xp(x uI R) & Optx X E n +o t -

Our analysis of how PSO security relates to differential privacy is through a con-

nection of both concepts to statistical generalization. For differential privacy, this

connection was established in [DFH+15, BNS+16]. We will also use a variant of the
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latter result from [NS15]: 18

Lemma 4.5.4 (Generalization lemma). Let A : (Xn) -+ 2x x [f] be an (E, 6)-

differentially private algorithm that operates on f sub-databases and outputs a predi-

cate p : X -- {0, 1} and an index i E [f]. Let x = (xi,... ,x ) where every xi ~ D

is a database containing i. i. d. elements from D, and let (p,i) <- A(x). Then

E E [p(x<)]1< e' E E [weightD(p + M (4.5)
x~(Dn)Y (p,i) IFA(x) 1PX)1x~(Dn)f (p,i)+--A(x)

E F E [p(xi)] > e ( E F E [weightD . (4.6)
x~(D ) (p,i)+-A(x) x~(D) (p,i)+-A(x)

4.5.2 Differential Privacy Implies PSO Security

Theorem 4.5.5. For all E = 0(1), 6 = negl(n), w 0 , 1/In, and Whigh(n) =

w(log n/n), if M is (E, 6)-differentially private, then M is (6', 6', wi0 w, whigh) -PSO se-

cure for

E' + (n - 1) ln and 6' = negl(n).
(1 ~- UJIOW

For wio, = o(1/n), E' = E + o(1).19

Proof. The theorem consists of Claims 4.5.6 and 4.5.7, each using one part of the

generalization lemma. That lemma holds even when the distribution D is known, a

fact used in both proofs.

Claim 4.5.6. If M is (E, 6)-d.p., then for all A and w1o0 E [0,1/n]

SucCA (n) e' - base(n, wi 0.) + n6.

Claim 4.5.7. For E = 0(1) and 6 = negl(n), if M is (E, 6)-d.p., then for all A and

all Whigh= w(log n/n),

OZ- Succ':hg () < neg ).
1 8The proof of Equation 4.5 of Lemma 4.5.4 is identical to that of Lemma 3.3 in [NS15], skipping

the last inequality in the proof. The proof of Equation 4.6 is analogous.
1 9For all wi,, <; 1/n and n, E' < E + 1 by the fact that (1 - wi0 )-- 1 > (1 - 1/n)n 1 > e- 1 .
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Proof of Claim 4.5.6. Let w* = max{w < w.,, : w realizeable under D}. Given

p <- A(M(x)), wies, and D, define the predicate p*:

p(x) if weightD(p) < wI0 w

0 if weightD(p) > wI0w

Observe that weightD(p*) < w*. The predicate p* can be computed from p, D, and

wi 0. without further access to x. Because differential privacy is closed under post-

processing, if M is (E, 6)-differentially private, then the computation that produces

p* is as well.

Succ A, (n) < Pr[p(x) > 1/n A weightD(P) < w*j
xIp

< n -E [p*(x)]
xp

< n- (eEw* + 6) by Lemma 4.5.4, f = 1

base(n, w*)
-ae W*)_ + n6 by Claim 4.3.8

e~ base(nw*) + n6
(1 - wlow

= eE'base(n, wiw) + 6' by Claim 4.3.8

Proof of Claim 4.5.7. Fix an adversary A. The figure below defines algorithm B

which will violate the Generalization Lemma for e = 0(gn). M is (E, 6)-differentially

private, and M& (Theorem 4.5.3) is (E, 0)-differentially private. By basic and parael-

lel composition, B is (2E, 6)-differentially private.

Define the event PSO to be the event that A successfully predicate singles out

on one of the sub-databases with a high-weight predicate: PSO = {li E []
iso(pi, xi) A weightD(pi) Whigh}. By the choice of f, Pr[PSO] = 1- (1 - a)' > 1 -n

Conditioned on PSO, maxic, u(i) > -1/n. Au =1/n, and I < f. The Exponential

Mechanism guarantees that

Pr pi.(Xi.) > I + 2(In f + t) 1 PSO < e-t.
x;(pi-,i*)<--B(x) [Pn nEI
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Choosing t =n n and using the fact that pi. (xi.) < 1,

E [Pi- (xi-) I PSO
x;(pj.,i*)<--B(x)

1
S-

72

2 1
+ -(in f + In n) + -.

nE n

Input: D, x ~ (D')

I +- 0, the empty set;

for i+- 1,...,j do

pi

if

+-A(M(x ));

-pi(xj);

weightD(pi) >
I +- I U {i}

end

Let u : i - -pi(xi) for i E I;

i* <- ME&x , 1U);

return (WAi*)
Algorithm: B for Proof of Claim 4.5.7.

E [pi*(xi*)]
x;(pj*,i*) --B(x)

=Pr[-iPSO] E[pi (xi*) I ,PSO] + Pr[PSO] E[pi (xi) I PSO)

Pr[,PSO]+ E[p (xi) I PSO]

< - + -(n + In n).
n nE

E [weightD(p*)]
x;(p* ,i*)+-B(x)

= Pr[-,PSO] E[weightD(pi*) I -PSO] + Pr[PSO] E[weightD(pi*) PSO]

> Pr[PSO] E[weightD(Pi*) PSO]
1

> (1 - ) Whigh
n

3 Whigh
4
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Applying the Lemma for the (2,, 6)-d.p. mechanism B,

3 2 (3whh N
-+ -(lnl?+ t) ;> e-2 e 1 g _-
n nE 4

If 6 = w('), then by the assumption that 6 is negligible, a negl(n). Otherwise

6 O( ) = O(1'9') and

2 3nWhigh - O(log n)
E- 4e2E

For E = 0(1) and Whigh = w("g n), ln +lnn w(log n). By the choice of f 0(l"gn),

a = negl(n). El

4.6 Does k-Anonymity Provide PSO Security?

k-anonymity [SS98, Swe02] is a strategy intended to help a data holder "release a

version of its private data with scientific guarantees that the individuals who are

the subjects of the data cannot be re-identified while the data remain practically

useful" [Swe02]. It is achieved by making each individual in a data release indis-

tinguishable from at least k - 1 individuals. Typically, a k-anonymized dataset is

produced by subjecting it to a sequence of generalization and suppression operations.

The Article 29 Working Party Opinion on Anonymisation Techniques concludes

that k-anonymity prevents singling out [A29b]. In this section, we analyze the extent

to which k-anonymity provides PSO security. We show that k-anonymized dataset

typically provides an attacker information which is sufficient to predicate singling out

with constant probability. This result challenges the determination of the Article 29

Working Party.2 0

2 Our results hold equally for f-diversity [MKGV07] and t-closeness [LLV07a] which the Article 29
Working Party also concludes prevent singling out.
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4.6.1 Preliminaries

Let (A 1,... ,Am) be attribute domains. A dataset x = (X 1 ,... ,X) is collection of rows

Xi = (ai, . . ai,m) where aij c Aj. For subsets 'j,5 C Aj, we view yi = (ai,1, . . . ,ai,m)

as a set in the natural way, writing xi c y if Vj c [m], aij E 'aj. We say that

a dataset y = (y1,... , yn) is derived from x by generalization and suppression if

Vi E [n], xi E yi. For example, if (A 1, A 2 , A 3) correspond to "5 digit ZIP Code,"

"Gender," and "Year of Birth," then it may be that xi = (91015, F, 1972) and y=

(91010-91019, F, 1970-1975).

k-anonymity aims to capture a sort of anonymity of a crowd: a data release y is

k-anonymous if any individual row in the release cannot be distinguished from k - 1

other individuals. Let count(y,y) I {i E [n] : y= y}| be the number of rows in y

which agree with y.21

Definition 4.6.1 (k-Anonymity (rephrased from [Swe02I)). For k > 2, a dataset y is

k-anonymous if count(y, yi) > k for all i E [n]. An algorithm is called a k-anonymizer

if on an input dataset x its output is a k-anonymous y which is derived from x by

generalization and suppression.

Our goal is to relate k-anonymity and PSO security. It will be convenient to

define a generalization of k-anonymity-predicate k-anonymity which captures the

core property of k-anonymity but relaxes its strict syntactic requirements.

For a predicate q : X -+ {0, 1} and dataset x, let x = {x c x : # (x) 1}. We

assume that jxel is computable given the output of the k-anonymizer, but this does

not qualitatively affect the results in this section.

Definition 4.6.2 (Predicate k-Anonymity). Let Anon be an algorithm mapping a

dataset x G X' to a collection of predicates (D { : X - {0, 1}}. For k > 2 we call

Anon predicate k-anonymous if for all q E 4), jx4 > k.

k-anonymity is a special case of predicate k-anonymity that considers only specific

2 1Often count is paramaterized by a subset Q of the attribute domains called a quasi-identifier.
This parameterization does not affect our analysis and we omit it for simplicity.
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collections of predicates <b induced by a dataset y:

= ( 1 4 X -> 6 y Yy22

Definition 4.6.3. A predicate k anonymizer is kmax-bounded if Vx, 11# E 4b such that

jx$ < kmax.

4.6.2 Illustrative Examples

Before presenting a formal technical analysis, we provide two illustrative examples of

very simple k-anonymizers that fail to provide security against predicate singling out.

For both examples, let D = Uf be the uniform distribution over {0, 1}. The dataset

x consists of n records sampled i.i.d. from D.

Bit suppression. This k-anonymizer processes groups of k rows in index order

and suppresses all bit locations where the k rows disagree. Namely, for each group

g of k rows (xgk+1, ... , Xgk+k)) it outputs k copies of the string yg E {0, 1, *}" where

Yg[j] = b E {0, 1} if Xgk+1[j] Xgk+k[j] = b (i.e., all the k rows in the group

have b as their jth bit) and y9 [j] =* otherwise.

In the terminology of Definition 4.6.2, the predicate #g(x) evaluates to 1 if yg[j] E

{x[j], *} for all j E [n] and evaluates to 0 otherwise. Namely, Og(x) checks whether x

agrees with yg (and hence with all of xgk+1, ... Xgk+k)) on all non-suppressed bits.

In expectation, n/2k positions of yg are not suppressed. For large enough n, with

high probability over the choice of x, at least n positions in yg are not suppressed.

In this case, weightD (0g) < 24 which is a negligible function of n for any constant

k.

We now show how #g can be used adversarially. In expectation n(1 - 2 -) >

3n/4 positions of yg are suppressed. For large enough n, with high probability over

the choice of x at least n/2 of the positions in yg are suppressed. Denote these

22 See also the definition of k-anonymity for face images [NSM05, Definition 2.10]. Using the
notation of that paper, it is also special case of predicate k-anonymity, with P = {or, (F) = 1 <

f(IF) = Fd}rdEHd
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positions ii, .. . , in/2 . Define the predicate pk(x) that evaluates to 1 if the binary

number resulting from concatenating [ii, X[i 2 l, . .. , x[i,/2] is greater than 2 / 2 /k and

0 otherwise. Note that weightD(pk) ~ 1/k and hence Pk isolates within the group g

with probability ~ 1/e ~ 0.37, as was the case with the trivial adversary described

at the beginning of Section 4.3.

An attacker observing #g can now define a predicate p(x) = #g(x) A pk(x). By

the analysis above, weight(p) is negligible (as it is bounded by weight(#,)) and p(x)

isolates a row in x with probability ~ 0.37. Hence, the k-anonymizer of this example

fails to protect against singling out.

Theorem 4.6.4 below captures the intuition from our bit suppression example and

generalizes it, hence demonstrating that k-anonymity would not typically protect

against predicate singling out. We note that Theorem 4.6.4 does not capture all

possible ways in which the outcome of a k-anonymizer can be exploited, in particular,

the following simple example.

Interval Buckets. This k-anonymizer sorts the rows in lexicographic order and

outputs the intervals [ag, bg] = [Xgk+1, Xgk+k] (where the indices are after sorting and

renaming). The corresponding predicate ag,bg(X) = 1 if X E [ag, bg].

Observe that any of the endpoints ag or bg reveal a row in x and hence an adversary

can predicate single out with probability 1 using predicates of weight 2-'.

4.6.3 k-Anonymity Enables Predicate Singling Out

Theorem 4.6.4. For any kmax > 2, there exists an (efficient, uniform, randomized)

algorithm A such that for all D with min-entropy A > m + 2 log(1/a 2) + kmax log n

(for m C N, oz), and all predicate anonymizers Anon that are kmax-bounded, and all

w10W > 0:

SuccA" (n) > rin (e- 1 - 2-"'n - ka2)

where

r7 7 Pr [weightD(#) < wiow(n)].
x+- D

0+-Anon(x)
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For distributions with sufficient min-entropy (m = (log n), a = negl(n)), the

adversary's success probability is approximately q/e ~ - B(k, 1/k). To predicate

single out, the adversary must output a predicate that both isolates x and has low

weight. The theorem shows that these two requirements essentially decompose: q is

the probability that the predicate k-anonymizer outputs a low-weight predicate and

B(k, 1/k) is the probability that a trivial adversary predicate singles out a dataset

of size k. Algorithms for k-anonymity generally try to preserve as much information

in the dataset as possible. We expect such algorithms to typically yield low-weight

predicates and correspondingly high values of T.

Proof of Theorem 4.6.4. On input 1 +- Anon(x), A selects q E 1 such that 2 <

Jx kmax. A will construct some predicate q and output the conjunction p A q A q.

Noting that weightD(p) < weightD(0), and that iso(q, x0) --> iso(p, x),

Succ " "(n) > Pr [iso(q, x,) A weightD(#) < w1iw]

=1 -Pr [iso(q, x0) I weightD w] (4.7)

Claim 4.6.5. There exists A such that for all ko > 2

Pr iso(q, x0) x4 = k,6 A weightD(#) WIow > B(ko, 1/ko) - 2-'n - ka2.

O -Anonw)

The claim is proved below. Using the claim we get:

Pr [iso(q, x6) weightD ow

kmax

S Pr [{xo = ko] -Pr [iso(q, x0) Ix44 = ko A weightD tow]

ko=k

> 1 Pr [|xo| k] - (B(k5, 1/ko) - 2 m n - ka2
ko

= E [B(ko, 1/ko)] - 2-'n - ka2

k>(

> e-1 -- 2-"nn - ka2 (4.8)
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The last inequality follows from the fact that for all ko > 2, (1 - 1/ko)kOl1 > e1.

Combining (4.8) with (4.7) completes the proof.

The proof of Claim 4.6.5 uses the Leftover Hash Lemma in a manner closely

resembling Lemma 4.3.11, but with an additional challenge. The earlier application

of LHL proved that a random hash function selected appropriately isolates a row with

probability close to e- 1 . It relied on the fact that each row was sampled i.i.d. from a

distribution with min-entropy. In contrast, the rows in x, are a function of Anon and

the whole dataset x. They are not independently distributed and even their marginal

distributions may be different than D.

We can use the LHL to prove the claim if we can show that the rows in xO still

have sufficient (conditional) min-entropy. The following lemma does exactly that.

Lemma 4.6.6. Let Y1,... , Y, be i.i.d. random variables and let F be a (randomized)

function mapping (Y1,... ,Yn) to (j, I) where j G [n] and I C [n] \ {j} of size I| =

k - 1. Let Y1 = {YiEI.

Hloo(Y I Y) ;> Hco (Y) - (k - 1) log n ;> Hco (Y) - k log n.

Proof of Lemma 4.6.6. We prove the second inequality first. The idea in used in (4.9)

is used in (4.10).

2 -Ho(Y) = max Pr[yj = y1

< max Pr[] E [n],Yr = y] (4.9)

<_ n - max PrYi = 11

=21 lg n- H,,,(Y)

The first inequality:

2 H s(Yii) - E maxPr[Y = yI Y1]Y1I

278



= Pry[Y = y] -
YI

max Pr[Y
y

max (Pr [Y = yi] - Pr [Y= y

max (Pr[Y = y] -Pr[Y= y

max Pr[Y

YI

= Ey1

yI

Y

Y

= y] -Pr[Vi E I, 3 E

= Y1)

[n] \ {j}, Ye= yi Y

-Pr[Vi E C, El E [n] \ {j}, Y = y])

E Pr[Vi E I, El E [n] \ {j}, Y
y=

=maxPr[Y-y.Z1
y

YI

Sy] - max Pr[Y = y]
Y

< (n .2 - H. (Y)
- k - 1)

< 2 (k-1)log n-Hoo(Y)

Proof of Claim 4.6.5. We us a corollary of the Leftover Hash Lemma.

Corollary 4.6.7 (Corollary to Leftover Hash Lemma (4.2.5)). For random variables

Y1,...,Yk, andj G [n], let Y-j= {Y: i: -|j}. If for allj G [n], hOO(Y Yj) = A>

m + 2 log(1/a2 ), then (h(Y),... , h(Yk))hERH is ka2 -close to uniform over ({0, 1}rn)k

in total variation distance.

The construction of q uses the Leftover Hash Lemma and is very similar to the

construction of the predicates in Lemma 4.3.11. Identify the set {0, 1}m with the set

{0, 1,... , 2"-1} in the natural way. For y E {0, 1}m, define the function r(y) , 2m_

the projection of y onto the interval [0,1].

Let w, be the multiple of 2 -" closest to 1/ko. Observe that IB(ko, wO)-B(ko, 1/k )

- - maxw/[o,l] Ji-t(w')J < 2-"n.

Let H = {h : X -+ {0, 1}"} be a 2-universal family of hash functions. For each
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= y Y1 = y1])



h E H define the predicate qh:

qh) W

r(h(x)) < wo

Because wo is a multiple of 2-,

Pr [r(y) < wo] = wo
YER{O,1}m

By Lemma 4.6.6, xO (viewed as a ko-tuple of random variables) satisfies the average

min-entropy hypothesis of Corollary 4.6.7. Applying that Corollary:

Pr iso(q, xO) lx,5 = k, A weightD() wow
xo,qhII

> Pr [ unique j E [kb] : r(yj) < w6] - k5a 2

Y1,---,YkOERO,1}m

- B(k, w0) - koa 2

> B(k4p,1/k.0) - 2-'n - kga2
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Chapter 5

Theoretical Attacks in Practice

5.1 Introduction

Responding to public and legislation pressures, companies are seeking practical and

usable technological solutions to their data privacy problems. Larger corporations

often employ Chief Privacy Officers and teams of privacy engineers to develop cus-

tom data privacy solutions. Some of these companies, including Google, Apple, and

Uber, are recently experimenting with provable approaches to privacy using cryptog-

raphy and differential privacy, which-at their current stage of development-require

significant research and engineering efforts.

But not all companies have the means and technological sophistication to adopt

this sort of bespoke approach to privacy. This void is being filled by a growing

industry of companies selling off-the-shelf data privacy solutions, many of which aim

to anonymize or de-identify sensitive data. These companies often advertise their

anonymization products as not only preventing the disclosure of sensitive data and

but also ensuring compliance with relevant privacy laws, including HIPAA, FERPA,

and GDPR. Lack of transparency surrounds some of these technologies. Even when

disclosed, the technical underpinnings of many privacy protection claims are heuristic

and hence hard to evaluate.

Heuristic approaches to data privacy are not typically ruled out by data privacy

Based in part on "Linear Program Reconstruction in Practice" with Kobbi Nissim [CN18].
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regulations. Furthermore, these regulations are not typically interpreted to require a

strong level of protection from data privacy technology. For example, the EU's Gen-

eral Data Protection Regulation limits its scope to those "means reasonably likely to

be used" to re-identify data [Eur16]. A report from the UK's Information Commis-

sioner's Office interprets similar language in earlier legislation as requiring protection

against "motivated intruders"; alas, these intruders are assumed to lack both "any

prior knowledge" and "specialist expertise" [Off12. This policy approach allows prac-

titioners to argue that data privacy technology can be deployed even when they can be

theoretically demonstrated to be vulnerable to attacks, as purely theoretical attacks

plausibly fall outside the scope of the relevant regulations

We believe that this is an unhealthy state of affairs. However, one can hope

to affect the legal interpretation of existing regulations by implementing theoretical

attacks and demonstrating their practicality. As a striking example, the decision to

use differential privacy for the 2020 Decennial Census in the US was largely motivated

by the Census Bureau's realization that traditional statistical disclosure limitation

techniques may be vulnerable to practical reconstruction attacks [Abo18].

Reasoning about privacy. Academics have developed paradigms to reason for-

mally about certain aspects of data privacy. Among these is differential privacy: a

privacy notion that has attracted significant attention since its introduction in 2006

by Dwork, McSherry, Nissim, and Smith [DMNS06]. A computation on a collection

of data is differentially private if the outcome is essentially statistically independent

of any individual datum.

Work leading to differential privacy demonstrated fundamental tradeoffs between

privacy and utility when computing statistics on sensitive information. In 2003,

Dinur and Nissim considered executing noisy statistical queries on a database x of n

entries [DNO3]. They showed that if the noise magnitude is o(Vn/), then there exists

a simple linear program reconstructing all but a small fraction of x, a result that was

further generalized and strengthened in [DMT07, DY08I. This work helped establish

robustness to composition as a fundamental privacy desideratum and provided useful
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guidance in the theoretical development of a rigorous approach to privacy.

Reconstruction and composition attacks in practice. In this chapter, we de-

scribe two attacks on data privacy implementations in the wild. Both systems were

created by experts specifically motivated by legal compliance concerns. To the best

of our knowledge, both attacks are the first of their kind to be carried out against

systems deployed in the wild.

Our first attack is a linear reconstruction attack on a statistical query system,

successfully reconstructing data from a commercially-available statistical database

system. The attack was performed on the production system called Diffix [FEO + 18]

using a real dataset deployed in test environment in the course of a bug bounty

program by Aircloak. The goal of Diffix is to allow data analysts to perform an

unlimited number of statistical queries on a sensitive database while protecting the

underlying data and while introducing only minimal error. It is being advertised as

an off-the-shelf, GDPR-compliant privacy solution, and the company reports that

"CNIL, the French national data protection authority, has already evaluated Diffix

against the GDPR anonymity criteria, and have stated that Aircloak delivers GDPR-

level anonymity" [AIR18b]. As we show, by answering unlimited, highly accurate

statistical queries Diffix is vulnerable to linear reconstruction attacks.

Our second attack is against a highly publicized k-anonymous dataset consisting of

online educational student records. While it was known that in principle k-anonymity

does not compose, to the best of our knowledge ours is the first example of a real-world

failure of composition.

5.2 Linear Reconstruction in Practice

5.2.1 Diffix

Diffix is a system that sits between a data analyst and a dataset. The data analyst

issues counting queries using a restricted subset of SQL. For example,
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SELECT count(*) FROM loans

WHERE status = 'C' AND client-id BETWEEN 2000 and 3000

Diffix executes a related query on the underlying dataset and computes the answer

to the query along with some additional random error. The noisy answer is returned

to the analyst.

A primary focus of Diffix's design is noise generation, which is a function of both

the text of the query and the subset of the data included in that query. The noise is

sampled from a zero-mean normal distribution and, depending on the data, rounded

to the nearest integer. The standard deviation of the noise depends on the complexity

of the query; each additional condition in the query introduces an additional layer

noise of standard deviation 1.

In addition to adding Gaussian noise, Diffix employs a number of heuristic tech-

niques to promote privacy. To protect against an attacker who may try to aver-

age noise out by issuing many logically equivalent but syntactically distinct queries,

Diffix restricts the use of certain SQL operators, especially math operators. Other

techniques include suppressing small counts, modify extreme values, and disallowing

many SQL operators (including OR).

In order to accelerate development and testing of our linear reconstruction attack,

we simulated Diffix's noise addition and small-count suppression in MATLAB. The

results in Section 5.2.2 use real query responses from Diffix, while those in Section 5.2.3

use the simulation.

The Aircloak Challenge. From December 2017 to May 2018, Aircloak ran "the

first bounty program for anonymized data re-identification," offering prizes of up to

$5,000 for successful attacks [AIR18a]. The company granted researchers access to five

datasets through Diffix, along with documentation of the design and implementation

of Diffix and complete versions of the datasets for analysis. Researchers were allowed

to use auxiliary information gleaned directly from the datasets in order to carry out

their attacks. We commend Aircloak for making Diffix available to privacy researchers

and for their support throughout.

Aircloak measured the success of an attack using an effectiveness parameter a

284



and a confidence improvement parameter r. They have verified our attack to achieve

the best possible parameters. In a recent blog post, Aircloak reported that "Only

two attack teams formulated successful attacks. ... Fixes for both attacks have

been implemented" [AIR18c] At the time of writing, we have not examined the new

restrictions on the query language introduced to by Aircloak to counter these attacks.

5.2.2 Implementing the Linear Reconstruction Attack

The attack targets a dataset x of size n database entries indexed by a set of unique

identifiers ID. Each entry has an associated value of a Boolean target attribute, Xid.

Each query q C [n] specifies a subset of entries, and the response aq = q(x) + eq is

the sum of true value q(x) = Zieq Xid and an error term eq. The errors are sampled

from a zero-mean Gaussian distribution of standard deviation 0-, then rounded to the

nearest integer. Each query q is a uniformly random subset of [n]. The set of all

queries is denoted Q and is of size m.

We implemented a linear reconstruction attack following the approach of IDMT07

to find a candidate database x' minimizing the total error. [DMT071 was designed for

a setting when some errors may be very significant, but typical errors are small.

In contrast, the linear program of [DN03] is suitable when there is a bound on the

maximum error magnitude. Although we use the linear program of [DMT07I, we

deviate by using subset queries. That work analyzes a number of other types of

queries, including i1 queries of the form q*(x) = Elq Lid - Eid,, Lid for subsets

q C [n]. While these queries can be implemented using subset queries, 1 the standard

deviation of the resulting noise would be larger. In contrast, subset queries were

directly implementable in Diffix with less noise and proved effective. Section 5.2.3

reports on additional experiments testing the accuracy of these three contrasting

approaches in the face of Gaussian noise.

We solve the following linear program over n + m variables x' = (X')idEID and

( x'q)q =-Q:

1 q'(x) =q(x) - qc(x)
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variables: x' = (x'd)idEID and (eC')qEQ

minimize:ZqCQ le |'

subject to:

Vq E Q, e' = aq - q(x')

Vid E ID, i<Xd 1

There is a standard linearizing of the above nonlinear objective function by introduc-

ing m additional variables. To compute the final output, we round the real-valued

X'a to the nearest value in {, 1}.

The results described in this section are from a reanalysis of data gathered during

the Aircloak Challenge using the linear program described above. During the course

of the actual challenge, we used a slightly modified linear program as described in

Appendix 5.2.4.

Querying "random" subsets. The main hurdle in implementing the attack was

specifying queries for random subsets of the rows of the dataset. Diffix determines the

error magnitude per query depending on the description of the query. It increases the

noise magnitude for each additional condition in the query string. Random queries

would require lengthy description and Diffix would hence introduce large noise that

would reduce the reconstruction accuracy. We needed to find a way to specify a

random-or "random" enough-subset of the data using as few conditions as possible.

Our approach, ad hoc yet ultimately effective, was to use the unique user identifier

id as the source of "randomness." For each "random" query we used a predicate pq

and let q = {id : pq(id) = 1}. Concretely, each query was specified by a prime p, an

offset j, an exponent e E {0.5, 0.6, ... ,1.9} \ {1}, and a modulus m E {2, 5}. Row

number id was included in the query q = (p, j, e, m) if the jth digit in the decimal

representation of (p - id)e was congruent to 0 mod m. For example, the following

query corresponds to p = 2, j = 2, e = 0.7 and m = 5.

SELECT count(clientId) FROM loans

WHERE floor(100 * ((clientId * 2 )A0 .7 ) + 0.5)

= floor(100 * ((clientId * 2)^0.7))
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The exact form of the query depended on the various syntactic restrictions included

in Diffix. By modifying the ranges of p and j, we were able to tune the total number

of queries. We restricted p to the first 25 primes and j C [5], resulting in a total of

3500 queries.

Results. Our target was the loans table in the banking dataset, consisting of real

data of 827 loans from a bank in the Czech Republic. The rows are indexed by the

clientid attribute, a unique number between 2 and 13971. Each row has an associated

loanStatus attribute, a letter from 'A' to 'D'.

Our goal was to determine which loans had loanStatus = 'C', given only knowledge

of the clientids. In order to minimize the total number of queries, we restricted our

attention to the subset of clientids in the range [2000, 3000], which contained 73 entries.

Ultimately, our queries were of the form:

SELECT count(clientId) FROM loans

WHERE floor(100 * ((clientId * 2)^0.7) + 0.5)

= floor(100 * ((clientId * 2)^O.7))

AND clientId BETWEEN 2000 and 3000

AND loanStatus = 'C'

Diffix added error of standard deviation 4 to the output of these queries. We applied

the same attack on different ranges of clientids with 110, 130, and 142 entries (and

in the last case, targeting the loanStatus value 'A'). In each case, we performed 3500

queries.

The linear program reconstructed the data for all four clientld ranges perfectly.

5.2.3 Simulated Experiments

In addition to the above results using the actual Diffix system, we performed addi-

tional experiments using a simulation of a noisy statistical query mechanism. The

simulated mechanism answers counting queries with zero-mean, normally-distributed

noise with standard deviation o- (and rounds to the nearest integer). It also sup-

presses low counts in the same way as the Diffix system, though that was only be
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relevant for the first experiment. All experiments described below were implemented

in MATLAB on a personal laptop, and all linear programs were solved in less than 4

seconds.

Removing auxiliary information. One drawback of our original attack on Diffix

was the need for complete knowledge of the clientids as a prerequisite to performing

the attack. Our first experiment sought to infer these clientids. First, we identified a

range of 100 possible clientids that had a large number of present clientids (relative to

the other possible ranges). We want a large number of present clientids to minimize

the effect of Diffix's low-count suppression. We settled on the range [2500, 2600] with

12 clientIds. While we identified this range using exact counts, we believe such a range

could be found by querying Diffix itself. 2

We simulated responses to 3500 queries of the following form:

SELECT count(clientId) FROM loans

WHERE floor(100 * ((clientId * 2 )A 0 .7 ) + 0.5)

= floor(100 * ((clientId * 2 )A 0 .7 ))

AND clientId BETWEEN 2500 and 2600

The [DMT07 linear program was used to infer which clientids are present in the range.

There was 1 false negative among the 12 present clientids and 0 false positives among

the 88 absent clientids.

How accuracy varies with size, queries, and error. The accuracy of the linear

reconstruction attack depends on the size of the dataset, the magnitude of the error,

and the number of queries. When implementing our attack on Diffix, we used many

more queries than seemed necessary for the level of noise used. The next experiment

illustrates how the accuracy of [DMT07 varies with each of these parameters against

a system using Gaussian noise to answer counting queries.

2 E.g., by issuing the query SELECT count(*) FROM loans WHERE clientid BETWEEN a and b
to approximate the number of present clientids in the range {a, ... , b}.
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The results are summarized in Figure 5-1. The plots display the average accuracy

over 10 simulated runs of our [DMT07j reconstruction algorithm as the error mag-

nitude, database size, and number of queries were varied. Each run resampled the

Gaussian noise while the underlying dataset remained fixed. It is interesting to ob-

serve that the size of the dataset does not seem to significantly affect the effectiveness

of reconstruction.

As described in Section 5.2.2, the analysis in [DMT07] applies to 1 queries but

not to subset queries. To compare the effectiveness of these two query types, we ran

the same simulations using +1 queries. The results are summarized in Figure 5-2.

The plots are nearly indistinguishable from the corresponding plots in Figure 5-1.
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to 2950, in increments of 100, with noise
magnitude a = 4. For n = 100, the mean
accuracy surpasses 0.95 at 1150 queries and
surpasses 0.99 at 2050 queries.

Figure 5-1: Reconstruction accuracy as a function of the (5-1a) noise magnitude and
(5-1b) number of queries, for various database sizes. The data is averaged over 10
trials of the [DMT07] linear program using subset queries.

Comparing [DNO3] and [DMT07]. The original linear reconstruction attack for

noisy counting queries comes from [DN03]. In contrast to [DMT07], [DNO3] makes

the additional assumption that each error eq is bounded by a maximum error S. In
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(b) The number of queries varied from 50
to 2950, in increments of 100, with noise
magnitude o = 4. For n = 100, the mean
accuracy surpasses 0.95 at 1050 queries and
surpasses 0.99 at 2050 queries.

Figure 5-2: Reconstruction accuracy as a function of the (5-2a) noise magnitude and
(5-2b) number of queries, for various database sizes. The data is averaged over 10
trials of the [DMT07] linear program using +1 queries.

our experiments, we write S = Bo-, where B is the error bound multiplier and - is the

standard deviation of the Gaussian errors. The [DNO31 linear program reflects the

bounded-error assumption with an additional constraint and uses a trivial objective

function.

variables: x' = (Xj)idEID and (e')qEQ

minimize: 0

subject to:

Vq C Q, e' = aq - q(x')
el<Ba

q -

Vid E ID, 0 OX 1

Our final experiment illustrates how the accuracy of the above [DNO3]-based linear

program varies as a function of the error magnitude, number of queries, and the error

bound multiplier. The results are summarized in Figure 5-3. The plots display the
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(b) The number of queries varied from 50
to 2950, in increments of 100, with noise
magnitude o- = 4 and dataset size n = 100.

Figure 5-3: Accuracy as a function of the (5-3a) noise magnitude and (5-3b) number
of queries, for various values of the DiNi multiplier B. The data is averaged over 10
trials using a dataset of size n = 100.

average accuracy over 10 simulated runs of our [DNO3] reconstruction algorithm as the

parameters were varied. Each run resampled the Gaussian noise while the underlying

dataset remained fixed.

Observe that as the error bound multiplier B increases, the accuracy of recon-

struction degrades. Because the linear program terminates once any feasible points is

found, it is not surprising that expanding the set of feasible points by increasing B.

Note however that the pattern extends to B = 3. One would expect a few queries

(in expectation about 4.6 queries per 2550 for o- = 4) to have rounded error greater

than 3-. Nevertheless, in each of the 240 trials run with B = 3 and at least 2550

queries, a feasible solution was found. In contrast, for B = 2.5 and o- = 4 half of all

executions with 1850 queries were infeasible (dropping to > 90% infeasible at 2250

or more queries).
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5.2.4 Additional Information on the Aircloak Challenge At-

tack

The results described in Section 5.2.2 are from a reanalysis of data gathered during the

Aircloak Challenge. During the course of the Aircloak Challenge, we used a modified

version of the [DMT07] linear program. For transparency, this section describes the

modified linear program and its effectiveness.

The only difference between the linear program originally used and the one de-

scribed in Section 5.2.2 is the addition of constraints upper bounding the magnitude

of any error term.

variables: x' = (x~'d)idEID and (e )qEQ

minimize: qeQ Ie'q|
subject to:

Vq E Q, e' = aq -q(x')

C' < 5a-

Vid E ID, 0 < Xd 1

where o = 4 is the standard deviation of the true error distribution. Note that if the

true errors were distributed according to N(0, -) and rounded to the nearest integer,

an error of magnitude greater than 5c- would be expected once in every 1.7 million

queries.

We first implemented the linear reconstruction solver using data from the clientid

range [2000, 3000], for which it achieved perfect reconstruction. Together with re-

searchers at the Max Planck Institute for Software Systems, we verified the attack on

three additional ranges of clientids containing 110, 130, and 142 clientlds. The results

are summarized in Table 5.1. In two of the three ranges, the attack again inferred

whether each loanStatus was 'C' with high accuracy (1 and .9538). We were surprised,

therefore when the final validation (this time targeting loanStatus 'A' rather than 'C')

achieved accuracy of only 75.4%. Our confusion compounded when the accuracy de-

graded after increasing the number of queries, suggesting that we were not accounting

for some source of error.
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After further investigation, we realized that performing the queries for clientids

in [10000,12000] required more numerical precision than seemed to be supported by

Diffix. The larger clientld values in this range and the larger constants required for

additional queries introduced errors that had not affected our earlier tests. Ultimately,

high accuracy was recovered by ignoring the results from queries with larger values of

e which seemed to require greater (but making no other changes to the linear program

solver).

clientids Range # Entries (n) # Queries Target Status Accuracy

2000-3000 73 3500 'C' 1
3000-5000 110 3500 'C' 1
5000-7000 130 3500 'C' .9538

10000-12000 142 3500 'A' .7535
10000-12000 142 2000, e < 1.4 'A' 1
10000-12000 142 1000, e < 0.8 'A' .9930

Table 5.1: Summary of reconstruction tests performed against Diffix using the mod-
ified [DMT07] linear program. The queries in the final two resulted from restricting
the exponent e to the indicated range.

5.3 Composition Attacks for k-Anonymity

5.3.1 Introduction to k-Anonymity

k-anonymity [SS98, Swe02] is a concept intended to help a data holder "release a

version of its private data with scientific guarantees that the individuals who are

the subjects of the data cannot be re-identified while the data remain practically

useful" [Swe021. The approach is to make each individual in a data release indis-

tinguishable from at least k - 1 individuals. Typically, a k-anonymized dataset is

produced by subjecting it to a sequence of generalization and suppression operations.

Let (A 1 ,... Am) be attribute domains. A dataset x = (XI,... ,xn) is collection

of rows xi = (ai,1, ... , ai,m) where a,3 E Aj. For subsets a, 1 C Aj, we view yi =

(a,, II ... ..,2,m) as a set in the natural way, writing xi E yi if Vj E [m], aij E ai,. We
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say that a dataset y = (yi,. . . , y,) is derived from x by generalization and suppression

if Vi G [n], xi E yi. For example, if (A 1 , A 2, A3 ) correspond to "5 digit ZIP Code,"

"Gender," and "Year of Birth," then it may be that xi = (91015, F, 1972) and y =

(91010-91019, F, 1970-1975).

k-anonymity aims to capture a sort of anonymity of a crowd: data release y is k-

anonymous if any individual row in the release cannot be distinguished from k-1 other

individuals. This guarantee is typically parameterized by a subset Q C {A} je[m] of

the attribute domains called a quasi-identifier.3 Let y(Q) be the restriction of y to

those attribute domains Aj E Q. Let count(y, y, Q) -' I{y' E y : y'(Q) = y(Q)} be

the number of rows in y which agree with y (including y itself). We call this the

effective anonymity of y in y with respect to Q.

Definition 5.3.1 (k-Anonymity (rephrased from [Swe02)). For k > 2, a dataset y

is k-anonymous with respect to quasi-identifier Q if for all y G y, count(y, y, Q) > k.

An algorithm is called a k-anonymizer if on an input dataset x its output is a k-

anonymous y which is derived from x by generalization and suppression.

Whatever privacy k-anonymity guarantees rests on the assumption that the "data

holder can identify attributes in his private data that may also appear in external

information and therefore, can accurately identify quasi-identifiers" [Swe02J. This

assumption has been the subject of much criticism generally [NS10] and for specific

datasets [PPC17]. Even when quasi-identifiers are properly identified, k-anonymity

does not necessarily prevent sensitive inferences. Various refinements of k-anonymity

aiming to provide greater inferential privacy have been proposed- including f-diversity

[MGKV06] and t-closeness [LLV07b].

5.3.1.1 Intersection attacks

Two desirable properties of a privacy concept are (i) immunity to post-processing (i.e.,

further processing of the outcome of a mechanism, without access to the data, should
3This definition of quasi-identifier, as the collection of multiple attributes, is from [Swe02]. Many,

including the authors of the HarvardX-MITx dataset discussed below [MH14], use quasi-identifier
to mean one of the constituent attributes. So each [Swe02] quasi-identifier is comprised of multiple
[MH14] qausi-identifers.
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not increase privacy risks); and (ii) closure under composition (i.e., a combination of

two or more mechanisms which satisfy the requirements of the privacy concept is a

mechanism that also satisfies the requirements, potentially, with worse parameters).

k-anonymity as defined above enjoys neither property. First, the result of removing

rows from a k-anonymous dataset may not satisfy k-anonymity as defined. This

fragility to post-processing is not so much a privacy failure as a syntactic weakness

of the definition itself. Composition failure poses a more serious threat to privacy.

Consider two k = 3-anonymous versions of an unknown dataset x: y uses the quasi-

identifier Q = {ZIP Code} and y' uses the quasi-identifier Q' = {Year of Birth}.

Both treat baldness and income as sensitive variables that cannot be learned from

external sources.

ZIP Income Bald

9101* > $100k Yes

9101* > $100k No

9101* $50k to $75k No

20037 $75k to $100k No

20037 < $25k No

20037 < $25k Yes

YoB Income Bald

Odd > $100k Yes

Odd $75k to $100k No

Odd < $25k No

Even > $100k No

Even $50k to $75k No

Even < $25k Yes

Given the ZIP Code and Year of Birth of a data subject, it is impossible to determine

their tonsorial state or income using only one of y or y'. But using both, we can join

y and y' using income and baldness and deduce that the data subject who lives in

91011 and was born in 1971 must be bald and makes at least $100k.

[GKS08] calls this an intersection attack. The example intersection attack stems

from the use of two different quasi-identifiers for the same dataset. 4 It is easy to

dismiss the example as a misapplication of k-anonymity-something that an expert

wouldn't do. Because quasi-identifiers are supposed to capture that information that

may be available from external data sources, it stands to reason that the union of

quasi-identifiers should also be considered a quasi-identifier except with very good

40ne can construct a similar example using only a single quasi-identifier anonymized in two
different ways.
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reason (or accident). Indeed, though the possibility of intersection attacks has been

understood for over a decade [GKS08J, to the best of our knowledge it was not previ-

ously known to have ever manifested in practice. This is despite the fact that foun-

dational work on k-anonymity explicitly considers the possibility of multiple quasi-

identifiers [SS98, Swe98].

In this thesis, we show that exactly this type of quasi-identifier mismatch occurs

in a widely publicized dataset, allowing tens of thousands of data subjects to be

distinguished within a supposedly k-anonymous dataset (Section 5.3.3). The same

dataset seems to also exemplify the syntactic post-processing issue described above

(Section 5.3.3.3)

5.3.2 The Harvard-MIT edX Dataset

597,692 individuals registered for 17 online courses offered by Harvard and MIT

through the edX platform [HRN+14I. edX collected data about these students' de-

mographics (e.g., date of birth, location) and engagement with course content (e.g.,

number of forum posts, grade). In order to enable outside researchers to study the

data, its custodians determined to make it public.

However, edX considered this data to be subject to the Family Educational Rights

and Privacy Act (FERPA), a data privacy law restricting the disclosure of certain

educational records [MH14]. "To meet these privacy specifications, the HarvardX and

MITx research team (guided by the general counsel, for the two institutions) opted

for a k-anonymization framework" [ABW15]. A value of k = 5 "was chosen to allow

legal sharing of the data."

We summarize the raw edX dataset, the chosen quasi-identifiers, the implementa-

tion of k-anonymization, and the resulting published dataset Xed based on documen-

tation included with the dataset [MH14] and in two articles describing the creation of

the dataset itself [DRW+14, ABW15]. The final published result Xed includes 641,138

course registrations by 476,532 students across 16 courses. Xed has been downloaded

12,532 times.

The raw dataset consisted of 841,687 rows for 597,692 students. Each row cor-
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responded to the registration of a single student in a single course; it contained the

student's username and IP address, the course name, demographic information about

the student (including self-reported level of education, gender, and year of birth),

and information about the student's interaction with the course (including number

of forum posts, final course grade, and whether they received a certificate of com-

pletion). Most students chose not to report level of education, gender, and year of

birth at all, and these data are missing. The researchers considered username and IP

address to be identifying. Each username was replaced by a random 7-digit ID. A

username appearing in multiple rows was replaced by the same random ID in each.

The IP address was used to infer a student's country (along with self-reported address

if available) but was otherwise redacted.

Five variables were considered to form a quasi-identifier, Q = {gender, year of

birth, country, course, number of forum posts}. "The last one was chosen as a

quasi-identifier because the edX forums are somewhat publicly accessible and

someone wishing to re-identify the dataset could, with some effort, compile

the count of posts to the forum by username" [MH14]. Separately, the set of

courses that each student enrolled in were considered to form a quasi-identifier: Q' =

{enrolled in course 1, ... , enrolled in course 16}. The data was k-anonymized first

according to Q' and then according to Q.5 The result contained 641,138 rows and

476,532 students.

5.3.3 Violating k-Anonymity of the HarvardX-MITx dataset

k-anonymizing a dataset according to multiple different quasi-identifiers may compro-

mise privacy. The edX dataset proves that this possibility is a reality. The dataset

Xed is formatted so that a row corresponds to a student-course pair. But the object

of our privacy concern is not a student-course pair, but the student himself. Each

row related to an individual student contains the same random ID. Our first step is

to reorganize the dataset to consist of 476,532 rows, each corresponding to a single

student's ID.
5Additionally, f-diversity was enforced for the final course grade, with f = 2.
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In the new pivoted dataset Xed, rows contain demographic information about a

student (including gender, year of birth, and country') and information about the

student's involvement in each of the 16 courses (including whether the student enrolled

or received a certificate, grade, and number of forum posts).

The original dataset was k-anonymized according to two different quasi-identifiers

Q and Q'.7Let Qa = Q U Q'= {gender, year of birth, country, all course enrollments,

number of forum posts in all courses}. X'ed is very far from 5-anonymous with respect

to Qaii. 7.1% of students (33,925 students) in X'ed have effective anonymity 1 with

respect to Qai (i.e., count(x'ed, y, Qai) = 1). 15.3% have effective anonymity less than

5. Recall that 5-anonymity was edX's FERPA compliance target.

We emphasize that the creators of Xed never intended or claimed to provide 5-

anonymity with respect to Qaii. But since quasi-identifiers are intended to capture

the information that may be publicly available, the union of quasi-identifiers also be

considered a quasi-identifier. Any exceptions must be justified, but no justification is

given for Xed.

Qai Qcis Qacq I Qacq+oe Qemp Qemp+oe

EA 1 in x' 7.1 .025 (1.7) 6.7 8.7 .79 (23.2) 1.2 (34.2)
EA < 5 in x' 15.3 .045 (3.0) 14.6 20.6 1.8 (54.3) 2.3 (67.4)
EA 1 in x'ean 6.9 - 6.6 8.8 .82 (26.1) 1.2 (38.9)
EA <Sin x'dean 15.2 - 14.7 20.8 1.9 (60.9) 2.4 (75.9)
UEA 1 in x' 1.9 - 1.5 1.6 .14 (4.2) .15 (4.5)
UEA < 5 in x' 4.7 - 4.0 4.3 .42 (12.5) .48 (14.2)

Table 5.2: Percent of students with effective anonymity (EA) or unambiguous ef-
fective anonymity (UEA) 1 and < 5 in edX-derived datasets with respect to various
choices of attacker knowledge Q, as described in this section. Numbers in parentheses
are the value as a percentage of a relevant subset of the full dataset: for Qcis, students
with at least one forum post (7,251); for Qemp and Qemp+oe, students with at least
one certificate (16,224).

6 Different rows of the same student often listed different countries. Almost always there were
only two different values, one of which was "Unknown/Other." In this case, we used the other value
for the student's unified record. In all other cases, we used "Unknown/Other."

7 The effective number of different quasi-identifiers in the pivoted dataset x'd is 17: Q' as before
and Qi, ... , Q16, where Qi = {gender, year of birth, country, enrolled in course i, number of forum
posts in course i}.

298



5.3.3.1 Limiting the Attacker's Knowledge

One might still argue that an attacker who knows Qai is too powerful, and that

only protection against weaker attackers is necessary. We disagree, but it raises a

nonetheless important question: Does Xed provide effective anonymity against more

'realistic' attackers? We consider three hypothetical attackers: edX classmates, casual

acquaintances, and prospective employers. Table 5.2 summarizes the results of all

analyses described in this section.

edX classmate. Consider an attacker who knows Qci, ={number of forum posts in

courses 1-16} C Q,1. 120 students in x' have effective anonymity 1 with respect to

, and 216 have effective anonymity less than 5. These numbers may seem minute,

but they constitute 1.7% and 3.0% of the 7251 students in the dataset that made any

forum posts whatsoever.

Why might somebody know Qi,? Each edX course had an online forum for

student discussions. Because these posts were public to all students enrolled in a

given course, the number of forum posts made by any user was considered by edX to

be publicly available information. But Ignoring composition, they did not consider

the combination of forum post counts made by a user across courses. This is despite

the fact that 20 students in the dataset itself enrolled in all 16 courses and could have

compiled forum post counts across courses for all other edX students.

In fact, the situation is worse than this. For every one of the 120 students with

uniquely identifying forum post counts, forum post counts in a strict subset of the

16 courses suffices to uniquely distinguish them. This enables more classmates to

act as attackers than just the 20 who took all courses. Indeed, the 120 vulnerable

students can be distinguished by 23-70 classmates each; 60 can be distinguished by

40-49 classmates each.

Casual acquaintance. Consider an attacker who knows Qacq =f{gender, year of

birth, location, enrollment in courses 1-16} C Qa. 6.7% of students in X'ed have

effective anonymity 1 with respect to Qacq, and 14.6% have effective anonymity less
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than 5.

Why might somebody know Qacq? Imagine two casual acquaintances who, in the

course of normal conversation, discuss their experiences edX. It is no stretch to assume

that they would tell each other which courses they enrolled in. It is also reasonable to

assume they know each other's ages, genders, and locations, as many acquaintances

do.

Indeed, acquaintances would likely know each other's level of education too, even

though this is not included in any of the quasi-identifiers (namely, LoE Qaii). If we

augment the attacker's knowledge with level of education Qacq+oe = Qacq U {LoE},

then things become worse. 8.7% students in x' have effective anonymity 1 with

respect to Qacq+loe, and 20.6% have effective anonymity less than 5.

Prospective employer. Consider an attacker who knows Qemp ={gender, year of

birth, location, certificates earned in courses 1-16} Qali. Qemp only includes those

certificates actually earned, but omits courses in which a student enrolled but did

not earn a certificate. 3772 students in x' have effective anonymity 1 with respect

to Qacq, and 8808 have effective anonymity less than 5. These numbers may seem

small, but they constitute 23.2% and 54.3% of the 16,224 students in the dataset that

earned any certificates whatsoever.

Why might somebody know Qemp? Imagine a student applying for a job who lists

on their resume the certificates they earned in edX. It is no stretch to assume the

prospective employer also knows the applicant's gender, age, and location. While

certifications were not included in any of the quasi-identifiers originally considered,

there are reasonable scenarios in which they may become known.

If a resume includes edX certifications, it would likely also include level of educa-

tion too. If we augment the attacker's knowledge with level of education Qemp+ioe =

Qemp U {LoE}, then again things become worse. 5546 students in X'ed have effective

anonymity 1 with respect to Qemp+ioe, and 10942 have effective anonymity less than 5.

These constitute 34.2% and 67.4% of the 16,224 students in the dataset that earned

any certificates whatsoever.
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5.3.3.2 Inference and Unambiguous Effective Anonymity

What inferences can our attackers make about individual students? 7.1% of students

are uniquely distinguishable using Qaii. A naive interpretation is that an attacker

who knows Qai would be able to definitively learn the grades of 7.1% of the students.

However, two sources of ambiguity in Xed deserve discussion.8

Missing data. The first source of ambiguity is information missing from the raw

dataset. Gender, year of birth, and level of education were voluntarily self-reported

by students. Many students chose not to provide this information: 14.9% of students

records are missing at least one of these attributes. This information is missing in

the raw data, not just the published data. 9 Thus, a female Italian student born in

1986 might appear in the dataset with any or all of these three attributes missing.

This makes the 7.1% result difficult to interpret. From an inferential standpoint,

the relevant question is not how many students have unique quasi-identifiers, but how

many have unambiguously unique quasi-identifiers. This number may be much lower

than 7.1%. But this ambiguity comes from the data, not from k-anonymity. The

missing information may be masking the implementation's weaknesses. It is similarly

difficult to interpret the results of all our hypothetical attackers (except the classmate

using Qi, which contains none of these attributes).

Table 5.2 summarizes the results of two additional sets of analyses on the dataset

which address the problem of missing data. The first analysis examines the effective-

ness of edX's implementation of k-anonymity among those students who volunteered

their personal information. We remove all the students who did not self-report gen-

der, year of birth, or level of education. Let x'ean C X/ be the subset with those

students removed. We determine the effective anonymity of students in xea, with

respect to Qaii, Qacq, Qacq+Ioe, Qemp, and Qemp+ioe. The results are qualitatively similar

'A third source of ambiguity does not deserve discussion: erroneous data. We are critiquing
a privacy technique; erroneous data is not a feature of the privacy technique, it is an undesirable
feature of the data.

9"The general strategy chosen was to prioritize integrity of the original values over the
number of records preserved. As a result, 10-20% of the dataset will be deleted, but the
remaining records will be virtually unaltered" [MH14].
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to the results using x'.

The second analysis considers what inferences our attackers can make about in-

dividuals using the dataset X'e as is. First we define the unambiguous effective

anonymity of y E y with respect to Q. Unambiguous effective anonymity generalizes

effective anonymity and helps us reason about the inferences an attacker can make.

Recall that for attribute domains {A}jelm] and subsets {?ia c Aj}jE[m], we view

y = (' 1 ,...,am) as a set in the natural way. For Q C {Aj}je[m], y(Q) is the restric-

tion of y to those attribute domains Aj E Q. The unambiguous effective anonymity

of y E y with respect to Q is countu(y, y,Q) ' I{y' c y : y'(Q) n y(Q) -# 0}j.

We reperform our analyses using unambiguous effective anonymity: count, in-

stead of count. To do so, we interpret the attribute values present in Xed as sets of

attribute values that are consistent with the value. For example, the gender "female'

is interpreted as the set {'female', 'unknown'} and the gender unknown' is interpreted

as the set {'female', 'male', 'other', 'unknown'}. Year of birth and level of education

are handeled analogously.

1.9% of students have unambiguous effective anonymity 1 with respect to Qaii. As

expected, this is much smaller than the 7.1% with effective anonymity 1. But these

9,125 students are unambiguously identifiable in the dataset to anybody who knows

all the quasi-identifiers, without knowing whether the students chose to self-report

their gender, year of birth, or level of education. This allows an attacker to draw

meaningful inferences about them.

Take, for example, a prospective employer who is interested in discovering whether

a job applicant failed (or failed to complete) edX courses. 4.5% of the 16,224 students

(732 students) who earned any certifications have unambiguous effective anonymity

1 with respect to Qemp+ioe. 333 of these students failed at least one course, and 38

failed three or more courses.

Omitted data. The second source of ambiguity is omissions in the published data.

Of the 597,692 students enrolled in edX courses over the relevant period, only 476,532

appear in the published dataset. 20.3% of students are completely omitted. Moreover,
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some students had only subset of their courses removed from the dataset. One might

argue that the 20.3% omission rate imbues Xed with additional anonymity-even for

those 7.1% of included records uniquely distinguishable using Qaii.

This argument is unconvincing. First, it implicitly assumes that whether a record

is omitted or included is a random event, independent of its contents. In reality,

the omitted records are "outliers and highly active users because these users

are more likely to be unique and therefore easy to re-identify" [MH14I.

We believe it unlikely that a large fraction of the 7.1% of uniquely distinguishable

users Xed might have a matching record among those omitted, though we cannot

test this hypothesis. Second, the argument suggests a natural way to anonymize a

dataset: release a random fraction of the data, say 1/k of the rows. A randomly

subsampled version of the edX dataset would be much more useful than Xed. The

data would be unredacted and ungeneralized. Unlike the actual released dataset,

statistics computed from the subsample would easily generalize to the underlying raw

data, enabling better social science research. But the edX curators did no such thing,

suggesting that they may not have considered subsampling to be sufficient to meet

their anonymity requirements.

5.3.3.3 Post-processing

The edX dataset aims to provide 5-anonymity with respect to two quasi-identifiers:

Q = {gender, year of birth, country, course, number of forum posts} and Q' =

{enrolled in course 1, ... , enrolled in course 16}. However, Xed is not actually 5-

anonymous with respect to Q'. There are 245 students with effective anonymity

1 (i.e., enrolled in a unique set of courses). A total of 753 students have effective

anonymity less than five with respect to Q'.

We suspect this error is due to k-anonymity's formal fragility with respect to

post-processing. The raw data was first 5-anonymized with respect to Q' and then

with respect to Q. In the course of anonymizing with respect to Q, some rows in the

dataset were deleted. These deletions may have caused the violations of 5-anonymity.
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